WO2018012876A1 - 카본나노튜브 제품 건조 및 회수 장치와 이를 이용한 카본나노튜브 제조방법 - Google Patents

카본나노튜브 제품 건조 및 회수 장치와 이를 이용한 카본나노튜브 제조방법 Download PDF

Info

Publication number
WO2018012876A1
WO2018012876A1 PCT/KR2017/007459 KR2017007459W WO2018012876A1 WO 2018012876 A1 WO2018012876 A1 WO 2018012876A1 KR 2017007459 W KR2017007459 W KR 2017007459W WO 2018012876 A1 WO2018012876 A1 WO 2018012876A1
Authority
WO
WIPO (PCT)
Prior art keywords
product
drying
carbon nanotube
valve
unit
Prior art date
Application number
PCT/KR2017/007459
Other languages
English (en)
French (fr)
Inventor
김옥신
윤광우
이승용
조동현
김석원
우지희
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to EP17827946.9A priority Critical patent/EP3339247A4/en
Priority to CN201780003880.XA priority patent/CN108349739B/zh
Priority to US15/769,194 priority patent/US10758882B2/en
Publication of WO2018012876A1 publication Critical patent/WO2018012876A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2/00Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic
    • B01J2/16Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic by suspending the powder material in a gas, e.g. in fluidised beds or as a falling curtain
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J6/00Heat treatments such as Calcining; Fusing ; Pyrolysis
    • B01J6/001Calcining
    • B01J6/002Calcining using rotating drums
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J6/00Heat treatments such as Calcining; Fusing ; Pyrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J6/00Heat treatments such as Calcining; Fusing ; Pyrolysis
    • B01J6/008Pyrolysis reactions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/10Making granules by moulding the material, i.e. treating it in the molten state
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G7/00Incinerators or other apparatus for consuming industrial waste, e.g. chemicals
    • F23G7/06Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/12Making granules characterised by structure or composition
    • B29B2009/125Micropellets, microgranules, microparticles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Definitions

  • the present invention is a carbon nanotube product drying and recovery apparatus and carbon nanotube production using the same, which can prevent product damage and improve drying efficiency in drying and recovery of carbon nanotube products such as pellets or aggregates of carbon nanotubes. It is about a method.
  • Nano-sized materials have been studied in recent years due to their inherent optical and electrical properties and their potential use in electronics or optoelectronics.
  • the nanostructure or nanostructured material region includes both multidimensional nanostructures such as nanotubes and self-assemblies and technology development using them.
  • Nanostructures may be classified into inorganic nanostructures, organic nanostructures, polymer inorganic nanostructures, porous high surface area nanostructures, and bio-related nanostructures according to materials.
  • Inorganic nanostructures are structures that are attracting attention mainly in connection with semiconductors. This includes research on quantum structures, single electronic devices, next-generation memory devices, and magnetic recording media.
  • Organic nanostructures include fullerenes, carbon nanotubes, carbon nanofibers, diamond thin films, and organic EL.
  • Polymer inorganic nanostructures can be classified into two fields, namely nanostructure control polymers and ceramic particles of nanoparticles.
  • Porous high surface area nanostructures include activated carbon fibers, zeolites, and photocatalytic fine particles.
  • Bio-related nanostructures are fields such as drug delivery system, biomimetic device, high sensitivity nanosensor material.
  • carbon nanotubes have been the subject of numerous studies for many years due to their unique physical and electrical properties. Carbon nanotubes exhibit non-conductor, conductor or semiconducting properties according to the chirality of the tube itself. The carbon atoms are connected by strong covalent bonds, so the tensile strength is about 100 times greater than steel, and the flexibility and elasticity are excellent. It is chemically stable, and because of its size and specific properties, it is industrially important in the manufacture of composites, and has high utility in the field of electronic materials, energy materials, and many other fields.
  • the carbon nanotubes may be applied to electrodes of an electrochemical storage device such as a secondary battery, a fuel cell or a super capacitor, an electromagnetic shield, a field emission display, or a gas sensor.
  • an electrochemical storage device such as a secondary battery, a fuel cell or a super capacitor, an electromagnetic shield, a field emission display, or a gas sensor.
  • nanostructures are provided in the form of dozens of micro powders in the actual process, the scattering in the process may cause harmful effects to the human body and malfunction of electric products.
  • carbon-based organic nanostructures There is a difficulty in dispersion due to the large apparent density difference with the polymer.
  • nanostructures can be compressed and used.
  • a pelletization method is generally provided because of an increase in density and ease of handling and transportation.
  • pellet-type carbon nanotubes are convenient for use in various processing apparatuses.
  • two different methods namely, a method of wet pelletizing and drying and a method of pelletizing dry are used.
  • Dry pelletization generally employs a pelletizing drum comprising a rotating tube arranged horizontally, the interior of the tube being referred to as a pelletization chamber.
  • a pelletizing drum comprising a rotating tube arranged horizontally, the interior of the tube being referred to as a pelletization chamber.
  • an industrial powder is preliminarily densified and rolled down from the rotating tube wall in a pelletizing drum to granulate. Aggregates with Van-der-Waals forces and electrostatic forces that enable dry pelletization, and are usually produced by applying tons of pressure when forming dry pellets, thus making pellets in the manufacturing process There is a problem that can be destroyed again.
  • the wet pelletization process is mainly caused by the liquid bridge and capillary force between the carbon nanotubes.
  • a solvent such as excessive water or ethanol is added, and the added solvent is generally hot air dried or a rotary drum dryer.
  • a method of heating and drying using a dryer, an agitated pan, or a conveyor is used.
  • the rotating drum or the stirring fan may damage the product by the rotating body, and the conveyor method may reduce the spatial efficiency and the general hot air drying may reduce the drying efficiency considerably.
  • the present invention is to solve the above problems, to provide a device having excellent drying efficiency while less damage or damage to the product during the drying and recovery of carbon nanotube pellets or aggregates.
  • the present invention to solve the above technical problem
  • a drying unit in which carbon nanotube products to be dried are accommodated and dried;
  • a product recovery unit provided below the drying unit
  • a gas inlet provided at an upper portion of the drying unit or between the drying unit and the product recovery unit to introduce gas into the drying unit;
  • a valve provided between the drying unit and the product recovery unit and having a plurality of openings through which fluid communication is possible;
  • a carbon nanotube product drying and recovery apparatus Provided, a carbon nanotube product drying and recovery apparatus.
  • the gas inlet is provided between the drying unit and the product recovery unit,
  • the valve is a first valve provided between the drying unit and the gas inlet,
  • a second valve provided between the gas inlet and the product recovery unit
  • the opening of the first valve may allow the gas from the gas inlet to flow into the drying unit while preventing the product from flowing into the recovery unit during the product drying process in the drying unit.
  • the carbon nanotube product may be carbon nanotube pellet or carbon nanotube aggregate.
  • drying unit may be a vertical column type.
  • the first valve or the second valve may be independently a butterfly valve or a damper valve.
  • the first valve may be a plurality of openings are formed on the wing surface of the butterfly valve or damper valve.
  • the carbon nanotube product may be attached to a part or all of the opening, the mesh sheet capable of communicating only fluid without communicating.
  • a part or all of the opening may be covered with a bubble cap.
  • a preheater for preheating the gas introduced into the gas inlet.
  • the flow rate regulator for adjusting the flow rate of the gas introduced into the gas inlet may be further provided.
  • the upper end of the drying unit may be provided with a gas outlet to control the pressure in the drying unit.
  • a lower end of the product recovery unit may be provided with a third valve for discharging the product.
  • the product recovery unit may be provided with a second gas inlet to allow the gas to help discharge the product.
  • the present invention provides a method for producing a carbon nanotube product using the device described above.
  • valve having a plurality of openings in fluid communication between the drying unit and the product recovery unit, it is possible to prevent the outflow of the product during the product drying process in the drying unit to enable gas flow.
  • gas inlet is provided between the drying unit and the product recovery unit,
  • the valve having the plurality of openings includes a first valve provided between the drying part and the gas inlet part, and a second valve provided between the gas inlet part and the product recovery part.
  • the gas is introduced with the first valve closed to proceed with the drying process.
  • the first valve When the dried product is recovered, the first valve may be opened to introduce the product into the gas inlet, and then the first valve may be closed and the second valve may be opened to introduce the product into the recovery unit.
  • the product recovery unit may be provided with a second gas inlet to introduce a gas to help discharge the product.
  • the carbon nanotube manufacturing method comprises the steps of obtaining a carbon nanotube introduced into the drying unit by thermal decomposition of the organic compound in a pyrolysis furnace using a transition metal or a compound thereof as a catalyst;
  • the method may further include incineration of the reactive exhaust gas separated from the carbon nanotubes.
  • the exhaust gas discharged from the gas outlet may be incinerated.
  • it may be incinerated with the reactive exhaust gas generated in the pyrolysis process for producing carbon nanotubes.
  • the carbon nanotube pellet or aggregate drying and recovery apparatus can accelerate solvent evaporation by dispersing not only internal and external heat sources, but also hot gases into the column, and rapidly remove the evaporated solvent. Can be.
  • the gas flow rate to control the flow of the product in the column it can proceed with the drying and recovery process while minimizing the breakage of the product. As a result, a product having a final moisture content of 1% or less and a breakage rate of less than 5% can be obtained.
  • FIG. 1 is a schematic view of a carbon nanotube product drying and recovery apparatus according to an embodiment of the present invention.
  • FIG. 2 is a schematic enlarged view of the apparatus of FIG. 1.
  • FIG. 2 is a schematic enlarged view of the apparatus of FIG. 1.
  • FIG. 3 schematically illustrates the shape of the spray nozzle shown in FIG. 2.
  • 4 and 5 are plan views schematically illustrating an embodiment of the first valve.
  • 6 and 7 are graphs showing experimental results according to the present invention.
  • Singular expressions include plural expressions unless otherwise specified.
  • carbon nanotube may refer to a single or a plurality of carbon nanotubes, and may include a plurality of carbon nanotubes formed in a fiber form.
  • a drying unit in which carbon nanotube products to be dried are accommodated and dried;
  • a product recovery unit provided below the drying unit
  • a gas inlet provided at an upper portion of the drying unit or between the drying unit and the product recovery unit to introduce gas into the drying unit;
  • a valve provided between the drying unit and the product recovery unit and having a plurality of openings through which fluid communication is possible;
  • the carbon nanotube product may refer to carbon nanotube pellet or carbon nanotube aggregate.
  • Figure 1 schematically shows a carbon nanotube product drying and recovery apparatus, the gas inlet is provided between the drying unit and the product recovery unit in accordance with an embodiment of the present invention. That is, Figure 1 shows a structure designed to allow the gas flows from the bottom of the drying unit toward the top, the present invention is not limited to this, but also includes a structure in which the gas flows from the top of the drying unit to the bottom. When the gas flows from the upper portion to the lower portion of the drying unit, heat transferred from the furnace surrounding the heating unit may be directly transferred to the gas, and thus drying may be performed with a higher temperature gas.
  • a drying unit 10 in which carbon nanotube products to be dried are accommodated and dried;
  • a product recovery unit 20 provided below the drying unit
  • a gas inlet part 30 provided between the drying part 10 and the product recovery part 20 to introduce gas into the drying part;
  • a first valve 50 provided between the drying part 10 and the gas inlet part 30 and having a plurality of openings in fluid communication therebetween;
  • a second valve 60 provided between the gas inlet and the product recovery unit
  • a carbon nanotube product drying and recovery device 100 is shown.
  • the drying unit 10 may be a vertical column type, and is equipped with a heating unit 12 for heating the drying unit.
  • the heating means 12 may be a furnace surrounding the drying unit 10 as shown in FIG. 1, but is not limited thereto.
  • the apparatus shown in FIG. 1 preferably further includes a preheater 32 for preheating the gas introduced into the gas inlet 30, and further includes a flow rate of the gas introduced into the gas inlet 30. It is further provided with a flow regulator 33 for adjusting.
  • the gas introduced into the gas inlet 30 is used to prevent agglomeration of the product in the drying unit 10 and to promote drying of the product in the drying unit 10 by applying auxiliary heat, thereby preventing reactivity with the product. It is preferred that there is no inert gas. Nitrogen gas is most preferred but not limited thereto.
  • the upper end of the drying unit 10 is provided with a gas discharge port 13 can adjust the pressure in the drying unit 10 by adjusting the gas discharge (14).
  • the product in the drying unit 10 has reached a predetermined dry state from the method of measuring the temperature change in the drying unit 10 (that is, checking whether there is little temperature change) or from the outlet 13
  • the exhaust gas discharged from the gas outlet 13 may mainly contain nitrogen and water, but in the case of using an organic solvent other than water when manufacturing CNT pellets, the exhaust gas may contain a large amount of solvent evaporated during the product drying process. . They can be evaporated or incinerated.
  • the incineration efficiency may be reduced, so that these non-reactive flame retardant gases are mixed with the flammable reactive exhaust gas containing hydrogen, hydrocarbon, etc. emitted from the carbon nanotube synthesis process. It is also possible to incinerate. That is, when the reaction of the carbon nanotube synthesis process is completed, purge with the non-reactive flame-retardant gas discharged in the process according to the present invention to incinerate the reactive exhaust gas remaining in the reaction system or the reactive exhaust gas supply pipe, thereby supplying the reactive exhaust gas Backfire into the pipe can be prevented and combustion efficiency can be improved.
  • FIG. 2 is a schematic view for explaining in detail the configuration of the gas inlet 30 and the product return number 20.
  • the gas inlet 30 is preferably provided with a nozzle 34 for injecting the introduced gas upwards toward the drying unit 10 to supply gas through the opening of the first valve 50.
  • the shape of the nozzle 34 may refer to FIG. 3.
  • a first valve 50 is provided below the drying unit 10, and a gas inlet 30 and a second valve 60 are mounted below the first valve 50.
  • the product recovery unit 20 is positioned below the second valve 60, and a second gas supply port 25 and a third valve 27 may be provided at a lower end thereof to facilitate product recovery.
  • the gas introduced through the second gas supply port 25 is injected through the injection nozzle 24 to prevent the products from agglomerating in the product discharge process.
  • the shape of the injection nozzle 24 may be the same as that shown in FIG. 3, but is not limited thereto.
  • the inlet gas is preferably an inert gas and does not need to be preheated.
  • the valve may be a butterfly valve or a damper valve.
  • the first valve is provided with a central shaft 51 to rotate the valve or to be folded and unfolded while opening and closing the valve.
  • Butterfly valves or damper valves are used to prevent the product from leaking out during drying, which reduces the flow of hot air from the upper part of the valve (drying part) when it is closed, reducing the drying efficiency.
  • the opening 53 of the first valve 50 prevents the product from flowing into the recovery unit 20 while the product drying process is performed in the drying unit 10 while the gas inlet unit ( The gas from 20 is introduced into the drying unit 10 to allow hot air flow to increase the drying efficiency.
  • the first valve may be a plurality of openings 53 are formed on the wing surface 52 of the butterfly valve or damper valve.
  • a portion or all of the openings 53 may be attached to a mesh sheet capable of communicating only fluids without communicating carbon nanotube products.
  • the bubble cap 55 may be covered with part or all of the opening 53.
  • the present invention by placing the first valve 50 and the second valve 60 in the lower portion of the drying unit 10, even when the first valve 50 is closed, hot air supply using hot gas into the drying unit can be achieved. Since it is possible, a drying process can be performed efficiently.
  • the first valve 50 is opened to introduce the product into the gas inlet 30, the first valve 50 is closed, and the second valve 60 is opened to recover the product. 20) it is possible to introduce. Therefore, it is possible to proceed with the drying process and the product recovery process continuously without having to stop the drying process or reduce the temperature.
  • FIGS. 6 and 7 show the results of experiments by assembling the device as shown in Figure 1 using a laboratory scale cylindrical hot dryer (inner diameter 50mm quartz tube). Experimental conditions are shown in Table 1.
  • Test 2 CNT pellet dosage 300 g 300 g Drying time 90 minutes 180 minutes Nitrogen Gas Flow Rate 2.7 cm / s 2.7 cm / s Furnace temperature 300 °C 300 °C
  • Figure 6 shows the drying rate and bed temperature according to the drying time
  • Figure 7 shows the moisture content according to the drying time.
  • the final moisture content is possible up to 1%, the breakage rate was only less than 5%. Therefore, it can be seen that the drying efficiency of the compressed pellet which is difficult to dry can be improved, and the drying rate and the moisture content can be easily controlled.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Materials Engineering (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

본 발명은 카본나노튜브 펠렛이나 응집체와 같은 제품의 건조 및 회수 장치에 관한 것으로서, 건조 칼럼 내부 및 외부 열원뿐만 아니라 고온의 가스를 칼럼 내부로 투입 분산시킴으로써 용매 증발을 가속화 할 수 있으며, 또한 증발된 용매를 신속히 제거할 수 있다. 또한 가스 유속을 조절하여 칼럼 내 제품의 유동을 제어함으로써 제품의 파손을 최소화하면서 건조 및 회수 공정을 진행할 수 있다. 따라서 카본나노튜브 펠렛 제품의 대량생산에 효과적으로 적용할 수 있다.

Description

카본나노튜브 제품 건조 및 회수 장치와 이를 이용한 카본나노튜브 제조방법
본 출원은 2016.7.14 출원된 한국 특허 출원 10-2016-0089098호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 카본나노튜브의 펠렛 또는 응집체와 같은 카본나노튜브 제품의 건조 및 회수에 있어서, 제품 손상을 방지하고 건조효율을 향상시킬 수 있는 카본나노튜브 제품 건조 및 회수 장치와 이를 이용한 카본나노튜브 제조방법에 관한 것이다.
나노 사이즈의 재료들은 최근 그들의 고유한 광학적 및 전기적인 특성과 함께 전자공학 또는 광전자공학에서의 잠재적인 사용으로 인하여 많은 연구가 되고 있다. 나노구조물 또는 나노구조체(nanostructured material) 영역은 나노튜브, 자기조립체 등 다차원적 나노구조체 및 이를 응용한 기술개발을 모두 포함하고 있다. 나노구조체는 물질에 따라 무기 나노구조체, 유기 나노구조체, 고분자 무기 나노구조체, 다공 고표면적 나노구조체, 바이오관련 나노구조체로 분류될 수 있다. 무기 나노구조체는 주로 반도체와 관련하여 주목을 받고 있는 구조체이다. 양자구조체, 단일전자소자, 차세대 기억소자, 자기기록미디어 분야 연구가 이에 해당한다. 유기 나노구조체 분야는 풀러렌, 카본나노튜브, 탄소나노섬유, 다이아몬드 박막, 유기EL 등이 이에 해당한다. 고분자 무기 나노구조체는 대표적으로 두 가지 분야를 꼽을 수 있는데 나노구조제어 고분자, 나노입자의 세라믹 입자를 들 수 있다. 다공성 고표면적 나노구조체는 활성탄소섬유, 제올라이트, 광촉매 미립자가 이에 해당한다. 바이오관련 나노구조체는 약물전달시스템, 생체모방소자, 고감도 나노센서 소재 등의 분야가 있다.
특히, 카본나노튜브는 독특한 물리적, 전기적 성질로 인하여 수년간 수많은 연구의 대상이 되어왔다. 카본나노튜브는 튜브 자체의 나선성(chirality)에 따라 부도체, 전도체 또는 반도체 성질을 나타내며, 탄소 원자들이 강력한 공유결합으로 연결되어 있어 인장강도가 강철 보다 대략 100 배 이상 크고, 유연성과 탄성 등이 뛰어나며, 화학적으로도 안정한 특성을 가지며, 이러한 크기 및 특정 물성으로 인해 복합재의 제조에서 산업적으로 중요하고, 전자 소재 분야, 에너지 소재 분야 및 기타 여러 분야에서 높은 활용성을 갖고 있다. 예를 들어, 상기 카본나노튜브는 이차 전지, 연료 전지 또는 슈퍼 커패시터(super capacitor)와 같은 전기 화학적 저장 장치의 전극, 전자파 차폐체, 전계 방출 디스플레이, 또는 기체 센서 등에 적용될 수 있다.
나노구조물은 실제 공정상에 있어서 수십 마이크로의 분말 형태로 제공되기 때문에 공정상에서의 흩날림으로 인해 인체에 대한 유해성 및 전기 제품의 오작동을 발생할 수 있으며, 특히, 카본계 유기 나노구조체의 경우는 혼합하고자 하는 고분자와의 큰 겉보기 밀도 차이로 인한 분산의 어려움이 있는 실정이다.
이러한 문제점을 해결하기 위해 나노구조물을 압축하여 사용할 수 있으며, 카본나노튜브를 압축하는 방법으로는 밀도의 증가 및 취급과 수송의 용이성 때문에 보통 펠렛화(pelletization)하는 방법이 일반적으로 제공된다.
카본나노튜브를 예로 들면, 펠렛 형태의 카본나노튜브는 다양한 처리장치에서 사용하기에 편리하다. 종래의 방법은 카본나노튜브를 과립화 또는 펠렛화 하기 위하여, 두 가지 상이한 방법, 즉, 습식으로 펠렛화 한 후 건조시키는 방법과 건식으로 펠렛화 하는 방법이 이용되고 있다.
일반적으로 건식 펠렛화는 수평으로 배치된 회전 튜브를 포함하는 펠렛화 드럼을 사용되며, 튜브의 내부가 펠렛화 챔버라 지칭된다. 카본나노튜브 분말을 과립화시키기 위해, 공업용 분말을 예비 치밀화 시키고, 펠렛화 드럼 속에서 회전하는 튜브 벽으로부터 굴러 떨어뜨려 과립화시키는 공정으로 제조된다. 건식 펠렛화를 가능하게 하는 반-데르-발스(Van-der-Waals) 힘과 정전기력으로 응집되며, 건식 펠렛 형성시에는 보통 수 톤(ton)의 압력을 가해 제조되며, 따라서, 제조 과정에서 펠렛이 재파괴될 수 있는 문제점이 있다.
습식 펠렛화 공정은 주로 카본나노튜브 사이의 액체 브릿지(bridge)와 모세관력(capillary force)에 의해 일어난다. 종래에는 습식 펠렛화 방법으로 카본나노튜브와 혼합할 때 수분과 결합제의 분포 상태가 좋지 않아 과도한 물이나 에탄올 등 용매를 첨가하는데, 이때 첨가된 용매는 일반적으로 열풍 건조하거나, 회전드럼건조기(rotary drum dryer)나 교반 팬(agitated pan) 또는 컨베이어(conveyer)를 이용하여 가열 건조하는 방법이 사용되고 있다. 그러나 회전드럼이나 교반 팬을 사용하는 방식은 회전체에 의해 제품이 손상될 우려가 있고, 컨베이어 방식은 공간적 효율성이 떨어지고 일반 열풍건조는 건조 효율이 상당히 떨어진다.
이에 본 발명은 전술한 문제점을 해결하여, 카본나노튜브 펠렛이나 응집체 건조 및 회수시 제품 손상이나 파손이 적으면서 건조 효율이 우수한 장치를 제공하고자 한다.
본 발명은 상기 기술적 과제를 해결하기 위하여,
건조시키고자 하는 카본나노튜브 제품이 수용되어 건조가 이루어지는 건조부;
상기 건조부의 하부에 구비된 제품 회수부;
상기 건조부의 상부에, 또는 상기 건조부와 제품 회수부 사이에 구비되어 건조부에 기체를 유입하기 위한 기체 유입부; 및
상기 건조부와 상기 제품 회수부 사이에 구비되며, 유체 소통이 가능한 개구부가 복수개 형성된 밸브;
를 구비하는, 카본나노튜브 제품 건조 및 회수장치를 제공한다.
일 구현예에 따르면, 상기 기체 유입부가 상기 건조부와 제품 회수부 사이에 구비되고,
상기 밸브는 상기 건조부와 상기 기체 유입부 사이에 구비되는 제1 밸브와,
상기 기체 유입부와 제품 회수부 사이에 구비된 제2 밸브;
를 포함하는 것일 수 있다.
상기 제1밸브의 개구부는 상기 건조부에서 제품 건조 공정이 진행되는 동안은 제품이 회수부로 유출되는 것은 막으면서 상기 기체 유입부로부터의 기체가 건조부로 유입 가능하게 할 수 있다.
상기 카본나노튜브 제품은 카본나노튜브 펠렛 또는 카본나노튜브 응집체일 수 있다.
또한, 상기 건조부는 수직 칼럼형일 수 있다.
상기 제1 밸브 또는 제2 밸브는 각각 독립적으로 버터플라이 밸브 또는 댐퍼 밸브일 수 있다.
상기 제1 밸브는 버터플라이 밸브 또는 댐퍼 밸브의 날개면에 복수개의 개구부가 형성되어 있는 것일 수 있다.
또한, 상기 개구부의 일부 또는 전부에 카본나노튜브 제품은 소통되지 않고 유체만 소통 가능한 메쉬 시트가 덧붙여져 있는 것일 수 있다.
또한, 상기 개구부의 일부 또는 전부에 버블캡이 씌워져 있는 것일 수 있다.
또한, 상기 기체 유입부에 도입되는 기체를 예열하기 위한 예열기를 더 구비하는 것일 수 있다.
또한, 상기 기체 유입부에 도입되는 기체의 유량을 조절하기 위한 유량조절기가 더 구비된 것일 수 있다.
또한, 상기 건조부의 상단에는 기체 배출구가 구비되어 건조부 내 압력을 조절할 수 있는 것일 수 있다.
또한, 상기 제품 회수부 하단에는 제품을 배출하기 위한 제3밸브가 구비될 수 있다.
또한, 상기 제품 회수부에는 제품을 배출을 돕기 위한 기체를 유입시킬 수 있도록 제2 기체 유입구가 구비될 수 있다.
또한 본 발명은 전술한 장치를 이용하여 카본나노튜브 제품을 제조하는 방법을 제공한다.
구체적으로, 상기 방법은
건조하고자 하는 카본나노튜브를 건조부에 수용하는 단계;
상기 건조부의 상부에, 또는 상기 건조부와 상기 건조부 하부의 제품 회수부 사이에 구비된 기체 유입부를 통해 상기 건조부에 기체를 유입시키면서 카본나노튜브 제품을 건조시키는 단계;
상기 건조부의 상단에 구비된 기체 배출구를 통해 기체를 배출함으로써 건조부 내 압력을 조절하는 단계; 및
상기 건조부 하부에 구비된 제품 회수부를 통해, 건조된 카본나노튜브 제품을 회수하는 단계; 를 포함하며,
상기 건조부와 제품 회수부 사이에 유체 소통이 가능한 개구부가 복수개 형성된 밸브를 구비함으로써, 상기 건조부에서 제품 건조 공정이 진행되는 동안 제품이 유출되는 것은 막으면서 기체 흐름을 가능하게 하는 것일 수 있다.
또한, 상기 기체 유입부가 상기 건조부와 제품 회수부 사이에 구비되고,
상기 복수개의 개구부가 형성된 밸브는 상기 건조부와 상기 기체 유입부 사이에 구비되는 제1 밸브와, 상기 기체 유입부와 제품 회수부 사이에 구비된 제2 밸브;를 포함하며,
제품 건조 공정 진행시에는 제1 밸브를 닫아둔 상태에서 기체를 유입시켜 건조 공정을 진행하고,
건조된 제품의 회수시에는 제1 밸브를 열어 제품을 기체 유입부에 도입한 다음 제 1 밸브를 닫고 제2 밸브를 열어 제품을 회수부로 도입하는 것일 수 있다.
또한, 상기 제품 회수부에는 제2 기체 유입구가 구비되어 제품을 배출을 돕기 위한 기체를 유입시키는 것일 수 있다.
일 실시예에 따르면, 상기 카본나노튜브 제조방법은 전이금속 또는 그 화합물을 촉매로 하여 열분해로 중에서 유기화합물을 가열분해하여 상기 건조부에 도입되는 카본나노튜브를 얻는 공정;
상기 가열분해 공정에서 발생하는 반응성 배출가스를 카본나노튜브로부터 분리하는 공정; 및
상기 카본나노튜브로부터 분리된 반응성 배출가스를 소각하는 공정을 더 포함하는 것일 수 있다.
일 실시예에 따르면, 상기 기체 배출구로부터 배출되는 배출가스를 소각할 수 있다. 또한, 상기 배출가스 소각시, 카본나노튜브를 제조하기 위한 열분해공정에서 발생하는 반응성 배출가스와 함께 소각할 수 있다.
기타 본 발명의 구현예들의 구체적인 사항은 이하의 상세한 설명에 포함되어 있다.
본 발명에 따른 카본나노튜브 펠렛 또는 응집체 건조 및 회수 장치는, 건조 칼럼 내부 및 외부 열원뿐만 아니라 고온의 가스를 칼럼 내부로 투입 분산시킴으로써 용매 증발을 가속화 할 수 있으며, 또한 증발된 용매를 신속히 제거할 수 있다. 또한 가스 유속을 조절하여 칼럼 내 제품의 유동을 제어함으로써 제품의 파손을 최소화하면서 건조 및 회수 공정을 진행할 수 있다. 그 결과 최종 함수율 1% 이하, 파손율 5% 미만의 제품을 수득할 수 있다.
도 1은 본 발명의 일 구현예에 따른 카본나노튜브 제품 건조 및 회수 장치의 개략도이다.
도 2는 도 1의 장치를 부분확대한 개략도이다.
도 3은 도 2에 도시된 분사 노즐의 형상을 개략적으로 도시한 것이다.
도 4 및 도 5는 제1 밸브의 구현예를 개략적으로 도시한 평면도이다.
도 6 및 도 7은 본 발명에 따른 실험결과를 보여주는 그래프이다.
본 발명은 다양한 변환을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세한 설명에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변환, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.
본 명세서에서 어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는 그 다른 구성요소에 직접적으로 연결 또는 접속되어 있거나 또는 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 한다.
단수의 표현은 달리 명시하지 않는 한 복수의 표현을 포함한다.
"포함한다" "구비한다" 또는 "가진다" 등의 용어는 명세서상에 기재된 특징, 수치, 단계, 동작, 구성요소, 부품 또는 이들의 조합이 존재함을 지칭하는 것이고, 언급되지 않은 다른 특징, 수치, 단계, 동작, 구성요소, 부품 또는 이들의 조합이 존재하거나 부가될 수 있는 가능성을 배제하지 않는다.
본 명세서에서 "카본나노튜브"라는 용어는 단수 또는 복수의 카본나노튜브를 지칭할 수 있으며, 복수개의 카본나노튜브가 섬유 형태로 형성된 것을 포함할 수 있다.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 도면을 참조로 실시예에 대하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
본 발명에 따른 장치는,
건조시키고자 하는 카본나노튜브 제품이 수용되어 건조가 이루어지는 건조부;
상기 건조부의 하부에 구비된 제품 회수부;
상기 건조부의 상부에, 또는 상기 건조부와 제품 회수부 사이에 구비되어 건조부에 기체를 유입하기 위한 기체 유입부; 및
상기 건조부와 상기 제품 회수부 사이에 구비되며, 유체 소통이 가능한 개구부가 복수개 형성된 밸브;
를 구비하는 것이다.
본 발명에 있어서, 카본나노튜브 제품은 카본나노튜브 펠렛 또는 카본나노튜브 응집체를 지칭할 수 있다.
도 1 은 본 발명의 일 구현예에 따라 기체 유입부가 건조부와 제품 회수부 사이에 구비된, 카본나노튜브 제품 건조 및 회수 장치를 개략적으로 도시한다. 즉, 도 1은 기체가 건조부 하부로부터 상부를 향해 흐르도록 고안된 구조를 도시하는데, 본 발명은 이에 한정되지 않고 건조부 상부로부터 하부로 기체가 흐르는 구조도 포함한다. 기체가 건조부 상부로부터 하부로 흐르는 경우에는 가열부를 감싸는 퍼니스로부터 전달되는 열이 직접 기체로 전달될 수 있어 보다 고온의 기체로 건조가 가능할 수 있다.
도 1을 참조하면,
건조시키고자 하는 카본나노튜브 제품이 수용되어 건조가 이루어지는 건조부(10);
상기 건조부 하부에 구비된 제품 회수부(20);
상기 건조부(10)와 제품 회수부(20) 사이에 구비되어 건조부에 기체를 유입하기 위한 기체 유입부(30);
상기 건조부(10)와 상기 기체 유입부(30) 사이에 구비되며, 유체 소통이 가능한 개구부가 복수개 형성된 제1 밸브(50); 및
상기 기체 유입부와 제품 회수부 사이에 구비된 제2 밸브(60);
를 구비하는, 카본나노튜브 제품 건조 및 회수장치(100)가 도시되어 있다.
상기 건조부(10)는 수직 칼럼형일 수 있으며, 건조부를 가열하기 위한 가열수단(12)이 장착되어 있다. 가열수단(12)은 도 1에 도시된 바와 같이 건조부(10)를 감싸는 퍼니스일 수 있으나 이에 한정되지 않는다.
도 1에 도시된 장치에는, 바람직하게는, 기체 유입부(30)에 도입되는 기체를 예열하기 위한 예열기(32)를 더 구비되어 있으며, 또한, 기체 유입부(30)에 도입되는 기체의 유량을 조절하기 위한 유량조절기(33)가 더 구비되어 있다. 기체 유입부(30)로 도입되는 기체는 건조부(10) 내에서 제품이 뭉치는 것을 방지하고 보조적인 열을 가하여 건조부(10)내 제품의 건조를 촉진하기 위한 용도이므로 제품과의 반응성이 없는 불활성 기체인 것이 바람직하다. 질소가스가 가장 바람직하나 이에 한정되지 않는다.
또한, 상기 건조부(10)의 상단에는 기체 배출구(13)가 구비되어 기체 배출량을 조절(14) 함으로써 건조부(10) 내 압력을 조절할 수 있다.
한편, 건조부(10)내 제품이 소정 건조 상태에 도달하였는지 여부는 건조부(10)내 온도 변화를 측정하는 방법(즉, 온도 변화가 거의 없는 상태인지 여부로 확인) 또는 배출구(13)로부터 배출되는 배출가스의 수분을 측정함으로써(예를 들어, 습도계 이용) 수분량이 일정 수준 이내인지를 확인하는 방법이 있을 수 있으나, 이에 한정되지 않는다. 기체 배출구(13)로부터 배출되는 배출가스는 질소와 물을 주로 함유하고 있을 수 있으나, CNT 펠렛 제조시 물 이외의 유기용매를 사용하는 경우에는 제품 건조 과정에서 증발되는 용매를 다량 함유하고 있을 수 있다. 이들은 증발시키거나 소각처리할 수 있다. 하지만, 이들은 비반응성이자 난연성 가스인 경우 소각 효율이 떨어질 수 있으므로 이들 비반응성 난연성 배출가스를 카본나노튜브 합성 공정에서 배출되는 배출가스, 즉 수소, 탄화수소 등을 함유하고 있는 가연성 반응성 배출가스와 혼합하여 소각하는 것도 가능하다. 즉, 카본나노튜브 합성 공정의 반응이 종료했을 때, 본 발명에 따른 공정에서 배출되는 비반응성 난연성 가스로 퍼지하여 반응계 내나 반응성 배출가스 공급 배관 내에 잔류한 반응성 배출가스를 소각함으로써, 반응성 배출가스 공급 배관 내 등으로의 역화를 방지할 수 있고 연소효율 또한 높일 수 있다.
도 2는 기체 유입부(30)와 제품 회부수(20)의 구성을 보다 상세하게 설명하기 위한 개략도이다.
기체 유입부(30)는 도입된 기체를 건조부(10)를 향해 상방향으로 분사하기 위한 노즐(34)이 구비되어 제1밸브(50)의 개구부를 통해 기체를 공급할 수 있도록 하는 것이 바람직하다. 노즐(34)의 형상은 도 3을 참조할 수 있다.
또한 도 2에 도시된 바에 따르면, 건조부(10) 하부에 제1 밸브(50)이 구비되고 그 아래 기체 유입부(30) 및 제2 밸브(60)가 장착되어 있다.
제2밸브(60) 아래에는 제품 회수부(20)가 위치하며, 제품 회수를 용이하게 하기 위하여 제2 기체 공급구(25) 및 제3밸브(27)가 그 하단부에 구비될 수 있다. 제2 기체 공급구(25)를 통하여 도입되는 기체는 분사노즐(24)을 통해 분사되어 제품 배출과정에서 제품이 뭉치는 것을 방지한다. 분사노즐(24)의 형상은 도 3에 도시된 것과 동일할 수 있으나 이에 한정되는 것은 아니다. 도입 기체는 불활성 기체가 바람직하고 예열될 필요는 없다.
도 4 내지 도 5는 제1밸브(50)의 일례를 도시한 것이다. 밸브는 버터플라이 밸브 또는 댐퍼 밸브일 수 있다. 제1밸브는 중심축(51)을 구비하여 이를 중심으로 회전하거나 접혔다 펼쳐지면서 밸브 개폐가 가능하다.
제품을 건조하는 동안 제품이 유출되는 것을 방지하기 위하여 사용되는 버터플라이 밸브 또는 댐퍼 밸브가 사용되는데, 이들은 닫혔을 때 기체의 흐름을 막아 밸브 상부(건조부)의 열풍 흐름을 감소시키므로 건조효율이 떨어지는 원인이 된다. 이에 본 발명자들은 상기 제1밸브(50)의 개구부(53)는 상기 건조부(10)에서 제품 건조 공정이 진행되는 동안은 제품이 회수부(20)로 유출되는 것은 막으면서 상기 기체 유입부(20)로부터의 기체가 건조부(10)로 유입되어 열풍 흐름이 가능하게 함으로써 건조효율을 증대시킬 수 있도록 하였다.
제2밸브(60)나 제3밸브(27)에는 개구부가 없는 버터플라이 밸브 또는 댐퍼 밸브를 사용할 수 있다. 즉 도 4 내지 도 6에 도시된 바와 같이, 제1 밸브는 버터플라이 밸브 또는 댐퍼 밸브의 날개면(52)에 복수개의 개구부(53)가 형성되어 있는 것일 수 있다.
또한, 도시하지는 않았지만, 상기 개구부(53)의 일부 또는 전부에 카본나노튜브 제품은 소통되지 않고 유체만 소통 가능한 메쉬 시트가 덧붙여져 있는 것일 수 있다.
또 다른 구현예에 따르면, 도 5에 도시된 바와 같이, 개구부(53)의 일부 또는 전부에 버블캡(55)이 씌워져 있는 것일 수 있다.
본 발명에 따르면, 건조부(10) 하부에 제1밸브(50)와 제2밸브(60)를 둠으로써, 제1 밸브(50)를 닫아둔 상태에서도 건조부 내로 고온 기체를 이용한 열풍 공급이 가능하므로 건조 공정을 효율적으로 진행할 수 있다. 또한 건조된 제품의 회수 공정에서는 제1밸브(50)를 열어 제품을 기체유입부(30)로 도입한 다음 제1밸브(50)를 닫고, 제2밸브(60)를 열어 제품을 회수부(20)로 도입하는 것이 가능하다. 따라서 건조공정을 중단하거나 온도를 감소시킬 필요없이, 건조공정과 제품 회수 공정을 연속적으로 진행하는 것이 가능하다.
도 6 및 도 7은 실험실 규모의 실린더형 고온건조기(내경 50mm 석영관)를 사용하여 도 1과 같은 장치를 조립하여 실험한 결과를 보여준다. 실험조건은 표 1과 같다.
구분 Test 1 Test 2
CNT 펠렛 투입량 300g 300g
건조시간 90분 180분
질소가스 유속 2.7cm/s 2.7cm/s
퍼니스온도 300℃ 300℃
즉 건조시간을 달리한 것을 제외하고는 동일한 조건으로 실험하여, 건조속도, 함수율 및 베드(bed) 온도변화를 관찰하였다.
도 6은 건조시간에 따른 건조속도와 베드온도를, 도 7은 건조시간에 따른 함수율을 나타낸다.
상기 결과에 따르면, 90분이라는 짧은 건조시간에도 불구하고 최종 함수율이 1% 이하까지 가능하며, 파손율은 5% 미만에 불과하였다. 따라서, 건조가 까다로운 압축펠렛의 건조효율도 향상될 수 있고, 건조 속도 및 함수량 조절이 용이함을 알 수 있다.
이상으로 본 발명 내용의 특정한 부분을 상세히 기술한 바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시 양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.

Claims (20)

  1. 건조시키고자 하는 카본나노튜브 제품이 수용되어 건조가 이루어지는 건조부;
    상기 건조부의 하부에 구비된 제품 회수부;
    상기 건조부의 상부에, 또는 상기 건조부와 제품 회수부 사이에 구비되어 건조부에 기체를 유입하기 위한 기체 유입부; 및
    상기 건조부와 상기 제품 회수부 사이에 구비되며, 유체 소통이 가능한 개구부가 복수개 형성된 밸브; 를 구비하는,
    카본나노튜브 제품 건조 및 회수 장치.
  2. 제1항에 있어서,
    상기 기체 유입부가 상기 건조부와 제품 회수부 사이에 구비되고,
    상기 밸브는 상기 건조부와 상기 기체 유입부 사이에 구비되는 제1 밸브와,
    상기 기체 유입부와 제품 회수부 사이에 구비된 제2 밸브;
    를 포함하는 것인, 카본나노튜브 제품 건조 및 회수장치.
  3. 제2항에 있어서,
    상기 제1밸브의 개구부는 상기 건조부에서 제품 건조 공정이 진행되는 동안은 제품이 회수부로 유출되는 것은 막으면서 상기 기체 유입부로부터의 기체가 건조부로 유입 가능하게 하는 것인 카본나노튜브 제품 건조 및 회수장치.
  4. 제1항에 있어서,
    상기 카본나노튜브 제품은 카본나노튜브 펠렛 또는 카본나노튜브 응집체인 것인 카본나노튜브 제품 건조 및 회수 장치.
  5. 제1항에 있어서,
    상기 건조부는 수직 칼럼형인 것인 카본나노튜브 제품 건조 및 회수 장치.
  6. 제2항에 있어서,
    상기 제1 밸브 또는 제2 밸브는 각각 독립적으로 버터플라이 밸브 또는 댐퍼 밸브인 것인 카본나노튜브 제품 건조 및 회수 장치.
  7. 제6항에 있어서,
    상기 제1 밸브는 버터플라이 밸브 또는 댐퍼 밸브의 날개면에 복수개의 개구부가 형성되어 있는 것인 카본나노튜브 제품 건조 및 회수 장치.
  8. 제7항에 있어서,
    상기 개구부의 일부 또는 전부에 카본나노튜브 제품은 소통되지 않고 유체만 소통 가능한 메쉬 시트가 덧붙여져 있는 것인, 카본나노튜브 제품 건조 및 회수 장치.
  9. 제7항에 있어서,
    상기 개구부의 일부 또는 전부에 버블캡이 씌워져 있는 것인, 카본나노튜브 제품 건조 및 회수 장치.
  10. 제1항에 있어서,
    상기 기체 유입부에 도입되는 기체를 예열하기 위한 예열기를 더 구비하는 것인, 카본나노튜브 제품 건조 및 회수 장치.
  11. 제1항에 있어서,
    상기 기체 유입부에 도입되는 기체의 유량을 조절하기 위한 유량조절기가 더 구비된 것인 카본나노튜브 제품 건조 및 회수 장치.
  12. 제1항에 있어서,
    상기 건조부의 상단에는 기체 배출구가 구비되어 건조부 내 압력을 조절할 수 있는 것인 카본나노튜브 제품 건조 및 회수 장치.
  13. 제1항에 있어서,
    상기 제품 회수부 하단에는 제품을 배출하기 위한 제3밸브가 구비된 것인 카본나노튜브 제품 건조 및 회수 장치.
  14. 제13항에 있어서,
    상기 제품 회수부에는 제품을 배출을 돕기 위한 기체를 유입시킬 수 있도록 제2 기체 유입구가 구비된 것인 카본나노튜브 제품 건조 및 회수 장치.
  15. 건조하고자 하는 카본나노튜브를 건조부에 수용하는 단계;
    상기 건조부의 상부에, 또는 상기 건조부와 상기 건조부 하부의 제품 회수부 사이에 구비된 기체 유입부를 통해 상기 건조부에 기체를 유입시키면서 카본나노튜브 제품을 건조시키는 단계;
    상기 건조부의 상단에 구비된 기체 배출구를 통해 기체를 배출함으로써 건조부 내 압력을 조절하는 단계; 및
    상기 건조부 하부에 구비된 제품 회수부를 통해, 건조된 카본나노튜브 제품을 회수하는 단계; 를 포함하며,
    상기 건조부와 제품 회수부 사이에 유체 소통이 가능한 개구부가 복수개 형성된 밸브를 구비함으로써, 상기 건조부에서 제품 건조 공정이 진행되는 동안 제품이 유출되는 것은 막으면서 기체 흐름을 가능하게 하는 것인 카본나노튜브 제조 방법.
  16. 제15항에 있어서,
    상기 기체 유입부가 상기 건조부와 제품 회수부 사이에 구비되고,
    상기 복수개의 개구부가 형성된 밸브는 상기 건조부와 상기 기체 유입부 사이에 구비되는 제1 밸브와, 상기 기체 유입부와 제품 회수부 사이에 구비된 제2 밸브;를 포함하며,
    제품 건조 공정 진행시에는 제1 밸브를 닫아둔 상태에서 기체를 유입시켜 건조 공정을 진행하고,
    건조된 제품의 회수시에는 제1 밸브를 열어 제품을 기체 유입부에 도입한 다음 제 1 밸브를 닫고 제2 밸브를 열어 제품을 회수부로 도입하는 것인,
    카본나노튜브 제조 방법.
  17. 제15항에 있어서,
    상기 제품 회수부에는 제2 기체 유입구가 구비되어 제품을 배출을 돕기 위한 기체를 유입시키는 것인 카본나노튜브 제조 방법.
  18. 제15항에 있어서,
    전이금속 또는 그 화합물을 촉매로 하여 열분해로 중에서 유기화합물을 가열분해하여 상기 건조부에 도입되는 카본나노튜브를 얻는 공정;
    상기 가열분해 공정에서 발생하는 반응성 배출가스를 카본나노튜브로부터 분리하는 공정; 및
    상기 카본나노튜브로부터 분리된 반응성 배출가스를 소각하는 공정을 더 포함하는 것인 카본나노튜브 제조 방법.
  19. 제15항에 있어서,
    상기 기체 배출구로부터 배출되는 배출가스를 소각하는 것을 특징으로 하는 카본나노튜브 제조 방법.
  20. 제19항에 있어서,
    상기 배출가스 소각시, 카본나노튜브를 제조하기 위한 열분해공정에서 발생하는 반응성 배출가스와 함께 소각하는 것을 특징으로 하는 카본나노튜브 제조 방법.
PCT/KR2017/007459 2016-07-14 2017-07-12 카본나노튜브 제품 건조 및 회수 장치와 이를 이용한 카본나노튜브 제조방법 WO2018012876A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP17827946.9A EP3339247A4 (en) 2016-07-14 2017-07-12 Device for drying and recovering carbon nanotube product and method for manufacturing carbon nanotube using same
CN201780003880.XA CN108349739B (zh) 2016-07-14 2017-07-12 用于干燥和回收碳纳米管产品的装置以及使用该装置制造碳纳米管的方法
US15/769,194 US10758882B2 (en) 2016-07-14 2017-07-12 Device for drying and recovering carbon nanotube product and method for manufacturing carbon nanotube using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0089098 2016-07-14
KR1020160089098A KR102047370B1 (ko) 2016-07-14 2016-07-14 카본나노튜브 제품 건조 및 회수 장치 및 이를 이용한 카본나노튜브 제조방법

Publications (1)

Publication Number Publication Date
WO2018012876A1 true WO2018012876A1 (ko) 2018-01-18

Family

ID=60952631

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/007459 WO2018012876A1 (ko) 2016-07-14 2017-07-12 카본나노튜브 제품 건조 및 회수 장치와 이를 이용한 카본나노튜브 제조방법

Country Status (5)

Country Link
US (1) US10758882B2 (ko)
EP (1) EP3339247A4 (ko)
KR (1) KR102047370B1 (ko)
CN (1) CN108349739B (ko)
WO (1) WO2018012876A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108580924A (zh) * 2018-06-08 2018-09-28 厦门大学 一种纳米材料液相连续合成方法
KR20200138211A (ko) * 2018-03-30 2020-12-09 니폰 제온 가부시키가이샤 분리 회수 방법

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112107948B (zh) * 2020-10-13 2021-07-23 中国城市建设研究院有限公司 生活垃圾焚烧烟气的湿法处理设备
CN114850017A (zh) * 2022-03-23 2022-08-05 镇江新纳材料科技有限公司 一种基于碳纳米管粉体压缩工艺的造粒设备及其造粒方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090001326A1 (en) * 2007-06-29 2009-01-01 Kenichi Sato Aggregate of carbon nanotubes, dispersion thereof and conductive film using the same
KR20090119518A (ko) * 2008-05-16 2009-11-19 한국표준과학연구원 가변압력을 이용한 건조기 및 이를 이용한 건조방법
KR20140049859A (ko) * 2012-10-18 2014-04-28 주식회사 효성 압축 cnt의 제조방법 및 그에 의한 압축 cnt
KR20150129090A (ko) * 2012-09-04 2015-11-19 삼성전기주식회사 건조 시스템
KR20160036910A (ko) * 2014-09-26 2016-04-05 주식회사 엘지화학 카본나노튜브 응집체의 제조방법

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5229467A (en) * 1975-09-01 1977-03-05 Unitika Ltd Method of removing nox
US20040124093A1 (en) * 2002-10-16 2004-07-01 Dal-Young Jung Continuous production and separation of carbon-based materials
US8062410B2 (en) * 2004-10-12 2011-11-22 Great River Energy Apparatus and method of enhancing the quality of high-moisture materials and separating and concentrating organic and/or non-organic material contained therein
CN100434359C (zh) * 2005-01-05 2008-11-19 中国科学院大连化学物理研究所 一种连续生产纳米碳材料的方法及装置
JP2009148758A (ja) * 2007-12-24 2009-07-09 Em-Power Co Ltd 噴霧熱分解方法を用いた炭素ナノチューブ用触媒製造装置及び触媒製造方法
WO2009093604A1 (ja) * 2008-01-24 2009-07-30 National Institute Of Advanced Industrial Science And Technology 有機ナノチューブ製造方法および製造装置
JP5117251B2 (ja) * 2008-03-31 2013-01-16 株式会社東芝 ナノカーボン・炭化物連続製造装置
CN102741162A (zh) * 2010-02-19 2012-10-17 国立大学法人东京大学 纳米碳材料制造装置及纳米碳材料的制造方法
FR2972942B1 (fr) * 2011-03-21 2017-11-24 Arkema France Procede de fabrication de nanotubes de carbone et appareil pour la mise en oeuvre du procede.
CN102502591B (zh) * 2011-11-28 2013-09-04 深圳市贝特瑞纳米科技有限公司 纳米碳纤维的制备方法和设备
CN102602912B (zh) * 2012-03-15 2013-12-04 南昌大学 连续生产晶须状碳纳米管的合成装置
TWI627130B (zh) 2012-04-18 2018-06-21 美商艾克頌美孚上游研究公司 由連續反應器流出物移出碳奈米管之方法
CN103344093A (zh) * 2013-06-09 2013-10-09 山东奥诺能源科技有限公司 一种立式连续流化床造粒干燥装置及方法
CN105439119B (zh) * 2015-12-02 2017-08-25 苏州捷迪纳米科技有限公司 立式连续碳纳米管纤维的制备装置以及制备方法
CN105399095B (zh) * 2015-12-28 2018-05-08 大连理工大学 一种用于碱活化法制备高比表面积活性炭的装置及方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090001326A1 (en) * 2007-06-29 2009-01-01 Kenichi Sato Aggregate of carbon nanotubes, dispersion thereof and conductive film using the same
KR20090119518A (ko) * 2008-05-16 2009-11-19 한국표준과학연구원 가변압력을 이용한 건조기 및 이를 이용한 건조방법
KR20150129090A (ko) * 2012-09-04 2015-11-19 삼성전기주식회사 건조 시스템
KR20140049859A (ko) * 2012-10-18 2014-04-28 주식회사 효성 압축 cnt의 제조방법 및 그에 의한 압축 cnt
KR20160036910A (ko) * 2014-09-26 2016-04-05 주식회사 엘지화학 카본나노튜브 응집체의 제조방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3339247A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200138211A (ko) * 2018-03-30 2020-12-09 니폰 제온 가부시키가이샤 분리 회수 방법
KR102650449B1 (ko) 2018-03-30 2024-03-21 니폰 제온 가부시키가이샤 분리 회수 방법
CN108580924A (zh) * 2018-06-08 2018-09-28 厦门大学 一种纳米材料液相连续合成方法

Also Published As

Publication number Publication date
US10758882B2 (en) 2020-09-01
KR102047370B1 (ko) 2019-11-22
US20180304218A1 (en) 2018-10-25
CN108349739A (zh) 2018-07-31
KR20180007782A (ko) 2018-01-24
EP3339247A1 (en) 2018-06-27
EP3339247A4 (en) 2018-11-21
CN108349739B (zh) 2021-10-01

Similar Documents

Publication Publication Date Title
WO2018012876A1 (ko) 카본나노튜브 제품 건조 및 회수 장치와 이를 이용한 카본나노튜브 제조방법
WO2016068599A1 (ko) 탄소나노튜브섬유의 제조장치 및 이를 이용한 탄소나노튜브섬유 제조방법
RU2316471C2 (ru) Горелки, аппарат и способ сгорания для производства углеродных наноматериалов
WO2014175524A1 (ko) 탄소나노튜브 섬유제조 장치
WO2009136737A9 (ko) 가연성 폐기물의 열분해시스템 및 열분해방법
CN102965766A (zh) 一种合成纳米金属颗粒负载碳纳米纤维的新方法
CN108807884B (zh) 一种锂离子电池负极材料碳包覆改性的装置及方法
WO2018044110A1 (ko) 다공성 탄소 구조체의 제조 방법 및 이차전지의 전극용 다공성 탄소 구조체
WO2020071655A1 (en) Process for preparing a yarn comprising carbon nanotubes and yarn prepared thereby
WO2018030702A1 (ko) 유동층 매체의 유속 저감을 위한 분산판이 구비된 이중 바이오매스 가스화 반응기 및 이를 포함하는 가스화 장치
WO2014204125A1 (ko) 입자 제조장치 및 이를 이용한 입자 제조방법
WO2022127132A1 (zh) 5g基站用高纯低辐射球形硅微粉的制备工艺及设备
Salice et al. Efficient functionalization of carbon nanotubes
WO2018143602A1 (ko) 탄소나노튜브 섬유의 제조방법 및 이로 제조된 탄소나노튜브 섬유
CN111269590B (zh) 一种易分散乙炔炭黑的制备方法
CN103935989A (zh) 一种可燃溶剂还原制备石墨烯的方法
WO2015030498A1 (ko) 탄소나노물질이 결합된 열가소성 고분자 및 이의 제조방법
WO2023244096A1 (ko) 나노 셀룰로오스 분말 제조 장치
WO2013094934A1 (en) Method of fabricating silicon carbide powder
WO2011136497A2 (ko) 리튬 전이금속 인산염의 제조방법
CN114459214B (zh) 一种金属粉末干燥装置及其使用方法
JP2004211012A (ja) 炭素微小球及びその製造方法
WO2019004755A1 (ko) 산화니켈 나노입자의 제조방법 및 이를 이용하여 제조된 산화니켈 나노입자
Wang et al. Local chemical vapor deposition of carbon nanofibers from photoresist
CN1699153A (zh) 制备内包金属颗粒洋葱状富勒烯的催化热解法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2017827946

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15769194

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE