WO2018044110A1 - 다공성 탄소 구조체의 제조 방법 및 이차전지의 전극용 다공성 탄소 구조체 - Google Patents

다공성 탄소 구조체의 제조 방법 및 이차전지의 전극용 다공성 탄소 구조체 Download PDF

Info

Publication number
WO2018044110A1
WO2018044110A1 PCT/KR2017/009576 KR2017009576W WO2018044110A1 WO 2018044110 A1 WO2018044110 A1 WO 2018044110A1 KR 2017009576 W KR2017009576 W KR 2017009576W WO 2018044110 A1 WO2018044110 A1 WO 2018044110A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon
porous carbon
dimensional
carbon structure
porous
Prior art date
Application number
PCT/KR2017/009576
Other languages
English (en)
French (fr)
Inventor
박호석
윤솔
연정석
Original Assignee
성균관대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020160111952A external-priority patent/KR102590821B1/ko
Priority claimed from KR1020160111953A external-priority patent/KR102585053B1/ko
Priority claimed from KR1020160111954A external-priority patent/KR102609272B1/ko
Application filed by 성균관대학교산학협력단 filed Critical 성균관대학교산학협력단
Publication of WO2018044110A1 publication Critical patent/WO2018044110A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • C01B32/178Opening; Filling
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/21After-treatment
    • C01B32/23Oxidation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method of manufacturing a porous carbon structure to increase productivity and to a porous carbon structure for electrodes of a secondary battery.
  • Graphite carbon materials including fullerenes, carbon nanotubes, and graphene, which are composed of carbon atoms only, are attracting attention from academia and industry because of their excellent electrical properties, physical and chemical stability.
  • graphene is a material that is in the spotlight as a technological new material due to its very high specific surface area, excellent electrical conductivity and physical and chemical stability.
  • Graphene of carbon material is abundant and inexpensive natural or synthetic graphite (graphite) as a raw material and can be mass-produced through chemical oxidation, exfoliation process and chemical or thermal reduction treatment, and its manufacturing method is disclosed. .
  • lithium-sulfur batteries have a high theoretical energy density of about 2600 Wh / kg, which is about 7 times higher than lithium ion batteries having an energy density of about 570 Wh / kg.
  • sulfur which is used as a cathode material of a lithium-sulfur battery, has abundant resources and a low price, thereby lowering the manufacturing cost of the battery. Due to these advantages, lithium-sulfur batteries are of high interest.
  • lithium polysulfide is produced as an intermediate product during the electrochemical reaction of lithium-sulfur batteries, thereby limiting the life of lithium-sulfur batteries.
  • Lithium polysulfide generated during the electrochemical reaction of the lithium-sulfur battery has high solubility in the organic electrolyte, and is continuously dissolved in the organic electrolyte during the discharge reaction. Accordingly, there is a problem in that the amount of the positive electrode material containing sulfur decreases and the life of the battery itself decreases.
  • An object of the present invention is to manufacture a large amount of carbon structure through a simple process, having a porosity, can control the amount of active particles supported, can suppress the elution of the supported active particles from the two-dimensional carbon body It is to provide a method for producing a porous carbon structure.
  • Another object of the present invention is to provide a porous carbon structure for electrodes of a secondary battery, including a surface-treated two-dimensional carbon body and having an open pore and increasing a specific surface area to maximize the amount of active particles supported thereon.
  • Method for producing a porous carbon structure preparing a dispersion solution in which the carbon body is dispersed; A freezing step of preparing the freezing body in which the three-dimensional pore structure is formed through the dispersion solution on ice or a solvent mold; And a drying step of removing the solvent by sublimating the solvent in the freezing body.
  • the freezing step may spray-freeze the dispersion solution using a nozzle, or freeze by ice or freezing solvent template.
  • the pore size, the pore density, etc. can be controlled by adjusting the concentration of the carbon body of the dispersion solution, the pore array structure can be controlled through the temperature control.
  • the carbon body of the dispersion solution may be a two-dimensional carbon body including a plurality of through-holes formed through a steam activation process by blowing steam in an inert gas atmosphere to heat treatment at a high temperature.
  • the porous carbon structure formed in the drying step may have a hierarchical porous structure by forming two-dimensional internal pores by combining two-dimensional carbon bodies having through holes formed therein in three dimensions.
  • the surface of the carbon dispersed in the dispersion solution active particles of at least one of sulfur particles, metal particles, two-dimensional non-carbon material (MoS 2 , WS 2 , BP, MXene, etc.) and metal oxide particles can be arranged.
  • the preparing of the dispersion solution may include performing ultrasonication or ozone treatment in a state in which the first solution in which the carbon body is dispersed and the second solution in which the active particles are dispersed are mixed.
  • the manufacturing method is for the porous carbon structure in which the active particles are disposed inside and the surface after the drying step
  • the method may further include heat treatment at 200 ° C. to 1,000 ° C. under an inert gas atmosphere. Through the heat treatment at this time it can induce a chemical covalent bond between the porous carbon structure and the active particles.
  • the carbon body dispersed in the dispersion solution is a carbon body doped with a heterogeneous element
  • the carbon body doped with a heterogeneous element may be doped with a heterogeneous element to the carbon body using a doping oxidant.
  • the carbon body dispersed in the dispersion solution is a two-dimensional carbon body
  • preparing the dispersion solution may include forming a plurality of through holes for the two-dimensional carbon body; Doping heterogeneous elements in the two-dimensional carbon body by mixing the two-dimensional carbon body and the doping oxidant; And dispersing the two-dimensional carbon body doped with hetero atoms and formed with the through-holes in a solvent.
  • the manufacturing method may further include heat treating the porous carbon structure at 200 ° C. to 1,000 ° C. after the drying step.
  • Porous carbon structure for another object of the present invention includes a two-dimensional carbon body is bonded to each other to form a three-dimensional network, the two-dimensional carbon body is arranged to surround the first inner pores of each other and the second open to the outside
  • Each of the two-dimensional carbon bodies forming inner pores and forming the first inner pores and the second inner pores includes a plurality of through holes, and the first inner pores and the second inner pores are formed by the through holes.
  • the second internal pores are characterized in that they are spatially connected to each other.
  • the diameter of the through holes formed in the two-dimensional carbon body may be 0.2 nm to 100 nm.
  • an oxygen-containing functional group may be bonded to a carbon atom forming the through hole of the two-dimensional carbon body.
  • the two-dimensional carbon body includes at least one of boron (B), nitrogen (N), oxygen (O), sulfur (S), phosphorus (P), bromine (Br) and chlorine (Cl) Heterogeneous elements of may be doped.
  • the diameter of the first internal pores is 2 to 50nm, the diameter of the second internal pores may be greater than 50nm.
  • the volume of the first internal pores is greater than the volume of the second internal pores in the inner central region of the structure in which the two-dimensional carbon bodies are three-dimensionally coupled, and in the surface region of the structure, The volume may be greater than the volume of the first internal pores.
  • the bulk density of the porous carbon structure may be 2 to 20 mg / cm 3 .
  • the porous carbon structure at least one active particle of sulfur particles, metal particles, two-dimensional non-carbon material and metal oxide particles is supported on the surface of each of the two-dimensional carbon body is the two-dimensional carbon Can be combined with the sieves.
  • the metal particles or the metal oxide particles are iron (Fe), titanium (Ti), nickel (Ni), zinc (Zn), vanadium (V), manganese (Mn), cobalt (Co), nickel (Ni) It may include at least one of copper (Cu), gold (Au), silver (Ag), platinum (Pt), and palladium (Pd).
  • the two-dimensional non-carbon material may include MoS 2 , WS 2 , BP, MXene and the like.
  • the active particles may be complexed with any one kind of porous carbon structure alone, or two or more different kinds of active particles may be complexed with each other.
  • a porous carbon structure having a large specific surface area and a high porosity can be manufactured while having a porous structure having open pores.
  • Such a porous carbon structure can be mass-produced through a simple direction, in which case there is an advantage of forming a porous carbon structure having a uniform size or shape.
  • Through-holes formed in the two-dimensional carbon body constituting the porous carbon structure can greatly increase the surface area of the porous carbon structure, and can improve the electrical conductivity by controlling the electron density of the surface of the two-dimensional carbon body through the doping of hetero atoms. .
  • several nano-sized through-holes and doped heteroatoms can affect the complexation with other materials.
  • the composite has a large specific surface area and high porosity, and may contain many sulfur particles. Therefore, when the battery is operated by applying it as a positive electrode of the secondary battery, dissolution of sulfur particles during charging / discharging is suppressed, thereby improving charge / discharge rate, cycle stability, and ion storage ability. Accordingly, it is possible to provide a secondary battery that can be used stably even for long term use.
  • FIG. 1 is a flowchart illustrating a method of manufacturing a porous carbon structure according to an embodiment of the present invention.
  • FIG. 2 is a diagram for explaining an example of the step of forming the copper crystal of FIG. 1.
  • FIG. 3 is a view showing SEM pictures of a porous carbon structure made of graphene oxide according to the method described with reference to FIGS. 1 and 2.
  • FIGS. 4 is a view showing SEM pictures of a porous carbon structure manufactured using carbon nanotubes according to the method described with reference to FIGS. 1 and 2.
  • FIG. 5 is a view for explaining a method of manufacturing a porous carbon structure consisting of a surface-treated two-dimensional carbon body according to another embodiment of the present invention.
  • FIG. 6 is a view showing SEM pictures, TEM pictures and STEM pictures of a porous carbon structure made of graphene oxide doped with hetero atoms.
  • FIG. 7 is a view for explaining a method of manufacturing a porous carbon structure made of a two-dimensional carbon body in which sulfur particles are supported and through holes are formed by the spray freezing method according to another embodiment of the present invention.
  • FIG. 8 is a view showing SEM pictures of a porous carbon structure made of graphene oxide in which sulfur particles are supported and through holes are formed according to the method described with reference to FIG. 7.
  • FIG. 9 is a view for explaining a method of manufacturing a porous carbon structure in which sulfur particles are supported and through holes are formed by an ice template method according to another embodiment of the present invention.
  • FIG. 10 is a view for explaining a method of manufacturing a porous carbon structure in which metal oxide particles are supported by a spray freezing method according to another embodiment of the present invention.
  • FIG. 11 is a view showing SEM pictures of a porous carbon structure carrying metal oxide particles prepared according to the method described with reference to FIG. 10.
  • FIG. 12 is a view showing TEM and STEM photographs of a porous carbon structure composed of graphene oxide loaded with iron oxide particles according to the present invention.
  • FIG. 13 is a diagram illustrating characteristic graphs of a lithium secondary battery when the porous carbon structures shown in FIG. 12 are applied to a lithium secondary battery.
  • FIG. 1 is a flowchart illustrating a method of manufacturing a porous carbon structure according to an embodiment of the present invention.
  • a dispersion solution in which carbon bodies are dispersed is prepared (step S110), and the dispersion solution is frozen, so that the carbon bodies and the solvent are three-dimensional.
  • step S110 a dispersion solution in which carbon bodies are dispersed
  • step S120 a freezing step to form an entangled frozen body
  • step S130 a drying step to remove the solvent by sublimating the frozen solvent in the freezing body
  • carbon bodies dispersed in the dispersion solution examples include two-dimensional carbon bodies such as graphene oxide (GO) or reduced graphene oxide (rGO), carbon nanotubes, and carbon. Nanofibers (carbon nanofiber), carbon black (carbon black) and the like. These may be used alone or in combination of two or more, respectively.
  • Carbon nanotubes in the present invention includes both single-walled carbon nanotubes (SWNT) and multi-walled carbon nanotubes (MWNT).
  • the two-dimensional carbon body of the present invention may be graphene oxide or reduced graphene oxide having a two-dimensional planar structure.
  • water or an organic solvent may be used as a solvent for dispersing the carbon body in the dispersion solution.
  • ozone treatment oxygen-containing functional groups are introduced to the surface of the carbon body. That is, since the hydrophilicity of the carbon body increases as the oxygen-containing functional group is introduced to the surface of the carbon body, ozone treatment may be performed when an organic solvent or water having hydrophilicity is used as the solvent of the dispersion solution.
  • the concentration of graphene oxide when using graphene oxide as a two-dimensional carbon body, may be 1 mg / mL to 10 mg / mL.
  • the concentration of carbon nanotubes may be 1 ng / mL to 5 ng / mL.
  • Graphene oxide is relatively better dispersed in water than other two-dimensional carbon bodies, but in order to uniformly disperse the carbon nanotubes in water, it is preferable to perform sonication for at least 12 hours and ozone treatment for at least 24 hours. According to the kind of carbon body, the conditions of ultrasonication and ozone treatment can be controlled.
  • the dispersion solution is frozen to form a freezing body.
  • the solvent is frozen to avoid the portion where crystals grow, and the carbon bodies self-assemble to form a three-dimensional network structure.
  • the carbon bodies have a three-dimensional web structure intertwined with a radial structure, a honeycomb structure, a spider web structure, a lattice structure, and the like.
  • the freezing process for forming the freezing body may use ice-templating or solvent-frozen templating or spray-frozen assembly. Cooling of the freezing process may utilize liquid nitrogen.
  • the ice template may make the dispersion solution a frozen body by cooling the template with the dispersion solution accommodated in the template.
  • freezing of the dispersion solution causes the carbon bodies to self-assemble through chemical bonds between the carbon bodies to form a bundle of carbon fibers, which bundles regularly or irregularly to form a porous carbon structure.
  • the spray-freezing can be made by using a spray (spray) device that includes a nozzle capable of spraying in a droplet state and freezing the droplet directly.
  • a spray (spray) device that includes a nozzle capable of spraying in a droplet state and freezing the droplet directly.
  • the size of the freezing body can be controlled by adjusting the size of the nozzle and / or the spray pressure.
  • the density of the carbon body in a freezing body can be controlled by adjusting the density
  • the solvent is removed from the freezing body in the drying step.
  • the frozen solvent is directly sublimated, that is, when the phase is changed from the solid phase to the gas phase
  • the carbon bodies retain the internal pores formed in the self-assembly process.
  • the three-dimensionally bonded carbon bodies can form a porous carbon structure having a structure in which a plurality of internal pores are formed therebetween.
  • the porous carbon structure may have a three-dimensional spherical or polyhedral non-spherical.
  • the size of the porous carbon structure is substantially unchanged even after drying, there is an advantage that can prevent the stacking of the carbon body. That is, when the solvent is removed in the drying step of the frozen body, the frozen solvent can be easily removed while preventing the stacking of the carbon body by the surface tension between the solvent and the carbon body.
  • the carbon bodies of the three-dimensional network structure are not fixed in place and the arrangement of the carbon bodies is finally changed to produce the solvent.
  • the internal porosity in the porous carbon structure is reduced.
  • the active particles bound to the inside pores are discharged to the outside by the liquefied solvent, which is very difficult to control the amount of the active particles. Therefore, it is preferable to sublimate and remove a solvent in a drying process.
  • an additional heat treatment may be performed on the porous carbon structure manufactured through the drying step.
  • the heat treatment process may be performed at 200 to 1,000 ° C. in a nitrogen atmosphere.
  • the heat treatment may be performed by raising the temperature for 1 hour at a heating rate of 10 °C / min at an initial temperature of 300 °C.
  • the temperature reaches 900 °C can be heat treated by maintaining it for the same temperature condition for one hour again.
  • a grinding process may be further performed.
  • the internal pores formed by removing the solvent between the carbon bodies may include first internal pores having a size of 2 to 50 nm and second internal pores having a size greater than 50 nm. have.
  • the first inner pores are pores formed by being surrounded by carbon bodies, and the second inner pores are pores opened outward from the porous carbon structure.
  • the first inner pores and the second inner pores may be connected to each other to form a three-dimensional network structure.
  • the first and second internal pores are connected to each other by the through holes, compared to the case of using carbon bodies having no through holes. Porosity is significantly increased.
  • the volume of the first internal pores in the inner central region of the porous carbon structure at this time may be greater than the volume of the second internal pores
  • the volume of the second internal pores in the outer region of the porous carbon structure is the first internal It may be larger than the volume of the pores.
  • the distribution of the first internal pores and the second internal pores is a structural feature of the porous carbon structure produced through the freezing and drying steps.
  • the bulk density of the porous carbon structure according to the present invention in which such internal pores are formed may be 2 to 20 mg / cm 3 .
  • FIG. 2 is a view for explaining an example of forming the freezing body of FIG. 1, in which the freezing body is manufactured by spraying and freezing a dispersion solution using the spraying device in FIG. 2.
  • the freezing body formed by freezing using the injection device has a spherical shape.
  • the solvent is sublimed and removed, thereby forming a spherical porous carbon structure.
  • FIG. 3 is a view showing SEM pictures of a porous carbon structure made of graphene oxide according to the method described with reference to FIGS. 1 and 2.
  • FIG. 3 (a) is a SEM photograph of a porous carbon structure prepared by spray-freezing and drying a dispersion solution having water as a solvent and a graphene oxide concentration of 2 mg / mL, and (b) (E) shows SEM pictures of the porous carbon structures prepared when the dispersion solution having the concentration of 4, 6, 8 and 10 mg / mL of graphene oxide, respectively.
  • 3 (a) to 3 (e) are SEM pictures taken at a 20 ⁇ m scale, and (f) are SEM pictures taken at a 100 ⁇ m scale of (e).
  • each of the porous carbon structures is substantially three-dimensionally as shown in (a) to (e) of the 20 ⁇ m scale. It can be confirmed that it has a spherical shape.
  • FIGS. 4 is a view showing SEM pictures of a porous carbon structure manufactured using carbon nanotubes according to the method described with reference to FIGS. 1 and 2.
  • FIG 4 (a) is a SEM photograph of the porous carbon structure prepared through the spray-freezing process and drying step using a multi-walled carbon nanotube (MWNT), (b) is a single-walled carbon nanotube (SWNT) SEM image of the porous carbon structure prepared through the spray-freezing process and the drying step by using.
  • MWNT multi-walled carbon nanotube
  • SWNT single-walled carbon nanotube
  • the porous carbon structure having excellent internal porosity can be easily formed only by freezing and drying without dispersing the solution consisting only of a solvent and a carbon body and adding chemicals inevitably added, such as an emulsifier or a binder. It can manufacture. Through this, the influence of impurities and residues of the material can be minimized, and by avoiding the washing process and the impurity removing process, which are conventional essential processes, there is an advantage that a quick synthesis process can be derived.
  • FIGS. 1 to 4 a method of preparing a porous carbon structure by dispersing a carbon body in a solvent and preparing a dispersion solution without performing a separate treatment process on the carbon body was described.
  • Treatment and / or through hole formation can be performed to improve the properties of the porous carbon structure.
  • the two-dimensional carbon body formed with the through holes it is possible to significantly increase the active surface area of the porous carbon structure.
  • several nano-sized through-holes and doped heteroatoms can affect the complexation with other materials.
  • FIG. 5 is a view for explaining a method of manufacturing a porous carbon structure consisting of a surface-treated two-dimensional carbon body according to another embodiment of the present invention.
  • through holes may be formed in the two-dimensional carbon body as a defect for the two-dimensional carbon body as an embodiment of performing the surface treatment.
  • the process of forming the through holes may be performed through steam activation.
  • Steam activation may be performed by placing a two-dimensional carbon body in a furnace and blowing the steam in an inert gas atmosphere such as nitrogen or argon to heat treatment at a high temperature.
  • the volume ratio of the inert gas and steam may be 1: 0.05 to 1: 0.5, for example, the steam may be provided to the furnace in a volume of 0.3 when the inert gas is 1, the heat treatment is carried out at 900 °C Can be.
  • the diameter of the through hole may be 0.2 nm to 100 nm.
  • a heterogeneous element may be doped into the two-dimensional carbon body.
  • the dissimilar elements include boron (B), nitrogen (N), oxygen (O), phosphorus (P), bromine (Br), chlorine (Cl) and the like. These may be used alone or in combination of two or more, respectively.
  • Heterogeneous elements may be doped with 0.01 to 10% of the total atoms of the porous carbon structure.
  • the step of doping the hetero element may be performed using a doping oxidant.
  • the doping oxidant phytic acid, phosphoryl chloride, methyl phosphonic acid, triphenylphosphine, thioglycolic acid, 2-thiophene Methanol (2-thiophenemethanol), benzyl disulfide (Benzyl disulfide), melamine (melamine), may include at least one selected from urea (urea) and ammonia (ammonia).
  • phytic acid, phosphoryl chloride, methylphosphonic acid and triphenylphosphine are doping oxidizing agents for doping functional groups including phosphorus, and thioglycolic acid, 2-thiophenmethanol and benzyl disulfide contain sulfur. Doping oxidant for doping functional groups.
  • melamine, urea and ammonia are doping oxidants for doping functional groups containing nitrogen.
  • the above-mentioned doping oxidizing agents can be used individually by 1 type, or can select and use 2 or more types.
  • phytic acid and melamine may be used as the doping oxidant to dope the functional group including phosphorus and the functional group including nitrogen.
  • both the process of forming the above-described through holes and the doping of the different elements may be performed.
  • the two-dimensional carbon body thus prepared may be dispersed in a solvent as described in FIG. 1 to prepare ozone and / or sonication for a dispersion solution.
  • the process of forming the through-hole in the two-dimensional carbon body is performed at a high temperature, so that the functional groups on the surface of the two-dimensional carbon body are reduced in the process of forming the through-hole.
  • the two-dimensional carbon body can be uniformly dispersed by introducing an oxygen-containing functional group through such ozone and / or ultrasonic treatment.
  • Porous carbon structures can be prepared by freezing and drying using this dispersion solution.
  • the porous carbon structure prepared as described above can significantly increase the active surface area and improve the electrical conductivity by controlling the electron density.
  • FIG. 6 is a view showing SEM pictures, TEM pictures and STEM pictures of a porous carbon structure made of graphene oxide doped with hetero atoms.
  • FIG 6 (a) is a SEM photograph of a porous carbon structure prepared by spray-freezing a two-dimensional carbon body doped with nitrogen (N) in graphene oxide, (b) is sulfur (S), (c) Are SEM images of a porous carbon structure having phosphorus (P) doped graphene oxide as a two-dimensional carbon body. Also, (d) to (i) are TEM images and STEM images of the porous carbon structure made of nitrogen-doped graphene oxide.
  • the porous carbon structure formed of the two-dimensional carbon body doped with hetero atoms has a three-dimensional sphere.
  • the active particles can be supported by strongly binding the active particles to the two-dimensional carbon body in the porous carbon structure. It is possible to minimize the falling off, and at the same time has the advantage of maximizing the amount of active particles loaded. This will be described with reference to FIGS. 7 to 13 to a method for producing a porous carbon structure carrying active particles and a porous carbon structure manufactured through the method.
  • FIG. 7 is a view for explaining a method of manufacturing a porous carbon structure made of a two-dimensional carbon body in which sulfur particles are supported and through holes are formed by the spray freezing method according to another embodiment of the present invention.
  • a porous carbon structure may be prepared by preparing a dispersion solution (a), freezing the dispersion solution (b), performing a drying step (c), and performing a heat treatment process (d). .
  • the dispersion solution of FIG. 7 is a solution in which two-dimensional carbon bodies are dispersed in a solvent, and sulfur particles are supported on the two-dimensional carbon bodies as active particles.
  • the dispersion solution may be prepared by dispersing the two-dimensional carbon body in a solvent to prepare a two-dimensional carbon body solution and further adding sulfur particles thereto. Sulfur particles may be added to the two-dimensional carbon body solution in a dispersed state in a solvent.
  • the sulfur particles may be added to the two-dimensional carbon body solution in the state of being dispersed in the same solvent as the solvent of the two-dimensional carbon body solution.
  • the solvent of the two-dimensional carbon sieve solution may be water
  • the sulfur particles may be added to the two-dimensional carbon sieve solution in a state in which the particles are dispersed in water.
  • the sulfur particles may be dispersed in water by performing ultrasonic treatment for about 8 to 13 hours after adding the sulfur particles to water.
  • sulfur since sulfur has a hydrophobic property and is not dispersed in water, it can be easily dispersed in water through sonication.
  • the sulfur particles may be added to the two-dimensional carbon sieve solution in an amount of about 40 to 99 wt% based on the weight of the two-dimensional carbon sieve of the two-dimensional carbon sieve solution.
  • the content of sulfur particles added to the two-dimensional carbon body solution is less than 40 wt%, a problem may occur that the energy density of the secondary battery is too low, and when the content of sulfur particles exceeds 99 wt%, the electricity of the composite Problems of excessively low conductivity may occur.
  • a dispersion solution in which the two-dimensional carbon bodies in which sulfur particles are supported on the surface is dispersed in a solvent is prepared, and the dispersion solution is frozen and dried to form porous carbon.
  • the structure can be prepared.
  • the heat treatment step (d) may be carried out in a nitrogen atmosphere, the heat treatment temperature range may be 200 °C to 1,000 °C. In one example, the heat treatment may be carried out by increasing the temperature at a rate of about 5 to 15 °C per minute to reach about 900 to 1,000 °C after maintaining a certain time, and then slowly cooling.
  • the sulfur particles may be melted and introduced into the porous carbon structure, and a chemical bond is formed between oxygen particles and / or heteroatoms on the surface of the carbon structure and the sulfur particles to form sulfur particles on the two-dimensional carbon body.
  • it is possible to reduce the amount of sulfur eluted and lost in the electrolyte during operation of the battery has the advantage that can improve the life of the secondary battery.
  • the mass ratio of carbon and sulfur may be expressed as 100: 5 to 100: 90 when analyzed using an element analyzer.
  • Sulfur particles may be uniformly distributed therein throughout the porous carbon structure.
  • FIG. 7 The SEM photographs of FIG. 7 are SEM photographs according to the magnifications of the porous carbon structures prepared through the above-described process. Referring to this, the porous carbon structures loaded with the sulfur particles actually exhibited a spherical shape. You can see that. That is, even if the sulfur particles are supported, it can be seen that the porous structure including a plurality of internal pores having a spherical shape as shown in FIG. 3 or FIG. 4.
  • FIG. 8 is a view showing SEM pictures of a porous carbon structure made of graphene oxide in which sulfur particles are supported and through holes are formed according to the method described with reference to FIG. 7.
  • FIG. 7 the two-dimensional carbon body is used while the surface is untreated, whereas the porous carbon structure shown in FIG. 8 is processed according to the method described with reference to FIG. 7, and the surface treated with the formation of through holes as described with reference to FIG. 5. It shows a porous carbon structure prepared using a two-dimensional carbon body.
  • the first inner pores of 2 to 50 nm and the second inner pores of more than 50 nm are formed through self-assembly of the two-dimensional carbon bodies.
  • the internal pores of the porous carbon structure have a hierarchical pore structure having open internal pores interconnected hierarchically with nano pores having several tens of micro sizes.
  • a porous carbon structure may be manufactured in a state in which sulfur particles are supported on a two-dimensional carbon body surface-treated by doping of hetero elements.
  • sulfur particles may be more stably bonded to the surface of the two-dimensional carbon body.
  • FIG. 9 is a view for explaining a method of manufacturing a porous carbon structure in which sulfur particles are supported and through holes are formed by an ice template method according to another embodiment of the present invention.
  • a porous carbon structure After preparing a dispersion solution in which a two-dimensional carbon body carrying sulfur particles is dispersed in a solvent (a), freezing the dispersion solution (b), and performing a drying step (c), a heat treatment process ( By performing d), a porous carbon structure can be produced.
  • the freezing process (b) is substantially the same as described with reference to FIG. 7 except for using an ice templated method. Therefore, redundant descriptions are omitted.
  • FIG. 10 is a view for explaining a method of manufacturing a porous carbon structure in which metal oxide particles are supported by a spray freezing method according to another embodiment of the present invention.
  • a porous carbon structure is prepared by preparing a dispersion solution (a), freezing the dispersion solution (b), performing a drying step (c), and performing a heat treatment process (d).
  • the solution can be prepared by uniformly dispersing a metal particle, a metal oxide particle, a metal particle precursor for the production of metal particles or a metal oxide particle precursor for the production of metal oxide particles, to the two-dimensional carbon body solution.
  • Metal particles and metal oxide particles may be iron (Fe), titanium (Ti), nickel (Ni), zinc (Zn), vanadium (V), manganese (Mn), cobalt (Co), nickel (Ni), copper ( Cu), gold (Au), silver (Ag), platinum (Pt) or palladium (Pd).
  • a metal or a metal oxide particle form, ie, metal particle or a metal oxide particle, can be used.
  • these can form metal particles or metal oxide particles through crystallization.
  • the two-dimensional carbon body in the dispersion solution has a structure covered by metal particles or metal oxide particles.
  • the dispersion solution thus prepared is frozen (b) and dried (c), and a heat treatment step (d) is performed.
  • the heat treatment step may be performed in a nitrogen atmosphere, and the metal or metal oxide may be crystallized or oxidized by heat treatment. It can be reduced to cause a phase transition. Accordingly, the metal particles or the metal oxide particles may be chemically covalently bonded to the two-dimensional carbon body.
  • the heat treatment temperature range may be 200 ° C to 1000 ° C.
  • the heat treatment may be performed by raising the temperature for 1 hour at a heating rate of 10 °C / min at an initial temperature of 300 °C.
  • after the temperature reaches 900 °C can be heat treated by maintaining it for the same temperature condition for one hour again.
  • phase transition may occur due to crystallization or oxidation and reduction of the metal or metal oxide, and the metal or metal oxide may be chemically covalently bonded to the two-dimensional carbon body.
  • the two-dimensional carbon body contained in the dispersion solution of FIG. 10 may be a surface treatment of the formation of the through-hole and / or doping of the hetero elements as described in FIG.
  • the metal particles or the metal oxide particles can be stably bonded to the two-dimensional carbon body, thereby producing a porous carbon structure in which the supporting amount of the metal particles or the metal oxide particles is maximized.
  • FIG. 11 is a view showing SEM pictures of a porous carbon structure carrying metal oxide particles prepared according to the method described with reference to FIG. 10.
  • FIG. 12 is a view of a porous carbon structure consisting of graphene oxide carrying iron oxide particles according to the present invention. TEM and STEM pictures are shown.
  • FIG. 11 (a) is iron oxide (Fe 2 O 3 ), (b) is manganese oxide (Mn 3 O 4 ), (c) is zinc oxide (ZnO), (d) is supported on palladium (Pd), respectively.
  • SEM pictures of the porous carbon structures (e) are SEM images of the porous carbon structures loaded with titanium oxide (TiO 2 ), and (f) is an enlarged SEM image of (e). Each of these was prepared by the spray-freezing method, and the heat treatment process was performed at 700 to 1,000 ° C.
  • FIG. 13 is a diagram illustrating characteristic graphs of a lithium secondary battery when the porous carbon structures shown in FIG. 12 are applied to a lithium secondary battery.
  • a slurry was prepared by mixing with a binder and a solvent, and then the slurry was coated on a substrate or foil and dried at 200 ° C. or lower to prepare an electrode.
  • the heat treatment was performed at 700 to 1000 ° C. under an inert gas (nitrogen or argon) atmosphere for high carbonization. Through this process, the electrical conductivity of the material can be improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

본 발명의 다공성 탄소 구조체의 제조 방법 및 다공성 탄소 구조체에서, 다공성 탄소 구조체의 제조 방법은 탄소체가 분산된 분산 용액을 준비하는 단계; 상기 분산 용액을 동결시켜 상기 탄소체들이 3차원적으로 엉켜진 동결체를 형성하는 동결단계; 및 상기 동결체에서 용매를 승화시켜 상기 용매를 제거하는 건조단계를 포함한다.

Description

다공성 탄소 구조체의 제조 방법 및 이차전지의 전극용 다공성 탄소 구조체
본 발명은 생산성을 높일 수 있는 다공성 탄소 구조체의 제조 방법 및 이차전지의 전극용 다공성 탄소 구조체에 관한 것이다.
탄소 원자들로만 구성된 나노 물질로 풀러렌, 탄소나노튜브, 그래핀을 포함한 흑연질 탄소 소재는 우수한 전기적 특성, 물리적 및 화학적 안정성을 가지고 있으므로 학계와 산업분야의 관심을 받고 있다. 특히, 그래핀은 체적 대비 매우 높은 비표면적, 우수한 전기전도도 및 물리적 화학적 안정성으로 인해 획기적인 신소재로 각광받고 있는 물질이다. 탄소 소재 중 그래핀은 풍부하고 값이 싼 천연 혹은 합성 흑연(graphite)을 원료로 하여 화학적 산화, 박리(exfoliation) 과정 그리고 화학적 또는 열적 환원처리를 거쳐 대량생산이 가능하며 그 제조방법이 개시되어 있다.
한편, 최근 몇 년 동안 이차 전지용 전극 및 슈퍼커패시터 또는 환경 흡착제에 적용되는 탄소체의 부족한 특성 등을 보완하거나 성능 향상 효과를 유도하기 위해서 표면 활성화 및 도핑을 통한 표면 기능화가 이루어지고 있다.
다만, 종래의 탄소소재를 이용하여 마이크로 입자 구조를 합성하며 조건 제어를 통한 균일한 밀도, 크기, 형태 및 조성을 제어가 어려우며 복잡한 합성 과정을 가지게 된다. 그래서, 이러한 문제점을 극복하고 간단한 합성 과정을 통한 기능화된 탄소 구조체의 개발이 필요한 시점이다.
이차전지 중에서도, 리튬-황전지는 이론 에너지 밀도가 약 2600Wh/kg으로서, 에너지 밀도가 약 570Wh/kg인 리튬이온전지의 약 7배에 해당하는 높은 값을 갖는다. 또한, 리튬-황전지의 양극 소재로 사용되고 있는 황은 자원이 풍부하여 가격이 저렴하므로 전지의 제조단가를 낮출 수 있다는 장점을 갖고 있다. 이러한 장점들로 인해, 리튬-황전지는 높은 관심을 받고 있다.
상기와 같은 장점에도 불구하고, 리튬-황전지의 전기화학 반응 중에 리튬폴리설파이드가 중간 생성물로서 생성되어 리튬-황전지의 수명에는 한계가 있다. 리튬-황전지의 전기화학 반응 중에 생성되는 리튬폴리설파이드는 유기 전해액에 대한 용해도가 높아, 방전 반응 중에 지속적으로 유기 전해액에 용해되게 된다. 이에 따라, 황을 포함하는 양극 소재의 양이 감소하여 전지 자체의 수명이 저하되는 문제가 있다.
또한, 황 자체가 전기전도도가 매우 낮기 때문에, 양극 재료로 황만을 사용할 수가 없기 때문에, 전도성 카본 및 고분자 등의 전도성 소재를 함께 이용하여 복합체를 만들거나, 이들에 황을 코팅하는 기술이 필수적으로 요구된다. 이와 같이 양극 활물질로서 황만을 사용할 수 없고 황 이외의 다른 전도성 소재가 함께 포함되기 때문에, 셀 전체의 에너지 밀도가 저하되는 문제가 있다. 이를 해결하기 위해서, 양극 재료 내의 황의 함량을 최대화시키는 반면, 전도성 소재의 함량을 최소화시켜야 한다. 중간 생성물의 생성을 최소화하고, 전도성 소재의 함량은 최소화하면서 황의 함량을 최대화시키기 위한 많은 연구가 활발히 진행되고 있지만, 대량 생산이 가능한 상용화 기술의 개발에는 아직까지 한계가 있는 실정이다.
본 발명의 일 목적은 간단한 공정을 통하여 대량의 탄소 구조체를 제작하고자 하는 것으로, 다공성을 갖고, 활성 입자의 담지량을 제어할 수 있으며, 담지된 활성 입자의 2차원 탄소체로부터의 용출을 억제할 수 있는 다공성 탄소 구조체의 제조 방법을 제공하는 것이다.
본 발명의 다른 목적은 표면 처리된 2차원 탄소체를 포함하면서 열린 기공을 가지고 비표면적을 증가시킴으로써 활성 입자의 담지량을 최대화시킬 수 있는, 이차전지의 전극용 다공성 탄소 구조체를 제공하는 것이다.
본 발명의 실시예에 따른 다공성 탄소 구조체의 제조 방법은, 탄소체가 분산된 분산 용액을 준비하는 단계; 상기 분산 용액을 얼음 또는 용매 주형을 통한 3차원 기공 구조가 형성된 동결체를 제조하는 동결단계; 및 상기 동결체에서 용매를 승화시켜 상기 용매를 제거하는 건조단계를 포함한다.
일 실시예에서, 상기 동결단계는 상기 분산 용액을 노즐을 이용하여 분사-동결시키거나, 아이스 또는 동결 용매 템플레이팅 방식으로 동결시킬 수 있다.
일 실시예에서, 상기 분산 용액의 탄소체의 농도 조절을 통해서 기공 크기, 기공 밀도 등을 제어할 수 있으며, 온도 조절을 통해서 기공 배열 구조 제어를 할 수 있다.
일 실시예에서, 상기 분산 용액의 탄소체는 비활성 기체 분위기 하에서 증기를 불어넣어 고온에서 열처리하는 증기 활성 공정을 통해 형성된 복수의 관통홀을 포함하는 2차원 탄소체일 수 있다. 이때, 상기 건조단계에서 형성되는 다공성 탄소 구조체는 각각에 관통홀들이 형성된 2차원 탄소체들이 3차원적으로 결합되어 내부 기공을 형성하여 계층적 다공성 구조를 가질 수 있다.
일 실시예에서, 상기 분산 용액에서 분산된 탄소체의 표면에는 황 입자, 금속 입자, 2차원 비탄소 소재(MoS2, WS2, BP, MXene 등) 및 산화금속 입자 중 적어도 어느 하나의 활성 입자가 배치될 수 있다. 이때, 상기 분산 용액을 준비하는 단계는 탄소체가 분산된 제1 용액과, 상기 활성 입자가 분산된 제2 용액이 혼합된 상태에서 초음파 처리 또는 오존 처리를 수행하는 단계를 포함할 수 있다.
일 실시예에서, 상기 건조단계에서 다공성 탄소 구조체의 내부 및 표면에는 활성 입자들이 배치된 구조가 형성되고, 상기 제조 방법은 상기 건조 단계 후에, 활성 입자들이 내부 및 표면에 배치된 다공성 탄소 구조체에 대해서 비활성 기체 분위기 하에서 200℃ 내지 1,000℃에서 열처리하는 단계를 더 포함할 수 있다. 이때의 열처리하는 단계를 통해서 다공성 탄소 구조체와 활성 입자 사이의 화학적 공유결합을 유도할 수 있다.
일 실시예에서, 상기 분산 용액에 분산된 탄소체는 이종원소가 도핑된 탄소체이고, 이종원소가 도핑된 탄소체는 도핑 산화제를 이용하여 탄소체에 이종원소를 도핑할 수 있다.
일 실시예에서, 상기 분산 용액에 분산된 탄소체는 2차원 탄소체이고, 상기 분산 용액을 준비하는 단계는 2차원 탄소체에 대해서 복수의 관통홀을 형성하는 단계; 2차원 탄소체와 도핑 산화제를 혼합하여 2차원 탄소체에 이종원소를 도핑하는 단계; 및 관통홀들이 형성되고 이종원소가 도핑된 2차원 탄소체를 용매에 분산시키는 단계를 포함할 수 있다.
일 실시예에서, 상기 제조 방법은, 상기 건조 단계 후에, 상기 다공성 탄소 구조체를 200℃ 내지 1,000℃에서 열처리하는 단계를 더 포함할 수 있다.
본 발명의 다른 목적을 위한 다공성 탄소 구조체는 서로 결합되어 3차원 네트워크를 형성하는 2차원 탄소체들을 포함하되, 상기 2차원 탄소체들은 서로 제1 내부 기공들을 둘러싸면서 배치되고 외부로 개방되는 제2 내부 기공들을 형성하며, 상기 제1 내부 기공들과 상기 제2 내부 기공들을 형성하는 2차원 탄소체들 각각은 복수의 관통홀들을 포함하고, 상기 관통홀들에 의해 상기 제1 내부 기공들 및 상기 제2 내부 기공들은 서로 공간적으로 연결된 것을 특징으로 한다.
일 실시예에서, 상기 2차원 탄소체들에 형성된 관통홀들의 직경은 0.2 nm 내지 100 nm일 수 있다.
일 실시예에서, 상기 2차원 탄소체의 관통홀을 형성하는 탄소 원자에 산소 함유 작용기가 결합될 수 있다.
일 실시예에서, 상기 2차원 탄소체들에는 붕소(B), 질소(N), 산소(O), 황(S), 인(P), 브롬(Br) 및 염소(Cl) 중 적어도 어느 하나의 이종 원소가 도핑될 수 있다.
일 실시예에서, 상기 제1 내부 기공의 직경은 2 내지 50nm이고, 상기 제2 내부 기공의 직경 50nm 초과일 수 있다. 이때, 상기 2차원 탄소체들이 3차원적으로 결합된 구조의 내부 중심 영역에서는 상기 제1 내부 기공의 부피가 상기 제2 내부 기공의 부피보다 크고, 상기 구조의 표면 영역에서는 상기 제2 내부 기공의 부피가 상기 제1 내부 기공의 부피보다 클 수 있다.
일 실시예에서, 상기 다공성 탄소 구조체의 부피밀도(Bulk density)는 2 내지 20 mg/cm3일 수 있다.
일 실시예에서, 상기 다공성 탄소 구조체에서, 상기 2차원 탄소체들 각각의 표면에는 황 입자, 금속 입자, 2차원 비탄소 소재 및 산화금속 입자 중 적어도 어느 하나의 활성 입자가 담지되어 상기 2차원 탄소체들과 복합화될 수 있다. 이때, 상기 금속 입자 또는 상기 산화금속 입자는 철(Fe), 티타늄(Ti), 니켈(Ni), 아연(Zn), 바나듐(V), 망간(Mn), 코발트(Co), 니켈(Ni), 구리(Cu), 금(Au), 은(Ag), 백금(Pt) 및 팔라듐(Pd) 중 적어도 어느 하나를 포함할 수 있다. 상기 2차원 비탄소 소재는 MoS2, WS2, BP, MXene 등을 포함할 수 있다. 상기 활성 입자는, 다공성 탄소 구조체에 어느 1개의 종류가 단독으로 복합화되거나, 2 이상의 서로 다른 종류의 활성 입자가 복합화될 수 있다.
본 발명의 다공성 탄소 구조체의 제조 방법 및 이차전지의 전극용 다공성 탄소 구조체에 따르면, 열린 기공을 갖는 다공성 구조를 가지면서, 비표면적이 크고 기공률이 높은 다공성 탄소 구조체를 제조할 수 있다. 이러한 다공성 탄소 구조체를 간단한 방향을 통해서 대량 생산할 수 있고, 이때 크기나 형상이 균일한 다공성 탄소 구조체를 형성할 수 있는 장점이 있다.
다공성 탄소 구조체를 구성하는 2차원 탄소체에 형성된 관통홀은 다공성 탄소 구조체의 표면적을 크게 증가시킬 수 있고, 이종원소 도핑을 통해 2차원 탄소체 표면의 전자밀도를 제어하여 전기전도도를 향상 시킬 수 있다. 또한 수 나노 크기의 관통홀과 도핑된 이종원소는 다른 물질과 복합화 하는데 있어서 영향을 줄 수 있다.
특히, 활성 입자로서 황 입자가 담지된 다공성 탄소 구조체의 경우, 2차원 탄소체의 관통홀에 의해서 2차원 탄소체와 물리적 및/또는 화학적으로 강하게 결합되어 있으므로 황 입자가 다공성 탄소 마이크로볼로부터 황 입자의 유출을 최소화시킬 수 있다. 이와 같이 복합체는 비표면적이 크고 기공률이 높으며 많은 황 입자가 포함될 수 있다. 따라서, 이를 이차전지의 양극으로 적용하여 전지를 운전하는 경우에 충전/방전 동안 황 입자의 용출이 억제되어 충방전률 및 사이클 안정성과 이온 저장 능력을 향상시킬 수 있다. 이에 따라, 장기간 사용에도 안정적인 사용이 가능한 이차전지를 제공할 수 있다.
도 1은 본 발명의 일 실시예에 따른 다공성 탄소 구조체의 제조 방법을 설명하기 위한 순서도이다.
도 2는 도 1의 동결정체를 형성하는 단계의 일례를 설명하기 위한 도면이다.
도 3은 도 1 및 도 2에서 설명한 방법에 따라 산화그래핀으로 제조된 다공성 탄소 구조체의 SEM 사진들을 나타낸 도면이다.
도 4는 도 1 및 도 2에서 설명한 방법에 따라 탄소나노튜브를 이용하여 제조한 다공성 탄소 구조체의 SEM 사진들을 나타낸 도면이다.
도 5는 본 발명의 다른 실시예에 따른 표면 처리된 2차원 탄소체로 이루어진 다공성 탄소 구조체의 제조 방법을 설명하기 위한 도면이다.
도 6은 이종원소가 도핑된 산화그래핀으로 제조된 다공성 탄소 구조체의 SEM 사진들, TEM 사진들 및 STEM 사진들을 나타낸 도면이다.
도 7은 본 발명의 또 다른 실시예에 따라 분사 동결 방법으로 황 입자가 담지되고 관통홀들이 형성된 2차원 탄소체로 이루어진 다공성 탄소 구조체의 제조 방법을 설명하기 위한 도면이다.
도 8은 도 7에서 설명한 방법에 따라 황 입자가 담지되고 관통홀들이 형성된 산화그래핀으로 제조된 다공성 탄소 구조체의 SEM 사진들을 나타낸 도면이다.
도 9는 본 발명의 또 다른 실시예에 따라 아이스 템플레이팅 방법으로 황 입자가 담지되고 관통홀들이 형성된 다공성 탄소 구조체의 제조 방법을 설명하기 위한 도면이다.
도 10은 본 발명의 또 다른 실시예에 따라 분사 동결 방법으로 산화금속 입자가 담지된 다공성 탄소 구조체의 제조 방법을 설명하기 위한 도면이다.
도 11은 도 10에서 설명한 방법에 따라 제조된 산화금속 입자가 담지된 다공성 탄소 구조체의 SEM 사진들을 나타낸 도면이다.
도 12는 본 발명에 따라 산화철 입자가 담지된 산화그래핀으로 이루어진 다공성 탄소 구조체의 TEM 및 STEM 사진들을 나타낸 도면이다.
도 13은 도 12에 나타난 다공성 탄소 구조체들을 리튬 2차전지에 적용한 경우의 리튬 2차전지의 특성 그래프들을 나타낸 도면이다.
이하, 첨부한 도면을 참조하여 본 발명의 실시예에 대해 상세히 설명한다. 본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 본문에 상세하게 설명하고자 한다. 그러나 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
본 출원에서 사용한 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로서 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서 상에 기재된 특징, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
도 1은 본 발명의 일 실시예에 따른 다공성 탄소 구조체의 제조 방법을 설명하기 위한 순서도이다.
도 1을 참조하면, 본 발명의 일 실시예에 따른 다공성 탄소 구조체의 제조 방법은 탄소체가 분산된 분산 용액을 준비하고(단계 S110), 상기 분산 용액을 동결시켜, 탄소체들과 용매가 3차원적으로 엉켜진 동결체를 형성하는 동결단계를 수행한 후(단계 S120), 상기 동결체에서 동결된 용매를 승화시켜 용매를 제거하는 건조단계(단계 S130)를 포함하고, 상기 건조단계에서 탄소체들이 3차원적으로 결합되며 그들 사이에 다수의 내부 기공이 형성된 다공성 탄소 구조체가 형성된다.
상기 분산 용액에 분산된 탄소체의 예로서, 산화그래핀(graphene oxide, GO) 또는 환원된 산화그래핀(reduced graphene oxide, rGO)과 같은 2차원 탄소체, 탄소나노튜브(carbon nanotube), 탄소나노섬유(carbon nanofiber), 카본 블랙(carbon black) 등을 들 수 있다. 이들은 각각 단독으로 또는 2 이상이 조합되어 이용될 수 있다. 본 발명에서 탄소나노튜브는 단일벽탄소나노튜브(SWNT)와 다중벽탄소나노튜브(MWNT)를 모두 포함한다. 예를 들어, 본 발명의 2차원 탄소체는 2차원 평면구조를 갖는 산화그래핀이나 환원된 산화그래핀일 수 있다.
상기 분산 용액에서 탄소체를 분산시키는 용매로는, 물 또는 유기 용매를 이용할 수 있다.
탄소체를 용매에 균일하게 분산시키기 위해서, 용매에 탄소체를 첨가한 후에 이에 대해서 오존 처리 및 초음파 처리 중 적어도 어느 하나의 처리를 수행할 수 있다. 오존 처리를 수행하는 경우, 탄소체의 표면에 산소 함유 작용기가 도입된다. 즉, 탄소체의 표면에 산소 함유 작용기가 도입됨에 따라 탄소체의 친수성이 증가하므로 친수성을 갖는 유기용매나 물을 상기 분산 용액의 용매로 이용하는 경우 오존 처리를 수행하는 것이 좋다.
상기 분산 용액에서는 추가적인 분산제를 첨가하지 않기 때문에, 분산제에 의한 최종생성물에 존재하는 불순물을 제거할 필요가 없어져, 공정을 간소화할 수 있다.
일 실시예에서, 2차원 탄소체로서 산화그래핀을 이용하는 경우, 산화그래핀의 농도는 1 mg/mL 내지 10 mg/mL일 수 있다.
일 실시예에서, 탄소체로서, 탄소나노튜브를 이용하는 경우, 탄소나노튜브의 농도는 1 ng/mL 내지 5 ng/mL일 수 있다.
산화그래핀은 다른 종류의 2차원 탄소체에 비해서 상대적으로 물에 잘 분산되지만, 탄소나노튜브를 물에 균일하게 분산시키기 위해서 12시간 이상의 초음파처리와 24시간 이상의 오존처리를 실시하는 것이 바람직하다. 탄소체의 종류에 따라서 초음파 처리와 오존 처리의 조건을 제어할 수 있다.
상기 분산 용액을 동결시켜 동결체를 형성하는데, 동결 공정에서 용매가 동결되어 결정이 자라나는 부분을 피해서 탄소체가 자기조립하여 3차원 네트워크 구조를 형성하게 된다. 이에 따라, 탄소체들은 방사형 구조, 허니콤 구조, 거미줄 구조, 격자 구조 등으로 얽혀있는 3차원 웹 구조를 갖게 된다.
동결체를 형성하기 위한 동결 공정은 아이스 또는 용매 동결 템플레이팅(ice-templating or solvent-frozen templating) 또는 분사-동결 방식(spray-frozen assembly)을 이용할 수 있다. 동결 공정의 냉각은 액체질소를 이용할 수 있다.
일 실시예에서, 아이스 템플레이팅은 상기 분산 용액을 템플레이트에 수용시킨 상태에서 템플레이트를 냉각시킴으로써 분산 용액을 동결체로 만들 수 있다.
아이스 템플레이팅 공정에서, 분산 용액을 동결시키면 탄소체들 사이의 화학 결합을 통해서 탄소체들끼리 자가조립되어 탄소 섬유 다발을 형성하고, 상기 탄소 섬유 다발은 규칙적 또는 불규칙적으로 얽혀 다공성 탄소 구조체를 형성할 수 있다.
일 실시예에서, 분사-동결은 액적 상태로 분사시킬 수 있는 노즐을 포함하는 분사(분무) 장치를 이용하고, 액적을 바로 동결시킴으로써 동결체를 제조할 수 있다. 분사-동결을 이용하는 경우, 노즐의 크기 및/또는 분사 압력을 조절함에 따라 동결체의 크기를 제어할 수 있다. 또한, 동결체에서의 탄소체의 밀도는 분산 용액에서의 탄소체의 농도를 조절함으로써 제어할 수 있다.
이어서, 건조단계에서 동결체에서 용매를 제거한다. 동결된 용매를 바로 승화시키는 경우, 즉 고체상에서 기체상으로 상변화시키는 경우, 탄소체들은 자기조립 과정에서 형성된 내부의 내부 기공들을 그대로 유지하게 된다. 따라서, 3차원적으로 결합되어 있는 탄소체들이 그들 사이의 다수의 내부 기공이 형성된 구조를 갖는 다공성 탄소 구조체를 형성할 수 있다. 이때, 다공성 탄소 구조체는 입체적으로 구형 또는 다면체 비구형을 가질 수 있다.
동결 건조의 특성상, 건조 후에도 다공성 탄소 구조체의 크기가 실질적으로 변화가 없으며 탄소체의 적층을 방지할 수 있는 장점이 있다. 즉, 동결체의 건조 단계에서 용매가 제거될 때 용매와 탄소체 사이의 표면장력에 의해 탄소체의 적층을 막아주면서 동결된 용매가 용이하게 제거될 수 있다.
본 발명에서와 같이 승화를 이용하지 않고, 용매를 액화시킨 후 기화시키는 공정으로 용매를 제거하는 경우 3차원 네트워크 구조의 탄소체들이 그 자리에 고정되지 않고 탄소체들의 배치가 변경되어 최종적으로 제조되는 다공성 탄소 구조체에서의 내부 기공률이 감소하는 문제가 있다. 특히, 다공성 탄소 구조체에 활성 입자가 담지되는 경우에는 내부 기공 내부에 결합되어 있던 활성 입자들이 액화된 용매에 의해 외부로 배출되어 활성 입자의 담지량을 제어하기 매우 힘든 문제가 있다. 따라서, 건조 공정에서는 승화시켜 용매를 제거하는 것이 바람직하다.
도 1에 도시하지 않았으나, 건조 단계를 거쳐 제조된 다공성 탄소 구조체에 대해서 추가적으로 열처리를 수행할 수 있다. 열처리 공정은 질소 분위기에서 200 내지 1,000℃에서 수행될 수 있다.
일례로, 상기 열처리는 300 ℃의 초기 온도에서 10 ℃/분의 가열 속도로 온도를 1시간 승온시켜 수행할 수 있다. 또한, 온도가 900 ℃에 도달한 후 이를 다시 1시간 동안 동일 온도 조건에서 유지시켜 열처리할 수 있다.
추가적으로, 다공성 탄소 구조체의 크기를 제어하기 위해서, 분쇄 공정을 더 수행할 수 있다.
도 1에서 설명한 단계에 따라 제조된 다공성 탄소 구조체에서, 탄소체들 사이의 용매가 제거되어 형성되는 내부 기공들은 2 내지 50nm 크기의 제1 내부 기공 및 50nm 초과 크기의 제2 내부 기공을 포함할 수 있다. 제1 내부 기공들은 탄소체들에 의해서 둘러싸임으로써 형성되는 기공들이고, 제2 내부 기공은 다공성 탄소 구조체에서 외부로 개방되는 기공들을 말한다. 이때, 제1 내부 기공들과 제2 내부 기공들은 서로 연결되어 3차원 네트워크 구조를 이룰 수 있다. 특히, 관통홀들이 형성된 2차원 탄소체들로 구성된 다공성 탄소 구조체의 경우, 관통홀들에 의해서 제1 내부 기공들과 제2 내부 기공들이 서로 연결되어, 관통홀들이 없는 탄소체들을 이용하는 경우에 비해서 기공률이 현저하게 높아지게 된다.
일 실시예에서, 이때의 다공성 탄소 구조체의 내부 중심 영역에서는 제1 내부 기공의 부피가 제2 내부 기공의 부피보다 클 수 있고, 다공성 탄소 구조체의 외부 영역에서는 제2 내부 기공의 부피가 제1 내부 기공의 부피보다 클 수 있다. 이러한 제1 내부 기공과 제2 내부 기공의 분포는 동결 및 건조 단계를 통해서 제조되는 다공성 탄소 구조체의 구조적 특징이다.
이러한 내부 기공들이 형성된 본 발명에 따른 다공성 탄소 구조체의 부피밀도(Bulk density)가 2 내지 20 mg/cm3일 수 있다.
도 2는 도 1의 동결체를 형성하는 단계의 일례를 설명하기 위한 도면으로서 도 2에서 분사 장치를 이용하여 분산 용액을 분사하여 동결시켜 동결체를 제조함을 도시하였다. 분사 장치를 이용하여 동결되어 형성되는 동결체는 구형을 갖는다. 동결체에 대해서 건조단계를 수행하면, 용매가 승화되어 제거됨으로써, 구형의 다공성 탄소 구조체가 형성될 수 있다.
도 3은 도 1 및 도 2에서 설명한 방법에 따라 산화그래핀으로 제조된 다공성 탄소 구조체의 SEM 사진들을 나타낸 도면이다.
도 3에서, (a)는 용매로 물을 이용하고 산화그래핀의 농도가 2 mg/mL인 분산 용액을 분사-동결 공정 및 건조 단계를 거쳐 제조한 다공성 탄소 구조체의 SEM 사진이고, (b) 내지 (e)는 각각 산화그래핀의 농도가 4, 6, 8 및 10 mg/mL인 분산 용액을 이용한 경우에 제조된 다공성 탄소 구조체의 SEM 사진들을 나타낸다. 도 3의 (a) 내지 (e)는 20 ㎛ 스케일로 촬영한 SEM 사진이고, (f)는 (e)의 100 ㎛ 스케일로 촬영한 SEM 사진이다.
도 3의 (f)를 참조하면, 구형의 다공성 탄소 구조체가 다수 개 제조된 것을 확인할 수 있고, 20 ㎛ 스케일의 (a) 내지 (e)에 나타난 것과 같이 다공성 탄소 구조체 각각이 3차원적으로 실질적으로 구형을 갖는 것을 확인할 수 있다.
도 4는 도 1 및 도 2에서 설명한 방법에 따라 탄소나노튜브를 이용하여 제조한 다공성 탄소 구조체의 SEM 사진들을 나타낸 도면이다.
도 4에서, (a)는 다중벽탄소나노튜브(MWNT)를 이용하여 분사-동결 공정 및 건조 단계를 거쳐 제조한 다공성 탄소 구조체의 SEM 사진이고, (b)는 단일벽탄소나노튜브(SWNT)를 이용하여 분사-동결 공정 및 건조 단계를 거쳐 제조한 다공성 탄소 구조체의 SEM 사진이다.
도 4의 (a) 및 (b)를 참조하면, 리본상 그래핀이 나선형으로 성장한 SWNT나 리본상 흑연이 나선형으로 성장하여 외견상 튜브처럼 보이는 CWNT를 이용하여 분사-동결 공정 및 건조 단계를 거쳐 구형의 다공성 탄소 구조체를 제조할 수 있음을 확인할 수 있다.
상기에서 살펴본 바에 따르면, 분산 용액을 용매와 탄소체로만 구성하고 유화제나 바인더 등 종래에 불가피하게 첨가되는 화학물질을 첨가하지 않고도 동결 단계와 건조 단계만을 통해서 내부 기공성이 우수한 다공성 탄소 구조체를 용이하게 제조할 수 있다. 이를 통해서 소재의 불순물 및 잔여물의 영향을 최소화할 수 있으며, 종래의 필수공정인 세척공정 및 불순물 제거공정을 회피함으로서, 신속한 합성 과정을 도출할 수 있는 장점이 있다.
도 1 내지 도 4에서는 탄소체에 별도의 처리 공정을 수행하지 않고 탄소체를 용매에 분산시켜 분산 용액을 준비하여 이를 이용하여 다공성 탄소 구조체를 제조하는 것에 대해서 설명하였으나, 탄소체에 대해서 이종원소 도핑 처리 및/또는 관통홀 형성을 수행하여 다공성 탄소 구조체의 특성을 향상시킬 수 있다. 관통홀들이 형성된 2차원 탄소체를 이용하는 경우, 다공성 탄소 구조체의 활성 표면적을 현저하게 증가시킬 수 있다. 또한, 이종원소 도핑을 통해 탄소체 표면의 전자밀도를 제어하여 전기전도도를 향상 시킬 수 있다. 또한, 수 나노 크기의 관통홀과 도핑된 이종원소는 다른 물질과 복합화 하는데 있어서 영향을 줄 수 있다.
도 5는 본 발명의 다른 실시예에 따른 표면처리된 2차원 탄소체로 이루어진 다공성 탄소 구조체의 제조 방법을 설명하기 위한 도면이다.
도 5에 따른 본 발명의 다른 실시예에서는 2차원 탄소체가 이종원소 도핑 및/또는 관통홀들이 형성된 것을 제외하고는 도 1에서 설명한 것과 실질적으로 동일하므로, 중복되는 상세한 설명은 생략한다.
도 5를 도 1과 함께 참조하면, 표면처리를 수행하는 일 실시예로서, 2차원 탄소체에 대한 결함(defect)으로서 2차원 탄소체에 관통홀들을 형성할 수 있다.
상기 관통홀들을 형성하는 공정은 증기 활성화를 통하여 수행할 수 있다. 증기 활성화는, 2차원 탄소체를 화로에 넣고 질소나 아르곤과 같은 비활성기체 분위기에서 증기를 불어 넣어 고온에서 열처리함으로써 수행할 수 있다. 이때, 비활성기체와 증기의 부피비는 1:0.05 내지 1:0.5일 수 있고, 예를 들어, 증기는 비활성기체를 1로 했을 때 0.3의 부피로 화로로 제공될 수 있으며, 열처리는 900℃에서 수행될 수 있다. 관통홀의 직경은 0.2 nm 내지 100 nm일 수 있다.
상기 표면처리를 수행하는 일 실시예로서, 2차원 탄소체에 이종 원소를 도핑할 수 있다. 이종 원소의 예로서는, 붕소(B), 질소(N), 산소(O), 인(P), 브롬(Br), 염소(Cl) 등을 들 수 있다. 이들은 각각 단독으로 또는 2 이상이 조합되어 이용될 수 있다. 이종 원소가 다공성 탄소 구조체 전체 원자에 대해서 0.01 내지 10%로 도핑될 수 있다.
상기 이종 원소를 도핑하는 공정은 도핑 산화제를 이용하여 수행할 수 있다.
상기 도핑 산화제는 피트산(Phytic acid), 염화포스포릴(Phosphoryl chloride), 메틸포스포닉산(Methyl phosphonic acid), 트리페닐포스핀(Triphenylphosphine), 싸이오글리콜산(Thioglycolic acid), 2-싸이오펜메탄올(2-thiophenemethanol), 벤질디설파이드(Benzyl disulfide), 멜라민(melamine), 우레아(urea) 및 암모니아(ammonia) 중에서 선택된 적어도 어느 하나를 포함할 수 있다. 이들 중에서, 피트산, 염화포스포릴, 메틸포스포닉산, 트리페닐포스핀이 인을 포함하는 작용기를 도핑하기 위한 도핑 산화제이고, 싸이오글리콜산, 2-싸이오펜메탄올, 벤질디설파이드가 황을 포함하는 작용기를 도핑하기 위한 도핑 산화제이다. 또한, 멜라민, 우레아, 암모니아는 질소를 포함하는 작용기를 도핑하기 위한 도핑 산화제이다. 상기 열거된 도핑 산화제는 1종을 단독으로 이용하거나, 2종 이상을 선택하여 이용할 수 있다. 예를 들어, 인을 포함하는 작용기와 질소를 포함하는 작용기를 도핑하기 위해서는 도핑 산화제로서 피트산과 멜라민을 이용할 수 있다.
상기 표면처리를 수행하는 일 실시예로서, 상기에서 설명한 관통홀들을 형성하는 공정과 이종 원소를 도핑하는 공정을 모두 수행할 수 있다.
이와 같이 준비된 2차원 탄소체를 도 1에서 설명한 것과 같이 용매에 분산시켜 오존 및/또는 초음파 처리하여 분산 용액을 준비할 수 있다.
특히, 2차원 탄소체에 관통홀이 형성된 경우에는, 2차원 탄소체에 관통홀을 형성하는 공정을 고온에서 수행하기 때문에 관통홀을 형성하는 공정에서 2차원 탄소체 표면의 작용기들이 환원되어 없어진 상태로서 소수성을 나타내어 용매에 분산되기 어려울 수 있으나, 이와 같은 오존 및/또는 초음파 처리를 통해서 산소 함유 작용기가 도입됨으로써 2차원 탄소체가 균일하게 분산될 수 있다.
이러한 분산 용액을 이용하여 동결시키는 단계 및 건조 단계를 통해서 다공성 탄소 구조체를 제조할 수 있다. 이와 같이 제조된 다공성 탄소 구조체는 활성 표면적을 현저하게 증가되고 전자밀도를 제어하여 전기전도도를 향상시킬 수 있다.
도 6은 이종원소가 도핑된 산화그래핀으로 제조된 다공성 탄소 구조체의 SEM 사진들, TEM 사진들 및 STEM 사진들을 나타낸 도면이다.
도 6에서, (a)는 산화그래핀에 질소(N)가 도핑된 2차원 탄소체로 분사-동결 방식으로 제조한 다공성 탄소 구조체의 SEM 사진이고, (b)는 황(S), (c)는 인(P)이 도핑된 산화그래핀을 2차원 탄소체로 한 다공성 탄소 구조체의 SEM 사진들이다. 또한, (d) 내지 (i)는 질소 도핑된 산화그래핀으로 제조된 다공성 탄소 구조체의 TEM 사진들과 STEM 사진들이다.
도 6의 (a) 내지 (c)를 참조하면, 이종원소가 도핑된 2차원 탄소체로 형성된 다공성 탄소 구조체가 3차원적으로 구형을 갖는 것을 확인할 수 있다.
또한, (d) 내지 (i)를 참조하면, 도핑 산화제를 이용하여 질소가 도핑된 산화그래핀으로 제조된 다공성 탄소 구조체에서, 다공성 탄소 구조체의 전 범위에서 균일하게 질소가 도핑 되어 있는 것을 확인할 수 있다.
도 5 및 도 6에서 설명한 표면 처리된 2차원 탄소체를 활성 입자와 함께 다공성 탄소 구조체를 제조하는 경우, 다공성 탄소 구조체에서 2차원 탄소체에 활성 입자를 강하게 결합시켜 담지시킬 수 있어 담지된 활성 입자들이 떨어져 나가는 것을 최소화시킬 수 있는 동시에, 활성 입자의 담지량을 최대화시킬 수 있는 장점이 있다. 이에 대해서는 도 7 내지 도 13을 참조하여 활성 입자가 담지된 다공성 탄소 구조체의 제조 방법과 그 방법을 통해서 제조된 다공성 탄소 구조체에 대해서 설명하기로 한다.
도 7은 본 발명의 또 다른 실시예에 따라 분사 동결 방법으로 황 입자가 담지되고 관통홀들이 형성된 2차원 탄소체로 이루어진 다공성 탄소 구조체의 제조 방법을 설명하기 위한 도면이다.
도 7을 참조하면, 분산 용액을 준비하고(a), 분산 용액을 동결 시킨 후(b), 건조 단계(c)를 수행하고, 열처리 공정(d)을 수행함으로써 다공성 탄소 구조체를 제조할 수 있다.
구체적으로, 도 7의 분산 용액은 용매에 2차원 탄소체가 분산된 용액이되, 이때의 2차원 탄소체에는 활성 입자로서 황 입자가 담지된 상태이다.
상기 분산 용액은 2차원 탄소체를 용매에 분산시켜 2차원 탄소체 용액을 제조한 후 이에 추가적으로 황 입자를 첨가하여 준비할 수 있다. 황 입자는 용매에 분산된 상태에서 2차원 탄소체 용액에 첨가될 수 있다.
황 입자는 상기 2차원 탄소체 용액의 용매와 동일한 용매에 분산된 상태에서 2차원 탄소체 용액에 첨가될 수 있다. 예를 들어, 2차원 탄소체 용액의 용매가 물이고, 황 입자가 물에 분산된 상태에서 2차원 탄소체 용액에 첨가될 수 있다. 이때, 황 입자를 물에 균일하게 분산시키기 위하여, 황 입자를 물에 첨가한 후 약 8 내지 13시간의 초음파 처리를 수행함으로써 황 입자를 물에 분산시킬 수 있다. 일반적으로 황은 소수성 특성을 가져 물에 분산되지 않기 때문에, 초음파 처리를 통해 물에 용이하게 분산시킬 수 있다.
일 실시예에서, 황 입자는 2차원 탄소체 용액의 2차원 탄소체의 중량 대비 약 40 내지 99 wt%의 함량으로 2차원 탄소체 용액에 첨가될 수 있다. 2차원 탄소체 용액에 첨가되는 황 입자의 함량이 40 wt% 미만인 경우, 이차전지의 에너지 밀도가 지나치게 낮아지는 문제점이 발생할 수 있고, 황 입자의 함량이 99 wt%를 초과하는 경우, 복합체의 전기 전도성이 지나치게 낮아지는 문제점이 발생할 수 있다.
상기에서 설명한 바와 같이 2차원 탄소체 용액에 황 입자를 첨가함으로써, 황 입자가 표면에 담지된 2차원 탄소체들이 용매에 분산된 상태의 분산 용액이 준비되고, 분산 용액을 동결 및 건조시킴으로써 다공성 탄소 구조체를 제조할 수 있다.
동결시키는 공정(b) 및 건조 단계(c)는 각각 도 1 및 도 2에서 설명한 것과 실질적으로 동일하므로, 중복되는 상세한 설명은 생략한다.
건조 단계(c) 후에 열처리 공정(d)을 수행하는데, 열처리 공정(d)은 질소 분위기에서 수행될 수 있고, 열처리 온도 범위는 200℃ 내지 1,000℃일 수 있다. 일례로, 상기 열처리는 분당 약 5 내지 15℃의 속도로 승온하여 약 900 내지 1,000℃에 도달한 후 일정시간 유지시키고, 이어서 서서히 냉각시킴으로써 수행될 수 있다.
상기 열처리 공정 동안 황 입자는 용융되어 다공성 탄소 구조체의 내부로 유입될 수 있고, 탄소 구조체 표면의 산소 작용기 및/또는 이종원자와, 황 입자 사이의 화학 결합이 형성되어 2차원 탄소체에 대한 황 입자의 결합력을 향상시킬 수 있다. 그 결과 2차 전지의 전극으로 이용하더라도 전지의 운전 시에 전해액에 용출되어 소실되는 황의 양을 감소시킬 수 있어 2차 전지의 수명을 향상시킬 수 있는 장점이 있다.
도 7에서 설명한 바에 따라 제조된 다공성 탄소 구조체에 대해, 원소 분석기를 이용하여 분석하면 탄소와 황의 질량비는 100:5 내지 100:90으로 나타날 수 있다. 다공성 탄소 구조체 전체적으로 황 입자는 내부에 균일하게 분포될 수 있다.
도 7의 SEM 사진들은 상기에서 설명한 공정을 통해서 제조된 다공성 탄소 구조체의 배율별 SEM 사진들로서, 이를 참조하면 실제로 상기에서 설명한 방법을 통해서 제조된 황 입자가 담지된 다공성 탄소 구조체는 실질적으로 구형을 나타내는 것을 확인할 수 있다. 즉, 황 입자가 담지되더라도 도 3이나 도 4에서 본 바와 같이 전체적으로 구형을 가지면서 다수의 내부 기공들을 포함하는 다공성 구조로 형성되는 것을 확인할 수 있다. 2차원 탄소체들의 집합체를 만들어 놓고 그에 황 입자를 담지시키는 공정을 수행하는 것에 비해서, 이미 2차원 탄소체들 각각의 표면에 황 입자를 최대로 담지시켜 둔 후에 황 입자가 담지된 2차원 탄소체를 어셈블리시켜 다공성 탄소 구조체를 제조할 수 있어, 황 입자의 담지량을 최대화시킬 수 있는 장점이 있다.
도 8은 도 7에서 설명한 방법에 따라 황 입자가 담지되고 관통홀들이 형성된 산화그래핀으로 제조된 다공성 탄소 구조체의 SEM 사진들을 나타낸 도면이다.
도 7에서는 2차원 탄소체는 표면이 미처리될 상태로 이용한 것인 반면, 도 8에 도시된 다공성 탄소 구조체는 도 7에서 설명한 설명한 방법에 따르되, 도 5에서 설명한 것과 같이 관통홀의 형성으로 표면 처리된 2차원 탄소체를 이용하여 제조된 다공성 탄소 구조체를 나타낸 것이다.
도 7에서는 2차원 탄소체들 사이의 이격 공간에 의해서 내부 기공들이 형성되어 있는 반면, 도 8에서는 2차원 탄소체들인 산화그래핀 각각의 면내 방향을 관통하는 관통홀들이 형성된 것을 확인할 수 있다.
도 8의 다공성 탄소 구조체의 경우, 2차원 탄소체에 관통홀이 형성되고, 2 내지 50nm 크기의 제1 내부 기공 및 50nm 초과 크기의 제2 내부 기공이 2차원 탄소체들의 자기조립를 통해서 형성되므로, 다공성 탄소 구조체의 내부 기공은 나노 사이즈에서 수십 마이크로 사이즈를 갖는 내부 기공들이 계층적으로 상호 연결된 열린 내부 기공을 갖는 계층적 기공 구조를 갖게 된다.
도면으로 도시하지 않았으나, 도 5 및 도 6에서 설명한 것과 같이 이종원소의 도핑으로 표면 처리된 2차원 탄소체에 황 입자를 담지시킨 상태에서 다공성 탄소 구조체를 제조할 수 있다. 2차원 탄소체가 관통홀의 형성 및/또는 이종원소의 도핑으로 표면 처리된 경우, 황 입자가 더욱 안정적으로 2차원 탄소체의 표면에 결합될 수 있다.
도 9는 본 발명의 또 다른 실시예에 따라 아이스 템플레이팅 방법으로 황 입자가 담지되고 관통홀들이 형성된 다공성 탄소 구조체의 제조 방법을 설명하기 위한 도면이다.
도 9를 참조하면, 황 입자가 담지된 2차원 탄소체가 용매에 분산된 분산 용액을 준비하고(a), 분산 용액을 동결 시킨 후(b), 건조 단계(c)를 수행하고, 열처리 공정(d)을 수행함으로써 다공성 탄소 구조체를 제조할 수 있다.
도 9에서는 동결 공정(b)을 아이스템플레이팅 방식을 이용하는 것을 제외하고는 도 7에서 설명한 것과 실질적으로 동일하다. 따라서 중복되는 상세한 설명은 생략한다.
도 10은 본 발명의 또 다른 실시예에 따라 분사 동결 방법으로 산화금속 입자가 담지된 다공성 탄소 구조체의 제조 방법을 설명하기 위한 도면이다.
도 10을 참조하면, 분산 용액을 준비하고(a), 분산 용액을 동결 시킨 후(b), 건조 단계(c)를 수행하고, 열처리 공정(d)을 수행함으로써 다공성 탄소 구조체를 제조하되, 분산 용액은 2차원 탄소체 용액에 금속 입자, 산화금속 입자, 금속 입자의 제조를 위한 금속 입자 전구체 또는 산화금속 입자의 제조를 위한 산화금속 입자 전구체를 첨가하여 균일하게 분산시킴으로써 준비할 수 있다.
금속 입자나 산화금속 입자는, 철(Fe), 티타늄(Ti), 니켈(Ni), 아연(Zn), 바나듐(V), 망간(Mn), 코발트(Co), 니켈(Ni), 구리(Cu), 금(Au), 은(Ag), 백금(Pt) 또는 팔라듐(Pd)을 포함할 수 있다.
이때, 금속이나 금속 산화물로서는 입자 형태, 즉 금속 입자나 금속 산화물 입자를 이용할 수 있다. 또한, 금속 전구체나 금속 산화물 전구체를 이용하는 경우에, 이들은 결정화를 통해서 금속 입자나 금속 산화물 입자를 형성할 수 있다. 이와 같은 혼합 및 분산을 통해서, 분산 용액에서 2차원 탄소체는 금속 입자 또는 산화금속 입자에 의해 덮인 구조를 갖게 된다.
이와 같이 준비된 분산 용액을 동결(b) 및 건조(c) 시키고, 열처리 공정(d)을 수행하는데, 열처리 공정은 질소 분위기에서 수행될 수 있고, 열처리에 의해서 금속 또는 산화금속이 결정화되거나, 산화, 환원되어 상전이가 일어날 수 있다. 이에 따라 금속 입자 또는 산화금속 입자가 2차원 탄소체에 견고하게 화학적 공유 결합될 수 있다.
열처리 온도 범위는 200 ℃ 내지 1000 ℃일 수 있다. 일례로, 상기 열처리는 300 ℃의 초기 온도에서 10 ℃/분의 가열 속도로 온도를 1시간 승온시켜 수행할 수 있다. 또한, 온도가 900 ℃에 도달한 후 이를 다시 1시간 동안 동일 온도 조건에서 유지시켜 열처리할 수 있다. 상기 열처리 공정에서 금속 또는 산화금속의 결정화 또는 산화 및 환원 일어나 상전이가 일어날 수 있으며, 금속 또는 금속 산화물이 2차원 탄소체에 견고하게 화학적 공유 결합될 수 있다.
한편, 도 10의 분산 용액에 포함된 2차원 탄소체는 도 5에서 설명한 바와 같이 관통홀의 형성 및/또는 이종원소의 도핑의 표면 처리된 것일 수 있다. 2차원 탄소체가 상기와 같은 표면 처리된 경우, 금속 입자나 산화금속 입자가 2차원 탄소체에 안정적으로 결합될 수 있어, 금속 입자나 산화금속 입자의 담지량을 최대화시킨 다공성 탄소 구조체를 제조할 수 있다.
도 11은 도 10에서 설명한 방법에 따라 제조된 산화금속 입자가 담지된 다공성 탄소 구조체의 SEM 사진들을 나타낸 도면이고, 도 12는 본 발명에 따라 산화철 입자가 담지된 산화그래핀으로 이루어진 다공성 탄소 구조체의 TEM 및 STEM 사진들을 나타낸 도면이다.
도 11에서, (a)는 산화철(Fe2O3), (b)는 산화망간(Mn3O4), (c)는 산화아연(ZnO), (d)는 팔라듐(Pd)이 각각 담지된 다공성 탄소 구조체의 SEM 사진들이고, (e)는 산화티타늄(TiO2)가 담지된 다공성 탄소 구조체의 SEM 사진이며, (f)는 (e)의 확대 SEM 사진이다. 이들 각각은 분사-동결 방식을 통해서 제조된 것들이고, 열처리 공정은 700 내지 1,000℃에서 수행하였다.
도 11 및 도 12를 참조하면, 금속 입자나 산화금속 입자가 담지된 구형의 다공성 탄소 구조체가 제조된 것을 확인할 수 있다.
도 13은 도 12에 나타난 다공성 탄소 구조체들을 리튬 2차전지에 적용한 경우의 리튬 2차전지의 특성 그래프들을 나타낸 도면이다.
도 12에 나타난 산화철 입자가 담지된 다공성 탄소 구조체에 대해서, 바인더 및 용매와 혼합하여 슬러리를 제조한 후, 상기 슬러리를 기판 또는 포일에 코팅하고 200℃ 이하에서 건조하여 전극을 제조하였다. 높은 탄소화를 위하여 비활성기체(질소 또는 아르곤) 분위기에 하에서 700~1000℃에서 열처리하였다. 이 공정을 통해서 소재의 전기전도도를 향상시킬 수 있다.
도 13을 참조하면, 이와 같이 제조된 전극을 2차 전지에 적용한 결과, 2차 전지의 충방전 특성을 향상시킬 수 있고, 수명 또한 증가하는 것을 확인할 수 있다.
상기에서는 본 발명의 바람직한 실시예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.

Claims (19)

  1. 탄소체가 분산된 분산 용액을 준비하는 단계;
    상기 분산 용액을 동결시켜 상기 탄소체들이 3차원적으로 엉켜진 동결체를 형성하는 동결단계; 및
    상기 동결체에서 용매를 승화시켜 상기 용매를 제거하는 건조단계를 포함하는,
    다공성 탄소 구조체의 제조 방법.
  2. 제1항에 있어서,
    상기 동결단계는
    상기 분산 용액을 노즐을 이용하여 분사-동결시키거나, 아이스 또는 동결 용매 템플레이팅 방식으로 동결시키는 것을 특징으로 하는,
    다공성 탄소 구조체의 제조 방법.
  3. 제1항에 있어서,
    상기 분산 용액의 탄소체는
    비활성 기체 분위기 하에서 증기를 불어넣어 고온에서 열처리하는 증기 활성 공정을 통해 형성된 복수의 관통홀을 포함하는 2차원 탄소체인 것을 특징으로 하는,
    다공성 탄소 구조체의 제조 방법.
  4. 제3항에 있어서,
    상기 건조단계에서 형성되는 다공성 탄소 구조체는
    각각에 관통홀들이 형성된 탄소체들이 3차원적으로 결합되어 내부 기공을 형성하여 계층적 다공성 구조를 갖는 것을 특징으로 하는,
    다공성 탄소 구조체의 제조 방법.
  5. 제1항에 있어서,
    상기 분산 용액에서 분산된 탄소체의 표면에는 황 입자, 금속 입자, 2차원 비탄소 소재 및 산화금속 입자 중 적어도 어느 하나의 활성 입자가 배치된 것을 특징으로 하는,
    다공성 탄소 구조체의 제조 방법.
  6. 제5항에 있어서,
    상기 분산 용액을 준비하는 단계는
    탄소체가 분산된 제1 용액과, 상기 활성 입자가 분산된 제2 용액이 혼합된 상태에서 초음파 처리 또는 오존 처리를 수행하는 단계를 포함하는 것을 특징으로 하는,
    다공성 탄소 구조체의 제조 방법.
  7. 제5항에 있어서,
    상기 건조단계에서 다공성 탄소 구조체의 내부 및 표면에는 활성 입자들이 배치된 구조가 형성되고,
    상기 건조 단계 후에, 활성 입자들이 내부 및 표면에 배치된 다공성 탄소 구조체에 대해서 비활성 기체 분위기 하에서 200℃ 내지 1,000℃에서 열처리하는 단계를 더 포함하는 것을 특징으로 하는,
    다공성 탄소 구조체의 제조 방법.
  8. 제1항에 있어서,
    상기 분산 용액에 분산된 탄소체는 이종원소가 도핑된 탄소체이고,
    이종원소가 도핑된 탄소체는 도핑 산화제를 이용하여 탄소체에 이종원소를 도핑하는 것을 특징으로 하는,
    다공성 탄소 구조체의 제조 방법.
  9. 제1항에 있어서,
    상기 분산 용액에 분산된 탄소체는 2차원 탄소체이고,
    상기 분산 용액을 준비하는 단계는
    2차원 탄소체에 대해서 복수의 관통홀을 형성하는 단계;
    2차원 탄소체와 도핑 산화제를 혼합하여 2차원 탄소체에 이종원소를 도핑하는 단계; 및
    관통홀들이 형성되고 이종원소가 도핑된 2차원 탄소체를 용매에 분산시키는 단계를 포함하는 것을 특징으로 하는,
    다공성 탄소 구조체의 제조 방법.
  10. 제1항에 있어서,
    상기 건조 단계 후에, 상기 다공성 탄소 구조체를 200℃ 내지 1,000℃에서 열처리하는 단계를 더 포함하는 것을 특징으로 하는,
    다공성 탄소 구조체의 제조 방법.
  11. 서로 결합되어 3차원 네트워크를 형성하는 2차원 탄소체들을 포함하되,
    상기 2차원 탄소체들은 서로 제1 내부 기공들을 둘러싸면서 배치되고 외부로 개방되는 제2 내부 기공들을 형성하며,
    상기 제1 내부 기공들과 상기 제2 내부 기공들을 형성하는 2차원 탄소체들 각각은 복수의 관통홀들을 포함하고,
    상기 관통홀들에 의해 상기 제1 내부 기공들 및 상기 제2 내부 기공들은 서로 공간적으로 연결된 것을 특징으로 하는,
    다공성 탄소 구조체.
  12. 제11항에 있어서,
    상기 2차원 탄소체들에 형성된 관통홀들의 직경은 0.2 nm 내지 100 nm인 것을 특징으로 하는,
    다공성 탄소 구조체.
  13. 제11항에 있어서,
    상기 2차원 탄소체의 관통홀을 형성하는 탄소 원자에 산소 함유 작용기가 결합된 것을 특징으로 하는,
    다공성 탄소 구조체.
  14. 제11항에 있어서,
    상기 2차원 탄소체들에는 붕소(B), 질소(N), 산소(O), 황(S), 인(P), 브롬(Br) 및 염소(Cl) 중 적어도 어느 하나의 이종 원소가 도핑된 것을 특징으로 하는,
    다공성 탄소 구조체.
  15. 제11항에 있어서,
    상기 제1 내부 기공의 직경은 2 내지 50nm이고,
    상기 제2 내부 기공의 직경 50nm 초과인 것을 특징으로 하는,
    다공성 탄소 구조체.
  16. 제15항에 있어서,
    상기 2차원 탄소체들이 3차원적으로 결합된 구조의 내부 중심 영역에서는 상기 제1 내부 기공의 부피가 상기 제2 내부 기공의 부피보다 크고,
    상기 구조의 표면 영역에서는 상기 제2 내부 기공의 부피가 상기 제1 내부 기공의 부피보다 큰 것을 특징으로 하는,
    다공성 탄소 구조체.
  17. 제11항에 있어서,
    부피밀도(Bulk density)가 2 내지 20 mg/cm3인 것을 특징으로 하는,
    다공성 탄소 구조체.
  18. 제11항에 있어서,
    상기 2차원 탄소체들 각각의 표면에는 황 입자, 금속 입자, 2차원 비탄소 소재 및 산화금속 입자 중 적어도 어느 하나의 활성 입자가 담지되어 상기 2차원 탄소체들과 복합화된 것을 특징으로 하는,
    다공성 탄소 구조체.
  19. 제18항에 있어서,
    상기 금속 입자 또는 상기 산화금속 입자는
    철(Fe), 티타늄(Ti), 니켈(Ni), 아연(Zn), 바나듐(V), 망간(Mn), 코발트(Co), 니켈(Ni), 구리(Cu), 금(Au), 은(Ag), 백금(Pt) 및 팔라듐(Pd) 중 적어도 어느 하나를 포함하는 것을 특징으로 하는,
    다공성 탄소 구조체.
PCT/KR2017/009576 2016-08-31 2017-08-31 다공성 탄소 구조체의 제조 방법 및 이차전지의 전극용 다공성 탄소 구조체 WO2018044110A1 (ko)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR1020160111952A KR102590821B1 (ko) 2016-08-31 2016-08-31 표면 처리된 탄소체를 포함하는 다공성 탄소 마이크로볼, 이의 제조 방법, 이를 포함하는 복합체
KR10-2016-0111953 2016-08-31
KR1020160111953A KR102585053B1 (ko) 2016-08-31 2016-08-31 금속 또는 금속 산화물-탄소 마이크로볼 복합체 및 이의 제조 방법
KR10-2016-0111954 2016-08-31
KR10-2016-0111952 2016-08-31
KR1020160111954A KR102609272B1 (ko) 2016-08-31 2016-08-31 이차전지용 황-탄소 마이크로볼 복합체 및 이의 제조 방법

Publications (1)

Publication Number Publication Date
WO2018044110A1 true WO2018044110A1 (ko) 2018-03-08

Family

ID=61309404

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/009576 WO2018044110A1 (ko) 2016-08-31 2017-08-31 다공성 탄소 구조체의 제조 방법 및 이차전지의 전극용 다공성 탄소 구조체

Country Status (1)

Country Link
WO (1) WO2018044110A1 (ko)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109734083A (zh) * 2019-01-30 2019-05-10 河南工程学院 一种高度石墨化硼掺杂“哑铃型”微介孔碳及其制备方法
CN112479199A (zh) * 2020-11-24 2021-03-12 太原科技大学 一种氮、磷、氧共掺杂多孔石墨化碳纳米片的制备方法
CN114585588A (zh) * 2020-01-10 2022-06-03 株式会社Lg新能源 多孔还原型氧化石墨烯、其制造方法、包含其的硫-碳复合材料和锂二次电池
CN114725328A (zh) * 2021-12-17 2022-07-08 安徽师范大学 氮掺杂生物质衍生多孔碳负载Fe3O4/Fe复合材料及其制备方法和应用
WO2023104141A1 (zh) * 2021-12-09 2023-06-15 桂林理工大学 N/o共掺杂的硫化钼@多孔碳复合电极材料及其制备方法、负极材料及其制备方法和应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130088077A (ko) * 2012-01-30 2013-08-07 연세대학교 산학협력단 3차원 구조의 그래핀 구조체 및 그 제조 방법
KR101577190B1 (ko) * 2014-09-23 2015-12-14 경희대학교 산학협력단 인 원소가 도핑된 3차원 다공성 그라핀 조립체, 이의 제조방법 및 이를 포함하는 슈퍼 커패시터

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130088077A (ko) * 2012-01-30 2013-08-07 연세대학교 산학협력단 3차원 구조의 그래핀 구조체 및 그 제조 방법
KR101577190B1 (ko) * 2014-09-23 2015-12-14 경희대학교 산학협력단 인 원소가 도핑된 3차원 다공성 그라핀 조립체, 이의 제조방법 및 이를 포함하는 슈퍼 커패시터

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HE, YONGMIN: "Freestanding three-dimensional graphene/MnO2 composite networks as ultralight and flexible supercapacitor electrodes", ACS NANO, vol. 7, no. 1, 1 July 2013 (2013-07-01), pages 174 - 182, XP055386823, DOI: 10.1021/nn304833s *
KOTA, MANIKANTAN: "Ice-templated three dimensional nitrogen doped graphene for enhanced supercapacitor performance", JOURNAL OF POWER SOURCES, vol. 303, 21 November 2015 (2015-11-21), pages 372 - 378, XP055604968, DOI: 10.1016/j.jpowsour.2015.11.006 *
YUN, SOL: "Phase-controlled iron oxide nanobox deposited on hierarchically structured graphene networks for lithium ion storage and photocatalysis", SCIENTIFIC REPORTS, vol. 6, no. 19959, 2016, pages 1 - 9, XP055604970, DOI: 10.1038/srep19959 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109734083A (zh) * 2019-01-30 2019-05-10 河南工程学院 一种高度石墨化硼掺杂“哑铃型”微介孔碳及其制备方法
CN114585588A (zh) * 2020-01-10 2022-06-03 株式会社Lg新能源 多孔还原型氧化石墨烯、其制造方法、包含其的硫-碳复合材料和锂二次电池
EP4043396A4 (en) * 2020-01-10 2022-12-07 Lg Energy Solution, Ltd. REDUCED POROUS GRAPHENE OXIDE, PROCESS FOR ITS PRODUCTION, SAME COMPREHENSIVE CARBON SULFIDE COMBINATION AND LITHIUM SECONDARY BATTERY
JP2023501558A (ja) * 2020-01-10 2023-01-18 エルジー エナジー ソリューション リミテッド 多孔性還元グラフェンオキサイド、この製造方法、これを含む硫黄‐炭素複合体及びリチウム二次電池
JP7431959B2 (ja) 2020-01-10 2024-02-15 エルジー エナジー ソリューション リミテッド 多孔性還元グラフェンオキサイド、この製造方法、これを含む硫黄‐炭素複合体及びリチウム二次電池
CN112479199A (zh) * 2020-11-24 2021-03-12 太原科技大学 一种氮、磷、氧共掺杂多孔石墨化碳纳米片的制备方法
WO2023104141A1 (zh) * 2021-12-09 2023-06-15 桂林理工大学 N/o共掺杂的硫化钼@多孔碳复合电极材料及其制备方法、负极材料及其制备方法和应用
GB2625474A (en) * 2021-12-09 2024-06-19 Univ Guilin Technology N/O co-doped molybdenum sulfide@porous carbon composite electrode material and preparation method therefor, negative electrode material and preparation method
CN114725328A (zh) * 2021-12-17 2022-07-08 安徽师范大学 氮掺杂生物质衍生多孔碳负载Fe3O4/Fe复合材料及其制备方法和应用
CN114725328B (zh) * 2021-12-17 2023-10-27 安徽师范大学 氮掺杂生物质衍生多孔碳负载Fe3O4/Fe复合材料及其制备方法和应用

Similar Documents

Publication Publication Date Title
WO2018044110A1 (ko) 다공성 탄소 구조체의 제조 방법 및 이차전지의 전극용 다공성 탄소 구조체
WO2020096338A1 (ko) 탄소 담체 상에 담지된 단일원자 촉매의 제조방법
US9755225B2 (en) Process for silicon nanowire-graphene hybrid mat
WO2019113993A1 (zh) 一种碳纳米管及其制备方法
KR100905691B1 (ko) 탄소나노섬유를 혼성화시킨 리튬 이차전지용 음극 활물질
Chen et al. Electrochemical lithiation and de-lithiation of carbon nanotube-Sn2Sb nanocomposites
US10570017B2 (en) Yolk-shell-structured material, anode material, anode, battery, and method of forming same
JP2018535915A (ja) リチウム−硫黄電池のための高グラファイト質カーボン材料を含む硫黄−カーボン複合体およびその作製プロセス
US20200313162A1 (en) Method of producing graphene-encapsulated graphite-supported anode active material for lithium-ion batteries
US11038172B2 (en) Environmentally benign process for producing graphene-protected anode particles for lithium batteries
KR102590821B1 (ko) 표면 처리된 탄소체를 포함하는 다공성 탄소 마이크로볼, 이의 제조 방법, 이를 포함하는 복합체
Kumar et al. Carbonaceous anode materials for lithium-ion batteries–the road ahead
US11616224B2 (en) Process for producing semiconductor nanowires and nanowire-graphene hybrid particulates
Chen et al. Wearable lithium ion batteries based on carbon nanotubes and graphene
US11031589B2 (en) Chemical-free production of protected anode active material particles for lithium batteries
US20240097115A1 (en) Method of producing conducting polymer network-enabled particulates of anode active material particles for lithium-ion batteries
Ye et al. Encapsulation of 2D MoS 2 nanosheets into 1D carbon nanobelts as anodes with enhanced lithium/sodium storage properties
TW201937787A (zh) 電池電極的製備方法
KR101889356B1 (ko) 실리콘-탄소나노튜브-탄소 복합체 제조방법, 이에 따라 제조된 복합체 및 복합체를 포함하는 이차전지
Zhang et al. High-quality and low-cost three-dimensional graphene from graphite flakes via carbocation-induced interlayer oxygen release
US20200328403A1 (en) Conducting polymer network-enabled particulates of anode active material particles for lithium-ion batteries
EP3991223B1 (en) Silicon and graphite containing composite material and method for producing same
CN109390556A (zh) 全固态锂电池负极、其制备方法和全固态锂电池
CN116487559A (zh) 一种空腔定制化碳硅复合材料及其制备方法和应用
CN112563467B (zh) 多孔NiFe2O4/C@S纳米纤维复合材料及其制备方法与应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17847035

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17847035

Country of ref document: EP

Kind code of ref document: A1