WO2018010247A1 - 一种多功能末端执行器 - Google Patents

一种多功能末端执行器 Download PDF

Info

Publication number
WO2018010247A1
WO2018010247A1 PCT/CN2016/095606 CN2016095606W WO2018010247A1 WO 2018010247 A1 WO2018010247 A1 WO 2018010247A1 CN 2016095606 W CN2016095606 W CN 2016095606W WO 2018010247 A1 WO2018010247 A1 WO 2018010247A1
Authority
WO
WIPO (PCT)
Prior art keywords
shaft
feed
eccentric
cutter
slide
Prior art date
Application number
PCT/CN2016/095606
Other languages
English (en)
French (fr)
Inventor
柯映林
费少华
蒋君侠
李江雄
柯臻铮
董辉跃
Original Assignee
浙江大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江大学 filed Critical 浙江大学
Priority to US16/080,290 priority Critical patent/US10583500B2/en
Publication of WO2018010247A1 publication Critical patent/WO2018010247A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P23/00Machines or arrangements of machines for performing specified combinations of different metal-working operations not covered by a single other subclass
    • B23P23/02Machine tools for performing different machining operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C1/00Milling machines not designed for particular work or special operations
    • B23C1/02Milling machines not designed for particular work or special operations with one horizontal working-spindle
    • B23C1/025Milling machines not designed for particular work or special operations with one horizontal working-spindle with working-spindle movable in a fixed position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C3/00Milling particular work; Special milling operations; Machines therefor
    • B23C3/02Milling surfaces of revolution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64FGROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLY ADAPTED FOR USE IN CONNECTION WITH AIRCRAFT; DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING OR REPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR; HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFT COMPONENTS, NOT OTHERWISE PROVIDED FOR
    • B64F5/00Designing, manufacturing, assembling, cleaning, maintaining or repairing aircraft, not otherwise provided for; Handling, transporting, testing or inspecting aircraft components, not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2220/00Details of milling processes
    • B23C2220/28Finishing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2220/00Details of milling processes
    • B23C2220/52Orbital drilling, i.e. use of a milling cutter moved in a spiral path to produce a hole
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2265/00Details of general geometric configurations
    • B23C2265/16Elliptical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P2700/00Indexing scheme relating to the articles being treated, e.g. manufactured, repaired, assembled, connected or other operations covered in the subgroups
    • B23P2700/01Aircraft parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q2210/00Machine tools incorporating a specific component
    • B23Q2210/006Curved guiding rails
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q3/00Devices holding, supporting, or positioning work or tools, of a kind normally removable from the machine
    • B23Q3/002Means to press a workpiece against a guide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64FGROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLY ADAPTED FOR USE IN CONNECTION WITH AIRCRAFT; DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING OR REPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR; HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFT COMPONENTS, NOT OTHERWISE PROVIDED FOR
    • B64F5/00Designing, manufacturing, assembling, cleaning, maintaining or repairing aircraft, not otherwise provided for; Handling, transporting, testing or inspecting aircraft components, not otherwise provided for
    • B64F5/10Manufacturing or assembling aircraft, e.g. jigs therefor

Definitions

  • the invention relates to the field of aircraft digital assembly automation hole making, in particular to a multifunctional end effector.
  • the aircraft wing uses a large amount of materials such as aluminum alloy, titanium alloy, and carbon fiber composite (CFRP).
  • CFRP carbon fiber composite
  • the upper and lower wall panels of modern aircraft wings adopt the overall structure and the assembly requirements are extremely high.
  • the lower wall plate and the inner frame are first connected by bolts and nuts; when the upper wall plate and the skeleton are assembled, the lower wall plate is connected to one side of the skeleton, and the conventional bolts and nuts cannot be passed. Connect the upper wall plate.
  • install the earless plate nut on the skeleton first, and fix the upper wall plate by bolts and the earless plate nut to realize the overall assembly of the wing structure.
  • CFRP and titanium alloys are typical difficult-to-machine materials, and the processing properties are far from each other.
  • CFRP ablation, delamination and titanium alloy are prone to occur when using conventional drilling through-holes. Flanging phenomenon.
  • it has to be processed by the drilling-expansion-hinge process many times, which is not only inefficient, but also affected by human factors and the quality of the hole is unstable.
  • spiral milling hole is very different from traditional drilling process.
  • the tool is characterized by a tool with a diameter smaller than that of the machining hole. It rotates at high speed during machining and revolves around the center axis of the hole. The trajectory is a spiral.
  • the spiral milling process can change the eccentricity and use the same tool to machine holes of different diameters; the eccentric machining method facilitates the discharge of chips; the interrupted cutting process is beneficial to the heat dissipation of the tool and improves the life of the tool;
  • the smaller axial force of the hole is made to reduce the burr formation of the titanium alloy material and inhibit the delamination of the CFRP material.
  • connection port of the earless plate nut is elliptical, after the through hole formed by the laminated structure formed by the upper wall plate and the skeleton, the elliptical socket is secondarily processed at the inlet port of the skeleton through hole, and the installation of the earless plate nut is completed. Processing of the hole.
  • the elliptical nest processing is through manual processing. Because the processing technology is very complicated, it is necessary to position the processing tool direction, and accurately oscillate the tool back and forth along the positioning direction, which makes the processing very difficult, the processing efficiency is low, and the processing cost is high.
  • the versatile end effector device passes The tail connection assembly is used in conjunction with a CNC machine to create a flexible, automated, high-efficiency, low-cost, automated drilling, spiral-milling and ⁇ -elliptical system.
  • the multifunctional end effector provided by the invention is directed to difficult-to-machine materials such as CFRP and titanium alloy in large parts of aircraft, and overcomes the defects of CFRP processing ablation, delamination and titanium alloy flanging defects in the conventional hole making method, and integrates Spiral milling hole, ⁇ elliptical socket function.
  • a multifunctional end effector comprising: a base and a cutter
  • a feed slide plate placed on the base, and a feed drive mechanism for driving the feed slide plate to drive the tool feed;
  • a swinging slide plate placed on the feed slide plate, and a swing drive mechanism for pushing the swing slide plate to drive the cutter to perform a circular arc swing;
  • a mounting base disposed on the swinging slide plate, wherein the mounting base is provided with a revolving rotating shaft and a rotating shaft driving mechanism for driving the revolving rotating shaft to drive the rotating of the cutter;
  • the cutter is fixed on the electric spindle at the end of the eccentric slide, the feed drive mechanism pushes the feed slide, and drives the swing slide, the mounting base, the revolution shaft and the eccentric slide to perform the feed motion, so that the cutter moves toward the workpiece for drilling.
  • the oscillating driving mechanism drives the oscillating sliding plate, and drives the mounting base, the revolving rotating shaft and the eccentric sliding plate to perform circular arc oscillating, so that the tool is fed along the cycloidal trajectory to realize the ⁇ ⁇ oval function;
  • the eccentric adjustment mechanism adjusts the distance between the eccentric slide and the axis of the revolution shaft, so that the tool can be radially offset so that the tool is at a certain distance from the axis of the revolution shaft.
  • the shaft drive mechanism drives the revolution. The rotation of the rotating shaft allows the tool to be fed along the spiral path to realize the spiral milling function.
  • one side of the base is mounted with a tail connecting component for positioning and connecting with the machine tool, and the tail connecting component integrates a cable and a pipeline module to realize a fast mechanical positioning connection with the numerical control machine tool;
  • the other side is provided with a presser foot for pressing the workpiece, a cylinder for pushing the presser foot along the presser foot guide, and a feed shaft length gauge for measuring the feed amount of the presser foot; the presser foot presses the workpiece under the push of the cylinder,
  • the feedback presser feed is measured by the feed axis length gauge for precise control of tool feed and machining depth.
  • the presser foot comprises a pressure sleeve, and a plurality of laser ranging sensors are disposed on the outer circumference of the pressure sleeve, and a plurality of laser distance measuring sensors cooperate to detect a normal vector of the position of the hole on the workpiece;
  • the middle part is for the cutter to pass through the working cavity, and the cavity wall is provided with a chip discharging hole connecting the chip discharging pipe, the chip discharging pipe is connected to the induced draft fan, and the suction force is generated in the chip discharging hole through the chip discharging pipe, and the workpiece generated during the processing of the workpiece can be eliminated in time. Debris.
  • the feed drive mechanism comprises a feed linear guide pair, and the ball screw feed drive assembly connected to the feed slide drives the ball screw feed drive assembly to rotate to push the feed slide along A feed motor that feeds the linear guide pair and a linear encoder that measures the feed. That is to say, the feed motor drives the feed slide along the linear guide by the ball screw feed drive assembly to realize the feed motion of the cutter; the linear grating finally feeds back the feed of the cutter by detecting the displacement of the feed slide. Achieve precise control of the axillary depth.
  • the swing driving mechanism comprises:
  • An anti-backlash gear disposed on the swinging sled and engaged with the arcuate rack, and a swinging shaft motor that rotates by driving the anti-backlash gear to push the swinging skateboard to swing along the circular arc guide pair.
  • the rotating shaft driving mechanism includes a large pulley B fixedly coupled to the revolution rotating shaft, and a revolving motor mounted on the mounting base and driving the large pulley B through a timing belt.
  • the rotary shaft drive mechanism is used for realizing the revolution of the revolutionary shaft, the revolutionary shaft is movably mounted in the installation base, the large pulley B is fixedly set on the revolution shaft, and the revolution motor is matched with the large pulley B through the timing belt, and the drive of the revolution shaft is realized. .
  • the eccentric adjustment mechanism comprises a bearing support seat disposed inside the revolving shaft, a bevel gear B located in the bearing support seat and fixedly connected with the large pulley A, and driving between the eccentric slide plate and the bevel gear shaft Cooperating eccentric ball screw drive pair, and cross rail pair for eccentric linear movement of eccentric slide;
  • a bevel gear A meshing with the bevel gear B is mounted on the lead screw in the eccentric ball screw drive pair;
  • the large pulley A is driven by an eccentric shaft motor mounted on a mounting base.
  • the eccentric adjustment mechanism is firstly required to adjust the radial offset distance of the tool relative to the axis of the revolution shaft; the eccentric shaft motor drives the bevel gear shaft under the transmission of the timing belt and the large pulley A. Rotating, and the meshing of the bevel gear A and the bevel gear B drives the eccentric ball screw drive pair, thereby pushing the eccentric slide to move along the cross rail pair, changing the distance between the tool and the axis of the revolution shaft, thereby realizing the tool radial offset adjustment .
  • the synchronous locking mechanism and the bevel gear shaft have a synchronous locking mechanism, and the synchronous locking mechanism comprises:
  • a cylinder body having a cylinder piston slidingly fitted along a bevel gear shaft;
  • a spring hollow shaft movably mounted on the mounting flange, the shaft being sleeved with a spring toward an extended end of the cylinder piston;
  • the inner wall has a slope opposite to the tapered surface of the taper piston, and the outer circumference is a pressing surface that cooperates with the inner wall of the revolution shaft.
  • the outer peripheral tapered surface of the taper piston abuts against the inclined surface of the inner wall of the spring sleeve, so that the outer circumference of the spring sleeve is pressed against the inner wall of the revolution shaft, and the synchronization of the revolution shaft and the bevel gear shaft is maintained; when the lock state is released
  • the cylinder piston in the cylinder extends and drives the taper piston and the spring hollow shaft, so that the tapered surface of the spring and the taper piston is separated from the inclined surface of the inner wall of the spring sleeve, and the pressing surface of the outer circumference of the spring sleeve is released after the pressure received by the inclined surface is released. Separate from the revolution shaft, the lock state can be released.
  • the spring in the contracted state pushes the spring hollow shaft and the taper piston to reset, so that the taper surface of the taper piston and the inner wall of the spring sleeve The inclined surface is pressed, so that the spring sleeve is pressed against the inner wall of the revolution shaft, and the synchronous locking of the revolution shaft and the bevel gear shaft is realized;
  • the bevel gear shaft passes through the cylinder body and is slidingly sealed with the cylinder piston.
  • the bevel gear shaft has an intake passage therein, and communicates with the cylinder body through the air inlet hole, so that the compressed gas introduced by the rotary joint enters the cylinder block.
  • the cylinder piston is driven and driven.
  • the mounting base is provided with an eccentric shaft length gauge for measuring the radial offset of the feedback tool to achieve precise control of the radial offset of the tool.
  • the mounting base and the main shaft sleeve outside the electric main shaft are provided with a wire bridge, and the main shaft sleeve and the eccentric sliding plate are provided with a rotation preventing bearing.
  • Cables are arranged in the cable tray, and the cable tray and the anti-rotation bearing control the spindle sleeve to perform horizontal movement during the revolving of the electric spindle to prevent the electric spindle cable from being entangled.
  • the tail connection assembly modularizes all cables and pipes to achieve fast mechanical positioning connection with CNC machine tools
  • the position feedback of the measuring element such as the feed shaft length gauge, the linear grating, the swing shaft encoder, etc., ensures the accuracy of the through hole and the ⁇ oval pocket;
  • the industrial camera corrects the pre-made hole position on the workpiece, and the four laser ranging sensors detect the normal vector of the hole making position to ensure the hole making accuracy and safety;
  • Figure 1 is a front view of the multi-function end effector
  • Figure 2 is a left side elevational view of the portion taken along line A-A of Figure 1;
  • Figure 3 is a right side elevational view taken along line B-B of Figure 1;
  • Figure 4 is a structural view of the upper portion of the swinging slide 55
  • Figure 5 is an enlarged view of the synchronous locking mechanism
  • Figure 6 is a top view of the multi-function end effector (partially shown in cross section);
  • Figure 7 is a schematic structural view of a spring sleeve
  • bevel gear A 1 bevel gear B 2 , rotary joint 3 , bevel gear shaft 4 , cylinder 5 , large pulley A 6 , auxiliary bearing 7 , large pulley B 8 , bearing gland A 9 , cylinder piston 10.
  • Bearing gland B 11. Mounting base 12, taper piston 13, spring hollow shaft 14, spring 15, mounting flange 16, spring sleeve 17, bearing spacer A 18, bearing support 19, revolving shaft 20, revolving bearing 21.
  • the multi-function end effector shown in FIGS. 1 to 6 includes a bevel gear A 1 , a bevel gear B 2 , a rotary joint 3 , a bevel gear shaft 4 , a cylinder 5 , a large pulley A 6 , an auxiliary bearing 7 , and a large Pulley B 8, bearing gland A 9, cylinder piston 10, bearing gland B 11, mounting base 12, taper piston 13, spring hollow shaft 14, spring 15, mounting flange 16, spring sleeve 17, bearing spacer A 18.
  • Bearing support 19 revolution shaft 20, revolving bearing 21, bevel gear support bearing 22, bearing end cover 23, eccentric shaft auxiliary guide rail 24, guide rail wedge 25, cross rail pair 26, eccentric slide 27, bearing gland 28, rotating sealing plate 29, spindle sleeve 30, gas-liquid joint A31, bearing seat 32, bearing spacer B 33, anti-rotation bearing 34, cable tray 35, gas-liquid joint B36, electric spindle 37, rotation preventing device 38 Tool 39, oil mist joint 40, presser foot 41, pressure sleeve 42, chip removal tube 43, industrial camera assembly 44, camera cover 45, support foot 46, organ cover 47, ball screw feed drive assembly 48, linear encoder 49.
  • the feed linear guide pair 50, the linear encoder 49, the ball screw feed drive assembly 48, the tail joint assembly 58, the feed motor 59, the presser foot guide 67, the cylinder 68, and the feed shaft length gauge 66 are mounted on the base 54,
  • the feed slide 52 is coupled to the ball screw feed drive assembly 48, and the ball screw feed drive assembly 48 is coupled to the feed motor 59.
  • the feed motor 59 drives the ball screw feed drive assembly 48 to rotate and push the feed slide 52 to perform a feed motion along the feed linear guide pair 50.
  • the swing shaft encoder 57, the arc rack 71, and the arc guide rail 56 are mounted on the feed slide 52.
  • the mounting base 12 and the swing shaft motor 61 are mounted on the swing slide 55, and the swing slide 55 is connected to the arc guide 56.
  • the swing shaft motor 61 is coupled to the backlash gear 70, and the backlash gear 70 meshes with the arc rack 71.
  • the swing shaft motor 61 is rotated by the anti-backlash gear 70 to push the swing slide 55 to swing along the circular arc guide pair 56.
  • the mounting base 12 is provided with a revolving rotating shaft 20, and the mounting base 12 and the revolving rotating shaft 20 are connected by a revolving bearing 21, the revolving rotating shaft 20 and the large pulley B are fixed by screws, and the revolving motor 65 is mounted outside the mounting base 12, and the revolving motor 65 passes through the large The pulley B 8 , the revolution rotating shaft 20 , the cross rail pair 26 , and the eccentric sliding plate 27 rotate.
  • the bearing shaft 19 is internally provided with a bearing support 19, and the bearing support 19 is connected to the bevel gear shaft 4 via a bevel gear shaft bearing 22, the bevel gear shaft 4 is fixed to the large pulley A, and the eccentric slide 27 and the bevel gear shaft 4 are passed.
  • the eccentric ball screw drive pair 62 is connected, the eccentric slide 27 is connected to the revolution shaft 20 via the cross rail pair 26, the eccentric shaft motor 64 is mounted outside the mounting base 12, and the eccentric shaft motor 64 drives the bevel gear shaft 4 through the large pulley A.
  • the bevel gear shaft 4 drives the eccentric slide 27 to move along the cross rail pair 26 via the eccentric ball screw drive pair 62.
  • An electric spindle 37 is connected to the eccentric slide 27, and a cutter 39 is attached to the electric spindle 37.
  • the presser foot 41 is movable along the presser foot guide 67 under the push of the cylinder 68.
  • the presser foot 41 is provided with four laser ranging sensors 63, a press sleeve 42, and a chip evacuation tube 43.
  • the device in this embodiment integrates functions such as drilling, reaming, reaming, spiral milling, and elliptical fossa. All cable and pipe modules are integrated inside the tail connection assembly to achieve fast mechanical positioning connection with CNC machine tools.
  • the electric spindle 37 is coupled to the eccentric shaft motor 64 via the eccentric slide 27, the eccentric ball screw drive pair 62, and the eccentric shaft motor 64 to achieve radial offset of the tool.
  • the spring sleeve 17 realizes the synchronous locking of the revolution shaft 20 and the bevel gear shaft 4 under the support of the taper piston 13 and the cylinder piston 10 which are pressed by the spring 15, and the corresponding synchronous locking mechanism includes the cylinder 5 and the cylinder piston 10 , the taper piston 13, the spring hollow shaft 14, the spring 15, the mounting flange 16 and the spring sleeve 17; the structure of the spring sleeve 17 is as shown in Fig.
  • the elastic piece 72 is slightly deformed outwardly and presses the inside of the revolution shaft 20; specifically, when the gas is opened, The gas enters the bevel gear shaft 4 from the tail pipe through the rotary joint 3, enters the space of the cylinder 5 and the cylinder piston 10 through the small hole in the bevel gear shaft, and pushes the taper piston 13 through the cylinder piston 10, thereby causing the spring hollow shaft 14
  • the elastic body composed of the spring 15 is contracted backward.
  • the gas entering the cylinder 5 via the rotary joint 3 pushes the taper piston 13 through the cylinder piston 10 to release the support of the spring sleeve 17, thereby realizing the release of the synchronous lock of the revolution shaft 20 and the bevel gear shaft 4.
  • the feed shaft length gauge 66 and the linear encoder 49 measure the feed amounts of the feedback presser 41 and the feed slide 52, respectively, to achieve precise control of the axillary depth.
  • the eccentric shaft length meter 69 measures the radial offset of the feedback tool to achieve precise control of the tool radial offset.
  • the backlash gear 70 and the swing shaft encoder 57 are used in combination to achieve precise control of the swing angle of the swinging slide 55.
  • the zero return positioning locking cylinder 60 ensures that the swinging slide 55 is always in the zero position when the device is made through the hole by the pin connection with the feed slide 52.
  • the wire bridge 35 and the anti-rotation bearing 34 control the spindle sleeve 30 to perform horizontal movement when the electric spindle 37 revolves, and prevent the electric spindle 37 from being entangled.
  • An industrial camera assembly 44 is mounted to the front of the base 54 to detect the position of the pre-formed holes in the workpiece.
  • the presser foot 41 is provided with four laser ranging sensors 63 for detecting the normal vector of the hole making position on the workpiece.
  • the device of the present invention is mounted on a numerically controlled machine tool through a tail connecting assembly 58;
  • the device of the present invention is moved by the numerical control machine tool to the position of the reference hole on the workpiece, and the deviation of the position of the reference hole is measured by the industrial camera assembly 44, and the coordinates of the actual hole position are obtained according to the measured position deviation and the theoretical coordinate of the hole, and then The invention moves to the actual hole making position;
  • the four laser ranging sensors 63 on the presser foot 41 measure the surface normal of the pre-formed hole portion of the workpiece, and the numerical control machine tool adjusts the posture of the device of the present invention so that the spindle axis coincides with the normal surface of the workpiece;
  • the cylinder 68 pushes the presser foot 41 to press the press sleeve 42 against the workpiece;
  • the electric spindle 37 is turned on; the feed motor 59 drives the ball screw feed drive assembly 48 to rotate and pushes the feed slide 52 to perform a feed motion along the feed linear guide pair 50, so that the cutter feeds straight until the hole is completed;
  • the gas flowing in through the rotary joint 3 releases the synchronous locking of the revolution shaft 20 and the bevel gear shaft 4; according to the machining hole diameter D and the tool diameter d, the eccentric shaft motor 64 is driven to rotate, and the tool offset distance is adjusted by the eccentric adjustment mechanism. After the adjustment is completed, the gas flowing in the rotary joint 3 is closed, and the synchronous rotation of the revolution shaft 20 and the bevel gear shaft 4 is realized;
  • the electric spindle 37 is turned on; the driving feed motor 59 drives the ball screw feed drive assembly 48 to rotate and pushes the feed slide 52 to perform a feed motion along the feed linear guide pair 50; the swing shaft motor 61 is opened, and the backlash gear 70 is passed.
  • the arc rack 71 drives the swinging slide 55 to swing back and forth along the circular arc guide pair 56; the movement of the cutter 39 and the swinging slide 55 is such that the cutter 39 is fed along the cycloidal path until the completion of the ⁇ oval pocket;

Abstract

一种多功能末端执行器,包括:底座(54)和刀具(39);置于底座(54)上的进给滑板(52),和驱动进给滑板(52)以带动刀具(39)进给的进给驱动机构;置于进给滑板(52)上的摆动滑板(55),和推动摆动滑板(55)以带动刀具(39)做圆弧摆动的摆动驱动机构;置于摆动滑板(55)上的安装底座(12),安装底座(12)内设有公转转轴(20)和驱动公转转轴(20)以带动刀具(39)旋转的转轴驱动机构;固定在公转转轴(20)端部的偏心滑板(27),刀具(39)通过电主轴(37)连接在偏心滑板(27)的端部;以及调节偏心滑板(27)以控制刀具(39)径向偏置的偏心调节机构。由进给驱动机构带动刀具进给;结合摆动驱动机构,使刀具沿摆线轨迹进给;通过偏心调节机构实现刀具径向偏置,由转轴驱动机构带动刀具沿螺旋线轨迹进给;实现钻孔、铰孔、扩孔、螺旋铣孔及锪椭圆窝功能。

Description

一种多功能末端执行器 技术领域
本发明涉及飞机数字化装配自动化制孔领域,尤其涉及一种多功能末端执行器。
背景技术
随着航空产业的迅猛发展,对飞机的飞行性能要求不断提升。为减轻飞机自重,增加飞机的隐身性能,飞机机翼大量使用了铝合金、钛合金、碳纤维复合材料(CFRP)等材料。现代飞机机翼上下壁板采用整体结构形式,装配要求极高。飞机机翼结构装配时,先将下壁板与内部骨架通过螺栓、螺母进行连接;继续进行上壁板与骨架的装配时,因骨架一侧连接有下壁板,不能通过传统的螺栓、螺母连接上壁板,此时先在骨架上安装无耳托板螺母,通过螺栓与无耳托板螺母连接固定上壁板,实现机翼结构的整体装配。
为实现下壁板与内部骨架的螺栓、螺母连接,需对壁板与骨架形成的叠层架构制通孔。CFRP和钛合金为典型的难加工材料,加工性能又相差甚远,对这两种材料形成的叠层结构,采用传统的钻削制通孔时,容易出现CFRP烧蚀、分层和钛合金翻边现象。为提高孔质量,不得不多次采用钻-扩-铰工艺加工,不仅效率低,而且受人为因素影响大,制孔质量不稳定。螺旋铣孔作为一种新的制孔工艺,与传统的钻孔加工有很大区别,其特点在于,直径比加工孔孔径略小的刀具,加工时高速自转并绕孔中心轴线公转,刀具中心的轨迹是一条螺旋线。螺旋铣加工,可通过改变偏心距,采用同一刀具加工出不同直径的孔;其偏心加工的方式利于切屑的排出;其断续切削的加工过程,有利于刀具的散热,提高刀具的寿命;其较小的制孔轴向力,减少钛合金材料毛刺生成,抑制CFRP材料的分层现象。
为实现上壁板与内部骨架的连接,需在骨架上制出无耳托板螺母安装 孔。因无耳托板螺母连接端口为椭圆形,在上壁板与骨架形成的叠层结构制通孔之后,在骨架通孔的入口端口处二次加工出椭圆窝,完成无耳托板螺母安装孔的加工。
目前椭圆窝加工是通过人工加工,因其加工工艺非常复杂,需定位加工工具方向,且沿定位方向精确的来回往复摆动刀具,使得其加工非常困难,加工效率低,加工成本高。
发明内容
鉴于螺旋铣良好的制孔特性以及自动化锪椭圆窝的迫切需要,本发明一种多功能末端执行器,能同时实现螺旋铣孔和锪椭圆窝功能;传感器定位加工方向,多种测量元件精确测量主轴进给、刀具偏置量、刀具摆动角度,保证了该装置制通孔和锪椭圆窝加工的精度;作为数字化、自动化、智能化钻孔系统的关键部件,该多功能末端执行器装置通过尾部连接组件与数控机床配合使用,形成高精度、高效率、低成本的柔性自动化钻孔、螺旋铣孔和锪椭圆窝系统。
本发明所提供的多功能末端执行器,是针对飞机大部件中CFRP、钛合金等难加工材料,克服传统制孔方法中容易导致CFRP加工烧蚀、分层和钛合金翻边缺陷,并集成螺旋铣孔、锪椭圆窝功能。
本发明的具体技术方案如下:
一种多功能末端执行器,包括:底座和刀具;
置于底座上的进给滑板,和驱动所述进给滑板以带动刀具进给的进给驱动机构;
置于所述进给滑板上的摆动滑板,和推动所述摆动滑板以带动刀具做圆弧摆动的摆动驱动机构;
置于所述摆动滑板上的安装底座,所述安装底座内设有公转转轴和驱动所述公转转轴以带动刀具旋转的转轴驱动机构;
固定在公转转轴端部的偏心滑板,所述刀具通过电主轴连接在偏心滑板的端部;
以及调节所述偏心滑板以控制刀具径向偏置的偏心调节机构。
本发明中,刀具固定在偏心滑板端部的电主轴上,进给驱动机构推动进给滑板,并带动摆动滑板、安装底座、公转转轴和偏心滑板做进给运动,使得刀具移向工件进行钻孔、铰孔或扩孔;
在刀具进给的同时,摆动驱动机构驱动摆动滑板,并带动安装底座、公转转轴和偏心滑板做圆弧摆动,使得刀具沿摆线轨迹进给,实现锪椭圆窝功能;
另外,通过偏心调节机构调节偏心滑板与公转转轴轴心间的距离,可以控制刀具径向偏置,使得刀具距离公转转轴轴心一定距离,此后,在刀具进给的同时,转轴驱动机构带动公转转轴旋转,使得刀具沿螺旋线轨迹进给,实现螺旋铣孔功能。
作为优选的,所述底座的一侧安装有与机床定位连接用的尾部连接组件,该尾部连接组件内部集成电缆、管道模块,实现与数控机床的快速机械定位连接;
另一侧设置压紧工件用的压脚,推动压脚沿压脚导轨运动的气缸,以及用于测量压脚进给量的进给轴长度计;压脚在气缸的推动下压紧工件,并通过进给轴长度计测量反馈压脚进给量,用于刀具进给和加工深度的精确控制。
作为优选的,所述的压脚包括压套,压套的外周设有多个激光测距传感器,通过多个激光测距传感器的配合,检测工件上制孔位置的法矢;压脚头的中部为供刀具穿过用工作腔,腔壁开设连通排屑管道的排屑孔,该排屑管道连接至引风机,通过排屑管道在排屑孔产生吸力,可及时排除工件加工时产生的碎屑。
作为优选的,所述的进给驱动机构包括进给直线导轨副,与所述进给滑板连接的滚珠丝杠进给驱动组件,带动滚珠丝杠进给驱动组件旋转以推动进给滑板沿进给直线导轨副做进给运动的进给电机,以及用于测量进给量的直线光栅。也就是说,由进给电机通过滚珠丝杠进给驱动组件带动进给滑板沿直线导轨运动,实现刀具的进给运动;直线光栅通过检测进给滑板的位移最终反馈为刀具的进给量,实现锪窝深度的精确控制。
作为优选的,所述的摆动驱动机构包括:
安装在进给滑板上的圆弧齿条、圆弧导轨副和摆动轴编码器;
设置在摆动滑板上且与圆弧齿条啮合的消隙齿轮,以及通过驱动消隙齿轮旋转以推动摆动滑板沿所述圆弧导轨副做圆弧摆动的摆动轴电机。
在实现锪椭圆窝功能时,需要开启摆动驱动机构,摆动轴电机通过消隙齿轮和圆弧齿条的配合,带动摆动滑板沿圆弧导轨副作圆弧摆动,使得刀具沿摆线轨迹进给;另外,消隙齿轮和摆动轴编码器配合使用,利于摆动滑板摆动角度的精确控制。
作为优选的,所述的转轴驱动机构包括与所述公转转轴固定连接的大带轮B,安装在安装底座上并通过同步带驱动所述大带轮B的公转电机。
转轴驱动机构用于实现公转转轴的公转,公转转轴活动安装在安装底座内,大带轮B固定套装在公转转轴上,公转电机通过同步带与大带轮B传动配合,并实现公转转轴的驱动。
作为优选的,所述的偏心调节机构包括设置在公转转轴内部的轴承支承座,位于所述轴承支承座内且固定连接有大带轮A的锥齿轮B,在偏心滑板和锥齿轮轴间传动配合的偏心滚珠丝杆传动副,以及用于偏心滑板偏心直线移动的交叉导轨副;
所述偏心滚珠丝杆传动副内的丝杠上安装有与所述锥齿轮B啮合的锥齿轮A;
所述的大带轮A由安装在安装底座上的偏心轴电机驱动。
在实现本发明的螺旋铣孔功能,首先需要通过偏心调节机构来调节刀具相对公转转轴轴心的径向偏置距离;偏心轴电机在同步带和大带轮A的传动配合下带动锥齿轮轴转动,并在锥齿轮A和锥齿轮B的啮合带动偏心滚珠丝杆传动副,从而推动偏心滑板沿交叉导轨副移动,改变刀具与公转转轴轴心间的距离,从而实现刀具径向偏置调节。
作为优选的,
所述公转转轴和锥齿轮轴间具有同步锁紧机构,所述同步锁紧机构包括:
缸体,内具有沿锥齿轮轴滑动配合的气缸活塞;
与锥齿轮轴固定的安装法兰;
活动安装在所述安装法兰的弹簧空心轴,该轴朝向气缸活塞的延伸端套设有弹簧;
固定在弹簧空心轴的延伸端且抵住所述气缸活塞的锥度活塞;
以及固定在安装法兰上的弹簧套,内壁具有与锥度活塞的锥面相抵的斜面,外周为与所述公转转轴内壁配合的压紧面。
本发明中,在处于锁紧状态时,锥度活塞的外周锥面抵住弹簧套内壁的斜面,使得弹簧套外周压紧公转转轴内壁,保持公转转轴和锥齿轮轴的同步;解除锁紧状态时,缸体内的气缸活塞伸出并带动锥度活塞和弹簧空心轴,使得弹簧且锥度活塞的锥面与弹簧套内壁的斜面分离,在斜面收到的压力解除后,弹簧套外周的压紧面与公转转轴分开,即可解除锁紧状态;同理,在缸体内的气缸缩回后,处于收缩状态下的弹簧推动弹簧空心轴和锥度活塞复位,使得锥度活塞的锥面与弹簧套内壁的斜面压紧,从而使弹簧套压紧公转转轴的内壁,实现公转转轴和锥齿轮轴的同步锁紧;
其中,锥齿轮轴由缸体内穿过并与气缸活塞滑动密封配合,锥齿轮轴内具有进气通道,并通过进气孔与缸体内连通,使得由旋转接头引入的压缩气体进入缸体内并驱动所述的气缸活塞。
因此,上述公转转轴转动的同时,必须保持内部的锥齿轮轴同步公转,避免刀具偏置距离的改变,以提高加工精度。
作为优选的,所述安装底座上设有测量反馈刀具径向偏置量的偏心轴长度计,实现刀具径向偏置量的精确控制。
作为优选的,所述安装底座和电主轴外的主轴套筒间设有走线桥架,主轴套筒和偏心滑板间设置有止转轴承。走线桥架内设有线缆,走线桥架和止转轴承在电主轴公转时控制主轴套筒做水平运动,防止电主轴线缆缠绕。
本发明的优点在于:
1)集成了钻孔、铰孔、扩孔、螺旋铣孔、锪椭圆窝功能;
2)尾部连接组件将所有线缆、管道模块化,可实现与数控机床的快速机械定位连接;
3)通过偏心滚珠丝杆传动副能够高精度地调节刀具的偏置量,偏心 轴长度计测量反馈刀具的偏置量,保证了刀具偏置量调节的精确性;
4)通过进给轴长度计、直线光栅、摆动轴编码器等测量元件的位置反馈,保证了制通孔和锪椭圆窝的精度;
5)工业相机修正工件上预制孔位置,4个激光测距传感器检测制孔位置的法矢,保证了制孔精度及安全性;
6)与数控机床配合使用,实现高精度、高效率自动化制孔。
附图说明
图1为多功能末端执行器的主视图;
图2为图1带A-A局部剖视的左视图;
图3为图1带B-B局部剖视的右视图;
图4为摆动滑板55上部的结构图;
图5为同步锁紧机构的放大图;
图6是多功能末端执行器的俯视图(局部采用剖视示意);
图7为弹簧套的结构示意图;
图中:锥齿轮A 1、锥齿轮B 2、旋转接头3、锥齿轮轴4、缸体5、大带轮A 6、辅助轴承7、大带轮B 8、轴承压盖A 9、气缸活塞10、轴承压盖B 11、安装底座12、锥度活塞13、弹簧空心轴14、弹簧15、安装法兰16、弹簧套17、轴承隔圈A 18、轴承支承座19、公转转轴20、公转轴承21、锥齿轮轴支撑轴承22、轴承端盖23、偏心轴辅助导轨24、导轨斜楔25、交叉导轨副26、偏心滑板27、轴承压盖28、旋转封板29、主轴套筒30、气液接头A31、轴承座32、轴承隔圈B 33、止转轴承34、走线桥架35、气液接头B36、电主轴37、止转装置38、刀具39、油雾接头40、压脚41、压套42、排屑管43、工业相机组件44、相机盖45、支撑脚46、风琴罩47、滚珠丝杆进给驱动组件48、直线光栅49、进给直线导轨副50、阀岛51、进给滑板52、光电开关53、底座54、摆动滑板55、圆弧导轨副56、摆动轴编码器57、尾部连接组件58、进给电机59、回零定位锁紧气缸60、摆动轴电机61、偏心滚珠丝杠传动副62、激光测距传感器63、偏心轴电机64、公转电机65、进给轴长度计66、压脚导轨67、气缸68、偏 心轴长度计69、消隙齿轮70、圆弧齿条71。
具体实施方式
如图1~图6所示的多功能末端执行器,包括锥齿轮A 1、锥齿轮B 2、旋转接头3、锥齿轮轴4、缸体5、大带轮A 6、辅助轴承7、大带轮B 8、轴承压盖A 9、气缸活塞10、轴承压盖B 11、安装底座12、锥度活塞13、弹簧空心轴14、弹簧15、安装法兰16、弹簧套17、轴承隔圈A 18、轴承支承座19、公转转轴20、公转轴承21、锥齿轮轴支撑轴承22、轴承端盖23、偏心轴辅助导轨24、导轨斜楔25、交叉导轨副26、偏心滑板27、轴承压盖28、旋转封板29、主轴套筒30、气液接头A31、轴承座32、轴承隔圈B 33、止转轴承34、走线桥架35、气液接头B36、电主轴37、止转装置38、刀具39、油雾接头40、压脚41、压套42、排屑管43、工业相机组件44、相机盖45、支撑脚46、风琴罩47、滚珠丝杆进给驱动组件48、直线光栅49、进给直线导轨副50、阀岛51、进给滑板52、光电开关53、底座54、摆动滑板55、圆弧导轨副56、摆动轴编码器57、尾部连接组件58、进给电机59、回零定位锁紧气缸60、摆动轴电机61、偏心滚珠丝杠传动副62、激光测距传感器63、偏心轴电机64、公转电机65、进给轴长度计66、压脚导轨67、气缸68、偏心轴长度计69、消隙齿轮70、圆弧齿条71。
进给直线导轨副50、直线光栅49、滚珠丝杠进给驱动组件48、尾部连接组件58、进给电机59、压脚导轨67、气缸68、进给轴长度计66安装在底座54上,进给滑板52与滚珠丝杠进给驱动组件48连接,滚珠丝杠进给驱动组件48与进给电机59相连。进给电机59带动滚珠丝杠进给驱动组件48旋转推动进给滑板52沿进给直线导轨副50做进给运动。
摆动轴编码器57、圆弧齿条71、圆弧导轨副56安装在进给滑板52上,安装底座12、摆动轴电机61安装在摆动滑板55上,摆动滑板55与圆弧导轨副56连接,摆动轴电机61与消隙齿轮70连接,消隙齿轮70与圆弧齿条71啮合。摆动轴电机61通过消隙齿轮70旋转推动摆动滑板55沿圆弧导轨副56做圆弧摆动。
安装底座12内设有公转转轴20,安装底座12与公转转轴20通过公转轴承21连接,公转转轴20与大带轮B通过螺钉固联,安装底座12外侧安装公转电机65,公转电机65通过大带轮B 8、公转转轴20、交叉导轨副26、带动偏心滑板27旋转。
公转转轴20内部设有轴承支承座19,轴承支承座19通过锥齿轮轴支承轴承22与锥齿轮轴4连接,锥齿轮轴4与大带轮A固接,偏心滑板27与锥齿轮轴4通过偏心滚珠丝杠传动副62连接,偏心滑板27与公转转轴20通过交叉导轨副26相连接,偏心轴电机64安装在安装底座12外侧,偏心轴电机64通过大带轮A带动锥齿轮轴4旋转,锥齿轮轴4通过偏心滚珠丝杆传动副62带动偏心滑板27沿着交叉导轨副26移动。
偏心滑板27上连接电主轴37,电主轴37上安装刀具39。压脚41在气缸68的推动下可沿压脚导轨67运动。压脚41上设有四个激光测距传感器63、压套42、排屑管43。
本实施例中的装置集成了钻孔、铰孔、扩孔、螺旋铣孔和锪椭圆窝等功能。尾部连接组件内部集成了所有电缆、管道模块,实现与数控机床的快速机械定位连接。电主轴37通过偏心滑板27、偏心滚珠丝杆传动副62、锥齿轮轴4与偏心轴电机64联动,实现刀具的径向偏置。
弹簧套17在经弹簧15压紧的锥度活塞13、气缸活塞10的支撑作用下实现公转转轴20和锥齿轮轴4的同步锁紧,对应设置的同步锁紧机构包括缸体5、气缸活塞10、锥度活塞13、弹簧空心轴14、弹簧15、安装法兰16和弹簧套17;弹簧套17的结构如图7所示,其上环绕有间隔分布且可变形的弹性片72,该弹性片72的内壁具有与锥度活塞13的外周锥面配合的斜面,在收到锥度活塞13的挤压时,弹性片72略微向外变形并压紧公转转轴20的内部;具体地,气体打开时,气体从尾部的气管通过旋转接头3进入锥齿轮轴4,通过锥齿轮轴上的小孔进入由缸体5和气缸活塞10的空间,通过气缸活塞10推动锥度活塞13,进而使弹簧空心轴14和弹簧15组成的弹性体向后收缩,由于锥度活塞13和弹簧套17的斜面配合,弹簧套17将和公转转轴20分开,使锥齿轮轴4与公转转轴20脱离,同步锁紧作用解除;若气体关闭,则该锁紧机构在弹簧15的作用下 自动弹回,实现锥齿轮轴4与公转转轴20的同步锁紧。
经旋转接头3进入缸体5的气体通过气缸活塞10推动锥度活塞13解除弹簧套17的支撑作用,实现公转转轴20和锥齿轮轴4的同步锁紧的解除。进给轴长度计66、直线光栅49分别测量反馈压脚41和进给滑板52的进给量,实现锪窝深度的精确控制。偏心轴长度计69测量反馈刀具的径向偏置量,实现刀具径向偏置的精确控制。消隙齿轮70、摆动轴编码器57配合使用,实现摆动滑板55摆动角度的精确控制。回零定位锁紧气缸60通过与进给滑板52的插销连接作用保证该装置制通孔时摆动滑板55始终处于零位。走线桥架35和止转轴承34在电主轴37公转时控制主轴套筒30做水平运动,防止电主轴37线缆缠绕。工业相机组件44装在底座54的前部,检测工件上预制孔位置。压脚41装有四个的激光测距传感器63,检测工件上制孔位置的法矢。
本发明的工作过程如下:
1、将本发明装置通过尾部连接组件58安装在数控机床上;
2、由数控机床将本发明装置移动到工件上基准孔位置,利用工业相机组件44测量基准孔孔位置偏差,根据所测量的位置偏差和孔的理论坐标得出实际制孔位置坐标,再将本发明移动到实际制孔位置;
3、压脚41上4个激光测距传感器63测量得到工件预制孔部位表面法向,数控机床调整本发明装置的位姿,使主轴轴线与工件表面法向重合;
4、气缸68将压脚41推出,使压套42压紧工件;
5、开启引风机,排屑管43开始产生吸力;钻孔、铰孔、扩孔时接第6步,螺旋铣孔时转第8步,锪椭圆窝时转第11步;
6、开启电主轴37;进给电机59带动滚珠丝杠进给驱动组件48旋转推动进给滑板52沿进给直线导轨副50做进给运动,使得刀具直线进给,直至完成制孔;
7、进给滑板52退回,压脚41退回,转第12步;
8、通过旋转接头3流入的气体解除公转转轴20与锥齿轮轴4的同步锁紧;根据加工孔孔径D和刀具直径d,驱动偏心轴电机64转动,通过偏心调节机构调整刀具偏置距离
Figure PCTCN2016095606-appb-000001
调整完毕后关闭旋转接头3内流 通的气体,实现公转转轴20与锥齿轮轴4的同步锁紧;
9、开启公转电机65,通过大带轮B带动公转转轴20转动,电主轴37将以e为半径绕公转转轴轴线作旋转运动;开启电主轴37;进给电机59带动滚珠丝杠进给驱动组件48旋转推动进给滑板52沿进给直线导轨副50做进给运动,使得刀具沿螺旋线轨迹进给,直至完成制孔;
10、进给滑板52退回,压脚41退回;关闭公转电机65;通过旋转接头3流入的气体解除公转转轴20与锥齿轮轴4的同步锁紧;通过偏心调节机构调整刀具偏置距离e为0;转第12步;
11、开启电主轴37;驱动进给电机59带动滚珠丝杠进给驱动组件48旋转推动进给滑板52沿进给直线导轨副50做进给运动;开启摆动轴电机61,通过消隙齿轮70、圆弧齿条71带动摆动滑板55沿圆弧导轨副56来回摆动;通过进给滑板52和摆动滑板55运动配合,使得刀具39沿摆线轨迹进给,直至完成锪椭圆窝;
12、关闭电主轴37;关闭引风机;将数控机床将末端执行器移动到下一位置制孔或者停止。
以上所述仅为本发明的较佳实施举例,并不用于限制本发明,凡在本发明精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种多功能末端执行器,其特征在于,包括:
    底座(54)和刀具(39);
    置于底座(54)上的进给滑板(52),和驱动所述进给滑板(52)以带动刀具(39)进给的进给驱动机构;
    置于所述进给滑板(52)上的摆动滑板(55),和推动所述摆动滑板(55)以带动刀具(39)做圆弧摆动的摆动驱动机构;
    置于所述摆动滑板(55)上的安装底座(12),所述安装底座(12)内设有公转转轴(20)和驱动所述公转转轴(20)以带动刀具(39)旋转的转轴驱动机构;
    固定在公转转轴(20)端部的偏心滑板(27),所述刀具(39)通过电主轴(37)连接在偏心滑板(27)的端部;
    以及调节所述偏心滑板(27)以控制刀具(39)径向偏置的偏心调节机构。
  2. 如权利要求1所述的多功能末端执行器,其特征在于,所述底座(54)的一侧安装有与机床定位连接用的尾部连接组件(58);
    另一侧设置压紧工件用的压脚(41),推动压脚(41)沿压脚导轨(67)运动的气缸(68),以及用于测量压脚(41)进给量的进给轴长度计(66)。
  3. 如权利要求2所述的多功能末端执行器,其特征在于,所述的压脚(41)包括压套(42),压套(42)的外周设有多个激光测距传感器(63),压套(42)的中部为供刀具(39)穿过用工作腔,腔壁连通排屑管(43)。
  4. 如权利要求1所述的多功能末端执行器,其特征在于,所述的进给驱动机构包括进给直线导轨副(50),与所述进给滑板(52)连接的滚珠丝杠进给驱动组件(48),带动滚珠丝杠进给驱动组件(48)旋转以推动进给滑板(52)沿进给直线导轨副(50)做进给运动的进给电机(59),以及用于测量进给量的直线光栅(49)。
  5. 如权利要求1所述的多功能末端执行器,其特征在于,所述的摆动驱动机构包括:
    安装在进给滑板(52)上的圆弧齿条(71)、圆弧导轨副(56)和摆动轴编码器(57);
    设置在摆动滑板(55)上且与圆弧齿条(71)啮合的消隙齿轮(70),以及通过驱动消隙齿轮(70)旋转以推动摆动滑板(55)沿所述圆弧导轨副(56)做圆弧摆动的摆动轴电机(61)。
  6. 如权利要求1所述的多功能末端执行器,其特征在于,所述的转轴驱动机构包括与所述公转转轴(20)固定连接的大带轮B(8),安装在安装底座(12)上并通过同步带驱动所述大带轮B(8)的公转电机(65)。
  7. 如权利要求1所述的多功能末端执行器,其特征在于,所述的偏心调节机构包括设置在公转转轴(20)内部的轴承支承座(19),位于所述轴承支承座(19)内且固定连接有大带轮A(6)的锥齿轮B(2),在偏心滑板(27)和锥齿轮轴(4)间传动配合的偏心滚珠丝杆传动副(62),以及用于偏心滑板(27)偏心直线移动的交叉导轨副(26);
    所述偏心滚珠丝杆传动副(62)内的丝杠上安装有与所述锥齿轮B(2)啮合的锥齿轮A(1);
    所述的大带轮A(6)由安装在安装底座(12)上的偏心轴电机(64)驱动。
  8. 如权利要求7所述的多功能末端执行器,其特征在于,所述公转转轴(20)和锥齿轮轴(4)间具有同步锁紧机构,所述同步锁紧机构包括:
    缸体(5),内具有沿锥齿轮轴(4)滑动配合的气缸活塞(10);
    与锥齿轮轴(4)固定的安装法兰(16),
    活动安装在所述安装法兰(16)的弹簧空心轴(14),该轴朝向气缸活塞(10)的延伸端套设有弹簧(15);
    固定在弹簧空心轴(14)的延伸端且抵住所述气缸活塞(10)的锥度活塞(13);
    以及固定在安装法兰(16)上的弹簧套(17),内壁具有与锥度活塞(13)的锥面相抵的斜面,外周为与所述公转转轴(20)内壁配合的压紧面。
  9. 如权利要求8所述的多功能末端执行器,其特征在于,所述安装底 座(12)上设有测量反馈刀具(39)径向偏置量的偏心轴长度计(69)。
  10. 如权利要求1所述的多功能末端执行器,其特征在于,所述安装底座(12)和电主轴(37)外的主轴套筒(30)间设有走线桥架(35),主轴套筒(30)和偏心滑板(27)间设置有止转轴承(34)。
PCT/CN2016/095606 2016-07-15 2016-08-17 一种多功能末端执行器 WO2018010247A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/080,290 US10583500B2 (en) 2016-07-15 2016-08-17 Multi-functional end effector

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610571566.9A CN106218916B (zh) 2016-07-15 2016-07-15 一种多功能末端执行器
CN201610571566.9 2016-07-15

Publications (1)

Publication Number Publication Date
WO2018010247A1 true WO2018010247A1 (zh) 2018-01-18

Family

ID=57531977

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/095606 WO2018010247A1 (zh) 2016-07-15 2016-08-17 一种多功能末端执行器

Country Status (3)

Country Link
US (1) US10583500B2 (zh)
CN (1) CN106218916B (zh)
WO (1) WO2018010247A1 (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109834481A (zh) * 2019-04-03 2019-06-04 哈尔滨汽轮机厂有限责任公司 一种加工汽轮机内汽封弧段的定位装置及定位方法
CN111408773A (zh) * 2020-04-17 2020-07-14 哈尔滨创沃铭机电科技有限公司 一种倾角偏心复合铣孔装置及工作方法
CN111422369A (zh) * 2019-01-09 2020-07-17 上海复亚智能科技有限公司 一种无人机自动机场及控制方法
CN112643136A (zh) * 2019-10-11 2021-04-13 杉野机械股份有限公司 飞边去除工具以及飞边去除方法
CN113084535A (zh) * 2021-03-31 2021-07-09 杭州艾美依航空制造装备有限公司 一种螺旋铣执行器
CN113085018A (zh) * 2021-03-31 2021-07-09 浙江大学 一种用于陶瓷基复合材料制孔插钉的多功能末端执行器
CN113458817A (zh) * 2020-03-31 2021-10-01 富鼎电子科技(嘉善)有限公司 旋转定位装置
CN113978754A (zh) * 2021-10-27 2022-01-28 大新华飞机维修服务有限公司 一种波音737客机客舱回气格栅修理工艺
CN114505697A (zh) * 2021-10-12 2022-05-17 枣庄北航机床创新研究院有限公司 一种侧面驱动式滑块摆杆多轴联动数控机床
CN114952508A (zh) * 2021-02-23 2022-08-30 上银科技股份有限公司 工件定向机构
CN115179097A (zh) * 2022-07-28 2022-10-14 浙江亚微精密机床有限公司 一种可有效降低加工导轨震动的加工设备

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106995063B (zh) * 2017-04-26 2019-05-14 浙江大学 一种多功能末端执行器
CN107323684B (zh) * 2017-06-06 2019-06-25 浙江大学 一种飞机机翼数字化装配系统
CN107350808B (zh) * 2017-08-14 2019-04-12 西安交通大学 一种激光螺旋铣磨制孔复合装置及制孔方法
CN107554813B (zh) * 2017-09-05 2019-06-14 西北工业大学 一种制孔干涉插钉一体化装置及方法
CN107600455B (zh) * 2017-09-05 2019-11-15 西北工业大学 一种末端执行器装置及一种一体化制孔、压钉的方法
CN108007389B (zh) * 2017-10-27 2020-11-13 上海拓璞数控科技股份有限公司 用于壁板制孔的高精度法向测量装置及测量方法
CN107984015A (zh) * 2018-01-10 2018-05-04 东北大学 一种用于复合材料的螺旋铣孔装置
CN108927557B (zh) * 2018-08-17 2024-02-13 西安增材制造国家研究院有限公司 一种螺旋铣孔装置和方法
CN112824848B (zh) * 2019-11-21 2022-05-10 成都飞机工业(集团)有限责任公司 一种轻型弹射机构
CN110901953A (zh) * 2019-12-04 2020-03-24 中国直升机设计研究所 一种智能弹性轴承及其状态监控系统
CN111014776A (zh) * 2019-12-26 2020-04-17 西北工业大学 一种用于深孔加工的末端执行器
CN111151797B (zh) * 2020-01-16 2020-11-03 东北林业大学 一种应用于梁柱材加工的摆动式调节铣削装置
CN111604527B (zh) * 2020-04-30 2022-07-15 沈阳工业大学 一种用于螺旋铣孔的末端执行装置
CN111730581A (zh) * 2020-06-10 2020-10-02 德屹智能科技(扬州)有限公司 一种摆动驱动装置及加工设备
CN112077604A (zh) * 2020-09-16 2020-12-15 速技能机械制造(常熟)有限公司 自动换刀钻攻铣一体加工装置
CN112571090A (zh) * 2020-12-04 2021-03-30 潘功良 一种机械臂连接圆盘钻孔定位工装
CN113070686B (zh) * 2021-02-26 2022-03-25 南京晓庄学院 一种基于机器人螺旋铣孔平台的刀具偏心量离线调节方法
CN113043033B (zh) * 2021-04-28 2022-04-29 广州市昊志机电股份有限公司 一种电主轴拉刀机构、电主轴和机床
CN114029174B (zh) * 2021-10-19 2023-12-15 江苏康康同学科技有限公司 一种检验科血液凝结设备
CN114104325B (zh) * 2021-11-26 2023-05-16 彩虹无人机科技有限公司 自动盘桨装置
CN113923370B (zh) * 2021-12-14 2022-03-22 深圳宇骏视觉智能科技有限公司 一种用于工业视觉检测的摄影装置
CN114273746B (zh) * 2021-12-29 2023-06-13 北京化工大学 一种多功能电气两动切割喷头
CN114888340A (zh) * 2022-05-09 2022-08-12 芜湖银星汽车零部件有限公司 进气前盖板凸台面装夹铣削系统
CN115415852B (zh) * 2022-10-12 2023-09-22 哈尔滨理工大学 一种倾角铣削执行器的刚度增强和智能测量系统
CN116214234B (zh) * 2023-03-23 2023-11-24 烟台大丰轴瓦有限责任公司 一种轴瓦加工传动机构及传动方法
CN116900720B (zh) * 2023-08-30 2024-01-09 佛山市汇灿机械设备有限公司 一种大型金属供水管道的制备装置
CN117259868B (zh) * 2023-11-24 2024-02-13 山东威腾机械有限公司 一种风力发电机轴承座切削装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102658391A (zh) * 2012-05-18 2012-09-12 大连理工大学 一种螺旋铣孔装置
CN102794491A (zh) * 2012-08-22 2012-11-28 浙江大学 一种自动化螺旋铣孔装置及其方法
WO2013020664A1 (de) * 2011-08-08 2013-02-14 Lufthansa Technik Ag Reib- und/oder fräsvorrichtung sowie -verfahren für ein fahrwerk eines flugzeugs
CN103192125A (zh) * 2013-03-28 2013-07-10 大连理工大学 一种便携式螺旋铣孔装置及加工方法
CN103894678A (zh) * 2014-03-25 2014-07-02 浙江大学 一种锪椭圆窝装置
CN204148591U (zh) * 2014-10-28 2015-02-11 浙江日发航空数字装备有限责任公司 一种螺旋铣孔装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103894796B (zh) * 2014-03-25 2016-03-09 浙江大学 一种飞机机翼叠层材料装配制孔的方法
CN103894865A (zh) * 2014-03-25 2014-07-02 浙江大学 一种用于对叠层材料进行制孔的数控五坐标机床
CN205129377U (zh) * 2015-11-30 2016-04-06 浙江亚龙教育装备股份有限公司 一种多工位半自动钻床

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013020664A1 (de) * 2011-08-08 2013-02-14 Lufthansa Technik Ag Reib- und/oder fräsvorrichtung sowie -verfahren für ein fahrwerk eines flugzeugs
CN102658391A (zh) * 2012-05-18 2012-09-12 大连理工大学 一种螺旋铣孔装置
CN102794491A (zh) * 2012-08-22 2012-11-28 浙江大学 一种自动化螺旋铣孔装置及其方法
CN103192125A (zh) * 2013-03-28 2013-07-10 大连理工大学 一种便携式螺旋铣孔装置及加工方法
CN103894678A (zh) * 2014-03-25 2014-07-02 浙江大学 一种锪椭圆窝装置
CN204148591U (zh) * 2014-10-28 2015-02-11 浙江日发航空数字装备有限责任公司 一种螺旋铣孔装置

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111422369A (zh) * 2019-01-09 2020-07-17 上海复亚智能科技有限公司 一种无人机自动机场及控制方法
CN111422369B (zh) * 2019-01-09 2023-09-19 复亚智能技术发展(江苏)有限公司 一种无人机自动机场及控制方法
CN109834481A (zh) * 2019-04-03 2019-06-04 哈尔滨汽轮机厂有限责任公司 一种加工汽轮机内汽封弧段的定位装置及定位方法
CN109834481B (zh) * 2019-04-03 2023-12-05 哈尔滨汽轮机厂有限责任公司 一种加工汽轮机内汽封弧段的定位装置及定位方法
CN112643136A (zh) * 2019-10-11 2021-04-13 杉野机械股份有限公司 飞边去除工具以及飞边去除方法
CN112643136B (zh) * 2019-10-11 2024-03-12 杉野机械股份有限公司 飞边去除工具以及飞边去除方法
CN113458817A (zh) * 2020-03-31 2021-10-01 富鼎电子科技(嘉善)有限公司 旋转定位装置
CN111408773A (zh) * 2020-04-17 2020-07-14 哈尔滨创沃铭机电科技有限公司 一种倾角偏心复合铣孔装置及工作方法
CN111408773B (zh) * 2020-04-17 2022-09-02 哈尔滨创沃铭机电科技有限公司 一种倾角偏心复合铣孔装置及工作方法
CN114952508A (zh) * 2021-02-23 2022-08-30 上银科技股份有限公司 工件定向机构
CN114952508B (zh) * 2021-02-23 2023-09-29 上银科技股份有限公司 工件定向机构
CN113085018A (zh) * 2021-03-31 2021-07-09 浙江大学 一种用于陶瓷基复合材料制孔插钉的多功能末端执行器
CN113085018B (zh) * 2021-03-31 2022-08-09 浙江大学 一种用于陶瓷基复合材料制孔插钉的多功能末端执行器
CN113084535B (zh) * 2021-03-31 2022-06-14 杭州艾美依航空制造装备有限公司 一种螺旋铣执行器
CN113084535A (zh) * 2021-03-31 2021-07-09 杭州艾美依航空制造装备有限公司 一种螺旋铣执行器
CN114505697B (zh) * 2021-10-12 2023-06-09 枣庄北航机床创新研究院有限公司 一种侧面驱动式滑块摆杆多轴联动数控机床
CN114505697A (zh) * 2021-10-12 2022-05-17 枣庄北航机床创新研究院有限公司 一种侧面驱动式滑块摆杆多轴联动数控机床
CN113978754B (zh) * 2021-10-27 2023-11-21 大新华飞机维修服务有限公司 一种波音737客机客舱回气格栅修理工艺
CN113978754A (zh) * 2021-10-27 2022-01-28 大新华飞机维修服务有限公司 一种波音737客机客舱回气格栅修理工艺
CN115179097A (zh) * 2022-07-28 2022-10-14 浙江亚微精密机床有限公司 一种可有效降低加工导轨震动的加工设备
CN115179097B (zh) * 2022-07-28 2024-03-29 浙江亚微精密机床有限公司 一种可有效降低加工导轨震动的加工设备

Also Published As

Publication number Publication date
CN106218916B (zh) 2019-01-11
CN106218916A (zh) 2016-12-14
US10583500B2 (en) 2020-03-10
US20190061019A1 (en) 2019-02-28

Similar Documents

Publication Publication Date Title
WO2018010247A1 (zh) 一种多功能末端执行器
CN102794491B (zh) 一种自动化螺旋铣孔装置及其方法
WO2011093002A1 (ja) 穴あけ加工装置
CN106670553A (zh) 行星减速式调节偏心量螺旋铣孔装置
CN101537512A (zh) 螺旋铣孔方法及其装置
CN112024979B (zh) 一种薄壁工件用装夹回转装置
CN110216479A (zh) 一种钻铣复合自动制孔装置
CN113084535B (zh) 一种螺旋铣执行器
CN105033688A (zh) 制孔末端执行器及制孔系统
CN209319266U (zh) 一种可调角度垫块机构
CN103894678B (zh) 一种锪椭圆窝装置
CN103949702A (zh) 偏心量机械正交在线调整轨迹的制孔装置
CN103949703B (zh) 铣削马鞍型管接头坡口的装置
CN105965081A (zh) 一种薄壁管切割设备
CN107322035B (zh) 一种用于飞机机身构件叠层装配的终端制孔执行器
US8555757B2 (en) Tool for machining workpiece surfaces
CN209407433U (zh) 一种钻铣床的主轴
CN208621958U (zh) 一种机械加工用检测组件
CN201493529U (zh) 螺旋铣孔装置的径向偏移机构
CN208050982U (zh) 便携式制孔装置
CN203900496U (zh) 正多边形车削装置
CN206185577U (zh) 一种轴向进刀机构
CN2601140Y (zh) 自伸缩可变向的主轴
CN102699395B (zh) 螺旋铣装置
CN206662828U (zh) 外卡式法兰端面加工机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16908572

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16908572

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 03/07/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 16908572

Country of ref document: EP

Kind code of ref document: A1