WO2014175524A1 - 탄소나노튜브 섬유제조 장치 - Google Patents

탄소나노튜브 섬유제조 장치 Download PDF

Info

Publication number
WO2014175524A1
WO2014175524A1 PCT/KR2013/010289 KR2013010289W WO2014175524A1 WO 2014175524 A1 WO2014175524 A1 WO 2014175524A1 KR 2013010289 W KR2013010289 W KR 2013010289W WO 2014175524 A1 WO2014175524 A1 WO 2014175524A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon nanotube
synthesis furnace
raw material
nanotube fiber
furnace
Prior art date
Application number
PCT/KR2013/010289
Other languages
English (en)
French (fr)
Inventor
정영진
정연수
Original Assignee
숭실대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 숭실대학교 산학협력단 filed Critical 숭실대학교 산학협력단
Priority to US14/384,380 priority Critical patent/US9567220B2/en
Publication of WO2014175524A1 publication Critical patent/WO2014175524A1/ko

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • C01B32/166Preparation in liquid phase
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/127Carbon filaments; Apparatus specially adapted for the manufacture thereof by thermal decomposition of hydrocarbon gases or vapours or other carbon-containing compounds in the form of gas or vapour, e.g. carbon monoxide, alcohols
    • D01F9/1277Other organic compounds
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/127Carbon filaments; Apparatus specially adapted for the manufacture thereof by thermal decomposition of hydrocarbon gases or vapours or other carbon-containing compounds in the form of gas or vapour, e.g. carbon monoxide, alcohols
    • D01F9/133Apparatus therefor
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D13/00Woven fabrics characterised by the special disposition of the warp or weft threads, e.g. with curved weft threads, with discontinuous warp threads, with diagonal warp or weft

Definitions

  • the present invention relates to a carbon nanotube fiber production apparatus, and more particularly, to a carbon nanotube fiber production apparatus for supplying the raw material for fiber production to flow along the inner wall surface of the auxiliary synthesis furnace.
  • Carbon nanotube filaments can be divided into carbon nanotubes mixed with a polymer and made of carbon nanotubes.
  • carbon nanotubes are dissolved in a solvent or heat with a known polymer, and then mixed with carbon nanotubes to produce a composite material.
  • carbon nanotubes are dispersed on a substrate.
  • the typical method is to make filament through post-processing after production.
  • this method has a problem that the process of depositing a catalyst on a substrate and the continuous production of carbon nanotubes in a state where the synthesis furnace is closed is limited.
  • the present invention has been made to solve the above problems, and an object of the present invention is to provide a carbon nanotube fiber production apparatus that allows the carbon nanotube fibers to vaporize while flowing through the inner wall of the preheated fiber synthesis furnace.
  • the present invention provides a carbon nanotube fiber manufacturing apparatus, comprising: a synthesis furnace for providing a space in which the synthesis of carbon nanotube fibers is made; Raw material supply unit for supplying a liquid carbon nanotube fiber raw material into the synthesis furnace; A gas supply unit supplying a transfer gas into the synthesis furnace; An auxiliary synthetic furnace in which the fiber raw material disposed and supplied at an inner upper end of the synthetic furnace in a tubular shape flows through an inner circumferential surface thereof; A nozzle for injecting the fiber raw material supplied by the raw material supply unit against an inner wall of the auxiliary synthesis furnace; A heater disposed along an outer circumference of the synthesis furnace; It provides a carbon nanotube fiber manufacturing apparatus comprising a.
  • the raw material supply unit and the gas supply unit may be configured to adjust the raw material supply amount.
  • Unevenness may be formed on the inner circumferential surface of the auxiliary synthesis furnace.
  • the nozzle is a pipe shape, both ends of the inlet pipe disposed at both the outside and the inside of the synthesis furnace, a plurality of minutes disposed toward the inner circumferential surface of the synthesis furnace at the end of the inlet pipe located inside the synthesis furnace May include officers.
  • the raw material supply unit and the gas supply unit may be connected to one end of the inlet pipe disposed outside the synthesis furnace.
  • the inlet pipe and the injection pipe may be disposed at right angles to each other.
  • the inlet pipe may be disposed in the center of the synthesis furnace.
  • End portions of the plurality of injection pipes may be in close contact with an inner wall of the synthesis furnace.
  • the plurality of injection pipes may be the same size.
  • the plurality of injection pipes may be spaced apart from each other by the same angular distance.
  • the liquid raw material supplied to the synthesis furnace is vaporized while flowing along the entire inner wall of the auxiliary synthesis furnace, the evaporation rate of the raw material is high and the fiber production efficiency is improved.
  • FIG. 1 is a view showing an example of a carbon nanotube fiber manufacturing apparatus according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing the configuration of the synthesis furnace and the auxiliary synthesis furnace shown in FIG.
  • FIG 3 is a perspective view showing an example of the configuration of a nozzle used in the present invention.
  • FIG. 4 is a transmission electron micrograph of a carbon nanotube prepared using the apparatus according to the present invention, (a) shows a single-walled carbon nanotubes, (b) shows a multi-walled carbon nanotubes.
  • I G / I D 50 of single-walled carbon nanotubes
  • I G / I D 6. Of multi-walled carbon nanotubes.
  • FIG. 6 is a photograph showing a state in which a multi-walled carbon nanotube aggregate is wound with fibers.
  • FIG. 7 is an electron micrograph of the rope using the carbon nanotube assembly shown in FIG.
  • FIG. 1 is a perspective view showing an example of the configuration of a carbon nanotube fiber manufacturing apparatus according to an embodiment of the present invention.
  • the carbon nanotube fiber manufacturing apparatus 100 is a synthesis furnace 110, raw material supply unit 120, gas supply unit 130, auxiliary synthesis furnace 112, nozzle 150 and heater 140.
  • the production of carbon nanotube fibers by the production apparatus according to the present invention can be carried out by the method described in the above-described prior art publication No. 2012-0090383. Therefore, detailed description of the manufacturing process is omitted.
  • Synthesis furnace 110 provides a space in which the synthesis of carbon nanotube fibers are made.
  • the synthesis furnace 110 may be cylindrical, but its shape and size may be variously set according to a user's needs.
  • the raw material supply unit 120 and the gas supply unit 130 are connected to the synthesis furnace 110.
  • the raw material supply unit 120 supplies raw materials for synthesizing carbon nanobube fibers to the synthesis furnace 110.
  • the raw material supplied is a liquid state.
  • the raw material supply unit 120 is connected to the synthesis furnace 110 by a predetermined first supply pipe 122.
  • the central axis of the first supply pipe 122 is preferably arranged to match the central axis of the synthesis furnace (110).
  • the raw material supply unit 120 is preferably configured to adjust the amount of the raw material supplied to the synthesis furnace 110 as necessary.
  • a flow control valve (not shown) may be disposed.
  • the gas supply unit 130 supplies a gas for transport which facilitates the transport of the vaporized material after the material supplied for carbon nanobub fiber synthesis is vaporized.
  • the gas supply unit 130 may be connected to the synthesis furnace 110 through a second supply pipe 132 connected to one side of the first supply pipe 122 connecting the raw material supply unit 120 and the synthesis furnace 110.
  • the gas supply unit 130 is preferably configured to adjust the amount of gas supplied to the synthesis furnace 110 as necessary.
  • a flow control valve (not shown) may be disposed. At this time, the amount of gas can be controlled independently of the amount of supply of raw materials.
  • the auxiliary synthesis furnace 112 is disposed in the upper portion of the synthesis furnace 110 in a tubular shape.
  • the auxiliary synthesis furnace 112 may be connected to one end of the first supply pipe 122.
  • the auxiliary synthesis furnace 112 is preferably arranged so that its central axis coincides with the central axis of the synthesis furnace 110.
  • the diameter of the auxiliary synthesis furnace 112 may be formed larger than the diameter of the first supply pipe 122, it is preferable that the diameter is smaller than the diameter of the synthesis furnace (110).
  • the auxiliary synthesis furnace 112 is formed smaller than the length of the first supply pipe (122).
  • the length of the synthesis furnace 110 is as long as possible (for example, 5 times or more of the length of the auxiliary synthesis furnace), so that the vaporization of the supplied raw material is easy even if the heating is incomplete due to a heater problem.
  • the diameter of the auxiliary synthesis furnace 112 is preferably set in consideration of the vaporization of the raw material and the degree of heating by the heater 140 to be described later.
  • the irregularities are formed on the inner circumferential surface of the auxiliary synthesis furnace 112 so that the surface area of the raw material is increased.
  • the feed rate of the raw material can be increased by increasing the surface area of the raw material.
  • the concave-convex shape may have various cross-sections formed according to the needs of the user, such as semicircular, triangular, and square.
  • the nozzle 150 sprays the raw materials and the transfer gas supplied from the outside toward the inner wall of the auxiliary synthesis furnace 112.
  • the configuration of the nozzle 150 is made as follows for uniform spraying.
  • the nozzle 150 includes an inlet pipe 152 and a spray pipe 154.
  • the inflow pipe 152 is connected to the raw material supply unit 120 through the first supply pipe 122, and the other end thereof is located inside the auxiliary synthesis furnace 112. At this time, the inlet pipe 152 is preferably located on the same line as the central axis of the first supply pipe 122. In addition, the inlet pipe 152 is preferably disposed on the central axis of the auxiliary synthesis furnace (112).
  • the injection pipe 154 is disposed at the end of the inlet pipe 152 to inject the raw material supplied to the inner wall of the auxiliary synthesis furnace 112 together with the transfer gas.
  • the injection pipe 154 is disposed at the end of the inlet pipe 152, the central axis of which is perpendicular to or greater than the central axis of the inlet pipe 152 to the upper portion of the inner wall of the secondary composite furnace 112 Can head.
  • a plurality of injection pipes 154 are arranged at the same angular distance with each other along the end of the inlet pipe 152.
  • injection pipes 154 are illustrated, but may include more numbers according to a user's needs.
  • the number of the injection pipes 154 is preferably as large as possible so that the raw material is uniformly sprayed on the inner wall of the auxiliary synthesis furnace 112 and uniformly vaporized after the injection.
  • the end of the injection pipe 154 is the secondary synthesis furnace 112 in a range that does not interfere with the injection of the raw material so that the raw material injected from the injection pipe 154 flows along the inner wall of the auxiliary synthesis furnace 112. It is preferable to approach the inner wall of ().
  • the distance between the end of the injection pipe 154 and the inner wall of the auxiliary synthesis furnace 112 may be a distance corresponding to the diameter of the injection pipe 154.
  • all the plurality of injection pipes 154 have the same size.
  • a predetermined pressure pump (not shown) is preferably disposed on the inlet pipe 152.
  • the heater 140 is disposed on the outer circumferential surface of the synthesis furnace 110 so that the raw material evaporates so that heat can be applied to the raw material flowing down the inner wall of the auxiliary synthesis furnace 112 by preheating the synthesis furnace 110. Do it.
  • the heater 140 is preferably disposed in a form surrounding the outer circumferential surface of the synthesis furnace 110.
  • the heater 140 may use various means such as gas heating or electric heating. However, in consideration of the convenience of use and the generation of waste, it is preferable that the electric heating type.
  • the heating temperature of the heater 140 may be 80 to 1300 °C.
  • the operator operates the carbon nanotube fiber manufacturing apparatus 100.
  • the heater 140 operates first to preheat the synthesis furnace 110.
  • raw materials used to manufacture carbon nanotube fibers are supplied through the raw material supply unit 120, and a transport gas is supplied through the gas supply unit 130.
  • the raw materials and the gas supplied are supplied toward the inner wall of the auxiliary synthesis furnace 112 through the inlet pipe 152 and the injection pipe 154, and the supplied raw material reaches the inner wall and then flows downward along the inner wall.
  • the interior of the synthesis furnace 110 and the auxiliary synthesis furnace 112 are preheated at a predetermined temperature so that the flowing raw material is vaporized while flowing from the inner wall to the bottom.
  • the vaporized raw material may be synthesized into a fiber while being transported together with the transport gas.
  • the liquid raw material supplied to the synthesis furnace is vaporized while flowing along the entire inner wall of the auxiliary synthesis furnace, the vaporization rate of the raw material is high, and the fiber production efficiency is improved.
  • the present invention configured as described above can be applied to the production of carbon nanotube fibers in various ways as follows.
  • the following example shows the conditions for synthesizing multi-walled carbon nanotubes and single-walled carbon nanotubes, and ethanol was used as the carbon source.
  • Multi-walled carbon nanotubes 2.2 wt% ferrocene, 1.4 wt% thiophene, 800 ml / min hydrogen, 1,100 degrees
  • the solution synthesized under the above conditions was supplied to the inside of the synthesis furnace through a T-type solution inlet tube at a rate of 10ml / h.
  • the diameter of the synthesis furnace was 6 cm.
  • the diameter of the synthesis furnace and the supply speed of the solution can be increased in order to increase the yield, and in this case, the number of solution outlets should be 3 or more instead of the T-type injection tube for uniform vaporization of the solution. desirable.
  • the carbon nanotube aggregate synthesized by the raw material injection method developed in the present invention was measured as 6 for the multi-wall and 50 for the single wall. This proves that the present invention is a method for synthesizing carbon nanotubes very effectively compared to the conventional raw material injection method.
  • Solution A was 0.1 wt.% Of thiophene, 1.0 wt.% Of ferrocene as a catalyst, and solution B of 1.0 wt.% Of thiophene and 1.0 wt.% Of ferrocene as a catalyst.
  • Carbon nanotube aggregates were synthesized by varying the injection rate of hydrogen gas, and Raman analysis was performed to measure the crystal completion. Since the raw material injection method applied in the present invention can inject carbon raw material and hydrogen gas independently, carbon nanotubes were synthesized by varying the injection speed of hydrogen gas.
  • the carbon nanotube source was ethanol, and ethanol 98.0 wt.% L and thiophene were 0.1 wt.% And 1.0 wt.%.
  • Carbon nanotube aggregates were synthesized while increasing the concentration of the catalyst.
  • the injection rate of hydrogen gas was 1000 sccm, the solution injection rate was set to 10 mL / hr logo, the temperature of the synthesis furnace was 1170 degrees Celsius.
  • Raman analysis results of the synthesized carbon nanotube aggregate can be seen in FIG. As shown in the figure, it can be seen that single-walled carbon nanotubes and multi-walled carbon nanotubes are synthesized only by controlling the ratio of ferrocene and thiophene.
  • the I G / I D value of the CNT fibers produced by the method according to the present invention is very high compared to other methods. This result is possible because the solution was synthesized by vaporization.
  • the carbon nanotube fiber produced by the device according to the present invention utilizes the inherent properties of carbon nanotubes as it is, electromagnetic shielding, electromagnetic wave absorption, sensors, batteries, medical, power cables, smart clothing, field emission devices, solar It can be used in various applications such as battery electrodes, piezoelectric elements, ultralight composite materials.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Nanotechnology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

본 발명은, 탄소나노튜브 섬유제조 장치로서, 내측으로 탄소나노튜브 섬유의 합성이 이루어지는 공간을 제공하는 합성로; 상기 합성로 내부로 액상의 탄소나노튜브 섬유 원료를 공급하는 원료 공급부; 상기 합성로 내부로 이송 가스를 공급하는 가스 공급부; 관 형상으로서 상기 합성로의 내측 상단에 배치되고 공급되는 상기 섬유 원료가 내주면을 타고 흐르는 보조 합성로; 상기 원료 공급부에 의해 공급되는 상기 섬유 원료를 상기 보조 합성로의 내벽에 대하여 분사하는 노즐; 상기 합성로 외주를 따라 배치되는 히터; 를 포함하는 탄소나노튜브 섬유제조 장치를 제공한다. 본 발명은, 합성로로 공급된 액상의 원료가 보조 합성로의 내벽 전체를 따라 흐르며 기화되므로 원료의 기화율이 높아 섬유 제조 효율이 향상된다.

Description

탄소나노튜브 섬유제조 장치
본 발명은 탄소나노튜브 섬유제조 장치에 관한 것으로서, 보다 상세하게는 섬유 제조용 원료가 보조 합성로의 내벽면을 따라 흐르도록 공급하는 탄소나노튜브 섬유제조 장치에 관한 것이다.
탄소나노튜브 필라멘트는 고분자에 탄소나노튜브가 혼합되어 복합체로 만들어지는 것과 순수하게 탄소나노튜브 만으로 제조되는 것으로 나눌 수 있다.
전자의 경우는 탄소나노튜브를 기지 물질인 고분자를 용매 또는 열로 녹인 후 탄소나노튜브와 혼합하여 복합재료로 제조하며 탄소나노튜브의 분산기술이 핵심기술이며, 후자의 경우에는 기판위에 탄소나노튜브를 생성 후에 후공정을 통하여 필라멘트를 만드는 방법이 대표적이다. 또한 이 방법은 기판 위에 촉매를 증착하는 공정과 합성로가 닫힌 상태에서 탄소나노튜브의 연속생산이 제한되는 문제점이 있다.
고순도의 탄소나노튜브 섬유를 제조하는 종래의 방법에는 탄소나노튜브가 분산된 용액을 고분자용액이 담긴 회전하는 용기 내부로 직접 방사하여, 고분자용액이 탄소나노튜브 입자 사이에 침투하여 탄소나노튜브를 접착하여 섬유를 만드는 것이 일반적으로 알려져 있다.
그러나, 상기와 같이 용액이 직접 방사되는 경우, 고분자용액이 탄소나노튜브 사이로의 확산되는 속도가 느리고, 또한 고분자용액이 담기 용기를 회전하는 속도의 제한으로 인하여 탄소나노튜브 섬유의 제조 효율이 제한되는 문제점이 있다. 뿐만 아니라 제조된 탄소나노튜브 섬유의 30 wt% 내외가 고분자여서 우수한 탄소나노튜브의 특성발현이 제한된다.
본 발명에 대한 선행기술로는 공개특허 2012-0090383호를 예시할 수 있다.
본 발명은 상기한 문제점을 해결하기 위해 안출된 것으로서, 탄소나노튜브 섬유의 원료가 예열되어 있는 섬유 합성로의 내벽을 타고 흐르면서 기화되도록 하는 탄소나노튜브 섬유제조 장치를 제공하는 것을 목적으로 한다.
상기한 목적을 달성하기 위해 본 발명은, 탄소나노튜브 섬유제조 장치로서, 내측으로 탄소나노튜브 섬유의 합성이 이루어지는 공간을 제공하는 합성로; 상기 합성로 내부로 액상의 탄소나노튜브 섬유 원료를 공급하는 원료 공급부; 상기 합성로 내부로 이송 가스를 공급하는 가스 공급부; 관 형상으로서 상기 합성로의 내측 상단에 배치되고 공급되는 상기 섬유 원료가 내주면을 타고 흐르는 보조 합성로; 상기 원료 공급부에 의해 공급되는 상기 섬유 원료를 상기 보조 합성로의 내벽에 대하여 분사하는 노즐; 상기 합성로 외주를 따라 배치되는 히터; 를 포함하는 탄소나노튜브 섬유제조 장치를 제공한다.
상기 원료 공급부와 상기 가스 공급부는 원료 공급량을 조절 가능하게 구성될 수 있다.
상기 보조 합성로의 내주면 상에는 요철이 형성될 수 있다.
상기 노즐은, 관 형태로서 양단이 상기 합성로의 외부와 내부에 각각 배치되는 유입관과, 상기 합성로의 내부에 위치되는 상기 유입관의 단부에서 상기 합성로의 내주면을 향하여 배치되는 복수의 분사관을 포함할 수 있다.
상기 합성로의 외부에 배치되는 상기 유입관의 일단으로는 상기 원료 공급부와 상기 가스 공급부가 연결될 수 있다.
상기 유입관과 상기 분사관은 서로 직각으로 배치될 수 있다.
상기 유입관은 상기 합성로의 중앙으로 배치될 수 있다.
상기 복수의 분사관은 그 단부가 상기 합성로의 내벽에 밀접할 수 있다.
상기 복수의 분사관은 동일한 크기일 수 있다.
상기 복수의 분사관은 서로 동일한 각거리로 이격될 수 있다.
상기와 같은 본 발명은, 합성로로 공급된 액상의 원료가 보조 합성로의 내벽 전체를 따라 흐르며 기화되므로 원료의 기화율이 높아 섬유 제조 효율이 향상된다.
도 1은 본 발명의 일 실시예에 따른 탄소나노튜브 섬유제조 장치의 일 예를 나타내는 도면이다.
도 2는 도 1에 도시된 합성로와 보조 합성로의 구성을 나타내는 단면도이다.
도 3은 본 발명에서 사용하는 노즐의 구성의 일 예를 나타내는 사시도이다.
도 4는 본 발명에 따른 장치를 이용하여 제조된 탄소나노튜브의 투과전자현미경 사진으로서, (a)는 단일벽 탄소나노튜브를 나타내고, (b)는 다중벽 탄소나노튜브를 나타낸다.
도 5는 (a) 단일벽 탄소나노튜브의 IG/ID=50를 나타내고, (b) 다중벽 탄소나노튜브의 IG/ID=6.를 나타낸다.
도 6은 다중벽 탄소나노튜브 집합체를 섬유로 권취한 상태를 나타내는 사진이다.
도 7은 도 6에 도시된 탄소나노튜브 집합체를 이용한 로프의 전자현미경사진이다.
도 8은 수소주입속도에 따른 IG/ID 변화를 나타내는 그래프이다.
도 9는 촉매의 농도에 따른 라만분석 결과를 나타내는 그래프이다.
도 10은 촉매의 농도에 따른 IG/ID 변화를 나타내는 그래프이다.
이하 첨부된 도면을 참조하면서 본 발명에 따른 바람직한 실시예를 상세히 설명하기로 한다.
도 1은 본 발명의 일 실시예에 따른 탄소나노튜브 섬유제조 장치의 구성의 일 예를 나타내는 사시도이다.
도 1을 참조하면, 본 발명의 일 실시예에 따른 탄소나노튜브 섬유제조 장치(100)는 합성로(110), 원료 공급부(120), 가스 공급부(130), 보조 합성로(112), 노즐(150) 및 히터(140)를 포함한다.
우선, 본 발명에 따른 제조 장치에 의한 탄소나노튜브 섬유 제조는 상기한 선행기술인 공개특허 2012-0090383호에 기재되어 있는 방법에 의해 수행될 수 있다. 따라서, 제조 공정에 대한 상세한 설명은 생략한다.
합성로(110)는 내부에 탄소나노튜브 섬유의 합성이 이루어지는 공간을 제공한다.
합성로(110)는 원통형일 수 있지만, 그 형태와 크기는 사용자의 필요에 따라 다양하게 설정될 수 있다.
탄소나노튜브 섬유의 합성을 위해, 원료 공급부(120)와 가스 공급부(130)가 합성로(110)에 연결된다.
원료 공급부(120)는 탄소나노뷰브 섬유 합성을 위한 원재료를 합성로(110)로 공급한다. 여기서, 공급되는 원재료는 액상 상태인 것이 바람직하다. 원료 공급부(120)는 합성로(110)와는 소정의 제1 공급관(122)으로 연결된다. 이때, 제1 공급관(122)의 중심축은 합성로(110)의 중심축과 일치하게 배치되는 것이 바람직하다.
원료 공급부(120)는 합성로(110)로 공급하는 원료의 양을 필요에 따라 조절할 수 있도록 구성되는 것이 바람직하다. 이를 위해 유량 조절 밸브(미도시)가 배치될 수 있다.
가스 공급부(130)는 탄소나노뷰브 섬유 합성을 위해 공급되는 재료가 기화된 후 기화된 재료의 이송을 용이하게 하는 이송용 가스를 공급한다.
가스 공급부(130)는 원료 공급부(120)와 합성로(110)를 연결하는 제1 공급관(122)의 일측으로 연결되는 제2 공급관(132)을 통해 합성로(110)로 연결될 수 있다. 가스 공급부(130)는 합성로(110)로 공급하는 가스의 양을 필요에 따라 조절할 수 있도록 구성되는 것이 바람직하다. 이를 위해 유량 조절 밸브(미도시)가 배치될 수 있다. 이때, 가스의 양 조절은 원재료의 공급량 조절과는 독립적으로 수행될 수 있다.
보조 합성로(112)는 관 형상으로서 합성로(110)의 내측 상부에 배치된다. 이때, 보조 합성로(112)는 제1 공급관(122)의 일단에 연결될 수 있다. 보조 합성로(112)는 그 중심축이 합성로(110)의 중심축과 일치하게 배치되는 것이 바람직하다. 또한, 보조 합성로(112)은 그 직경이 제1 공급관(122)의 직경보다 크게 형성될 수 있지만, 합성로(110)의 직경보다는 작은 것이 바람직하다. 또한, 보조 합성로(112)는 그 길이가 제1 공급관(122)의 길이보다 작게 형성된다. 여기서, 합성로(110)의 길이는 가능한 길게 하여(예를 들어 보조 합성로 길이의 5배 이상), 히터 문제로 가열이 불완전하여도 공급된 원료의 기화가 용이하게 하는 것이 바람직하다.
다만, 보조 합성로(112)의 직경은 원료의 기화와 후술하는 히터(140)에 의한 가열 정도를 고려하여 설정하는 것이 바람직하다.
그리고, 공급된 원료가 보조 합성로(112)에서 보다 용이하게 기화될수 있도록 하기 위해, 보조 합성로(112)의 내주면 상에는 요철이 형성되도록 하여 원료의 기화면적이 증가되도록 하는 것이 바람직하다. 원료의 기화면적 증가에 의해 원료의 공급 속도가 증가될 수 있다. 여기서, 요철 형상은 그 단면이 반원형, 삼각형, 사각형 등 사용자의 필요에 따라 다양하게 형성될 수 있다.
노즐(150)은 외부에서 공급되는 원재료와 이송 가스를 보조 합성로(112)의 내벽을 향하여 분사한다.
여기서, 균일한 분사를 위해 노즐(150)의 구성은 다음과 같이 이루어진다.
노즐(150)은 유입관(152)과 분사관(154)을 포함한다.
유입관(152)은 일단이 제1 공급관(122)을 통해 원료 공급부(120)와 연결되고, 타단은 보조 합성로(112)의 내측으로 위치된다. 이때, 유입관(152)은 제1 공급관(122)과는 그 중심축이 동일선상에 위치되는 것이 바람직하다. 또한, 유입관(152)은 보조 합성로(112)의 중심축 상에 배치되는 것이 바람직하다.
분사관(154)은 유입관(152)의 단부에 배치되어, 공급되는 원료를 이송 가스와 함께 보조 합성로(112)의 내벽으로 분사한다. 분사관(154)은 유입관(152)의 단부에 배치되되, 그 중심축은 유입관(152)의 중심축과는 직각을 이루거나 그 보다 더 큰 각도로서 보조 합성로(112)의 내벽 상부를 향할 수 있다.
그리고, 분사관(154)에 의한 분사가 균일하게 이루어지도록 하기 위해, 분사관(154)은 유입관(152)의 단부를 따라 서로 동일한 각거리로서 복수개가 배치되는 것이 바람직하다.
도 3을 살펴보면, 분사관(154)은 8개가 도시되어 있으나, 사용자의 필요에 따라 그 이상의 개수를 포함할 수 있다. 특히, 보조 합성로(112)의 내벽에 원재료가 전체적으로 균일하게 분사되고, 분사된 후 균일하게 기화될 수 있도록 하기 위해 분사관(154)의 개수는 가능한 많은 것이 바람직하다.
또한, 분사관(154)에서 분사된 원재료가 보조 합성로(112)의 내벽을 따라 흘러내릴 수 있도록, 분사관(154)의 단부는 원재료의 분사에 방해가 되지 않는 범위에서 보조 합성로(112)의 내벽에 근접하는 것이 바람직하다. 여기서, 분사관(154)의 단부와 보조 합성로(112)의 내벽과의 이격 거리는 분사관(154)의 직경에 해당하는 거리일 수 있다.
그리고, 복수의 분사관(154)은 모두 동일한 크기인 것이 바람직하다.
분사관(154)을 통한 원재료의 분사를 용이하게 하기 위해, 유입관(152) 상에는 소정의 가압 펌프(미도시)가 배치되는 것이 바람직하다.
히터(140)는 합성로(110)의 외주면상에 배치되어, 합성로(110)를 예열하여 보조 합성로(112)의 내벽을 따라 흘러내리는 원재료에 대하여 열이 인가될 수 있도록, 원재료가 증발하도록 한다. 여기서, 균일한 열 인가를 위해, 히터(140)는 합성로(110)의 외주면을 둘러싸는 형태로 배치되는 것이 바람직하다.
균일한 열을 인가할 수 있다면, 히터(140)는 가스 가열식, 전기 가열식 등 다양한 수단이 사용될 수 있다. 다만, 사용의 편리함과 폐기물의 발생 등을 고려하여 전기 가열식인 것이 바람직하다.
히터(140)의 가열 온도는 80 내지 1300 ℃ 일 수 있다.
상기와 같이 구성된 본 발명의 동작에 대해 설명하기로 한다.
탄소나노튜브 섬유의 제조를 위해, 작업자는 탄소나노튜브 섬유제조 장치(100)를 동작시킨다. 장치의 동작 개시 시, 우선적으로 히터(140)가 동작하여 합성로(110)를 예열하는 것이 바람직하다.
이후, 원료 공급부(120)를 통해 탄소나노튜브 섬유의 제조에 사용되는 원재료가 공급되고, 가스 공급부(130)를 통해서는 이송용 가스가 공급된다.
공급되는 원재료와 가스는 유입관(152)과 분사관(154)을 통해 보조 합성로(112)의 내벽을 향하여 공급되고, 공급된 원료는 내벽에 닿은 후, 내벽을 따라 하부로 흐르게 된다.
여기서, 합성로(110)의 내부와 보조 합성로(112)는 소정의 온도로서 예열되어 있어 흐르는 원료는 내벽에서 하부로 흐르는 도중 기화된다. 기화된 원료는 이송용 가스와 함께 이송되면서 섬유로 합성될 수 있다.
본 발명은, 합성로로 공급된 액상의 원료가 보조 합성로의 내벽 전체를 따라 흐르며 기화되므로 원료의 기화율이 높아 섬유 제조 효율이 향상된다.
상기와 같이 구성된 본 발명은 다음과 같이 다양한 방법으로 탄소나노튜브 섬유 제조에 적용될 수 있다.
[적용예 1]
다음은 다중벽 탄소나노튜브와 단일벽 탄소나노튜브를 합성하기 위한 조건을 보여주는 실시예로서 탄소원으로서는 에탄올을 사용하였다.
A. 단일벽 탄소나노튜브: 페로센(ferrocene) 2.2wt%, 싸이오펜(thiophene) 0.4wt%, 수소 1,200 ml/min, 온도 1,200도
B. 다중벽 탄소나노튜브: 페로센(ferrocene) 2.2wt%, 싸이오펜(thiophene) 1.4wt%, 수소 800ml/min, 합성로 온도 1,100도
상기의 조건으로 합성된 용액을 10ml/h 속도로, T형 용액 주입관을 통하여 합성로 내부로 공급 하였으며, 본 실험에서는 합성로의 직경이 6cm 것을 기준으로 하였다. 또한 생산량을 증대하기 위하여 합성로의 직경과 용액의 공급속도를 크게 할 수 있으며, 이 경우에는 용액의 균일한 기화를 위하여, T형 주입관 대신에 용액출구부의 개수를 3개 이상으로도 하는 것이 바람직하다.
도 4와 도 5는 상기 조건에서 합성된 단일벽과 다중벽 탄소나노튜브 집합체의 투과전자현미경사진과 라만(Raman) 분석 결과를 보여주는 것이다. 라만분석 데이타에서 G-band (1580 cm1 부근) 와 D-band (1350cm1 부근)에서 측정된 강도의 비 (IG/ID)는 결정의 완성도를 나타내는 지표이다. 일반적으로 탄소나노튜브의 IG/ID는 1 정도이나 [인용: J Phys Chem B 2006;110:82508257],
본 발명에서 개발한 원료 주입법으로 합성된 탄소나노튜브 집합체는 다중벽은 6, 단일벽은 50으로 측정되었다. 이는 기존의 원료주입법에 비해서 본 발명이 매우 효과적으로 탄소나노튜브를 합성하게 하는 방법임을 입증하는 것이다.
[적용예 2]
탄소나노튜브 공급원을 아세톤으로 하여 두 종류의 원료를 준비하였다. A 용액은 싸이오펜(thiophene)을 0.1 wt.%, 촉매인 페로센을 1.0 wt.%로 하고, B 용액은 싸이오펜(thiophene)을 1.0 wt.%, 촉매인 페로센을 1.0 wt.%로 하였다. 수소가스의 주입속도를 달리하여 탄소나노튜브 집합체를 합성하고, 이의 결정완성도를 측정하기 위하여 라만(Raman)분석을 실시하였다. 본 발명에서 적용한 원료주입 방법은 탄소원료와 수소가스를 독립적으로 주입할 수 있으므로, 수소가스의 주입속도를 달리하여 탄소나노튜브를 합성하였다. 그 결과를 도 8에 나타내었으며, 수소주입량과 탄소원료의 상대적인 비율에 의해서 IG/ID 가 달라짐을 알 수 있으며, IG/ID가 30정도에 이를 정도로 결정의 완성도가 높음을 알 수 있다. 탄소원료 용액을 기화하여 합성하는 방법으로 제조된 탄소나노튜브 집합체는 기존의 방법에 비해 매우 높은 결정성 탄소나노튜브가 얻어짐을 알 수 있다
[적용예 3]
탄소나노튜브 공급원을 에탄올로 하고, 에탄올 98.0 wt.% l, 싸이오펜(thiophene)의 농도를 0.1 wt.%와 1.0 wt.% 두가지로 하였다. 촉매의 농도를 증가시키면서 탄소나노튜브 집합체를 합성하였다. 수소가스의 주입속도는 1000 sccm, 용액주입속도는 10 mL/hr 로고정하고, 합성로의 온도는 섭씨 1170도로 하였다. 합성된 탄소나노튜브 집합체의 라만분석 결과를 도 9에서 볼 수 있다. 그림에서 보는 바와 같이 ferrocene과 thiophene의 비율조절만으로 단일벽탄소나노튜브와 다중벽탄소나노튜브가 합성됨을 알 수 있다. 또한 본 발명에 의한 방법으로 제조된 CNT 섬유의 IG/ID 값이 타방식에 비해 매우 높은 것임을 도 10에서 볼 수 있다. 이러한 결과는 용액을 기화시켜서 합성하였기 때문에 가능하다.
본 발명에 따른 장치에 의해 제조된 탄소나노튜브 섬유는 탄소나노튜브가 가지는 고유의 성질을 그대로 활용하여, 전자파차폐, 전자기파 흡수, 센서, 밧데리, 의료용, 파워케이블, 스마트의류, 전계방출소자, 태양전지전극, 압전소자, 초경량복합재료 등의 다양한 응용분야에 사용될 수 있다.
본 발명은 도면에 도시된 실시예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 본 기술 분야의 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 다른 실시예가 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의하여 정해져야 할 것이다.

Claims (10)

  1. 탄소나노튜브 섬유제조 장치로서,
    내측으로 탄소나노튜브 섬유의 합성이 이루어지는 공간을 제공하는 합성로;
    상기 합성로 내부로 액상의 탄소나노튜브 섬유 원료를 공급하는 원료 공급부;
    상기 합성로 내부로 이송 가스를 공급하는 가스 공급부;
    관 형상으로서 상기 합성로의 내측 상단에 배치되고 공급되는 상기 섬유 원료가 내주면을 타고 흐르는 보조 합성로;
    상기 원료 공급부에 의해 공급되는 상기 탄소나노튜브 섬유 원료를 상기 합성로의 내벽에 대하여 분사하는 노즐;
    상기 합성로 외주를 따라 배치되는 히터; 를 포함하는 탄소나노튜브 섬유제조 장치.
  2. 제1항에 있어서,
    상기 원료 공급부와 상기 가스 공급부는 원료 공급량을 조절 가능하게 구성되는 탄소나노튜브 섬유제조 장치.
  3. 제1항에 있어서,
    상기 보조 합성로의 내주면 상에는 요철이 형성되는 탄소나노튜브 섬유제조 장치.
  4. 제1항에 있어서,
    상기 노즐은,
    관 형태로서 양단이 상기 합성로의 외부와 내부에 각각 배치되는 유입관과,
    상기 합성로의 내부에 위치되는 상기 유입관의 단부에서 상기 합성로의 내주면을 향하여 배치되는 복수의 분사관을 포함하는 탄소나노튜브 섬유제조 장치.
  5. 제4항에 있어서,
    상기 합성로의 외부에 배치되는 상기 유입관의 일단으로는 상기 원료 공급부와 상기 가스 공급부가 연결되는 탄소나노튜브 섬유제조 장치.
  6. 제4항에 있어서,
    상기 유입관과 상기 분사관은 서로 직각으로 배치되는 탄소나노튜브 섬유제조 장치.
  7. 제4항에 있어서,
    상기 유입관은 상기 합성로의 중앙으로 배치되는 탄소나노튜브 섬유제조 장치.
  8. 제4항에 있어서,
    상기 복수의 분사관은 그 단부가 상기 합성로의 내벽에 밀접하는 탄소나노튜브 섬유제조 장치.
  9. 제4항에 있어서,
    상기 복수의 분사관은 동일한 크기인 탄소나노튜브 섬유제조 장치.
  10. 제4항 또는 제9항에 있어서,
    상기 복수의 분사관은 서로 동일한 각거리로 이격되어 있는 탄소나노튜브 섬유제조 장치.
PCT/KR2013/010289 2013-04-22 2013-11-13 탄소나노튜브 섬유제조 장치 WO2014175524A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/384,380 US9567220B2 (en) 2013-04-22 2013-11-13 Apparatus for manufacturing carbon nanotube fibers

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020130044173A KR101415078B1 (ko) 2013-04-22 2013-04-22 탄소나노튜브 섬유제조 장치
KR10-2013-0044173 2013-04-22

Publications (1)

Publication Number Publication Date
WO2014175524A1 true WO2014175524A1 (ko) 2014-10-30

Family

ID=51741102

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/010289 WO2014175524A1 (ko) 2013-04-22 2013-11-13 탄소나노튜브 섬유제조 장치

Country Status (3)

Country Link
US (1) US9567220B2 (ko)
KR (1) KR101415078B1 (ko)
WO (1) WO2014175524A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9933888B2 (en) 2015-03-04 2018-04-03 Soongsil University Research Consortium Techno-Park Multimodal sensor and manufacturing method thereof

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101716584B1 (ko) * 2014-10-28 2017-03-27 주식회사 엘지화학 탄소나노튜브섬유의 제조장치 및 이를 이용한 탄소나노튜브섬유 제조방법
KR101718784B1 (ko) 2016-02-11 2017-03-22 전남대학교산학협력단 고순도 및 고밀도 탄소나노튜브 섬유 제조장치
KR101819707B1 (ko) * 2016-07-06 2018-01-17 숭실대학교산학협력단 탄소 나노튜브 집합체 제조장치
KR101930918B1 (ko) 2017-02-06 2018-12-19 서울대학교 산학협력단 금속 산화물-탄소나노튜브 집합체의 제조방법 및 이의 용도
KR101943089B1 (ko) 2018-11-27 2019-01-28 어썸레이 주식회사 탄소나노튜브 얀을 제조하는 장치
KR20230137815A (ko) 2022-03-22 2023-10-05 한국재료연구원 탄소나노튜브 섬유 제조 장치 및 이로부터 제조된 탄소나노튜브 섬유

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020064535A (ko) * 2001-02-02 2002-08-09 최경희 냉, 온수 연속 배출장치
KR20030093541A (ko) * 2002-06-03 2003-12-11 (주) 나노텍 고온 전처리부를 구비한 탄소나노튜브의 합성장치
US6878360B1 (en) * 1999-09-01 2005-04-12 Nikkiso Company Limited Carbon fibrous matter, production device of carbon fibrous matter, production method of carbon fibrous matter and deposit prevention device for carbon fibrous matter
KR100892753B1 (ko) * 2007-10-10 2009-04-15 세메스 주식회사 탄소나노튜브 합성용 촉매의 제조 장치 및 방법
KR20110055159A (ko) * 2009-11-19 2011-05-25 세메스 주식회사 탄소나노튜브 합성용 촉매 제조 장치

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4029825A1 (de) * 1990-09-20 1992-03-26 Passavant Werke Verfahren und vorrichtung zum konditionieren und anschliessenden entwaessern von schlaemmen
KR100360686B1 (ko) 2000-07-27 2002-11-13 일진나노텍 주식회사 탄소나노튜브 또는 탄소나노섬유 합성용 기상합성장치 및이를 사용한 합성 방법
KR100376202B1 (ko) 2000-10-02 2003-03-15 일진나노텍 주식회사 탄소나노튜브 또는 탄소나노섬유 합성용 기상합성 장치 및이를 사용한 합성방법
KR100604459B1 (ko) 2000-10-06 2006-07-26 풀러린 인터내셔날 코포레이션 이중벽 탄소 나노튜브와 그의 제조방법 및 응용방법
AU2002344610A1 (en) 2002-10-30 2004-05-25 Fuji Xerox Co., Ltd. Production system and production method of carbon nanotube
CA2500766A1 (en) * 2005-03-14 2006-09-14 National Research Council Of Canada Method and apparatus for the continuous production and functionalization of single-walled carbon nanotubes using a high frequency induction plasma torch
EP1919826B1 (en) * 2005-08-29 2015-10-07 University Of The Witwatersrand Johannesburg Process and reactor for producing carbon nanotubes
WO2010008046A1 (ja) * 2008-07-16 2010-01-21 保土谷化学工業株式会社 炭素繊維の集合体、その製造方法及びそれらを含有する複合材料
KR101081420B1 (ko) 2009-04-30 2011-11-08 한국생산기술연구원 탄소나노튜브 섬유화 시스템
KR101081417B1 (ko) 2009-04-30 2011-11-08 한국생산기술연구원 탄소나노튜브 섬유화 장치
KR20120090383A (ko) * 2011-02-07 2012-08-17 숭실대학교산학협력단 탄소나노튜브 섬유제조

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6878360B1 (en) * 1999-09-01 2005-04-12 Nikkiso Company Limited Carbon fibrous matter, production device of carbon fibrous matter, production method of carbon fibrous matter and deposit prevention device for carbon fibrous matter
KR20020064535A (ko) * 2001-02-02 2002-08-09 최경희 냉, 온수 연속 배출장치
KR20030093541A (ko) * 2002-06-03 2003-12-11 (주) 나노텍 고온 전처리부를 구비한 탄소나노튜브의 합성장치
KR100892753B1 (ko) * 2007-10-10 2009-04-15 세메스 주식회사 탄소나노튜브 합성용 촉매의 제조 장치 및 방법
KR20110055159A (ko) * 2009-11-19 2011-05-25 세메스 주식회사 탄소나노튜브 합성용 촉매 제조 장치

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9933888B2 (en) 2015-03-04 2018-04-03 Soongsil University Research Consortium Techno-Park Multimodal sensor and manufacturing method thereof

Also Published As

Publication number Publication date
US9567220B2 (en) 2017-02-14
US20160185601A1 (en) 2016-06-30
KR101415078B1 (ko) 2014-07-04

Similar Documents

Publication Publication Date Title
WO2014175524A1 (ko) 탄소나노튜브 섬유제조 장치
WO2016068599A1 (ko) 탄소나노튜브섬유의 제조장치 및 이를 이용한 탄소나노튜브섬유 제조방법
WO2017018766A1 (ko) 탄소나노튜브섬유 제조장치
US11866376B2 (en) Continuous boron nitride nanotube yarns and methods of production
Tran et al. Post-treatments for multifunctional property enhancement of carbon nanotube fibers from the floating catalyst method
WO2012108607A1 (ko) 탄소나노튜브 섬유제조
WO2014204113A1 (ko) 탄소나노튜브섬유 제조장치 및 이를 이용한 탄소나노튜브섬유 제조방법
CN103031531A (zh) 柔性碳纳米管透明导电薄膜的制备方法及系统
CN110685039B (zh) 一种批量生产碳纳米管纤维的方法
CN106115690B (zh) 一种连续中空炭球的制备方法
CN103628183A (zh) 一种规模化制备连续碳纳米管纤维的方法
WO2018012876A1 (ko) 카본나노튜브 제품 건조 및 회수 장치와 이를 이용한 카본나노튜브 제조방법
CN114808196A (zh) 碳纳米管制备装置、其注入组件及碳纳米管制备方法
KR20180119288A (ko) 탄소나노튜브 섬유 제조 장치
CN108588902A (zh) 一种碳纳米管复合纤维的大规模连续制备装置及方法
CN114887552B (zh) 用于制备碳纳米管材料的注入结构及其应用
CN107200331B (zh) 一种开放体系SiC纳米线的制备方法
JPS61132630A (ja) 炭素質繊維
KR101819707B1 (ko) 탄소 나노튜브 집합체 제조장치
KR101930918B1 (ko) 금속 산화물-탄소나노튜브 집합체의 제조방법 및 이의 용도
WO2019183766A1 (zh) 碳纳米管制备系统
KR101943089B1 (ko) 탄소나노튜브 얀을 제조하는 장치
KR101881197B1 (ko) 탄소나노튜브섬유 제조장치
RU2612716C2 (ru) Способ получения волокон из углеродных нанотрубок
WO2017175906A1 (ko) 탄소나노코일-탄소마이크로코일 하이브리드 소재 및 그 제조 방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14384380

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13883273

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13883273

Country of ref document: EP

Kind code of ref document: A1