WO2018006885A1 - 陶瓷粉末组合物、直孔陶瓷过滤器及其制备方法 - Google Patents

陶瓷粉末组合物、直孔陶瓷过滤器及其制备方法 Download PDF

Info

Publication number
WO2018006885A1
WO2018006885A1 PCT/CN2017/094681 CN2017094681W WO2018006885A1 WO 2018006885 A1 WO2018006885 A1 WO 2018006885A1 CN 2017094681 W CN2017094681 W CN 2017094681W WO 2018006885 A1 WO2018006885 A1 WO 2018006885A1
Authority
WO
WIPO (PCT)
Prior art keywords
alumina
boron
silica
ceramic filter
straight
Prior art date
Application number
PCT/CN2017/094681
Other languages
English (en)
French (fr)
Inventor
祝建勋
赵国庆
马业斌
Original Assignee
济南圣泉倍进陶瓷过滤器有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 济南圣泉倍进陶瓷过滤器有限公司 filed Critical 济南圣泉倍进陶瓷过滤器有限公司
Publication of WO2018006885A1 publication Critical patent/WO2018006885A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/20Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/20Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
    • B01D39/2068Other inorganic materials, e.g. ceramics
    • B01D39/2093Ceramic foam
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/66Monolithic refractories or refractory mortars, including those whether or not containing clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0003Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof containing continuous channels, e.g. of the "dead-end" type or obtained by pushing bars in the green ceramic product
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density

Definitions

  • the invention relates to the field of casting technology, in particular to a foam ceramic filter and a composition and a preparation method thereof.
  • the filtering device for metal liquid purification is a ceramic filter, which can effectively intercept harmful impurities in the molten metal and change the molten metal from turbulent flow to laminar flow, thereby purifying and homogenizing.
  • the ceramic filter can be classified into a ceramic foam filter and a straight hole ceramic filter according to the structure.
  • the current filters for cast steel are all ceramic foam filters, and the preparation of foam filters for cast steel relies almost entirely on zirconia. Since zirconia is a rare metal oxide, although the filtration effect is good, the high price severely limits its wide application in the field of cast steel filtration, and is only used for the casting of special steel or high value-added steel or alloy.
  • the straight hole ceramic filter is a new type of ceramic filter developed in recent years, which has the characteristics of good appearance regularity, high cold and hot state strength, good thermal shock resistance, good filtration performance and low production cost.
  • the current straight hole ceramic filter is mainly used for impurity filtration of low melting point molten metal such as molten iron, aluminum alloy, copper and its alloy.
  • the applicant's earlier patent application publication CN 103964862 A discloses a straight-hole ceramic filter comprising a biomass carbon for a cast steel, the preparation material being composed of a refractory material, a bio-carbon, an organic binder and/or an inorganic binder. The performance of the filter needs to be further improved.
  • CN 103803990 A describes a straight-hole filter for cast steel and superalloys comprising 65-85% of aluminum oxide, 11-33% of silica, 1 to 3% of magnesium oxide and no more than 1.5 % of other alkali metal oxides, phase composition: mullite phase 40 ⁇ 90%, corundum phase 5 ⁇ 55%, quartz ⁇ 8%, glass phase ⁇ 5%, mainly filtered steel or high temperature alloy metal liquid.
  • CN 104557061 A describes a straight-hole filter for cast steel and high-temperature alloy, comprising 60-80% of alumina, 10-25% of silica, 5-15% of zirconia, and no more than 1% of other alkali metal oxides, mainly filtered steel or high temperature alloy metal.
  • CN 102992781 A discloses a preparation of a straight hole ceramic filter Materials and methods.
  • the preparation method adopts honeycomb ceramic molding technology, which comprises mixing refractory material with binder and water retaining agent, adding plasticizer, lubricant and water kneading, roughing, staleening, scouring, molding, shaping, drying, cutting and blowing.
  • a straight hole ceramic filter is produced by a ash and firing process.
  • the filter obtained by using these materials has a high bulk density, generally above 2.0 g/cm3 to ensure stable and non-destruction at high temperatures, and because of its large bulk density, its heat capacity is also large, in the initial stage of casting, molten metal It is very easy to block and cause filtration failure; when the material system is used, the sintering temperature is at least 1400 ° C, and the energy consumption is high. In addition, the high sintering temperature results in a large sintering shrinkage of the product, and the product is prone to cracking during sintering, and the yield is low.
  • the prior art requires a straight hole ceramic filter having a lower bulk density, a smaller porosity, a lower sintering temperature, and a high temperature molten metal.
  • the filter according to the present invention mainly comprises the following components by mass:
  • the refractory material consists essentially of 55 to 98% silicon carbide, 1 to 23% alumina-containing material and 1 to 22% silica by weight.
  • the refractory material is comprised of 60-80% silicon carbide, 10-20% alumina-containing material, and 10-20% silica by weight percent.
  • the above alumina-containing material comprises one or more of alumina powder, alumina, coke gemstone, mullite, andalusite, kyanite, and sillimanite. Further, the above refractory material contains not more than 1% of a boron-containing compound.
  • the boron-containing substance includes one or more of elemental boron, boron oxide, boron carbide, and boron nitride, and further contains not more than 5% of rare earth oxide.
  • the binder used in the filter of the present invention is an inorganic binder and/or an organic binder
  • the inorganic binder is one of silica sol, aluminum sol, water glass, phosphate, and sulfate.
  • a plurality of organic binders are one of resin, asphalt, CMC, MC, PVA, PVB, starch, dextrin, pulp waste liquid, cellulose, gum arabic, xanthan gum, lignin Or a variety.
  • the straight-hole ceramic filter of the invention has the advantages of small bulk density, small heat capacity, no easy blockage at the initial stage of filtration, low raw material cost, low sintering temperature, small sintering shrinkage, high yield, and large filtration per unit area.
  • the general filtration amount of the technology is ⁇ 3 kg/cm 2
  • the filtration amount provided by the present invention is not less than 5 kg/cm 2 .
  • Another aspect of the present invention also provides a ceramic powder consisting essentially of 55 to 98% silicon carbide, 1 to 23% alumina-containing material, and 1 to 22% silica by weight.
  • the ceramic powder is composed of 60 to 80% of silicon carbide, 10 to 20% of an alumina-containing material, and 10 to 20% of silica.
  • the ceramic powder contains not more than 1% of a boron-containing substance.
  • the ceramic powder contains not more than 5% of rare earth oxide.
  • the boron-containing substance includes one or more of elemental boron, boron oxide, boron carbide, and boron nitride.
  • the "high melting point” as used in the present invention means a temperature in the range of 1550-1700 °C, especially in the range of 1600-1700 °C.
  • the product according to the invention can of course be used for metals having a melting point below 1550 °C.
  • the straight-hole ceramic filter according to the present invention mainly comprises the following components by mass:
  • the ceramic filter having the above composition has a small bulk density and thus has a low heat capacity; it can also withstand a molten metal of up to 1650 ° C or even 1700 ° C.
  • the ceramic material used to prepare the straight-hole filter of the present invention consists essentially of 55 to 98% silicon carbide, 1 to 23% alumina-containing material, and 1 to 22% silica.
  • the alumina-containing material in the present invention refers to a natural material and a synthetic material mainly composed of alumina.
  • An example of a natural material is alumina.
  • Examples of synthetic materials are alumina powder, which may be various crystal forms such as ⁇ -Al 2 O 3 , ⁇ -Al 2 O 3 , ⁇ -Al 2 O 3 or a combination of crystal forms.
  • the alumina-containing material is a natural mineral mainly composed of alumina and silica, and the material contains other metal oxides (oxides of iron, titanium, potassium, sodium, calcium, etc.).
  • the amount is preferably not more than 10%, more preferably not more than 5%, most preferably not more than 3%, and more preferably no more than 1% of other metal elements.
  • the amount of alumina is not suitably less than 30%, preferably not less than 35%, more preferably more than 40%.
  • the alumina-containing material is preferably one of alumina, cokeite, mullite, andalusite, kyanite, sillimanite or a combination thereof.
  • the silica may be crystalline and amorphous silica, and it is pulverized to 300 mesh or less, preferably 500 mesh or less, in use, and most preferably silicon fine powder, which is made of natural quartz (SiO). 2 ) or fused silica (amorphous SiO 2 after natural quartz is melted and cooled by high temperature) is processed by multiple processes such as crushing, ball milling (or vibration, jet milling), flotation, pickling and purification. In addition to this, it is also possible to use elemental silicon powder which is oxidized to silica during sintering.
  • the ceramic material further contains no more than 1% of a boron-containing substance, and the boron-containing substance is preferably one or more of elemental boron, boron oxide, boron carbide, and boron nitride.
  • the boron-containing substance is preferably one or more of elemental boron, boron oxide, boron carbide, and boron nitride.
  • the refractory material consists essentially of 60 to 80% silicon carbide, 10 to 20% of the above alumina-containing material and 10 to 20% silica by weight. In a particular embodiment, the refractory material comprises 61%, 62%, 63 or more than 65% silicon carbide. With this preferred formulation, the ceramic material has a lower sintering shrinkage and thus an improved firing rate of the product.
  • One method of preparing the straight-hole filter of the present invention involves two steps of forming and sintering.
  • One molding method is dry pressing molding, and the main raw materials, water and binder are mixed and pulped, and spray-dried to form spherical pellets, which are molded to obtain a green body, and then sintered to obtain a product.
  • the binder is preferably an organic binder, and the organic binder is generally an organic compound mainly composed of a hydrocarbon, and the linear organic molecules constitute a bulk polymer having a spatial network structure by a chemical reaction.
  • the various materials can be bonded to each other as a whole and the strength is very high. However, it is easy to decompose at high temperatures and loses adhesion.
  • the organic binder used in the present invention is usually selected from the group consisting of resin, asphalt, polyvinyl alcohol, methyl cellulose, PVB, starch, dextrin, pulp waste liquid, cellulose, gum arabic, xanthan gum, lignin.
  • the filter of the present invention can be prepared by the press molding process disclosed in Chinese Patent No. 200810182753.3, and the preparation raw material may further contain an appropriate amount of water reducing agent, mold release agent and the like.
  • the water reducing agent is one or more of sodium humate, sodium tripolyphosphate and sodium hexametaphosphate;
  • the binding agent is one or more of polyvinyl alcohol and methyl cellulose; and the releasing agent is one or more of a hard acid salt, an emulsified oil, and an emulsified paraffin wax.
  • Another molding method is to mix the main raw materials with the binder and the water retaining agent, and then add plasticizer, lubricant and water to knead, rough, stale, scouring, molding, shaping, drying, cutting, and soaking.
  • the filter of the present invention can be prepared by the honeycomb ceramic extrusion molding process disclosed in Chinese Patent Application No. 201110271813.0, and the preparation material should also contain an appropriate amount of a binder, a plasticizer, a lubricant, and the like.
  • Useful binders include one or more of resin, cellulose, gum arabic, xanthan gum, hydroxypropylmethylcellulose, methylcellulose or tung oil, but the invention is not limited thereto, the binder
  • the amount of introduction is usually between 1% and 11% of the raw material; the commonly used water retaining agent includes one or a combination of two of glycerin and paraffin, and the amount is 3-11%.
  • the commonly used plasticizers include PVA and tung oil.
  • soybean oil and hydraulic oil are not limited thereto, and the amount is usually 3% to 8% of the raw material; the commonly used lubricant includes one of soybean oil, vegetable oil, hydraulic oil or Various, but the invention is not limited thereto, and the amount of introduction is 3% to 8%.
  • each mineral is ball-milled separately according to the required requirements, and then the binder is compounded according to a predetermined ratio and an appropriate amount, and after mixing, an appropriate amount of lubricant and 14% are added. -22% water is kneaded.
  • the kneaded mud is obtained by roughing, staleening, scouring, molding, box-type microwave shaping, box-type drying room, circulating warm air drying, cutting, and soot blowing to obtain a green body.
  • the green body has a thickness of 8 to 25 mm, preferably a thickness of 10 to 22 mm.
  • the formed blank code is placed in a high temperature kiln and fired at a temperature below 1400 ° C, preferably at a firing temperature of 1250-1400 ° C.
  • a straight liquid filter for molten metal having a bulk density of 0.9 to 1.8 g/cm 3 can be obtained, and the filtration amount reaches even more than 5 kg/cm 2 , which is remarkably higher than other filters.
  • Raw materials (by weight): 68% silicon carbide, 15% alumina powder, 17% silicon micropowder
  • a binder of 0.5% of the total amount of raw materials and 40% of water were added, and a refractory slurry was prepared by ball milling for 0.5 hours, and the refractory slurry was atomized and dried by a pressure spray method, and the drying temperature was After drying at 105 ° C, a spherical powder with a mesh number of 30-100 mesh is obtained, and weighed into a porous mold according to the amount, pressed and demolded by a pressure forming machine, dried and sintered at 1300 ° C in an oxidizing atmosphere to obtain a straight hole. filter.
  • the main raw materials are ball milled and sieved with 3% resin and 2% tung oil, 5% glycerin is fully mixed, then added to CMC3%, soybean oil 1%, hydraulic oil 3%, 15% water and other additives are kneaded, rough, and stale , scouring, forming, shaping, drying, cutting, and sooting to obtain a green body.
  • a filter is obtained after sintering at a certain temperature. The filter was tested with a head of 30 cm.

Abstract

一种用于过滤高熔点金属液的直孔陶瓷过滤器,以质量计主要包含SiC50-98%、Al 2O 31-23%、SiO 21-28%,用于制备该直孔陶瓷过滤器的陶瓷粉末组合物,按重量百分含量计主要由55~98%的碳化硅、1~23%的氧化铝和1~28%的二氧化硅组成,优选由60~80%碳化硅,10~20%的含氧化铝材料和10~20%的二氧化硅材料组成。

Description

陶瓷粉末组合物、直孔陶瓷过滤器及其制备方法
本申请要求中国发明专利申请201610523953.5(申请日:2016年07月04日;发明名称:陶瓷粉末组合物、直孔陶瓷过滤器及其制备方法)的优先权,其全部内容通过援引并入本说明书。
技术领域
本发明涉及铸造技术领域,尤其涉及一种泡沫陶瓷过滤器及制备其的组合物和制备方法。
背景技术
金属液的净化对提高铸件的力学性能起到重要作用,因此,过滤技术在金属液净化方面尤为重要。目前用于金属液净化的过滤装置为陶瓷过滤器,可有效截获金属液中的有害杂质并使金属液由紊流变为层流,起到净化和均质作用。陶瓷过滤器按照结构可分为泡沫陶瓷过滤器和直孔陶瓷过滤器。目前的用于铸钢的过滤器全部是泡沫陶瓷过滤器,而且用于铸钢的泡沫过滤器的制备几乎全部依赖于氧化锆。由于氧化锆是一种稀有金属氧化物,虽然过滤效果好,但高昂的价格严重限制其在铸钢过滤领域中的广泛应用,只是用于特种钢或者高附加值的钢或合金的铸造。
直孔陶瓷过滤器是近年来开发出的新型陶瓷过滤器,具有外观规整度好、冷热态强度高、抗热震性能好、过滤性能佳、生产成本较低等特点。目前的直孔陶瓷过滤器主要应用于铁水、铝合金、铜及其合金等低熔点金属液的杂质过滤。
申请人早先的一份专利申请公开CN103964862A披露一种铸钢用包含生物质碳的直孔陶瓷过滤器,制备原料由耐火材料、生物碳、有机粘合剂和/或无机粘合剂组成。该过滤器的使用性能还需要进一步提高。
CN 103803990 A中介绍了一种铸钢及高温合金用直孔过滤器,包含65~85%的三氧化二铝,11~33%的二氧化硅,1~3%的氧化镁和不超过1.5%的其他碱金属氧化物,相组成为:莫来石相40~90%,刚玉相5~55%,石英≤8%,玻璃相≤5%,主要是过滤钢水或者高温合金金属液。CN 104557061 A中介绍了一种铸钢及高温合金用直孔过滤器,包含60~80%的三氧化二铝,10~25%的二氧化硅,5~15%的氧化锆,和不超过1%的其他碱金属氧化物,主要是过滤钢水或者高温合金金属液。CN 102992781 A中公开了一种制备直孔陶瓷过滤器的 材料及方法。制备方法是采用蜂窝陶瓷成型技术,包括将耐火材料与粘结剂、保水剂充分混合后加入增塑剂、润滑剂及水捏合、粗练、陈腐、精练、成型、定型、干燥、切割、吹灰、烧成工艺制得直孔陶瓷过滤器。采用这些材料获得的过滤器具有较高的体积密度,通常在2.0g/cm3以上才能保证高温状态下的稳定不破损,由于其体积密度较大,其热容量也很大,在浇铸初期,金属液非常容易堵塞导致过滤失败;采用该材料体系时的烧结温度至少大于1400℃,能耗较高。另外,烧结温度高导致制品烧结收缩大,产品在烧结时容易产生裂纹,成品率低。
因此,现有技术需要一种具有较低体积密度、较小的孔隙率,较低烧结温度、可以过滤高温金属液的直孔陶瓷过滤器。
发明内容
本发明的目的是提供一种适于过滤高熔点金属液的直孔陶瓷过滤器,这种过滤器具有更小的体积密度,更低的烧结温度,更高的成品率,更高的浇铸温度和更高的过滤量。
根据本发明的过滤器,以质量计主要包含以下成分:
SiC       50-98%
Al2O3     1-23%
SiO2      1-28%。
在一种优选实施方式中,其耐火材料按重量百分含量计主要由55~98%的碳化硅、1~23%的含氧化铝材料和1~22%的二氧化硅组成。
在一种具体实施方式中,其耐火材料按重量百分含量计由60~80%碳化硅,10~20%的含氧化铝材料和10~20%的二氧化硅组成。
进一步地,上述含氧化铝材料包括氧化铝粉、矾土、焦宝石、莫来石、红柱石、蓝晶石、硅线石中的一种或多种。进一步地,上述耐火材料中含有不超过1%的含硼化合物。
进一步地,上述含硼物质包括单质硼、氧化硼、碳化硼、氮化硼中的一种或多种,进一步地,还含有不超过5%的稀土氧化物。
进一步地,本发明的过滤器所使用的粘结剂为无机粘结剂和/或有机粘结剂,无机粘结剂为硅溶胶、铝溶胶、水玻璃、磷酸盐、硫酸盐中的一种或多种,有机粘结剂为树脂、沥青、CMC、MC、PVA、PVB、淀粉、糊精、纸浆废液、纤维素、阿拉伯胶、黄原胶、木质素中的一种 或多种。
本发明的直孔陶瓷过滤器,其优点为体积密度小,热容量小,过滤初期不容易被阻塞,原材料成本低,烧结温度低,烧结收缩小,成品率高,单位面积过滤量大,现有技术一般过滤量≤3kg/cm2,本发明提供的技术方案过滤量不低于5kg/cm2
本发明的另一方面还提供一种陶瓷粉末,其按重量百分含量计主要由55~98%的碳化硅、1~23%的含氧化铝材料和1~22%的二氧化硅组成。
进一步地,上述陶瓷粉末由60~80%碳化硅,10~20%的含氧化铝材料和10~20%的二氧化硅组成。
进一步地,上述陶瓷粉末中含有不超过1%的含硼物质。
进一步地,上述陶瓷粉末中含有不超过5%的稀土氧化物。
进一步地,上述含硼物质包括单质硼、氧化硼、碳化硼、氮化硼中的一种或多种。
除了上面所描述的目的、特征和优点之外,本发明还有其它的目的、特征和优点。下面将具体实施例,对本发明作进一步详细的说明。
具体实施方式
本发明中所述的“高熔点”是指温度在1550-1700℃区间,尤其是在1600-1700℃区间的熔点。但是,容易理解,根据本发明的产品当然可以用于熔点在1550℃以下的金属。根据本发明的直孔陶瓷过滤器以质量计主要包含以下成分:
SiC       50-98%
Al2O3     1-23%
SiO2      1-28%。
具有上述组成的陶瓷过滤器,体密度较小,从而具有较低的热容量;还可以耐受高达1650℃乃至1700℃的金属熔液。
在一种具体实施方式中,用于制备本发明直孔过滤器的陶瓷材料主要由55~98%的碳化硅,1~23%的含氧化铝材料和1~22%的二氧化硅组成。本发明中的含氧化铝材料是指主要以氧化铝为成分的天然材料和人工合成材料。天然材料的例子有矾土。人工合成材料的例子有氧化铝粉,可以是各种晶型,例如γ-Al2O3、β-Al2O3、α-Al2O3或者各晶型的结合物。在一种典型实施方式中,该含氧化铝材料是以氧化铝和氧化硅为主要成分的天然矿物,该材料含 其他金属氧化物(铁、钛、钾、钠、钙等的氧化物)的量优选不超过10%,更优选不超过5%,最优选不超过3%,其中含有的其它金属元素更优选不超过1%。该天然矿物中,氧化铝的量不适宜低于30%,优先不低于35%,更优选高于在40%以上。该含氧化铝材料优选是矾土、焦宝石、莫来石、红柱石、蓝晶石、硅线石中的一种或其结合。本发明中,二氧化硅可以是结晶态和无定形态的二氧化硅,使用时将其粉碎至300目以下,优选500目以下,其中最优选的是硅微粉,它是由天然石英(SiO2)或熔融石英(天然石英经高温熔融、冷却后的非晶态SiO2)经破碎、球磨(或振动、气流磨)、浮选、酸洗提纯等多道工艺加工而成。除此之外,使用单质硅粉也是可以的,其在烧结过程中会被氧化成二氧化硅。
在一种典型实施方式中,该陶瓷材料中还含有不超过1%的含硼物质,该含硼物质优选是单质硼、氧化硼、碳化硼、氮化硼中的一种或多种。通过加入该含硼物质,可以促进烧成,使过滤器有更高的致密性,加强其常温和高温性能,增加金属液的过滤量和提高过滤温度,更优选地,还含有不超过5%的稀土氧化物,典型地是氧化钇。引入氧化钇和含硼物质后,进一步提高了过滤金属溶液的温度,同时提高过滤量。采用上述组成的原料,所得的过滤器既具有较低的体积密度,从而具有较低的热容量;另外,过滤器也具有不高于1400℃的烧结温度,从而显著降低生产能耗。
在优选的实施方式中,其耐火材料按重量计主要由60~80%碳化硅,10~20%的上述含氧化铝材料和10~20%的二氧化硅组成。在具体实施例中,该耐火材料包含61%、62%、63乃至65%以上的碳化硅。采用该优选配方,陶瓷材料具有较低的烧结收缩性,从而产品烧成率提高。
制备本发明的直孔过滤器的一种方法包括成型和烧结两个步骤。一种成型方式为干压成型,把主要原材料、水、粘结剂混合制浆,喷雾干燥后形成球状颗粒料,模压成型后得到生坯,然后经过烧结得到制品。在这种实施方式中,粘结剂优选用有机粘结剂,有机粘结剂一般是碳氢化合物为主组成的有机物,通过化学反应后线性有机物分子组成空间网状架构的体型高分子。可以将各种物料彼此粘结成一个整体,强度非常高。但在高温下易分解失去粘结力。用于本发明的有机粘结剂通常选自树脂、沥青、聚乙烯醇、甲基纤维素、PVB、淀粉、糊精、纸浆废液、纤维素、阿拉伯胶、黄原胶、木质素中的一种或者多种。可以采用中国发明专利200810182753.3中披露的模压成型工艺制备本发明的过滤器,制备原料中可以还包含适量的减水剂及脱模剂等。减水剂为腐殖酸钠、三聚磷酸钠、六偏磷酸钠中的一种或多种;粘 结剂为聚乙烯醇、甲基纤维素中的一种或多种;脱模剂为硬质酸盐、乳化油、乳化石蜡中的一种或多种。
另外一种成型方式是把主要原材料与粘结剂、保水剂充分混合后加入增塑剂、润滑剂及水捏合、粗练、陈腐、精练、成型、定型、干燥、切割、吹灰后得到生坯。例如,可以采用中国发明专利申请201110271813.0披露的蜂窝陶瓷挤出成型工艺制备本发明的过滤器,制备原料中还应包含适量的粘结剂、增塑剂、润滑剂等。可用的粘结剂包括树脂、纤维素、阿拉伯胶、黄原胶、羟丙基甲基纤维素、甲基纤维素或桐油中的一种或多种,但是本发明不限于此,粘结剂的引入量通常为原料的1%-11%之间;常用的保水剂包括甘油、石蜡中的一种或两种的组合,加入量为3-11%,常用的增塑剂包括PVA、桐油、大豆油、液压油中的一种或多种,但是本发明不限于此,加入量通常为原料的3%-8%;常用的润滑剂包括大豆油、菜油、液压油中的一种或多种,但是本发明不限于此,引入量为3%-8%。为了制备本发明的产品,按照习知的方法,将各矿物按所需的要求分别球磨过筛,再按一定预定比例和适量粘结剂配料,经混料后,加入适量润滑剂和14%-22%的水进行捏合。捏合后的泥料经粗练、陈腐、精练、成型、箱式微波定型、箱式烘房循环暖风干燥、切割、吹灰,得到生坯。
在本发明中,坯体厚度8-25mm,优选厚度10-22mm。将成型后的坯体码放在高温窑炉中,在1400℃以下的温度下烧制,优选烧制温度为1250-1400℃
通过本发明的配方,可以获得体密度在0.9-1.8g/cm3的高温用金属液直孔过滤器,而且过滤量达到甚至大于5kg/cm2,显著高于其他过滤器。
实施例1-7
原材料(按重量计):碳化硅68%,氧化铝粉15%,硅微粉17%
使用上述含量的原材料组合,加入原材料总量0.5%的粘结剂和40%的水,球磨0.5小时后制得耐火浆料,用压力喷雾的方式把耐火浆料雾化并干燥,干燥温度在105℃,干燥后制得目数在30~100目的类球形粉料,按量称取后加入多孔模具中,采用压力成型机压制脱模,干燥后在1300℃氧化气氛下烧结制得直孔过滤器。
Figure PCTCN2017094681-appb-000001
实施例8-13
把主要原材料分别球磨过筛与3%的树脂和2%桐油,5%甘油充分混合后加入CMC3%、大豆油1%,液压油3%、15%水和其他添加剂经捏合、粗练、陈腐、精练、成型、定型、干燥、切割、吹灰后得到生坯。在一定温度下烧结后得到过滤器。测试该过滤器,压头30cm。
Figure PCTCN2017094681-appb-000002
申请人声明,本发明通过上述实施例来说明本发明的详细工艺流程,但本发明并不局限于上述详细工艺流程,即不意味着本发明必须依赖上述详细工艺流程才能实施。所属技术领域的技术人员应该明了,对本发明的任何改进,对本发明产品各原料的等效替换及辅助成分的添加、具体方式的选择等,均落在本发明的保护范围和公开范围之内。

Claims (10)

  1. 一种用于过滤高熔点金属液的直孔陶瓷过滤器,其特征在于,以质量计主要包含以下成分:
    SiC 50-98%
    Al2O3 1-23%
    SiO2 1-28%。
  2. 根据权利要求1所述的直孔陶瓷过滤器,其特征在于,其耐火材料按重量百分含量计主要由55~98%的碳化硅,1~23%的含氧化铝材料和1~22%的二氧化硅组成,优选主要由60~80%碳化硅,10~20%的含氧化铝材料和10~20%的二氧化硅组成。
  3. 根据权利要求2所述的直孔陶瓷过滤器,其特征在于,所述含氧化铝材料包括氧化铝粉、矾土、焦宝石、莫来石、红柱石、蓝晶石、硅线石中的一种或多种,所述二氧化硅优选无定形二氧化硅,更优选硅微粉或由单质硅粉形成,或者二者的结合。
  4. 根据权利要求2所述的直孔陶瓷过滤器,其特征在于,还含有不超过1%的含硼物质,其优选为单质硼、氧化硼、碳化硼、氮化硼中的一种或多种。
  5. 根据权利要求4所述的直孔陶瓷过滤器,其特征在于,还含有不超过5%的稀土氧化物,优选氧化钇。
  6. 一种陶瓷粉末组合物,按重量计主要由55~98%的碳化硅,1~23%的含氧化铝材料和1~22%的二氧化硅组成,优选主要由60~80%碳化硅,10~20%的含氧化铝材料和10~20%的二氧化硅组成。
  7. 根据权利要求6所述的陶瓷粉末组合物,其特征在于,所述含氧化铝材料包括氧化铝粉、矾土、焦宝石、莫来石、红柱石、蓝晶石、硅线石中的一种或多种,所述二氧化硅优选无定形态的二氧化硅,其中,所述无定形二氧化硅优选硅微粉或由单质硅粉形成,或者二者的结合。
  8. 根据权利要求6所述的陶瓷粉末组合物,其特征在于,还含有不超过1%的含硼物质,所述含硼物质优选是单质硼、氧化硼、碳化硼、氮化硼中的一种或多种,优选还含有不超过5%的稀土氧化物,所述稀土氧化物优选是氧化钇。
  9. 根据权利要求1至5任一项所述的直孔陶瓷过滤器的制备方法,其中,将所述陶瓷粉末组合物、水、粘结剂混合制浆,喷雾干燥后形成球状颗粒料,模压成型得到生坯,然后烧结得到制品,制备原料中优选还包含适量的减水剂及脱模剂,减水剂优选为腐殖酸钠、三聚磷酸钠、六偏磷酸钠中的一种或多种,粘结剂优选为聚乙烯醇、甲基纤维素中的一种或多种,脱模剂优选为硬质酸盐、乳化油、乳化石蜡中的一种或多种,其中,所述烧结的温度优选控制在1400℃以下。
  10. 根据权利要求1至5任一项所述的直孔陶瓷过滤器的制备方法,其中,将所述陶瓷粉末组合物与粘结剂、保水剂充分混合后加入增塑剂、润滑剂及水捏合、粗练、陈腐、精练、成型、定型、干燥、切割、吹灰后得到生坯,然后烧结得到制品,其中,所述烧结的温度优选控制在1400℃以下。
PCT/CN2017/094681 2016-07-04 2017-07-27 陶瓷粉末组合物、直孔陶瓷过滤器及其制备方法 WO2018006885A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610523953.5A CN106145969A (zh) 2016-07-04 2016-07-04 陶瓷粉末组合物、直孔陶瓷过滤器及其制备方法
CN201610523953.5 2016-07-04

Publications (1)

Publication Number Publication Date
WO2018006885A1 true WO2018006885A1 (zh) 2018-01-11

Family

ID=58062072

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/094681 WO2018006885A1 (zh) 2016-07-04 2017-07-27 陶瓷粉末组合物、直孔陶瓷过滤器及其制备方法

Country Status (2)

Country Link
CN (1) CN106145969A (zh)
WO (1) WO2018006885A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112299873A (zh) * 2020-09-22 2021-02-02 新沂市锡沂高新材料产业技术研究院有限公司 一种石英熔融用电弧炉的保温材料制备方法
CN112661524A (zh) * 2020-12-21 2021-04-16 山东工业陶瓷研究设计院有限公司 一种莫来石纤维增强石英陶瓷复合材料以及制备方法
CN114804836A (zh) * 2021-01-27 2022-07-29 深圳麦克韦尔科技有限公司 陶瓷基体及其制备方法、陶瓷发热体及电子雾化装置
CN116553911A (zh) * 2023-04-15 2023-08-08 河南新拓耐火材料有限公司 黏土质熟料焦宝石在复合滑动水口砖外层料上的应用

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106145969A (zh) * 2016-07-04 2016-11-23 济南圣泉倍进陶瓷过滤器有限公司 陶瓷粉末组合物、直孔陶瓷过滤器及其制备方法
WO2018101142A1 (ja) * 2016-11-30 2018-06-07 パナソニックIpマネジメント株式会社 フィルタ、およびフィルタを用いた気体吸着デバイス、ならびに真空断熱材
CN106587948A (zh) * 2016-12-14 2017-04-26 安徽瑞研新材料技术研究院有限公司 一种陶瓷膜材料
JP6572250B2 (ja) * 2017-02-23 2019-09-04 電化物産株式会社 アルミニウム溶湯用フィルター及びその製造方法
CN107019961A (zh) * 2017-05-17 2017-08-08 东风精密铸造安徽有限公司 一种铸造用低成本复合型钢水过滤网生产配方
CN107324809B (zh) * 2017-07-11 2020-04-03 深圳市商德先进陶瓷股份有限公司 多孔碳化硅陶瓷及其制备方法和应用
CN108751999A (zh) * 2018-07-05 2018-11-06 蚌埠威尔特滤清器有限公司 一种蜂窝陶瓷载体及其制备方法
CN111214896A (zh) * 2019-11-06 2020-06-02 王海江 一种生产金属液过滤片的成型方法
CN111389102B (zh) * 2020-03-30 2021-11-30 济南大学 一种全颗粒陶瓷粘结过滤器及其制备方法
CN114804833A (zh) * 2021-01-27 2022-07-29 深圳麦克韦尔科技有限公司 陶瓷基体及其制备方法、陶瓷发热体及电子雾化装置
CN113149698A (zh) * 2021-04-25 2021-07-23 东南大学 一种具有良好溶解溃散性的氧化镁陶瓷型芯及其制备方法
CN113354428B (zh) * 2021-07-13 2022-03-01 江苏徐耐新材料科技股份有限公司 一种玻璃窑炉用耐侵蚀电熔锆刚玉砖及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3874054D1 (de) * 1987-03-23 1992-10-01 Alusuisse Lonza Services Ag Keramischer schaumfilter.
CN1621125A (zh) * 2004-10-13 2005-06-01 中国科学院上海硅酸盐研究所 低温烧结高耐火度网眼碳化硅陶瓷过滤器及制备方法
CN101117295A (zh) * 2007-09-04 2008-02-06 佛山市非特新材料有限公司 一种制备泡沫陶瓷过滤器的方法及用该方法制备的过滤器
CN104402446A (zh) * 2014-10-31 2015-03-11 中航复合材料有限责任公司 一种制备多孔碳化硅陶瓷的方法
CN106145969A (zh) * 2016-07-04 2016-11-23 济南圣泉倍进陶瓷过滤器有限公司 陶瓷粉末组合物、直孔陶瓷过滤器及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH035374A (ja) * 1989-06-01 1991-01-11 Mitsubishi Gas Chem Co Inc 窒化ケイ素―炭化ケイ素複合焼結体およびその製造法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3874054D1 (de) * 1987-03-23 1992-10-01 Alusuisse Lonza Services Ag Keramischer schaumfilter.
CN1621125A (zh) * 2004-10-13 2005-06-01 中国科学院上海硅酸盐研究所 低温烧结高耐火度网眼碳化硅陶瓷过滤器及制备方法
CN101117295A (zh) * 2007-09-04 2008-02-06 佛山市非特新材料有限公司 一种制备泡沫陶瓷过滤器的方法及用该方法制备的过滤器
CN104402446A (zh) * 2014-10-31 2015-03-11 中航复合材料有限责任公司 一种制备多孔碳化硅陶瓷的方法
CN106145969A (zh) * 2016-07-04 2016-11-23 济南圣泉倍进陶瓷过滤器有限公司 陶瓷粉末组合物、直孔陶瓷过滤器及其制备方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112299873A (zh) * 2020-09-22 2021-02-02 新沂市锡沂高新材料产业技术研究院有限公司 一种石英熔融用电弧炉的保温材料制备方法
CN112299873B (zh) * 2020-09-22 2022-08-26 新沂市锡沂高新材料产业技术研究院有限公司 一种石英熔融用电弧炉的保温材料制备方法
CN112661524A (zh) * 2020-12-21 2021-04-16 山东工业陶瓷研究设计院有限公司 一种莫来石纤维增强石英陶瓷复合材料以及制备方法
CN112661524B (zh) * 2020-12-21 2023-03-17 山东工业陶瓷研究设计院有限公司 一种莫来石纤维增强石英陶瓷复合材料以及制备方法
CN114804836A (zh) * 2021-01-27 2022-07-29 深圳麦克韦尔科技有限公司 陶瓷基体及其制备方法、陶瓷发热体及电子雾化装置
CN116553911A (zh) * 2023-04-15 2023-08-08 河南新拓耐火材料有限公司 黏土质熟料焦宝石在复合滑动水口砖外层料上的应用

Also Published As

Publication number Publication date
CN106145969A (zh) 2016-11-23

Similar Documents

Publication Publication Date Title
WO2018006885A1 (zh) 陶瓷粉末组合物、直孔陶瓷过滤器及其制备方法
CN103819219B (zh) 一种耐酸碱腐蚀的碳化硅多孔支撑体
JP5478259B2 (ja) 炭化珪素質多孔体
CN101759430B (zh) 一种制备多孔莫来石的方法
CN104190161B (zh) 包含石墨烯的熔融金属用陶瓷过滤器
CN107746279B (zh) Al4SiC4及Al复合增强的碳化硅蜂窝陶瓷及其制备方法
CN106220218A (zh) 一种泡沫陶瓷过滤器及其制造方法
CN106145976B (zh) 水泥窑用红柱石-莫来石-碳化硅砖及其制备方法
JPS605544B2 (ja) ケイ酸塩含有チタン酸アルミニウムよりなるセラミック材料および鋳造作業用セラミック製品
CN1662286B (zh) 用于过滤熔融金属的纤维增强过滤器及其制造方法
CN104496493B (zh) 一种耐高温复合铝镁不烧砖及其制备方法
JPH0366373B2 (zh)
CN101074161B (zh) 一种钛酸铝-莫来石质蜂窝陶瓷及其制备方法
CN101948316A (zh) 陶瓷过滤支撑体的制备方法
CN102910930A (zh) 一种蜂窝陶瓷过滤器及其制备方法
CN107892581B (zh) 一种高强抗腐锆刚玉蜂窝陶瓷体及其制备方法
US20110171099A1 (en) Process for manufacturing a porous sic material
CN101486573A (zh) 氧化镁部分稳定氧化锆泡沫陶瓷过滤器
CN101318812A (zh) 一种高铝质耐高温坩埚的制备方法
CN104072142A (zh) 一种氧化物结合SiC多孔陶瓷的制备方法
CN103508750A (zh) 一种无污染、低成本的蜂窝陶瓷生产方法
CN104926354A (zh) 一种用于熔融金属液体的净化过滤的蜂窝陶瓷过滤器
CN108484161B (zh) 一种钛酸铝复合材料及其制备方法
CN104557061B (zh) 直孔陶瓷过滤器
CN103803990B (zh) 铸钢及高温合金用直孔陶瓷过滤器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17823697

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17823697

Country of ref document: EP

Kind code of ref document: A1