WO2018010327A1 - 一种金属离子修饰的黑磷及其制备方法与应用 - Google Patents

一种金属离子修饰的黑磷及其制备方法与应用 Download PDF

Info

Publication number
WO2018010327A1
WO2018010327A1 PCT/CN2016/102294 CN2016102294W WO2018010327A1 WO 2018010327 A1 WO2018010327 A1 WO 2018010327A1 CN 2016102294 W CN2016102294 W CN 2016102294W WO 2018010327 A1 WO2018010327 A1 WO 2018010327A1
Authority
WO
WIPO (PCT)
Prior art keywords
black phosphorus
metal ion
preparation
organic solution
modified
Prior art date
Application number
PCT/CN2016/102294
Other languages
English (en)
French (fr)
Inventor
喻学锋
郭志男
Original Assignee
深圳先进技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳先进技术研究院 filed Critical 深圳先进技术研究院
Publication of WO2018010327A1 publication Critical patent/WO2018010327A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/003Phosphorus
    • C01B25/006Stabilisation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases

Definitions

  • the invention belongs to the technical field of two-dimensional black phosphorus, and particularly relates to a metal ion modified black phosphorus and a preparation method and application thereof.
  • black phosphorus which, like graphene, has a two-dimensional unit layer structure in which each phosphorus atom and three adjacent phosphorus atoms are covalently bonded. Connected to form a pleated honeycomb structure with layers connected by van der Waals forces.
  • black phosphorus is a natural semiconductor with adjustable band gap width and excellent electrical properties. It is considered to solve the problem that graphene cannot be solved as a conductor. It is expected to replace silicon and become a semiconductor industry. Core material. The optical properties of black phosphorus are also superior to other semiconductors.
  • Its semiconductor band gap is the direct band gap, that is, the bottom of the conduction band and the top of the valence band are in the same position, while the conventional silicon or molybdenum sulfide is an indirect band gap.
  • black phosphorus can be directly coupled with light to build a new generation of optoelectronic devices.
  • it is determined by the pleated honeycomb structure of black phosphorus itself, and the electron conduction velocity, thermal conductivity, and interaction with polarized light in the X and Y directions in the layer are different, and these anisotropic properties make black Phosphorus itself becomes a material that can be logically written.
  • black phosphorus has excellent performance and wide application prospects in electrical and optical fields, and research on the photoelectric properties of black phosphorus is expected to break through optoelectronic devices.
  • the barriers of the underlying materials have greatly promoted the development of China's optoelectronic field.
  • black phosphorus has also shown good application prospects in many fields such as optical devices, sensors, solar cells, lithium batteries, and biomedicine.
  • black phosphorus is the most stable of many phosphorus allotropes, as a new type of semiconductor two-dimensional material with adjustable band gap, good carrier mobility and excellent optoelectronic properties
  • the field of optoelectronics has great application prospects, but when the practical application of black phosphorus is still limited by oxidation, especially in the presence of both water and oxygen.
  • the air contains both water molecules and oxygen.
  • Black phosphorus is slowly oxidized by oxygen to form phosphorus oxides, which are then degraded into phosphates. The entire oxidation process destroys the structure of black phosphorus, which in turn makes its original excellent properties. Degraded, which means that black phosphorus-based optoelectronic devices are not working properly in the air.
  • the preparation method can start from the root cause of black phosphorus oxidation reaction, utilize metal ions to improve the antioxidant capacity of black phosphorus, and improve the stability of black phosphorus in air.
  • the metal ion-modified black phosphorus can fundamentally solve the problem of oxidation of black phosphorus, enhance the antioxidant capacity of black phosphorus, and have high stability.
  • the present invention provides a method for preparing a metal ion-modified black phosphorus, which comprises the following steps:
  • the black phosphorus raw material is placed in a metal ion organic solution, immersed at a temperature of 0-50 ° C for 5 min - 2 h, and then blown dry in a protective gas to obtain a metal ion-modified black phosphorus.
  • the metal ion organic solution is excessive relative to the black phosphorus raw material.
  • the black phosphorus raw material includes one or a combination of a black phosphorus bulk material, a multilayer black phosphorus nanosheet, a single layer black phosphorus nanosheet, and a black phosphorus quantum dot.
  • the black phosphorus bulk material refers to a black phosphorus bulk material which has not been peeled off.
  • the black phosphorus quantum dot means a black phosphorus nanoparticle having a hydrated particle diameter of less than 10 nm.
  • the metal ion includes a combination of one or more of Fe 3+ , Au 3+ , Ag + , Mg 2+ , and Hg 2+ .
  • the organic solvent configuring the metal ion organic solution includes a polar solvent and/or a non-polar solvent; and the polar solvent includes a polar protic solvent and/or a polar aprotic solvent.
  • the non-polar solvent and polar protic solvent can be conventionally selected in the art.
  • the organic solvent in which the metal ion organic solution is disposed is a polar aprotic solvent.
  • the polar aprotic solvent includes one or a combination of one of nitromethylpyrrolidone, dimethyl sulfoxide and dimethylformamide.
  • the metal ion organic solution has a concentration of 10 -4 mol/L to 10 -6 mol/L.
  • the immersion time is 20 min.
  • the shielding gas includes, but is not limited to, nitrogen gas or the like.
  • the method for preparing the metal ion-modified black phosphorus comprises the following steps:
  • the black phosphorus block is directly immersed in the metal ion organic solution, immersed for 5 min - 2 h, and then taken out, then rinsed with an organic solvent configured with the metal ion organic solution, and then blown dry in a protective gas to obtain a metal ion modified Black phosphorus
  • the multilayer black phosphorus nanosheet or black phosphorus quantum dot after liquid phase stripping is directly dispersed in an organic solvent to prepare an organic solution of black phosphorus raw material, and then the metal ion organic solution is added to the black phosphorus raw material organic solution.
  • the metal ion-modified black phosphorus is prepared by mixing for 5 min to 2 h, wherein the organic solvent is an organic solvent in which the metal ion organic solution is disposed;
  • the substrate carrying the multilayer black phosphorus nanosheet or the single-layer black phosphorus nanosheet is immersed in the metal ion organic solution, immersed for 5 min - 2 h, and then rinsed with an organic solvent configured with the metal ion organic solution, and then rinsed. Drying in a protective gas produces a metal ion-modified black phosphorus.
  • the content of the metal ions in the impregnated metal ion organic solution is much larger than the content of the metal ions saturated on the black phosphorus surface.
  • the substrate carrying the multilayer black phosphorus nanosheet or the single black phosphorus nanosheet is obtained by mechanically peeling off the multilayer black phosphorus nanosheet or the single black phosphorus nanosheet on the substrate. of.
  • the black phosphorus is contacted with the metal ion organic solution for a certain time to realize the adsorption of the metal ions on the surface of the black phosphorus, and then washed with an organic solvent, and finally dried in a protective gas to obtain a metal ion-modified black phosphorus.
  • the adsorption and protection of black phosphorus by metal ions improves the antioxidant capacity of black phosphorus, thereby improving the stability of black phosphorus in air.
  • the preparation method is simple, fast and effective.
  • the present invention considers that black phosphorus is easily reacted with oxygen in the presence of both oxygen and water because the outermost layer of each phosphorus atom in black phosphorus has five electrons, three of which are respectively associated with the other three. Phosphorus atoms form bonds, except for three bonding electrons. The outer layer of each phosphorus atom still has a pair of lone pairs of electrons, which are easily taken away by oxygen molecules, thereby causing oxidation of black phosphorus. The process can produce phosphate under the condition of water, thereby destroying the inherent structure of black phosphorus, and gradually eroding black phosphorus from the surface of the black phosphorus layer.
  • the prior art only separates the black phosphorus from the water and oxygen in the air, but does not solve the oxidation problem of black phosphorus from the root of the oxidation reaction (unpaired lone pair electrons).
  • the present invention uses metal ions and phosphorus atoms from a lone pair of electrons. The lone pair of electrons in the coordination bond, thereby blocking the lone pair of electrons in the phosphorus in the black phosphorus, so that it can no longer combine with oxygen, starting from the perspective of lone pair electrons, effectively solving the black phosphorus is oxidized in the air. The problem.
  • the present invention also provides metal ion-modified black phosphorus obtained by the method for producing black phosphorus modified by the above metal ions.
  • the above-mentioned metal ion-modified black phosphorus can improve the structure and performance stability of black phosphorus in the presence of water and oxygen simultaneously without changing the inherent properties of black phosphorus, and enhance the antioxidant capacity of black phosphorus.
  • the invention also provides metal ion-modified black phosphorus prepared by the method for preparing black phosphorus modified by the above metal ions in a thin film transistor material, a battery anode material, a flexible display material, a light emitting diode material, an optical switch material and a biosensor material. application.
  • the thin film transistor material refers to a material for constructing a thin film transistor semiconductor layer
  • the battery negative electrode material refers to a raw material constituting a negative electrode in the battery
  • the flexible display material refers to a soft, variable, bendable material used to prepare a flexible display device
  • the light emitting diode material refers to a semiconductor material for constructing a basic structure of a light emitting diode
  • the optical switch material refers to a semiconductor material that can realize physical switching or logic operation of an optical signal in an optical transmission line or an integrated optical path.
  • the metal ion-modified black phosphorus provided by the present invention can greatly improve the antioxidant capacity of black phosphorus by using metal ions, and maintain the stability and stability of black phosphorus in the presence of water and oxygen simultaneously;
  • the metal ion-modified black phosphorus provided by the present invention does not change the intrinsic properties such as the morphology of black phosphorus;
  • the method for preparing the metal ion-modified black phosphorus provided by the present invention is to utilize the coordination action of the metal ions and the lone pair electrons of the phosphorus atom in the black phosphorus to adsorb the metal ions to the surface of the black phosphorus layer, thereby making the black phosphorus
  • the more active lone pairs of internal phosphorus atoms passivate, which prevents the oxidation and degradation of black phosphorus in the air. It is the root cause of the oxidation of black phosphorus, which solves the problem that black phosphorus cannot be stabilized in the air.
  • the anti-oxidation ability of black phosphorus is enhanced to make black phosphorus have high stability in air, thereby expanding the application range of black phosphorus, and the preparation method is simple, rapid and effective.
  • Example 1A is an atomic force microscope diagram of iron ion-modified black phosphorus prepared in Example 1;
  • Example 1B is an atomic force microscopy image of the iron ion-modified black phosphorus prepared in Example 1 after being placed in air for 5 days;
  • 2A is an atomic force microscope diagram of black phosphorus modified in Example 1 without iron ions
  • Example 2B is an atomic force microscopy image of the black phosphorus modified in Example 1 after being placed in air for 5 days.
  • This embodiment provides a method for preparing iron ion modified black phosphorus, which comprises the following steps:
  • the black phosphorus nanosheet was peeled off by a tape stripping method and transferred to the surface of the silicon wafer having a 150 nm silicon nitride layer on the surface to prepare a black phosphorus sample to be processed;
  • the black phosphorus sample to be treated is immersed in the treatment liquid for 20 minutes, and then the silicon wafer is taken out with tweezers, then rinsed with nitromethylpyrrolidone, and then blown dry with nitrogen to complete the adsorption of the metal iron ions on the black phosphorus sample.
  • the treatment is carried out to obtain iron ion-modified black phosphorus.
  • the iron ion-modified black phosphorus sample was placed under a microscope in the air, and the signs of oxidation within 5 days were observed and compared with the black phosphorus sample modified without iron ions. The results are shown in Figures 1A-2B. As shown in FIG. 1A and FIG. 1B, after the iron ion-modified black phosphorus sample was placed in the air for 5 days, no oxidation occurred on the surface of the iron ion-modified black phosphorus surface just prepared.
  • the iron ion-modified black phosphorus prepared in the present embodiment can greatly improve the antioxidant capacity of black phosphorus by using iron ions, and can be in the condition of simultaneous presence of water and oxygen ( Keep the black phosphorus structure and performance stable in the air.
  • the prepared iron ion-modified black phosphorus was tested for stability after being exposed to air for 5 days, and the test results showed that the iron ion-modified black phosphorus prepared in the present example was able to maintain good air.
  • the stability has fundamentally solved the problem of oxidation of black phosphorus.
  • the prepared iron ion-modified black phosphorus is exposed to air for 5 days, and its optical properties are also performed. Tests, the test results show that the iron-modified black phosphorus prepared in this embodiment can maintain good optical properties in air, and lays a foundation for its application in optical switch materials.
  • This embodiment provides a method for preparing silver ion-modified black phosphorus, which comprises the following steps:
  • the black phosphorus quantum dots were stripped by liquid phase stripping method and directly dispersed in nitromethylpyrrolidone to prepare a black phosphorus quantum dot nitromethylpyrrolidone solution at a concentration of 10 micrograms per milliliter. 10 ml of the solution was taken as Black phosphorus sample to be treated;
  • the treatment liquid and the black phosphorus sample to be treated were mixed and stirred for 20 minutes to complete the adsorption and protection treatment of the black phosphorus sample by the metal silver ions, thereby preparing silver ion-modified black phosphorus.
  • the silver ion-modified black phosphorus prepared in this example was characterized by TEM (transmission electron microscopy). The test showed that the silver ion-modified black phosphorus prepared in this example has uniform size and the morphology is consistent with the unmodified black phosphorus quantum dot. The particle size is mainly 10 nm and the dispersibility is good.
  • This embodiment provides a method for preparing mercury ion-modified black phosphorus, which comprises the following steps:
  • the metal ion-modified black phosphorus prepared by the method provided by the present invention can greatly improve the antioxidant capacity of black phosphorus by using metal ions, and does not change the inherent properties of black phosphorus, such as water and The structure and performance of the black phosphorus are kept stable under the condition that the oxygen is simultaneously present; the preparation method of the metal ion-modified black phosphorus provided by the invention utilizes the coordination of the metal ions with the lone pair electrons of the phosphorus atom in the black phosphorus to adsorb the metal ions.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Composite Materials (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种金属离子修饰的黑磷及其制备方法与应用。该制备方法包括以下步骤:将黑磷原料置于金属离子有机溶液中,在0-50℃温度下浸渍5min-2h,然后再在保护气体中吹干,制得金属离子修饰的黑磷。还提供由上述制备方法制得的金属离子修饰的黑磷,以及该金属离子修饰的黑磷在薄膜晶体管材料、电池负极材料、柔性显示材料、发光二极管材料、光开关材料和生物传感器材料中的应用。所述金属离子修饰的黑磷能够利用金属离子在不改变黑磷固有属性的情况下提高黑磷在水和氧气同时存在时的结构和性能的稳定性,增强黑磷的抗氧化能力。

Description

一种金属离子修饰的黑磷及其制备方法与应用 技术领域
本发明属于二维黑磷技术领域,尤其涉及一种金属离子修饰的黑磷及其制备方法与应用。
背景技术
2014年,二维材料家族迎来了一位新成员—黑磷,它与石墨烯类似地拥有二维单元层状结构,层内每个磷原子与三个相邻的磷原子由共价键连接,形成褶皱蜂窝结构,层间通过范德华力相连。但与石墨烯不同的是,黑磷是一种天然的半导体,其带隙宽度可调、电学性能优越,被认为能够解决石墨烯作为导体所不能解决的问题,有望取代硅,成为半导体工业的核心材料。黑磷的光学性能同其他半导体相比也有巨大优势,它的半导体带隙是直接带隙,即导带底部和价带顶部在同一位置,而传统的硅或硫化钼等都是间接带隙,这意味着黑磷可以和光直接耦合,构筑新一代光电器件。此外,由黑磷自身的褶皱蜂窝结构决定,在其层内的X和Y两个方向的电子传导速度、导热性能、与偏振光的相互作用各不相同,这些各向异性的特性,使得黑磷本身就成为一种可以进行逻辑编写材料。综上,作为一种迄今发现的最薄的直接带隙半导体材料,二维黑磷拥有着电学、光学等方面的卓越性能和广泛应用前景,开展对黑磷光电性能的研究,有望突破光电器件底层材料的壁垒,对我国光电领域的发展产生极大的促进作用。并且,黑磷还在光学器件、传感器、太阳能电池、锂电池、生物医学等多个领域展现出很好的应用前景。
虽然,黑磷是众多磷的同素异形体中最稳定的一种,作为一种新型的半导体二维材料具有可调节的带隙、良好的载流子迁移率和极其优秀的光电性质,在光电领域有着巨大的应用前景,但在将黑磷进行实际应用时,还是会受到被氧化的限制,特别是在水和氧气同时存在的条件下。而空气中既含有水分子又含有氧气,黑磷会被氧气缓慢氧化,生成磷的氧化物,进而降解成磷酸盐等,整个氧化过程会破坏黑磷的结构,进而使其原有的优良性质退化,这就意味着,基于黑磷的光电器件是无法在空气中正常工作的。
因此,如何解决黑磷易被氧化的问题,维持黑磷在使用时的性能稳定,是黑磷发展的关键问题。为了解决上述黑磷被氧化的问题,研究者们通在黑磷的表面覆盖不同 的物质,以实现隔绝空气中的氧气和水,阻止黑磷被氧化。但这类方法的核心思路是的表面覆盖其他的物质,是一种完全的物理密封的方法,并没有从根本上解决黑磷的氧化问题,因此,寻找新的解决方案,从根本上解决黑磷的氧化问题,是黑磷发展的当务之急。
发明内容
鉴于上述现有技术的缺点,本发明的目的在于提供一种金属离子修饰的黑磷及其制备方法与应用。该制备方法能从黑磷氧化反应的根本原因入手,利用金属离子提高黑磷的抗氧化能力,提高黑磷在空气中的稳定性。该金属离子修饰的黑磷,能从根本上解决黑磷的氧化问题,增强黑磷的抗氧化能力,具有高稳定性。
为了达到前述的发明目的,本发明提供一种金属离子修饰的黑磷的制备方法,其包括以下步骤:
将黑磷原料置于金属离子有机溶液中,在0-50℃温度下浸渍5min-2h,然后再在保护气体中吹干,制得金属离子修饰的黑磷。
在上述制备方法中,所述金属离子有机溶液相对于所述黑磷原料是过量的。
在上述制备方法中,优选地,所述黑磷原料包括黑磷块材、多层黑磷纳米片、单层黑磷纳米片和黑磷量子点中的一种或几种的组合。
在上述制备方法中,所述黑磷块材是指未经剥离的黑磷块体材料。
在上述制备方法中,优选地,所述黑磷量子点是指水合粒径小于10nm的黑磷纳米颗粒。
在上述制备方法中,优选地,所述金属离子包括Fe3+、Au3+、Ag+、Mg2+和Hg2+中的一种或几种的组合。
在上述制备方法中,优选地,配置所述金属离子有机溶液的有机溶剂包括极性溶剂和/或非极性溶剂;所述极性溶剂包括极性质子溶剂和/或极性非质子溶剂。所述非极性溶剂和极性质子溶剂可以为本领域常规选择。
在上述制备方法中,优选地,配置所述金属离子有机溶液的有机溶剂为极性非质子溶剂。
在上述制备方法中,优选地,所述极性非质子溶剂包括氮甲基吡咯烷酮、二甲基亚砜和二甲基甲酰胺中的一种或几种的组合。
在上述制备方法中,优选地,所述金属离子有机溶液的浓度10-4mol/L-10-6mol/L。
在上述制备方法中,优选地,所述浸渍的时间为20min。
在上述制备方法中,所述保护气体包括氮气等,但不限于此。
在上述制备方法中,优选地,所述金属离子修饰的黑磷的制备方法,具体包括以下步骤:
将黑磷块材直接浸泡到金属离子有机溶液中,浸渍5min-2h后取出,然后利用配置所述金属离子有机溶液的有机溶剂进行冲洗,再在保护气体中吹干,制得金属离子修饰的黑磷;
或者,将经液相剥离后的多层黑磷纳米片或黑磷量子点直接分散在有机溶剂中,制得黑磷原料有机溶液,再将金属离子有机溶液加入到所述黑磷原料有机溶液中,混合5min-2h,制得金属离子修饰的黑磷,其中,所述有机溶剂为配置所述金属离子有机溶液的有机溶剂;
或者,将载有多层黑磷纳米片或单层黑磷纳米片的基片浸泡到金属离子有机溶液中,浸渍5min-2h,然后利用配置所述金属离子有机溶液的有机溶剂进行冲洗,再在保护气体中吹干,制得金属离子修饰的黑磷。
在上述制备方法中,进行浸渍的金属离子有机溶液中的金属离子的含量,远大于饱和吸附在黑磷表面的金属离子的含量。
在上述制备方法中,所述载有多层黑磷纳米片或单层黑磷纳米片的基片是通过机械剥离后将多层黑磷纳米片或单层黑磷纳米片固定在基片上得到的。
通过上述制备方法,将黑磷与金属离子有机溶液接触一定时间,实现金属离子在黑磷表面的吸附,然后用有机溶剂冲洗,最后保护气体中吹干,制得金属离子修饰的黑磷,完成金属离子对黑磷的吸附和保护,提高黑磷的抗氧化能力,从而提高黑磷在空气中的稳定性,该制备方法简单、快捷、有效。
本发明认为,黑磷之所以在氧气和水同时存在的条件下易与氧气进行反应,是因为在黑磷中的每个磷原子最外层有五个电子,其中三个电子分别与其他三个磷原子成键,除了三个成键的电子,每个磷原子的外层仍有一对孤对电子,该孤对电子易被氧分子夺走,从而造成黑磷的氧化,而这一反应过程在有水的条件下可以生成磷酸根,进而破坏黑磷的固有结构,从片层黑磷的表面由外而内逐步的腐蚀黑磷。现有技术仅仅是将黑磷与空气中的水和氧气隔离,但是并没有从氧化反应的根源(未成键的孤对电子)入手解决黑磷的氧化问题。而本发明从孤对电子出发,利用金属离子与磷原子 中的孤对电子进行配位结合,从而封闭黑磷中磷原子的孤对电子,使之不能再与氧进行结合,从孤对电子的角度入手,有效地解决了黑磷在空气中被氧化的问题。
本发明还提供由上述金属离子修饰的黑磷的制备方法制得的金属离子修饰的黑磷。
上述金属离子修饰的黑磷,能够利用金属离子在不改变黑磷固有属性的情况下提高黑磷在水和氧气同时存在时的结构和性能的稳定性,增强黑磷的抗氧化能力。
本发明还提供由上述金属离子修饰的黑磷的制备方法制得的金属离子修饰的黑磷在薄膜晶体管材料、电池负极材料、柔性显示材料、发光二极管材料、光开关材料和生物传感器材料中的应用。
在上述应用中,所述薄膜晶体管材料是指用于构筑薄膜晶体管半导体层的材料;
所述电池负极材料是指电池中构成负极的原料;
所述柔性显示材料是指用于制备柔性显示装置的柔软的、可变型、可弯曲的材料;
所述发光二极管材料(LED材料)是指用于构造发光二极管基本结构的半导体材料;
所述光开关材料是指可实现光传输线路集成光路中光信号物理切换或逻辑操作的半导体材料。
本发明的有益效果:
(1)本发明提供的金属离子修饰的黑磷,能够利用金属离子大大提高黑磷的抗氧化能力,在水和氧气同时存在的条件下保持黑磷结构和性能的稳定;
(2)本发明提供的金属离子修饰的黑磷,不改变黑磷的形貌等固有属性;
(3)本发明提供的金属离子修饰的黑磷的制备方法,是利用金属离子与黑磷内磷原子孤对电子的配位作用,将金属离子吸附到片层黑磷表面,从而使黑磷内磷原子中较活跃的孤对电子钝化,进而阻止黑磷在空气中的氧化和降解,是从黑磷被氧化的根本原因入手,解决黑磷在空气中不能稳定的问题,能从根本上增强黑磷的抗氧化能力,使黑磷在空气中具有高稳定性,进而扩展黑磷的应用范围,且该制备方法简单、快捷、有效。
附图说明
图1A为实施例1制得的铁离子修饰的黑磷原子力显微镜图;
图1B为实施例1制得的铁离子修饰的黑磷置于空气中5天后的原子力显微镜图;
图2A为实施例1中未经铁离子修饰的黑磷原子力显微镜图;
图2B为实施例1中未经铁离子修饰的黑磷置于空气中5天后的原子力显微镜镜图。
具体实施方式
为了对本发明的技术特征、目的和有益效果有更加清楚的理解,现结合具体实施例及附图对本发明的技术方案进行以下详细说明,应理解这些实例仅用于说明本发明而不用于限制本发明的范围。
实施例1
本实施例提供一种铁离子修饰的黑磷的制备方法,其包括以下步骤:
配置10毫升浓度为10-6摩尔每升的氯化铁氮甲基吡咯烷酮溶液作为黑磷样品的处理液;
利用胶带剥离法剥离出多层黑磷纳米片并转移到表面有150纳米氮化硅层的硅片表面,制得待处理黑磷样品;
将该待处理黑磷样品置于所述处理液中浸泡20分钟,然后用镊子取出硅片,再用氮甲基吡咯烷酮冲洗,然后用氮气吹干,完成金属铁离子对黑磷样品的吸附和保护处理,制得铁离子修饰的黑磷。
将该铁离子修饰的黑磷样品置于空气中的显微镜下,观察其5天内的氧化迹象,并将其与未经铁离子修饰的黑磷样品进行比较,其结果如图1A-图2B所示;如图1A和图1B所示,将该铁离子修饰的黑磷样品置于空气中5天后,与刚制备出的铁离子修饰的黑磷表面相比,其表面并没有发生任何氧化的迹象,如图2A和图2B所示,将未经铁离子修饰的黑磷样品在经氮甲基吡咯烷酮浸泡处理后置于空气中,5天后,与刚制备出的黑磷表面相比,其表面发生了明显的氧化迹象。
通过图1A-图2B的对比,可以明显看出,本实施例制得的铁离子修饰的黑磷能够利用铁离子大大提高黑磷的抗氧化能力,能在水和氧气同时存在的条件下(空气中)保持黑磷结构和性能的稳定。
本实施例还将制得的铁离子修饰的黑磷在空气中暴露5天后,对其稳定性进行了测试,测试结果表明,本实施例制得的铁离子修饰的黑磷能够空气中保持良好的稳定性,从根本上解决了黑磷的氧化问题。
本实施例还将制得的铁离子修饰的黑磷在空气中暴露5天后,对其光学性能进行 了测试,测试结果表明,本实施例制得的铁离子修饰的黑磷能够空气中保持良好的光学性能,为其在光开关材料中的应用奠定了基础。
实施例2
本实施例提供一种银离子修饰的黑磷的制备方法,其包括以下步骤:
配置10毫升浓度为10-6摩尔每升的硝酸银氮甲基吡咯烷酮溶液作为黑磷样品的处理液;
利用液相剥离法剥离制得黑磷量子点,并将其直接分散在氮甲基吡咯烷酮中,制得浓度为10微克每毫升的黑磷量子点氮甲基吡咯烷酮溶液,取10毫升该溶液作为待处理黑磷样品;
将所述处理液与所述待处理黑磷样品混合搅拌20分钟,完成金属银离子对黑磷样品的吸附和保护处理,制得银离子修饰的黑磷。
对本实施例制得的银离子修饰的黑磷进行TEM(透射电镜)表征,测试表明,本实施例制备的银离子修饰的黑磷尺寸均一,形貌与未经修饰的黑磷量子点一致,粒径主要为10nm,且分散性好。
实施例3
本实施例提供一种汞离子修饰的黑磷的制备方法,其包括以下步骤:
配置10毫升浓度为10-6摩尔每升的氯化汞氮甲基吡咯烷酮溶液作为黑磷样品的处理液;
取10毫克黑磷块体置于所述处理液中浸泡20分钟,然后用镊子取出黑磷块体,并用氮甲基吡咯烷酮冲洗,然后用氮气吹干,完成金属汞离子对黑磷样块体的吸附和保护处理,制得汞离子修饰的黑磷。
由上述实施例1-3可知,本发明提供的方法制备的金属离子修饰的黑磷能够利用金属离子大大提高黑磷的抗氧化能力,且不改变黑磷的形貌等固有属性,在水和氧气同时存在的条件下保持黑磷结构和性能的稳定;本发明提供的金属离子修饰的黑磷的制备方法是利用金属离子与黑磷内磷原子孤对电子的配位作用,将金属离子吸附到片层黑磷表面,从而使黑磷内磷原子中较活跃的孤对电子钝化,进而阻止黑磷在空气中的氧化和降解,从黑磷被氧化的根本原因入手,解决了黑磷在空气中不能稳定的问题,能从根本上增强黑磷的抗氧化能力,使黑磷在空气中具有高稳定性,进而扩展了黑磷在薄膜晶体管材料、电池负极材料、柔性显示材料、发光二极管材料、光开关材料和 生物传感器材料中的应用,且该制备方法简单、快捷、有效。
最后说明的是:以上实施例仅用于说明本发明的实施过程和特点,而非限制本发明的技术方案,尽管参照上述实施例对本发明进行了详细说明,本领域的普通技术人员应当理解:依然可以对本发明进行修改或者等同替换,而不脱离本发明的精神和范围的任何修改或局部替换,均应涵盖在本发明的保护范围当中。

Claims (12)

  1. 一种金属离子修饰的黑磷的制备方法,其包括以下步骤:
    将黑磷原料置于金属离子有机溶液中,在0-50℃温度下浸渍5min-2h,然后再在保护气体中吹干,制得金属离子修饰的黑磷。
  2. 根据权利要求1所述的制备方法,其特征在于:所述黑磷原料包括黑磷块材、多层黑磷纳米片、单层黑磷纳米片和黑磷量子点中的一种或几种的组合。
  3. 根据权利要求2所述的制备方法,其特征在于:所述黑磷量子点是指水合粒径小于10nm的黑磷纳米颗粒。
  4. 根据权利要求1所述的制备方法,其特征在于:所述金属离子包括Fe3+、Au3+、Ag+、Mg2+和Hg2+中的一种或几种的组合。
  5. 根据权利要求1所述的制备方法,其特征在于:配置所述金属离子有机溶液的有机溶剂包括极性溶剂和/或非极性溶剂;所述极性溶剂包括极性质子溶剂和/或极性非质子溶剂。
  6. 根据权利要求5所述的制备方法,其特征在于:配置所述金属离子有机溶液的有机溶剂为极性非质子溶剂。
  7. 根据权利要求5或6所述的制备方法,其特征在于:所述极性非质子溶剂包括氮甲基吡咯烷酮、二甲基亚砜和二甲基甲酰胺中的一种或几种的组合。
  8. 根据权利要求1所述的制备方法,其特征在于:所述金属离子有机溶液的浓度为10-4mol/L-10-6mol/L。
  9. 根据权利要求1所述的制备方法,其特征在于:所述浸渍的时间为20min。
  10. 根据权利要求1所述的制备方法,其特征在于:该制备方法具体包括以下步骤:
    将黑磷块材直接浸泡到金属离子有机溶液中,浸渍5min-2h后取出,然后利用配置所述金属离子有机溶液的有机溶剂进行冲洗,再在保护气体中吹干,制得金属离子修饰的黑磷;
    或者,将经液相剥离后的多层黑磷纳米片或黑磷量子点直接分散在有机溶剂中,制得黑磷原料有机溶液,再将金属离子有机溶液加入到所述黑磷原料有机溶液中,混合5min-2h,制得金属离子修饰的黑磷,其中,所述有机溶剂为配置所述金属离子有机溶液的有机溶剂;
    或者,将载有多层黑磷纳米片或单层黑磷纳米片的基片浸泡到金属离子有机溶液中,浸渍5min-2h,然后利用配置所述金属离子有机溶液的有机溶剂进行冲洗,再在保护气体中吹干,制得金属离子修饰的黑磷。
  11. 一种金属离子修饰的黑磷,其特征在于:所述金属离子修饰的黑磷是由权利要求1-10任一项所述的金属离子修饰的黑磷的制备方法制得的。
  12. 权利要求11所述的金属离子修饰的黑磷在薄膜晶体管材料、电池负极材料、柔性显示材料、发光二极管材料、光开关材料和生物传感器材料中的应用。
PCT/CN2016/102294 2016-07-13 2016-10-18 一种金属离子修饰的黑磷及其制备方法与应用 WO2018010327A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610551189.2A CN106185848B (zh) 2016-07-13 2016-07-13 一种金属离子修饰的黑磷及其制备方法与应用
CN201610551189.2 2016-07-13

Publications (1)

Publication Number Publication Date
WO2018010327A1 true WO2018010327A1 (zh) 2018-01-18

Family

ID=57476658

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/102294 WO2018010327A1 (zh) 2016-07-13 2016-10-18 一种金属离子修饰的黑磷及其制备方法与应用

Country Status (2)

Country Link
CN (1) CN106185848B (zh)
WO (1) WO2018010327A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110950313A (zh) * 2019-12-25 2020-04-03 深圳市中科墨磷科技有限公司 一种水热刻蚀法制备多晶黑磷纳米片的方法
CN111137867A (zh) * 2018-11-06 2020-05-12 湖南工业大学 一种表面活性剂介导的少层黑磷纳米片制法
CN111834526A (zh) * 2020-07-08 2020-10-27 华东理工大学 一种基于聚苯胺修饰黑磷纳米片的多功能电子器件及其制备方法和应用
CN112494720A (zh) * 2020-11-30 2021-03-16 华中科技大学 一种可用于3d打印的导电可降解多功能骨植入材料及应用
CN113481494A (zh) * 2021-07-01 2021-10-08 深圳市中科墨磷科技有限公司 一种金属材料防腐处理剂及其应用
CN114180543A (zh) * 2021-12-29 2022-03-15 西北工业大学 一种黑磷纳米片的钝化方法、钝化后的黑磷纳米片及其应用
CN115818596A (zh) * 2022-11-26 2023-03-21 昆明理工大学 一种纳米黑磷的高效制备方法

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107441488B (zh) * 2016-12-23 2021-04-20 深圳大学 一种黑磷量子点复合材料及其制备方法和应用
CN106841338B (zh) * 2017-01-25 2019-06-25 东南大学 一种气体传感器及其制备方法
CN108622865B (zh) * 2017-03-17 2021-07-13 天津大学 一种化学保护黑磷的方法
CN107469845B (zh) * 2017-08-04 2020-07-03 深圳先进技术研究院 一种黑磷/贵金属复合材料、其制备方法以及应用
CN107496451A (zh) * 2017-09-20 2017-12-22 深圳大学 一种黑磷纳米片负载银簇的纳米复合物及制备方法、应用
CN107416783B (zh) * 2017-09-21 2020-04-07 深圳大学 一种钝化黑磷纳米材料的方法
CN108042565B (zh) * 2017-11-02 2020-07-03 深圳先进技术研究院 一种具有抗菌功效的黑磷纳米材料及其制备方法
CN108275667B (zh) * 2017-12-11 2019-11-19 湖北中科墨磷科技有限公司 一种稀土配合物修饰的黑磷材料及其制备方法与应用
CN108199252A (zh) * 2018-01-24 2018-06-22 深圳大学 可饱和吸收体及其制备方法和超快被动锁模激光器
WO2019144609A1 (zh) * 2018-01-24 2019-08-01 深圳大学 可饱和吸收体及其制备方法和超快被动锁模激光器
CN108594479A (zh) * 2018-03-30 2018-09-28 张晗 一种基于黑磷材料的全光相位调制器及其应用
CN108987565B (zh) * 2018-04-17 2021-01-05 张晗 基于金属阳离子修饰黑磷的突触器件及其制备方法
CN108383092A (zh) * 2018-04-20 2018-08-10 昆明理工大学 一种稳定纳米黑磷的方法
CN110316707A (zh) * 2019-08-07 2019-10-11 深圳市中科墨磷科技有限公司 一种快速制备离子配位修饰黑磷纳米片的方法
CN110451468B (zh) * 2019-09-23 2022-07-29 深圳大学 一种磁性黑磷二维材料及其制备方法
CN110767814A (zh) * 2019-11-05 2020-02-07 海南大学 基于Fe3+掺杂黑磷量子点修饰的钙钛矿太阳能电池及其方法
CN110773007B (zh) * 2019-11-29 2022-10-18 天津工业大学 一种含黑磷/氧化石墨烯的海藻酸钙水凝胶过滤膜及其制备方法
CN110773010A (zh) * 2019-11-29 2020-02-11 天津工业大学 一种含黑磷/铜离子的海藻酸钙水凝胶抗菌过滤膜的制备方法
CN113425894A (zh) * 2020-03-23 2021-09-24 中国科学院深圳先进技术研究院 一种具有逐步抗菌和促进骨再生功能的骨组织工程支架及其制备方法和应用
CN111303485B (zh) * 2020-04-03 2021-10-15 北京石墨烯技术研究院有限公司 复合填料、聚四氟乙烯基复合材料及制备方法和制成品
CN111334284A (zh) * 2020-04-08 2020-06-26 青岛大学 高稳定性强荧光发射的铁离子配位黑磷量子点的制备方法
CN113471363B (zh) * 2021-05-25 2024-06-18 苏州科技大学 基于黑磷量子点钝化的钙钛矿电池及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104961113A (zh) * 2015-07-01 2015-10-07 北京石油化工学院 一种制备磷烯的方法
CN105535971A (zh) * 2015-12-22 2016-05-04 苏州大学 一种具有生物相容性的黒磷纳米颗粒及其制备方法和应用
KR101629792B1 (ko) * 2015-07-30 2016-06-14 기초과학연구원 2차원 반도체의 제조방법

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105116034B (zh) * 2015-09-08 2018-02-27 浙江美罗机电有限公司 一种基于黑磷电极的传感器及其制备方法
CN105543882A (zh) * 2015-12-21 2016-05-04 东南大学 一种黑磷量子点的电化学制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104961113A (zh) * 2015-07-01 2015-10-07 北京石油化工学院 一种制备磷烯的方法
KR101629792B1 (ko) * 2015-07-30 2016-06-14 기초과학연구원 2차원 반도체의 제조방법
CN105535971A (zh) * 2015-12-22 2016-05-04 苏州大学 一种具有生物相容性的黒磷纳米颗粒及其制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LIU, BILU ET AL.: "Black Arsenic - Phosphorus: Layered Anisotropic Infrared Semiconductors with Highly Tunable Compositions and Properties", ADVANCED MATERIALS, vol. 27, 25 June 2015 (2015-06-25), XP055602085, ISSN: 1521-4095 *
WOOD, J. D. ET AL.: "Effective Passivation of Exfoliated Black Phosphorus Transistors against Ambient Degradation", NANO LETTERS, vol. 14, 7 November 2014 (2014-11-07), XP055598769, ISSN: 1530-6992 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111137867A (zh) * 2018-11-06 2020-05-12 湖南工业大学 一种表面活性剂介导的少层黑磷纳米片制法
CN110950313A (zh) * 2019-12-25 2020-04-03 深圳市中科墨磷科技有限公司 一种水热刻蚀法制备多晶黑磷纳米片的方法
CN111834526A (zh) * 2020-07-08 2020-10-27 华东理工大学 一种基于聚苯胺修饰黑磷纳米片的多功能电子器件及其制备方法和应用
CN112494720A (zh) * 2020-11-30 2021-03-16 华中科技大学 一种可用于3d打印的导电可降解多功能骨植入材料及应用
CN113481494A (zh) * 2021-07-01 2021-10-08 深圳市中科墨磷科技有限公司 一种金属材料防腐处理剂及其应用
CN114180543A (zh) * 2021-12-29 2022-03-15 西北工业大学 一种黑磷纳米片的钝化方法、钝化后的黑磷纳米片及其应用
CN114180543B (zh) * 2021-12-29 2023-12-26 西北工业大学 一种黑磷纳米片的钝化方法、钝化后的黑磷纳米片及其应用
CN115818596A (zh) * 2022-11-26 2023-03-21 昆明理工大学 一种纳米黑磷的高效制备方法

Also Published As

Publication number Publication date
CN106185848B (zh) 2017-12-01
CN106185848A (zh) 2016-12-07

Similar Documents

Publication Publication Date Title
WO2018010327A1 (zh) 一种金属离子修饰的黑磷及其制备方法与应用
Bertolazzi et al. Molecular chemistry approaches for tuning the properties of two-dimensional transition metal dichalcogenides
Feng et al. Doping two-dimensional materials: ultra-sensitive sensors, band gap tuning and ferromagnetic monolayers
Sang et al. Recent developments in stability and passivation techniques of phosphorene toward next‐generation device applications
Jiang et al. Flexible electronics based on 2D transition metal dichalcogenides
Yu et al. Ti3C2Tx (MXene)‐Silicon Heterojunction for Efficient Photovoltaic Cells
US9477128B2 (en) Graphene/metal nanowire hybrid transparent conductive films
Wang et al. Synthesis and characterization of Cu2O nanowires by a novel reduction route
Liu et al. Detection of Ppb-level NO2 using mesoporous ZnSe/SnO2 core-shell microspheres based chemical sensors
Lee et al. Graphene-based transparent conductive films
Zhang et al. Two-dimensional heterostructures and their device applications: progress, challenges and opportunities
US8247950B2 (en) Flexible energy conversion device
Li et al. Intercalation strategy in 2D materials for electronics and optoelectronics
KR101294223B1 (ko) 대면적 그래핀 필름의 제조방법
Chen et al. Protein‐engineered functional materials for bioelectronics
Zeng et al. Characteristics of a dye-sensitized solar cell based on an anode combining ZnO nanostructures with vertically aligned carbon nanotubes
KR101391968B1 (ko) 자기조립 단분자막과 큰 플레이크 그래핀 산화물의 이온 결합을 이용해 투명하면서도 전기적 특성을 향상시킨 그래핀 필름의 제조 방법
US10418490B2 (en) Field effect transistor and manufacturing method thereof
KR101371289B1 (ko) 탄소 나노박막의 제조방법
Hou et al. Applications of carbon nanotubes and graphene produced by chemical vapor deposition
Kakavelakis et al. 2D transition metal dichalcogenides for solution-processed organic and perovskite solar cells
Yu et al. ZnO nanorod arrays modified with Bi2S3 nanoparticles as cathode for efficient polymer solar cells
Wan et al. Recent advances in long-term stable black phosphorus transistors
Zhou et al. ALD-assisted graphene functionalization for advanced applications
CN208548341U (zh) 石墨烯晶体管电路装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16908651

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16908651

Country of ref document: EP

Kind code of ref document: A1