WO2018012030A1 - 入力装置、イメージデータ算出方法、及びイメージデータ算出プログラム - Google Patents

入力装置、イメージデータ算出方法、及びイメージデータ算出プログラム Download PDF

Info

Publication number
WO2018012030A1
WO2018012030A1 PCT/JP2017/009687 JP2017009687W WO2018012030A1 WO 2018012030 A1 WO2018012030 A1 WO 2018012030A1 JP 2017009687 W JP2017009687 W JP 2017009687W WO 2018012030 A1 WO2018012030 A1 WO 2018012030A1
Authority
WO
WIPO (PCT)
Prior art keywords
image data
value
matrix
detection
target
Prior art date
Application number
PCT/JP2017/009687
Other languages
English (en)
French (fr)
Inventor
朋輝 山田
達巳 藤由
Original Assignee
アルプス電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アルプス電気株式会社 filed Critical アルプス電気株式会社
Priority to EP17827165.6A priority Critical patent/EP3486758B1/en
Priority to JP2018527384A priority patent/JP6637600B2/ja
Publication of WO2018012030A1 publication Critical patent/WO2018012030A1/ja
Priority to US16/243,447 priority patent/US11112920B2/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04166Details of scanning methods, e.g. sampling time, grouping of sub areas or time sharing with display driving
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/0418Control or interface arrangements specially adapted for digitisers for error correction or compensation, e.g. based on parallax, calibration or alignment
    • G06F3/04186Touch location disambiguation

Definitions

  • the present invention relates to an input device, an image data calculation method, and an image data calculation program.
  • Patent Document 1 a capacitance-type input device that detects a place touched by an operating body (for example, a finger or an operating pen) on a flat operation surface is known.
  • an operating body for example, a finger or an operating pen
  • a plurality of electrodes are two-dimensionally arranged along the operation surface at a position separated from the operation surface.
  • the input device of Patent Document 1 detects the contact position of the operating body in a two-dimensional manner by detecting image data corresponding to a change in capacitance between the operating body and the electrode for each electrode.
  • the input device of Patent Document 1 requires the same number of electrodes as the number of measurement positions in order to create image data at various two-dimensional measurement positions.
  • the number of electrodes becomes enormous, there is a disadvantage that the input terminal of the detection circuit for detecting the capacitance becomes enormous and the apparatus becomes large.
  • the number of electrodes is enormous, there is a disadvantage that the time and the number of times are enormous if all the capacitances are detected with high sensitivity, and the sensitivity is deteriorated if the capacitance is detected in a short time.
  • the present invention has been made in view of such circumstances, and an object thereof is to increase image data representing a change in capacitance between an operation surface and an operation body at each of a plurality of positions along the operation surface with a small number of electrodes.
  • An object of the present invention is to provide an input device that can be accurately created.
  • the present invention provides an operation surface that receives an operation by one or more adjacent operation bodies, one or more electrodes that are spaced from the operation surface and are disposed along the operation surface, and a plurality of sections that are virtually set
  • An image data calculation unit that calculates image data corresponding to each of the plurality of sections, and in each of the plurality of sections, a part of the operation surface and at least one part of at least one electrode are arranged close to each other, and the image
  • Each of the data changes corresponding to the amount of charge stored in one compartment due to the capacitance between the at least one electrode and the one or more operating bodies, each of the one or more electrodes being an image.
  • a plurality of detection terminals connected to the data calculation unit, wherein the image data calculation unit detects, for each of the plurality of detection terminals, a detection value that changes in accordance with the amount of charge detected through the detection terminal;
  • a plurality of pieces of coefficient data each of the plurality of pieces of coefficient information corresponds to a different combination of one of the plurality of sections and one of the plurality of detection terminals,
  • Each of the coefficient information is an input device that represents the ratio of the amount of charge detected at the detection terminal that constitutes one combination, out of the amount of charge that is accumulated in the sections constituting one combination.
  • the image data calculation unit calculates the plurality of image data based on the plurality of detection values detected by the plurality of detection terminals and the plurality of coefficient information.
  • Image data can be calculated without dividing the electrodes.
  • the wiring between the image data calculation unit and the electrodes can be reduced, and the image data can be calculated with a simple configuration. That is, image data representing the change in capacitance between the operation surface and the operation body at each of a plurality of positions along the operation surface can be created with high accuracy with a small number of electrodes.
  • the image data calculation unit calculates a plurality of image data by executing one or more calculation loops, and the image data calculation unit includes a plurality of image data in the first calculation loop.
  • a predetermined value is used as the initial image data corresponding to each of the sections, and the calculation loop accumulates the charge amount corresponding to the plurality of initial image data in the plurality of sections according to the correspondence between the plurality of initial image data and the plurality of sections. Calculating a plurality of calculated values representing detection values detected at a plurality of detection terminals when it is assumed that a comparison value based on a comparison between the calculated value and the detection value is obtained for each of the plurality of detection terminals.
  • the image data calculation unit calculates the comparison value based on the comparison between the calculated value and the detection value for each of the plurality of detection terminals in the calculation loop, and corrects the initial image data based on the comparison value.
  • the image data is calculated, so that it is easy to bring the image data close to the actual value with a small amount of calculation as compared with the case where the initial image data is selected at random.
  • the image data of the section can be obtained by taking into account the deviation between the calculated value and the detected value while reducing the amount of calculation compared to when performing exact calculation. It can be calculated accurately.
  • calculating the comparison value for each of the plurality of detection terminals includes dividing the detection value by the calculated value for each of the plurality of detection terminals.
  • calculating a correction value corresponding to one section is a group of coefficient information corresponding to one section for each of a plurality of detection terminals. Calculating the sum of values obtained by multiplying the coefficient information and the comparison value included in the correction value, and calculating the image data for each of the plurality of sections, the correction value for each of the plurality of sections, and Calculating image data by multiplying with initial image data.
  • the calculated value and the correction value are calculated based on the coefficient information that represents the ratio of the charge amount detected at each detection terminal out of the charge amount accumulated in each section.
  • Image data can be calculated accurately reflecting the physical flow.
  • the number of partitions is represented by n
  • an n-by-1 matrix having n image data elements is represented by a matrix Z
  • n initial image data are represented by
  • the matrix of n rows and 1 column as elements is represented as a matrix Z 0, and the matrix of n rows and 1 column as elements of n correction values is represented as a matrix Z C, and the matrix Z, the matrix Z 0, and the matrix in a Z C, elements of the same row corresponds to the same partition
  • the number of detection terminals denoted as m
  • the matrix of one row and m columns whose elements are the m detection value is represented as matrix S matrix of one row and m columns whose elements are the m calculated value
  • the matrix of one row and m columns whose elements are the m comparison value is represented as matrix S C, matrix in and matrix S 0 and matrix S C S, the elements of the same column, correspond to the same detecting terminal
  • p is is an integer not less than
  • the elements in the same row correspond to the same partition, and for all p and all k, the elements in the p rows and k columns of the coefficient matrix A are p of the amount of charge accumulated in the section corresponding to the line, represents the percentage of the charge amount detected by the detection terminal corresponding to k rows, is possible to calculate a plurality of calculation values
  • each of the plurality of coefficient information is a value calculated by multiplication of the first value and the second value, and the detection terminal constituting one combination is called a target terminal,
  • the first value is the area of a portion of the target electrode that contributes to generation of a detection value in the target section.
  • a target resistance value representing a resistance value between the target section and the target terminal which is a value obtained by dividing by the total area of the part contributing to generation of the detection value in the target section among the one or more electrodes;
  • the target resistance value is more than the non-target resistance value.
  • the target section and target terminal The second value corresponding to the target section and the target terminal when the corresponding second value is smaller than the second value corresponding to the target section and the other one detection terminal and the target resistance value is smaller than the non-target resistance value. Is larger than the second value corresponding to the target section and one other detection terminal, and the sum of all the second values corresponding to the target section is 1.
  • the coefficient information is calculated based on the area and the resistance value. Therefore, it is possible to accurately calculate the image data reflecting the actual physical configuration.
  • the image data calculation unit uses a predetermined positive value as initial image data corresponding to each of the plurality of image data in the first calculation loop.
  • the image data calculation unit repeats the calculation loop a plurality of times.
  • the initial image data can be gradually brought closer to the actual image data, and the position can be calculated more accurately.
  • the present invention provides an operation surface that receives an operation by one or more adjacent operation bodies, one or more electrodes that are spaced from the operation surface and are disposed along the operation surface, and a plurality of sections that are virtually set
  • An image data calculation unit that calculates image data corresponding to each of the plurality of sections, and in each of the plurality of sections, a part of the operation surface and at least one part of the at least one electrode are arranged close to each other, and the image data
  • Each corresponding to the amount of charge stored in one section due to the capacitance between the at least one electrode and the one or more operating bodies, and each of the one or more electrodes is image data.
  • An image data calculation method executed by an input device including a plurality of detection terminals connected to a calculation unit, wherein each of the plurality of detection terminals is passed through the detection terminals by the image data calculation unit. Detecting a detection value that changes in accordance with the detected charge amount, and calculating a plurality of image data based on the plurality of coefficient information by the image data calculation unit, Each corresponds to a different combination of one of the plurality of sections and one of the plurality of detection terminals, and each of the plurality of coefficient information is one combination among the charge amounts accumulated in the sections constituting one combination.
  • the present invention is an image data calculation program for causing a computer to execute the above-described image data calculation method.
  • image data representing a change in capacitance between the operation surface and the operation body at each of a plurality of positions along the operation surface can be generated with a small number of electrodes.
  • FIG. 5 is a diagram for explaining a process of calculating coefficient information of FIG. 4 related to a left detection terminal.
  • FIG. 5 is a diagram for explaining a process of calculating coefficient information of FIG. 4 related to a right detection terminal.
  • FIG. 5 is a diagram for explaining a process of calculating coefficient information of FIG. 4 related to an upper detection terminal.
  • FIG. 5 is a diagram for explaining a process of calculating coefficient information of FIG. 4 related to a lower detection terminal.
  • FIG. 2 is a flowchart for explaining a method of calculating image data of the input device shown in FIG. 1. It is a figure which shows the example of the matrix used or calculated by the image data calculation method of FIG. It is a figure which shows the example image data obtained by performing the calculation loop included in the image data calculation method of FIG. 1 several times.
  • FIG. 1 is a schematic configuration diagram of an input device 100 according to the present embodiment.
  • the input device 100 is mounted on an external device such as a personal computer.
  • the input device 100 creates image data that changes according to the degree of proximity of one or more operating bodies (for example, a human finger, an operating pen, etc.) for each of a plurality of two-dimensional coordinates. .
  • the input device 100 or the external device detects, for example, the number, position, and locus of the operation body using the image data.
  • the input device 100 includes a sensor 110, a detection circuit 120, a storage device 130, and an arithmetic processing device 140.
  • an x direction, a y direction, and a z direction that are orthogonal to each other are defined.
  • expressions such as upper, lower, left, and right may be used. These directions are defined for convenience in order to explain the relative positional relationship, and do not limit the directions in actual use. Regardless of whether there is a description of “substantially”, the shape of the component is a strict geometric shape based on the described expression as long as the technical idea of the embodiment disclosed in this specification is realized. It is not limited.
  • the sensor 110 includes an operation surface 111 that extends parallel to the xy plane.
  • the operation surface 111 is a place where an operation is performed by one or more adjacent operation objects.
  • a plurality of sections 112 are virtually set on the operation surface 111.
  • the sections 112 are all substantially the same shape when viewed in the z direction, and are substantially rectangular regions having two sides along the x direction and two sides along the y direction. Each of the compartments 112 extends in the z direction.
  • Five sections 112 are arranged in the x direction, four are arranged in the y direction, and 20 sections 112 are arranged in a matrix as a whole.
  • the x coordinates of the five sections 112 arranged in the x direction are xa, xb, xc, xd, and xe in order from the negative side (left side in the figure) to the positive side (right side in the figure).
  • the y coordinates of the four sections 112 arranged in the y direction are ya, yb, yc, and yd in order from the negative side (upper side in the figure) to the positive side (lower side in the figure).
  • ya negative side
  • yb positive side
  • yc negative side
  • yd positive side
  • FIG. 1 only the section 112 of the coordinates (xe, yd) is given a code, but all of the 20 coordinates are referred to as the section 112.
  • the sensor 110 shown in FIG. 1 may be referred to as the first horizontal electrode 150-EY1 to the fourth horizontal electrode 150-EY4 (hereinafter referred to as the horizontal electrode 150-EY without distinction). ), The first vertical electrode 150-EX1 to the fifth vertical electrode 150-EX5 (hereinafter sometimes referred to as the vertical electrode 150-EX without distinction).
  • the horizontal electrode 150-EY and the vertical electrode 150-EX may be referred to as the electrode 150 without being distinguished from each other.
  • the number of the electrodes 150 may be one or more, and is not limited to the number of the present embodiment. All the electrodes 150 are arranged along the operation surface 111 apart from the operation surface 111.
  • the horizontal electrode 150-EY is a flat conductor (for example, a metal thin film) that extends parallel to the xy plane.
  • the thickness in the z direction of the horizontal electrode 150-EY is uniform and is very thin compared to the length in the x direction and the width in the y direction.
  • the lateral electrode 150-EY is a rectangle having two sides parallel to the x direction and two sides parallel to the y direction.
  • the length of the horizontal electrode 150-EY in the x direction is larger than the width of the horizontal electrode 150-EY in the y direction.
  • the four horizontal electrodes 150-EY have shapes that are translated from each other in the y direction, and are spaced apart from each other at equal intervals. In the x direction, the resistance per unit length of the lateral electrode 150-EY is constant regardless of the location.
  • the first horizontal electrode 150-EY1 has a first left detection terminal 151-L1 at the negative end in the x direction and a first right detection terminal 151-R1 at the positive end in the x direction.
  • the second horizontal electrode 150-EY2 to the fourth horizontal electrode 150-EY4 have the second left detection terminal 151-L2 to the fourth left detection terminal 151-L4 at the negative end in the x direction, respectively.
  • the second right detection terminal 151-R2 to the fourth right detection terminal 151-R4 are provided at the positive end in the x direction.
  • the first left detection terminal 151-L1 to the fourth left detection terminal 151-L4 may be referred to as the left detection terminal 151-L without distinction.
  • Each left detection terminal 151-L is disposed at the center in the y direction of each horizontal electrode 150-EY.
  • the first right detection terminal 151-R1 to the fourth right detection terminal 151-R4 may be referred to as the right detection terminal 151-R without being distinguished from each other.
  • Each right detection terminal 151-R is arranged at the center in the y direction of each horizontal electrode 150-EY. All the horizontal electrodes 150-EY are electrically connected to the detection circuit 120 of FIG. 1 via one left detection terminal 151-L and one right detection terminal 151-R.
  • FIG. 3 is a plan view of the vertical electrode 150-EX.
  • the vertical electrode 150-EX is a flat conductor (for example, a metal thin film) that extends parallel to the xy plane.
  • the thickness of the vertical electrode 150-EX in the z direction is uniform, and is very thin compared to the width in the x direction and the length in the y direction.
  • the vertical electrode 150-EX is a rectangle having two sides parallel to the x direction and two sides parallel to the y direction.
  • the width of the vertical electrode 150-EX in the x direction is smaller than the length of the vertical electrode 150-EX in the y direction.
  • the four vertical electrodes 150-EX have shapes that are translated in the y direction, and are spaced apart from each other at equal intervals. In the y direction, the resistance per unit length of the vertical electrode 150-EX is constant regardless of the location.
  • the first vertical electrode 150-EX1 has a first upper detection terminal 151-T1 at the negative end in the y direction and a first lower detection terminal 151-B1 at the positive end in the y direction.
  • the second vertical electrode 150-EX2 to the fifth vertical electrode 150-EX5 have the second upper detection terminal 151-T2 to the fifth upper detection terminal 151-T5 at the negative side end in the y direction, respectively.
  • the second lower detection terminal 151-B2 to the fifth lower detection terminal 151-B5 are provided at the positive end in the y direction.
  • the first upper detection terminal 151-T1 to the fifth upper detection terminal 151-T5 may be referred to as the upper detection terminal 151-T without distinction.
  • Each upper detection terminal 151-T is disposed at the center in the x direction of each vertical electrode 150-EX.
  • the first lower detection terminal 151-B1 to the fifth lower detection terminal 151-B5 may be referred to as the lower detection terminal 151-B without being distinguished from each other.
  • Each lower detection terminal 151-B is arranged at the center in the x direction of each vertical electrode 150-EX. All the vertical electrodes 150-EX are electrically connected to the detection circuit 120 of FIG. 1 through one upper detection terminal 151-T and one lower detection terminal 151-B.
  • the horizontal electrode 150-EY and the vertical electrode 150-EX shown in FIG. 2 are spaced apart at a constant interval in the z direction.
  • the horizontal electrode 150-EY is located between the vertical electrode 150-EX and the operation surface 111 (FIG. 1).
  • the entire horizontal electrode 150 -EY directly faces the operation surface 111.
  • the vertical electrode 150-EX includes a portion that directly faces the operation surface 111 and a portion that is blocked in the z direction by the horizontal electrode 150-EY.
  • the length in the x direction of the horizontal electrode 150-EY is substantially equal to the width in the x direction of the entire five vertical electrodes 150-EX.
  • the negative edge in the y direction of the vertical electrode 150-EX is located closer to the negative side in the y direction than the negative edge in the y direction of the first horizontal electrode 150-EY1.
  • the positive side edge of the vertical electrode 150-EX in the y direction is substantially equal to the position of the negative side edge of the fourth horizontal electrode 150-EY4 in the y direction.
  • the distance between the vertical electrodes 150-EX is very small compared to the distance between the horizontal electrodes 150-EY.
  • the first horizontal electrode 150-EY1 passes through five sections 112 (FIG. 1) whose y coordinate is ya.
  • the second horizontal electrode 150-EY2 passes through five sections 112 (FIG. 1) whose y coordinate is yb.
  • the third horizontal electrode 150-EY3 passes through the five sections 112 (FIG. 1) whose y coordinate is yc.
  • the fourth horizontal electrode 150-EY4 passes through the five sections 112 (FIG. 1) whose y coordinate is yd.
  • the first vertical electrode 150-EX1 passes through four sections 112 (FIG. 1) whose x coordinate is xa.
  • the second vertical electrode 150-EX2 passes through four sections 112 (FIG. 1) whose x coordinate is xb.
  • the third vertical electrode 150-EX3 passes through four sections 112 (FIG. 1) whose x coordinate is xc.
  • the fourth vertical electrode 150-EX4 passes through four sections 112 (FIG. 1) whose x coordinate is xd.
  • the fifth vertical electrode 150-EX5 passes through four sections 112 (FIG. 1) whose x coordinate is xd.
  • a part of the operation surface 111 (FIG. 1) and at least one part of at least one electrode 150 are arranged close to each other.
  • the horizontal electrode 150-EY faces the operation surface 111
  • the vertical electrode 150-EX faces the operation surface 111.
  • the horizontal electrode 150-EY In the portion where the horizontal electrode 150-EY is positioned between the vertical electrode 150-EX and the operating body, only the horizontal electrode 150-EY closest to the operating body contributes to the change in the capacitance in the section 112. In one section 112, the area of the horizontal electrode 150-EY that contributes to a change in capacitance and the area of the vertical electrode 150-EX that contributes to a change in capacitance are substantially the same.
  • the detection circuit 120 shown in FIG. 1 detects the amount of charge that changes in accordance with the capacitance between the electrode 150 (FIG. 2) and the operating body from each of the plurality of detection terminals 151 (FIG. 2).
  • the detection circuit 120 detects the charge amount based on the same principle as that of a conventional self-capacitance input device.
  • the detection circuit 120 of this embodiment detects the electric charge accumulated by the electrostatic capacitance between one electrode 150 and the operating body shown in FIG. 2 by dividing it into two detection terminals 151.
  • the detection circuit 120 simultaneously detects the amount of charge at the two detection terminals 151. Since the electrode 150 has a resistance, a large amount of charge accumulated in one section 112 of the electrode 150 is detected at a nearby detection terminal 151 and less detected at a far detection terminal 151.
  • the storage device 130 illustrated in FIG. 1 stores an image data calculation program 131.
  • the image data calculation program 131 is read by the arithmetic processing device 140 and causes the arithmetic processing device 140 to implement a function for performing a part of the image data calculation method and other functions.
  • the storage device 130 is controlled by the arithmetic processing device 140 and stores necessary information as appropriate.
  • the storage device 130 is a non-transitory tangible storage medium.
  • the storage device 130 includes a ROM (read only memory) and a RAM (random access memory).
  • the storage device 130 is a volatile or nonvolatile storage medium.
  • the storage device 130 may be removable or non-removable.
  • the arithmetic processing unit 140 functions as the image data calculation unit 141 by reading and executing the image data calculation program 131 stored in the storage device 130.
  • the arithmetic processing unit 140 according to the present embodiment is a general-purpose computer, but may be an application specific integrated circuit (ASIC) and other functions that can implement the functions described in the present embodiment. It may be a circuit.
  • ASIC application specific integrated circuit
  • the image data calculation unit 141 illustrated in FIG. 1 detects a detection value for each of the plurality of detection terminals 151 based on the amount of charge detected through the detection terminal 151.
  • the detection value is a value that changes according to a change in the amount of charge. In the present embodiment, the detection value is a positive value that changes in proportion to the absolute value of the charge amount detected through the detection terminal 151.
  • the image data calculation unit 141 calculates image data corresponding to each of the plurality of sections 112. Each of the plurality of image data changes corresponding to the amount of charge accumulated by the capacitance between the two electrodes 150 (FIG. 2) and one or more operating bodies in one section 112. In the present embodiment, the image data is a positive value that changes in proportion to the absolute value of the amount of charge accumulated in one section 112.
  • the image data calculation unit 141 calculates a plurality of image data by executing an image calculation method described later based on a plurality of coefficient information described later.
  • a coefficient matrix A 160 shown in FIG. 4 is a matrix having coefficient information as elements.
  • p is 1 or more.
  • the coefficient matrix A 160 used by the image data calculation unit 141 (FIG. 1) has n rows having coefficient information as elements. This is represented by an m-column coefficient matrix A 160.
  • the elements of p rows and k columns of the coefficient matrix A 160 are the detection terminals 151 (FIG. 2) corresponding to the k columns out of the charge amount accumulated in the section 112 corresponding to the p rows. ) Represents the ratio of the amount of charge detected.
  • Each line of the coefficient matrix A 160 shown in FIG. 4 corresponds to the section 112 represented by the coordinates described on the left side of the coefficient matrix A 160.
  • Each column of the coefficient matrix A 160 corresponds to a detection terminal 151 (FIG. 2) identified by a symbol described above the coefficient matrix A 160.
  • the symbols described above the coefficient matrix A 160 shown in FIG. 4 correspond to the last two characters of the code of the detection terminal 151 shown in FIG. 2 (for example, L1 of the first left detection terminal 151-L1).
  • each of the plurality of pieces of coefficient information corresponds to a different combination of one of the plurality of sections 112 and one of the plurality of detection terminals 151 illustrated in FIG.
  • Each of the plurality of pieces of coefficient information represents the ratio of the amount of charge detected at the detection terminal 151 constituting the same combination among the amount of charge accumulated in the section 112 constituting one combination.
  • each column corresponds to the x coordinate shown in FIG. 2, and each row corresponds to the y coordinate shown in FIG.
  • the horizontal area ratio table 161Y shown in FIG. 5 and FIG. 6 is a horizontal electrode for the capacitance of the same section 112 out of the total area of the electrode 150 contributing to the capacitance of one section 112 shown in FIG.
  • the ratio of the area contributed by 150-EY is shown.
  • the ratio of the area occupied by the horizontal electrode 150-EY in all the sections 112 is “0.5”.
  • the vertical area ratio table 161X shown in FIGS. 7 and 8 is a vertical electrode with respect to the capacitance of the same section 112 out of the total area of the electrode 150 contributing to the capacitance of one section 112 shown in FIG.
  • the ratio of the area contributed by 150-EX is shown.
  • the ratio of the area occupied by the vertical electrode 150-EX in all the sections 112 is “0.5”.
  • the left resistance ratio table 162L shown in FIG. 5 shows the ratio of the amount of charge flowing to the left detection terminal 151-L out of the amount of charge accumulated in the horizontal electrode 150-EY in one section 112 shown in FIG.
  • the right resistance ratio table 162R shown in FIG. 6 shows the ratio of the amount of charge flowing to the left detection terminal 151-L out of the amount of charge accumulated in the horizontal electrode 150-EY in one section 112.
  • the left detection terminal 151-L and the right detection terminal 151-R The amount of charge flowing to R is determined.
  • the values of the sections 112 having the same x coordinate are all the same.
  • the values of the sections 112 having the same x coordinate are all the same.
  • the upper resistance ratio table 162T shown in FIG. 7 shows the ratio of the amount of charge flowing to the upper detection terminal 151-T out of the amount of charge accumulated in the vertical electrode 150-EX in one section 112 shown in FIG.
  • the lower resistance ratio table 162B shown in FIG. 8 shows the ratio of the amount of charge flowing to the lower detection terminal 151-B out of the amount of charge accumulated in the vertical electrode 150-EX in one section 112 shown in FIG.
  • the upper detection terminal 151-T and the lower detection terminal 151- The amount of charge flowing to B is determined.
  • the values of the sections 112 having the same y coordinate are all the same.
  • the values of the sections 112 having the same y coordinate are all the same.
  • Each value of the left coefficient table 163L shown in FIG. 5 is coefficient information, and is obtained by multiplying the value of the lateral area ratio table 161Y and the value of the left resistance ratio table 162L for each partition 112 (that is, for each coordinate). It is done. Since each value in the ya line corresponds to the first left detection terminal 151-L1, it is written in the corresponding coordinate line in the L1 column of the coefficient matrix A 160 (FIG. 4). Since each value of the yb row corresponds to the second left detection terminal 151-L2, it is written in the row of the corresponding coordinate in the L2 column of the coefficient matrix A 160 (FIG. 4).
  • each value in the yc row corresponds to the third left detection terminal 151-L3, it is written in the corresponding coordinate row in the L3 column of the coefficient matrix A 160 (FIG. 4). Since each value in the yd row corresponds to the fourth left detection terminal 151-L4, it is written in the corresponding coordinate row in the L4 column of the coefficient matrix A 160 (FIG. 4).
  • Each value of the right coefficient table 163R shown in FIG. 6 is coefficient information, and is obtained by multiplying the value of the lateral area ratio table 161Y and the value of the right resistance ratio table 162R for each partition 112 (that is, for each coordinate). It is done. Since each value in the ya line corresponds to the first right detection terminal 151-R1, it is entered in the corresponding coordinate line in the R1 column of the coefficient matrix A 160 (FIG. 4). Since each value in the yb row corresponds to the second right detection terminal 151-R2, it is written in the row of the corresponding coordinate in the R2 column of the coefficient matrix A 160 (FIG. 4).
  • each value in the yc row corresponds to the third right detection terminal 151-R3, it is written in the row of the corresponding coordinate in the R3 column of the coefficient matrix A 160 (FIG. 4). Since each value of the yd row corresponds to the fourth right detection terminal 151-R4, it is written in the row of the corresponding coordinate in the R4 column of the coefficient matrix A 160 (FIG. 4).
  • Each value of the upper coefficient table 163T illustrated in FIG. 7 is coefficient information, and is obtained by multiplying the value of the vertical area ratio table 161X and the value of the upper resistance ratio table 162T for each partition 112 (that is, for each coordinate). It is done. Since each value in the xa column corresponds to the first upper detection terminal 151-T1, it is written in the row of the corresponding coordinate in the T1 column of the coefficient matrix A 160 (FIG. 4). Since each value in the xb column corresponds to the second upper detection terminal 151-T2, it is written in the row of the corresponding coordinate in the T2 column of the coefficient matrix A 160 (FIG. 4).
  • each value in the xc column corresponds to the third upper detection terminal 151-T3, it is written in the row of the corresponding coordinate in the T3 column of the coefficient matrix A 160 (FIG. 4). Since each value in the xd column corresponds to the fourth upper detection terminal 151-T4, it is written in the row of the corresponding coordinate in the T4 column of the coefficient matrix A 160 (FIG. 4). Since each value in the xe column corresponds to the fifth upper detection terminal 151-T5, it is written in the row of the corresponding coordinate in the T5 column of the coefficient matrix A 160 (FIG. 4).
  • Each value of the lower coefficient table 163B shown in FIG. 8 is coefficient information, and is obtained by multiplying the value of the vertical area ratio table 161X and the value of the lower resistance ratio table 162B for each section 112 (that is, for each coordinate). It is done. Since each value in the xa column corresponds to the first lower detection terminal 151-B1, it is written in the row of the corresponding coordinate in the B1 column of the coefficient matrix A 160 (FIG. 4). Since each value in the xb column corresponds to the second lower detection terminal 151-B2, it is written in the row of the corresponding coordinate in the B2 column of the coefficient matrix A 160 (FIG. 4).
  • each value in the xc column corresponds to the third lower detection terminal 151-B3, it is written in the row of the corresponding coordinate in the B3 column of the coefficient matrix A 160 (FIG. 4). Since each value in the xd column corresponds to the fourth lower detection terminal 151-B4, it is written in the row of the corresponding coordinate in the B4 column of the coefficient matrix A 160 (FIG. 4). Since each value in the xe column corresponds to the fifth lower detection terminal 151-B5, it is written in the row of the corresponding coordinate in the B5 column of the coefficient matrix A 160 (FIG. 4).
  • Each of the plurality of coefficient information is a value calculated by multiplication of the first value and the second value.
  • the detection terminal 151 constituting one combination is called a target terminal
  • the electrode 150 including the target terminal is called a target electrode
  • the section 112 constituting one combination is called a target section.
  • the first value is a value obtained by dividing the area of the portion of the target electrode arranged in the target section by the total area of the portion of one or more electrodes 150 that contributes to generation of the detection value in the target section. is there.
  • the target resistance value representing the resistance value between the target section and the target terminal and the non-target resistance value between the target section and the other one detection terminal 151 in the target electrode are all detected in the target electrode.
  • the second value corresponding to the target section and the target terminal is the second value corresponding to the target section and the other one detection terminal 151. Smaller than.
  • the target resistance value is smaller than the non-target resistance value
  • the second value corresponding to the target section and the target terminal is larger than the second value corresponding to the target section and the other one detection terminal 151.
  • the sum of all the second values corresponding to the target section is 1.
  • the section 112 (that is, the target section) having the coordinates (xa, ya) shown in FIG. 2 and the first left detection terminal 151-L1 (that is, the target terminal) are selected as one combination.
  • the coefficient information of this combination is the element (that is, the first value) of the coordinate (xa, ya) of the horizontal area ratio table 161Y and the element (that is, the second value) of the coordinate (xa, ya) of the left resistance ratio table 162L. It is calculated by multiplication.
  • the first horizontal electrode 150-EY1 including the first left detection terminal 151-L1 is called a target electrode.
  • the first value is the area of the first horizontal electrode 150-EY1 (target electrode) that contributes to the generation of the detection value of the target section, and the portion of all the electrodes 150 that contributes to the generation of the detection value in the target section. It is obtained by dividing by the total area.
  • the target resistance value between the target section and the target terminal and the first right detection terminal 151-R1 which is the other one detection terminal 151 in the first horizontal electrode 150-EY1 (target electrode). Compare the non-target resistance value.
  • the target resistance value: non-target resistance value is “0: 1”. Since the target resistance value is smaller than the non-target resistance value, the second value corresponding to the target section and the target terminal (that is, the elements of the coordinates (xa, ya) of the left resistance ratio table 162L in FIG. 5) is It is larger than the second value corresponding to the first right detection terminal 151-R1 (that is, the element of the coordinates (xa, ya) of the right resistance ratio table 162R in FIG. 6).
  • the target resistance value is larger than the non-target resistance value.
  • the second value corresponding to the target section and the first right detection terminal 151-R1 (target terminal) that is, the elements of the coordinates (xa, ya) of the right resistance ratio table 162R in FIG. 6
  • FIG. 9 is a flowchart for explaining the image data calculation method.
  • an image data calculation method executed by the image data calculation unit 141 will be described with reference to the configuration of FIGS. 1 and 2 and the flowchart of FIG. 9.
  • specific numerical values related to each other are illustrated as examples, but the present embodiment is not limited to the illustrated numerical values.
  • FIG. 10 shows a plurality of matrixes of the embodiment that are used or calculated when one calculation loop described later is executed once in the image data calculation method.
  • the image data calculation unit 141 controls the detection circuit 120 to detect a detection value through the detection terminal 151 for each of the plurality of detection terminals 151.
  • the detection value changes corresponding to the amount of charge detected through the detection terminal 151.
  • Step 214 is executed after step 212 shown in FIG.
  • the image data calculation unit 141 generates a detection value matrix S 173 of 1 row and m columns having m detection values as elements.
  • the symbol described above the detection value matrix S 173 represents the correspondence between the column in which the symbol is described and the detection terminal 151 illustrated in FIG. 2, and the last two characters of the code of the detection terminal 151 (For example, L1 of the first left detection terminal 151-L1).
  • step 216 is executed.
  • the image data calculation unit 141 creates an n ⁇ 1 initial image data matrix Z 0 171 whose elements are n pieces of initial image data.
  • the symbol described on the left side of the initial image data matrix Z 0 171 represents the correspondence between the row in which the symbol is described and the coordinates shown in FIG.
  • the initial image data represents image data temporarily set for each of the sections 112 as image data before the calculation loop is executed.
  • the image data calculation unit 141 uses a predetermined value as initial image data corresponding to each of the plurality of sections 112 in a first calculation loop described later.
  • the predetermined value is a positive value. In the embodiment, all the predetermined values are 1.
  • Step 218 is executed after step 216 shown in FIG. Steps 218 to 224 described below are called a calculation loop.
  • the image data calculation unit 141 calculates a plurality of image data by executing one or more calculation loops.
  • the image data calculation unit 141 may repeat the calculation loop a plurality of times.
  • step 218 shown in FIG. 9 the image data calculation unit 141 assumes that the charge amounts corresponding to the plurality of initial image data are accumulated in the plurality of sections 112 according to the correspondence between the plurality of initial image data and the plurality of sections 112. In this case, a plurality of calculated values representing detection values detected at the plurality of detection terminals 151 are calculated. Calculating a plurality of calculated values includes calculating a plurality of calculated values based on a plurality of coefficient information.
  • Column calculated value matrix S 0 172, the symbols described above the calculated value matrix S 0 172 represents a correspondence between the column and the detection terminal 151 shown in FIG. 2 described symbols.
  • Step 220 is executed after step 218 shown in FIG.
  • the image data calculation unit 141 calculates a comparison value based on a comparison between the calculated value and the detected value for each of the plurality of detection terminals 151. For each of the plurality of detection terminals 151, calculating the comparison value includes dividing the detection value for each of the plurality of detection terminals 151 by the calculated value.
  • the comparison value is calculated by, as shown in FIG. 10, a 1-row m-column comparison value matrix S C 174 having m comparison values as elements. Including calculating.
  • the symbol described above the comparison value matrix S C 174 represents the correspondence between the column in which the symbol is described and the detection terminal 151 illustrated in FIG.
  • a value obtained by dividing the element of the k-th column of the detection value matrix S 173 by the element of the k-th column of the calculated value matrix S 0 172 is k columns of the comparison value matrix S C 174 The eye element.
  • Step 222 is executed after step 220 shown in FIG.
  • the image data calculation unit 141 calculates a correction value for correcting the initial image data for each of the plurality of sections 112 based on the comparison value and the coefficient information.
  • calculating a correction value corresponding to one section 112 means that one section 112 for each of the plurality of detection terminals 151.
  • the correction value is obtained by converting the ratio between the detected value and the calculated value into the ratio between the image data and the initial image data using coefficient information.
  • the symbol written on the left side of the correction value matrix Z C 175 represents the correspondence between the row in which the symbol is written and the coordinates shown in FIG.
  • Step 224 is executed after step 222 shown in FIG.
  • the image data calculation unit 141 calculates image data for each of the plurality of sections 112 by correcting the initial image data based on the correction value.
  • Calculating image data for each of the plurality of sections 112 includes calculating image data for each of the plurality of sections 112 by multiplying the correction value by the initial image data.
  • calculating the image data by correcting the initial image data based on the correction value includes n pieces of image data as shown in FIG. calculating an n ⁇ 1 image data matrix Z 176.
  • the symbol described on the left side of the image data matrix Z 176 represents the correspondence between the row in which the symbol is described and the coordinates shown in FIG.
  • the value obtained by multiplying the p-th element of the initial image data matrix Z 0 171 by the p-th element of the correction value matrix Z C 175 is the p-th line of the image data matrix Z 176. Includes making it an eye element.
  • Step 226 is executed after step 224 shown in FIG.
  • the image data calculation unit 141 determines whether the calculation loop has been executed a predetermined number of times.
  • the predetermined number of times is, for example, 10 times. If the image data calculation unit 141 determines that the calculation loop has been executed a predetermined number of times, the image data calculation method ends. If the image data calculation unit 141 determines that the calculation loop has not been executed a predetermined number of times, the image data calculation unit 141 proceeds to step 228.
  • step 228 shown in FIG. 9 the image data calculation unit 141 uses the image data calculated in the calculation loop for each of the plurality of sections 112 as initial image data in the next calculation loop. Specifically, an image data matrix Z 176 is used instead of the initial image data matrix Z 0 171 shown in FIG. Following step 228, step 218 is executed again.
  • the comparison value gradually approaches 1, so that it can be seen that the image data gradually approaches the actual value.
  • the image data calculation unit 141 may repeat the calculation loop for a predetermined time instead of limiting the number of executions. In another example, the image data calculation unit 141 may repeat the calculation loop until the change amount of the image data becomes smaller than the threshold value, instead of limiting the number of executions.
  • the initial image data matrix Z 0 171 and the correction value matrix Z C 175 shown in FIG. 10 elements in the same row correspond to the sections 112 having the same coordinates.
  • the detection value matrix S 173 the calculated value matrix S 0 172, and the comparison value matrix S C 174, elements in the same column correspond to the same detection terminal 151.
  • elements in the coefficient matrix A 160 shown in FIG. 4 and the image data matrix Z 176 shown in FIG. 10 elements in the same row correspond to the sections 112 having the same coordinates.
  • elements in the same column correspond to the same detection terminal 151.
  • FIG. 11 is a diagram illustrating the transition of the image data when the calculation loop is executed a plurality of times in the embodiment.
  • the first image data table 181 to the sixth image data table 186 are created in order.
  • Each element of the first image data table 181 to the sixth image data table 186 indicates image data in the section 112 expressed by an x coordinate corresponding to a column and a y coordinate corresponding to a row.
  • the input device 100 may detect the number and coordinates of the operating body by referring to the image data.
  • the shape of the electrode 150 in the compartment 112 is not limited to a rectangle.
  • the shape of the electrode in the section 112 may be a circle, another polygon, a rhombus, or an indefinite shape that is different for each section 112.
  • the electrode 150 passing through the plurality of sections 112 may be integrally formed, or may be formed by connecting separate electrodes with a conductive member such as a wiring or a resistor.
  • the image data calculation unit 141 calculates a plurality of image data based on a plurality of detection values detected by the plurality of detection terminals 151 and a plurality of coefficient information.
  • Image data can be calculated without dividing the electrode 150 for each section 112. Further, as compared with the case where the electrode 150 is divided for each section 112, the wiring between the image data calculation unit 141 and the electrode 150 is reduced, and the image data can be calculated with a simple configuration. That is, the image data representing the change in capacitance between the operation surface 111 and the operation body at each of a plurality of positions along the operation surface 111 can be generated with a small number of electrodes 150.
  • the image data calculation unit 141 calculates a comparison value based on the comparison between the calculated value and the detection value for each of the plurality of detection terminals 151 in the calculation loop, and the initial image based on the comparison value. Since the image data is calculated by correcting the data, the image data can be easily approximated to the actual value with a small amount of calculation compared to the case where the initial image data is selected at random. That is, by performing approximate calculation using the initially set initial image data as a starting point, the image data of the section 112 can be calculated by taking into account the deviation between the calculated value and the detected value while reducing the amount of calculation compared to when performing exact calculation. Can be calculated accurately.
  • the calculated value and the correction value are calculated based on the coefficient information indicating the proportion of the charge amount detected at each detection terminal 151 out of the charge amount accumulated in each section 112. It is possible to accurately calculate the image data reflecting the actual physical flow.
  • the coefficient information is calculated based on the area and the resistance value, so that the image data can be accurately calculated reflecting the actual physical configuration.
  • the initial image data can be gradually brought closer to the actual image data, and the position can be calculated more accurately.
  • the present invention can be applied to an input device that creates image data that changes in accordance with the degree of proximity of an operating tool for each of a plurality of coordinates spread in two dimensions.
  • First left detection terminal to Fourth left detection) Terminal 151-R: Right detection terminal (151-R1 to R4: First right detection terminal to Fourth right detection terminal) 151-T: Upper detection terminal (151-T1-T5: First upper detection terminal to Fifth upper detection terminal) 151-B... Lower detection terminal (151-B1 to B5... First lower detection terminal to Fifth lower detection terminal) 160 ... coefficient matrix A 181 to 186... First image data table to sixth image data table

Abstract

入力装置100の各電極150が、イメージデータ算出部141に接続された複数の検出端子151を含む。イメージデータ算出部141は、検出端子151を通じて検出される電荷量に対応して変化する検出値を検出し、複数の係数情報に基づいて、複数の区画112の各々における静電容量対応した複数のイメージデータを算出する。各係数情報は、複数の区画112の1つと複数の検出端子151の1つとの異なる組み合わせに対応する。各係数情報は、1つの区画112に蓄積される電荷量のうち1つの検出端子151で検出される電荷量の割合を表す。

Description

入力装置、イメージデータ算出方法、及びイメージデータ算出プログラム
 本発明は、入力装置、イメージデータ算出方法、及びイメージデータ算出プログラムに関するものである。
 従来、特許文献1に記載のように、平面の操作面において、操作体(例えば、指や操作ペン)が触れている場所を検出する静電容量式の入力装置が知られている。特許文献1の入力装置の内部には、操作面から離間した位置に、操作面に沿って複数の電極が2次元に配置されている。特許文献1の入力装置は、操作体と電極との間の静電容量の変化に対応するイメージデータを電極ごとに検出することにより、2次元的に操作体の接触位置を検出する。
特開2012-27889号公報
 しかしながら、特許文献1の入力装置では、2次元の様々な測定位置におけるイメージデータを作成するには、測定位置の数と同数の電極が必要である。電極の数が膨大になると、静電容量を検出する検出回路の入力端子が膨大となり、装置が大きくなるという不利益がある。また、電極の数が膨大になると、静電容量を全て高感度に検出すると時間と回数とが膨大になり、短時間で静電容量を検出すると感度が悪くなるという不利益がある。
 本発明はかかる事情に鑑みてなされたものであり、その目的は、操作面に沿った複数の位置の各々における操作面と操作体との静電容量の変化を表すイメージデータを少ない電極で高精度に作成できる入力装置を提供することにある。
 本発明は、近接した1つ以上の操作体による操作を受ける操作面と、操作面から離間して操作面に沿って配置された1つ以上の電極と、仮想的に設定される複数の区画の各々に対応したイメージデータを算出するイメージデータ算出部と、を備え、複数の区画の各々において、操作面の一部と少なくとも1つの電極の少なくとも1つの部分とが近接して配置され、イメージデータの各々が、少なくとも1つの電極と1つ以上の操作体との間の静電容量により1つの区画において蓄積される電荷量に対応して変化し、1つ以上の電極の各々が、イメージデータ算出部に接続された複数の検出端子を含み、イメージデータ算出部が、複数の検出端子の各々について、検出端子を通じて検出される電荷量に対応して変化する検出値を検出し、イメージデータ算出部が、複数の係数情報に基づいて複数のイメージデータを算出し、複数の係数情報の各々が、複数の区画の1つと複数の検出端子の1つとの異なる組み合わせに対応し、複数の係数情報の各々が、1つの組み合わせを構成する区画に蓄積される電荷量のうち、1つの組み合わせを構成する検出端子で検出される電荷量の割合を表す、入力装置である。
 この構成によれば、イメージデータ算出部が、複数の検出端子で検出される複数の検出値と、複数の係数情報とに基づいて複数のイメージデータを算出するので、従来のように区画ごとに電極を分割しなくてもイメージデータを算出できる。また、区画ごとに電極を分割する場合に比べて、イメージデータ算出部と電極との配線が少なくてすみ、簡単な構成でイメージデータを算出できる。すなわち、操作面に沿った複数の位置の各々における操作面と操作体との静電容量の変化を表すイメージデータを少ない電極で高精度に作成できる。
 好適には本発明の入力装置において、イメージデータ算出部が、1回以上の算出ループを実行することにより複数のイメージデータを算出し、イメージデータ算出部が、1回目の算出ループにおいて、複数の区画の各々に対応した初期イメージデータとして所定の値を使用し、算出ループが、複数の初期イメージデータと複数の区画との対応に従って複数の初期イメージデータに対応する電荷量が複数の区画に蓄積されたと仮定した場合に複数の検出端子で検出される検出値を表す複数の算出値を算出することと、複数の検出端子の各々について、算出値と検出値との比較に基づいた比較値を算出することと、複数の区画の各々について、初期イメージデータを補正する補正値を比較値と係数情報とに基づいて算出することと、複数の区画の各々について、補正値に基づいて初期イメージデータを補正することによりイメージデータを算出することと、を含み、イメージデータ算出部が、検出端子の各々について、算出ループにおいて算出されたイメージデータを、次回の算出ループにおける初期イメージデータとして使用する。
 この構成によれば、イメージデータ算出部が算出ループにおいて、複数の検出端子の各々について、算出値と検出値との比較に基づいた比較値を算出し、比較値に基づいて初期イメージデータを補正することによりイメージデータを算出するので、やみくもに初期イメージデータを選択する場合に比べると、少ない計算量でイメージデータを実際の値に近づけやすい。すなわち、仮に設定した初期イメージデータを出発点として近似計算を行うことで、厳密な計算を行う場合より少ない計算量としながら、算出値と検出値とのずれを考慮することで区画のイメージデータを正確に算出できる。
 好適には本発明の入力装置において、複数の検出端子の各々について、比較値を算出することが、複数の検出端子の各々について、検出値を算出値で除算することを含み、1つの区画に対応するすべての係数情報を、1群の係数情報と呼ぶとき、1つの区画に対応する補正値を算出することが、複数の検出端子の各々について、1つの区画に対応する1群の係数情報に含まれる係数情報と比較値とを乗算した値の和を補正値として算出することを含み、複数の区画の各々について、イメージデータを算出することが、複数の区画の各々について、補正値と初期イメージデータとを乗算することによりイメージデータを算出することを含む。
 この構成によれば、各区画に蓄積される電荷量のうち各検出端子で検出される電荷量の割合を表す係数情報に基づいて、算出値と補正値とを算出するので、電荷の実際の物理的な流れを反映して正確にイメージデータを算出できる。
 好適には本発明の入力装置において、区画の数が、nと表され、n個のイメージデータを要素とするn行1列の行列が、行列Zと表され、n個の初期イメージデータを要素とするn行1列の行列が、行列Zと表され、n個の補正値を要素とするn行1列の行列が、行列Zと表され、行列Zと行列Zと行列Zとにおいて、同じ行の要素が、同じ区画に対応し、検出端子の数が、mと表され、m個の検出値を要素とする1行m列の行列が、行列Sと表され、m個の算出値を要素とする1行m列の行列が、行列Sと表され、m個の比較値を要素とする1行m列の行列が、行列Sと表され、行列Sと行列Sと行列Sとにおいて、同じ列の要素が、同じ検出端子に対応し、pが、1以上n以下の整数であり、かつ、kが、1以上m以下の整数である、としたとき、イメージデータ算出部が、係数情報を要素とするn行m列の係数行列Aを使用し、係数行列Aと行列Sとにおいて、同じ列の要素が、同じ検出端子に対応し、行列Zと係数行列Aとにおいて、同じ行の要素が、同じ区画に対応し、すべてのpとすべてのkとについて、係数行列Aのp行k列の要素が、p行に対応する区画に蓄積される電荷量のうち、k列に対応する検出端子で検出される電荷量の割合を表し、複数の算出値を算出することが、行列Zの転置行列Z を使用してS=Z ・Aを算出することを含み、複数の検出端子の各々について、比較値を算出することが、1以上m以下のすべての整数kについて、行列Sのk列目の要素を行列Sのk列目の要素で割った値を行列Sのk列目の要素とすることを含み、複数の区画の各々について、補正値を算出することが、行列Zの転置行列Z を使用してZ=A・S を算出することを含み、複数の区画の各々について、補正値に基づいて初期イメージデータを補正することによりイメージデータを算出することが、1以上n以下のすべての整数pについて、行列Zのp行目の要素に行列Zのp行目の要素を乗じた値を行列Zのp行目の要素とすることを含む。
 この構成によれば、逆行列を使用しない近似計算が可能であるため、逆行列を厳密に計算する方法に比べて少ない計算量でイメージデータを正確に算出できる。
 好適には本発明の入力装置において、複数の係数情報の各々が、第1値と第2値との乗算により算出される値であり、1つの組み合わせを構成する検出端子を対象端子と呼び、対象端子を含む電極を対象電極と呼び、かつ、1つの組み合わせを構成する区画を対象区画と呼ぶとき、第1値が、対象電極のうち対象区画における検出値の生成に寄与する部分の面積を、1つ以上の電極のうち対象区画における検出値の生成に寄与する部分の総面積で除算して得られる値であり、対象区画と対象端子との間の抵抗値を表す対象抵抗値と、対象区画と対象電極内の他の1つの検出端子との間の抵抗値を表す非対象抵抗値とを、対象電極内の全ての検出端子について比較した場合、対象抵抗値が非対象抵抗値より大きいとき、対象区画と対象端子とに対応した第2値が、対象区画と他の1つの検出端子とに対応した第2値より小さく、対象抵抗値が非対象抵抗値より小さいとき、対象区画と対象端子とに対応した第2値が、対象区画と他の1つの検出端子とに対応した第2値より大きく、対象区画に対応した全ての第2値の合計が1となる。
 この構成によれば、面積と抵抗値とに基づいて係数情報が算出されるので、実際の物理的な構成を反映して正確にイメージデータを算出することができる。
 好適には本発明の入力装置において、イメージデータ算出部が、1回目の算出ループにおいて、複数のイメージデータの各々に対応した初期イメージデータとして所定の正値を使用する。
 この構成によれば、1回目の算出ループにおいて、複数のイメージデータの各々に対応した初期イメージデータとして所定の正値を使用するので、検出値が正であれば解が必ず正となり、イメージデータを正に限定した場合に、明らかに間違った解を排除できる。
 好適には本発明の入力装置において、イメージデータ算出部が、算出ループを複数回繰り返す。
 この構成によれば、前記算出ループを複数回繰り返すので、初期イメージデータを徐々に実際のイメージデータに近づけることができ、より正確に位置を算出することができる。
 本発明は、近接した1つ以上の操作体による操作を受ける操作面と、操作面から離間して操作面に沿って配置された1つ以上の電極と、仮想的に設定される複数の区画の各々に対応したイメージデータを算出するイメージデータ算出部とを備え、複数の区画の各々において、操作面の一部と少なくとも1つの電極の少なくとも1つの部分とが近接して配置され、イメージデータの各々が、少なくとも1つの電極と1つ以上の操作体との間の静電容量により1つの区画において蓄積される電荷量に対応して変化し、1つ以上の電極の各々が、イメージデータ算出部に接続された複数の検出端子を含む入力装置により実行されるイメージデータ算出方法であって、イメージデータ算出部により、複数の検出端子の各々について、検出端子を通じて検出される電荷量に対応して変化する検出値を検出することと、イメージデータ算出部により、複数の係数情報に基づいて複数のイメージデータを算出することと、を含み、複数の係数情報の各々が、複数の区画の1つと複数の検出端子の1つとの異なる組み合わせに対応し、複数の係数情報の各々が、1つの組み合わせを構成する区画に蓄積される電荷量のうち、1つの組み合わせを構成する検出端子で検出される電荷量の割合を表す、イメージデータ算出方法である。
 本発明は、コンピュータに上記のイメージデータ算出方法を実行させるイメージデータ算出プログラムである。
 本発明によれば、操作面に沿った複数の位置の各々における操作面と操作体との静電容量の変化を表すイメージデータを少ない電極で高精度に作成できる。
本発明の実施形態の入力装置の構成図である。 図1に示すセンサの電極を示す平面図である。 図2に示す縦電極を示す平面図である。 図1の入力装置で使用される係数情報を要素とする係数行列Aを示す図である。 左検出端子に関連した図4の係数情報を算出する過程を説明するための図である。 右検出端子に関連した図4の係数情報を算出する過程を説明するための図である。 上検出端子に関連した図4の係数情報を算出する過程を説明するための図である。 下検出端子に関連した図4の係数情報を算出する過程を説明するための図である。 図1に示す入力装置のイメージデータ算出方法を説明するためのフローチャートである。 図9のイメージデータ算出方法で使用または算出される行列の例を示す図である。 図1のイメージデータ算出方法に含まれる算出ループを複数回行って得られる例示的なイメージデータを示す図である。
(全体構成)
 以下、本発明の実施形態に係る入力装置について説明する。図1は、本実施形態に係る入力装置100の概略構成図である。入力装置100は、パソコンなどの外部機器に搭載されている。入力装置100は、1つ以上の操作体(例えば、人間の指、操作用のペンなど)の近接度合いに応じて変化するイメージデータを、2次元に広がる複数の座標の各々に対して作成する。入力装置100または外部機器は、イメージデータを利用して、例えば、操作体の数、位置、軌跡を検出する。入力装置100は、センサ110と検出回路120と記憶装置130と演算処理装置140とを含む。
 本明細書において、互いに直交するx方向とy方向とz方向とを規定する。また、上、下、左、及び右という表現を用いる場合がある。これらの方向は、相対的な位置関係を説明するために便宜上規定するのであって、実際の使用時の方向を限定するわけではない。構成要素の形状は、「略」という記載があるかないかにかかわらず、本明細書で開示された実施形態の技術思想が実現される限り、記載された表現に基づく厳密な幾何学的な形状に限定されない。
(センサ)
 センサ110は、xy平面に平行に広がる操作面111を含む。操作面111は、近接した1つ以上の操作体による操作を受ける場所である。
 操作面111には、複数の区画112が仮想的に設定される。区画112は、z方向に見たとき、すべて同じ形状であり、x方向に沿った2辺とy方向に沿った2辺とをもつ略長方形状の領域である。区画112の各々は、z方向に延びている。区画112は、x方向に5つ並び、y方向に4つ並び、全体としてマトリクス状に20個並んでいる。x方向に並ぶ5つの区画112のx座標は、負側(図の左側)から正側(図の右側)に向けて、順にxa、xb、xc、xd、xeである。y方向に並ぶ4つの区画112のy座標は、負側(図の上側)から正側(図の下側)に向けて、順にya、yb、yc、ydである。図1では、座標(xe、yd)の区画112のみに符号がふられているが、20個の座標のすべてを区画112と呼ぶ。
 図1に示すセンサ110内には、図2に示すように、第1横電極150-EY1~第4横電極150-EY4と(以下、区別せずに横電極150-EYと呼ぶ場合がある。)、第1縦電極150-EX1~第5縦電極150-EX5と(以下、区別せずに縦電極150-EXと呼ぶ場合がある。)を含む。以下、横電極150-EYと縦電極150-EXとを区別せずに電極150と呼ぶ場合がある。電極150は、1つ以上あればよく、本実施形態の数に限定されない。電極150はすべて、操作面111から離間して操作面111に沿って配置されている。
(横電極)
 横電極150-EYは、xy平面に平行に広がる平板状の導体(例えば、金属薄膜)である。横電極150-EYのz方向の厚さは、均一であり、x方向の長さとy方向の幅とに比べて非常に薄い。横電極150-EYは、z方向に見たとき、x方向に平行な2辺とy方向に平行な2辺とをもつ長方形である。横電極150-EYのx方向の長さは、横電極150-EYのy方向の幅よりも大きい。4つの横電極150-EYは、互いにy方向に平行移動させた形状をもち、互いに等間隔に離間している。x方向において、横電極150-EYの単位長さ当たりの抵抗は、場所によらず一定である。
 第1横電極150-EY1は、x方向の負側の端部に第1左検出端子151-L1をもち、x方向の正側の端部に第1右検出端子151-R1をもつ。同様に、第2横電極150-EY2~第4横電極150-EY4は、それぞれ、x方向の負側の端部に第2左検出端子151-L2~第4左検出端子151-L4をもち、x方向の正側の端部に第2右検出端子151-R2~第4右検出端子151-R4をもつ。
 以下、第1左検出端子151-L1~第4左検出端子151-L4を区別せずに、左検出端子151-Lと呼ぶ場合がある。各左検出端子151-Lは、各横電極150-EYのy方向の中心に配置されている。以下、第1右検出端子151-R1~第4右検出端子151-R4を区別せずに、右検出端子151-Rと呼ぶ場合がある。各右検出端子151-Rは、各横電極150-EYのy方向の中心に配置されている。すべての横電極150-EYが、1つの左検出端子151-Lと1つの右検出端子151-Rとを介して、図1の検出回路120に電気的に接続されている。
(縦電極)
 図3は、縦電極150-EXの平面図である。縦電極150-EXは、xy平面に平行に広がる平板状の導体(例えば、金属薄膜)である。縦電極150-EXのz方向の厚さは、均一であり、x方向の幅とy方向の長さとに比べて非常に薄い。縦電極150-EXは、z方向に見たとき、x方向に平行な2辺とy方向に平行な2辺とをもつ長方形である。縦電極150-EXのx方向の幅は、縦電極150-EXのy方向の長さよりも小さい。4つの縦電極150-EXは、互いにy方向に平行移動させた形状をもち、互いに等間隔に離間している。y方向において、縦電極150-EXの単位長さ当たりの抵抗は、場所によらず一定である。
 第1縦電極150-EX1は、y方向の負側の端部に第1上検出端子151-T1をもち、y方向の正側の端部に第1下検出端子151-B1をもつ。同様に、第2縦電極150-EX2~第5縦電極150-EX5は、それぞれ、y方向の負側の端部に第2上検出端子151-T2~第5上検出端子151-T5をもち、y方向の正側の端部に第2下検出端子151-B2~第5下検出端子151-B5をもつ。
 以下、第1上検出端子151-T1~第5上検出端子151-T5を区別せずに、上検出端子151-Tと呼ぶ場合がある。各上検出端子151-Tは、各縦電極150-EXのx方向の中心に配置されている。以下、第1下検出端子151-B1~第5下検出端子151-B5を区別せずに、下検出端子151-Bと呼ぶ場合がある。各下検出端子151-Bは、各縦電極150-EXのx方向の中心に配置されている。すべての縦電極150-EXが、1つの上検出端子151-Tと1つの下検出端子151-Bとを介して、図1の検出回路120に電気的に接続されている。
(横電極と縦電極)
 図2に示す横電極150-EYと縦電極150-EXとは、z方向に一定間隔で離間している。横電極150-EYは、縦電極150-EXと操作面111(図1)との間に位置している。横電極150-EYは、全体が操作面111に直接面している。縦電極150-EXは、操作面111に直接面している部分と、横電極150-EYによりz方向に遮られている部分がある。
 横電極150-EYのx方向の長さは、5つの縦電極150-EXの全体のx方向の幅に略等しい。縦電極150-EXのy方向の負側の端縁は、第1横電極150-EY1のy方向の負側の端縁よりも、y方向の負側に位置している。縦電極150-EXのy方向の正側の端縁は、第4横電極150-EY4のy方向の負側の端縁の位置に略等しい。縦電極150-EX間の間隔は、横電極150-EY間の間隔に比べて非常に小さい。
(区画)
 第1横電極150-EY1(図2)は、y座標がyaである5つの区画112(図1)を通る。第2横電極150-EY2(図2)は、y座標がybである5つの区画112(図1)を通る。第3横電極150-EY3(図2)は、y座標がycである5つの区画112(図1)を通る。第4横電極150-EY4(図2)は、y座標がydである5つの区画112(図1)を通る。
第1縦電極150-EX1(図2)は、x座標がxaである4つの区画112(図1)を通る。第2縦電極150-EX2(図2)は、x座標がxbである4つの区画112(図1)を通る。第3縦電極150-EX3(図2)は、x座標がxcである4つの区画112(図1)を通る。第4縦電極150-EX4(図2)は、x座標がxdである4つの区画112(図1)を通る。第5縦電極150-EX5(図2)は、x座標がxdである4つの区画112(図1)を通る。
 図2に示すように、複数の区画112の各々において、操作面111(図1)の一部と少なくとも1つの電極150の少なくとも1つの部分とが近接して配置されている。1つの区画112で見たとき、図2に示すように、区画112のy方向の正側半分において、横電極150-EYが操作面111に対向し、区画112のy方向の負側半分において、縦電極150-EXが操作面111に対向している。操作体が電極150に近接すると、近接度合いに応じて操作体と電極150との間の静電容量が変化する。縦電極150-EXと操作体との間に横電極150-EYが位置している部分では、操作体に最も近い横電極150-EYのみが、区画112における静電容量の変化に寄与する。1つの区画112では、静電容量の変化に寄与する横電極150-EYの面積と、静電容量の変化に寄与する縦電極150-EXの面積とは略同一である。
(検出回路120)
 図1に示す検出回路120は、電極150(図2)と操作体との間の静電容量に応じて変化する電荷量を、複数の検出端子151(図2)の各々から検出する。検出回路120は、従来の自己容量型の入力装置と同様の原理で電荷量を検出する。ただし、本実施形態の検出回路120は、図2に示す1つの電極150と操作体との間の静電容量により蓄積される電荷を、2つの検出端子151に分割して検出する。検出回路120は、2つの検出端子151において同時に電荷量の検出を行う。電極150には抵抗があるので、電極150の1つの区画112に蓄積された電荷は、近くの検出端子151で多く検出され、遠くの検出端子151では少なく検出される。
(記憶装置)
 図1に示す記憶装置130は、イメージデータ算出プログラム131を記憶する。イメージデータ算出プログラム131は、演算処理装置140によって読み出されて、演算処理装置140にイメージデータ算出方法の一部を行うための機能、及び他の機能を実装させる。演算処理装置140が種々の機能を実行するとき、記憶装置130は、演算処理装置140に制御されて、適宜必要な情報を記憶する。記憶装置130は、非一時的な有形の記憶媒体である。記憶装置130は、ROM(read only memory)及びRAM(random access memory)を含む。記憶装置130は、揮発性または不揮発性の記憶媒体である。記憶装置130は、取り外し可能であってもよく、取り外し不能であってもよい。
(演算処理装置)
 演算処理装置140は、記憶装置130に記憶されたイメージデータ算出プログラム131を読み出して実行することにより、イメージデータ算出部141として機能する。本実施形態の演算処理装置140は、汎用コンピュータであるが、特定用途向け集積回路(ASIC;application specific integrated circuits)であってもよく、本実施形態で説明される各機能を実装可能な他の回路であってもよい。
(イメージデータ算出部)
 図2に示す全ての検出端子151が、図1に示す検出回路120を介してイメージデータ算出部141に接続されている。図1に示すイメージデータ算出部141は、複数の検出端子151の各々について、検出端子151を通じて検出される電荷量に基づいて検出値を検出する。検出値は、電荷量の変化に応じて変化する値である。本実施形態では、検出値は、検出端子151を通じて検出される電荷量の絶対値に比例して変化する正値とする。
 イメージデータ算出部141は、複数の区画112の各々に対応したイメージデータを算出する。複数のイメージデータの各々は、1つの区画112において2つの電極150(図2)と1つ以上の操作体との間の静電容量により蓄積される電荷量に対応して変化する。本実施形態では、イメージデータは、1つの区画112に蓄積される電荷量の絶対値に比例して変化する正値とする。イメージデータ算出部141は、後述の複数の係数情報に基づいて、後述のイメージ算出方法を実行することにより複数のイメージデータを算出する。
(係数情報)
 図4に示す係数行列A 160は、係数情報を要素とする行列である。区画112の数が、nと表され(本実施形態ではn=16)、検出端子151(図2)の数が、mと表され(本実施形態ではm=18)、pが、1以上n以下の整数であり、かつ、kが、1以上m以下の整数であるとしたとき、イメージデータ算出部141(図1)が使用する係数行列A 160は、係数情報を要素とするn行m列の係数行列A 160で表される。すべてのpとすべてのkとについて、係数行列A 160のp行k列の要素は、p行に対応する区画112に蓄積される電荷量のうち、k列に対応する検出端子151(図2)で検出される電荷量の割合を表す。
 図4に示す係数行列A 160の各行は、係数行列A 160の左方に記載した座標で表される区画112に対応する。係数行列A 160の各列は、係数行列A 160の上方に記載した記号で識別される検出端子151(図2)に対応する。図4に示す係数行列A 160の上方に記載した記号は、図2に示す検出端子151の符号の末尾の2文字(例えば、第1左検出端子151-L1のL1)に対応する。
 言い換えると、複数の係数情報の各々は、図2に示す複数の区画112の1つと複数の検出端子151の1つとの異なる組み合わせに対応する。複数の係数情報の各々は、1つの組み合わせを構成する区画112に蓄積される電荷量のうち、同じ1つの組み合わせを構成する検出端子151で検出される電荷量の割合を表す。
 図5から図8を参照して、係数情報の算出方法について説明する。図5から図8に示すすべてのテーブルにおいて、各列は、図2に示すx座標に対応し、各行は、図2に示すy座標に対応する。
 図5と図6とに示す横面積比テーブル161Yは、図2に示す1つの区画112の静電容量に寄与する電極150の総面積のうち、同じ区画112の静電容量に対して横電極150-EYが寄与する面積の割合を示す。本実施形態では、全ての区画112において、横電極150-EYが占める面積の割合は「0.5」である。
 図7と図8とに示す縦面積比テーブル161Xは、図2に示す1つの区画112の静電容量に寄与する電極150の総面積のうち、同じ区画112の静電容量に対して縦電極150-EXが寄与する面積の割合を示す。本実施形態では、全ての区画112において、縦電極150-EXが占める面積の割合は「0.5」である。
 図5に示す左抵抗比テーブル162Lは、図2に示す1つの区画112において横電極150-EYに蓄積される電荷量のうち、左検出端子151-Lに流れる電荷量の割合を示す。図6に示す右抵抗比テーブル162Rは、1つの区画112において横電極150-EYに蓄積される電荷量のうち、左検出端子151-Lに流れる電荷量の割合を示す。1つの区画112から左検出端子151-Lまでの抵抗と、同じ1つの区画112から右検出端子151-Rまでの抵抗との比に応じて、左検出端子151-Lと右検出端子151-Rとに流れる電荷量が決まる。
 図2において「1つの区画112から左検出端子151-Lまでの抵抗」:「同じ1つの区画112から左検出端子151-Lまでの抵抗」の比を横抵抗比と呼ぶ。座標(xa、ya)の横抵抗比は、約「0:1」であるので、左抵抗比テーブル162L(図5)の値は、1/(0+1)=「1」であり、右抵抗比テーブル162R(図6)の値は、0/(0+1)=「0」である。座標(xb、ya)の横抵抗比は、約「1:3」であるので、左抵抗比テーブル162L(図5)の値は、3/(1+3)=「0.75」であり、右抵抗比テーブル162R(図6)の値は、1/(1+3)=「0.25」である。座標(xc、ya)の横抵抗比は、約「1:1」であるので、左抵抗比テーブル162L(図5)の値は、1/(1+1)=「0.5」であり、右抵抗比テーブル162R(図6)の値は、1/(1+1)=「0.5」である。座標(xd、ya)の横抵抗比は、約「3:1」であるので、左抵抗比テーブル162L(図5)の値は、1/(3+1)=「0.25」であり、右抵抗比テーブル162R(図6)の値は、3/(3+1)=「0.75」である。座標(xe、ya)の横抵抗比は、約「1:0」であるので、左抵抗比テーブル162L(図5)の値は、0/(1+0)=「0」であり、右抵抗比テーブル162R(図6)の値は、1/(1+0)=「1」である。
 左抵抗比テーブル162L(図5)において、x座標が同じ区画112の値は、すべて同じである。右抵抗比テーブル162R(図6)において、x座標が同じ区画112の値は、すべて同じである。
 図7に示す上抵抗比テーブル162Tは、図2に示す1つの区画112において縦電極150-EXに蓄積される電荷量のうち、上検出端子151-Tに流れる電荷量の割合を示す。図8に示す下抵抗比テーブル162Bは、図2に示す1つの区画112において縦電極150-EXに蓄積される電荷量のうち、下検出端子151-Bに流れる電荷量の割合を示す。1つの区画112から上検出端子151-Tまでの抵抗と、同じ1つの区画112から下検出端子151-Bまでの抵抗との比に応じて、上検出端子151-Tと下検出端子151-Bとに流れる電荷量が決まる。
 図2において、「1つの区画112から上検出端子151-Tまでの抵抗」:「同じ1つの区画112から下検出端子151-Bまでの抵抗」の比を縦抵抗比と呼ぶ。座標(xa、ya)の縦抵抗比は、約「0:1」であるので、上抵抗比テーブル162T(図7)の値は、1/(0+1)=「1」であり、下抵抗比テーブル162B(図8)の値は、0/(0+1)=「0」である。座標(xa、yb)の縦抵抗比は、約「1:2」であるので、上抵抗比テーブル162T(図7)の値は、2/(1+2)=「0.66」であり、下抵抗比テーブル162B(図8)の値は、1/(1+2)=「0.34」である。座標(xa、yc)の縦抵抗比は、約「2:1」であるので、上抵抗比テーブル162T(図7)の値は、1/(2+1)=「0.34」であり、下抵抗比テーブル162B(図8)の値は、2/(2+1)=「0.66」である。座標(xa、yd)の縦抵抗比は、約「1:0」であるので、上抵抗比テーブル162T(図7)の値は、0/(1+0)=「0」であり、下抵抗比テーブル162B(図8)の値は、1/(1+0)=「1」である。
 上抵抗比テーブル162T(図7)において、y座標が同じ区画112の値は、すべて同じである。下抵抗比テーブル162B(図8)において、y座標が同じ区画112の値は、すべて同じである。
 図5に示す左係数テーブル163Lの各値は、係数情報であり、区画112ごと(すなわち、座標ごと)に、横面積比テーブル161Yの値と左抵抗比テーブル162Lの値とを乗算して得られる。ya行の各値は、第1左検出端子151-L1に対応するので、係数行列A 160(図4)のL1列の、対応する座標の行に記入する。yb行の各値は、第2左検出端子151-L2に対応するので、係数行列A 160(図4)のL2列の、対応する座標の行に記入する。yc行の各値は、第3左検出端子151-L3に対応するので、係数行列A 160(図4)のL3列の、対応する座標の行に記入する。yd行の各値は、第4左検出端子151-L4に対応するので、係数行列A 160(図4)のL4列の、対応する座標の行に記入する。
 図6に示す右係数テーブル163Rの各値は、係数情報であり、区画112ごと(すなわち、座標ごと)に、横面積比テーブル161Yの値と右抵抗比テーブル162Rの値とを乗算して得られる。ya行の各値は、第1右検出端子151-R1に対応するので、係数行列A 160(図4)のR1列の、対応する座標の行に記入する。yb行の各値は、第2右検出端子151-R2に対応するので、係数行列A 160(図4)のR2列の、対応する座標の行に記入する。yc行の各値は、第3右検出端子151-R3に対応するので、係数行列A 160(図4)のR3列の、対応する座標の行に記入する。yd行の各値は、第4右検出端子151-R4に対応するので、係数行列A 160(図4)のR4列の、対応する座標の行に記入する。
 図7に示す上係数テーブル163Tの各値は、係数情報であり、区画112ごと(すなわち、座標ごと)に、縦面積比テーブル161Xの値と上抵抗比テーブル162Tの値とを乗算して得られる。xa列の各値は、第1上検出端子151-T1に対応するので、係数行列A 160(図4)のT1列の、対応する座標の行に記入する。xb列の各値は、第2上検出端子151-T2に対応するので、係数行列A 160(図4)のT2列の、対応する座標の行に記入する。xc列の各値は、第3上検出端子151-T3に対応するので、係数行列A 160(図4)のT3列の、対応する座標の行に記入する。xd列の各値は、第4上検出端子151-T4に対応するので、係数行列A 160(図4)のT4列の、対応する座標の行に記入する。xe列の各値は、第5上検出端子151-T5に対応するので、係数行列A 160(図4)のT5列の、対応する座標の行に記入する。
 図8に示す下係数テーブル163Bの各値は、係数情報であり、区画112ごと(すなわち、座標ごと)に、縦面積比テーブル161Xの値と下抵抗比テーブル162Bの値とを乗算して得られる。xa列の各値は、第1下検出端子151-B1に対応するので、係数行列A 160(図4)のB1列の、対応する座標の行に記入する。xb列の各値は、第2下検出端子151-B2に対応するので、係数行列A 160(図4)のB2列の、対応する座標の行に記入する。xc列の各値は、第3下検出端子151-B3に対応するので、係数行列A 160(図4)のB3列の、対応する座標の行に記入する。xd列の各値は、第4下検出端子151-B4に対応するので、係数行列A 160(図4)のB4列の、対応する座標の行に記入する。xe列の各値は、第5下検出端子151-B5に対応するので、係数行列A 160(図4)のB5列の、対応する座標の行に記入する。
 図4に示す係数行列A 160のうち、左係数テーブル163Lと右係数テーブル163Rと上係数テーブル163Tと下係数テーブル163Bとの値により埋まらない空の要素は、全て「0」である。
 係数情報の算出方法は、次のように言い換えられる。複数の係数情報の各々は、第1値と第2値との乗算により算出される値である。1つの組み合わせを構成する検出端子151を対象端子と呼び、対象端子を含む電極150を対象電極と呼び、かつ、1つの組み合わせを構成する区画112を対象区画と呼ぶとする。第1値は、対象電極のうち対象区画に配置された部分の面積を、1つ以上の電極150のうち対象区画における検出値の生成に寄与する部分の総面積で除算して得られる値である。対象区画と対象端子との間の抵抗値を表す対象抵抗値と、対象区画と対象電極内の他の1つの検出端子151との間の非対象抵抗値とを、対象電極内の全ての検出端子151について比較した場合、対象抵抗値が非対象抵抗値より大きいとき、対象区画と対象端子とに対応した第2値は、対象区画と他の1つの検出端子151とに対応した第2値より小さい。対象抵抗値が非対象抵抗値より小さいとき、対象区画と対象端子とに対応した第2値は、対象区画と他の1つの検出端子151とに対応した第2値より大きい。対象区画に対応した全ての第2値の合計は、1となる。
 具体例で示すと、図2に示す座標(xa、ya)の区画112(すなわち、対象区画)と第1左検出端子151-L1(すなわち、対象端子)とを1つの組み合わせとして選択する。この組み合わせの係数情報は、横面積比テーブル161Yの座標(xa、ya)の要素(すなわち、第1値)と左抵抗比テーブル162Lの座標(xa、ya)の要素(すなわち、第2値)との乗算により算出される。第1左検出端子151-L1を含む第1横電極150-EY1が、対象電極と呼ばれる。
 第1値は、第1横電極150-EY1(対象電極)のうち対象区画の検出値の生成に寄与する部分の面積を、すべての電極150のうち対象区画における検出値の生成に寄与する部分の総面積で除算して得られる。
 対象区画と対象端子との間の対象抵抗値と、対象区画と第1横電極150-EY1(対象電極)内の他の1つの検出端子151である第1右検出端子151-R1との間の非対象抵抗値とを比較する。左抵抗比テーブル162L(図5)と右抵抗比テーブル162R(図6)との説明で述べたように、対象抵抗値:非対象抵抗値は、「0:1」である。対象抵抗値が非対象抵抗値より小さいので、対象区画と対象端子とに対応した第2値(すなわち、図5の左抵抗比テーブル162Lの座標(xa、ya)の要素)は、対象区画と第1右検出端子151-R1とに対応した第2値(すなわち、図6の右抵抗比テーブル162Rの座標(xa、ya)の要素)より大きい。
 なお、逆に第1右検出端子151-R1が対象端子であり、他の1つの検出端子151が第1左検出端子151-L1である場合、対象抵抗値が非対象抵抗値より大きいので、対象区画と第1右検出端子151-R1(対象端子)とに対応した第2値(すなわち、図6の右抵抗比テーブル162Rの座標(xa、ya)の要素)は、対象区画と第1左検出端子151-L1(すなわち、他の1つの検出端子151)とに対応した第2値(すなわち、図5の左抵抗比テーブル162Lの座標(xa、ya)の要素)より小さいと言える。
 対象区画に対応した全ての第2値の合計、すなわち、図6の右抵抗比テーブル162Rの座標(xa、ya)の要素と、図5の左抵抗比テーブル162Lの座標(xa、ya)の要素との和は1となる。
(イメージデータ算出方法)
 図9は、イメージデータ算出方法を説明するためのフローチャートである。以下、図1及び図2の構成と図9のフローチャートを参照しながら、イメージデータ算出部141が実行するイメージデータ算出方法について説明する。一般的な説明と併せて、実施例として相互に関連する具体的な数値を例示するが、本実施形態は、例示した数値に限られるわけではない。図10は、イメージデータ算出方法において1回の後述の算出ループを1回実行したときに使用または算出される、実施例の複数の行列を示す。
 図9に示すステップ212において、イメージデータ算出部141は、検出回路120を制御して、複数の検出端子151の各々について、検出端子151を通じて検出値を検出する。検出値は、検出端子151を通じて検出される電荷量に対応して変化する。検出端子151の数に等しいm個(本実施形態ではm=18)の検出値が検出される。
 図9に示すステップ212の次にステップ214が実行される。ステップ214において、イメージデータ算出部141は、図10に示すように、m個の検出値を要素とする1行m列の検出値行列S 173を生成する。検出値行列S 173は、検出値行列S 173の上方に記載した記号は、記号の記載された列と図2に示す検出端子151との対応を表し、検出端子151の符号の末尾の2文字(例えば、第1左検出端子151-L1のL1)で識別される。
 図9に示すステップ214の次にステップ216が実行される。ステップ216において、イメージデータ算出部141は、図10に示すように、n個の初期イメージデータを要素とするn行1列の初期イメージデータ行列Z 171を作成する。nは区画112の数であり、本実施形態ではn=12である。初期イメージデータ行列Z 171の左方に記載した記号は、記号の記載された行と図2に示す座標との対応を表す。
 初期イメージデータは、算出ループを実行する前のイメージデータとして、区画112の各々に対して仮に設定されるイメージデータを表す。イメージデータ算出部141は、後述の1回目の算出ループにおいて、複数の区画112の各々に対応した初期イメージデータとして所定の値を使用する。所定の値は、正値である。実施例において、所定の値はすべて1である。
 図9に示すステップ216の次にステップ218が実行される。以下に説明するステップ218~ステップ224を算出ループと呼ぶ。イメージデータ算出部141は、1回以上の算出ループを実行することにより複数のイメージデータを算出する。イメージデータ算出部141は、算出ループを複数回繰り返してよい。
 図9に示すステップ218において、イメージデータ算出部141は、複数の初期イメージデータと複数の区画112との対応に従って複数の初期イメージデータに対応する電荷量が複数の区画112に蓄積されたと仮定した場合に複数の検出端子151で検出される検出値を表す複数の算出値を算出する。複数の算出値を算出することは、複数の係数情報に基づいて複数の算出値を算出することを含む。
 具体的には、複数の算出値を算出することは、図10に示す初期イメージデータ行列Z 171の転置行列Z と図4に示す係数行列A 160とを使用して、図10に示すm個の算出値を要素とする1行m列の算出値行列S 172を、S=Z ・Aにより算出することを含む。算出値行列S 172の列は、算出値行列S 172の上方に記載した記号は、記号の記載された列と図2に示す検出端子151との対応を表す。
 図9に示すステップ218の次にステップ220が実行される。ステップ220において、イメージデータ算出部141は、複数の検出端子151の各々について、算出値と検出値との比較に基づいた比較値を算出する。複数の検出端子151の各々について、比較値を算出することが、複数の検出端子151の各々について、検出値を算出値で除算することを含む。
 具体的には、複数の検出端子151の各々について、比較値を算出することは、図10に示すように、m個の比較値を要素とする1行m列の比較値行列S 174を算出することを含む。比較値行列S 174の上方に記載した記号は、記号の記載された列と図2に示す検出端子151との対応を表す。1以上m以下のすべての整数kについて、検出値行列S 173のk列目の要素を算出値行列S 172のk列目の要素で割った値を、比較値行列S 174のk列目の要素とする。
 図9に示すステップ220の次にステップ222が実行される。ステップ222において、イメージデータ算出部141は、複数の区画112の各々について、初期イメージデータを補正する補正値を比較値と係数情報とに基づいて算出する。1つの区画112に対応するすべての係数情報を、1群の係数情報と呼ぶとき、1つの区画112に対応する補正値を算出することが、複数の検出端子151の各々について、1つの区画112に対応する1群の係数情報に含まれる係数情報と比較値とを乗算した値の和を補正値として算出することを含む。補正値は、係数情報を利用して、検出値と算出値との比率を、イメージデータと初期イメージデータとの比率に変換したものである。
 具体的には、複数の区画112の各々について、補正値を算出することが、図10に示す比較値行列S 174の転置行列S と図4に示す係数行列A 160とを使用して、図10に示すように、n個の補正値を要素とするn行1列の補正値行列Z 175を、Z=A・S により算出することを含む。補正値行列Z 175の左方に記載した記号は、記号の記載された行と図2に示す座標との対応を表す。
 図9に示すステップ222の次にステップ224が実行される。ステップ224において、イメージデータ算出部141は、複数の区画112の各々について、補正値に基づいて初期イメージデータを補正することによりイメージデータを算出する。複数の区画112の各々について、イメージデータを算出することが、複数の区画112の各々について、補正値と初期イメージデータとを乗算することによりイメージデータを算出することを含む。
 具体的には、複数の区画112の各々について、補正値に基づいて初期イメージデータを補正することによりイメージデータを算出することは、図10に示すように、n個のイメージデータを要素とするn行1列のイメージデータ行列Z 176を算出することを含む。イメージデータ行列Z 176の左方に記載した記号は、記号の記載された行と図2に示す座標との対応を表す。1以上n以下のすべての整数pについて、初期イメージデータ行列Z 171のp行目の要素に補正値行列Z 175のp行目の要素を乗じた値をイメージデータ行列Z 176のp行目の要素とすることを含む。
 図9に示すステップ224の次にステップ226が実行される。ステップ226において、イメージデータ算出部141は、算出ループを所定回数実行したか判定する。所定回数は、例えば、10回である。イメージデータ算出部141は、算出ループを所定回数実行したと判定した場合、イメージデータ算出方法を終了する。イメージデータ算出部141は、算出ループを所定回数実行していないと判定した場合、ステップ228に進む。
 図9に示すステップ228において、イメージデータ算出部141は、複数の区画112の各々について、算出ループにおいて算出されたイメージデータを、次回の算出ループにおける初期イメージデータとして使用する。具体的には、図10に示す初期イメージデータ行列Z 171の代わりにイメージデータ行列Z 176を使用する。ステップ228の次に再びステップ218が実行される。算出ループが複数回実施されると、比較値が徐々に1に近づくので、イメージデータが徐々に実際の値に近づいていることがわかる。
 イメージデータ算出部141は、他の例において、実行回数を制限するのではなく、算出ループを、所定の時間繰り返してもよい。イメージデータ算出部141は、他の例において、実行回数を制限するのではなく、イメージデータの変化量が閾値より小さくなるまで、算出ループを繰り返してもよい。
 なお、図10に示すイメージデータ行列Z 176と初期イメージデータ行列Z 171と補正値行列Z 175とにおいて、同じ行の要素が、同じ座標の区画112に対応する。検出値行列S 173と算出値行列S 172と比較値行列S 174とにおいて、同じ列の要素が、同じ検出端子151に対応する。図4に示す係数行列A 160と図10に示すイメージデータ行列Z 176とにおいて、同じ行の要素が、同じ座標の区画112に対応する。図4に示す係数行列A 160と図10に示す検出値行列S 173とにおいて、同じ列の要素が、同じ検出端子151に対応する。
(実施例の結果)
 図11は、実施例において算出ループを複数回実行したときの、イメージデータの遷移を表す図である。1回目~6回目の算出ループが終了した後、第1イメージデータテーブル181~第6イメージデータテーブル186が順に作成される。第1イメージデータテーブル181~第6イメージデータテーブル186の各要素は、列に対応したx座標と行に対応したy座標とで表される区画112におけるイメージデータを示す。算出ループを繰り返すことにより、イメージデータが収束していき、イメージデータの変化が小さくなった。
 入力装置100は、イメージデータを参照することにより、操作体の数、座標を検出してもよい。
 なお、区画112内の電極150の形状は、長方形に限るわけではない。区画112内の電極の形状は、円であってもよく、他の多角形であってもよく、ひし形であってもよく、区画112ごとに異なる不定形であってもよい。複数の区画112を通る電極150は、一体形成されていてもよく、別々の電極を配線や抵抗などの導電部材でつないだものであってもよい。
(まとめ)
 本実施形態によれば、イメージデータ算出部141が、複数の検出端子151で検出される複数の検出値と、複数の係数情報とに基づいて複数のイメージデータを算出するので、従来のように区画112ごとに電極150を分割しなくてもイメージデータを算出できる。また、区画112ごとに電極150を分割する場合に比べて、イメージデータ算出部141と電極150との配線が少なくてすみ、簡単な構成でイメージデータを算出できる。すなわち、操作面111に沿った複数の位置の各々における操作面111と操作体との静電容量の変化を表すイメージデータを少ない電極150で高精度に作成できる。
 本実施形態によれば、イメージデータ算出部141が算出ループにおいて、複数の検出端子151の各々について、算出値と検出値との比較に基づいた比較値を算出し、比較値に基づいて初期イメージデータを補正することによりイメージデータを算出するので、やみくもに初期イメージデータを選択する場合に比べると、少ない計算量でイメージデータを実際の値に近づけやすい。すなわち、仮に設定した初期イメージデータを出発点として近似計算を行うことで、厳密な計算を行う場合より少ない計算量としながら、算出値と検出値とのずれを考慮することで区画112のイメージデータを正確に算出できる。
 本実施形態によれば、各区画112に蓄積される電荷量のうち各検出端子151で検出される電荷量の割合を表す係数情報に基づいて、算出値と補正値とを算出するので、電荷の実際の物理的な流れを反映して正確にイメージデータを算出できる。
 本実施形態によれば、逆行列を使用しない近似計算が可能であるため、逆行列を厳密に計算する方法に比べて少ない計算量でイメージデータを正確に算出できる。
 本実施形態によれば、面積と抵抗値とに基づいて係数情報が算出されるので、実際の物理的な構成を反映して正確にイメージデータを算出することができる。
 本実施形態によれば、1回目の算出ループにおいて、複数のイメージデータの各々に対応した初期イメージデータとして所定の正値を使用するので、検出値が正であれば解が必ず正となり、イメージデータを正に限定した場合に、明らかに間違った解を排除できる。
 本実施形態によれば、算出ループを複数回繰り返すので、初期イメージデータを徐々に実際のイメージデータに近づけることができ、より正確に位置を算出することができる。
 本発明は上述した実施形態には限定されない。すなわち、当業者は、本発明の技術的範囲またはその均等の範囲内において、上述した実施形態の構成要素に関し、様々な変更、コンビネーション、サブコンビネーション、並びに代替を行ってもよい。
 本発明は、操作体の近接度合いに応じて変化するイメージデータを、2次元に広がる複数の座標の各々に対して作成する入力装置に適用可能である。
100…入力装置、110…センサ、111…操作面、112…区画
131…イメージデータ算出プログラム、141…イメージデータ算出部
150…電極
150-EY…横電極(150-EY1~EY4…第1横電極~第4横電極)
150-EX…縦電極(150-EX1~EX5…第1縦電極~第5縦電極
151…検出端子
151-L…左検出端子(151-L1~L4…第1左検出端子~第4左検出端子)
151-R…右検出端子(151-R1~R4…第1右検出端子~第4右検出端子)
151-T…上検出端子(151-T1~T5…第1上検出端子~第5上検出端子)
151-B…下検出端子(151-B1~B5…第1下検出端子~第5下検出端子)
160…係数行列A
181~186…第1イメージデータテーブル~第6イメージデータテーブル

Claims (9)

  1.  近接した1つ以上の操作体による操作を受ける操作面と、
     前記操作面から離間して前記操作面に沿って配置された1つ以上の電極と、
     仮想的に設定される複数の区画の各々に対応したイメージデータを算出するイメージデータ算出部と、
     を備え、
     前記複数の区画の各々において、前記操作面の一部と少なくとも1つの前記電極の少なくとも1つの部分とが近接して配置され、
     前記イメージデータの各々が、前記少なくとも1つの電極と前記1つ以上の操作体との間の静電容量により1つの前記区画において蓄積される電荷量に対応して変化し、
     前記1つ以上の電極の各々が、前記イメージデータ算出部に接続された複数の検出端子を含み、
     前記イメージデータ算出部が、前記複数の検出端子の各々について、前記検出端子を通じて検出される電荷量に対応して変化する検出値を検出し、
     前記イメージデータ算出部が、複数の係数情報に基づいて複数の前記イメージデータを算出し、
      前記複数の係数情報の各々が、前記複数の区画の1つと前記複数の検出端子の1つとの異なる組み合わせに対応し、
      前記複数の係数情報の各々が、1つの前記組み合わせを構成する前記区画に蓄積される電荷量のうち、前記1つの前記組み合わせを構成する前記検出端子で検出される電荷量の割合を表す、
     入力装置。
  2.  前記イメージデータ算出部が、1回以上の算出ループを実行することにより複数の前記イメージデータを算出し、
     前記イメージデータ算出部が、1回目の前記算出ループにおいて、前記複数の区画の各々に対応した初期イメージデータとして所定の値を使用し、
     前記算出ループが、
      複数の前記初期イメージデータと前記複数の区画との対応に従って前記複数の初期イメージデータに対応する電荷量が前記複数の区画に蓄積されたと仮定した場合に前記複数の検出端子で検出される前記検出値を表す複数の算出値を算出することと、
      前記複数の検出端子の各々について、前記算出値と前記検出値との比較に基づいた比較値を算出することと、
      前記複数の区画の各々について、前記初期イメージデータを補正する補正値を前記比較値と前記係数情報とに基づいて算出することと、
      前記複数の区画の各々について、前記補正値に基づいて前記初期イメージデータを補正することにより前記イメージデータを算出することと、
      を含み、
     前記イメージデータ算出部が、前記検出端子の各々について、前記算出ループにおいて算出された前記イメージデータを、次回の前記算出ループにおける前記初期イメージデータとして使用する、
     請求項1に記載の入力装置。
  3.  前記複数の検出端子の各々について、前記比較値を算出することが、前記複数の検出端子の各々について、前記検出値を前記算出値で除算することを含み、
     1つの前記区画に対応するすべての前記係数情報を、1群の係数情報と呼ぶとき、前記1つの前記区画に対応する前記補正値を算出することが、前記複数の検出端子の各々について、前記1つの前記区画に対応する前記1群の係数情報に含まれる前記係数情報と前記比較値とを乗算した値の和を前記補正値として算出することを含み、
     前記複数の区画の各々について、前記イメージデータを算出することが、前記複数の区画の各々について、前記補正値と前記初期イメージデータとを乗算することにより前記イメージデータを算出することを含む、
     請求項2に記載の入力装置。
  4.  前記区画の数が、nと表され、
     n個の前記イメージデータを要素とするn行1列の行列が、行列Zと表され、
     n個の前記初期イメージデータを要素とするn行1列の行列が、行列Zと表され、
     n個の前記補正値を要素とするn行1列の行列が、行列Zと表され、
     前記行列Zと前記行列Zと前記行列Zとにおいて、同じ行の要素が、同じ前記区画に対応し、
     前記検出端子の数が、mと表され、
     m個の前記検出値を要素とする1行m列の行列が、行列Sと表され、
     m個の前記算出値を要素とする1行m列の行列が、行列Sと表され、
     m個の前記比較値を要素とする1行m列の行列が、行列Sと表され、
     前記行列Sと前記行列Sと前記行列Sとにおいて、同じ列の要素が、同じ前記検出端子に対応し、
     pが、1以上n以下の整数であり、かつ、
     kが、1以上m以下の整数である、としたとき、
     前記イメージデータ算出部が、前記係数情報を要素とするn行m列の係数行列Aを使用し、
     前記係数行列Aと前記行列Sとにおいて、同じ列の要素が、同じ前記検出端子に対応し、
     前記行列Zと前記係数行列Aとにおいて、同じ行の要素が、同じ前記区画に対応し、
     すべてのpとすべてのkとについて、前記係数行列Aのp行k列の要素が、p行に対応する前記区画に蓄積される電荷量のうち、k列に対応する前記検出端子で検出される電荷量の割合を表し、
     前記複数の算出値を算出することが、前記行列Zの転置行列Z を使用してS=Z ・Aを算出することを含み、
     前記複数の検出端子の各々について、前記比較値を算出することが、1以上m以下のすべての整数kについて、前記行列Sのk列目の要素を前記行列Sのk列目の要素で割った値を前記行列Sのk列目の要素とすることを含み、
     前記複数の区画の各々について、前記補正値を算出することが、前記行列Zの転置行列Z を使用してZ=A・S を算出することを含み、
     前記複数の区画の各々について、前記補正値に基づいて前記初期イメージデータを補正することにより前記イメージデータを算出することが、1以上n以下のすべての整数pについて、前記行列Zのp行目の要素に前記行列Zのp行目の要素を乗じた値を前記行列Zのp行目の要素とすることを含む、
     請求項2または請求項3に記載の入力装置。
  5.  前記複数の係数情報の各々が、第1値と第2値との乗算により算出される値であり、
      前記1つの前記組み合わせを構成する前記検出端子を対象端子と呼び、
      前記対象端子を含む前記電極を対象電極と呼び、かつ、
      前記1つの前記組み合わせを構成する前記区画を対象区画と呼ぶとき、
      前記第1値が、前記対象電極のうち前記対象区画における前記検出値の生成に寄与する部分の面積を、前記1つ以上の電極のうち前記対象区画における前記検出値の生成に寄与する部分の総面積で除算して得られる値であり、
      前記対象区画と前記対象端子との間の抵抗値を表す対象抵抗値と、前記対象区画と前記対象電極内の他の1つの前記検出端子との間の抵抗値を表す非対象抵抗値とを、前記対象電極内の全ての前記検出端子について比較した場合、
       前記対象抵抗値が前記非対象抵抗値より大きいとき、前記対象区画と前記対象端子とに対応した前記第2値が、前記対象区画と前記他の1つの検出端子とに対応した前記第2値より小さく、
       前記対象抵抗値が前記非対象抵抗値より小さいとき、前記対象区画と前記対象端子とに対応した前記第2値が、前記対象区画と前記他の1つの検出端子とに対応した前記第2値より大きく、
       前記対象区画に対応した全ての前記第2値の合計が1となる、
     請求項1乃至請求項4のいずれか一項に記載の入力装置。
  6.  前記イメージデータ算出部が、前記1回目の前記算出ループにおいて、前記複数のイメージデータの各々に対応した前記初期イメージデータとして所定の正値を使用する、
     請求項5に記載の入力装置。
  7.  前記イメージデータ算出部が、前記算出ループを複数回繰り返す、
     請求項2乃至請求項6のいずれか一項に記載の入力装置。
  8.  近接した1つ以上の操作体による操作を受ける操作面と、前記操作面から離間して前記操作面に沿って配置された1つ以上の電極と、仮想的に設定される複数の区画の各々に対応したイメージデータを算出するイメージデータ算出部とを備え、前記複数の区画の各々において、前記操作面の一部と少なくとも1つの前記電極の少なくとも1つの部分とが近接して配置され、前記イメージデータの各々が、前記少なくとも1つの電極と前記1つ以上の操作体との間の静電容量により1つの前記区画において蓄積される電荷量に対応して変化し、前記1つ以上の電極の各々が、前記イメージデータ算出部に接続された複数の検出端子を含む入力装置により実行されるイメージデータ算出方法であって、
     前記イメージデータ算出部により、前記複数の検出端子の各々について、前記検出端子を通じて検出される電荷量に対応して変化する検出値を検出することと、
     前記イメージデータ算出部により、複数の係数情報に基づいて複数の前記イメージデータを算出することと、
     を含み、
     前記複数の係数情報の各々が、前記複数の区画の1つと前記複数の検出端子の1つとの異なる組み合わせに対応し、
     前記複数の係数情報の各々が、1つの前記組み合わせを構成する前記区画に蓄積される電荷量のうち、前記1つの前記組み合わせを構成する前記検出端子で検出される電荷量の割合を表す、
     イメージデータ算出方法。
  9.  コンピュータに請求項9に記載のイメージデータ算出方法を実行させるイメージデータ算出プログラム。
PCT/JP2017/009687 2016-07-15 2017-03-10 入力装置、イメージデータ算出方法、及びイメージデータ算出プログラム WO2018012030A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP17827165.6A EP3486758B1 (en) 2016-07-15 2017-03-10 Input device, image data calculation method, and image data calculation program
JP2018527384A JP6637600B2 (ja) 2016-07-15 2017-03-10 入力装置、イメージデータ算出方法、及びイメージデータ算出プログラム
US16/243,447 US11112920B2 (en) 2016-07-15 2019-01-09 Input device and image data calculation method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016140933 2016-07-15
JP2016-140933 2016-07-15

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/243,447 Continuation US11112920B2 (en) 2016-07-15 2019-01-09 Input device and image data calculation method

Publications (1)

Publication Number Publication Date
WO2018012030A1 true WO2018012030A1 (ja) 2018-01-18

Family

ID=60951742

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/009687 WO2018012030A1 (ja) 2016-07-15 2017-03-10 入力装置、イメージデータ算出方法、及びイメージデータ算出プログラム

Country Status (4)

Country Link
US (1) US11112920B2 (ja)
EP (1) EP3486758B1 (ja)
JP (1) JP6637600B2 (ja)
WO (1) WO2018012030A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021053862A1 (ja) * 2019-09-18 2021-03-25 アルプスアルパイン株式会社 静電容量センサおよび入力装置
CN113966456A (zh) * 2019-08-05 2022-01-21 阿尔卑斯阿尔派株式会社 运算装置、输入装置、运算方法以及程序

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6837150B2 (ja) * 2017-08-29 2021-03-03 アルプスアルパイン株式会社 入力装置
KR20220018116A (ko) 2020-08-05 2022-02-15 삼성디스플레이 주식회사 터치 감지 장치, 그를 포함하는 표시 장치, 및 그의 구동 방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012027889A (ja) 2010-07-27 2012-02-09 Samsung Electro-Mechanics Co Ltd 静電容量式タッチスクリーン
JP2014504769A (ja) * 2011-02-03 2014-02-24 スタンタム 多接触マトリックス触覚センサからのデータ取得のための方法およびデバイス
JP2014199492A (ja) * 2013-03-29 2014-10-23 株式会社ジャパンディスプレイ 電子機器および電子機器の制御方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5650597A (en) * 1995-01-20 1997-07-22 Dynapro Systems, Inc. Capacitive touch sensor
US6961049B2 (en) * 2002-06-21 2005-11-01 3M Innovative Properties Company Capacitive touch sensor architecture with unique sensor bar addressing
US20080136787A1 (en) * 2006-12-11 2008-06-12 I-Hau Yeh Touchpad having Single Layer Layout
US9146644B2 (en) * 2010-03-08 2015-09-29 Nuvoton Technology Corporation Systems and methods for detecting multiple touch points in surface-capacitance type touch panels
US9727175B2 (en) * 2010-05-14 2017-08-08 Elo Touch Solutions, Inc. System and method for detecting locations of touches on a projected capacitive touch sensor
FR2988175B1 (fr) * 2012-03-13 2014-04-11 Nanotec Solution Procede de mesure capacitive par des electrodes non-regulieres, et appareil mettant en œuvre un tel procede
JP2016189037A (ja) * 2013-08-26 2016-11-04 パナソニックIpマネジメント株式会社 センサ構造体およびその検出方法
KR20150057651A (ko) * 2013-11-20 2015-05-28 삼성전기주식회사 터치스크린 장치 및 터치 데이터 처리 방법
JP6243042B2 (ja) * 2014-08-05 2017-12-06 アルプス電気株式会社 入力装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012027889A (ja) 2010-07-27 2012-02-09 Samsung Electro-Mechanics Co Ltd 静電容量式タッチスクリーン
JP2014504769A (ja) * 2011-02-03 2014-02-24 スタンタム 多接触マトリックス触覚センサからのデータ取得のための方法およびデバイス
JP2014199492A (ja) * 2013-03-29 2014-10-23 株式会社ジャパンディスプレイ 電子機器および電子機器の制御方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3486758A4

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113966456A (zh) * 2019-08-05 2022-01-21 阿尔卑斯阿尔派株式会社 运算装置、输入装置、运算方法以及程序
CN113966456B (zh) * 2019-08-05 2023-12-12 阿尔卑斯阿尔派株式会社 运算装置、输入装置、运算方法以及程序
WO2021053862A1 (ja) * 2019-09-18 2021-03-25 アルプスアルパイン株式会社 静電容量センサおよび入力装置
JPWO2021053862A1 (ja) * 2019-09-18 2021-03-25
CN114041108A (zh) * 2019-09-18 2022-02-11 阿尔卑斯阿尔派株式会社 静电容传感器以及输入装置
JP7155441B2 (ja) 2019-09-18 2022-10-18 アルプスアルパイン株式会社 静電容量センサおよび入力装置
US11762520B2 (en) 2019-09-18 2023-09-19 Alps Alpine Co., Ltd. Electrostatic capacitance sensor and input device
CN114041108B (zh) * 2019-09-18 2024-03-15 阿尔卑斯阿尔派株式会社 输入装置

Also Published As

Publication number Publication date
EP3486758B1 (en) 2023-06-07
JPWO2018012030A1 (ja) 2019-03-28
EP3486758A4 (en) 2020-01-22
JP6637600B2 (ja) 2020-01-29
EP3486758A1 (en) 2019-05-22
US20190146612A1 (en) 2019-05-16
US11112920B2 (en) 2021-09-07

Similar Documents

Publication Publication Date Title
WO2018012030A1 (ja) 入力装置、イメージデータ算出方法、及びイメージデータ算出プログラム
CN110494830B (zh) 输入装置、要素数据构成方法以及程序
US11061517B2 (en) Input device
CN106249969A (zh) 感测装置
US10761666B2 (en) Input device, element data generation method, and storage medium
CN105960625B (zh) 一种用于从触摸传感器补偿非线性响应的方法及系统
US11042242B2 (en) Touch panel device and method for calculating touch position coordinate of touch panel
JP2018025848A (ja) 操作入力装置
US9342197B2 (en) Method for determining a position of a contact on a capacitive sensor field
US11762520B2 (en) Electrostatic capacitance sensor and input device
JP6545453B2 (ja) タッチパネル装置及びタッチパネルの座標補正方法
JP6487567B2 (ja) 入力装置、入力装置の制御方法及び入力装置制御プログラム
KR101006457B1 (ko) 다중터치인식이 가능한 저항막 방식 터치스크린
JP6608535B2 (ja) 入力装置、荷重算出方法、及び荷重算出プログラム
JP6410700B2 (ja) 入力装置、入力装置の制御方法及び入力装置の制御プログラム
JP7195443B2 (ja) 演算装置、入力装置、演算方法、およびプログラム
US11029779B2 (en) Capacitive sensor and input device
JP6260383B2 (ja) 電界計算装置、電界計算方法及びプログラム
US9933900B2 (en) Sensing electrode group and sensed capacitance estimation method and apparatus
US20150091827A1 (en) Touch panel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17827165

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018527384

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017827165

Country of ref document: EP

Effective date: 20190215