WO2018001002A1 - 指纹识别模组及其制作方法和驱动方法、显示装置 - Google Patents

指纹识别模组及其制作方法和驱动方法、显示装置 Download PDF

Info

Publication number
WO2018001002A1
WO2018001002A1 PCT/CN2017/085532 CN2017085532W WO2018001002A1 WO 2018001002 A1 WO2018001002 A1 WO 2018001002A1 CN 2017085532 W CN2017085532 W CN 2017085532W WO 2018001002 A1 WO2018001002 A1 WO 2018001002A1
Authority
WO
WIPO (PCT)
Prior art keywords
junction
lower electrode
fingerprint identification
fingerprint
fingerprint recognition
Prior art date
Application number
PCT/CN2017/085532
Other languages
English (en)
French (fr)
Inventor
李昌峰
王海生
刘英明
丁小梁
许睿
贾亚楠
赵利军
郭玉珍
王鹏鹏
刘伟
卢鹏程
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/569,279 priority Critical patent/US10546174B2/en
Priority to JP2017556157A priority patent/JP7274818B2/ja
Publication of WO2018001002A1 publication Critical patent/WO2018001002A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1318Sensors therefor using electro-optical elements or layers, e.g. electroluminescent sensing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/1347Preprocessing; Feature extraction
    • G06V40/1359Extracting features related to ridge properties; Determining the fingerprint type, e.g. whorl or loop
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/40OLEDs integrated with touch screens

Definitions

  • Embodiments of the present invention relate to the field of displays, and in particular, to a fingerprint identification module, a manufacturing method thereof, a driving method, and a display device.
  • OLED displays Due to its high contrast ratio, thin thickness, wide viewing angle and fast response speed, OLED displays have gradually replaced liquid crystal displays (LCDs).
  • LCDs liquid crystal displays
  • the traditional LCD can integrate the fingerprint recognition function into the LCD to realize the display and fingerprint recognition functions at the same time.
  • OLED display there is no OLED display with integrated fingerprint recognition function.
  • the embodiment of the present invention provides a fingerprint identification module, a manufacturing method thereof, a driving method, and a display device.
  • an embodiment of the present invention provides a fingerprint identification module, where the fingerprint identification module includes a substrate, and a plurality of fingerprint identification modules arranged in an array disposed on the substrate, and each of the fingerprint identification modules a lower electrode, an upper electrode, and a photocurrent generating unit connected between the upper electrode and the lower electrode, the photocurrent generating unit including a PN junction, one end of the PN junction being connected to the upper electrode, The other end of the PN junction is connected to the lower electrode.
  • an embodiment of the present invention further provides a display device, where the display device includes a display panel and the foregoing fingerprint recognition module disposed on the display panel.
  • the embodiment of the present invention further provides a method for fabricating a fingerprint identification module, the method comprising: providing a substrate; forming a lower electrode on the substrate; forming a photoelectric on the lower electrode a flow generating unit; forming an upper electrode on the photocurrent generating unit, the photocurrent generating unit including a PN junction, one end of the PN junction being connected to the upper electrode, and the other end of the PN junction and the lower end Electrode connection.
  • the embodiment of the present invention further provides a driving method of the foregoing fingerprint identification module, the method comprising: inputting a first fingerprint identification voltage to the lower electrode by using a progressive scan method in a fingerprint identification stage; Inputting a second fingerprint identification voltage to the upper electrode in the currently scanned row, and acquiring a feedback voltage obtained by the second fingerprint identification voltage under the photocurrent generated by the photocurrent generating unit; according to the feedback voltage
  • the size of the lower electrode corresponds to the valley or ridge of the fingerprint.
  • FIG. 1 is a schematic structural diagram of a fingerprint identification module according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural diagram of another fingerprint identification module according to an embodiment of the present invention.
  • FIG. 2b is a top view of a fingerprint identification module according to an embodiment of the present invention.
  • 2c is a top view of a fingerprint recognition module according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of operation of a fingerprint identification module according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of another fingerprint identification module according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a display device according to an embodiment of the present invention.
  • FIG. 6 is a flowchart of a method for fabricating a fingerprint identification module according to an embodiment of the present invention
  • FIG. 7 is a flowchart of another method for fabricating a fingerprint identification module according to an embodiment of the present invention.
  • FIG. 8 is a flowchart of another method for fabricating a fingerprint identification module according to an embodiment of the present invention.
  • FIG. 9 is a flowchart of a method for driving a fingerprint identification module according to an embodiment of the present invention.
  • the fingerprint identification module (hereinafter referred to as a module) can be applied to an organic electroluminescent device OLED display panel, a liquid crystal display panel, etc. See FIG.
  • the module includes a substrate 100, a plurality of arrays of fingerprint recognition modules 110 disposed on the substrate 100, each of the fingerprint recognition modules 110 including a lower electrode 101, an upper electrode 102, and a connection between the upper electrode 101 and the lower electrode 102.
  • the photocurrent generating unit 11A, the photocurrent generating unit 11A includes a PN junction 103, one end of which is connected to the upper electrode 101, and the other end of the PN junction 103 is connected to the lower electrode 102.
  • the lower electrode 101 and the upper electrode 102 are respectively configured to provide a first fingerprint identification voltage and a second fingerprint identification voltage for the photocurrent generating unit 11A, and the photocurrent generating unit 11A is configured to generate a photocurrent under illumination and apply to the second fingerprint identification voltage. .
  • the invention provides a first fingerprint identification voltage and a second fingerprint identification voltage for the photocurrent generating unit by the lower electrode and the upper electrode respectively; when the user touches the module, the light reflected by the user finger is irradiated onto the PN junction of the photocurrent generating unit.
  • the PN junction generates a photocurrent under illumination and acts on the second fingerprint recognition voltage.
  • the valleys of the finger fingerprint and the ridges reflect different light intensities on the photocurrent generating unit, the photocurrent generated in the photocurrent generating unit is different, thereby The variation of the voltage on the upper electrode or the lower electrode is different, and the valley and the ridge of the fingerprint can be recognized; the module with the fingerprint recognition function is realized by the method, and the module can be applied to the OLED display panel to realize OLED display panel for fingerprint recognition.
  • FIG. 2 is a schematic structural diagram of another module according to an embodiment of the present invention.
  • the module can be applied to an OLED display panel, a liquid crystal display panel, and the like.
  • the module includes a substrate 100 disposed on the substrate 100.
  • a plurality of array-arrayed fingerprint recognition modules 110 each include a lower electrode 101, an upper electrode 102, and a photocurrent generating unit 11B connected between the upper electrode 101 and the lower electrode 102.
  • the photocurrent generating unit 11B includes a thin film transistor (TFT) 104 and a PN junction 103 which are disposed between the upper electrode 102 and the lower electrode 101.
  • TFT thin film transistor
  • 2b and 2c are top views of the module provided in FIG. 2a.
  • the photocurrent generating unit 11B further includes a scan line 105 and an inductive line 106.
  • the upper electrode 102 is simultaneously connected to the drain of the TFT 104 and one end of the PN junction 103, the other end of the PN junction 103 is connected to the lower electrode 101, the lower electrode 101 is connected to the scan line 105, and the scan line 105 is used for
  • the TFT 104 is turned on, the first fingerprint identification voltage is input to the lower electrode 101, the TFT 104 is used to be turned on under the action of the gate voltage, the source of the TFT 104 is connected to the sensing line 106, and the sensing line 106 is used to the TFT 104.
  • the source inputs a second fingerprint identification voltage.
  • FIGS. 2b and 2c are top views, the lower electrode 101 connected to the scanning line 105 and the source of the TFT 104 connected to the sensing line 106 are not shown, but it should be noted that the scanning line 105 in FIG. 2b The sensing line 106 is not connected to the upper electrode 102.
  • the first fingerprint recognition voltage is input to the lower electrode 101 by the progressive scan mode, and the second fingerprint identification voltage is input to the upper electrode 102 of the current scan line.
  • each fingerprint identification module 110 is connected to a scan line 105 and an induction line 106, respectively.
  • each row of fingerprint identification modules 110 shares a scan line 105
  • each column of fingerprint identification modules 110 shares a sensing line 106.
  • the first fingerprint identification voltage is input to the scan line 105 connected to the lower electrode 101 of the row, and accordingly, the TFT 104 connected to the upper electrode 102 of the row is turned on to enable the corresponding upper electrode 102 to be sensed.
  • the second fingerprint identification voltage provided by line 106.
  • each fingerprint identification module 110 is connected to one scan line 105 and the sensing line 106, in this implementation, each scan line 105 and sense line 106 can be directly controlled.
  • the signal timing enables progressive scanning of fingerprint recognition.
  • the photocurrent generating unit includes only the PN junction 103, the scan line 105, and the sense line 106.
  • the sensing line 106 is directly connected to the upper electrode.
  • the first fingerprint identification voltage and the second fingerprint identification voltage are used to provide an applied electric field for the PN junction when performing fingerprint recognition, and the direction of the applied electric field is consistent with the direction of the internal electric field of the PN junction, thereby enhancing the internal electric field, so that the majority of the load
  • the diffusion of the flow is weakened, and only the drift motion of the minority carriers forms a reverse current.
  • the reverse current In the absence of illumination, the reverse current is extremely weak, called dark current; when there is illumination, the reverse current rapidly increases to tens of microamps, called photocurrent. The greater the intensity of light, the greater the photocurrent.
  • FIG. 3 is a schematic diagram of the operation of the module provided in FIG. 2a to FIG. 2c.
  • the fingerprint recognition module is applied to the OLED display panel as an example.
  • the OLED display panel 201 when the user touches the module with the finger 300, the OLED display panel 201 The light emitted by the sub-pixel area 2012 is irradiated onto the user's finger, and the light reflected by the user's finger is irradiated onto the PN junction of the fingerprint recognition module 110 through the substrate 100, since the intensity of the light reflected from the valley and the ridge of the finger fingerprint to the PN junction is different.
  • the end of the PN junction is the second fingerprint identification voltage at this time;
  • the scan line inputs the first fingerprint identification voltage to the lower electrode. Since the lower electrode is connected to the other end of the PN junction, the other end of the PN junction is the first fingerprint recognition voltage at this time;
  • the user touches the module The light reflected by the user's finger illuminates the PN junction, and the PN junction generates a photocurrent under illumination and acts on the second fingerprint recognition voltage.
  • the intensity of the light reflected from the valley and the ridge of the finger fingerprint to the PN junction is different, so that the PN junction is generated.
  • the photocurrents are different, so that the variation of the second fingerprint recognition voltage on the sensing line is different, thereby identifying the valleys and ridges of the fingerprint; by this method, a module with fingerprint recognition function is realized, and the module is applied to the OLED.
  • the display panel can realize an OLED display panel with fingerprint recognition function.
  • the substrate 100 is also referred to as a substrate substrate.
  • the substrate substrate is transparent, such as a glass substrate, a plastic substrate, or a silicon substrate.
  • the lower electrode 101 is made of a transparent conductive material.
  • the lower electrode 101 made of a transparent conductive material can be used as an electrode for fingerprint recognition because it can transmit light.
  • the transparent conductive material includes, but is not limited to, Indium Tin Oxide (ITO) or Indium Zinc Oxide (IZO).
  • ITO Indium Tin Oxide
  • IZO Indium Zinc Oxide
  • the scan line 105 is used to input a first fingerprint recognition voltage to the lower electrode 101 during the fingerprint recognition phase, and to input a touch signal to the lower electrode 101 during the touch phase.
  • the scan line 105 is used to input a touch signal to the lower electrode 101 when the TFT 104 is turned off.
  • the lower electrode 101 realizes a touch function through a self-capacitance under the action of a touch signal. Touch and fingerprint recognition are implemented in a time-sharing manner to achieve dual functions.
  • the lower electrode 101 may be designed as a rectangular block electrode for facilitating fingerprint recognition and touch positioning.
  • the rectangle is merely for facilitating the arrangement and fabrication of the lower electrode 101, and the shape of the lower electrode 101 may be other shapes such as a circle, a trapezoid or the like. This refers to the shape of the lower electrode parallel to the substrate.
  • the bulk electrodes are distributed in a matrix.
  • the lower electrode inputs the first fingerprint identification voltage row by row in a scanning manner, and when the first fingerprint input voltage is input to the lower electrode, correspondingly, the TFT is turned on, so that the upper electrode obtains the second fingerprint identification voltage, thereby completing the line. Fingerprint recognition.
  • the bulk electrode may be a square electrode having a side length of 3-8 mm, and in one example, a side length of 5 mm.
  • This size and shape design can meet the precision requirements of touch without complicating the design of the drive circuit.
  • the upper electrode 102 can also be correspondingly arranged as a block electrode, for example, as shown in FIG. 2b and FIG. 2c, the upper electrode 102 is a rectangular block electrode.
  • the rectangle is merely for facilitating the arrangement and fabrication of the upper electrode 102, and the shape of the upper electrode 102 may be other shapes such as a circle, a trapezoid or the like. This refers to the shape of the lower electrode parallel to the substrate.
  • the upper electrode 102 and the lower electrode 101 have overlapping regions in a vertical direction perpendicular to the substrate.
  • the two may overlap partially or completely.
  • the upper electrode 102 is a metal electrode.
  • metal electrodes such as aluminum Al, copper Cu, molybdenum Mo, titanium Ti, and Cr chromium.
  • FIG. 4 is a schematic structural view of another module according to an embodiment of the present invention, and FIG. 4 is a longitudinal cross-sectional view of the fingerprint recognition module shown in FIG. 3, for example.
  • a light shielding layer 107 is disposed above the TFT 104 to prevent the light source provided by the display device from illuminating the channel region of the TFT 104, thereby causing damage to the TFT characteristics.
  • the light shielding layer 107 is disposed in the same layer as the upper electrode 102.
  • the light shielding layer 107 is a metal light shielding layer 107.
  • the light shielding layer 107 is in the same layer as the upper electrode 102, which is convenient for fabrication.
  • the PN junction 103 includes sequentially disposed on the lower electrode 101.
  • the direction of the electric field in the PN junction 103 is directed from the N region to the P region, and the PN junction is applied with a voltage (the first fingerprint identification voltage is smaller than the second fingerprint identification voltage), so that the direction of the applied electric field is consistent with the internal electric field, and only a few carriers are present.
  • the drift motion of the carriers creates a reverse current.
  • the reverse current In the absence of illumination, the reverse current is extremely weak, called dark current; when there is illumination, the reverse current rapidly increases to tens of microamps, called photocurrent. The greater the intensity of light, the greater the photocurrent.
  • the end surface of one end where the PN junction 103 is connected to the upper electrode 102 is provided with a conductive thin film layer 108.
  • the conductive film layer 108 directs the photocurrent to smoothly enter the upper electrode 102.
  • the conductive film layer 108 may be an ITO or IZO film layer.
  • the TFT 104 includes a gate 1041, a gate insulating layer 1042, an Indium Gallium Zinc Oxide (IGZO) active layer 1043, and a source 1044 and a drain 1045. .
  • IGZO Indium Gallium Zinc Oxide
  • the gate 1041, the source 1044, and the drain 1045 of the TFT 104 may be metal electrodes such as metal electrodes of Al, Cu, Mo, Ti, Cr, and the like.
  • the gate insulating layer 1042 may be a silicon nitride or silicon oxynitride layer.
  • the module further includes a dielectric layer 109.
  • the TFT 104 and the PN junction 103 are isolated from each other by the dielectric layer 109, thereby ensuring insulation between the TFT 104 and the PN junction 103 to avoid short circuit.
  • the module further includes a first insulating layer 111, a second insulating layer 112, and a third insulating layer 113.
  • the first insulating layer 111 is disposed between the lower electrode 101 and the TFT 104, and the gate 1041 of the TFT 104 is disposed on the first insulating layer 111.
  • the second insulating layer 112 is disposed on the TFT 104 and the PN junction 103.
  • the third insulating layer 113 is disposed over the upper electrode 102 and the light shielding layer 107.
  • the dielectric layer 109, the first insulating layer 111, and the third insulating layer 113 may be silicon nitride or silicon oxynitride layers.
  • the second insulating layer 112 can be a resin layer.
  • the scan line 105 and the sense line 106 are both disposed in the same layer as the source 1044 of the TFT 104.
  • the scan line 105 and the sense line 106 are disposed in the same layer as the source 1044 (drain 1045) to reduce the fabrication process.
  • the scan lines 105 and the sense lines 106 are disposed in the same layer as the gate electrodes 1041, and the sense lines 106 are disposed in the same layer as the source electrodes 1044.
  • the lower electrode 101 may be connected to the scan line 105 through the via 114.
  • FIG. 5 is a schematic structural diagram of a display device according to an embodiment of the present invention.
  • the display device includes an OLED substrate 201 and a fingerprint recognition module 202 disposed on the OLED substrate 201.
  • the fingerprint recognition module is provided in any of the foregoing embodiments.
  • a fingerprint identification module such as the fingerprint recognition module provided in any of Figures 1 to 4.
  • the OLED display panel provided by the embodiment of the present invention may be any product or component having a display function, such as a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame, a navigator, and the like.
  • the source and the drain are turned on. Since the drain is connected to one end of the PN junction through the upper electrode, one end of the PN junction is the second fingerprint identification voltage at this time; when the TFT is turned on, the scan line is turned on.
  • the first fingerprint identification voltage is input to the lower electrode. Since the lower electrode is connected to the other end of the PN junction, the other end of the PN junction is the first fingerprint recognition voltage at this time; when the user touches the module, the light reflected by the user's finger is illuminated. To the PN junction, the PN junction generates a photocurrent under illumination and acts on the second fingerprint recognition voltage.
  • the valleys of the finger fingerprint and the ridges reflect different intensity of light on the PN junction, the photocurrent generated in the PN junction is different, thereby making The variation of the second fingerprint recognition voltage on the sensing line is different, and the valley and the ridge of the fingerprint can be recognized; the module with the fingerprint recognition function is realized by the method, and the module can be applied to the OLED display panel to realize OLED display panel for fingerprint recognition.
  • the OLED substrate 201 includes a plurality of sub-pixel regions, and the projection of the upper electrode 102 on the OLED substrate 100 is located between adjacent sub-pixel regions.
  • the upper electrode 102 is disposed between adjacent sub-pixel regions to avoid occluding light emitted by the OLED sub-pixels.
  • FIG. 6 is a flowchart of a method for fabricating a fingerprint identification module according to an embodiment of the present invention, which is used to create the fingerprint identification module shown in FIG. 1. Referring to FIG. 6, the method includes:
  • Step 301 Providing a substrate.
  • the substrate is also referred to as a substrate, and is generally transparent, and may be a glass substrate, a plastic substrate, a silicon substrate, or the like.
  • Step 302 Form a lower electrode on the substrate.
  • the lower electrode can be made of indium tin oxide ITO or indium zinc oxide IZO material.
  • Step 303 Form a photocurrent generating unit on the lower electrode.
  • Step 304 Form an upper electrode on the photocurrent generating unit.
  • the photocurrent generating unit includes a PN junction, one end of the PN junction and the upper electrode Connected, the other end of the PN junction is connected to the lower electrode.
  • the lower electrode and the upper electrode respectively provide a first fingerprint identification voltage and a second fingerprint identification voltage for the photocurrent generating unit, and the photocurrent generating unit is configured to generate a photocurrent under illumination and act on the second fingerprint identification voltage.
  • the invention provides a first fingerprint identification voltage and a second fingerprint identification voltage for the photocurrent generating unit by the lower electrode and the upper electrode respectively; when the user touches the module, the light reflected by the user finger is irradiated onto the PN junction of the photocurrent generating unit.
  • the PN junction generates a photocurrent under illumination and acts on the second fingerprint recognition voltage.
  • the valleys of the finger fingerprint and the ridges reflect different light intensities on the photocurrent generating unit, the photocurrent generated in the photocurrent generating unit is different, thereby The variation of the voltage on the upper electrode or the lower electrode is different, and the valley and the ridge of the fingerprint can be recognized; the module with the fingerprint recognition function is realized by the method, and the module can be applied to the OLED display panel to realize OLED display panel for fingerprint recognition.
  • FIG. 7 is a flowchart of a method for fabricating a fingerprint identification module according to an embodiment of the present invention, which is used to create the fingerprint identification module shown in FIG. 2a and FIG. 2b. Referring to FIG. 7, the method includes:
  • Step 401 Providing a substrate.
  • the substrate is also referred to as a substrate, and is generally transparent, and may be a glass substrate, a plastic substrate, a silicon substrate, or the like.
  • Step 402 Form a lower electrode on the substrate.
  • the lower electrode can be made of indium tin oxide ITO or indium zinc oxide IZO material.
  • Step 403 Form a TFT, a PN junction, a scan line, and a sensing line on the lower electrode.
  • the PN junction includes a P-type doped amorphous silicon a-Si layer, an undoped a-Si layer, and an N-type doped a-Si layer, which are sequentially disposed on the lower electrode.
  • the TFT includes a gate, a gate insulating layer, an active layer, and a source and a drain, which are sequentially disposed.
  • the gate, the source, and the drain of the TFT are, for example, metal electrodes such as metal electrodes such as Al, Cu, Mo, Ti, and Cr.
  • the gate insulating layer is, for example, a silicon nitride or silicon oxynitride layer.
  • the active layer includes, but is not limited to, an indium gallium zinc oxide IGZO active layer, a low temperature polysilicon active layer, or an amorphous silicon active layer.
  • both the scan line and the sense line are disposed in the same layer as the source of the TFT.
  • the scan lines and sense lines are placed in the same layer as the source (drain) to reduce the fabrication process.
  • Step 404 forming an upper electrode on the TFT and the PN junction, and the upper electrode simultaneously with the drain of the TFT and One end of the PN junction is connected, the lower electrode is connected to the scan line, the source of the TFT is connected to the sense line, the other end of the PN junction is connected to the lower electrode, and the TFT is used to be turned on under the action of the gate voltage, and the scan line is used for When the TFT is turned on, the first fingerprint identification voltage is input to the lower electrode, and the sensing line is used to input the second fingerprint identification voltage to the source of the TFT.
  • the upper electrode is a metal electrode.
  • metal electrodes such as aluminum Al, copper Cu, molybdenum Mo, titanium Ti, and Cr chromium.
  • the source and the drain are turned on. Since the drain is connected to one end of the PN junction through the upper electrode, one end of the PN junction is the second fingerprint identification voltage at this time; when the TFT is turned on, the scan line is turned on.
  • the first fingerprint identification voltage is input to the lower electrode. Since the lower electrode is connected to the other end of the PN junction, the other end of the PN junction is the first fingerprint recognition voltage at this time; when the user touches the module, the light reflected by the user's finger is illuminated. To the PN junction, the PN junction generates a photocurrent under illumination and acts on the second fingerprint recognition voltage.
  • the valleys of the finger fingerprint and the ridges reflect different intensity of light on the PN junction, the photocurrent generated in the PN junction is different, thereby making The variation of the second fingerprint recognition voltage on the sensing line is different, and the valley and the ridge of the fingerprint can be recognized; the module with the fingerprint recognition function is realized by the method, and the module can be applied to the OLED display panel to realize OLED display panel for fingerprint recognition.
  • FIG. 8 is a flowchart of another method for fabricating a fingerprint identification module according to an embodiment of the present invention.
  • the fingerprint identification module shown in FIG. 8 is used. Referring to FIG. 8, the method includes:
  • Step 501 Providing a substrate.
  • the substrate is also referred to as a substrate, and is generally transparent, and may be a glass substrate, a plastic substrate, a silicon substrate, or the like.
  • Step 502 forming a lower electrode on the substrate.
  • the lower electrode can be made of indium tin oxide ITO or indium zinc oxide IZO material.
  • Step 503 forming a first insulating layer on the lower electrode.
  • Step 504 Form a gate on the first insulating layer.
  • Step 505 Form a gate insulating layer on the gate.
  • the gate insulating layer may be a silicon nitride or silicon oxynitride layer.
  • Step 506 forming an active layer on the gate insulating layer.
  • the active layer includes, but is not limited to, an indium gallium zinc oxide IGZO active layer, a low temperature polysilicon active layer, or an amorphous silicon active layer.
  • Step 507 Form a source, a drain, a scan line, and a sensing line on the gate insulating layer on which the active layer is formed.
  • the scan line is connected to the lower electrode.
  • a via hole may be formed on the first insulating layer and the gate insulating layer, and the scan line is connected to the lower electrode through the via hole.
  • the source of the TFT is connected to the sensing line.
  • the TFT is completed, the TFT is used to be turned on under the action of the gate voltage, and the scan line is used to input the first fingerprint identification voltage to the lower electrode when the TFT is turned on, and the sensing line is used for inputting to the source of the TFT.
  • the second fingerprint identifies the voltage.
  • Step 508 forming a dielectric layer over the source, the drain, the scan line, and the sense line.
  • Step 509 A via hole is formed through the dielectric layer, the gate insulating layer and the first insulating layer, and a PN junction is formed in the via hole.
  • the PN junction includes a P-type doped amorphous silicon a-Si layer, an undoped a-Si layer, and an N-type doped a-Si layer, which are sequentially disposed on the lower electrode.
  • Step 510 forming a conductive thin film layer on the top surface of the PN junction.
  • the top surface of the PN junction is an end surface away from the substrate.
  • the bottom surface of the PN junction is connected to the lower electrode.
  • Step 511 fabricating a second insulating layer on the dielectric layer.
  • the second insulating layer may be a resin layer.
  • Step 512 fabricating an upper electrode and a light shielding layer on the second insulating layer.
  • the upper electrode is simultaneously connected to the drain of the TFT and the conductive thin film layer on the PN junction.
  • step 512 can include: fabricating a first via that passes through the second insulating layer and the dielectric layer and is in communication with the drain; making a second via that passes through the second insulating layer and communicating with the conductive thin film layer; and then fabricating the upper electrode The upper electrode is respectively connected to the drain of the TFT and the conductive thin film layer on the PN junction through the first via and the second via.
  • step 512 can also include: forming a light shielding layer directly over the active layer.
  • Step 513 A third insulating layer is formed on the upper electrode and the light shielding layer.
  • the dielectric layer, the first insulating layer and the third insulating layer may be silicon nitride or silicon oxynitride layers.
  • the source and the drain are turned on. Since the drain is connected to one end of the PN junction through the upper electrode, one end of the PN junction is the second fingerprint identification voltage at this time; when the TFT is turned on, the scan line is turned on.
  • the first fingerprint identification voltage is input to the lower electrode. Since the lower electrode is connected to the other end of the PN junction, the other end of the PN junction is the first fingerprint recognition voltage at this time; when the user touches the module, the light reflected by the user's finger is illuminated. To the PN junction, the PN junction generates a photocurrent under illumination and acts on the second fingerprint recognition voltage.
  • the valleys of the finger fingerprint and the ridges reflect different intensity of light on the PN junction, the photocurrent generated in the PN junction is different, thereby making The variation of the second fingerprint recognition voltage on the sensing line is different, and the valley and the ridge of the fingerprint can be recognized; the module with the fingerprint recognition function is realized by the method, and the module can be applied to the OLED display panel to realize OLED display panel for fingerprint recognition.
  • FIG. 9 is a flowchart of a method for driving a fingerprint identification module according to an embodiment of the present disclosure, which is applicable to the fingerprint identification module of any of the foregoing embodiments, such as the fingerprint identification module shown in any one of FIG. 1 to FIG. , see Figure 9, the method includes:
  • Step 601 In the fingerprint identification stage, the first fingerprint identification voltage is input to the lower electrode by using a progressive scan method.
  • the lower electrodes on the fingerprint recognition module are block electrodes, for example, the block electrodes are distributed in a matrix.
  • the lower electrode scans the first fingerprint identification voltage row by row, and when the lower electrode inputs the first fingerprint identification voltage, correspondingly, the TFT is turned on to enable the upper electrode to obtain the second fingerprint identification voltage, thereby completing the line. Fingerprint recognition.
  • Step 602 Input a second fingerprint identification voltage to the upper electrode in the currently scanned row, and obtain a feedback voltage obtained by the second fingerprint identification voltage under the photocurrent generated by the photocurrent generating unit.
  • the second fingerprint identification voltage is supplied to the upper electrode by the sensing line, and a TFT is disposed between the upper electrode and the sensing line, and the TFT is opened when the first fingerprint recognition voltage is input to the lower electrode of the row, and therefore, only the first fingerprint is recognized at the lower electrode At the voltage, the second fingerprint identification voltage is delivered to the upper electrode.
  • Step 603 Determine, according to the magnitude of the feedback voltage, that the lower electrode corresponds to a valley or a ridge of the fingerprint.
  • the photocurrent generated in the PN junction is different, so that the amount of change of the second fingerprint recognition voltage on the sensing line is different, and thus the valley of the fingerprint can be recognized. And ridges.
  • step 603 may include: determining that the lower electrode corresponds to a valley of the fingerprint when the feedback voltage is within the first voltage range; and when the feedback voltage is within the second voltage range, It is judged that the lower electrode corresponds to the ridge of the fingerprint.
  • the first voltage range and the second voltage range can be obtained in advance by experiments, and the two are not equal to each other.
  • a complete fingerprint can be obtained, and then the fingerprint can be fingerprinted according to the obtained fingerprint. For example, the obtained fingerprint is compared with the set fingerprint to determine whether it is a set user.
  • the method further includes: inputting a touch signal to the lower electrode during the touch sensing phase to implement a touch function by using a self-capacitance of the lower electrode. During the touch sensing phase, the TFT is disconnected to prevent the upper electrode from affecting the touch signal.
  • the photocurrent generating unit is disposed by connecting between the lower electrode and the upper electrode; when the user touches the module, the light reflected by the user's finger is irradiated onto the PN junction in the photocurrent generating unit, and the PN junction is on the upper electrode.
  • the photocurrent is generated by the voltage supplied by the lower electrode, and the light current generated in the photocurrent generating unit is different due to the difference in the intensity of the light reflected from the valley and the ridge of the finger fingerprint to the photocurrent generating unit, thereby making the upper electrode or the lower electrode
  • the variation of the voltage on the difference is different, and the valley and the ridge of the fingerprint can be recognized;
  • the module with the fingerprint recognition function is realized by the method, and the OLED display with the fingerprint recognition function can be realized by applying the module to the OLED display panel. panel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Image Input (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种指纹识别模组及其制作方法和驱动方法、显示装置。所述指纹识别模组包括基板(100)、以及设置在所述基板(100)上的阵列布置的多个指纹识别模块(110),每个所述指纹识别模块(110)包括下电极(101)、上电极(102)、及连接在所述上电极(102)和所述下电极(101)之间的光电流产生单元,所述光电流产生单元包括PN结(103),所述PN结(103)的一端与所述上电极(102)连接,所述PN结的另一端与所述下电极(101)连接。将该指纹识别模组应用于OLED显示面板可实现具有指纹识别功能的OLED显示面板。

Description

指纹识别模组及其制作方法和驱动方法、显示装置
相关申请的交叉引用
本申请基于并且要求于2016年6月30日递交的中国专利申请第201610514151.8号的优先权,在此全文引用上述中国专利申请公开的内容。
技术领域
本发明实施例涉及显示器领域,特别涉及一种指纹识别模组及其制作方法和驱动方法、显示装置。
背景技术
OLED显示器由于对比度高、厚度薄、视角广、反应速度快等特点,已经开始逐步取代液晶显示器(Liquid Crystal Display,简称LCD)。传统的LCD可以将指纹识别功能集成到LCD内部,从而同时实现显示和指纹识别功能,而对于OLED显示器而言,目前还没有集成指纹识别功能的OLED显示器。
发明内容
为了解决目前还没有集成指纹识别功能的OLED显示器的问题,本发明实施例提供了一种指纹识别模组及其制作方法和驱动方法、显示装置。
第一方面,本发明实施例提供了一种指纹识别模组,所述指纹识别模组包括基板、以及设置在所述基板上的阵列布置的多个指纹识别模块,每个所述指纹识别模块包括下电极、上电极、及连接在所述上电极和所述下电极之间的光电流产生单元,所述光电流产生单元包括PN结,所述PN结的一端与所述上电极连接,所述PN结的另一端与所述下电极连接。
第二方面,本发明实施例还提供了一种显示装置,所述显示装置包括显示面板和设置在所述显示面板上的前述指纹识别模组。
第三方面,本发明实施例还提供了一种指纹识别模组制作方法,所述方法包括:提供一基板;在所述基板上形成下电极;在所述下电极上形成光电 流产生单元;在所述光电流产生单元上形成上电极,所述光电流产生单元包括PN结,所述PN结的一端与所述上电极连接,所述PN结的另一端与所述下电极连接。
第四方面,本发明实施例还提供了一种前述指纹识别模组的驱动方法,所述方法包括:在指纹识别阶段,采用逐行扫描的方式向所述下电极输入第一指纹识别电压;向当前扫描的行中的所述上电极输入第二指纹识别电压,并获取所述第二指纹识别电压在所述光电流产生单元产生的光电流作用下得到的反馈电压;根据所述反馈电压的大小判断所述下电极对应的是指纹的谷或者脊。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,而非对本发明的限制。
图1是本发明实施例提供的一种指纹识别模组的结构示意图;
图2a是本发明实施例提供的另一种指纹识别模组的结构示意图;
图2b是本发明实施例提供的指纹识别模组的俯视图;
图2c是本发明实施例提供的指纹识别模组的俯视图;
图3是本发明实施例提供的指纹识别模组的工作示意图;
图4是本发明实施例提供的另一种指纹识别模组的结构示意图;
图5是本发明实施例提供的一种显示装置的结构示意图;
图6是本发明实施例提供的一种指纹识别模组制作方法的流程图;
图7是本发明实施例提供的另一种指纹识别模组制作方法的流程图;
图8是本发明实施例提供的另一种指纹识别模组制作方法的流程图;
图9是本发明实施例提供的一种指纹识别模组的驱动方法的流程图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例的附图,对本发明实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于所描 述的本发明的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
除非另作定义,此处使用的技术术语或者科学术语应当为本发明所属领域内具有一般技能的人士所理解的通常意义。本发明专利申请说明书以及权利要求书中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现在“包括”或者“包含”前面的元件或者物件涵盖出现在“包括”或者“包含”后面列举的元件或者物件及其等同,并不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
图1是本发明实施例提供的一种指纹识别模组的结构示意图,该指纹识别模组(以下简称模组)可以适用于有机电致发光器件OLED显示面板、液晶显示面板等,参见图1,该模组包括基板100,设置在基板100上的多个阵列布置的指纹识别模块110,每个指纹识别模块110包括下电极101、上电极102、及连接在上电极101和下电极102之间的光电流产生单元11A,光电流产生单元11A包括PN结103,PN结103的一端与上电极101连接,PN结103的另一端与下电极102连接。
下电极101、上电极102分别用于为光电流产生单元11A提供第一指纹识别电压和第二指纹识别电压,光电流产生单元11A用于在光照下产生光电流并作用于第二指纹识别电压。
本发明通过下电极和上电极分别为光电流产生单元提供第一指纹识别电压和第二指纹识别电压;当用户触摸该模组时,用户手指反射的光照射到光电流产生单元中PN结上,PN结在光照下产生光电流并作用于第二指纹识别电压,由于手指指纹的谷和脊反射到光电流产生单元上的光线强度不同,使得光电流产生单元内产生的光电流不同,从而使得上电极或下电极上的电压的变化量不同,进而可以识别出指纹的谷和脊;通过该方式实现了具有指纹识别功能的模组,将该模组应用于OLED显示面板即可实现具有指纹识别功能的OLED显示面板。
图2a是本发明实施例提供的另一种模组的结构示意图,该模组可以适用于OLED显示面板、液晶显示面板等,参见图2a,该模组包括基板100,设置在基板100上的多个阵列布置的指纹识别模块110,每个指纹识别模块110包括下电极101、上电极102、及连接在上电极101和下电极102之间的光电流产生单元11B。光电流产生单元11B包括设置在上电极102和下电极101之间的薄膜晶体管(Thin Film Transistor,简称TFT)104和PN结103。图2b和图2c是图2a提供的模组的俯视图,参见图2b,上述光电流产生单元11B还包括扫描线105和感应线106。
至少一些实施例中,上电极102同时与TFT 104的漏极及PN结103的一端连接,PN结103的另一端与下电极101连接,下电极101与扫描线105连接,扫描线105用于在TFT 104导通时向下电极101输入第一指纹识别电压,TFT 104用于在栅极电压作用下间隔导通,TFT 104的源极与感应线106连接,感应线106用于向TFT 104的源极输入第二指纹识别电压。
由于图2b和图2c为俯视图,因而未能示出与扫描线105连接的下电极101,以及与感应线106连接的TFT 104的源极,但需要指出的是,图2b中的扫描线105和感应线106并非连接在上电极102上。
通过上述结构,可以实现在指纹识别阶段,采用逐行扫描的方式向下电极101输入第一指纹识别电压,向当前扫描行的上电极102输入第二指纹识别电压。
在图2b提供的模组中,每个指纹识别模块110分别连接一根扫描线105和感应线106。在图2c提供的模组中,每行指纹识别模块110共用一根扫描线105,每列指纹识别模块110共用一根感应线106。在上述实现方式中,每次向一行下电极101连接的扫描线105输入第一指纹识别电压,相应地,控制该行上电极102连接的TFT 104导通,以使对应的上电极102获得感应线106提供的第二指纹识别电压。
在图2b提供的模组中,由于每个指纹识别模块110分别连接一根扫描线105和感应线106,因此,在这种实现方式中,可以直接通过控制每根扫描线105和感应线106的信号时序,实现指纹识别的逐行扫描。因此,至少一些实施例中,可以不需要在感应线106和上电极102之间设置TFT 104,即光电流产生单元只包括PN结103、扫描线105和感应线106。例如,感应线 106和上电极直接连接。
第一指纹识别电压和第二指纹识别电压用于在进行指纹识别时,为PN结提供一外加电场,该外加电场的方向与PN结的内电场方向一致,因此会增强内电场,使得多数载流子扩散运动减弱,只有少数载流子的漂移运动形成了反向电流。在没有光照时,反向电流极其微弱,叫暗电流;有光照时,反向电流迅速增大到几十微安,称为光电流。光的强度越大,光电流也越大。
图3是图2a~图2c提供的模组的工作示意图,以指纹识别模组应用于OLED显示面板为例进行说明,参见图3,当用户用手指300触摸模组时,OLED显示面板201的子像素区域2012发出的光照射到用户手指上,用户手指反射的光穿过基板100照射到指纹识别模块110的PN结上,由于手指指纹的谷和脊反射到PN结上的光的强度不同,使得PN结内产生的光电流不同,从而使得感应线上的第二指纹识别电压的变化量不同,进而可以识别出指纹的谷和脊,通过多个指纹识别模块110识别出的谷和脊就可以完成指纹识别。
在上述指纹识别模组中,通过TFT导通时,源极和漏极导通,由于漏极通过上电极与PN结的一端连接,因此此时PN结的一端为第二指纹识别电压;TFT导通时,扫描线向下电极输入第一指纹识别电压,由于下电极与PN结的另一端连接,所以PN结的另一端此时为第一指纹识别电压;当用户触摸该模组时,用户手指反射的光照射到PN结,PN结在光照下产生光电流并作用于第二指纹识别电压,由于手指指纹的谷和脊反射到PN结上的光线强度不同,使得PN结内产生的光电流不同,从而使得感应线上的第二指纹识别电压的变化量不同,进而可以识别出指纹的谷和脊;通过该方式实现了具有指纹识别功能的模组,将该模组应用于OLED显示面板即可实现具有指纹识别功能的OLED显示面板。
基板100也称衬底基板,至少一些实施例中,衬底基板是透明的,例如是玻璃基板、塑料基板、或硅基板等。
至少一些实施例中,下电极101采用透明导电材料制成。采用透明导电材料制成的下电极101,因为能够透光,可作为指纹识别的电极。
例如,透明导电材料包括但不限于氧化铟锡(Indium Tin Oxide,简称ITO)或者氧化铟锌(Indium Zinc Oxide,简称IZO)。
至少一些实施例中,扫描线105用于在指纹识别阶段向下电极101输入第一指纹识别电压,在触控阶段向下电极101输入触控信号。例如,扫描线105用于在TFT 104断开时向下电极101输入触控信号。TFT 104断开时,下电极101在触控信号作用下通过自电容实现触控功能。即将触控与指纹识别采用分时驱动的方式实现双重功能。
至少一些实施例中,为便于进行指纹识别和触控定位,可以将下电极101设计为呈矩形的块状电极。当然,矩形仅仅是便于下电极101的布置和制作,下电极101的形状也可以是其他形状,如圆形、梯形等等。此处指的是下电极平行于基板的形状。
例如,块状电极呈矩阵分布。在进行指纹识别时,下电极采用扫描方式逐行输入第一指纹识别电压,在下电极输入第一指纹识别电压时,相应地,TFT打开,使上电极获得第二指纹识别电压,从而完成该行的指纹识别。
例如,块状电极可以为边长为3-8mm的方形电极,在一个示例中,边长为5mm。这种大小和形状设计,既能够满足触控的精度需求,又不会造成驱动线路设计复杂。
相应地,上电极102也可以对应设置为块状电极,例如图2b和图2c所示,上电极102为呈矩形的块状电极。当然,矩形仅仅是便于上电极102的布置和制作,上电极102的形状也可以是其他形状,如圆形、梯形等等。此处指的是下电极平行于基板的形状。
至少一些实施例中,上电极102和下电极101在垂直于基板的竖直方向上具有重叠区域。例如,二者可以部分重叠或完全重叠。
至少一些实施例中,上电极102为金属电极。例如,铝Al、铜Cu、钼Mo、钛Ti、Cr铬等金属电极。
图4是本发明实施例提供的另一种模组的结构示意图,图4例如为图3所示的指纹识别模组的纵向剖切图。参见图4,在该模组中,TFT 104上方设有遮光层107,避免显示器件提供的光源照射TFT 104的沟道区域,从而对TFT特性造成损害。
在本发明实施例中,遮光层107与上电极102同层设置,例如,该遮光层107为金属遮光层107。遮光层107与上电极102同层,便于制作。
在本发明实施例中,如图4所示,PN结103包括依次设置在下电极101 上的P型掺杂的非晶硅a-Si层(P区)、未掺杂的a-Si层(本征区,即I区)和N型掺杂的a-Si层(N区)。
例如,PN结103内电场的方向由N区指向P区,将PN结加电压(第一指纹识别电压小于第二指纹识别电压),使外加电场的方向与内电场一致,此时只有少数载流子的漂移运动形成了反向电流。在没有光照时,反向电流极其微弱,叫暗电流;有光照时,反向电流迅速增大到几十微安,称为光电流。光的强度越大,光电流也越大。
在本发明实施例中,PN结103与上电极102连接的一端的端面上设有导电薄膜层108。导电薄膜层108引导光电流能够顺利进入上电极102。
例如,导电薄膜层108可以为ITO或IZO薄膜层。
在本发明实施例中,TFT 104包括依次设置的栅极1041、栅极绝缘层1042、铟镓锌氧化物(Indium Gallium Zinc Oxide,简称IGZO)有源层1043、及源极1044和漏极1045。
至少一些实施例中,TFT 104的栅极1041、源极1044和漏极1045可以为金属电极,例如Al、Cu、Mo、Ti、Cr等金属电极。栅极绝缘层1042可以为氮化硅或氮氧化硅层。
在本发明实施例中,模组还包括介电层109,TFT 104和PN结103通过介电层109相互隔离,从而保证TFT 104和PN结103绝缘,避免短路。
进一步地,该模组还包括第一绝缘层111、第二绝缘层112和第三绝缘层113。第一绝缘层111设置在下电极101和TFT 104之间,TFT 104的栅极1041设置在第一绝缘层111上。第二绝缘层112设置在TFT 104和PN结103上。第三绝缘层113设置在上电极102和遮光层107之上。
至少一些实施例中,介电层109、第一绝缘层111和第三绝缘层113可以为氮化硅或氮氧化硅层。
至少一些实施例中,第二绝缘层112可以为树脂层。
在本发明实施例中,扫描线105和感应线106均与TFT 104的源极1044同层设置。扫描线105和感应线106与源极1044(漏极1045)同层设置,减少制作工艺。
扫描线105和感应线106的位置还存在其他实现方式,例如将扫描线105与栅极1041同层设置,感应线106与源极1044同层设置。
如图4所示,下电极101可以通过过孔114与扫描线105连接。
图5是本发明实施例还提供的一种显示装置的结构示意图,显示装置包括OLED基板201和设置在OLED基板201上的指纹识别模组202,该指纹识别模组为前面任一实施例提供的指纹识别模组,例如图1至4任一幅提供的指纹识别模组。
本发明实施例提供的OLED显示面板可以为手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。
本发明通过TFT导通时,源极和漏极导通,由于漏极通过上电极与PN结的一端连接,因此此时PN结的一端为第二指纹识别电压;TFT导通时,扫描线向下电极输入第一指纹识别电压,由于下电极与PN结的另一端连接,所以PN结的另一端此时为第一指纹识别电压;当用户触摸该模组时,用户手指反射的光照射到PN结,PN结在光照下产生光电流并作用于第二指纹识别电压,由于手指指纹的谷和脊反射到PN结上的光线强度不同,使得PN结内产生的光电流不同,从而使得感应线上的第二指纹识别电压的变化量不同,进而可以识别出指纹的谷和脊;通过该方式实现了具有指纹识别功能的模组,将该模组应用于OLED显示面板即可实现具有指纹识别功能的OLED显示面板。
在本发明实施例中,OLED基板201包括多个子像素区域,上电极102在OLED基板100上的投影位于相邻子像素区域之间。将上电极102设置在相邻子像素区域之间,避免遮挡OLED子像素发出的光线。
图6是本发明实施例提供的一种指纹识别模组制作方法的流程图,用于制作图1所示的指纹识别模组,参见图6,该方法包括:
步骤301:提供一基板。
如前所述,基板也称衬底基板,通常是透明的,可以是玻璃基板、塑料基板、硅基板等。
步骤302:在基板上形成下电极。
例如,下电极可以采用氧化铟锡ITO或者氧化铟锌IZO材料制成。
步骤303:在下电极上形成光电流产生单元。
步骤304:在光电流产生单元上形成上电极。
至少一些实施例中,光电流产生单元包括PN结,PN结的一端与上电极 连接,PN结的另一端与所述下电极连接。
下电极、上电极分别为光电流产生单元提供第一指纹识别电压和第二指纹识别电压,光电流产生单元用于在光照下产生光电流并作用于第二指纹识别电压。
本发明通过下电极和上电极分别为光电流产生单元提供第一指纹识别电压和第二指纹识别电压;当用户触摸该模组时,用户手指反射的光照射到光电流产生单元中PN结上,PN结在光照下产生光电流并作用于第二指纹识别电压,由于手指指纹的谷和脊反射到光电流产生单元上的光线强度不同,使得光电流产生单元内产生的光电流不同,从而使得上电极或下电极上的电压的变化量不同,进而可以识别出指纹的谷和脊;通过该方式实现了具有指纹识别功能的模组,将该模组应用于OLED显示面板即可实现具有指纹识别功能的OLED显示面板。
图7是本发明实施例提供的一种指纹识别模组制作方法的流程图,用于制作图2a和图2b所示的指纹识别模组,参见图7,该方法包括:
步骤401:提供一基板。
如前所述,基板也称衬底基板,通常是透明的,可以是玻璃基板、塑料基板、硅基板等。
步骤402:在基板上形成下电极。
例如,下电极可以采用氧化铟锡ITO或者氧化铟锌IZO材料制成。
步骤403:在下电极上形成TFT、PN结、扫描线和感应线。
在本发明实施例中,PN结包括依次设置在下电极上的P型掺杂的非晶硅a-Si层、未掺杂的a-Si层和N型掺杂的a-Si层。
至少一些实施例中,TFT包括依次设置的栅极、栅极绝缘层、有源层、及源极和漏极。TFT的栅极、源极和漏极例如为金属电极,例如Al、Cu、Mo、Ti、Cr等金属电极。栅极绝缘层例如为氮化硅或氮氧化硅层。有源层包括但不限于是铟镓锌氧化物IGZO有源层、低温多晶硅有源层、或者非晶硅有源层。
至少一些实施例中,扫描线和感应线均与TFT的源极同层设置。扫描线和感应线与源极(漏极)同层设置,减少制作工艺。
步骤404:在TFT和PN结上形成上电极,上电极同时与TFT的漏极及 PN结的一端连接,下电极与扫描线连接,TFT的源极与感应线连接,PN结的另一端与下电极连接,TFT用于在栅极电压作用下间隔导通,扫描线用于在TFT导通时向下电极输入第一指纹识别电压,感应线用于向TFT的源极输入第二指纹识别电压。
至少一些实施例中,上电极为金属电极。例如,铝Al、铜Cu、钼Mo、钛Ti、Cr铬等金属电极。
本发明通过TFT导通时,源极和漏极导通,由于漏极通过上电极与PN结的一端连接,因此此时PN结的一端为第二指纹识别电压;TFT导通时,扫描线向下电极输入第一指纹识别电压,由于下电极与PN结的另一端连接,所以PN结的另一端此时为第一指纹识别电压;当用户触摸该模组时,用户手指反射的光照射到PN结,PN结在光照下产生光电流并作用于第二指纹识别电压,由于手指指纹的谷和脊反射到PN结上的光线强度不同,使得PN结内产生的光电流不同,从而使得感应线上的第二指纹识别电压的变化量不同,进而可以识别出指纹的谷和脊;通过该方式实现了具有指纹识别功能的模组,将该模组应用于OLED显示面板即可实现具有指纹识别功能的OLED显示面板。
图8是本发明实施例提供的另一种指纹识别模组制作方法的流程图,用于制作4所示的指纹识别模组,参见图8,该方法包括:
步骤501:提供一基板。
如前所述,基板也称衬底基板,通常是透明的,可以是玻璃基板、塑料基板、硅基板等。
步骤502:在基板上形成下电极。
例如,下电极可以采用氧化铟锡ITO或者氧化铟锌IZO材料制成。
步骤503:在下电极上形成第一绝缘层。
步骤504:在第一绝缘层上形成栅极。
步骤505:在栅极上形成栅极绝缘层。
例如,栅极绝缘层可以为氮化硅或氮氧化硅层。
步骤506:在栅极绝缘层上形成有源层。
例如,有源层包括但不限于是铟镓锌氧化物IGZO有源层、低温多晶硅有源层、或者非晶硅有源层。
步骤507:在形成有有源层的栅极绝缘层上形成源极、漏极、扫描线和感应线。
其中,TFT的栅极、源极和漏极可以为金属电极,例如Al、Cu、Mo、Ti、Cr等金属电极;扫描线和感应线可以为金属线,例如Al、Cu、Mo、Ti、Cr等金属线。
其中,扫描线与下电极连接,具体可以在第一绝缘层和栅极绝缘层上制作过孔,扫描线通过过孔与下电极连接。
其中,TFT的源极与感应线连接。
步骤507后,TFT制作完成,TFT用于在栅极电压作用下间隔导通,扫描线用于在TFT导通时向下电极输入第一指纹识别电压,感应线用于向TFT的源极输入第二指纹识别电压。
步骤508:在源极、漏极、扫描线和感应线的上方形成介电层。
步骤509:制作经过介电层、栅极绝缘层和第一绝缘层的过孔,在过孔中制作PN结。
其中,PN结包括依次设置在下电极上的P型掺杂的非晶硅a-Si层、未掺杂的a-Si层和N型掺杂的a-Si层。
步骤510:在PN结的顶面制作导电薄膜层。
其中,PN结的顶面为远离基板的一端端面。
在本实施例中,PN结的底面与下电极连接。
步骤511:在介电层上制作第二绝缘层。
其中,第二绝缘层可以为树脂层。
步骤512:在第二绝缘层上制作上电极和遮光层。
其中,上电极同时与TFT的漏极及PN结上的导电薄膜层连接。
例如,步骤512可以包括:制作穿过第二绝缘层和介电层且连通漏极的第一过孔;制作穿过第二绝缘层且连通导电薄膜层的第二过孔;然后制作上电极,上电极通过第一过孔和第二过孔分别与TFT的漏极及PN结上的导电薄膜层连接。
例如,步骤512还可以包括:在有源层正上方制作遮光层。
步骤513:在上电极和遮光层上制作第三绝缘层。
其中,介电层、第一绝缘层和第三绝缘层可以为氮化硅或氮氧化硅层。
本发明通过TFT导通时,源极和漏极导通,由于漏极通过上电极与PN结的一端连接,因此此时PN结的一端为第二指纹识别电压;TFT导通时,扫描线向下电极输入第一指纹识别电压,由于下电极与PN结的另一端连接,所以PN结的另一端此时为第一指纹识别电压;当用户触摸该模组时,用户手指反射的光照射到PN结,PN结在光照下产生光电流并作用于第二指纹识别电压,由于手指指纹的谷和脊反射到PN结上的光线强度不同,使得PN结内产生的光电流不同,从而使得感应线上的第二指纹识别电压的变化量不同,进而可以识别出指纹的谷和脊;通过该方式实现了具有指纹识别功能的模组,将该模组应用于OLED显示面板即可实现具有指纹识别功能的OLED显示面板。
图9是本发明实施例提供的一种指纹识别模组的驱动方法的流程图,适用于前述任一实施例的指纹识别模组,例如图1~4任一幅所示的指纹识别模组,参见图9,该方法包括:
步骤601:在指纹识别阶段,采用逐行扫描的方式向下电极输入第一指纹识别电压。
例如,指纹识别模组上的下电极是块状电极,例如,块状电极呈矩阵分布。在进行指纹识别时,下电极采用扫描方式逐行输入第一指纹识别电压,在下电极输入第一指纹识别电压时,相应地,TFT导通使上电极获得第二指纹识别电压,从而完成该行的指纹识别。
步骤602:向当前扫描的行中的上电极输入第二指纹识别电压,并获取第二指纹识别电压在光电流产生单元产生的光电流作用下得到的反馈电压。
第二指纹识别电压由感应线提供给上电极,在上电极和感应线之间设置有TFT,TFT在该行下电极输入第一指纹识别电压时打开,因此,只有在下电极具有第一指纹识别电压时,向上电极输送第二指纹识别电压。
步骤603:根据反馈电压的大小判断下电极对应的是指纹的谷或者脊。
由于手指指纹的谷和脊反射到PN结上的光线强度不同,使得PN结内产生的光电流不同,从而使得感应线上的第二指纹识别电压的变化量不同,进而可以识别出指纹的谷和脊。
因此,至少一些实施例中,步骤603可以包括:当反馈电压在第一电压范围内时,判断下电极对应的是指纹的谷;当反馈电压在第二电压范围内时, 判断下电极对应的是指纹的脊。第一电压范围和第二电压范围可以通过实验事先获得,二者互不相等。
在所有的指纹识别单元扫描完成后,即可得到完整的指纹,进而可以根据得到的指纹进行指纹识别,例如将得到的指纹与设定的指纹进行对比,以判断是否为设定用户。
至少一些实施例中,该方法还包括:在触控感应阶段,向下电极输入触控信号,以通过下电极的自电容实现触控功能。在触控感应阶段,TFT断开,避免上电极对触控信号产生影响。
在以上实施例中,通过在下电极和上电极之间连接设置光电流产生单元;当用户触摸该模组时,用户手指反射的光照射到光电流产生单元中PN结上,PN结在上电极和下电极提供的电压作用下产生光电流,由于手指指纹的谷和脊反射到光电流产生单元上的光线强度不同,使得光电流产生单元内产生的光电流不同,从而使得上电极或下电极上的电压的变化量不同,进而可以识别出指纹的谷和脊;通过该方式实现了具有指纹识别功能的模组,将该模组应用于OLED显示面板即可实现具有指纹识别功能的OLED显示面板。
以上所述仅是本发明的示范性实施方式,而非用于限制本发明的保护范围,本发明的保护范围由所附的权利要求确定。

Claims (17)

  1. 一种指纹识别模组,所述指纹识别模组包括基板、以及设置在所述基板上的阵列布置的多个指纹识别模块,其中每个所述指纹识别模块包括下电极、上电极、及连接在所述上电极和所述下电极之间的光电流产生单元,所述光电流产生单元包括PN结,所述PN结的一端与所述上电极连接,所述PN结的另一端与所述下电极连接。
  2. 根据权利要求1所述的指纹识别模组,其中所述光电流产生单元还包括扫描线、感应线。
  3. 根据权利要求1所述的指纹识别模组,还包括设置在所述上电极和所述下电极之间的薄膜晶体管TFT,所述上电极与所述TFT的漏极连接,所述下电极与所述扫描线连接,所述扫描线用于在TFT导通时向所述下电极输入第一指纹识别电压,所述TFT用于在栅极电压作用下间隔导通,所述TFT的源极与所述感应线连接,所述感应线用于向所述TFT的源极输入第二指纹识别电压。
  4. 根据权利要求1至3中任一项所述的指纹识别模组,其中所述下电极用于在指纹识别阶段输入第一指纹识别电压,在触控阶段输入触控信号。
  5. 根据权利要求3所述的指纹识别模组,其中所述TFT上方设有遮光层。
  6. 根据权利要求5所述的指纹识别模组,其中所述遮光层与所述上电极同层设置。
  7. 根据权利要求1至3中任一项所述的指纹识别模组,其中所述PN结与所述上电极连接的一端的端面上设有导电薄膜层。
  8. 根据权利要求1至3中任一项所述的指纹识别模组,其中所述下电极采用透明导电材料制成。
  9. 根据权利要求1至3中任一项所述的指纹识别模组,其中所述上电极为金属电极。
  10. 根据权利要求3所述的指纹识别模组,其中所述指纹识别模组还包括介电层,所述TFT和所述PN结通过所述介电层相互隔离。
  11. 根据权利要求3所述的指纹识别模组,其中所述扫描线和所述感应 线均与所述TFT的源极同层设置。
  12. 根据权利要求1至11任一项所述的指纹识别模组,其中所述PN结包括N型区、P型区和本征区,所述PN结的一端为N型区,所述PN结的另一端为P型区。
  13. 一种显示装置,包括显示面板和设置在所述显示面板上的指纹识别模组,所述指纹识别模组如权利要求1至12任一项所述。
  14. 根据权利要求13所述的显示装置,其中所述显示面板包括多个子像素区域,所述上电极在所述显示面板上的投影位于相邻子像素区域之间。
  15. 一种指纹识别模组的制作方法,包括:
    提供一基板;
    在所述基板上形成下电极;
    在所述下电极上形成光电流产生单元;
    在所述光电流产生单元上形成上电极,所述光电流产生单元包括PN结,所述PN结的一端与所述上电极连接,所述PN结的另一端与所述下电极连接。
  16. 一种指纹识别模组的驱动方法,适用于权利要求1至12任一项所述的指纹识别模组,所述方法包括:
    在指纹识别阶段,采用逐行扫描的方式向所述下电极输入第一指纹识别电压;
    向当前扫描的行中的所述上电极输入第二指纹识别电压,并获取所述第二指纹识别电压在所述光电流产生单元产生的光电流作用下得到的反馈电压;
    根据所述反馈电压的大小判断所述下电极对应的是指纹的谷或者脊。
  17. 根据权利要求16所述的方法,还包括:
    在触控感应阶段,向所述下电极输入触控信号。
PCT/CN2017/085532 2016-06-30 2017-05-23 指纹识别模组及其制作方法和驱动方法、显示装置 WO2018001002A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/569,279 US10546174B2 (en) 2016-06-30 2017-05-23 Fingerprint identifying module, fabrication method and driving method for the same, and display device
JP2017556157A JP7274818B2 (ja) 2016-06-30 2017-05-23 指紋認識モジュール及びその作製方法並びに駆動方法、表示装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610514151.8 2016-06-30
CN201610514151.8A CN105956584A (zh) 2016-06-30 2016-06-30 指纹识别模组及其制作方法和驱动方法、显示装置

Publications (1)

Publication Number Publication Date
WO2018001002A1 true WO2018001002A1 (zh) 2018-01-04

Family

ID=56903214

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/085532 WO2018001002A1 (zh) 2016-06-30 2017-05-23 指纹识别模组及其制作方法和驱动方法、显示装置

Country Status (4)

Country Link
US (1) US10546174B2 (zh)
JP (1) JP7274818B2 (zh)
CN (1) CN105956584A (zh)
WO (1) WO2018001002A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109037474A (zh) * 2018-07-24 2018-12-18 京东方科技集团股份有限公司 一种oled面板及显示装置

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105956584A (zh) 2016-06-30 2016-09-21 京东方科技集团股份有限公司 指纹识别模组及其制作方法和驱动方法、显示装置
KR20180034750A (ko) 2016-09-26 2018-04-05 삼성디스플레이 주식회사 표시장치 및 그의 구동방법
CN106775063B (zh) * 2016-11-25 2020-04-21 京东方科技集团股份有限公司 触控面板及其制作方法、显示装置
US10318788B2 (en) 2017-04-13 2019-06-11 Boe Technology Group Co., Ltd. Fingerprint identification detection circuit, touch screen and display device
CN106971172B (zh) * 2017-04-13 2019-07-26 京东方科技集团股份有限公司 一种指纹识别检测电路、触摸屏及显示装置
CN107203751B (zh) * 2017-05-24 2020-03-24 厦门天马微电子有限公司 显示面板及显示装置
CN107256880B (zh) 2017-06-27 2021-08-20 京东方科技集团股份有限公司 一种显示器阵列基板、制备方法和显示器
CN107272244B (zh) * 2017-08-15 2020-12-08 京东方科技集团股份有限公司 一种阵列基板及其制作方法、显示面板、显示装置
CN108881625B (zh) * 2018-05-31 2020-09-29 北京小米移动软件有限公司 终端设备以及感测方法和装置
CN108899344B (zh) 2018-06-29 2021-02-09 京东方科技集团股份有限公司 一种oled显示面板、其驱动方法及显示装置
CN110162203B (zh) * 2018-08-17 2022-11-18 京东方科技集团股份有限公司 阵列基板、显示面板、显示装置、指纹识别方法和触控方法
CN109298804B (zh) * 2018-10-23 2022-10-28 京东方科技集团股份有限公司 触控电路及其驱动方法、触控基板及显示装置
US11289548B2 (en) * 2018-11-20 2022-03-29 Boe Technology Group Co., Ltd. Display substrate, display apparatus, and method of fabricating display substrate
CN110008936A (zh) * 2019-04-19 2019-07-12 广州新视界光电科技有限公司 一种指纹识别模组和指纹识别设备
CN110046610B (zh) * 2019-04-28 2021-05-28 云谷(固安)科技有限公司 一种指纹识别显示装置及其制备方法、显示设备
CN110276325B (zh) * 2019-06-27 2021-09-03 京东方科技集团股份有限公司 超声波指纹识别组件、超声波指纹识别器件和显示装置
CN110299392B (zh) * 2019-06-27 2021-08-06 云谷(固安)科技有限公司 一种显示面板
CN110931533B (zh) * 2019-12-10 2022-11-25 武汉天马微电子有限公司 一种显示面板及其制作方法、显示装置
CN112071872B (zh) * 2020-09-04 2023-09-05 深圳市华星光电半导体显示技术有限公司 一种传感器组件、传感器组件制程方法及显示面板

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105243361A (zh) * 2015-07-31 2016-01-13 友达光电股份有限公司 光学检测装置及其制作方法
CN105373772A (zh) * 2015-10-09 2016-03-02 京东方科技集团股份有限公司 光学指纹/掌纹识别器件、触控显示面板和显示装置
CN105550662A (zh) * 2016-01-05 2016-05-04 京东方科技集团股份有限公司 一种指纹识别装置及其制作方法、阵列基板、显示装置
CN105956584A (zh) * 2016-06-30 2016-09-21 京东方科技集团股份有限公司 指纹识别模组及其制作方法和驱动方法、显示装置

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3053007B2 (ja) * 1997-07-28 2000-06-19 日本電気株式会社 指紋センサ
DE69923495D1 (de) * 1998-05-15 2005-03-10 Testech Inc Eine auf Berührung reagierende lichtemittierende Vorrichtung, ein Verfahren zu deren Herstellung, und deren Verwendung in einem Berührungseingabegerät
JP3559754B2 (ja) * 2000-07-25 2004-09-02 Necエレクトロニクス株式会社 指紋認証装置
US6815345B2 (en) * 2001-10-16 2004-11-09 Hermes-Microvision (Taiwan) Inc. Method for in-line monitoring of via/contact holes etch process based on test structures in semiconductor wafer manufacturing
GB2437768A (en) * 2006-05-03 2007-11-07 Seiko Epson Corp Photosensing TFT
EP2133918B1 (en) * 2008-06-09 2015-01-28 Sony Corporation Solid-state imaging device, drive method thereof and electronic apparatus
TWI445166B (zh) * 2008-11-07 2014-07-11 Sony Corp 固態成像裝置,製造固態成像裝置之方法、及電子設備
EP2497011A4 (en) 2009-11-06 2013-10-02 Semiconductor Energy Lab TOUCH PANEL AND METHOD FOR CONTROLLING TOUCH PANEL
US11322533B2 (en) * 2013-03-14 2022-05-03 Sony Semiconductor Solutions Corporation Solid state image sensor tolerant to misalignment and having a high photoelectric conversion efficiency
JP2015053411A (ja) * 2013-09-09 2015-03-19 ソニー株式会社 固体撮像素子、固体撮像素子の製造方法、および電子機器
CN103530609B (zh) 2013-10-11 2017-07-04 北京京东方光电科技有限公司 一种指纹识别元件、显示屏及显示装置
CN106462285B (zh) * 2014-04-10 2020-06-09 Ib韩国有限责任公司 用于触控设备的生物识别传感器
CN104155785B (zh) * 2014-08-07 2016-10-05 京东方科技集团股份有限公司 阵列基板及其驱动方法、显示装置
TWI601513B (zh) * 2014-12-22 2017-10-11 金佶科技股份有限公司 同時辨識手指影像及血氧濃度之指紋辨識裝置及其方法
FR3027730B1 (fr) * 2014-10-22 2017-12-22 New Imaging Tech Dispositif d'acquisition d'empreintes digitales
WO2016111010A1 (ja) * 2015-01-09 2016-07-14 オリンパス株式会社 固体撮像装置
CN204946029U (zh) * 2015-06-23 2016-01-06 天津市卓扬世纪科技发展有限公司 一种新型指纹识别传感器
CN204808361U (zh) * 2015-07-29 2015-11-25 京东方科技集团股份有限公司 一种基板、指纹识别传感器、指纹识别装置
CN105047689B (zh) * 2015-08-12 2018-01-12 京东方科技集团股份有限公司 有机发光二极管显示基板及其光反射表面结构识别方法
CN105184247B (zh) 2015-08-28 2018-12-28 京东方科技集团股份有限公司 一种指纹识别元件、其识别方法、显示器件及显示装置
US9961178B2 (en) * 2016-03-24 2018-05-01 Motorola Mobility Llc Embedded active matrix organic light emitting diode (AMOLED) fingerprint sensor
KR102461536B1 (ko) * 2016-06-14 2022-11-01 삼성전자 주식회사 편광 특성을 갖는 태양 전지 및 이를 구비한 전자 장치
CN108509829B (zh) * 2017-02-28 2019-11-26 京东方科技集团股份有限公司 显示基板及其驱动方法、显示装置
TWI652806B (zh) * 2017-09-08 2019-03-01 奇景光電股份有限公司 嵌設有指紋感測器的平板顯示器及其形成方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105243361A (zh) * 2015-07-31 2016-01-13 友达光电股份有限公司 光学检测装置及其制作方法
CN105373772A (zh) * 2015-10-09 2016-03-02 京东方科技集团股份有限公司 光学指纹/掌纹识别器件、触控显示面板和显示装置
CN105550662A (zh) * 2016-01-05 2016-05-04 京东方科技集团股份有限公司 一种指纹识别装置及其制作方法、阵列基板、显示装置
CN105956584A (zh) * 2016-06-30 2016-09-21 京东方科技集团股份有限公司 指纹识别模组及其制作方法和驱动方法、显示装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109037474A (zh) * 2018-07-24 2018-12-18 京东方科技集团股份有限公司 一种oled面板及显示装置
CN109037474B (zh) * 2018-07-24 2020-05-26 京东方科技集团股份有限公司 一种oled面板及显示装置

Also Published As

Publication number Publication date
JP7274818B2 (ja) 2023-05-17
US10546174B2 (en) 2020-01-28
US20180225497A1 (en) 2018-08-09
CN105956584A (zh) 2016-09-21
JP2019532362A (ja) 2019-11-07

Similar Documents

Publication Publication Date Title
WO2018001002A1 (zh) 指纹识别模组及其制作方法和驱动方法、显示装置
US20170338252A1 (en) Display device
US10573235B2 (en) Display panel and display apparatus
CN108155195B (zh) 显示设备
CN107425041B (zh) 一种触控显示面板、装置及制作方法
US11574931B2 (en) Display device with metal layer having pinhole
CN107403804B (zh) 显示设备
WO2019041991A1 (zh) 感测基板及感测板、显示面板和显示装置
US9423641B2 (en) Display having touch sensing function
US20180210587A1 (en) Embedded touch panels and the array substrates thereof
JP2006079589A (ja) タッチパネル
CN104637436A (zh) 有机发光显示设备及其制造方法
US20220102388A1 (en) Display device
US11917868B2 (en) Organic light emitting diode display device and method of manufacturing thereof
CN110197834A (zh) 阵列基板及其制作方法、显示面板和指纹识别显示装置
US8796626B2 (en) Optical sensor
CN113594225B (zh) 显示面板及显示装置
US10401697B2 (en) Display panel
US20210208460A1 (en) Display panel, display apparatus and driving method for the same
TWI439984B (zh) 光感測元件陣列基板及其製造方法
WO2019007090A1 (zh) 触控基板及其制作方法、内嵌式触控面板
US11126290B2 (en) Pixel array substrate and method of driving the same
US11481071B2 (en) Touch display panel
US10763297B1 (en) Optical sensor
TWI807739B (zh) 顯示面板及其製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15569279

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2017556157

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17818999

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17818999

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 03/07/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17818999

Country of ref document: EP

Kind code of ref document: A1