WO2022127132A1 - 5g基站用高纯低辐射球形硅微粉的制备工艺及设备 - Google Patents
5g基站用高纯低辐射球形硅微粉的制备工艺及设备 Download PDFInfo
- Publication number
- WO2022127132A1 WO2022127132A1 PCT/CN2021/110063 CN2021110063W WO2022127132A1 WO 2022127132 A1 WO2022127132 A1 WO 2022127132A1 CN 2021110063 W CN2021110063 W CN 2021110063W WO 2022127132 A1 WO2022127132 A1 WO 2022127132A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- adsorption
- purity
- low
- silicon micropowder
- base stations
- Prior art date
Links
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 title claims abstract description 65
- 229910052710 silicon Inorganic materials 0.000 title claims abstract description 46
- 239000010703 silicon Substances 0.000 title claims abstract description 46
- 238000002360 preparation method Methods 0.000 title claims abstract description 22
- 238000001179 sorption measurement Methods 0.000 claims abstract description 78
- 238000000746 purification Methods 0.000 claims abstract description 46
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 35
- 229910052770 Uranium Inorganic materials 0.000 claims abstract description 34
- JFALSRSLKYAFGM-UHFFFAOYSA-N uranium(0) Chemical compound [U] JFALSRSLKYAFGM-UHFFFAOYSA-N 0.000 claims abstract description 34
- 239000004964 aerogel Substances 0.000 claims abstract description 30
- 239000000377 silicon dioxide Substances 0.000 claims abstract description 16
- 239000007788 liquid Substances 0.000 claims description 40
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 39
- 238000000034 method Methods 0.000 claims description 34
- 238000003756 stirring Methods 0.000 claims description 33
- 239000002002 slurry Substances 0.000 claims description 31
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 25
- 238000002156 mixing Methods 0.000 claims description 19
- 239000011863 silicon-based powder Substances 0.000 claims description 19
- 238000006243 chemical reaction Methods 0.000 claims description 18
- 230000007246 mechanism Effects 0.000 claims description 16
- 230000008569 process Effects 0.000 claims description 11
- 239000002245 particle Substances 0.000 claims description 10
- 239000000463 material Substances 0.000 claims description 8
- 239000000843 powder Substances 0.000 claims description 8
- 230000000903 blocking effect Effects 0.000 claims description 7
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 claims description 6
- 238000005516 engineering process Methods 0.000 claims description 6
- 238000002844 melting Methods 0.000 claims description 6
- 239000008367 deionised water Substances 0.000 claims description 5
- 229910021641 deionized water Inorganic materials 0.000 claims description 5
- 230000008018 melting Effects 0.000 claims description 5
- 239000012445 acidic reagent Substances 0.000 claims description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 4
- 238000002627 tracheal intubation Methods 0.000 claims description 4
- 239000000919 ceramic Substances 0.000 claims description 3
- 239000007789 gas Substances 0.000 claims description 3
- 238000012805 post-processing Methods 0.000 claims description 3
- 238000000563 Verneuil process Methods 0.000 claims description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 2
- 239000012159 carrier gas Substances 0.000 claims description 2
- 239000002737 fuel gas Substances 0.000 claims description 2
- 239000003345 natural gas Substances 0.000 claims description 2
- 239000001301 oxygen Substances 0.000 claims description 2
- 229910052760 oxygen Inorganic materials 0.000 claims description 2
- 239000007800 oxidant agent Substances 0.000 claims 2
- 230000001590 oxidative effect Effects 0.000 claims 2
- 230000004308 accommodation Effects 0.000 claims 1
- 235000012239 silicon dioxide Nutrition 0.000 abstract description 7
- 238000013461 design Methods 0.000 abstract description 6
- 229910052681 coesite Inorganic materials 0.000 abstract description 5
- 229910052906 cristobalite Inorganic materials 0.000 abstract description 5
- 229910052682 stishovite Inorganic materials 0.000 abstract description 5
- 229910052905 tridymite Inorganic materials 0.000 abstract description 5
- 238000005406 washing Methods 0.000 abstract description 4
- 239000002253 acid Substances 0.000 abstract description 3
- 125000004122 cyclic group Chemical group 0.000 abstract description 2
- 239000010410 layer Substances 0.000 description 18
- 239000000243 solution Substances 0.000 description 12
- 238000012986 modification Methods 0.000 description 5
- 230000004048 modification Effects 0.000 description 5
- 238000000576 coating method Methods 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 238000004806 packaging method and process Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 238000004064 recycling Methods 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 230000003321 amplification Effects 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000009776 industrial production Methods 0.000 description 2
- 239000008204 material by function Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 238000010298 pulverizing process Methods 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 239000011362 coarse particle Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- WYICGPHECJFCBA-UHFFFAOYSA-N dioxouranium(2+) Chemical compound O=[U+2]=O WYICGPHECJFCBA-UHFFFAOYSA-N 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000005489 elastic deformation Effects 0.000 description 1
- 239000013013 elastic material Substances 0.000 description 1
- 230000001804 emulsifying effect Effects 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 229910021389 graphene Inorganic materials 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 238000000593 microemulsion method Methods 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 150000001282 organosilanes Chemical class 0.000 description 1
- 238000012536 packaging technology Methods 0.000 description 1
- 238000000053 physical method Methods 0.000 description 1
- 235000019353 potassium silicate Nutrition 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000007873 sieving Methods 0.000 description 1
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 1
- 238000003980 solgel method Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B33/00—Silicon; Compounds thereof
- C01B33/113—Silicon oxides; Hydrates thereof
- C01B33/12—Silica; Hydrates thereof, e.g. lepidoic silicic acid
- C01B33/18—Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B60/00—Obtaining metals of atomic number 87 or higher, i.e. radioactive metals
- C22B60/02—Obtaining thorium, uranium, or other actinides
- C22B60/0204—Obtaining thorium, uranium, or other actinides obtaining uranium
- C22B60/0217—Obtaining thorium, uranium, or other actinides obtaining uranium by wet processes
- C22B60/0252—Obtaining thorium, uranium, or other actinides obtaining uranium by wet processes treatment or purification of solutions or of liquors or of slurries
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/30—Particle morphology extending in three dimensions
- C01P2004/32—Spheres
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/80—Compositional purity
Definitions
- the invention relates to the technical field of silicon micropowder processing and manufacturing, in particular to a preparation process and equipment for high-purity and low-radiation spherical silicon micropowder for 5G base stations.
- Spherical silicon powder is widely used in integrated circuit packaging due to its excellent fluidity and low thermal expansion coefficient.
- radioactive elements can be obtained.
- the high-purity and low-radioactive spherical silica powder with uranium (U) content (mass fraction) less than 1 ⁇ 10 -9 has become a research hotspot in recent years.
- U uranium
- One is to spheroidize and cool natural high-purity quartz or high-purity silicon micropowder by physical methods such as high-temperature melt-spraying, flame-melting and plasma methods to obtain products.
- This method has a simple process, but has high requirements on natural quartz, and is limited by mineral source conditions during industrial production, making it difficult to sustainably produce and prepare.
- the other is to use chemical methods such as microemulsion method, sol-gel method, etc., by emulsifying, concentrating, and granulating high-purity organosilane or water glass to obtain high-purity silicon micropowder, and then calcining and spheroidizing. process to obtain high-purity low-radioactive spherical silica powder.
- the products prepared by this method have high purity but complex process flow, and the samples often have shortcomings such as rough surface, low bulk density, insufficient fluidity and low filling degree, which affect their performance and make it impossible to realize industrial production.
- uranium usually exists in the state of tetravalent and hexavalent, and tetravalent uranium is easily oxidized to hexavalent, uranyl ion of hexavalent uranium It is very easy to dissolve and migrate and has a large ionic radius, which makes it easy to be adsorbed.
- researchers also used Fe 3 O 4 @SiO 2 composite nanoparticles, graphene oxide/silica composites (GOS) and SBA-15 rods. The adsorption and separation of uranium in aqueous solution was studied by isofunctional materials.
- mesoporous functional materials had high adsorption capacity for uranium in aqueous solution, and the adsorption saturation could be basically reached within 30 minutes.
- the purity, structure and recycling effect of these mesoporous functional materials have become a difficult problem to limit the purification of silicon micropowder and its industrial application.
- the present invention is proposed in view of the problems existing in the prior art.
- one of the objects of the present invention is to provide a preparation system of high-purity and low-radiation spherical silicon micropowder for 5G base stations, which includes: a mixing and stirring unit, which includes a accommodating mechanism and a stirring mechanism extending into the accommodating mechanism, so that the The lower end of the accommodating mechanism has a water outlet joint, and the upper end of the accommodating mechanism has a water inlet joint; a circulating power unit includes a water inlet end and a water outlet end; an adsorption and purification unit, the two ends of which are respectively a liquid inlet and a liquid outlet, and There are several axially transparent circulation channels in the interior, and the interior of each of the circulation channels is provided with an adsorption layer; and a conveying unit, which includes a first pipe connected between the water outlet joint and the water inlet end a second pipeline connected between the water outlet and the liquid inlet, and a third pipeline connected between the liquid outlet and the water inlet.
- the mixing and stirring unit adopts a stirring tank; and the circulating power unit adopts a circulating water pump.
- the adsorption and purification unit includes a detachably connected first connector and a second connector;
- the first connector includes a reaction section and a first end cover integrally formed at the outer end of the reaction section, the interior of the reaction section is uniformly distributed with several circulation channels along the circumferential direction, and a transparent liquid inlet is arranged at the center of the first end cover
- the second connecting body includes a connecting section connected with the reaction section and a second end cover integrally formed on the outer end of the connecting section, and a transparent liquid outlet is provided at the center of the second end cover .
- the center of the first connecting body is provided with an accommodating channel; the accommodating channel corresponds to the direction of the liquid outlet An opening is formed at one end of the liquid inlet, and a blocking plate is provided at one end corresponding to the direction of the liquid inlet, and the blocking plate is fixed to the edge of the liquid inlet through a connecting section, and the connecting section is distributed with liquid passage holes;
- An axially transparent cannula is inserted into the containing channel, the outer edge of the cannula is distributed with limit protruding strips corresponding to each circulation channel, and each limit protruding strip extends into the corresponding circulation channel;
- a C-shaped elastic plate is inserted into the channel, which is fitted with its inner side wall.
- the C-shaped elastic plate is a flat plate in its natural state; an adsorption layer is adhered to the inner surface of each C-shaped elastic plate; the liquid outlet An axially transparent redirecting tube is arranged on the inner edge of the inner end, when the first connecting body and the second connecting body are connected to each other, the redirecting tube extends into the inside of the cannula, and between the two Form a sandwich channel.
- an adsorption layer is provided on the outer sidewall of the redirecting tube and/or the inner sidewall of the intubation tube.
- the inner side wall of the second end cover is distributed with limited side plates;
- the outer edge of the limiting side plate is attached to the end of the intubation tube.
- the adsorption layer adopts SiO 2 aerogel.
- Another object of the present invention is to provide a method for preparing high-purity and low-radiation spherical silicon micropowder for 5G base stations, which comprises the following steps:
- S3 Use an acidic reagent to adjust the pH of the slurry so that its pH is less than or equal to 4.5, so that the hexavalent uranium element on the surface of the powder particles is dispersed in the slurry;
- the adsorption layer adopts SiO 2 aerogel ;
- the circulation channel of the purification unit dry the SiO 2 aerogel in an oven at 60° C. for 4 h, and then blow off the incompletely adhered SiO 2 aerogel in the circulation channel.
- the flame melting method is: throwing the ultrafine silicon micropowder after adsorption, purification and separation into a spheroidizing furnace , by controlling the temperature field, air flow field and material flow to spheroidize, and make the ultrafine silicon powder stay in the temperature field for 0.1 to 3s; the temperature field is controlled at 1800 to 2200 ° C; the air flow field is Oxygen is used as a carrier gas and a combustion-supporting agent, natural gas is a fuel gas, and the ratio of the flow rate of the gas to the combustion-supporting agent is 1.05; the speed of the material flow is controlled at 50-500kg/h; the flame melting method is pollution-free after the On the basis of processing technology, the pollution-free post-processing technology includes: adding zirconia ceramic protection to the surface of all parts that may come into contact with ultra-fine silicon powder in the subsequent
- the present invention effectively separates uranium in the silicon micropowder by means of acid washing, and the separated uranium can be efficiently adsorbed by the adsorption and purification unit, so that the total content of uranium element in the ultrafine silicon micropowder is reduced to 1 ⁇ 10 -9 or less.
- the modularly designed adsorption purification unit can be easily and quickly separated from the system through the SiO2 aerogel in it after the adsorption is completed, so as to recoat the SiO2 aerogel or replace the adsorption purification unit of different models; thus It can realize recycling and large-scale amplification.
- Figure 1 is a diagram of the preparation system of high-purity and low-radiation spherical silicon micropowder for 5G base stations.
- Figure 2 is a front view of the adsorption purification unit.
- FIG. 3 is a cross-sectional view taken along the line A in FIG. 2 .
- Fig. 4 is an internal structure diagram of an adsorption purification unit.
- FIG. 5 is a detailed view of the structure at B in FIG. 4 .
- references herein to "one embodiment” or “an embodiment” refers to a particular feature, structure, or characteristic that may be included in at least one implementation of the present invention.
- the appearances of "in one embodiment” in various places in this specification are not all referring to the same embodiment, nor are they separate or selectively mutually exclusive from other embodiments.
- the first embodiment of the present invention provides a method for preparing high-purity and low-radiation spherical silicon micropowder for 5G base stations.
- the uranium (U 6+ ) element in the ultrafine silicon micropowder is mixed Disperse in acidic slurry, and then use SiO 2 aerogel and adsorption purification unit to adsorb it to complete material selection and purification, so that the total content of uranium (U) element in ultrafine silicon powder is reduced to less than 1 ⁇ 10 -9 , and finally obtain high-purity and low-radioactive spherical silica powder by flame fusion method and pollution-free post-processing technology.
- the modularly designed adsorption and purification unit can be easily and quickly separated from the system through the SiO 2 aerogel in it after the adsorption is completed, so as to re-coat the SiO 2 aerogel or replace the adsorption and purification unit of different models; thus, it can be realized Recycling and large-scale amplification; and the obtained samples have the characteristics of high sphericity and controllable particle size distribution, and at the same time, the application performance such as fluidity is good.
- Step 1 Pretreatment of uranium (U)-containing silicon micropowder: Ultrafine pulverization and selection of ordinary silicon micropowder using non-polluting pulverization, grading and sieving technology to expose the uranium (U) element originally inside the particle Obtain ultra-fine silicon powder on the surface;
- Step 2 Mix and stir the ultrafine silicon powder and deionized water with a mass ratio of 2:1 to make a slurry;
- Step 3 use an acid reagent to adjust the pH of the slurry to make the pH ⁇ 4.5, so that the hexavalent uranium (U 6+ ) element on the surface of the powder particles is fully dispersed in the slurry;
- Step 4 Take an adsorption and purification unit with multiple circulation channels inside and transparent at both ends (capable of circulating and transporting liquid), and put the bulk SiO 2 aerogel (with a specific surface area of 400-600 m 2 /g) Adhere uniformly in the flow channel of the adsorption and purification unit; then dry in a 60°C oven for 4h to dry the SiO 2 aerogel, and then blow off the incompletely adhered SiO 2 aerogel in the flow channel; So far, the preparation of the adsorption purification unit is completed;
- Step 5 Use a circulating water pump to extract the slurry obtained in “Step 3" and pass it through the circulation channel of the adsorption and purification unit prepared in “Step 4" to adsorb and separate the uranium (U) element in the slurry. , cyclic adsorption for 2h; then the ultrafine silicon powder in the dry slurry was separated and its uranium (U) element content was detected;
- Step 6 Add zirconia ceramic protection to the surface of all parts that the ultra-fine silicon powder may come into contact with in the subsequent process to ensure that uranium (U) element will not be introduced in the subsequent process to cause secondary pollution;
- Step 7 Put the ultra-fine silicon powder into the spheroidizing furnace. ) and the control of the material flow (50-500kg/h) for spheroidization, and the ultrafine silicon powder stays in the temperature field for 0.1-3s under a certain air pressure.
- Step 8 Carry out particle size classification and compounding of the spheroidized product, and design the corresponding particle size distribution according to different packaging requirements.
- the uranium in the silicon micropowder can be effectively separated by acid washing, and the separated uranium can be efficiently adsorbed by the SiO2 aerogel in the adsorption purification unit, so that the uranium (U ) content (mass fraction) is reduced from 9.7 ⁇ 10 -9 to 6 ⁇ 10 -10 , and high-purity and low-radioactive spherical silica powder with uranium (U) content ⁇ 1 ⁇ 10 -9 can be obtained by spheroidization and particle size distribution design, To a certain extent, the excessive dependence on high-purity raw materials for the production of high-purity and low-radioactive spherical silica micropowder is reduced.
- the silicon micropowder prepared by the present invention has the characteristics of high sphericity, narrow and controllable particle size distribution, etc., and exhibits ideal effects such as good fluidity, low viscosity, and low content of coarse particles (long flash) during application, which satisfies large-scale integration.
- Circuit (LSI) packaging requires high-purity and low-radioactive spherical silicon micropowder fillers, and this process technology can be mass-produced and can be widely used in 5G base stations.
- this embodiment provides a preparation system for high-purity and low-radiation spherical silicon micropowder for 5G base stations, that is, the preparation method in Embodiment 1 can be completed by the preparation system in this embodiment.
- the preparation system for high-purity and low-radiation spherical silicon micropowder for 5G base stations includes a mixing and stirring unit 100 , a circulating power unit 200 , an adsorption and purification unit 300 and a conveying unit 400 .
- the mixing and stirring unit 100 is used for mixing and stirring the ultra-fine silicon powder and deionized water to form a slurry, and adjusting the pH therein.
- the mixing and stirring unit 100 includes a accommodating mechanism 101 capable of accommodating slurry and a stirring mechanism 102 extending to the interior of the accommodating mechanism 101 .
- the mixing and stirring unit 100 adopts the existing stirring tank/reaction kettle;
- the accommodating mechanism 101 is the tank body of the stirring tank/reaction kettle;
- the stirring mechanism 102 is the stirring paddle of the stirring tank/reaction kettle and its driving mechanism;
- the water joint 101b is located on the top of the stirring tank/reactor and communicates with the inside of the tank;
- the water outlet 101a is located at the bottom of the stirring tank/reactor and communicates with the inside of the tank.
- the circulating power unit 200 is used to extract the slurry from the mixing and stirring unit 100, continuously transport it to the adsorption and purification unit 300, and finally discharge it back to the mixing and stirring unit 100 to realize the circulating adsorption of the slurry.
- the circulating power unit 200 includes a water inlet end 201 and a water outlet end 202 .
- the circulating power unit 200 adopts a circulating water pump.
- the main body of the adsorption and purification unit 300 is a hollow cylinder structure, and its two ends are respectively a liquid inlet K-1 and a liquid outlet K-2, and there are several axially transparent circulation channels T-1 inside, and each circulation channel T
- An adsorption layer 301 is provided inside the -1, and the adsorption layer 301 is used to adsorb the uranium (U) element in the slurry, which is preferably SiO 2 aerogel, and the SiO 2 aerogel is preferably adhered to each flow channel T- 1 on the inner side wall.
- the conveying unit 400 is a circulating pipeline connected between the mixing and stirring unit 100, the circulating power unit 200 and the adsorption and purification unit 300.
- the delivery unit 400 includes a first pipeline 401 connected between the water outlet joint 101a and the water inlet end 201, a second pipeline 402 connected between the water outlet end 202 and the liquid inlet K-1, and a second pipeline 402 connected between the liquid outlet The third pipeline 403 between K-2 and the water inlet joint 101b.
- Step 1 Mix the ultrafine silicon powder and deionized water with a mass ratio of 2:1 into the mixing and stirring unit 100, and stir the mixing and stirring unit 100 to make a slurry;
- Step 2 Use an acidic reagent to adjust the pH of the slurry in the mixing and stirring unit 100 to make the pH ⁇ 4.5, so that the hexavalent uranium (U 6+ ) element on the surface of the powder particles is fully dispersed in the slurry;
- Step 3 Take the adsorption and purification unit 300, and evenly adhere the bulk SiO 2 aerogel (specific surface area of 400-600 m 2 /g) in the flow channel (T-1) of the adsorption and purification unit; Dry in an oven at 60°C for 4 hours to dry the SiO 2 aerogel, and then blow off the incompletely adhered SiO 2 aerogel in the flow channel (T-1); thus, the preparation for the adsorption and purification unit is completed;
- Step 4 Connect the modular adsorption and purification unit 300 between the water outlet 202 of the circulating power unit 200 and the water inlet joint 101b of the mixing and stirring unit 100 through the conveying unit 400, and at the same time connect the water inlet 201 of the circulating power unit 200 with The water outlet joint 101a of the mixing and stirring unit 100 is connected.
- Step 5 Use a circulating water pump to extract the slurry obtained in “Step 2", and make it pass through the flow channel (T-1) of the adsorption and purification unit prepared in “Step 3" to remove the uranium (U ) elements are adsorbed and separated, and the adsorption cycle is 2h;
- the adsorption and purification unit 300 is a detachable modular structure, when the SiO 2 aerogel coating needs to be replaced, the desorption system can be easily taken out to re-coat the SiO 2 aerogel or replace different types of adsorption and purification unit.
- This embodiment is different from the previous embodiment in that the adsorption and purification unit in this embodiment adopts a modular adsorption and purification unit 300 which is more convenient for adhering SiO 2 aerogel.
- the adsorption and purification unit 300 includes a first connecting body 302 and a second connecting body 303 that are detachably connected.
- the first connecting body 302 includes a columnar reaction section 302a and a first end cover 302b integrally formed at the outer end of the reaction section 302a; the reaction section 302a is uniformly distributed with a number of axially transparent circulation channels T-1 along the circumference; the first end A transparent liquid inlet K-1 is provided at the center of the cover 302b, so that the liquid inlet K-1 communicates with one end of each circulation channel T-1.
- the second connecting body 303 includes a connecting section 303a that is threadedly connected to the reaction section 302a and a second end cover 303b integrally formed on the outer end of the connecting section 303a.
- the center of the second end cover 303b is provided with a transparent liquid outlet K- 2. Make the liquid outlet K-2 communicate with the other end of each flow channel T-1.
- the connecting section 303a is an annular structure, the inner side wall is provided with an inner thread, and the outer side wall of the end of the reaction section 302a is provided with a corresponding outer thread, and the connection section 303a and the reaction section 302a are detachably connected by the cooperation of the threads .
- the center of the first connecting body 302 is provided with an accommodating channel 302c; one end of the accommodating channel 302c corresponding to the direction of the liquid outlet K-2 forms an opening, and one end corresponding to the direction of the liquid inlet K-1 is provided with a blocking plate. 302d, and the blocking plate 302d is fixed to the edge of the liquid inlet K-1 through the connecting section 302e, and the connecting section 302e is distributed with liquid passage holes 302e-1, so that the inner and outer spaces of the connecting section 302e are connected.
- An axially transparent cannula 302f is inserted into the accommodating channel 302c, the outer edge of the cannula 302f is distributed with limit protruding strips 302f-1 corresponding to each circulation channel T-1, and each limit protruding strip 302f-1 extends. into the corresponding circulation channel T-1; and the edge of each circulation channel T-1 also has a notch corresponding to the limiting protruding strip 302f-1, so that the limiting protruding strip 302f-1 can extend from the notch into the circulation channel T-1.
- a C-shaped elastic plate 302g is inserted into each circulation channel T-1 and is fitted with its inner side wall.
- the C-shaped elastic plate 302g is a flat plate in its natural state and can undergo elastic deformation, and is made of elastic material;
- the adsorption layer 301 is adhered to the inner surface of the elastic plate 302g.
- the C-shaped elastic plate 302g in the circulation channel T-1 can be directly pulled out, and the C-shaped elastic plate 302g can be restored to the flat plate In the natural state, it is convenient to coat the adsorption layer 301 on its surface. After the adsorption layer 301 is coated, it can be rolled into a C shape and reinserted into the flow channel T-1.
- the C-type elastic plate 302g of the present invention has the following functions:
- the carrier of the adsorption layer 301 it is convenient to quickly set/replace the adsorption layer 301 in the flow channel T-1, and avoid the technical difficulty of directly coating the adsorption layer 301 on the inner side wall of the flow channel T-1;
- the C-shaped elastic plate 302g has elastic force, and when it is rolled into a C-shaped and inserted into the circulation channel T-1, it can be attached to the inner side wall of the circulation channel T-1 due to the tension; and when the C-shaped elastic plate 302g is inserted After being pulled out, it can automatically return to a flat shape, which is convenient for the coating process and kills two birds with one stone.
- the C-shaped notch formed by the C-shaped elastic plate 302g can just be caught in the limit protrusion extending into the circulation channel T-1.
- the limiting protruding strip 302f-1 is defined in the C-shaped notch, which can prevent the circumferential rotation of the C-shaped elastic plate 302g in the circulation channel T-1.
- the inner edge of the liquid outlet K-2 is provided with an axially transparent redirecting tube 303c.
- the redirecting tube 303c extends into the interior of the intubation tube 302f, and A sandwich channel T-2 is formed between the two.
- the blocking plate 302d of the present invention has two functions:
- the liquid inlet K-1 the liquid passage hole 302e-1—each flow channel T-1— —Interlayer channel T-21—Inside the redirecting pipe 303c—Liquid outlet K-2; prolongs the circulation path of the slurry inside the adsorption and purification unit 300, increases the contact time and opportunity between the slurry and the adsorption layer 301, This makes the adsorption purification process more thorough.
- an adsorption layer 301 is provided on the outer side wall of the redirecting tube 303c and/or the inner side wall of the cannula 302f.
- the above-mentioned adsorption layer 301 is preferably made of SiO 2 aerogel.
- a limiting side plate 303b-1 is distributed on the inner side wall of the second end cover 303b; when the first connecting body 302 and the second connecting body 303 are connected to each other, the outer edge of the limiting side plate 303b-1 is attached to the socket.
- the end of the tube 302f can also be attached to the end of each C-shaped elastic plate 302g, so as to play an axial limit and prevent axial separation.
- the coating process of SiO 2 aerogel can be relatively It is easy and fast to unfold, which improves the efficiency of the overall processing and preparation.
- any process or method steps may be varied or re-sequenced according to alternative embodiments.
- any "mean-plus-function" clause is intended to cover the structures described herein as performing the recited function and not only structural equivalents but also equivalent structures.
- Other substitutions, modifications, changes and omissions may be made in the design, operation and arrangement of the exemplary embodiments without departing from the scope of the present invention. Therefore, the present invention is not limited to a particular embodiment, but extends to various modifications still falling within the scope of the appended claims.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Environmental & Geological Engineering (AREA)
- Inorganic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Silicon Compounds (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Abstract
本发明公开了一种5G基站用高纯低辐射球形硅微粉的制备工艺及设备,其通过酸洗手段有效地将硅微粉中的铀分离出来,且分离后的铀能够被吸附提纯单元高效吸附,使超细硅微粉中铀(U)元素总含量降低至1×10 -9以下。此外,模块化设计的吸附提纯单元通过其内的SiO 2气凝胶在吸附完成后可以方便快速地从系统中分离,以重新涂敷SiO 2气凝胶或者更换不同型号的吸附提纯单元;因而能够实现循环使用和规模化放大。
Description
本发明涉及硅微粉加工制造技术领域,特别是一种5G基站用高纯低辐射球形硅微粉的制备工艺及设备。
球形硅微粉凭借其优异的流动性和低热膨胀系数等优点被广泛应用于集成电路封装中,随着大规模和超大规模集成电路封装技术的发展,为了避免半导体器件中产生软误差,获得放射性元素尤其是铀(U)含量(质量分数)小于1×10
-9的高纯低放射性球形硅微粉成为近年来研究的热点。目前生产高纯低放射性球形硅微粉的方法主要有两种。一种是通过物理法如高温熔融喷射法、火焰熔融法和等离子体法对天然高纯石英或高纯硅微粉进行球形化并冷却后获得产品。此方法流程简单,但是对天然石英要求较高,工业化生产时会受矿源条件限制,难以可持续生产制备。另一种是采用化学法如微乳液法、溶胶-凝胶法等,通过对高纯有机硅烷或水玻璃进行乳化、浓缩、造粒,获得高纯的硅微粉后,再进行焙烧和球形化过程以获得高纯低放射性球形硅微粉。此方法制备的产品纯度高但工艺流程复杂,且样品往往存在表面不光滑、松装密度低、流动性不足和填充度低等缺点而影响其使用性能,致使无法实现工业化生产。
研究表明:铀元素通常以四价和六价的状态存在,而四价铀元素又易被氧化成六价,六价铀的铀酰离子
极易溶解和迁移且离子半径大,进而易被吸附。为了吸附去除铀元素,目前研究者除了使用无机酸水洗硅微粉的方法外,也对Fe
3O
4@SiO
2复合纳米粒子、氧化石墨烯/二氧化硅复合材料(GOS)以及SBA-15棒等功能材料对水溶液中铀元素的吸附分离进行了研究,结果表明,介孔功能材料对水溶液中的铀元素具有较高的吸附能力且30min内基本可达到吸附饱和。然而,这些介孔功能材料自身的纯度、结构和循环使用效果等,又成为了限制硅微粉提纯进而限制其工业化应用的难题。
发明内容
本部分的目的在于概述本发明的实施例的一些方面以及简要介绍一些较佳实施例。在本部分以及本申请的说明书摘要和发明名称中可能会做些简化或省略以避免使本部分、说明书摘要和发明名称的目的模糊,而这种简化或省略不能用于限制本发明的范围。
鉴于现有技术中存在的问题,提出了本发明。
因此,本发明其中的一个目的是提供一种5G基站用高纯低辐射球形硅微粉的制备系统,其包括:混合搅拌单元,其包括容纳机构和延伸至所述容纳机构内部的搅拌机构,所述容纳机构的下端具有出水接头,所述容纳机构的上端进水接头;循环动力单元,其包括进水端和出水端;吸附提纯单元,其两端分别为进液口和出液口,且其内部具有若干轴向通透的流通通道,各个所述流通通道的内部均设置有吸附层;以及,输送单元,其包括连接在所述出水接头与所述进水端之间的第一管路、连接在所述出水端与所述进液口之间的第二管路,以及连接在所述出液口与所述进水接头之间的第三管路。
作为本发明所述5G基站用高纯低辐射球形硅微粉的制备系统的一种优选方案,其中:所述混合搅拌单元采用搅拌罐;所述循环动力单元采用循环水泵。
作为本发明所述5G基站用高纯低辐射球形硅微粉的制备系统的一种优选方案,其中:所述吸附提纯单元包括可拆卸连接的第一连接体和第二连接体;所述第一连接体包括反应段以及一体成型于所述反应段外端的第一端盖,所述反应段的内部沿周向均布有若干流通通道,所述第一端盖的中心处设置有通透的进液口;所述第二连接体包括与所述反应段连接的连接段以及一体成型于所述连接段外端的第二端盖,所述第二端盖的中心处设置有通透的出液口。
作为本发明所述5G基站用高纯低辐射球形硅微粉的制备系统的一种优选方案,其中:所述第一连接体的中心处设置有容纳通道;所述容纳通道对应于出液口方向的一端形成开口,对应于进液口方向的一端设置有封堵板,且所述封堵板通过衔接段固定于所述进液口的边缘,所述衔接段上分布有过液孔;所述容纳通道内插入有轴向通透的插管,所述插管的外缘分布有对应于各个流通通道的限位凸条,且各个限位凸条伸入对应的流通通道内;各个流通通道内插入有一个与其内侧壁贴合的C型弹力板,所述C型弹力板的自然状态下为平面板;各个C型弹力板的内侧面上粘附有吸附层;所述出液口的内端边缘设置有轴向通透的改向管,当所述第一连接体和第二连接体互相连接时,所述改向管伸入所述插管内部,并在两者之间形成夹层通道。
作为本发明所述5G基站用高纯低辐射球形硅微粉的制备系统的一种优选方案,其中:所述改向管的外侧壁和/或插管的内侧壁上设置有吸附层。
作为本发明所述5G基站用高纯低辐射球形硅微粉的制备系统的一种优选 方案,其中:所述第二端盖的内侧壁分布有限位侧板;当所述第一连接体和第二连接体互相连接时,所述限位侧板的外缘贴合于所述插管的端头。
作为本发明所述5G基站用高纯低辐射球形硅微粉的制备系统的一种优选方案,其中:所述吸附层采用SiO
2气凝胶。
本发明的另一个目的是提供一种5G基站用高纯低辐射球形硅微粉的制备方法,其包括如下步骤:
S1:对普通硅微粉进行超细粉碎和精选,得到超细硅微粉;
S2:将所述超细硅微粉与去离子水以质量比为2:1混合搅拌制成浆料;
S3:使用酸性试剂调节浆料的酸碱度,使其pH≤4.5,使得粉体颗粒表面六价铀元素分散在浆料中;
S4:将吸附层均匀地设置于吸附提纯单元的流通通道内,并将其烘干,使其干燥;
S5:抽取所述浆料并使其通过所述吸附提纯单元的流通通道,对粉浆中的铀元素进行吸附提纯,然后分离干燥浆料中的超细硅微粉;
S6:通过火焰熔融法获得高纯低辐射球形硅微粉。
作为本发明所述5G基站用高纯低辐射球形硅微粉的制备方法的一种优选方案,其中:所述吸附层采用SiO
2气凝胶;将SiO
2气凝胶均匀地设置于所述吸附提纯单元的流通通道内,在60℃烘箱中烘干4h,使所述SiO
2气凝胶干燥,然后吹净流通通道中未完全粘附的SiO
2气凝胶。
作为本发明所述5G基站用高纯低辐射球形硅微粉的制备方法的一种优选方案,其中:所述火焰熔融法为:将经过吸附提纯并分离出的超细硅微粉投入球化炉中,通过对温度场、气流场和物料流的控制进行球形化处理,并使得使超细硅微粉在温度场内停留0.1~3s;所述温度场控制在1800~2200℃;所述气流场以氧气作为载气及助燃剂,天然气为燃气,且所述燃气与所述助燃剂流量的比值为1.05;所述物料流的速度控制在50~500kg/h;所述火焰熔融法在无污染后加工技术的基础上进行,所述无污染后加工技术包括:对超细硅微粉在后道工序中所有可能接触的零部件表面增加氧化锆陶瓷防护,以确保后道工序中不会引入铀元素造成二次污染。
本发明的有益效果:本发明通过酸洗手段有效地将硅微粉中的铀分离出来,且分离后的铀能够被吸附提纯单元高效吸附,使超细硅微粉中铀元素总含 量降低至1×10
-9以下。此外,模块化设计的吸附提纯单元通过其内的SiO
2气凝胶在吸附完成后可以方便快速地从系统中分离,以重新涂敷SiO
2气凝胶或者更换不同型号的吸附提纯单元;因而能够实现循环使用和规模化放大。
为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其它的附图。其中:
图1为5G基站用高纯低辐射球形硅微粉的制备系统图。
图2为吸附提纯单元的正视图。
图3为图2中的A向剖面图。
图4为吸附提纯单元的内部构造图。
图5为图4中的B处结构详图。
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合说明书附图对本发明的具体实施方式做详细的说明。
在下面的描述中阐述了很多具体细节以便于充分理解本发明,但是本发明还可以采用其他不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下做类似推广,因此本发明不受下面公开的具体实施例的限制。
其次,此处所称的“一个实施例”或“实施例”是指可包含于本发明至少一个实现方式中的特定特征、结构或特性。在本说明书中不同地方出现的“在一个实施例中”并非均指同一个实施例,也不是单独的或选择性的与其他实施例互相排斥的实施例。
实施例1
参照图1,为本发明第一个实施例,该实施例提供了一种5G基站用高纯低辐射球形硅微粉的制备方法,其首先将超细硅微粉中的铀(U
6+)元素分散在酸性浆料中,然后使用SiO
2气凝胶和吸附提纯单元对其进行吸附完成材料精选与提纯,使超细硅微粉中铀(U)元素总含量降低至1×10
-9以下,并通过火焰熔融法和无污染后加工技术最终获得高纯低放射性球形硅微粉。
模块化设计的吸附提纯单元通过其内的SiO
2气凝胶在吸附完成后可以方便快速地从系统中分离,以重新涂敷SiO
2气凝胶或者更换不同型号的吸附提纯单元;因而能够实现循环使用和规模化放大;且获得的样品具有高球形度和粒度分布可控等特点,同时流动性等应用性能表现良好。
所述5G基站用高纯低辐射球形硅微粉的制备方法的具体步骤如下:
步骤一:对含铀(U)的硅微粉进行预处理:采用无污染粉碎、分级和筛分技术对普通硅微粉进行超细粉碎和精选,使原本在颗粒内部的铀(U)元素暴露于表面获得超细硅微粉;
步骤二:将超细硅微粉与去离子水以质量比为2:1混合搅拌制成浆料;
步骤三:使用酸性试剂调节浆料的酸碱度,使其pH≤4.5,使得粉体颗粒表面六价铀(U
6+)元素充分分散在浆料中;
步骤四:取用一种内部具有多个流通通道,且两端通透(能够流通传输液体)的吸附提纯单元,并将块状SiO
2气凝胶(比表面积为400~600m
2/g)均匀地粘附于吸附提纯单元的流通通道内;随后在60℃烘箱中烘干4h,使所述SiO
2气凝胶干燥,然后吹净流通通道中未完全粘附的SiO
2气凝胶;至此完成吸附提纯单元的制作准备;
步骤五:使用循环水泵抽取“步骤三”中获得的浆料,并使其通过“步骤四”中所制备好的吸附提纯单元的流通通道,对粉浆中的铀(U)元素进行吸附分离,循环吸附2h;然后分离干燥浆料中的超细硅微粉并对其铀(U)元素含量进行检测;
步骤六:对超细硅微粉在后道工序中所有可能接触的零部件表面增加氧化锆陶瓷防护,确保后道工序中不会引入铀(U)元素造成二次污染;
步骤七:将超细硅微粉投入球化炉中,通过对温度场(1800~2200℃)、气流场(以氧气作为载气及助燃剂,天然气为燃气,燃气与助燃剂流量的比值为1.05)和物料流(50~500kg/h)的控制进行球形化处理,在一定气压下使超细硅微粉在温度场内停留0.1~3s。
步骤八:将球形化后的产品进行粒度分级与复配,根据不同的封装要求设计相应的粒度分布。
通过上述步骤,硅微粉中的铀可以通过酸洗手段有效地被分离出来,且分离后的铀能够被吸附提纯单元内的SiO
2气凝胶高效吸附,使得超细硅微粉中的 铀(U)含量(质量分数)从9.7×10
-9降低至6×10
-10,并能够通过球形化和粒度分布设计获得铀(U)含量<1×10
-9的高纯低放射性球形硅微粉,一定程度上降低了生产高纯低放射性球形硅微粉对高纯原料的过分依赖。
此外,本发明制备的硅微粉具有高球形度、粒度分布窄且可控等特点,应用时表现出流动性好、黏度低、粗粒含量少(溢料长)等理想效果,满足大规模集成电路(LSI)封装对高纯低放射性球形硅微粉填料的要求,且该工艺技术可进行后续批量生产,能够广泛应用于5G基站。
实施例2
基于实施例1中的制备方法,本实施例提供一种5G基站用高纯低辐射球形硅微粉的制备系统,即:实施例1中的制备方法能够通过本实施例中的制备系统实现完成。
如图1,所述5G基站用高纯低辐射球形硅微粉的制备系统包括混合搅拌单元100、循环动力单元200、吸附提纯单元300以及输送单元400。
混合搅拌单元100用于将超细硅微粉与去离子水混合搅拌制成浆料,并在其中调试pH。混合搅拌单元100包括能够容纳浆料的容纳机构101以及延伸至容纳机构101内部的搅拌机构102,容纳机构101的下端具有出水接头101a,容纳机构101的上端进水接头101b。
优选的,混合搅拌单元100采用现有的搅拌罐/反应釜;容纳机构101即为搅拌罐/反应釜的罐体;搅拌机构102即为搅拌罐/反应釜的搅拌桨及其驱动机构;进水接头101b位于搅拌罐/反应釜的盖顶,并与罐体内部连通;出水接头101a位于搅拌罐/反应釜的底部,并与罐体内部连通。
循环动力单元200用于从混合搅拌单元100中抽取浆料,并将其不断输送至吸附提纯单元300,最终再排回至混合搅拌单元100,实现对浆料的循环吸附。循环动力单元200包括进水端201和出水端202。
优选的,循环动力单元200采用循环水泵。
吸附提纯单元300主体为空心柱体结构,其两端分别为进液口K-1和出液口K-2,且其内部具有若干轴向通透的流通通道T-1,各个流通通道T-1的内部均设置有吸附层301,吸附层301用于吸附浆料中的铀(U)元素,其优选SiO
2气凝胶,且SiO
2气凝胶优选粘附在各个流通通道T-1的内侧壁上。
输送单元400为连接在混合搅拌单元100、循环动力单元200以及吸附提纯单 元300之间的循环管道。
输送单元400包括连接在出水接头101a与进水端201之间的第一管路401、连接在出水端202与进液口K-1之间的第二管路402,以及连接在出液口K-2与进水接头101b之间的第三管路403。
上述系统的使用方式为:
步骤一:将超细硅微粉与去离子水以质量比为2:1混合投入混合搅拌单元100内部,并通过混合搅拌单元100搅拌制成浆料;
步骤二:使用酸性试剂调节混合搅拌单元100中的浆料的酸碱度,使其pH≤4.5,使得粉体颗粒表面六价铀(U
6+)元素充分分散在浆料中;
步骤三:取用吸附提纯单元300,并将块状SiO
2气凝胶(比表面积为400~600m
2/g)均匀地粘附于吸附提纯单元的流通通道(T-1)内;随后在60℃烘箱中烘干4h,使所述SiO
2气凝胶干燥,然后吹净流通通道(T-1)中未完全粘附的SiO
2气凝胶;至此完成吸附提纯单元的制作准备;
步骤四:通过输送单元400将模块化的吸附提纯单元300连接在循环动力单元200的出水端202与混合搅拌单元100的进水接头101b之间,同时将循环动力单元200的进水端201与混合搅拌单元100的出水接头101a连接。
步骤五:使用循环水泵抽取“步骤二”中获得的浆料,并使其通过“步骤三”中所制备好的吸附提纯单元的流通通道(T-1),对粉浆中的铀(U)元素进行吸附分离,循环吸附2h;
由于吸附提纯单元300为可拆除的模块化结构,因此当需要更换SiO
2气凝胶涂层时,可以很方便地取出脱离系统,以重新涂敷SiO
2气凝胶或者更换不同型号的吸附提纯单元。
实施例3
本实施例不同于上一个实施例之处在于:本实施例中的吸附提纯单元采用一种更加便于黏附SiO
2气凝胶的模块化的吸附提纯单元300。
如图2~5所示,吸附提纯单元300包括可拆卸连接的第一连接体302和第二连接体303。
第一连接体302包括柱状的反应段302a以及一体成型于反应段302a外端的第一端盖302b;反应段302a的内部沿周向均布有若干轴向通透的流通通道T-1;第一端盖302b的中心处设置有通透的进液口K-1,使得进液口K-1与各 个流通通道T-1的一端连通。
第二连接体303包括与反应段302a进行螺纹连接的连接段303a以及一体成型于连接段303a外端的第二端盖303b,第二端盖303b的中心处设置有通透的出液口K-2,使得出液口K-2与各个流通通道T-1的另一端连通。
连接段303a为环形结构,其内侧壁上设置有内螺纹,而反应段302a端部的外侧壁上设置有相应的外螺纹,连接段303a与反应段302a之间通过螺纹的配合进行可拆卸连接。
进一步的,第一连接体302的中心处设置有容纳通道302c;容纳通道302c对应于出液口K-2方向的一端形成开口,对应于进液口K-1方向的一端设置有封堵板302d,且封堵板302d通过衔接段302e固定于进液口K-1的边缘,衔接段302e上分布有过液孔302e-1,使得衔接段302e的内外空间形成连通。
容纳通道302c内插入有轴向通透的插管302f,插管302f的外缘分布有对应于各个流通通道T-1的限位凸条302f-1,且各个限位凸条302f-1伸入对应的流通通道T-1内;而各个流通通道T-1的边缘也具有对应于限位凸条302f-1的缺口,便于限位凸条302f-1从缺口伸入流通通道T-1内。
各个流通通道T-1内插入有一个与其内侧壁贴合的C型弹力板302g,C型弹力板302g的自然状态下为平面板,且能够发生弹性形变,采用弹性材质制成;各个C型弹力板302g的内侧面上粘附有吸附层301。
因此,本法在需要更换或重新涂敷流通通道T-1内的吸附层301时,可以直接将流通通道T-1内的C型弹力板302g拔出,C型弹力板302g即可恢复平板的自然状态,如此便于在其表面涂敷吸附层301,当吸附层301涂敷完成之后,可以将其卷成C型,并重新插入流通通道T-1内。
本发明的C型弹力板302g具有如下作用:
一、作为吸附层301的载体,能够便于在流通通道T-1内快速设置/更换吸附层301,避免了直接在流通通道T-1内侧壁上涂敷吸附层301的工艺难题;
二、C型弹力板302g具有弹力,当卷成C型插入流通通道T-1内时,能够由于张紧力而贴合在流通通道T-1的内侧壁上;且当C型弹力板302g拔出后又能自动回复平板状,便于涂敷工艺,一举两得。
需要注意的是:卷成C型的C型弹力板302g在插入流通通道T-1后,C型弹力板302g所形成的C型缺口能够正好卡在伸入流通通道T-1的限位凸条 302f-1上;而限位凸条302f-1限定在C型缺口内,能够防止C型弹力板302g在流通通道T-1内的周向旋转活动。
出液口K-2的内端边缘设置有轴向通透的改向管303c,当第一连接体302和第二连接体303互相连接时,改向管303c伸入插管302f内部,并在两者之间形成夹层通道T-2。
本发明的封堵板302d具有两个作用:
一、用于对插入容纳通道302c的插管302f进行限位;
二、封闭容纳通道302c的一端,限制浆料流入吸附提纯单元300内的路径,使其依次流经:进液口K-1——过液孔302e-1——各个流通通道T-1——夹层通道T-21——改向管303c内部——出液口K-2;延长了浆料在吸附提纯单元300内部的流通路径,增加了浆料与吸附层301的接触时间和机会,使得吸附提纯的过程更加彻底。
进一步的,改向管303c的外侧壁和/或插管302f的内侧壁上设置有吸附层301。上述的吸附层301优选采用SiO
2气凝胶。
进一步的,第二端盖303b的内侧壁分布有限位侧板303b-1;当第一连接体302和第二连接体303互相连接时,限位侧板303b-1的外缘贴合于插管302f的端头,也可以贴合于各个C型弹力板302g的端头,起到轴向限位的作用,防止轴向脱离。
综上所述,由于第一连接体302、第二连接体303以及各个流通通道T-1内的C型弹力板302g均为可拆卸的结构,因此SiO
2气凝胶的涂敷工艺能够较为容易、快速地展开,提高了整体加工制备的效率。
重要的是,应注意,在多个不同示例性实施方案中示出的本申请的构造和布置仅是例示性的。尽管在此公开内容中仅详细描述了几个实施方案,但参阅此公开内容的人员应容易理解,在实质上不偏离该申请中所描述的主题的新颖教导和优点的前提下,许多改型是可能的(例如,各种元件的尺寸、尺度、结构、形状和比例、以及参数值(例如,温度、压力等)、安装布置、材料的使用、颜色、定向的变化等)。例如,示出为整体成形的元件可以由多个部分或元件构成,元件的位置可被倒置或以其它方式改变,并且分立元件的性质或数目或位置可被更改或改变。因此,所有这样的改型旨在被包含在本发明的范围内。可以根据替代的实施方案改变或重新排序任何过程或方法步骤的次序或顺 序。在权利要求中,任何“装置加功能”的条款都旨在覆盖在本文中所描述的执行所述功能的结构,且不仅是结构等同而且还是等同结构。在不背离本发明的范围的前提下,可以在示例性实施方案的设计、运行状况和布置中做出其他替换、改型、改变和省略。因此,本发明不限制于特定的实施方案,而是扩展至仍落在所附的权利要求书的范围内的多种改型。
此外,为了提供示例性实施方案的简练描述,可以不描述实际实施方案的所有特征(即,与当前考虑的执行本发明的最佳模式不相关的那些特征,或于实现本发明不相关的那些特征)。
应理解的是,在任何实际实施方式的开发过程中,如在任何工程或设计项目中,可做出大量的具体实施方式决定。这样的开发努力可能是复杂的且耗时的,但对于那些得益于此公开内容的普通技术人员来说,不需要过多实验,所述开发努力将是一个设计、制造和生产的常规工作。
应说明的是,以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的精神和范围,其均应涵盖在本发明的权利要求范围当中。
Claims (10)
- 一种5G基站用高纯低辐射球形硅微粉的制备系统,其特征在于:包括,混合搅拌单元(100),其包括容纳机构(101)和延伸至所述容纳机构(101)内部的搅拌机构(102),所述容纳机构(101)的下端具有出水接头(101a),所述容纳机构(101)的上端进水接头(101b);循环动力单元(200),其包括进水端(201)和出水端(202);吸附提纯单元(300),其两端分别为进液口(K-1)和出液口(K-2),且其内部具有若干轴向通透的流通通道(T-1),各个所述流通通道(T-1)的内部均设置有吸附层(301);以及,输送单元(400),其包括连接在所述出水接头(101a)与所述进水端(201)之间的第一管路(401)、连接在所述出水端(202)与所述进液口(K-1)之间的第二管路(402),以及连接在所述出液口(K-2)与所述进水接头(101b)之间的第三管路(403)。
- 如权利要求1所述的5G基站用高纯低辐射球形硅微粉的制备系统,其特征在于:所述混合搅拌单元(100)采用搅拌罐;所述循环动力单元(200)采用循环水泵。
- 如权利要求1或2所述的5G基站用高纯低辐射球形硅微粉的制备系统,其特征在于:所述吸附提纯单元(300)包括可拆卸连接的第一连接体(302)和第二连接体(303);所述第一连接体(302)包括反应段(302a)以及一体成型于所述反应段(302a)外端的第一端盖(302b),所述反应段(302a)的内部沿周向均布有若干流通通道(T-1),所述第一端盖(302b)的中心处设置有通透的进液口(K-1);所述第二连接体(303)包括与所述反应段(302a)连接的连接段(303a)以及一体成型于所述连接段(303a)外端的第二端盖(303b),所述第二端盖(303b)的中心处设置有通透的出液口(K-2)。
- 如权利要求3所述的5G基站用高纯低辐射球形硅微粉的制备系统,其特征在于:所述第一连接体(302)的中心处设置有容纳通道(302c);所述容纳通道(302c)对应于出液口(K-2)方向的一端形成开口,对应于进液口(K-1)方向的一端设置有封堵板(302d),且所述封堵板(302d)通过衔接段(302e)固定于所述进液口(K-1)的边缘,所述衔接段(302e)上分布有过液孔(302e-1);所述容纳通道(302c)内插入有轴向通透的插管(302f),所述插管(302f) 的外缘分布有对应于各个流通通道(T-1)的限位凸条(302f-1),且各个限位凸条(302f-1)伸入对应的流通通道(T-1)内;各个流通通道(T-1)内插入有一个与其内侧壁贴合的C型弹力板(302g),所述C型弹力板(302g)的自然状态下为平面板;各个C型弹力板(302g)的内侧面上粘附有吸附层(301);所述出液口(K-2)的内端边缘设置有轴向通透的改向管(303c),当所述第一连接体(302)和第二连接体(303)互相连接时,所述改向管(303c)伸入所述插管(302f)内部,并在两者之间形成夹层通道(T-2)。
- 如权利要求4所述的5G基站用高纯低辐射球形硅微粉的制备系统,其特征在于:所述改向管(303c)的外侧壁和/或插管(302f)的内侧壁上设置有吸附层(301)。
- 如权利要求4或5所述的5G基站用高纯低辐射球形硅微粉的制备系统,其特征在于:所述第二端盖(303b)的内侧壁分布有限位侧板(303b-1);当所述第一连接体(302)和第二连接体(303)互相连接时,所述限位侧板(303b-1)的外缘贴合于所述插管(302f)的端头。
- 如权利要求1、2、4、5任一所述的5G基站用高纯低辐射球形硅微粉的制备系统,其特征在于:所述吸附层(301)采用SiO 2气凝胶。
- 一种采用如权利要求1~7任一所述5G基站用高纯低辐射球形硅微粉的制备系统的5G基站用高纯低辐射球形硅微粉的制备方法,其特征在于:包括,对普通硅微粉进行超细粉碎和精选,得到超细硅微粉;将所述超细硅微粉与去离子水以质量比为2:1混合搅拌制成浆料;使用酸性试剂调节浆料的酸碱度,使其pH≤4.5,使得粉体颗粒表面六价铀元素分散在浆料中;将吸附层(301)均匀地设置于吸附提纯单元(300)的流通通道(T-1)内,并将其烘干,使其干燥;抽取所述浆料并使其通过所述吸附提纯单元(300)的流通通道(T-1),对粉浆中的铀元素进行吸附提纯,然后分离干燥浆料中的超细硅微粉;通过火焰熔融法获得高纯低辐射球形硅微粉。
- 如权利要求8所述的5G基站用高纯低辐射球形硅微粉的制备方法,其特征在于:所述吸附层(301)采用SiO 2气凝胶;将SiO 2气凝胶均匀地设置于所述吸附提纯单元(300)的流通通道(T-1)内,在60℃烘箱中烘干4h,使所述SiO 2气凝胶干燥,然后吹净流通通道(T-1)中未完全粘附的SiO 2气凝胶。
- 如权利要求8或9所述的5G基站用高纯低辐射球形硅微粉的制备方法,其特征在于:所述火焰熔融法为,将经过吸附提纯并分离出的超细硅微粉投入球化炉中,通过对温度场、气流场和物料流的控制进行球形化处理,并使得使超细硅微粉在温度场内停留0.1~3s;所述温度场控制在1800~2200℃;所述气流场以氧气作为载气及助燃剂,天然气为燃气,且所述燃气与所述助燃剂流量的比值为1.05;所述物料流的速度控制在50~500kg/h;所述火焰熔融法在无污染后加工技术的基础上进行,所述无污染后加工技术包括:对超细硅微粉在后道工序中所有可能接触的零部件表面增加氧化锆陶瓷防护,以确保后道工序中不会引入铀元素造成二次污染。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011469674.8 | 2020-12-15 | ||
CN202011469674.8A CN112573529B (zh) | 2020-12-15 | 2020-12-15 | 5g基站用高纯低辐射球形硅微粉的制备工艺及设备 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022127132A1 true WO2022127132A1 (zh) | 2022-06-23 |
Family
ID=75135221
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/110063 WO2022127132A1 (zh) | 2020-12-15 | 2021-08-02 | 5g基站用高纯低辐射球形硅微粉的制备工艺及设备 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN112573529B (zh) |
WO (1) | WO2022127132A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117756123A (zh) * | 2023-12-25 | 2024-03-26 | 联瑞新材(连云港)有限公司 | 一种降低硅微粉中放射性元素的制备方法 |
CN118619289A (zh) * | 2024-05-24 | 2024-09-10 | 广州豫顺新材料科技有限公司 | 一种led显示器件封装材料用球形硅微粉的制备方法 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112573529B (zh) * | 2020-12-15 | 2023-08-15 | 江苏中腾石英材料科技股份有限公司 | 5g基站用高纯低辐射球形硅微粉的制备工艺及设备 |
CN113680462B (zh) * | 2021-10-27 | 2021-12-31 | 苏州锦艺新材料科技有限公司 | 一种球形硅微粉的生产工艺 |
CN114031086A (zh) * | 2021-12-02 | 2022-02-11 | 江苏联瑞新材料股份有限公司 | 高纯低铀亚微米级球形二氧化硅微粉的制备方法 |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101570332A (zh) * | 2009-06-12 | 2009-11-04 | 中国地质大学(武汉) | 一种高纯度、低放射性球形硅微粉及其制备方法 |
CN102826550A (zh) * | 2011-06-14 | 2012-12-19 | 江苏中腾石英材料科技有限公司 | 一种微米级集成电路用球形硅微粉的制备方法 |
CN202924748U (zh) * | 2012-11-27 | 2013-05-08 | 江苏中腾石英材料科技有限公司 | 超细硅微粉生产装置 |
CN107055554A (zh) * | 2017-05-23 | 2017-08-18 | 中南冶金地质研究所 | 一种使用火焰法制备纳米球形硅微粉的方法 |
CN108217664A (zh) * | 2018-03-16 | 2018-06-29 | 湖州长鑫电工材料有限公司 | 一种硅微粉选择性絮凝提纯用装置 |
CN109455728A (zh) * | 2018-12-29 | 2019-03-12 | 黄冈师范学院 | 一种燃气加热生产高纯超细球形硅微粉的装置及方法 |
JP2019127407A (ja) * | 2018-01-23 | 2019-08-01 | 白川 利久 | 自然プルトニウム削減に基づく太陽光電池級シリコンの製造装置。 |
CN110152613A (zh) * | 2018-04-16 | 2019-08-23 | 兰州理工大学 | 一种气凝胶吸附剂及其制备方法 |
CN211613027U (zh) * | 2020-01-15 | 2020-10-02 | 连云港淼晶硅材料有限公司 | 一种硅微粉加工中原料提纯装置 |
CN112573529A (zh) * | 2020-12-15 | 2021-03-30 | 江苏中腾石英材料科技股份有限公司 | 5g基站用高纯低辐射球形硅微粉的制备工艺及设备 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3784144B2 (ja) * | 1997-08-08 | 2006-06-07 | 電気化学工業株式会社 | 低ウラン球状シリカ粉末の製造方法 |
JP2012188332A (ja) * | 2011-03-14 | 2012-10-04 | Admatechs Co Ltd | 高純度シリカ原料の製造方法 |
JP5975982B2 (ja) * | 2011-03-15 | 2016-08-23 | 国立大学法人 岡山大学 | 新規多孔質アモルファスシリカ及びその製造方法 |
WO2015065185A1 (en) * | 2013-10-29 | 2015-05-07 | Caprigemini B.V. | Silica particles and method of preparation thereof |
WO2019065392A1 (ja) * | 2017-09-29 | 2019-04-04 | キヤノン株式会社 | シリカ凝集体、吸着材、吸着カラム、浄化システム、液体の処理方法、およびシリカ凝集体の製造方法 |
CN109455726A (zh) * | 2018-12-14 | 2019-03-12 | 江苏联瑞新材料股份有限公司 | 一种电子封装用球形硅微粉的制备方法 |
-
2020
- 2020-12-15 CN CN202011469674.8A patent/CN112573529B/zh active Active
-
2021
- 2021-08-02 WO PCT/CN2021/110063 patent/WO2022127132A1/zh active Application Filing
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101570332A (zh) * | 2009-06-12 | 2009-11-04 | 中国地质大学(武汉) | 一种高纯度、低放射性球形硅微粉及其制备方法 |
CN102826550A (zh) * | 2011-06-14 | 2012-12-19 | 江苏中腾石英材料科技有限公司 | 一种微米级集成电路用球形硅微粉的制备方法 |
CN202924748U (zh) * | 2012-11-27 | 2013-05-08 | 江苏中腾石英材料科技有限公司 | 超细硅微粉生产装置 |
CN107055554A (zh) * | 2017-05-23 | 2017-08-18 | 中南冶金地质研究所 | 一种使用火焰法制备纳米球形硅微粉的方法 |
JP2019127407A (ja) * | 2018-01-23 | 2019-08-01 | 白川 利久 | 自然プルトニウム削減に基づく太陽光電池級シリコンの製造装置。 |
CN108217664A (zh) * | 2018-03-16 | 2018-06-29 | 湖州长鑫电工材料有限公司 | 一种硅微粉选择性絮凝提纯用装置 |
CN110152613A (zh) * | 2018-04-16 | 2019-08-23 | 兰州理工大学 | 一种气凝胶吸附剂及其制备方法 |
CN109455728A (zh) * | 2018-12-29 | 2019-03-12 | 黄冈师范学院 | 一种燃气加热生产高纯超细球形硅微粉的装置及方法 |
CN211613027U (zh) * | 2020-01-15 | 2020-10-02 | 连云港淼晶硅材料有限公司 | 一种硅微粉加工中原料提纯装置 |
CN112573529A (zh) * | 2020-12-15 | 2021-03-30 | 江苏中腾石英材料科技股份有限公司 | 5g基站用高纯低辐射球形硅微粉的制备工艺及设备 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117756123A (zh) * | 2023-12-25 | 2024-03-26 | 联瑞新材(连云港)有限公司 | 一种降低硅微粉中放射性元素的制备方法 |
CN118619289A (zh) * | 2024-05-24 | 2024-09-10 | 广州豫顺新材料科技有限公司 | 一种led显示器件封装材料用球形硅微粉的制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN112573529A (zh) | 2021-03-30 |
CN112573529B (zh) | 2023-08-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022127132A1 (zh) | 5g基站用高纯低辐射球形硅微粉的制备工艺及设备 | |
US10441945B2 (en) | Composite material used for catalyzing and degrading nitrogen oxide and preparation method and application thereof | |
CN103537708B (zh) | 一种太阳能电池导电银浆用超纯银粉及其制备方法 | |
CN100369811C (zh) | 一种多晶硅生产过程中的副产物的综合利用方法 | |
WO2022183640A1 (zh) | 一种非晶金属氧化物中空多壳层材料的制备方法及其应用 | |
WO2019119612A1 (zh) | 一种新型多孔陶瓷加热体的制备工艺 | |
CN105329876A (zh) | 一种硼、氮共掺杂碳量子点的制备方法 | |
Wang et al. | Target preparation of multicomponent composites Au@ CdS/g-C3N4 as efficient visible light photocatalysts with the assistance of biomolecules | |
CN107706398A (zh) | 硅基锂离子电池的负极材料的制备方法 | |
Xie et al. | Halogenated Ti3C2 MXenes Prepared by Microwave Molten Salt for Hg0 Photo‐Oxidation | |
CN106044849A (zh) | 采用直流等离子体法制备纳米金属氧化物粉的工艺 | |
CN104167295A (zh) | 纳米碳管表面负载纳米四氧化三钴复合材料及其制备方法 | |
CN107572509A (zh) | 一种氮掺杂空心碳/石墨球纳米材料及其制备方法 | |
CN103382090B (zh) | 一种连续制备铜锌锡硫薄膜的方法 | |
CN103318963B (zh) | 一种制备富勒烯结构的纳米ws2的方法及其专用流化床反应器 | |
CN103894163A (zh) | 一种高性能纳米TiO2光催化剂材料及其制备方法 | |
CN114249326A (zh) | 一种液相法制备亚纳米硅碳复合材料的方法 | |
CN101306830A (zh) | 一种制备水溶性二氧化铈纳米晶的方法 | |
CN104892035B (zh) | 一种超高纯石英陶瓷坩埚的制备方法 | |
Liu et al. | TiO 2− x prepared by radio-frequency thermal plasma: optical switching of hydrophilicity and hydrophobicity used in the efficient recovery of photocatalysts | |
CN102350337B (zh) | ZnO/累托石/碳纳米管纳米复合材料的制备方法 | |
CN206381838U (zh) | 一种用于气体脱硝的错流式陶瓷膜装置及膜管 | |
CN107790167A (zh) | 一种吸附‑光催化双功能分级多孔复合材料及其制备方法 | |
CN209985370U (zh) | 一种纳米金属氧化物粉体制备装置 | |
CN106219605B (zh) | 一种采用氢氧火焰炉制备金红石型纳米二氧化钛的方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21905065 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21905065 Country of ref document: EP Kind code of ref document: A1 |