WO2018010476A1 - 糖肽类衍生物及其药学可接受的盐、制备方法和应用 - Google Patents

糖肽类衍生物及其药学可接受的盐、制备方法和应用 Download PDF

Info

Publication number
WO2018010476A1
WO2018010476A1 PCT/CN2017/083551 CN2017083551W WO2018010476A1 WO 2018010476 A1 WO2018010476 A1 WO 2018010476A1 CN 2017083551 W CN2017083551 W CN 2017083551W WO 2018010476 A1 WO2018010476 A1 WO 2018010476A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
acid
pharmaceutically acceptable
acceptable salt
compound
Prior art date
Application number
PCT/CN2017/083551
Other languages
English (en)
French (fr)
Inventor
邵昌
阮林高
魏维
戈梅
夏兴
孟庆前
张芸
饶敏
Original Assignee
上海来益生物药物研究开发中心有限责任公司
浙江医药股份有限公司新昌制药厂
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海来益生物药物研究开发中心有限责任公司, 浙江医药股份有限公司新昌制药厂 filed Critical 上海来益生物药物研究开发中心有限责任公司
Publication of WO2018010476A1 publication Critical patent/WO2018010476A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/04Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
    • A61K38/08Peptides having 5 to 11 amino acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/04Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
    • A61K38/14Peptides containing saccharide radicals; Derivatives thereof, e.g. bleomycin, phleomycin, muramylpeptides or vancomycin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/107General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length by chemical modification of precursor peptides
    • C07K1/113General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length by chemical modification of precursor peptides without change of the primary structure
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • C07K7/06Linear peptides containing only normal peptide links having 5 to 11 amino acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K9/00Peptides having up to 20 amino acids, containing saccharide radicals and having a fully defined sequence; Derivatives thereof

Definitions

  • the invention belongs to the technical field of medicinal chemical synthesis, and particularly relates to a kind of glycopeptide derivative and a pharmaceutically acceptable salt thereof, a preparation method and application thereof.
  • Glycopeptide antibiotics are the first choice for clinical treatment of methicillin-resistant Staphylococcus aureus (MRSA) infection because they can interfere with the cross-linking of bacterial cell wall peptidoglycans and thus dissolve bacterial cells.
  • MRSA methicillin-resistant Staphylococcus aureus
  • VRE vancomycin-resistant enterococci
  • the Chinese invention patent CN200910053906.9 reports a novel glycopeptide compound having the structure as shown in the compound (II) of the present invention, which has antibacterial activity, and its novelty lies in the four amino acid glycosyl group of its peptide skeleton.
  • the hydroxyl group is an upright bond.
  • the therapeutic effect of compound (II) is reduced, so a new type of glycopeptide antibiotic with excellent antibacterial effect and good inhibitory effect on drug-resistant strains has been developed. Significance.
  • the inventors of the present application have chemically modified the compound described in the patent application file of Chinese Patent No. 200910053906.9 to obtain a series of improved glycopeptide antibiotic derivatives and pharmaceutically acceptable salts thereof, and have been tested.
  • the glycopeptide antibiotic derivative has good antibacterial activity against the drug resistant strain VRE and can be used for preparing a drug for treating drug resistant bacterial infection.
  • a first object of the present invention is to provide a glycopeptide derivative represented by the formula (I) and a pharmaceutically acceptable salt thereof:
  • R 1 is H, 2-alkylamine-ethyl, substituted benzyl, substituted phenylpropionyl or a linear acyl group having a carbon-carbon double bond, and the benzene ring on the benzyl or phenylpropionyl group a benzene ring having a halogen, a hydroxyl group, an amino group, a dimethylamino group, a trifluoromethyl group, or a halogen or a hydroxyl group or a trifluoromethyl group; the linear acyl group having 1 to 6 carbon-carbon double bonds; R 2 may be an OH, C 1 -C 5 linear amino group, and the C 1 -C 5 linear amino group may have a dimethylamino group or a substituted phenyl group at the terminal, and the substituted phenyl group may be on the benzene ring. With halogen or cyano or nitro.
  • R 1 is H
  • R 2 is not OH
  • the glycopeptide derivative represented by the formula (I) is preferably:
  • R 1 is H, 2-(n-nonylamino)ethyl, 3-bromobenzyl, 4-fluorobenzyl , 4-hydroxybenzyl, 4-aminobenzyl, 4-dimethylaminobenzyl, 4-trifluoromethylbenzyl, 3'-bromobiphenylmethyl, 4'-chlorobiphenylmethyl, 4'-hydroxybiphenylmethyl, 4'-trifluoromethylbiphenylmethyl or docosahexaenoyl, 4-fluorophenylpropionyl or 4-trifluoromethylphenylpropionyl;
  • R 2 is N ', N'-dimethylaminopropylamino, 4-fluorobenzylamino, 4-cyanobenzylamino or 4-nitrophenethylamino.
  • the pharmaceutically acceptable salt is preferably an alkali metal, an alkaline earth metal salt or a salt formed with an acid.
  • the alkali metal is preferably sodium or potassium; the alkaline earth metal is preferably calcium or magnesium; and the acid is preferably a mineral acid such as hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid or phosphoric acid. , formic acid, acetic acid, propionic acid, oxalic acid, malonic acid, succinic acid, fumaric acid, maleic acid, lactic acid, malic acid, tartaric acid, citric acid, picric acid or methanesulfonic acid, etc., aspartic acid or An acidic amino acid such as glutamic acid.
  • the invention further relates to a pharmaceutical composition
  • a pharmaceutical composition comprising a therapeutically effective amount of the above glycopeptide derivative or a pharmaceutically acceptable salt thereof and a pharmaceutically acceptable carrier.
  • the pharmaceutically acceptable carrier refers to a conventional pharmaceutical carrier such as a diluent, an excipient (such as water), a binder (such as a cellulose derivative, gelatin, polyvinylpyrrolidone, etc.). ), a filler (such as starch, etc.), a cracking agent (such as calcium carbonate, sodium hydrogencarbonate).
  • other adjuvants such as flavoring agents and sweeteners may also be added to the composition.
  • the pharmaceutical composition of the present invention can be administered to a patient in need of treatment by intravenous injection, subcutaneous injection or oral administration.
  • oral administration it can be prepared into a conventional solid preparation such as a tablet, a powder or a capsule; for injection, it can be prepared as an injection.
  • the various dosage forms of the pharmaceutical composition of the present invention can be prepared by a conventional method in the medical field, wherein the active ingredient is contained in an amount of from 0.1% to 99.5% by weight.
  • the compound of the present invention has a weight content of 0.1 to 99.9%, preferably a content of 0.5 to 90%.
  • the general dosage of the above pharmaceutical composition applied to a patient in need of treatment can be referred to the existing dosage of vancomycin and norvancomycin, for example, 0.1 to 2.0 g/d for an adult, depending on the age and condition of the patient.
  • the compound of the present invention can be salted in a conventional manner, for example, into a hydrochloride.
  • a second object of the present invention is to provide a process for the preparation of the above compound (I).
  • the compound of the formula (I) can be produced by the following synthetic route:
  • Method 1 When R 1 is a 2-alkylamine-ethyl or substituted benzyl group, the benzene ring on the benzyl group carries a halogen, a hydroxyl group, an amino group, a dimethylamino group, a trifluoromethyl group, or When halogen or hydroxy or trifluoromethyl substituted benzene ring,
  • Step A reacting a compound of the formula (II) with an aldehyde and sodium cyanoborohydride (NaBH 3 CN) to obtain a compound of the formula (III):
  • Step B reacting a compound represented by the formula (III) with an amine in the presence of a solvent and a condensing agent to obtain a compound represented by the formula (I);
  • R 2 is a C 1 -C 5 linear amino group, and the C 1 -C 5 linear amino group may have a dimethylamino group or a substituted phenyl group at the terminal, and the phenyl ring of the substituted phenyl group Halogen or cyano or nitro;
  • R 2 is a C 1 -C 5 linear amino group, and the C 1 -C 5 linear amino group may have a dimethylamino group or a substituted phenyl group at the terminal, and the phenyl ring of the substituted phenyl group There are halogen or cyano or nitro groups.
  • Step A reacting a compound of the formula (II) with an O-acyl-hydroxysuccinimide active ester and triethylamine to obtain a compound of the formula (III):
  • Step B reacting a compound represented by the formula (III) with an amine in the presence of a solvent and a condensing agent to obtain a compound represented by the formula (I);
  • R 2 is a C 1 -C 5 linear amino group, and the C 1 -C 5 linear amino group may have a dimethylamino group or a substituted phenyl group at the terminal, and the phenyl ring of the substituted phenyl group Halogen or cyano or nitro;
  • the aldehyde is selected from the group consisting of 4'-chlorobiphenyl-4-carbaldehyde, 4'-hydroxybiphenyl-4-carbaldehyde, 4'-trifluoromethylbiphenyl-4-carbaldehyde, and 3'-bromine Benzene-4-carbaldehyde, N-Fmoc-2-(n-decylamino)-acetaldehyde, 3-bromobenzaldehyde, 4-trifluoromethylbenzaldehyde, 4-dimethylaminobenzaldehyde, 4-fluorobenzene One of formaldehyde, 4-hydroxybenzaldehyde, and 4-aminobenzaldehyde.
  • the solvent is selected from the group consisting of dimethyl sulfoxide (DMSO), N,N-dimethylformamide (DMF), N-methylpyrrolidone (NMP), and ethylene glycol dimethyl ether (DME).
  • DMSO dimethyl sulfoxide
  • DMF N,N-dimethylformamide
  • NMP N-methylpyrrolidone
  • DME ethylene glycol dimethyl ether
  • the condensing agent is selected from the group consisting of dicyclohexylcarbodiimide (DCC), 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDCI), N, N'-diisopropylcarbodiimide (DIC), N,N'-carbonyldiimidazole (CDI), 2-(7-azobenzotriazole)-N,N,N',N' -tetramethylurea hexafluorophosphate (HATU), O-benzotriazole-N,N,N',N'-tetramethyluronium tetrafluoroborate (TBTU), 1H-benzotriazole- 1-Base-oxytripyrrolidinyl hexafluorophosphate (PyBOP), a preferred condensing agent is one or more of HATU, TBTU and PyBOP, more preferably PyBOP.
  • DCC dicycl
  • the amine is selected from one or more of N', N'-dimethylaminopropyldiamine, 4-cyanobenzylamine, 4-fluorobenzylamine and 4-nitrophenethylamine. .
  • the active ester is O-docosahexaenoyl-hydroxysuccinimide or O-4-fluorophenylpropionyl-hydroxysuccinimide or O-4-trifluoromethylstyrene Acyl-hydroxysuccinimide.
  • a third object of the present invention is to provide the use of the above compound (I) for the preparation of a medicament for treating a bacterial infection.
  • the present invention provides the use of the above compound (I) for the preparation of a medicament for treating a drug-resistant bacterial infection.
  • the present invention provides the use of the above compound (I) for the preparation of a medicament for treating MRSA, MSSA, VSE, VRE, PSSP, PRSP infectious diseases.
  • the present invention provides the use of the above compound (I) for the preparation of a medicament for treating an MRSA or VRE infectious disease.
  • the invention has the beneficial effects that the derivative of the compound of the formula (I) and the pharmaceutically acceptable salt thereof of the invention have good antibacterial action, especially the action of anti-resistant bacteria, and are important for the development of new antibacterial drugs.
  • the meaning is the case.
  • Figure 1 is a mass spectrometric identification map of the compound LYSC-10.
  • FIG 2 is a 1 H-NMR spectrum identified the compound LYSC-10.
  • Figure 3 is a mass spectrometric identification map of the compound LYSC-14.
  • Figure 4 is a 1 H-NMR identification map of the compound LYSC-14.
  • Figure 5 is a mass spectrometric identification map of the compound LYSC-38.
  • Figure 6 is a 1 H-NMR identification map of the compound LYSC-38.
  • the crude product obtained by the synthesis was purified using a reverse phase polymer filler Uni PS25-300 and Uni PSA 30-300 (both purchased from Suzhou Nawei Technology Co., Ltd.).
  • the crude product was dissolved in a methanol (or acetonitrile) aqueous solution and applied to a glass chromatography column equipped with a Uni PS25-300 or Uni PSA 30-300 filler at a flow rate of 1 column volume/h. After the completion of the sample, it was pre-washed with a methanol (or acetonitrile) aqueous solution for 1 hour, and then eluted with a TFA-containing methanol (or acetonitrile) aqueous solution. The elution flow rate was 1.50 column volumes/h. After eluting 1 column volume, the eluate was collected, and the eluate was concentrated and dried to obtain a pure product of each sample.
  • the concentration percentages of the elution solution and the prewash solution used are all volume percentages, and the yield refers to the molar yield.
  • the structures of the respective compounds involved in the following examples are shown in Table 1.
  • the white solid obtained had a chromatographic purity of 96.3% and a yield of 28.3%.
  • the mass spectrum and 1 H-NMR identification profiles of the products are shown in Figures 3 and 4.
  • the obtained crude solid was dissolved in 5 mL of DMSO, and then DIEA (0.1 mL, 0.6 mmol) and N',N'-dimethylaminopropanediamine (0.046 mL, 0.36 mmol) were added, stirred well, and then PyBOP (0.2 g, After the addition was completed, the reaction mixture was stirred at room temperature for 1 h. 50 mL of acetone was added to the reaction liquid, and the insoluble matter was stirred and precipitated, allowed to stand, and suction filtered, and the filter cake was washed with acetone and dichloromethane, and the solvent was removed. Purification using reverse phase polymer packing Uni PSA 25-300, eluting with a solution of 0.04% TFA in acetonitrile-water (1:4 ratio of acetonitrile to water).
  • the white solid obtained had a chromatographic purity of 98.4% and a yield of 13.9%.
  • the mass spectrum and 1 H-NMR identification profiles of the products are shown in Figures 5 and 6.
  • Example 2 The 4-cyanobenzylamine in Example 2 was replaced with 4-fluorobenzylamine, and the other procedure was the same as in Example 2 to give a white solid.
  • the white solid obtained had a chromatographic purity of 95.0% and a yield of 23.4%.
  • Example 3 The 4'-chlorobiphenyl-4-carbaldehyde in Example 3 was replaced with N-Fmoc-2-(n-nonylamino)-acetaldehyde, and the rest of the synthesis was carried out in the same manner as in Example 3, and the reaction was completed to obtain a crude solid. .
  • the solid crude product was uniformly dispersed with 10 ml of DMF, and 1 ml of diethylamine was added thereto under stirring at room temperature. The reaction solution was stirred at room temperature for 1 hour, and then poured into 100 ml of acetone to precipitate an insoluble matter, suction filtration, acetone washing, and the subsequent purification operation was the same as in Example 3.
  • the obtained white solid had a chromatographic purity of 97.3% and a yield of 28.7%.
  • Example 3 The 4'-chlorobiphenyl-4-carbaldehyde in Example 3 was replaced with 3-bromobenzaldehyde, and the other procedure was the same as in Example 3 to give a white solid.
  • the white solid obtained had a chromatographic purity of 95.5% and a yield of 21.7%.
  • the white solid obtained had a chromatographic purity of 96.0% and a yield of 20.0%.
  • the white solid obtained had a chromatographic purity of 97.5% and a yield of 29.0%.
  • the obtained solid was dissolved in 5 mL of DMSO, and then DIEA (0.15 mL, 0.9 mmol) and 4-fluorobenzylamine (80 mg, 0.6 mmol) were added, and the mixture was stirred well, and then PyBOP (0.3 g, 0.6 mmol) was added, and the mixture was stirred at room temperature for 1 h. .
  • the obtained white solid was found to have a chromatographic purity of 98.2% and a yield of 13.8%.
  • Example 3 Replace 4'-chlorobiphenyl-4-carbaldehyde in Example 3 with 4-dimethylaminobenzaldehyde, N',N'-dimethylaminopropylenediamine with 4-cyanobenzylamine, other The same operation as in Example 3 gave 96 mg of a white solid.
  • the white solid obtained had a chromatographic purity of 95.5% and a yield of 21.7%.
  • the white solid obtained had a chromatographic purity of 96.8% and a yield of 17.2%.
  • the obtained white solid was found to have a chromatographic purity of 97.0% and a yield of 35.3%.
  • the obtained white solid had a chromatographic purity of 96.7% and a yield of 31.3%.
  • the obtained white solid was found to have a chromatographic purity of 96.0% and a yield of 27.0%.
  • the obtained white solid had a chromatographic purity of 96.7% and a yield of 28.8%.
  • the white solid obtained had a chromatographic purity of 97.3% and a yield of 31.9%.
  • the obtained crude solid was dissolved in 5 mL of DMF, and then DIEA (0.2 mL, 1.2 mmol) and 4-cyanobenzylamine hydrochloride (0.1 g, 0.6 mmol) were added, and the mixture was stirred well, and then added to TBTU (193 mg, 0.6 mmol) at room temperature. Stir for 1 h. 50 mL of acetone was added to the reaction liquid, and the insoluble matter was stirred and precipitated, allowed to stand, and suction filtered, and the filter cake was washed with acetone and dichloromethane, and the solvent was removed.
  • the white solid obtained had a chromatographic purity of 96.5% and a yield of 17.1%.
  • the obtained white solid was found to have a chromatographic purity of 97.0% and a yield of 29.2%.
  • the white solid obtained had a chromatographic purity of 97.0% and a yield of 42.6%.
  • the white solid obtained had a chromatographic purity of 96.0% and a yield of 27.2%.
  • the white solid obtained had a chromatographic purity of 96.0% and a yield of 22.5%.
  • the white solid obtained had a chromatographic purity of 96.7% and a yield of 19.3%.
  • the white solid obtained had a chromatographic purity of 97.8% and a yield of 27.5%.
  • the obtained white solid was found to have a chromatographic purity of 97.0% and a yield of 23.0%.
  • the methanesulfonic acid, aspartic acid or glutamic acid is substituted for the hydrogen chloride in the above saturated hydrogen chloride methanol solution to obtain the corresponding salt.
  • the methanesulfonic acid, aspartic acid or glutamic acid is substituted for the hydrogen chloride in the above saturated hydrogen chloride methanol solution to obtain the corresponding salt.
  • the pharmaceutically acceptable salt of the glycopeptide derivative of the present invention may also be a salt of potassium or another alkali metal salt or an alkaline earth metal such as calcium or magnesium.
  • the in vitro antibacterial activity of the compound in Table 1 and its pharmaceutically acceptable salt was determined, and the minimum inhibitory concentration value (MIC) was read.
  • the method of determination was referred to the method provided in the Pharmacopoeia of the People's Republic of China (2015 edition).
  • the MRSA detection strain was purchased from ATCC, and the VRE detection strain was derived from the clinical isolate of drug-resistant strains from Shanghai Huashan Hospital. 07-W3-45, the vancomycin hydrochloride and the starting compound (II) were used as the control drugs, and the comparison test results are shown in Table 2.
  • the compound prepared by the present invention and the pharmaceutically acceptable salt thereof have good antibacterial activity against MRSA and VRE resistant strains compared with vancomycin hydrochloride; and the starting compound (II)
  • the compound prepared by the present invention and a pharmaceutically acceptable salt thereof have remarkably improved antibacterial activity against VRE, and can be applied to a medicament for treating bacterial infection and drug-resistant bacterial infection.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Genetics & Genomics (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Molecular Biology (AREA)
  • Veterinary Medicine (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Epidemiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Communicable Diseases (AREA)
  • Oncology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Peptides Or Proteins (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

提供了通式(I)所示的糖肽类衍生物及其药学可接受的盐:其中,R1为H、2-烷基胺-乙基、取代的苄基、取代的苯丙酰基或含碳-碳双键的直链酰基,所述苄基或苯丙酰基上的苯环带有卤素、羟基、氨基、二甲胺基、三氟甲基,或带有卤素或者羟基或者三氟甲基取代的苯环;所述直链酰基含有1~6个碳-碳双键;R2为C1~C5直链胺基,所述C1~C5直链胺基的末端可带有二甲胺基或取代苯基,所述取代苯基的苯环上带有卤素或者氰基或者硝基。式(I)化合物具有良好的抗菌活性,对糖肽类抗生素耐药菌的抗菌性增强。

Description

糖肽类衍生物及其药学可接受的盐、制备方法和应用 技术领域
本发明属于药物化学合成技术领域,具体涉及一类糖肽类衍生物及其药学可接受的盐、制备方法和应用。
背景技术
糖肽类抗生素由于其能够干扰细菌细胞壁肽聚糖的交联,从而使细菌细胞发生溶解,因此是临床治疗耐甲氧西林金黄色葡萄球菌(methicillin-resistant Staphylococcus aureus,MRSA)感染的首选药物。然而,大量的以糖肽类抗生素作为MRSA的经验治疗导致了细菌耐药性的发展,例如MRSA对万古霉素的敏感性有所下降,临床上还出现了大量的耐万古霉素肠球菌(VRE)。因此,糖肽类抗生素在治疗万古霉素耐药菌株VRE的功效降低,临床抗感染治疗不断面临着新的挑战,急需研究者们深入开发抗菌活性高,对耐药菌抗菌活性强的糖肽类化合物。
现有技术中,中国发明专利CN200910053906.9报道了一个新型糖肽类化合物,结构如本发明的化合物(II)所示,具有抗菌活性,其新颖性在于其肽骨架六位氨基酸糖基的四位羟基为直立键。然而,随着细菌耐药性的增强,化合物(II)的治疗效果降低,因此研发一种具有优异的抑菌疗效,且对耐药菌株具有良好的抑制效果的新型糖肽类抗生素就具有十分重要的意义。
发明内容
本申请的发明人以中国专利200910053906.9的专利申请文件记载的化合物为出发化合物,对其进行化学改造,获得了一系列改进的糖肽类抗生素衍生物及其药学上可接受的盐,经测试,该糖肽类抗生素衍生物对于耐药性菌株VRE具有良好的抑菌活性,能够用于制备治疗耐药性细菌感染的药物。
因此,本发明的第一个目的在于提供通式(I)所示的糖肽类衍生物及其药学可接受的盐:
Figure PCTCN2017083551-appb-000001
其中,R1为H、2-烷基胺-乙基、取代的苄基、取代的苯丙酰基或含碳-碳双键的直链酰基,所述苄基或苯丙酰基上的苯环带有卤素、羟基、氨基、二甲胺基、三氟甲基,或带有卤素或者羟基或者三氟甲基取代的苯环;所述直链酰基含有1~6个碳-碳双键;R2可为OH、C1~C5直链胺基,所述C1~C5直链胺基的末端可带有二甲胺基或取代苯基,所述取代苯基的苯环上带有卤素或者氰基或者硝基。
其中,当R1为H时,R2不为OH。
本发明中,所述通式(I)所示的糖肽类衍生物较佳的是:R1为H、2-(正癸胺基)乙基、3-溴苄基、4-氟苄基、4-羟基苄基、4-氨基苄基、4-二甲胺基苄基、4-三氟甲基苄基、3’-溴联苯甲基、4’-氯联苯甲基、4’-羟基联苯甲基、4’-三氟甲基联苯甲基或二十二碳六烯酰基、4-氟苯丙酰基或4-三氟甲基苯丙酰基;R2为N’,N’-二甲胺基丙胺基、4-氟苄胺基、4-氰基苄胺基或4-硝基苯乙胺基。
本发明中,所述的在药学上可接受的盐较佳的为碱金属、碱土金属的盐或与酸形成的盐。其中,所述的碱金属较佳的为钠或钾;所述的碱土金属较佳的为钙或镁;所述的酸较佳的为盐酸、氢溴酸、硫酸、硝酸或磷酸等无机酸,甲酸、乙酸、丙酸、草酸、丙二酸、琥珀酸、富马酸、马来酸、乳酸、苹果酸、酒石酸、柠檬酸、苦味酸或甲磺酸等有机酸,天冬氨酸或谷氨酸等酸性氨基酸。
本发明还涉及一类药物组合物,该药物组合物包含治疗有效量的上述糖肽类衍生物或其在药学上可接受的盐和药学上可接受的载体。本发明中,所述的药学上可接受的载体是指药学领域常规的药物载体,如稀释剂,赋形剂(如水等),粘合剂(如纤维素衍生物、明胶、聚乙烯吡咯烷酮等),填充剂(如淀粉等),崩裂剂(如碳酸钙、碳酸氢钠)。另外,还可以在组合物中加入其他辅助剂,如香味剂和甜味剂等。
本发明的药物组合物,可以通过静脉注射、皮下注射或口服的形式施加于需要治疗的患者。用于口服时,可将其制备成常规的固体制剂如片剂、粉剂或胶囊等;用于注射时,可将其制备成注射液。本发明的药物组合物的各种剂型可以采用医学领域常规的方法进行制备,其中活性成分的含量为0.1%~99.5%(重量比)。制剂中,本发明的化合物的重量含量为0.1~99.9%,优选的含量为0.5~90%。
上述药物组合物施加于需要治疗的患者的一般剂量可以参照万古霉素和去甲万古霉素的现有剂量,例如成人可以为0.1~2.0g/d,具体可根据患者的年龄和病情等变化。本发明的化合物可以按常规方法成盐,例如制成盐酸盐。
本发明的第二个目的是提供上述通式化合物(I)的制备方法。
本发明中,所述的通式(I)化合物可由下列合成路线制得:
方法一:当R1是2-烷基胺-乙基或取代的苄基,所述苄基上的苯环带有卤素、羟基、氨基、二甲胺基、三氟甲基,或带有卤素或者羟基或者三氟甲基取代的苯环时,
步骤A:将通式(II)所示的化合物与醛及氰基硼氢化钠(NaBH3CN)反应,获得通式(III)所示的化合物:
Figure PCTCN2017083551-appb-000002
步骤B:将通式(III)所示的化合物与胺在溶剂和缩合剂的存在下反应,获得通式(I)所示的化合物;
其中,R2为C1~C5直链胺基,所述C1~C5直链胺基的末端可带有二甲胺基或取代苯基,所述取代苯基的苯环上带有卤素或者氰基或者硝基;
Figure PCTCN2017083551-appb-000003
其中,当R2为OH时,将通式(II)所示的化合物与醛及氰基硼氢化钠反应,获得通式(I)所示的化合物;
Figure PCTCN2017083551-appb-000004
或方法二:当R1为H时,将通式(II)所示的化合物与胺在溶剂和缩合剂的存在下反应,获得通式(I)所示的化合物,
Figure PCTCN2017083551-appb-000005
其中,R2为C1~C5直链胺基,所述C1~C5直链胺基的末端可带有二甲胺基或取代苯基,所述取代苯基的苯环上带有卤素或者氰基或者硝基。
或方法三:当R1为取代的苯丙酰基或含碳-碳双键的直链酰基,所述苯丙酰基上的苯环带有卤素或者三氟甲基;所述直链酰基含有1~6个碳-碳双键时,
步骤A:将通式(II)所示的化合物与O-酰基-羟基琥珀酰亚胺活性酯及三乙胺反应,获得通式(III)所示的化合物:
Figure PCTCN2017083551-appb-000006
步骤B:将通式(III)所示的化合物与胺在溶剂和缩合剂的存在下反应,获得通式(I)所示的化合物;
其中,R2为C1~C5直链胺基,所述C1~C5直链胺基的末端可带有二甲胺基或取代苯基,所述取代苯基的苯环上带有卤素或者氰基或者硝基;
Figure PCTCN2017083551-appb-000007
其中,当R2为OH时,将通式(II)所示的化合物与活性酯及三乙胺反应,获得通式(I)所示的化合物,
Figure PCTCN2017083551-appb-000008
进一步地,所述的醛选自4’-氯联苯-4-甲醛、4’-羟基联苯-4-甲醛、4’-三氟甲基联苯-4-甲醛、3’-溴联苯-4-甲醛、N-Fmoc-2-(正癸胺基)-乙醛、3-溴苯甲醛、4-三氟甲基苯甲醛、4-二甲胺基苯甲醛、4-氟苯甲醛、4-羟基苯甲醛、和4-氨基苯甲醛中的一种。
进一步地,所述的溶剂选自二甲基亚砜(DMSO)、N,N-二甲基甲酰胺(DMF)、N-甲基吡咯烷酮(NMP)、乙二醇二甲醚(DME)中的一种或多种,优选的是DMSO、DMF和NMP中的一种或多种,更优选的溶剂是DMSO;
进一步地,所述的缩合剂选自二环己基碳二亚胺(DCC)、1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐(EDCI)、N,N’-二异丙基碳二亚胺(DIC)、N,N’-羰基二咪唑(CDI)、2-(7-偶氮苯并三氮唑)-N,N,N′,N′-四甲基脲六氟磷酸酯(HATU)、O-苯并三唑-N,N,N′,N′-四甲基脲四氟硼酸酯(TBTU)、1H-苯并三唑-1-基-氧三吡咯烷基六氟磷酸盐(PyBOP),优选的缩合剂是HATU、TBTU和PyBOP中的一种或多种,更优选的是PyBOP。
进一步地,所述的胺选自N’,N’-二甲胺基丙二胺、4-氰基苄胺、4-氟苄胺和4-硝基苯乙胺中的一种或几种。
进一步地,所述的活性酯是O-二十二碳六烯酰基-羟基琥珀酰亚胺或O-4-氟苯丙酰基-羟基琥珀酰亚胺或O-4-三氟甲基苯丙酰基-羟基琥珀酰亚胺。
本发明的第三个目的是提供上述化合物(I)在制备治疗细菌感染的药物中的应用。优选地,本发明提供了上述化合物(I)在制备治疗耐药性细菌感染的药物中的应用。
更优选地,本发明提供了上述化合物(I)在制备治疗MRSA、MSSA、VSE、VRE、PSSP、PRSP感染性疾病药物中的应用。
最优选地,本发明提供了上述化合物(I)在制备治疗MRSA或VRE感染性疾病药物中的应用。
本发明的有益效果在于本发明的如通式(I)化合物的衍生物及其药学可接受的盐具有良好的抗菌作用,尤其是抗耐药菌的作用,对于新的抗菌药物的开发具有重要的意义。
附图说明
图1为化合物LYSC-10的质谱鉴定图谱。
图2为化合物LYSC-10的1H-NMR鉴定图谱。
图3为化合物LYSC-14的质谱鉴定图谱。
图4为化合物LYSC-14的1H-NMR鉴定图谱。
图5为化合物LYSC-38的质谱鉴定图谱。
图6为化合物LYSC-38的1H-NMR鉴定图谱。
具体实施方式
以下结合具体实施例,对本发明做进一步说明。应理解,以下实施例仅用于说明本发明而非用于限制本发明的范围。
本发明中,下列缩写具有以下含义。未定义的缩写具有其普遍接受的含义,除非另外声明,所有室温均指温度20℃~30℃。
DIEA     N,N-二异丙基乙胺
DMF      N,N-二甲基甲酰胺
DMSO     二甲基亚砜
ESI      电喷雾电离质谱
MIC      最低抑菌浓度
PyBOP    1H-苯并三唑-1-基-氧三吡咯烷基六氟磷酸盐
TBTU     O-苯并三唑-N,N,N′,N′-四甲基脲四氟硼酸酯
TFA      三氟乙酸
本发明中涉及的出发化合物(II)的制备方法参照中国专利200910053906.9的专利申请文件的记载,本发明中的其他原料均为市售。
以下实施例中,使用反相聚合物填料Uni PS25-300及Uni PSA30-300(均购自苏州纳微科技有限公司)对合成所得的粗品进行纯化。取粗品溶解于甲醇(或乙腈)水溶液后,上样至装有Uni PS25-300或者Uni PSA30-300填料的玻璃层析柱中,上样流速为1倍柱体积/h。上样结束后以甲醇(或乙腈)水溶液预洗1h,再以含有TFA的甲醇(或乙腈)水溶液洗脱,洗脱流速为1.50倍柱体积/h。洗脱1倍柱体积后开始收集洗脱液,将洗脱液浓缩干燥后即得到各样品的纯品。
以下实施例中,使用的洗脱溶液和预洗溶液的浓度百分比均为体积百分比,所述的收率是指摩尔收率。以下实施例中涉及的各化合物的结构如表1所示。
表1、各化合物的结构
Figure PCTCN2017083551-appb-000009
Figure PCTCN2017083551-appb-000010
Figure PCTCN2017083551-appb-000011
实施例1、化合物LYSC-10的合成
室温下,化合物(II)(2.0g,1.2mmol)溶解于15mLDMSO中,然后加入DIEA(0.4mL,2.4mmol)以及N’,N’-二甲胺基丙二胺(0.18mL,1.4mmol),搅拌均匀, 再投入PyBOP(0.73g,1.4mmol),加毕,于室温下对反应液搅拌1h。
往上述反应液中加入250mL丙酮,搅拌析出不溶物,静置,抽滤,滤饼依次用丙酮和二氯甲烷洗涤,除去溶剂。使用反相聚合物填料UniPS25-300纯化,以含有0.04%TFA的甲醇-水(甲醇与水的体积比1∶4)溶液洗脱,将洗脱液浓缩干燥,得到白色固体0.66g。
经检测,所得白色固体的色谱纯度为97.1%,收率为31.8%。产物的质谱和1H-NMR鉴定图谱参见图1和图2。
1H-NMR图谱解析:1H-NMR(600MHz,DMSO-d6)δ(ppm):8.15(7H),7.78-6.69(13H),6.39(1H),5.64-5.36(2H),5.30-5.26(3H),5.26-5.15(7H),4.79-4.51(4H),4.48-4.24(3H),3.96-3.02(13H),2.80-2.64(2H),2.50-2.00(17H),1.79-0.91(14H),0.87-0.86(6H)。
实施例2、化合物LYSC-14的合成
室温下,化合物(II)(0.8g,0.5mmol)溶解于8mL DMF中,然后加入DIEA(0.25mL,1.5mmol)以及4-氰基苄胺(0.1g,0.75mmol),搅拌均匀,再投入TBTU(0.24g,0.75mmol),加毕,于室温下对反应液搅拌2h。
往上述反应液中加入100mL丙酮,搅拌析出不溶物,静置,抽滤,滤饼依次用丙酮和二氯甲烷洗涤,除去溶剂。使用反相聚合物填料Uni PS25-300纯化,以含0.03%TFA的甲醇-水(甲醇与水的体积比2∶3)溶液洗脱,将洗脱液浓缩干燥,得到白色固体243mg。
经检测,所得白色固体的色谱纯度为96.3%,收率为28.3%。产物的质谱和1H-NMR鉴定图谱参见图3和图4。
实施例3、化合物LYSC-38的合成
室温下,化合物(II)(500mg,0.3mmol)溶解于10mlDMF-甲醇(体积比1∶1混合)中,然后加入4’-氯联苯-4-甲醛(85mg,0.4mmol),搅拌回流2h后再加入氰基硼氢化钠(40mg,0.6mmol),继续回流2h,反应液冷却后减压蒸去甲醇,残余物倾入50ml丙酮中析出不溶物,静置,抽滤,滤饼依次用丙酮和二氯甲烷洗涤,除去溶剂,得到固体粗品。
将所得固体粗品用5mLDMSO溶解,依次加入DIEA(0.1mL,0.6mmol)和N’,N’-二甲胺基丙二胺(0.046mL,0.36mmol),搅拌均匀,再投入PyBOP(0.2g,0.36mmol),加毕,于室温下对反应液搅拌1h。往反应液中加入50mL丙酮,搅拌析出不溶物,静置,抽滤,滤饼依次用丙酮和二氯甲烷洗涤,除去溶剂。使用反相聚合物填料Uni PSA25-300纯化,以含0.04%TFA的乙腈-水(乙腈与水的体积比1∶4)溶液洗脱,将洗脱液浓缩干燥,得到白色固体82mg。
经检测,所得白色固体的色谱纯度为98.4%,收率为13.9%。产物的质谱和 1H-NMR鉴定图谱参见图5和图6。
实施例4、化合物LYSC-35的合成
将实施例2中的4-氰基苄胺替换为4-氟苄胺,其他操作同实施例2,得到白色固体200mg。
经检测,所得白色固体的色谱纯度为95.0%,收率为23.4%。
1H-NMR图谱解析:1H-NMR(600MHz,DMSO-d6)δ(ppm):7.70-6.52(19H),6.29-5.40(3H),5.36-5.30(3H),5.24-5.02(7H),4.85-4.61(3H),4.60-4.50(2H),4.33-4.12(5H),4.00-3.55(8H),3.50-3.21(6H),3.00-2.00(20H),1.98-0.90(12H),0.90-0.82(6H)。
实施例5、化合物LYSC-37的合成
将实施例3中的4’-氯联苯-4-甲醛替换为N-Fmoc-2-(正癸胺基)-乙醛,其余合成操作同实施例3,反应后处理完毕,得到固体粗品。固体粗品用10ml DMF分散均匀,室温搅拌下加入1ml二乙胺,反应液在室温下搅拌1小时后倾入100ml丙酮中析出不溶物,抽滤,丙酮洗涤,后续纯化操作同实施例3,得到白色固体160mg。
经检测,所得白色固体的色谱纯度为97.3%,收率为28.7%。
1H-NMR图谱解析:1H-NMR(600MHz,DMSO-d6)δ(ppm):7.78-6.60(11H),6.51-5.32(3H),5.31-5.02(10H),5.00-4.69(3H),4.55-4.38(5H),4.26-4.10(3H),4.13-3.20(16H),3.15-2.04(14H),2.00-0.98(25H),0.96-0.86(9H)。
实施例6、化合物LYSC-39的合成
将实施例3中4’-氯联苯-4-甲醛替换为3-溴苯甲醛,其他操作同实施例3,得到白色固体120mg。
经检测,所得白色固体的色谱纯度为95.5%,收率为21.7%。
1H-NMR图谱解析:1H-NMR(600MHz,DMSO-d6)δ(ppm):7.77-7.54(6H),7.42-7.21(6H),6.83-6.35(5H),5.54-5.51(3H),5.44-5.30(4H),5.28-5.00(2H),4.86-4.50(6H),4.49-3.20(7H),3.19-2.50(8H),2.30-2.21(5H),2.06-1.05(21H),0.87-0.85(6H)。
实施例7、化合物LYSC-41的合成
室温下,化合物(II)(500mg,0.3mmol)溶解于10mlDMF-甲醇(1∶1,v/v)中,加入4-三氟甲基苯甲醛(90mg,0.5mmol),搅拌回流2h后加入氰基硼氢化钠(40mg,0.6mmol),继续回流2h,反应液冷却后减压蒸去甲醇,残余物倾入50ml丙酮中析出不溶物,静置,抽滤,滤饼依次用丙酮和二氯甲烷洗涤,除去溶剂,得到固体粗品。
分离纯化操作同实施例3,得到白色固体105mg。
经检测,所得白色固体的色谱纯度为96.0%,收率为20.0%。
1H-NMR图谱解析:1H-NMR(600MHz,DMSO-d6)δ(ppm):7.88-7.20(11H),6.70-6.51(4H),6.48-6.33(2H),5.83-5.66(1H),5.60-5.23(4H),5.21-5.10(2H),5.00-4.80 (2H),4.75-4.69(3H),4.65-4.33(6H),4.10-3.70(5H),3.54-3.00(6H),2.78-2.22(4H),2.00-1.05(10H),0.87-0.80(6H)。
实施例8、化合物LYSC-45的合成
室温下,化合物(II)(300mg,0.2mmol)溶解于3mL DMSO中,加入O-二十二碳六烯酰基羟基琥珀酰亚胺(0.15g,0.3mmol)以及三乙胺(0.07mL,0.5mmol),室温搅拌过夜,反应液倾入25ml丙酮中析出不溶物,静置,抽滤,滤饼依次用丙酮和二氯甲烷洗涤,除去溶剂,得到固体粗品。
分离纯化操作同实施例3,得到白色固体110mg。
经检测,所得白色固体的色谱纯度为97.5%,收率为29.0%。
1H-NMR图谱解析:1H-NMR(600MHz,DMSO-d6)δ(ppm):7.77-7.01(10H),7.00-6.66(4H),6.51-6.49(3H),6.38-6.15(12H),6.10-5.12(10H),5.00-4.63(10H),4.54-4.42(2H),4.40-4.16(13H),4.10-3.98(6H),3.74-2.78(15H),2.60-0.98(4H),0.90-0.78(9H)。
实施例9、化合物LYSC-48的合成
室温下,化合物(II)(500mg,0.3mmol)溶解于5mL DMSO中,加入O-二十二碳六烯酰基羟基琥珀酰亚胺(0.2g,0.45mmol)以及三乙胺(0.1mL,0.7mmol),室温搅拌过夜,反应液倾入50ml丙酮中析出不溶物,静置,抽滤,滤饼依次用丙酮和二氯甲烷洗涤,除去溶剂。
将所得固体用5mLDMSO溶解,依次加入DIEA(0.15mL,0.9mmol)和4-氟苄胺(80mg,0.6mmol),搅拌均匀,再投入PyBOP(0.3g,0.6mmol),加毕于室温搅拌1h。
往反应液中加入50mL丙酮,搅拌析出不溶物,静置,抽滤,滤饼依次用丙酮和二氯甲烷洗涤,除去溶剂。使用反相聚合物填料Uni PSA25-300纯化,以含0.04%TFA的乙腈水溶液洗脱,将洗脱液浓缩干燥,得到白色固体82mg。
经检测,所得白色固体的色谱纯度为98.2%,收率为13.8%。
1H-NMR图谱解析:1H-NMR(600MHz,DMSO-d6)δ(ppm):7.79-6.86(8H),6.60-6.55(9H),6.43-5.12(15H),5.10-5.02(11H),4.98-4.48(14H),4.45-4.20(15H),4.16-4.05(6H),3.66-2.21(18H),2.11-0.98(6H),0.86-0.75(9H)。
实施例10、化合物LYSC-59的合成
将实施例3中的4’-氯联苯-4-甲醛替换为4-二甲胺基苯甲醛,N’,N’-二甲胺基丙二胺替换为4-氰基苄胺,其他操作同实施例3,得到白色固体96mg。
经检测,所得白色固体的色谱纯度为95.5%,收率为21.7%。
1H-NMR图谱解析:1H-NMR(600MHz,DMSO-d6)δ(ppm):7.86-7.77(3H),7.60-7.50(3H),7.48-7.10(9H),7.03-6.33(13H),5.55-5.45(2H),5.40-5.34(6H), 5.30-5.28(1H),5.28-5.00(4H),4.97-4.71(4H),4.69-4.57(8H),4.50-4.04(6H),4.00-3.55(8H),3.46-2.43(18H),2.36-1.05(6H),0.87-0.85(6H)。
实施例11、化合物LYSC-68的合成
将4’-氯联苯-4-甲醛替换为3’-溴联苯-4-甲醛,N’,N’-二甲胺基丙二胺替换为4-氟苄胺,其他操作同实施例3,得到白色固体100mg。
经检测,所得白色固体的色谱纯度为96.8%,收率为17.2%。
1H-NMR图谱解析:1H-NMR(600MHz,DMSO-d6)δ(ppm):7.80-7.26(20H),6.83-6.66(4H),6.54-6.11(3H),5.86-5.56(3H),5.50-5.35(7H),5.20-4.86(5H),4.80-4.51(4H),4.43-4.33(1H),4.30-4.14(3H),4.00-3.76(4H),3.63-3.43(2H),3.10-2.80(6H),2.31-1.86(4H),1.78-1.18(13H),0.88-0.80(6H)。
实施例12、化合物LYSC-73的合成
室温下,化合物(II)(1.6g,1.0mmol)溶解于16ml DMF-甲醇(体积比1∶1混合)中,然后加入3-溴苯甲醛(0.24g,1.3mmol),搅拌回流2h,静置冷却至室温,加入氰基硼氢化钠(0.17g,2.0mmol),室温搅拌2h,减压蒸去甲醇,搅拌下往残余物中加入100ml甲基叔丁基醚,析出不溶物,静置、抽滤,滤饼依次用丙酮和二氯甲烷洗涤,除去溶剂,得到固体粗品。
将所得固体粗品用5mL DMSO溶解,依次加入DIEA(0.5mL,3.0mmol)和4-氰基苄胺盐酸盐(0.34g,2.0mmol),搅拌均匀,再投入PyBOP(1.6g,3.0mmol),加毕,室温下搅拌2h。往反应液中加入100mL丙酮,搅拌析出不溶物,静置、抽滤,滤饼依次用丙酮和二氯甲烷洗涤,除去溶剂。使用反相聚合物填料Uni PSA25-300纯化,以含0.04%TFA的乙腈-水(乙腈与水的体积比1∶4)溶液洗脱,将洗脱液浓缩干燥,得到白色固体0.66g。
经检测,所得白色固体的色谱纯度为97.0%,收率为35.3%。
1H-NMR图谱解析:1H-NMR(600MHz,DMSO-d6+D2O)δ(ppm):8.50-8.15(8H),7.83-7.50(11H),7.21-6.77(3H),5.65-5.25(5H),5.20-4.86(3H),4.77-4.44(5H),4.30-4.19(2H),4.01-3.86(6H),3.70-3.23(7H),3.22-3.08(5H),2.90-2.40(8H),2.33-2.00(6H),2.00-1.68(7H),1.50-1.30(2H),1.30-1.02(3H),0.95-0.70(6H)。
实施例13、化合物LYSC-44的合成
室温下,化合物(II)(1.6g,1.0mmol)溶解于20ml DMF-甲醇(体积比1∶1混合)中,然后加入4-三氟甲基苯甲醛(0.23g,1.3mmol),搅拌回流2h,静置冷却至室温,加入氰基硼氢化钠(0.17g,2.0mmol),室温搅拌2h,减压蒸去甲醇,搅拌下往残余物中加入100ml甲基叔丁基醚,析出不溶物,静置、抽滤,滤饼依次用丙酮和二氯甲烷洗涤,除去溶剂,得到固体粗品。
将所得固体粗品用5mL DMSO溶解,依次加入DIEA(0.5mL,3.0mmol)和4- 氟苄胺(0.25g,2.0mmol),搅拌均匀,再投入PyBOP(1.6g,3.0mmol),加毕,室温下搅拌2h。往反应液中加入100mL丙酮,搅拌析出不溶物,静置、抽滤,滤饼依次用丙酮和二氯甲烷洗涤,除去溶剂。使用反相聚合物填料Uni PSA25-300纯化,以含0.04%TFA的乙腈-水(乙腈与水的体积比1∶4)溶液洗脱,将洗脱液浓缩干燥,得到白色固体0.58g。
经检测,所得白色固体的色谱纯度为96.7%,收率为31.3%。
1H-NMR图谱解析:1H-NMR(600MHz,DMSO-d6+D2O)δ(ppm):8.23-7.84(7H),7.61-7.21(8H),7.12-6.97(5H),5.78-5.37(4H),5.36-5.00(5H),4.89-4.64(6H),4.54-4.11(3H),4.10-3.82(6H),3.81-3.23(5H),3.22-3.00(3H),2.99-2.50(6H),2.43-2.04(6H),2.00-1.30(4H),1.28-1.00(2H),0.89-0.80(6H)。
实施例14、化合物LYSC-69的合成
室温下,化合物(II)(2.0g,1.1mmol)溶解于10ml DMF-甲醇(体积比1∶1混合)中,然后加入N-Fmoc-2-(正癸胺基)-乙醛(0.46g,1.1mmol),室温搅拌2h,加入氰基硼氢化钠(0.19g,2.2mmol),继续搅拌2h,减压蒸去甲醇,搅拌下往残余物中加入150ml甲基叔丁基醚,析出不溶物,静置、抽滤,滤饼依次用丙酮和二氯甲烷洗涤,除去溶剂,得到固体粗品。
将所得固体粗品用10mL NMP溶解,依次加入DIEA(0.4mL,2.2mmol)和4-氰基苄胺盐酸盐(0.4g,2.2mmol),搅拌均匀,再投入PyBOP(0.6g,1.1mmol),室温下搅拌3h,再加入3mL二乙胺,搅拌2h。往反应液中加入150mL丙酮,搅拌析出不溶物,静置、抽滤,滤饼依次用丙酮和二氯甲烷洗涤,除去溶剂。使用反相聚合物填料Uni PSA25-300纯化,以含0.04%TFA的乙腈-水(乙腈与水的体积比1∶4)溶液洗脱,将洗脱液浓缩干燥,得到白色固体0.56g。
经检测,所得白色固体的色谱纯度为96.0%,收率为27.0%。
1H-NMR图谱解析:1H-NMR(600MHz,DMSO-d6+D2O)δ(ppm):7.50-6.77(16H),5.65-5.22(5H),5.31-5.02(4H),5.00-4.87(3H),4.75-4.31(7H),4.20-4.00(8H),3.91-3.12(18H),3.10-2.03(15H),2.02-1.00(23H),0.97-0.80(9H)。
实施例15、化合物LYSC-52的合成
室温下,化合物(II)(1.6g,1.0mmol)溶解于16ml DMF-甲醇(体积比1∶1混合)中,然后加入4-羟基苯甲醛(0.16g,1.3mmol),搅拌回流2h,静置冷却至室温,加入氰基硼氢化钠(0.26g,3.0mmol),室温搅拌2h,减压蒸去甲醇,搅拌下往残余物中加入100ml甲基叔丁基醚,析出不溶物,静置、抽滤,滤饼依次用丙酮和二氯甲烷洗涤,除去溶剂,得到固体粗品。
将所得固体粗品用5mL DMSO溶解,依次加入DIEA(0.5mL,3.0mmol)和4-氟苄胺(0.25g,2.0mmol),搅拌均匀,再投入PyBOP(1.6g,3.0mmol),加毕,室 温下搅拌2h。往反应液中加入100mL丙酮,搅拌析出不溶物,静置、抽滤,滤饼依次用丙酮和二氯甲烷洗涤,除去溶剂。使用反相聚合物填料Uni PSA25-300纯化,以含0.04%TFA的乙腈-水(乙腈与水的体积比1∶4)溶液洗脱,将洗脱液浓缩干燥,得到白色固体0.52g。
经检测,所得白色固体的色谱纯度为96.7%,收率为28.8%。
1H-NMR图谱解析:1H-NMR(600MHz,DMSO-d6+D2O)δ(ppm):7.56-7.02(20H),5.49-5.30(6H),5.26-5.03(3H),5.00-4.05(9H),3.89-3.61(5H),3.57-3.04(4H),3.00-2.69(8H),2.33-2.00(4H),1.98-1.30(6H),1.29-1.01(6H),1.00-0.90(6H)。
实施例16、化合物LYSC-64的合成
室温下,化合物(II)(1.6g,1.0mmol)溶解于30ml DMF-甲醇(体积比1∶1混合)中,然后加入4’-羟基联苯-4-甲醛(0.4g,2.0mmol),搅拌回流2h,静置冷却至室温,加入氰基硼氢化钠(0.17g,2.0mmol),室温搅拌2h,减压蒸去甲醇,搅拌下往残余物中加入150ml甲基叔丁基醚,析出不溶物,静置、抽滤,滤饼依次用丙酮和二氯甲烷洗涤,除去溶剂,得到固体粗品。
将所得固体粗品用5mL DMSO溶解,依次加入DIEA(0.5mL,3.0mmol)和4-氟苄胺(0.25g,2.0mmol),搅拌均匀,再投入PyBOP(1.6g,3.0mmol),加毕,室温下搅拌2h。往反应液中加入150mL丙酮,搅拌析出不溶物,静置、抽滤,滤饼依次用丙酮和二氯甲烷洗涤,除去溶剂。使用反相聚合物填料Uni PSA25-300纯化,以含0.04%TFA的乙腈-水(乙腈与水的体积比1∶4)溶液洗脱,将洗脱液浓缩干燥,得到白色固体0.6g。
经检测,所得白色固体的色谱纯度为97.3%,收率为31.9%。
1H-NMR图谱解析:1H-NMR(600MHz,DMSO-d6+D2O)δ(ppm):8.10-7.37(15H),7.30-7.00(9H),5.58-5.37(3H),5.36-5.00(6H),5.00-4.06(9H),3.89-3.82(2H),3.81-3.46(6H),3.33-3.05(3H),3.00-2.72(5H),2.63-2.02(7H),2.01-1.60(7H),1.58-1.00(5H),0.88-0.70(6H)。
实施例17、化合物LYSC-67的合成
室温下,化合物(II)(500mg,0.3mmol)溶解于10ml DMF-甲醇(体积比1∶1混合)中,然后加入3’-溴联苯-4-甲醛(157mg,0.6mmol)以及氰基硼氢化钠(12mg,0.3mmol),室温搅拌2h,减压蒸去甲醇,往里加入50ml丙酮,搅拌析出不溶物,静置、抽滤,滤饼依次用丙酮和二氯甲烷洗涤,除去溶剂,得到固体粗品。
将所得固体粗品用5mLDMF溶解,依次加入DIEA(0.2mL,1.2mmol)和4-氰基苄胺盐酸盐(0.1g,0.6mmol),搅拌均匀,再投入TBTU(193mg,0.6mmol),室温下搅拌1h。往反应液中加入50mL丙酮,搅拌析出不溶物,静置、抽滤,滤饼依次用丙酮和二氯甲烷洗涤,除去溶剂。使用反相聚合物填料Uni PSA25-300纯化,以 含0.04%TFA的乙腈-水(乙腈与水的体积比1∶4)溶液洗脱,将洗脱液浓缩干燥,得到白色固体100mg。
经检测,所得白色固体的色谱纯度为96.5%,收率为17.1%。
1H-NMR图谱解析:1H-NMR(600MHz,DMSO-d6+D2O)δ(ppm):8.00-7.65(12H),7.60-7.13(12H),5.55-5.34(5H),5.32-5.12(2H),5.11-5.03(2H),5.01-4.71(4H),4.70-4.00(5H),3.89-3.63(3H),3.60-3.33(5H),3.30-3.20(1H),3.14-2.88(6H),2.80-2.13(5H),2.10-1.78(8H),1.77-1.03(4H),0.80-0.70(6H)。
实施例18、化合物LYSC-76的合成
室温下,化合物(II)(1.6g,1.0mmol)溶解于20ml DMF-甲醇(体积比1∶1混合)中,然后加入4-氟苯甲醛(0.16g,1.3mmol),搅拌回流2h,静置冷却至室温,加入氰基硼氢化钠(0.17g,2.0mmol),室温搅拌2h,减压蒸去甲醇,搅拌下往残余物中加入100ml甲基叔丁基醚,析出不溶物,静置、抽滤,滤饼依次用丙酮和二氯甲烷洗涤,除去溶剂,得到固体粗品。
将所得固体粗品用5mL DMSO溶解,依次加入DIEA(0.5mL,3.0mmol)和N’,N’-二甲胺基丙二胺(0.25mL,2.0mmol),搅拌均匀,再投入PyBOP(1.6g,3.0mmol),室温下搅拌2h。往反应液中加入100mL丙酮,搅拌析出不溶物,静置、抽滤,滤饼依次用丙酮和二氯甲烷洗涤,除去溶剂。使用反相聚合物填料Uni PSA25-300纯化,以含0.04%TFA的乙腈-水(乙腈与水的体积比1∶4)溶液洗脱,将洗脱液浓缩干燥,得到白色固体0.52g。
经检测,所得白色固体的色谱纯度为97.0%,收率为29.2%。
1H-NMR图谱解析:1H-NMR(600MHz,DMSO-d6+D2O)δ(ppm):8.43-8.10(5H),7.75-7.00(8H),6.89-6.43(3H),5.88-5.35(6H),5.30-5.00(3H),4.82-4.57(3H),4.50-4.19(4H),4.04-3.71(5H),3.61-3.44(5H),3.40-3.12(8H),3.11-3.02(2H),2.98-2.61(6H),2.50-2.14(11H),2.13-2.10(3H),2.08-1.88(7H),1.80-1.43(5H),1.30-1.03(2H),0.95-0.70(6H)。
实施例19、化合物LYSC-79的合成
室温下,化合物(II)(1.6g,1.0mmol)溶解于10mL DMSO中,然后加入DIEA(0.8mL,5mmol)以及4-硝基苯乙胺盐酸盐(0.4g,2.0mmol),搅拌均匀,再投入PyBOP(1.6g,3.0mmol),室温搅拌2h,往上述反应液中加入100mL丙酮,搅拌析出白色不溶物,静置、抽滤,滤饼依次用丙酮和二氯甲烷洗涤,除去溶剂。使用反相聚合物填料UniPS25-300纯化,以含有0.04%TFA的甲醇-水(甲醇与水的体积比1∶4)溶液洗脱,将洗脱液浓缩干燥,得到白色固体0.74g。
经检测,所得白色固体的色谱纯度为97.0%,收率为42.6%。
1H-NMR图谱解析:1H-NMR(600MHz,DMSO-d6+D2O)δ(ppm):8.44-7.73(4H),7.70-7.10(12H),5.84-5.55(6H),5.43-5.05(3H),4.99-4.74(3H),4.66-4.21(4H),4.10-3.42 (6H),3.30-3.13(3H),3.00-2.08(14H),1.90-1.03(12H),1.00-0.90(6H)
实施例20、化合物LYSC-84的合成
室温下,化合物(II)(2.0g,1.1mmol)溶解于10mL DMSO中,加入O-对三氟甲基苯丙酰基羟基琥珀酰亚胺(0.52g,1.6mmol)以及三乙胺(0.4mL,2.7mmol),70℃搅拌2h,往反应液中加入150ml丙酮搅拌析出白色不溶物,静置、抽滤,滤饼依次用丙酮和二氯甲烷洗涤,除去溶剂,得到固体粗品,用10mL DMSO溶解,依次加入DIEA(0.4mL,2.2mmol)和N’,N’-二甲胺基丙二胺(0.27mL,2.2mmol),搅拌均匀,再投入PyBOP(1.8g,3.3mmol),室温下搅拌3h。往反应液中加入150mL丙酮,搅拌析出不溶物,静置、抽滤,滤饼依次用丙酮和二氯甲烷洗涤,除去溶剂。使用反相聚合物填料Uni PSA25-300纯化,以含0.04%TFA的乙腈-水(乙腈与水的体积比1∶4)溶液洗脱,将洗脱液浓缩干燥,得到白色固体0.56g。
经检测,所得白色固体的色谱纯度为96.0%,收率为27.2%。
1H-NMR图谱解析:1H-NMR(600MHz,DMSO-d6+D2O)δ(ppm):8.02-7.56(6H),7.40-7.00(10H),5.71-5.45(2H),5.40-5.14(6H),5.10-4.84(6H),4.83-4.50(4H),4.44-4.32(2H),4.20-4.10(1H),4.07-3.35(8H),3.34-3.05(9H),3.02-2.62(5H),2.33-2.00(6H),1.99-1.58(4H),1.37-1.00(6H),0.95-0.78(6H)。
实施例21、化合物LYSC-86的合成
室温下,化合物(II)(2.0g,1.1mmol)溶解于10mL DMSO中,加入O-对三氟甲基苯丙酰基羟基琥珀酰亚胺(0.52g,1.6mmol)以及三乙胺(0.4mL,2.7mmol),70℃搅拌2h,往反应液中加入150ml丙酮搅拌析出白色不溶物,静置、抽滤,滤饼依次用丙酮和二氯甲烷洗涤,除去溶剂,得到固体粗品,用10mL DMSO溶解,依次加入DIEA(0.4mL,2.2mmol)和4-硝基苯乙胺盐酸盐(0.44g,2.2mmol),搅拌均匀,再投入PyBOP(1.8g,3.3mmol),室温下搅拌3h。往反应液中加入150mL丙酮,搅拌析出不溶物,静置、抽滤,滤饼依次用丙酮和二氯甲烷洗涤,除去溶剂。使用反相聚合物填料Uni PSA25-300纯化,以含0.04%TFA的乙腈-水(乙腈与水的体积比1∶4)溶液洗脱,将洗脱液浓缩干燥,得到白色固体0.48g。
经检测,所得白色固体的色谱纯度为96.0%,收率为22.5%。
1H-NMR图谱解析:1H-NMR(600MHz,DMSO-d6+D2O)δ(ppm):8.54-7.40(8H),7.40-7.12(8H),7.10-6.87(4H),5.50-5.45(1H),5.40-5.10(6H),5.06-4.77(5H),4.55-4.24(4H),4.24-4.13(3H),4.07-3.65(8H),3.50-3.00(7H),2.98-2.62(7H),2.33-2.07(5H),2.02-1.58(5H),1.37-1.00(6H),0.95-0.78(6H)。
实施例22、化合物LYSC-88的合成
室温下,化合物(II)(2.0g,1.1mmol)溶解于10mL DMSO中,加入O-对氟苯丙酰基羟基琥珀酰亚胺(0.44g,1.6mmol)以及三乙胺(0.4mL,2.7mmol),70℃搅拌 2h,往反应液中加入150ml丙酮搅拌析出白色不溶物,静置、抽滤,滤饼依次用丙酮和二氯甲烷洗涤,除去溶剂,得到固体粗品,用10mLDMSO溶解,依次加入DIEA(0.4mL,2.2mmol)和4-硝基苯乙胺盐酸盐(0.44g,2.2mmol),搅拌均匀,再投入PyBOP(1.8g,3.3mmol),室温下搅拌3h。往反应液中加入150mL丙酮,搅拌析出不溶物,静置、抽滤,滤饼依次用丙酮和二氯甲烷洗涤,除去溶剂。使用反相聚合物填料Uni PSA25-300纯化,以含0.04%TFA的乙腈-水(乙腈与水的体积比1∶4)溶液洗脱,将洗脱液浓缩干燥,得到白色固体0.4g。
经检测,所得白色固体的色谱纯度为96.7%,收率为19.3%。
1H-NMR图谱解析:1H-NMR(600MHz,DMSO-d6+D2O)δ(ppm):8.00-7.00(10H),7.40-7.33(4H),5.58-5.05(9H),4.88-4.51(5H),4.45-4.22(4H),4.20-4.10(3H),4.07-3.11(8H),3.10-2.85(7H),2.66-2.07(11H),2.06-1.74(7H),1.73-1.00(5H),0.80-0.78(6H)。
实施例23、化合物LYSC-89的合成
室温下,化合物(II)(2.0g,1.1mmol)溶解于10mL DMSO中,加入O-对氟苯丙酰基羟基琥珀酰亚胺(0.44g,1.6mmol)以及三乙胺(0.4mL,2.7mmol),70℃搅拌2h,往反应液中加入150ml丙酮搅拌析出白色不溶物,静置、抽滤,滤饼依次用丙酮和二氯甲烷洗涤,除去溶剂,得到固体粗品,用10mLDMSO溶解,依次加入DIEA(0.4mL,2.2mmol)和4-氟苄胺(0.24g,2.2mmol),搅拌均匀,再投入PyBOP(1.8g,3.3mmol),室温下搅拌3h。往反应液中加入150mL丙酮,搅拌析出不溶物,静置、抽滤,滤饼依次用丙酮和二氯甲烷洗涤,除去溶剂。使用反相聚合物填料Uni PSA25-300纯化,以含0.04%TFA的乙腈-水(乙腈与水的体积比1∶4)溶液洗脱,将洗脱液浓缩干燥,得到白色固体0.56g。
经检测,所得白色固体的色谱纯度为97.8%,收率为27.5%。
1H-NMR图谱解析:1H-NMR(600MHz,DMSO-d6+D2O)δ(ppm):8.40-8.10(8H),7.81-7.65(12H),5.65-5.25(5H),5.20-4.86(3H),4.77-4.44(5H),4.30-4.19(2H),4.01-3.86(6H),3.70-3.23(7H),3.22-3.08(5H),2.90-2.40(8H),2.33-2.00(6H),2.00-1.68(7H),1.50-1.30(2H),1.30-1.02(3H),0.95-0.70(6H)。
实施例24、化合物LYSC-92的合成
室温下,化合物(II)(2.0g,1.1mmol)溶解于20ml DMF-甲醇(1∶1,v/v)中,加入4’-三氟甲基联苯-4-甲醛(0.4g,1.4mmol),搅拌回流2h,静置冷却至室温,加入氰基硼氢化钠(0.2g,2.2mmol),室温搅拌2h,减压蒸去甲醇,搅拌下往残余物中加入100ml甲基叔丁基醚,析出白色不溶物,静置、抽滤,滤饼依次用丙酮和二氯甲烷洗涤,除去溶剂,得到固体粗品,用10mL DMSO溶解,依次加入DIEA(0.4mL,2.2mmol)和4-硝基苯乙胺盐酸盐(0.44g,2.2mmol),搅拌均匀,再投入PyBOP(1.8g,3.3mmol),室温下搅拌3h。往反应液中加入150mL丙酮,搅拌析出不溶物,静置、 抽滤,滤饼依次用丙酮和二氯甲烷洗涤,除去溶剂。使用反相聚合物填料Uni PSA25-300纯化,以含0.04%TFA的乙腈-水(乙腈与水的体积比1∶4)溶液洗脱,将洗脱液浓缩干燥,得到白色固体0.5g。
经检测,所得白色固体的色谱纯度为97.0%,收率为23.0%。
1H-NMR图谱解析:1H-NMR(600MHz,DMSO-d6+D2O)δ(ppm):8.50-8.05(7H),8.00-7.32(10H),7.20-7.05(7H),6.53-6.46(3H),6.03-5.68(3H),5.50-5.02(3H),4.90-4.87(1H),4.84-4.52(6H),3.97-3.74(4H),3.55-3.17(5H),3.10-2.76(7H),2.70-2.30(4H),2.25-2.03(1H),2.05-1.13(12H),0.84-0.75(6H)。
实施例25、成盐试验一
将100mg化合物LYSC-35投入5.0mL饱和氯化氢甲醇溶液中,室温搅拌10分钟,减压蒸干,往里加入30mL丙酮搅拌,抽滤、除去溶剂,得到化合物LYSC-35的盐酸盐白色固体100mg,Cl元素分析:理论值9.80%,实测值9.82%。
另外,分别用氢溴酸、硫酸、硝酸、磷酸、甲酸、乙酸、丙酸、草酸、丙二酸、琥珀酸、富马酸、马来酸、乳酸、苹果酸、酒石酸、柠檬酸、苦味酸、甲磺酸、天冬氨酸或谷氨酸代替上述饱和氯化氢甲醇溶液中的氯化氢,得到相应的盐。
实施例26、成盐试验二
将50mg化合物LYSC-68投入1mL饱和氯化氢甲醇溶液中,室温搅拌,减压蒸干,往里加入10mL丙酮搅拌,抽滤,除去溶剂,得到化合物LYSC-68的盐酸盐白色固体50mg,Cl元素分析:理论值5.37%,实测值5.40%。
另外,分别用氢溴酸、硫酸、硝酸、磷酸、甲酸、乙酸、丙酸、草酸、丙二酸、琥珀酸、富马酸、马来酸、乳酸、苹果酸、酒石酸、柠檬酸、苦味酸、甲磺酸、天冬氨酸或谷氨酸代替上述饱和氯化氢甲醇溶液中的氯化氢,得到相应的盐。
实施例27、成盐试验三
往100mg化合物LYSC-37中加入2mL甲醇,用1mol/LNaOH溶液将pH值调至8~9,减压蒸除甲醇,往里加入10mL丙酮搅拌,抽滤,除去溶剂,得到化合物LYSC-37的钠盐白色固体100mg。
本发明的糖肽类衍生物的药学上可接受的盐也可为钾或其它碱金属盐及钙、镁等碱土金属的盐。
实施例28、化合物的抑菌活性测定
对表1中的化合物及其药学可接受的盐进行体外抑菌活性测定,读取最低抑菌浓度值(MIC),测定方法参考《中华人民共和国药典》(2015年版)中提供的方法。MRSA检测菌系购自ATCC,VRE检测菌系来源自上海华山医院临床分离耐药菌株 07-W3-45,以盐酸万古霉素和起始化合物(II)为对照药,对比试验结果如表2所示。
表2、表1中各化合物对MRSA及VRE的MIC(μg/mL)
Figure PCTCN2017083551-appb-000012
Figure PCTCN2017083551-appb-000013
由表2的检测结果可见,与盐酸万古霉素相比,本发明制备的化合物及其药学可接受的盐对于MRSA和VRE耐药性菌株具有良好的抑菌活性;与出发化合物(II)相比,本发明制备的化合物及其药学可接受的盐对于VRE的抑菌活性显著提高,能够应用于制备治疗细菌感染及耐药性细菌感染的药物。
以上对本发明的具体实施例进行了详细描述,但其只作为范例,本发明并不限制于以上描述的具体实施例。对于本领域技术人员而言,任何对该发明进行的等同修改和替代也都在本发明的范畴之中。因此,在不脱离本发明的精神和范围下所作的均等变换和修改,都应涵盖在本发明的范围内。

Claims (15)

  1. 通式(I)所示的糖肽类衍生物及其药学可接受的盐:
    Figure PCTCN2017083551-appb-100001
    其中,R1为H、2-烷基胺-乙基、取代的苄基、取代的苯丙酰基或含碳-碳双键的直链酰基,所述苄基或苯丙酰基上的苯环带有卤素、羟基、氨基、二甲胺基、三氟甲基,或带有卤素或者羟基或者三氟甲基取代的苯环;所述直链酰基含有1~6个碳-碳双键;R2为C1~C5直链胺基,所述C1~C5直链胺基的末端带有二甲胺基或取代苯基,所述取代苯基的苯环上带有卤素或者氰基或者硝基。
  2. 如权利要求1所述的糖肽类衍生物及其药学可接受的盐,其特征在于,R1为H、2-(正癸胺基)乙基、3-溴苄基、4-氟苄基、4-羟基苄基、4-氨基苄基、4-二甲胺基苄基、4-三氟甲基苄基、3’-溴联苯甲基、4’-氯联苯甲基、4’-羟基联苯甲基、4’-三氟甲基联苯甲基或二十二碳六烯酰基、4-氟苯丙酰基或4-三氟甲基苯丙酰基;R2为N’,N’-二甲胺基丙胺基、4-氟苄胺基、4-氰基苄胺基或4-硝基苯乙胺基。
  3. 如权利要求1所述的糖肽类衍生物及其药学可接受的盐,其特征在于,所述的药学上可接受的盐为碱金属、碱土金属的盐或与酸形成的盐。
  4. 如权利要求3所述的糖肽类衍生物及其药学可接受的盐,其特征在于,所述的碱金属为钠或钾;所述的碱土金属为钙或镁;所述的酸为盐酸、氢溴酸、硫酸、硝酸、磷酸、甲酸、乙酸、丙酸、草酸、丙二酸、琥珀酸、富马酸、马来酸、乳酸、苹果酸、酒石酸、柠檬酸、苦味酸、甲磺酸、天冬氨酸或谷氨酸。
  5. 如权利要求1~4中任一项所述的糖肽类衍生物及其药学可接受的盐的制备方法,其特征在于,所述方法包括:
    方法一:当R1是2-烷基胺-乙基或取代的苄基,所述苄基上的苯环带有卤素、羟 基、氨基、二甲胺基、三氟甲基,或带有卤素或者羟基或者三氟甲基取代的苯环时,
    步骤A:将通式(II)所示的化合物与醛及氰基硼氢化钠反应,获得通式(III)所示的化合物:
    Figure PCTCN2017083551-appb-100002
    步骤B:将通式(III)所示的化合物与胺在溶剂和缩合剂的存在下反应,获得通式(I)所示的化合物;
    其中,R2为C1~C5直链胺基,所述C1~C5直链胺基的末端带有二甲胺基或取代苯基,所述取代苯基的苯环上带有卤素或者氰基或者硝基;
    Figure PCTCN2017083551-appb-100003
    或方法二:当R1为H时,将通式(II)所示的化合物与胺在溶剂和缩合剂的存在下反应,获得通式(I)所示的化合物:
    Figure PCTCN2017083551-appb-100004
    其中,R2为C1~C5直链胺基,所述C1~C5直链胺基的末端带有二甲胺基或取代苯基,所述取代苯基的苯环上带有卤素或者氰基或者硝基;
    或方法三:当R1为取代的苯丙酰基或含碳-碳双键的直链酰基,所述苯丙酰基上的苯环带有卤素或者三氟甲基;所述直链酰基含有1~6个碳-碳双键时,
    步骤A:将通式(II)所示的化合物与O-酰基-羟基琥珀酰亚胺活性酯及三乙胺反应,获得通式(III)所示的化合物:
    Figure PCTCN2017083551-appb-100005
    步骤B:将通式(III)所示的化合物与胺在溶剂和缩合剂的存在下反应,获得通式(I)所示的化合物;
    其中,R2为C1~C5直链胺基,所述C1~C5直链胺基的末端带有二甲胺基或取代苯基,所述取代苯基的苯环上带有卤素或者氰基或者硝基;
    Figure PCTCN2017083551-appb-100006
  6. 如权利要求5所述的糖肽类衍生物及其药学可接受的盐的制备方法,其特征在于,所述醛选自4’-氯联苯-4-甲醛、4’-羟基联苯-4-甲醛、4’-三氟甲基联苯-4-甲醛、3’-溴联苯-4-甲醛、N-Fmoc-2-(正癸胺基)-乙醛、3-溴苯甲醛、4-三氟甲基苯甲醛、4-二甲胺基苯甲醛、4-氟苯甲醛、4-羟基苯甲醛和4-氨基苯甲醛中的一种。
  7. 如权利要求5所述的糖肽类衍生物及其药学可接受的盐的制备方法,其特征在于,所述溶剂选自二甲基亚砜、N,N-二甲基甲酰胺、N-甲基吡咯烷酮、乙二醇二甲醚中的一种或多种。
  8. 如权利要求7所述的糖肽类衍生物及其药学可接受的盐的制备方法,其特征在于,所述溶剂为二甲基亚砜。
  9. 如权利要求5所述的糖肽类衍生物及其药学可接受的盐的制备方法,其特征在于,所述缩合剂选自二环己基碳二亚胺、1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐、N,N’-二异丙基碳二亚胺、N,N’-羰基二咪唑、2-(7-偶氮苯并三氮唑)-N,N,N′,N′-四甲基脲六氟磷酸酯、O-苯并三唑-N,N,N′,N′-四甲基脲四氟硼酸酯或1H-苯并三唑-1-基-氧三吡咯烷基六氟磷酸盐。
  10. 如权利要求9所述的糖肽类衍生物及其药学可接受的盐的制备方法,其特征在于,所述缩合剂为1H-苯并三唑-1-基-氧三吡咯烷基六氟磷酸盐。
  11. 如权利要求5所述的糖肽类衍生物及其药学可接受的盐的制备方法,其特征在于,所述胺选自N’,N’-二甲胺基丙二胺、4-氰基苄胺、4-氟苄胺和4-硝基苯乙胺中的一种或几种。
  12. 如权利要求5所述的糖肽类衍生物及其药学可接受的盐的制备方法,其特征在于,所述活性酯是O-二十二碳六烯酰基-羟基琥珀酰亚胺或O-4-氟苯丙酰基-羟基琥珀酰亚胺或O-4-三氟甲基苯丙酰基-羟基琥珀酰亚胺。
  13. 如权利要求1~4中任一项所述的糖肽类衍生物及其药学可接受的盐在制备治疗细菌感染性疾病药物中的应用。
  14. 如权利要求13所述的糖肽类衍生物及其药学可接受的盐在制备治疗耐药性细菌感染性疾病药物中的应用。
  15. 如权利要求14所述的糖肽类衍生物及其药学可接受的盐在制备治疗MRSA或VRE感染性疾病药物中的应用。
PCT/CN2017/083551 2016-07-15 2017-05-09 糖肽类衍生物及其药学可接受的盐、制备方法和应用 WO2018010476A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610559987 2016-07-15
CN201610559987.X 2016-07-15

Publications (1)

Publication Number Publication Date
WO2018010476A1 true WO2018010476A1 (zh) 2018-01-18

Family

ID=60951917

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2017/083549 WO2018010475A1 (zh) 2016-07-15 2017-05-09 糖肽类衍生物及其药学可接受的盐、制备方法和应用
PCT/CN2017/083551 WO2018010476A1 (zh) 2016-07-15 2017-05-09 糖肽类衍生物及其药学可接受的盐、制备方法和应用

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/083549 WO2018010475A1 (zh) 2016-07-15 2017-05-09 糖肽类衍生物及其药学可接受的盐、制备方法和应用

Country Status (2)

Country Link
CN (2) CN107619433B (zh)
WO (2) WO2018010475A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3532483A4 (en) * 2016-10-31 2020-09-02 The Scripps Research Institute PERIPHERAL MODIFICATIONS ON RECOGNIZED POCKET VANCOMYCIN ANALOGUES TO SYNERGICALLY IMPROVE ANTIMICROBIAL POWER AND DURABILITY

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113109473B (zh) * 2021-04-13 2022-01-14 长沙晨辰医药科技有限公司 一种甲醛衍生测试方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN87106483A (zh) * 1986-09-19 1988-06-08 伊莱利利公司 糖肽抗生素的制备方法
CN101222933A (zh) * 2005-02-28 2008-07-16 诺瓦蒂斯疫苗和诊断公司 具有抗菌活性的半合成糖肽
WO2010048340A2 (en) * 2008-10-24 2010-04-29 Lead Therapeutics, Inc. Novel semi-synthetic glycopeptides as antibacterial agents
CN101928331A (zh) * 2009-06-26 2010-12-29 上海来益生物药物研究开发中心有限责任公司 一种新的化合物及其应用
CN101959849A (zh) * 2007-12-26 2011-01-26 利德治疗公司 作为抗菌剂的新型半合成糖肽

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4643987A (en) * 1985-08-14 1987-02-17 Eli Lilly And Company Modified glycopeptides
US4639433A (en) * 1985-08-14 1987-01-27 Eli Lilly And Company Glycopeptide derivatives
US5840684A (en) * 1994-01-28 1998-11-24 Eli Lilly And Company Glycopeptide antibiotic derivatives
CN101397333A (zh) * 2007-09-27 2009-04-01 浙江医药股份有限公司新昌制药厂 去羟基万古霉素及其制备方法、和其药物组合物及其用途
CN102690332B (zh) * 2011-03-23 2017-06-27 浙江医药股份有限公司新昌制药厂 新型糖肽类抗生素衍生物及药物组合物、以及其制备方法和用途
CN102690330B (zh) * 2011-03-23 2014-10-08 浙江医药股份有限公司新昌制药厂 三取代糖肽类衍生物及药物组合物、以及其制备方法和用途
CN102690331B (zh) * 2011-03-23 2015-05-20 浙江医药股份有限公司新昌制药厂 单糖糖肽类衍生物及药物组合物及其制备方法和用途以及中间体的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN87106483A (zh) * 1986-09-19 1988-06-08 伊莱利利公司 糖肽抗生素的制备方法
CN101222933A (zh) * 2005-02-28 2008-07-16 诺瓦蒂斯疫苗和诊断公司 具有抗菌活性的半合成糖肽
CN101959849A (zh) * 2007-12-26 2011-01-26 利德治疗公司 作为抗菌剂的新型半合成糖肽
WO2010048340A2 (en) * 2008-10-24 2010-04-29 Lead Therapeutics, Inc. Novel semi-synthetic glycopeptides as antibacterial agents
CN101928331A (zh) * 2009-06-26 2010-12-29 上海来益生物药物研究开发中心有限责任公司 一种新的化合物及其应用

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3532483A4 (en) * 2016-10-31 2020-09-02 The Scripps Research Institute PERIPHERAL MODIFICATIONS ON RECOGNIZED POCKET VANCOMYCIN ANALOGUES TO SYNERGICALLY IMPROVE ANTIMICROBIAL POWER AND DURABILITY

Also Published As

Publication number Publication date
CN107619432A (zh) 2018-01-23
CN107619432B (zh) 2023-03-17
CN107619433A (zh) 2018-01-23
WO2018010475A1 (zh) 2018-01-18
CN107619433B (zh) 2023-03-17

Similar Documents

Publication Publication Date Title
JPH05170794A (ja) タチキニン由来の新規ぺプチドおよび医薬組成物
US20230391765A1 (en) Heterobifunctional compounds as degraders of enl
WO2023065606A1 (zh) 新型氘代氰基类化合物、其制备方法、组合物及应用
CN111372942A (zh) 调节β-联蛋白功能的物质及其方法
WO2018010476A1 (zh) 糖肽类衍生物及其药学可接受的盐、制备方法和应用
WO2001021583A1 (fr) Derives d'acide hydroxamique, procede de production desdits derives et medicaments contenant lesdits derives comme principe actif
JP6275644B2 (ja) N−[2−({2−[(2S)−2−シアノピロリジン−1−イル]−2−オキソエチル}アミノ)−2−メチルプロピル]−2−メチルピラゾロ[1,5−a]ピリミジン−6−カルボキサミドの結晶
TW200848062A (en) Semi-synthetic glycopeptides with antibacterial activity
WO2006070780A1 (ja) Par-2アゴニスト
IL263356B (en) A crystalline form of a compound that suppresses protein kinase activity, and its application
JP6883593B2 (ja) 9−アミノメチル基置換のテトラサイクリン系化合物の結晶型及びその製造方法
JP2008115165A (ja) チオペプタイド化合物
KR20230022874A (ko) (2s,5r)-5-(2-클로로페닐)-1-(2'-메톡시-[1,1'-비페닐]-4-카르보닐)피롤리딘-2-카르복실산의 합성
CN108484640B (zh) 一种抗肿瘤的细胞凋亡蛋白抑制剂
CN107987131B (zh) 一组具有抗耐药性细菌活性的化合物、其制备方法和应用
WO2020022892A1 (en) Tubulysin derivatives and methods for preparing the same
JPH0794424B2 (ja) 新スパガリン関連化合物およびその製造法
JPS61191695A (ja) 新規ペプタイド
WO2019061812A1 (zh) 氨基酸骨架类新型cxcr4拮抗剂及其制备与生物医学应用
JP5625910B2 (ja) ペプチド化合物およびその製造方法
WO2006104190A1 (ja) Par-2アゴニスト
EP0467280B1 (en) Novel spergualin-related compound and use thereof
WO2002088147A1 (fr) Sulfate d'un compose cepheme
JP4010814B2 (ja) メバロン酸誘導体
JPH029863A (ja) トリ置換−1,2,3,4−テトラヒドロイソキノリン

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17826815

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17826815

Country of ref document: EP

Kind code of ref document: A1