WO2016111010A1 - 固体撮像装置 - Google Patents

固体撮像装置 Download PDF

Info

Publication number
WO2016111010A1
WO2016111010A1 PCT/JP2015/050523 JP2015050523W WO2016111010A1 WO 2016111010 A1 WO2016111010 A1 WO 2016111010A1 JP 2015050523 W JP2015050523 W JP 2015050523W WO 2016111010 A1 WO2016111010 A1 WO 2016111010A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength
solid
imaging device
state imaging
photoelectric conversion
Prior art date
Application number
PCT/JP2015/050523
Other languages
English (en)
French (fr)
Inventor
公成 田宮
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to PCT/JP2015/050523 priority Critical patent/WO2016111010A1/ja
Priority to JP2016568252A priority patent/JP6388669B2/ja
Publication of WO2016111010A1 publication Critical patent/WO2016111010A1/ja
Priority to US15/631,283 priority patent/US10700108B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14603Special geometry or disposition of pixel-elements, address-lines or gate-electrodes
    • H01L27/14607Geometry of the photosensitive area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14603Special geometry or disposition of pixel-elements, address-lines or gate-electrodes
    • H01L27/14605Structural or functional details relating to the position of the pixel elements, e.g. smaller pixel elements in the center of the imager compared to pixel elements at the periphery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1462Coatings
    • H01L27/14621Colour filter arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1462Coatings
    • H01L27/14623Optical shielding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/10Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths
    • H04N23/11Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths for generating image signals from visible and infrared light wavelengths
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/79Arrangements of circuitry being divided between different or multiple substrates, chips or circuit boards, e.g. stacked image sensors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a solid-state imaging device.
  • a plurality of techniques relating to solid-state imaging devices that receive visible light and near-infrared light have been disclosed.
  • a normal image obtained by visible light hereinafter referred to as “visible light image”
  • an image including information such as a distance to a subject obtained by near-infrared light hereinafter, referred to as “visible light image”.
  • Patent Document 1 discloses a normal pixel that receives visible light (hereinafter referred to as “visible light detection pixel”) and a near-infrared light pixel that receives near-infrared light (hereinafter referred to as “near-infrared light”).
  • visible light detection pixel receives visible light
  • near-infrared light receives near-infrared light
  • a solid-state imaging device is disclosed in which each of the “photodetection pixels” is arranged on the same plane in the pixel region.
  • red (R) that is treated as one set in a general solid-state imaging device that does not receive near-infrared light, vertically and horizontally
  • a set of four visible light detection pixels of green (G), blue (B), and green (G) and a near-infrared light pixel are arranged in a staggered manner at positions that do not overlap in the pixel region.
  • Patent Document 2 and Non-Patent Document 2 disclose a solid-state imaging device in which each of a visible light detection pixel and a near-infrared light detection pixel is formed by changing the position in the depth direction in the same silicon substrate. It is disclosed. More specifically, a depletion layer at a deep position where ions are implanted with high energy and a depletion layer near the surface where ions are implanted with normal energy (shallow position) are formed on the same silicon substrate. . Visible light is detected by a visible light detection pixel in which a depletion layer is formed at a shallow position, and near infrared light is detected by a near infrared light pixel in which a depletion layer is formed at a deep position.
  • the color filters (color filters) to be attached corresponding to the respective visible light detection pixels are formed of visible light and near infrared light. It has the property of transmitting both. This is because when the pixel region of the solid-state imaging device is viewed from the light receiving surface, visible light detection pixels and near infrared light detection pixels are formed at the same position. It is for detecting each of.
  • Patent Document 1 the techniques disclosed in Patent Document 1, Patent Document 2, and Non-Patent Document 2 to which the technology of Non-Patent Document 1 is applied detect visible light and near-infrared light with one solid-state imaging device.
  • visible light and near-infrared light can be separated with high accuracy and each light cannot be detected due to the following problems. .
  • the near-infrared light detection pixel has sensitivity to a wide range of light from visible light to near infrared light. For this reason, the near-infrared light detection pixel detects not only near-infrared light but also visible light, that is, the charge of visible light is mixed with the charge of near-infrared light, and only near-infrared light is detected. It cannot be detected. Further, in the arrangement of the pixels of the solid-state imaging device disclosed in Patent Document 1, no visible light detection pixel exists at the position where the near-infrared light detection pixel is disposed. Therefore, the solid-state imaging device disclosed in Patent Document 1 is used. In the process of generating a visible light image with the mounted imaging system, the position where the near-infrared light detection pixel is arranged is treated as a defective pixel.
  • the solid-state imaging devices disclosed in Patent Document 2 and Non-Patent Document 2 are configured to separately detect visible light and near infrared light depending on the difference in depth direction.
  • a potential barrier that functions to separate visible light and near infrared light cannot be disposed between the pixel and the near infrared light detection pixel, as in the technique disclosed in Non-Patent Document 1, for example.
  • charge leakage due to near-infrared light occurs in the visible light detection pixel.
  • leakage of charges due to visible light also occurs in the near infrared light detection pixels.
  • the solid-state imaging device disclosed in each of Patent Document 1, Patent Document 2, and Non-Patent Document 2 to which the technology of Non-Patent Document 1 is applied is, for example, specific imaging such as sufficiently bright illumination. If not used under conditions, visible light and near-infrared light cannot be separated and detected with high accuracy.
  • the present invention has been made based on the above-described problems, and has an object to provide a solid-state imaging device capable of separating visible light and near-infrared light with high accuracy and detecting each light. Yes.
  • the solid-state imaging device includes a first semiconductor substrate in which a first photoelectric conversion layer that photoelectrically converts incident light in the first wavelength band is formed in a two-dimensional matrix, A second photoelectric conversion layer that photoelectrically converts incident light is disposed between a second semiconductor substrate formed in a two-dimensional matrix, and the first semiconductor substrate and the second semiconductor substrate. And a conductive layer having conductivity corresponding to the second photoelectric conversion layer, and disposed between the second semiconductor substrate and the conductive layer, and having insulation corresponding to the second photoelectric conversion layer.
  • An insulating film, and light transmitted through the first photoelectric conversion layer, the conductive layer, and the insulating film is incident on the second semiconductor substrate, and a predetermined voltage is applied to the conductive layer, When the predetermined voltage is applied to the conductive layer, the second photoelectric conversion is performed.
  • the wavelength of light in the second wavelength band that is photoelectrically converted by the layer is greater than the wavelength of light in the wavelength band that is photoelectrically converted by the second photoelectric conversion layer when the predetermined voltage is not applied to the conductive layer. long.
  • the solid-state imaging device in the solid-state imaging device according to the first aspect, light from a predetermined first wavelength to a predetermined second wavelength longer than the first wavelength is emitted.
  • the first imaging device is disposed between the first semiconductor substrate and the conductive layer and has a wavelength equal to or smaller than a predetermined third wavelength.
  • a second optical filter that shields light; and the third wavelength may be not less than the first wavelength and not more than the second wavelength.
  • the lower limit wavelength that the second optical filter shields is the lower limit wavelength that the second photoelectric conversion layer performs photoelectric conversion.
  • the following wavelengths may be used.
  • the second optical filter may shield light having at least a red wavelength.
  • the first photoelectric conversion layer and the second photoelectric conversion layer are: It is a PN junction type photoelectric conversion unit, and the thickness of the first N-type semiconductor layer forming the first photoelectric conversion layer is the same as that of the second N-type semiconductor layer forming the second photoelectric conversion layer. It may be thinner than the thickness.
  • the concentration of impurities when forming the first N-type semiconductor layer is the same as that of the second N-type semiconductor layer.
  • the concentration of the impurity may be the same as the concentration of the impurity when forming the second N-type semiconductor layer or higher than the concentration of the impurity when forming the second N-type semiconductor layer.
  • the first photoelectric conversion layer transmits light having a red wavelength.
  • Any one of the first color filter, the second color filter that transmits light of the green wavelength, or the third color filter that transmits light of the blue wavelength is in the first wavelength band.
  • the first color filter, the second color filter, and the third color filter are disposed on a light incident side, and each of the first color filter, the third color filter, and the second wavelength band may transmit at least the second wavelength band. Good.
  • the solid-state imaging device in the solid-state imaging device according to any one of the first aspect to the eighth aspect, is disposed between the first semiconductor substrate and the conductive layer. You may further provide the anti-reflective film which prevents reflection of the light which permeate
  • the gate voltage control unit that controls the predetermined voltage applied to the conductive layer. , May be further provided.
  • the gate voltage control unit is provided for each conductive layer corresponding to the second photoelectric conversion layer, or for each of the plurality of conductive layers.
  • the predetermined voltage having a different voltage value may be applied.
  • the second photoelectric conversion is performed when near infrared light is irradiated. Based on the first electrical signal photoelectrically converted by the layer and the second electrical signal photoelectrically converted by the second photoelectric conversion layer when the near-infrared light is not irradiated, the near-infrared light And an arithmetic processing unit that generates an electrical signal including only.
  • FIG. 1 is a diagram showing a schematic structure of a solid-state imaging device according to the first embodiment of the present invention.
  • the solid-state imaging device 10 according to the first embodiment includes a normal image obtained by visible light (hereinafter referred to as “visible light image”) and an image obtained by near infrared light (hereinafter, “near infrared light image”). It is a solid-state imaging device which can acquire. This near-infrared light image includes information on the distance to the subject.
  • the solid-state imaging device 10 is configured by stacking a plurality of semiconductor substrates.
  • FIG. 1 shows a solid-state imaging device 10 having a configuration in which a first semiconductor substrate 11 and a second semiconductor substrate 12 are stacked (bonded).
  • a circuit for realizing the function of the solid-state imaging device 10 is formed on each of the first semiconductor substrate 11 and the second semiconductor substrate 12.
  • a circuit for realizing the function of the solid-state imaging device 10 a pixel in which a plurality of pixels including photoelectric conversion units such as photodiodes that convert incident light (light rays) into electric signals is arranged in a two-dimensional matrix.
  • the circuit for realizing the function of the solid-state imaging device 10 includes a signal processing circuit that performs signal processing on the pixel signal processed by the column processing circuit.
  • FIG. 1 shows a vertical structure when a part of the pixel array portion formed in the solid-state imaging device 10 is viewed from the side.
  • the solid-state imaging device 10 only visible light is emitted from a normal pixel (hereinafter referred to as “visible light detection pixel”) formed on the first semiconductor substrate 11 disposed on the upper surface when viewed from the light incident side. Detect and photoelectrically convert.
  • a near-infrared light pixel hereinafter, “near-infrared light detection pixel” formed on the second semiconductor substrate 12 disposed on the lower surface when viewed from the light incident side. In this case, only near-infrared light is detected and subjected to photoelectric conversion.
  • a photoelectric conversion unit (photodiode) of a visible light detection pixel is formed by a PN junction between a first semiconductor substrate 11 that is a P-type semiconductor and an N-type semiconductor 110 that is formed on the first semiconductor substrate 11.
  • a plurality of photoelectric conversion units of the visible light detection pixels are formed in a two-dimensional matrix in the pixel array unit of the solid-state imaging device 10.
  • FIG. 1 shows a state in which three N-type semiconductors 110 are formed in the first semiconductor substrate 11, that is, three visible light detection pixels are formed in the first semiconductor substrate 11.
  • the structure of the first semiconductor substrate 11 is the same as that of a general solid-state imaging device. Accordingly, the first semiconductor substrate 11 is bonded to the second semiconductor substrate 12 so that the surface on which light is incident is a silicon layer, so-called backside illumination (BSI) type solid-state imaging. It is good also as an apparatus.
  • BSI backside illumination
  • a P-type semiconductor 120 is formed on the second semiconductor substrate 12 that is an N-type semiconductor, and an N-type semiconductor 121 is formed in the region of the P-type semiconductor 120, thereby forming an NPN semiconductor.
  • a plurality of NPN semiconductor structures are formed in a two-dimensional matrix corresponding to one or a plurality of photoelectric conversion portions of the visible light detection pixels formed in the first semiconductor substrate 11.
  • FIG. 1 shows three N-type semiconductors 110 formed in the first semiconductor substrate 11, that is, one NPN semiconductor for three visible light detection pixels formed in the first semiconductor substrate 11. The state where the structure is formed is shown.
  • the following condition is satisfied when the N-type semiconductor 121 is formed in the second semiconductor substrate 12.
  • the thickness W2 of the N-type semiconductor 121 formed in the second semiconductor substrate 12 is larger than the thickness W1 of the N-type semiconductor 110 formed in the first semiconductor substrate 11 (W2> W1).
  • the impurity concentration X2 when forming the N-type semiconductor 121 is the same as the impurity concentration X1 when forming the N-type semiconductor 110, or is lower than the impurity concentration X1 when forming the N-type semiconductor 110 ( X2 ⁇ X1).
  • the N-type semiconductor 110 formed on the first semiconductor substrate 11 and the second semiconductor substrate 12 are formed by forming N-type semiconductors on the respective semiconductor substrates so as to satisfy these conditions.
  • the position of the depletion layer of the N-type semiconductor 121 is formed deeper than the position of the depletion layer of the N-type semiconductor 110.
  • a silicon oxide film 131 that is an insulating film and a polysilicon gate electrode 132 that is a conductive layer are formed on the surface of the second semiconductor substrate 12 where the N-type semiconductor 121 is formed.
  • each of the silicon oxide film 131 and the polysilicon gate electrode 132 formed in the solid-state imaging device 10 is an oxide film and a metal electrode having characteristics of transmitting near-infrared light without blocking.
  • a silicon oxide film 131 as an insulating film and a polysilicon gate electrode 132 as a conductive layer are formed on the second semiconductor substrate 12 as an oxide film and a metal electrode.
  • the formed configuration is shown.
  • the insulating film and the conductive layer formed in the solid-state imaging device 10 are not limited to the silicon oxide film 131 and the polysilicon gate electrode 132. That is, as with the silicon oxide film 131 and the polysilicon gate electrode 132, any other material can be used as long as the insulating film and the conductive layer can realize the characteristics and function of transmitting near-infrared light without blocking.
  • a combination of the formed insulating film (oxide film) and conductive layer (metal electrode) may be formed in the solid-state imaging device 10.
  • the polysilicon gate electrode 132 and the N-type semiconductor 121 constitute a photogate photoelectric conversion unit (photodiode) 101, and a P-type junction between the P-type semiconductor 120 and the N-type semiconductor 121 is used.
  • a PN junction type photoelectric conversion unit (photodiode) 102 is formed.
  • the PN junction type photoelectric conversion unit 102 is a photoelectric conversion unit (photodiode) of a near-infrared light detection pixel.
  • FIG. 1 each of a photogate photoelectric conversion unit 101 and a PN junction photoelectric conversion unit 102 (a photoelectric conversion unit of a near-infrared light detection pixel) configured in the second semiconductor substrate 12 is illustrated. , Schematically shown by the symbol of a diode.
  • the gate voltage VG is applied to the polysilicon gate electrode 132.
  • the position of the depletion layer 103 of the photoelectric conversion unit 102 becomes deeper in the second semiconductor substrate 12 than when the gate voltage VG is not applied.
  • the near-infrared light wavelength detected by the photoelectric conversion unit 102 is nearer to be detected when the gate voltage VG is applied than the near-infrared light wavelength detected when the gate voltage VG is not applied.
  • the wavelength of infrared light is longer.
  • FIG. 1 schematically shows a state where the depletion layer 103 of the photoelectric conversion unit 102 is at a deep position indicated by a broken line by the gate voltage VG applied to the polysilicon gate electrode 132.
  • the depth of the depletion layer 103 of the photoelectric conversion unit 102 can be controlled by controlling the voltage value of the gate voltage VG. That is, by controlling the voltage value of the gate voltage VG, the wavelength of near infrared light detected by the photoelectric conversion unit 102 can be controlled.
  • the first photoelectric conversion layer (photoelectric conversion unit of the visible light detection pixel) that photoelectrically converts incident light in the first wavelength band (visible light) is in a two-dimensional matrix.
  • the formed first semiconductor substrate (first semiconductor substrate 11) and the second photoelectric conversion layer (photoelectric conversion unit 102 of the near-infrared light detection pixel) for photoelectrically converting incident light are a two-dimensional matrix.
  • the second semiconductor substrate formed in a shape, and the photoelectric conversion unit of the near-infrared light detection pixel disposed between the first semiconductor substrate 11 and the second semiconductor substrate 12 102, a conductive layer (polysilicon gate electrode 132) having conductivity corresponding to 102, and is disposed between the second semiconductor substrate 12 and the polysilicon gate electrode 132, and is provided in the photoelectric conversion unit 102 of the near-infrared light detection pixel.
  • Corresponding insulating film (silicon oxide 131) and the light transmitted through the photoelectric conversion unit of the visible light detection pixel, the polysilicon gate electrode 132, and the silicon oxide film 131 is incident on the second semiconductor substrate 12, and the polysilicon gate electrode 132 has a predetermined value.
  • the wavelength of near-infrared light is longer than the wavelength of light in the wavelength band in which the photoelectric conversion unit 102 of the near-infrared light detection pixel performs photoelectric conversion when the gate voltage VG is not applied to the polysilicon gate electrode 132.
  • An imaging device solid-state imaging device 10.
  • the photoelectric conversion unit of the visible light detection pixel and the photoelectric conversion unit 102 of the near-infrared light detection pixel are PN junction type photoelectric conversion units (photodiodes), and are capable of detecting visible light.
  • the thickness of the first N-type semiconductor layer (N-type semiconductor 110) that forms the photoelectric conversion unit of the pixel is the same as that of the second N-type semiconductor layer (N-type semiconductor layer) that forms the photoelectric conversion unit 102 of the near-infrared light detection pixel.
  • a solid-state imaging device 10 is formed that is thinner than the thickness of the semiconductor 121).
  • the concentration of impurities when forming the N-type semiconductor 110 is the same as the concentration of impurities when forming the N-type semiconductor 121, or when forming the N-type semiconductor 121.
  • a solid-state imaging device 10 having a concentration higher than the impurity concentration is configured.
  • the visible light is detected by the photoelectric conversion unit of the visible light detection pixel formed on the first semiconductor substrate 11, and the near-infrared light formed on the second semiconductor substrate 12.
  • Near-infrared light is detected by the photoelectric conversion unit 102 of the detection pixel.
  • the photoelectric conversion unit 101 illustrated in FIG. 1 functions as a pixel that detects (absorbs) a small amount of visible light transmitted through the first semiconductor substrate 11. That is, the photoelectric conversion unit 101 transmits the first semiconductor substrate 11 together with the near infrared light without being detected (absorbed) by the photoelectric conversion unit of the visible light detection pixel, and is detected by the photoelectric conversion unit 102.
  • the solid-state imaging device 10 separates visible light and near infrared light with high accuracy, detects visible light with the photoelectric conversion unit of the visible light detection pixel, and detects the photoelectric of the near infrared light detection pixel. Only near infrared light can be detected by the converter 102.
  • the electrical signal (pixel signal) obtained by photoelectrically converting the visible light detected by the photoelectric conversion unit 101 and slightly transmitted through the first semiconductor substrate 11 may be discarded.
  • One N-type semiconductor 121 that is, one near-infrared light detection pixel is formed for four visible light detection pixels adjacent to each other in the vertical and horizontal directions, which are handled as one set in the apparatus. The configuration of the case was shown. However, the near infrared light detection pixel may be formed corresponding to each visible light detection pixel, that is, one near infrared light detection pixel may be formed for one visible light detection pixel. .
  • a pixel signal detected and photoelectrically converted by the photoelectric conversion unit 101 corresponding to each near-infrared light detection pixel is not discarded, and a part of the visible light pixel signal photoelectrically converted by the corresponding visible light detection pixel You may make it the structure used as.
  • the solid-state imaging device 10 a color filter (color filter) corresponding to the wavelength (color) of visible light detected by each visible light detection pixel can be attached. Thereby, the solid-state imaging device 10 can acquire a color visible light image and a near-infrared image.
  • the configuration of the solid-state imaging device 10 illustrated in FIG. 1 is a configuration for acquiring a monochrome visible light image and a near-infrared image, but a color visible-light image and a near-infrared image with a similar configuration. You can also get
  • FIG. 2 is a diagram showing a schematic structure of a solid-state imaging device according to the second embodiment of the present invention.
  • the solid-state imaging device 20 according to the second embodiment has a configuration in which a color filter 111 is attached to the solid-state imaging device 10 according to the first embodiment.
  • FIG. 2 also shows a part of the pixel array portion formed in the solid-state imaging device 20 as a vertical structure when viewed from the side.
  • the solid-state imaging device 20 of the second embodiment is also a solid-state imaging device that can acquire a visible light image and a near-infrared light image, like the solid-state imaging device 10 of the first embodiment.
  • each of the visible light detection pixel photoelectric conversion portions (the N-type semiconductor 110 formed in the first semiconductor substrate 11) formed on the first semiconductor substrate 11 is positioned at each position.
  • a color filter 111 that transmits visible light having a wavelength (color) detected by each visible light detection pixel is attached. For this reason, the solid-state imaging device 20 can acquire a color visible light image and a near-infrared image.
  • the color filter 111 attached to the position of each visible light detection pixel of the solid-state imaging device 20 has a characteristic of transmitting both visible light and near infrared light having a corresponding wavelength (color).
  • FIG. 2 shows a color filter 111G that transmits both visible light and near infrared light having a wavelength corresponding to green (G), and visible light and near infrared light having a wavelength corresponding to blue (B).
  • G green
  • B visible light and near infrared light having a wavelength corresponding to blue
  • the first photoelectric conversion layer (photoelectric conversion unit of the visible light detection pixel) includes a first color filter (color filter 111R) that transmits light having a red (R) wavelength, and green. Any one color filter of the second color filter (color filter 111G) that transmits light of the wavelength (G) or the third color filter (color filter 111B) that transmits light of the wavelength of blue (B) (Color filter 111) is disposed on the side on which light (visible light) in the first wavelength band is incident, and each of color filter 111R, color filter 111G, and color filter 111B further includes at least a second wavelength band.
  • the solid-state imaging device (solid-state imaging device 20) which transmits the light (near-infrared light) is comprised.
  • the solid-state imaging device 20 only the green (G) visible light is detected by the photoelectric conversion unit of the visible light detection pixel to which the color filter 111G formed on the first semiconductor substrate 11 is attached. Only visible light of blue (B) is detected by the photoelectric conversion unit of the visible light detection pixel to which the filter 111B is attached, and red (R) visible light is detected by the photoelectric conversion unit of the visible light detection pixel to which the color filter 111R is attached. Only detect.
  • the visible light detection pixel photoelectric conversion unit 102 formed on the second semiconductor substrate 12 has the color filter 111 ⁇ / b> G, the color filter 111 ⁇ / b> B, and the color filter 111 ⁇ / b> R attached thereto. Near infrared light transmitted through the light detection pixel is detected.
  • the photoelectric conversion unit 101 transmits green (G) and blue that have been transmitted together with near-infrared light without being detected (absorbed) by the photoelectric conversion unit of each visible light detection pixel. It functions as a pixel that detects (absorbs) and suppresses slight visible light of (B) and red (R).
  • the solid-state imaging device 20 separates visible light and near-infrared light of each wavelength (color) with high accuracy, and the photoelectric conversion unit of the visible light detection pixel has each wavelength (color). Visible light can be detected, and only near infrared light can be detected by the photoelectric conversion unit 102 of the near infrared light detection pixel.
  • FIG. 3 is a diagram showing a schematic structure of a solid-state imaging device according to the third embodiment of the present invention.
  • the solid-state imaging device 30 of the third embodiment is also configured by stacking a plurality of semiconductor substrates.
  • solid-state imaging is performed in a solid-state imaging device 30 having a configuration in which a first semiconductor substrate 11 and a second semiconductor substrate 12 are stacked (bonded).
  • a vertical structure is shown when a part of the pixel array section formed in the device 30 is viewed from the side.
  • the configuration of the first semiconductor substrate 11 and the second semiconductor substrate 12 constituting the solid-state imaging device 30 includes the first semiconductor substrate 11 and the second semiconductor in the solid-state imaging device 10 of the first embodiment.
  • the same components as those of the substrate 12 are included. Therefore, in the following description, only the difference between the solid-state imaging device 30 and the solid-state imaging device 10 of the first embodiment will be described, and the same configuration as the solid-state imaging device 10 of the first embodiment is the same. A detailed description is omitted by adding symbols.
  • the solid-state imaging device 30 of the third embodiment is also a solid-state imaging device that can acquire a visible light image and a near-infrared light image, like the solid-state imaging device 10 of the first embodiment.
  • the silicon oxide film 133 is formed between the first semiconductor substrate 11 and the polysilicon gate electrode 132 formed on the second semiconductor substrate 12.
  • This silicon oxide film 133 is an antireflection film that prevents reflection of light at the interface with the first semiconductor substrate 11 on the side from which visible light and near infrared light that have passed through the photoelectric conversion unit of the visible light detection pixel are emitted. Function as. Thereby, all visible light and near infrared light transmitted through the first semiconductor substrate 11 are incident on the second semiconductor substrate 12.
  • the silicon oxide film 131 also serves as an antireflection film for preventing reflection of light at the interface between the second semiconductor substrate 12 on the side where visible light and near infrared light transmitted through the first semiconductor substrate 11 are incident. It is functioning. That is, the solid-state imaging device 30 reflects light between the first semiconductor substrate 11 and the second semiconductor substrate 12 by the multilayer structure of the silicon oxide film 131, the polysilicon gate electrode 132, and the silicon oxide film 133. It is preventing.
  • the first photoelectric conversion layer (visible light detection pixel) is disposed between the first semiconductor substrate (first semiconductor substrate 11) and the conductive layer (polysilicon gate electrode 132).
  • the solid-state imaging device (solid-state imaging device 30) further includes an antireflection film (silicon oxide film 133) that prevents reflection of light transmitted through the photoelectric conversion unit).
  • the visible light is detected by the photoelectric conversion unit of the visible light detection pixel formed on the first semiconductor substrate 11, Only the near-infrared light is detected by the photoelectric conversion unit 102 of the near-infrared light detection pixel formed on the second semiconductor substrate 12.
  • the solid-state imaging device 30 by forming the silicon oxide film 133, the first semiconductor substrate 11 and the second semiconductor layer 11 have a multilayer structure of the silicon oxide film 131, the polysilicon gate electrode 132, and the silicon oxide film 133.
  • An antireflection film is formed between the semiconductor substrate 12 and the semiconductor substrate 12.
  • the solid-state imaging device 30 transmits more visible light and near-infrared light to the second semiconductor substrate 12 than the solid-state imaging device 10 of the first embodiment, and detects near-infrared light. More near infrared light can be detected by the photoelectric conversion unit 102 of the pixel.
  • FIG. 4 is a diagram showing a schematic structure of a solid-state imaging device according to the fourth embodiment of the present invention.
  • the solid-state imaging device 40 according to the fourth embodiment is configured to vary the voltage value of the gate voltage VG applied to the polysilicon gate electrode 132 in the solid-state imaging device 10 according to the first embodiment.
  • FIG. 4 also shows a vertical structure when a part of the pixel array portion formed in the solid-state imaging device 40 is viewed from the side.
  • the solid-state imaging device 40 of the fourth embodiment is also a solid-state imaging device that can acquire a visible light image and a near-infrared light image, like the solid-state imaging device 10 of the first embodiment.
  • the gate voltage control unit 140 that changes the voltage value of the gate voltage VG applied to the polysilicon gate electrode 132 formed at the position where the N-type semiconductor 121 is formed in the second semiconductor substrate 12 is provided. I have.
  • the length is controlled to the depth of the depletion layer 103 of the photoelectric conversion unit 102, that is, the wavelength of near infrared light detected by the photoelectric conversion unit 102. be able to.
  • the depth of the depletion layer 103 of the photoelectric conversion unit 102 schematically represented by a broken line in FIG. The depth can be controlled in accordance with the wavelength of near infrared light desired to be detected by the converter 102.
  • the position of the depletion layer 103 is moved to a position deeper than the current value, so that the photoelectric conversion unit 102 has a longer wavelength. It can be controlled to detect infrared light. Conversely, by reducing the voltage value of the gate voltage VG from the current voltage value, the position of the depletion layer 103 is moved to a position shallower than the current value, and the photoelectric conversion unit 102 has near-infrared light having a shorter wavelength. It can also be controlled to detect.
  • the method for changing the voltage value of the gate voltage VG output from the gate voltage control unit 140 is not particularly specified.
  • the gate voltage control unit 140 is provided in the second semiconductor substrate 12 (may be in the first semiconductor substrate 11), and the gate voltage control unit 140 is connected to the control unit outside the solid-state imaging device 40.
  • the gate voltage VG having a voltage value set according to the control may be generated, that is, the voltage value of the gate voltage VG may be changed (controlled) according to control from an external control unit.
  • the gate voltage VG having a voltage value generated outside the solid-state imaging device 40 may be directly input.
  • the solid-state imaging device 40 similarly to the solid-state imaging device 10 of the first embodiment, the visible light is detected by the photoelectric conversion unit of the visible light detection pixel formed on the first semiconductor substrate 11, Only the near-infrared light is detected by the photoelectric conversion unit 102 of the near-infrared light detection pixel formed on the second semiconductor substrate 12.
  • the gate voltage control unit 140 changes the voltage value of the gate voltage VG applied to the polysilicon gate electrode 132. Thereby, the solid-state imaging device 40 can acquire a near-infrared light image obtained by detecting near-infrared light having a desired wavelength.
  • the voltage value of the gate voltage VG applied to the polysilicon gate electrode 132 is set to the same value in all near infrared light detection pixels, that is, the photoelectric values of all near infrared light detection pixels.
  • the converter 102 is configured to detect near infrared light having the same wavelength.
  • the gate voltage VG having a different voltage value may be applied to each near-infrared light pixel or a predetermined set of near-infrared light detection pixels. That is, the gate voltage VG having a different voltage value may be applied to each polysilicon gate electrode 132 or a predetermined set of polysilicon gate electrodes 132.
  • near-infrared light having a different wavelength can be detected for each near-infrared light pixel or for each set of predetermined near-infrared light detection pixels.
  • FIG. 5 is a diagram illustrating a schematic structure of a modification of the solid-state imaging device according to the fourth embodiment of the present invention.
  • FIG. 5 also shows a schematic structure of a modification of the solid-state imaging device 40 of the fourth embodiment as a vertical structure when a part of the pixel array unit is viewed from the side.
  • the solid-state imaging device 40 according to the modification of the fourth embodiment illustrated in FIG. 5 is referred to as a “solid-state imaging device 41”.
  • a gate voltage VG having a different voltage value is applied to each near-infrared light detection pixel corresponding to a set of visible light detection pixels including four visible light detection pixels adjacent in the vertical and horizontal directions).
  • the near-infrared light detection pixel corresponding to one set of visible light detection pixels is referred to as “near-infrared light detection pixel a”, and the near-infrared light corresponding to the other set of visible light detection pixels.
  • the detection pixel is shown as “near infrared light detection pixel b”.
  • the gate voltage VGa is applied to the polysilicon gate electrode 132a corresponding to the near infrared light detection pixel a
  • the gate voltage VGb is applied to the polysilicon gate electrode 132b corresponding to the near infrared light detection pixel b. is doing.
  • the voltage value of the gate voltage VGa is lower than the voltage value of the gate voltage VGb, that is, VGa ⁇ VGb.
  • the position of the depletion layer 103b is deeper than the position of the depletion layer 103a.
  • the photoelectric conversion unit 102b of the near infrared light detection pixel b detects near infrared light having a longer wavelength than the photoelectric conversion unit 102a of the near infrared light detection pixel a. Accordingly, the solid-state imaging device 41 has a near-infrared light image having a wavelength detected by the photoelectric conversion unit 102a of the near-infrared light detection pixel a and a wavelength detected by the photoelectric conversion unit 102b of the near-infrared light detection pixel b. Two near infrared light images with a near infrared light image can be acquired.
  • the solid-state imaging device further includes a gate voltage control unit (gate voltage control unit 140) that controls a predetermined voltage (gate voltage VG) applied to the conductive layer (polysilicon gate electrode 132).
  • gate voltage control unit 140 controls a predetermined voltage (gate voltage VG) applied to the conductive layer (polysilicon gate electrode 132).
  • the gate voltage control unit 140 is provided for each of the polysilicon gate electrodes 132 corresponding to the second photoelectric conversion layer (the photoelectric conversion unit 102 of the near-infrared light detection pixel), or a plurality of the gate voltage control units 140.
  • a solid-state imaging device 40 that applies gate voltages VG having different voltage values is configured for each polysilicon gate electrode 132.
  • the visible light detection pixel that detects visible light by forming the N-type semiconductor 110 on the first semiconductor substrate 11.
  • a near-infrared light detection pixel that detects near-infrared light by forming an NPN semiconductor structure, a silicon oxide film 131, and a polysilicon gate electrode 132 on the second semiconductor substrate 12
  • the photoelectric conversion unit 102 is configured.
  • the photogate photoelectric conversion unit 101 includes the polysilicon gate electrode 132 and the N-type semiconductor 121 formed on the second semiconductor substrate 12. Configure.
  • the solid-state imaging devices according to the first to fourth embodiments of the present invention slight visible light transmitted through the first semiconductor substrate 11 is detected and suppressed by the photoelectric conversion unit 101.
  • visible light and near infrared light are separated with high accuracy, and visible light is detected by the photoelectric conversion unit of the visible light detection pixel. Only the near infrared light can be detected by the photoelectric conversion unit 102 of the near infrared light detection pixel.
  • both a visible light image and a near-infrared light image are obtained simultaneously, and each image is used. Can be executed.
  • An imaging system (imaging application) equipped with a solid-state imaging device detects near-infrared light of a specific wavelength, such as near-infrared light of 850 nm or 940 nm irradiated by near-infrared light illumination (for example, LED illumination).
  • near-infrared light illumination for example, LED illumination.
  • a solid-state imaging device mounted in such an imaging system (imaging application) preferably has a configuration for detecting near-infrared light having a desired wavelength.
  • FIG. 6 is a diagram showing a schematic structure of a solid-state imaging device according to the fifth embodiment of the present invention.
  • the solid-state imaging device 50 according to the fifth embodiment is a solid-state imaging device that detects visible light and near-infrared light having a specific wavelength by including the optical filter 150 in the solid-state imaging device 10 according to the first embodiment. is there.
  • FIG. 6 also shows a part of the pixel array portion formed in the solid-state imaging device 50 as a vertical structure when viewed from the side.
  • the optical filter 150 has a characteristic of shielding (absorbing or reflecting) only light having a predetermined wavelength out of light (light rays) incident on the solid-state imaging device 50. More specifically, the optical filter 150 is configured to detect near-infrared light detection pixels from near-infrared light having a predetermined wavelength that is equal to or greater than an upper limit wavelength that can be detected by the visible light detection pixels included in the solid-state imaging device 50. Is a characteristic that blocks light up to visible light having a predetermined wavelength equal to or less than the lower limit wavelength that can be detected.
  • the light transmission characteristic of the optical filter 150 is such that near-infrared light having a predetermined wavelength longer than the upper limit wavelength that can be detected by the visible light detection pixel provided in the solid-state imaging device 50 and near-infrared light. This is a characteristic that transmits both visible light having a predetermined wavelength shorter than the lower limit wavelength that can be detected by the light detection pixel.
  • the upper limit wavelength of visible light and the lower limit wavelength of near infrared light transmitted by the optical filter 150 are the spectral sensitivity of the photoelectric conversion unit of the visible light detection pixel formed in the solid-state imaging device 50 and the near infrared. This is determined in accordance with the spectral sensitivity of the photoelectric conversion unit 102 of the light detection pixel.
  • FIG. 7 is a diagram illustrating the transmission characteristics of the optical filter 150 provided in the solid-state imaging device 50 according to the fifth embodiment of the present invention.
  • FIG. 7 shows the light transmission characteristic A1 of the optical filter 150, the spectral sensitivity characteristic B1 of the photoelectric conversion unit of the visible light detection pixel, and the photoelectric conversion unit of the near-infrared light detection pixel with the wavelength of light as the horizontal axis.
  • An example of the spectral sensitivity characteristic C1 of 102 is shown by a graph.
  • the vertical axis represents the transmittance and sensitivity with respect to the wavelength of light shown on the horizontal axis, but in FIG. 7, each graph is shown separately for ease of explanation. Therefore, each graph does not represent the absolute height of transmittance or sensitivity.
  • the spectral sensitivity characteristic of the photoelectric conversion unit of the visible light detection pixel and the spectral sensitivity characteristic of the photoelectric conversion unit 102 of the near-infrared light detection pixel are the spectral sensitivity characteristic B1 and the spectral sensitivity characteristic C1 shown in FIG.
  • the transmission characteristic of 150 light is set to the transmission characteristic A1.
  • the optical filter 150 is transmitted.
  • the lower limit wavelength of the infrared light is set to a wavelength equal to or higher than the wavelength f_high at which the sensitivity of the photoelectric conversion unit of the visible light detection pixel becomes zero. That is, the rising position of the graph in the light transmission characteristic A1 of the optical filter 150 shown in FIG. 7 is set to a position longer than the wavelength f_high.
  • the sensitivity of the photoelectric conversion unit 102 of the near-infrared light detection pixel becomes zero from the wavelength f_low (for example, 700 nm), and the sensitivity is zero at a wavelength shorter than the wavelength f_low, visible light transmitted through the optical filter 150 is transmitted.
  • the optical filter 150 makes zero the transmittance in a wavelength range in which both the photoelectric conversion unit of the visible light detection pixel and the photoelectric conversion unit 102 of the near-infrared light detection pixel have sensitivity to light. . That is, light in the range from at least a wavelength longer than the wavelength f_low to a wavelength shorter than the wavelength f_high is shielded as in the light transmission characteristic A1 of the optical filter 150 shown in FIG.
  • This transmission characteristic A1 can be realized by making the optical filter 150 a so-called notch type (band illuminate type) optical filter.
  • the solid-state imaging device 50 by setting the light transmission characteristic of the optical filter 150 to the transmission characteristic A1, in the solid-state imaging device 50, light (near infrared light) having a wavelength of f_low or more by the photoelectric conversion unit of the visible light detection pixel is detected. Detection and detection of light (visible light) having a wavelength less than or equal to wavelength f_high by the photoelectric conversion unit 102 of the near-infrared light detection pixel are not performed, and visible light and near-infrared light are separated with higher accuracy. , Each light can be detected.
  • the fifth embodiment from a predetermined first wavelength (wavelength f_low (for example, 700 nm)) to a predetermined second wavelength (wavelength f_high (for example, 800 nm)) longer than the wavelength f_low.
  • a first optical filter optical filter 150 that shields light is further provided, and the first semiconductor substrate (first semiconductor substrate 11) includes the optical filter 150 and the second semiconductor substrate (second semiconductor substrate 12).
  • the upper limit wavelength of the first wavelength band (the upper limit wavelength of visible light to be transmitted) is shorter than the wavelength f_low, and the lower limit wavelength of the second wavelength band (transmits)
  • the lower limit wavelength of near infrared light is a solid-state imaging device (solid-state imaging device 50) having a wavelength longer than the wavelength f_high.
  • the solid-state imaging device 50 it is determined based on the spectral sensitivity characteristic B1 of the photoelectric conversion unit of the visible light detection pixel and the spectral sensitivity characteristic C1 of the photoelectric conversion unit 102 of the near-infrared light detection pixel.
  • An optical filter 150 having a transmission characteristic is provided.
  • the solid-state imaging device 50 separates visible light and near infrared light with high accuracy, detects visible light with the photoelectric conversion unit of the visible light detection pixel, and detects the photoelectric of the near infrared light detection pixel.
  • the conversion unit 102 can detect only near-infrared light having a specific wavelength.
  • the solid-state imaging device 50 including the optical filter 150 having the transmission characteristic A1 illustrated in FIG. 7 visible light having a wavelength of f_low (for example, 700 nm) or less and near wavelengths having a wavelength of f_high (for example, 800 nm) or more. It is possible to detect light of each wavelength by separating it into infrared light with higher accuracy.
  • the imaging system (imaging application) equipped with the solid-state imaging device 50 has a function of detecting near-infrared light having a specific wavelength such as 850 nm and 940 nm irradiated by near-infrared light illumination (for example, LED illumination). Can be realized.
  • the upper limit wavelength of visible light and the lower limit wavelength of near infrared light transmitted through the optical filter 150 are the spectral sensitivities of the photoelectric conversion units of the visible light detection pixels formed in the solid-state imaging device 50 as described above.
  • the spectral sensitivity of the photoelectric conversion unit 102 of the near-infrared light detection pixel it is necessary to meet the specifications of the imaging system (imaging application) in which the solid-state imaging device 50 is mounted.
  • specifications in the imaging system (imaging application) a wavelength range of an image to be acquired (captured), a wavelength of light irradiated by an illumination device (for example, LED illumination) provided in the imaging system (imaging application), and the like There is.
  • FIG. 8 is a diagram illustrating the relationship between the transmission characteristics of the optical filter 150 provided in the solid-state imaging device 50 according to the fifth embodiment of the present invention and the imaging system.
  • FIG. 8 is a graph showing the characteristics of the optical filter 150 shown in FIG. 7 together with the wavelength specifications in the imaging system described below.
  • an imaging system equipped with the solid-state imaging device 50 includes near-infrared light illumination (for example, LED illumination), and near-infrared light (pulsed light) irradiated to the space to be imaged is reflected by the subject and returned.
  • a system that obtains information on the distance between the imaging system and the subject by the principle of time-of-flight (TOF: Time of Flight) method or triangulation method, or near infrared light illumination
  • TOF Time of Flight
  • the transmission characteristic A1 of the optical filter 150 shown in FIG. Check if it meets the requirements.
  • the lower limit wavelength f_high of near infrared light transmitted through the optical filter 150 is shorter than the wavelength f_light of near infrared light irradiated by the near infrared light illumination.
  • the solid-state imaging device 50 acquires a normal visible light image by the photoelectric conversion unit of the visible light detection pixel, and a near-infrared light image including distance information by the photoelectric conversion unit 102 of the near-infrared light detection pixel ( Range image) can be acquired. Therefore, the transmission characteristic A1 of the optical filter 150 shown in FIG. 8 is suitable for an imaging system such as a system that acquires information about the distance to the subject or a surveillance camera.
  • the imaging system equipped with the solid-state imaging device 50 is a medical system that simultaneously images the contrast of the blood vessel, subcutaneous, brain, and the like and the surface of the living body, or security that simultaneously images the vein and the fingerprint.
  • Such an imaging system also includes near-infrared light illumination.
  • the transmission characteristic A1 of the optical filter 150 shown in FIG. 8 is Check if it is compatible with the imaging system.
  • the lower limit wavelength f_high of near infrared light transmitted through the optical filter 150 is shorter than the wavelength f_light of near infrared light irradiated by the near infrared light illumination.
  • the solid-state imaging device 50 acquires a visible light image of the surface of the living body by the photoelectric conversion unit of the visible light detection pixel, and acquires a near infrared light image of a blood vessel or the like by the photoelectric conversion unit 102 of the near infrared light detection pixel. Can be acquired.
  • the wavelength of the near infrared light detected by the photoelectric conversion unit 102 of the near infrared light detection pixel is the polysilicon gate electrode as in the solid-state imaging device 40 of the fourth embodiment shown in FIGS. 4 and 5. It can be changed by changing the voltage value of the gate voltage VG applied to 132. Therefore, the transmission characteristic A1 of the optical filter 150 shown in FIG. 8 is suitable for an imaging system such as a medical system or a security system for imaging a blood vessel or the like.
  • an imaging system equipped with the solid-state imaging device 50 administers a fluorescent agent such as ICG (Indocyanine Green) to the human body to diagnose cancer and the like and emits fluorescence by excitation with near infrared light
  • a fluorescent agent such as ICG (Indocyanine Green)
  • ICG Indocyanine Green
  • Such an imaging system also includes near-infrared light illumination, but the solid-state imaging device 50 has near-infrared light irradiated by the near-infrared light illumination, that is, near-infrared light for excitation (excitation). It is desired to detect only near-infrared light of a specific protein that emits fluorescence without detecting (light).
  • the wavelength f_ext of the excitation light irradiated by the near-infrared light illumination provided in the imaging system to excite the fluorescence emission is 770 nm, and the wavelength at which the specific protein emits fluorescence is 810 nm (the following In the description, if “wavelength f_light” is assumed), it is confirmed whether or not the transmission characteristic A1 of the optical filter 150 shown in FIG. 8 (FIG. 7) is suitable for the imaging system.
  • the wavelength f_ext of the excitation light irradiated in the imaging system is a wavelength between the upper limit wavelength f_low of visible light transmitted through the optical filter 150 and the lower limit wavelength f_high of near infrared light transmitted through the optical filter 150.
  • the optical filter 150 blocks light in a range from a wavelength longer than the wavelength f_low to a wavelength shorter than the wavelength f_high, and thus blocks the excitation light emitted by the imaging system. Further, the lower limit wavelength f_high of the near-infrared light transmitted through the optical filter 150 is shorter than the wavelength f_light of the near-infrared light emitted by fluorescence of a specific protein. For this reason, the solid-state imaging device 50 can acquire a near-infrared light image including only near-infrared light that does not include excitation light and emits fluorescence, in the photoelectric conversion unit 102 of the near-infrared light detection pixel. Therefore, the transmission characteristic A1 of the optical filter 150 shown in FIG. 8 is suitable for an imaging system such as a medical system that diagnoses using a fluorescent agent that is excited by near-infrared light and emits fluorescence.
  • the solid-state imaging device 50 is mounted on various imaging systems (imaging applications) in order to separate visible light and near-infrared light with high accuracy, and an imaging system (imaging application) including the solid-state imaging device 50 is mounted. ) Various functions can be realized.
  • the optical filter 150 is added to the solid-state imaging device 10 of the first embodiment in the manufacturing process of the solid-state imaging device 50.
  • a method of applying can be considered.
  • the method for realizing the configuration of the solid-state imaging device 50 is not limited to this method.
  • the configuration of the solid-state imaging device 50 may be realized by inserting the optical filter 150 between the device 50 and the device 50.
  • FIG. 9 is a diagram illustrating a schematic structure of a solid-state imaging device according to the sixth embodiment of the present invention.
  • the solid-state imaging device 60 of the sixth embodiment is also configured by stacking a plurality of semiconductor substrates.
  • solid-state imaging is performed in the solid-state imaging device 60 having a configuration in which the first semiconductor substrate 11 and the second semiconductor substrate 12 are stacked (bonded).
  • the vertical structure is shown when a part of the pixel array portion formed in the device 60 is viewed from the side.
  • the configuration of the first semiconductor substrate 11 and the second semiconductor substrate 12 constituting the solid-state imaging device 60 includes the first semiconductor substrate 11 and the second semiconductor in the solid-state imaging device 50 of the fifth embodiment.
  • the same components as those of the substrate 12 are included. Therefore, in the following description, only the difference in the solid-state imaging device 60 from the solid-state imaging device 50 of the fifth embodiment will be described, and the same configuration as that of the solid-state imaging device 50 of the fifth embodiment is the same. A detailed description is omitted by adding symbols.
  • the solid-state imaging device 60 of the sixth embodiment is also a solid-state imaging device that can acquire a visible light image and a near-infrared light image, similarly to the solid-state imaging device 50 of the fifth embodiment.
  • the solid-state imaging device 60 includes an optical filter 150 as in the solid-state imaging device 50 of the fifth embodiment. Further, in the solid-state imaging device 60, the optical filter 160 is formed between the first semiconductor substrate 11 and the polysilicon gate electrode 132 formed on the second semiconductor substrate 12.
  • the optical filter 160 has a characteristic of shielding (absorbing or reflecting) visible light having a predetermined wavelength or less transmitted through the first semiconductor substrate 11 together with near-infrared light.
  • the optical filter 160 is provided as a function for more reliably suppressing visible light incident on the second semiconductor substrate 12.
  • the optical filter 160 is more effective when the photoelectric conversion unit 102 of the near-infrared light detection pixel is sensitive to a wavelength shorter than the upper limit wavelength of visible light transmitted through the optical filter 150. It functions, and only the near infrared light can be detected more accurately by the photoelectric conversion unit 102 of the near infrared light detection pixel.
  • FIG. 10 is a diagram illustrating the transmission characteristics of the optical filters (the optical filter 150 and the optical filter 160) included in the solid-state imaging device 60 according to the sixth embodiment of the present invention.
  • FIG. 10 shows the light transmission characteristic A1 of the optical filter 150, the spectral sensitivity characteristic B1 of the photoelectric conversion unit of the visible light detection pixel, and the photoelectric conversion unit of the near-infrared light detection pixel with the wavelength of light as the horizontal axis.
  • FIG. 10 also shows an example of the light transmission characteristic E2 at the position of the visible light detection pixel, the light characteristic F2 transmitted through the first semiconductor substrate 11, and the light characteristic G2 transmitted through the optical filter 160.
  • the graph is also shown.
  • the vertical axis represents the transmittance and the sensitivity with respect to the wavelength of light indicated on the horizontal axis, but also in FIG. 10, the characteristics of the fifth embodiment shown in FIG. Since each graph is shown separately like the graph, it does not represent the absolute height of transmittance or sensitivity.
  • the light transmission characteristic A1 of the optical filter 150 shown in FIG. 10 and the spectral sensitivity characteristic B1 of the photoelectric conversion unit of the visible light detection pixel are the same as the respective characteristics shown in FIG. Description is omitted.
  • the wavelength f_high (for example, 800 nm), which is the lower limit wavelength of near-infrared light transmitted through the optical filter 150, like the characteristic F2 of light transmitted through the first semiconductor substrate 11 shown in FIG.
  • visible light having a wavelength equal to or shorter than the wavelength f_low (for example, 700 nm) that is the upper limit wavelength of visible light transmitted through the optical filter 150 is incident on the second semiconductor substrate 12.
  • the photoelectric conversion unit 102 of the near infrared light detection pixel is the spectral sensitivity characteristic C2 illustrated in FIG. 10, the photoelectric conversion unit 102 of the near infrared light detection pixel is There is a possibility of detecting visible light that is not shielded. That is, when the photoelectric conversion unit 102 of the near-infrared light detection pixel is sensitive to light having a wavelength equal to or lower than the wavelength f_low that is the upper limit wavelength of visible light transmitted through the optical filter 150, There is a possibility that visible light having a wavelength of f_low or less (see the range surrounded by a circle in FIG. 10) leaks into the near-infrared light detected by the conversion unit 102.
  • the photoelectric conversion unit 102 of the near-infrared light detection pixel detects visible light having a wavelength equal to or shorter than the wavelength f_low, the photoelectric conversion unit 102 of the near-infrared light detection pixel detects only the near-infrared light. It does not mean that
  • the light transmission characteristic of the optical filter 160 is changed to the transmission characteristic D2. More specifically, the lower limit wavelength of near infrared light transmitted through the optical filter 160 is set to be longer than the wavelength f_low that is the upper limit wavelength of visible light transmitted through the optical filter 150. The lower limit wavelength of near infrared light transmitted through the optical filter 160 is shorter than the wavelength f_high which is the lower limit wavelength of near infrared light transmitted through the optical filter 150. That is, the transmittance of visible light having a wavelength of f_low or less is made zero by the optical filter 160, and the visible light incident on the second semiconductor substrate 12 is shielded by the optical filter 150 and the optical filter 160.
  • the optical filter 150 and the optical filter 160 allow the near-infrared light transmitted through the optical filter 150 to pass through the second semiconductor substrate 12 as in the characteristic G2 of the light transmitted through the optical filter 160 shown in FIG. Only near infrared light having a wavelength equal to or higher than the lower limit wavelength f_high is incident.
  • the photoelectric conversion unit 102 of the near-infrared light detection pixel formed on the second semiconductor substrate 12 of the solid-state imaging device 60 has the wavelength Detection of light having a wavelength shorter than f_high (visible light) is not performed.
  • f_high visible light
  • the solid-state imaging device 60 similarly to the solid-state imaging device 50 of the fifth embodiment, visible light and near-infrared light are separated with high accuracy, and photoelectric conversion of visible light detection pixels is performed. Visible light can be detected by the unit, and only near-infrared light having a specific wavelength can be detected by the photoelectric conversion unit 102 of the near-infrared light detection pixel.
  • the solid-state imaging device 60 includes an optical filter 160 having a transmission characteristic determined based on the spectral sensitivity characteristic C2 of the photoelectric conversion unit 102 of the near-infrared light detection pixel.
  • the solid-state imaging device 60 With such a configuration, in the solid-state imaging device 60, the slight visible light transmitted through the first semiconductor substrate 11 is suppressed before entering the second semiconductor substrate 12, and the slight visible light generated by the photoelectric conversion unit 101 is suppressed. The repression of will be made more certain. Thereby, in the solid-state imaging device 60, visible light and near-infrared light are separated with higher accuracy, and only the near-infrared light having a specific wavelength is detected by the photoelectric conversion unit 102 of the near-infrared light detection pixel. be able to.
  • the solid-state imaging device 60 including the optical filter 150 having the transmission characteristic A1 and the optical filter 160 having the transmission characteristic D2 illustrated in FIG. 10, visible light having a wavelength of f_low (for example, 700 nm) or less and the wavelength f_high Detection of each light with near infrared light having a wavelength of (for example, 800 nm) or more can be performed with higher accuracy than the solid-state imaging device 50 of the fifth embodiment.
  • an imaging system such as a monitoring camera, for example, 850 nm or 940 nm irradiated with near-infrared light illumination (for example, LED illumination) often used in the monitoring camera or the like.
  • the near-infrared light can be separated and detected with high accuracy, and a higher-definition near-infrared light image can be obtained.
  • the wavelength of near-infrared light emitted by fluorescence and the near-infrared light illumination of the near-infrared imaged in the medical system can be separated and detected with high accuracy, and a higher-definition near-infrared light image can be obtained.
  • the optical filter 160 is formed in, for example, a manufacturing process for forming the second semiconductor substrate 12, that is, a semiconductor manufacturing process, as shown in FIG.
  • the transmission characteristic in the range of transmitting near-infrared light is shown in a mountain shape.
  • the method of forming the optical filter 160 is not limited to the method of forming in the semiconductor manufacturing process.
  • an optical filter having the same characteristics as the optical filter 160 is manufactured separately from the semiconductor manufacturing process, and this optical filter is bonded in the process of laminating the first semiconductor substrate 11 and the second semiconductor substrate 12.
  • the optical filter 160 may be used.
  • the light transmission characteristic D2 of the optical filter 160 is considered to be a transmission characteristic in which the transmittance at a wavelength that transmits near-infrared light rises steeply in the same manner as the light transmission characteristic A1 of the optical filter 150.
  • the optical filter 160 is formed in the solid-state imaging device 50 of the fifth embodiment in which the solid-state imaging device 10 of the first embodiment is provided with the optical filter 150 .
  • the optical filter 160 is formed of silicon oxide between the first semiconductor substrate 11 and the polysilicon gate electrode 132 formed on the second semiconductor substrate 12 as in the solid-state imaging device 30 of the third embodiment.
  • the film 133 can also be formed on a solid-state imaging device on which an antireflection film is formed.
  • the optical filter 160 is formed between the silicon oxide film 133 and the polysilicon gate electrode 132 formed on the second semiconductor substrate 12.
  • the optical filter 160 has zero transmittance for light having a wavelength longer than the wavelength f_low, that is, a high-pass optical filter.
  • the transmission characteristic of the optical filter 160 is such that visible light having a wavelength equal to or lower than the upper limit wavelength of visible light transmitted through the optical filter 150 may be detected by the photoelectric conversion unit 102 of the near-infrared light detection pixel. Any transmission characteristic that can shield light may be used. Therefore, in the optical filter 160, there is no particular limitation on the transmission characteristics for light having a wavelength shorter than the lower limit wavelength of sensitivity of the photoelectric conversion unit 102 of the near-infrared light detection pixel.
  • the light passes through the optical filter 160 and is incident on the second semiconductor substrate 12. However, this does not affect the detection of near-infrared light in the photoelectric conversion unit 102 of the near-infrared light detection pixel.
  • the optical filter 160 can detect visible light having a predetermined wavelength that is equal to or less than the lower limit wavelength of the sensitivity of the photoelectric conversion unit 102 of the near-infrared light detection pixel.
  • Any transmission characteristic can be used as long as it can block near-infrared light having a wavelength at any position within a range from a wavelength longer than the wavelength f_low to a wavelength shorter than the wavelength f_high.
  • the optical filter 160 may be a so-called notch type (band illuminate type) optical filter similar to the optical filter 150.
  • FIG. 11 is a diagram illustrating another transmission characteristic of the optical filter 160 provided in the solid-state imaging device 60 according to the sixth embodiment of the present invention.
  • FIG. 11 shows the light transmission characteristic A1 of the optical filter 150 and the visible light detection pixel, with the light wavelength as the horizontal axis, similarly to the respective characteristics with respect to the light wavelength in the solid-state imaging device 60 shown in FIG.
  • the graph shows an example of the spectral sensitivity characteristic B1 of the photoelectric conversion unit, the spectral sensitivity characteristic C2 of the photoelectric conversion unit 102 of the near-infrared light detection pixel, and the light transmission characteristic D3 of the optical filter 160, respectively.
  • the light transmission characteristic E ⁇ b> 2 at the position of the visible light detection pixel is transmitted through the first semiconductor substrate 11.
  • An example of the characteristic F2 of the incoming light and the characteristic G2 of the light transmitted through the optical filter 160 are also shown in the graph.
  • the vertical axis represents the transmittance and sensitivity with respect to the wavelength of light shown on the horizontal axis, but does not represent the absolute height of the transmittance and sensitivity.
  • the visible light that is highly likely to be transmitted through the first semiconductor substrate 11 is considered to be visible light corresponding to red (R), which is a wavelength close to near-infrared light.
  • red red
  • FIG. 11 shows an organic or inorganic optical filter (notch type) for visible light detection pixels corresponding to blue (B) that transmits both visible light and near infrared light having a wavelength corresponding to blue (B).
  • a graph of the light transmission characteristic D3 of the optical filter 160 when the optical filter 160 is an optical filter 160 is shown.
  • the spectral sensitivity characteristic of the photoelectric conversion unit 102 of the near-infrared light detection pixel is the spectral sensitivity characteristic C3 shown in FIG. 11, that is, the photoelectric conversion unit 102 of the near-infrared light detection pixel has a wavelength f_low_filter.
  • the transmittance of light from the optical filter 160 becomes zero from a wavelength equal to or lower than the wavelength f_low_filter with which the photoelectric conversion unit 102 of the near-infrared light detection pixel has sensitivity, like the transmission characteristic D3 shown in FIG.
  • the photoelectric conversion unit 102 of the near-infrared light detection pixel formed on the second semiconductor substrate 12 does not detect light (visible light) having a wavelength shorter than the wavelength f_high.
  • the optical filter 160 formed on the second semiconductor substrate 12 in the solid-state imaging device 60 is an organic or inorganic optical filter (notch type optical filter) for visible light detection pixels corresponding to blue (B).
  • notch type optical filter for visible light detection pixels corresponding to blue (B).
  • the light transmission characteristic of the optical filter 160 is the transmission characteristic of an organic or inorganic optical filter (notch type optical filter) for visible light detection pixels corresponding to blue (B) will be described. did.
  • the optical filter 160 has a wavelength longer than the wavelength f_low to the wavelength f_high from visible light having a wavelength equal to or lower than the lower limit wavelength of sensitivity of the photoelectric conversion unit 102 of the near-infrared light detection pixel.
  • any transmission characteristic may be used as long as it can block near-infrared light having a wavelength at any position within a short wavelength range.
  • the optical filter 160 may be configured with an organic or inorganic optical filter (notch type optical filter) for visible light detection pixels corresponding to green (G). That is, the optical filter 160 only needs to have a transmission characteristic capable of shielding at least visible light corresponding to red (R), which has a wavelength close to near infrared light.
  • notch type optical filter organic or inorganic optical filter
  • the sixth embodiment it is disposed between the first semiconductor substrate (first semiconductor substrate 11) and the conductive layer (polysilicon gate electrode 132), and has a wavelength equal to or smaller than a predetermined third wavelength.
  • a second optical filter optical filter 160 that shields light, and the third wavelength is equal to or longer than the first wavelength (wavelength longer than wavelength f_low) and shorter than the second wavelength (wavelength f_high).
  • the following solid-state imaging device solid-state imaging device 60 is configured.
  • the lower limit wavelength that the optical filter 160 shields is the lower limit wavelength (wavelength) that the second photoelectric conversion layer (the photoelectric conversion unit 102 of the near-infrared light detection pixel) performs photoelectric conversion.
  • the solid-state imaging device 60 having a wavelength equal to or smaller than (f_low_filter) is configured.
  • the optical filter 160 includes the solid-state imaging device 60 that shields light (visible light) having a wavelength of at least red (R).
  • the spectral sensitivity characteristics of the photoelectric conversion unit of the visible light detection pixel and the spectrum of the photoelectric conversion unit 102 of the near-infrared light detection pixel are provided.
  • both a visible light image and a near-infrared light image are obtained at the same time, and the respective images are used. Can be executed.
  • FIG. 12 is a diagram showing a schematic structure of a solid-state imaging device according to the seventh embodiment of the present invention.
  • the solid-state imaging device 70 according to the seventh embodiment includes visible light and near-infrared light in the solid-state imaging device 50 according to the fifth embodiment based on electric signals (pixel signals) photoelectrically converted by the respective photoelectric conversion units. It is the structure which performs the process for detecting light.
  • FIG. 12 also shows a vertical structure when a part of the pixel array portion formed in the solid-state imaging device 40 is viewed from the side.
  • the solid-state imaging device 70 of the seventh embodiment is also a solid-state imaging device that can acquire a visible light image and a near-infrared light image, like the solid-state imaging device 50 of the fifth embodiment.
  • the solid-state imaging device 70 includes a difference calculation unit 170 that performs processing on the pixel signals photoelectrically converted by the respective photoelectric conversion units in the second semiconductor substrate 12.
  • the difference calculation unit 170 performs a calculation of correcting the pixel signal obtained by photoelectric conversion by the near-infrared light detection pixel photoelectric conversion unit 102 formed on the second semiconductor substrate 12 detecting near-infrared light. More specifically, a pixel signal photoelectrically converted by the photoelectric conversion unit 102 of the near-infrared light detection pixel when the near-infrared light is irradiated (hereinafter referred to as “near-infrared light irradiation pixel signal”), Based on the pixel signal photoelectrically converted by the photoelectric conversion unit 102 of the near-infrared light detection pixel when the near-infrared light is not irradiated (hereinafter referred to as “near-infrared light non-irradiated pixel signal”), An operation for excluding visible light detected as external light is performed. Thereby, the difference calculation unit 170 can generate a pixel signal including only near-infrared light detected by the photoelectric conversion unit 102
  • pixel signals near-infrared light irradiation pixel signals and near-infrared light
  • an imaging system equipped with the solid-state imaging device 70 needs to include near-infrared light illumination (for example, LED illumination) for irradiating near-infrared light.
  • FIG. 13 is a diagram schematically illustrating processing in the imaging system including the solid-state imaging device 70 according to the seventh embodiment of the present invention.
  • FIG. 13 is a graph showing an example of the light transmission characteristic A1 of the optical filter 150 and the light wavelength component included in the pixel signal at each processing stage, with the light wavelength as the horizontal axis. .
  • the vertical axis represents the transmittance with respect to the wavelength of light shown on the horizontal axis and the amount of the component of the wavelength included in the pixel signal. Since these graphs are separately shown, each graph does not represent the absolute height of the transmittance or the absolute amount of the wavelength component. In the following description, the respective graphs shown in FIG. 13 are referred to as appropriate.
  • the imaging system performs imaging in a state in which near-infrared light illumination is irradiated with near-infrared light (a state in which near-infrared light irradiation is on).
  • the difference calculation unit 170 acquires a near-infrared light irradiation pixel signal including a wavelength in the range of the graph S1 illustrated in FIG. 13 from the photoelectric conversion unit 102 of the near-infrared light detection pixel.
  • the near-infrared light irradiation pixel signal S1 has transmitted the near-infrared light component and visible light detected as near-infrared light, that is, the first semiconductor substrate 11 (photoelectric conversion unit 102).
  • the component of visible light (which has leaked into the near-infrared light detected by) is included.
  • the imaging system performs imaging in a state where the near-infrared light illumination stops the irradiation of the near-infrared light (the state where the irradiation of the near-infrared light is off).
  • the difference calculation unit 170 receives the pixel signal from the photoelectric conversion unit of the visible light detection pixel and the wavelength within the range of the graph S2 illustrated in FIG. 13 from the photoelectric conversion unit 102 of the near-infrared light detection pixel. And a near-infrared light non-irradiated pixel signal.
  • This near-infrared light non-irradiated pixel signal S2 includes a visible light component (in FIG.
  • This visible light component is a component detected as near-infrared light even though the near-infrared light irradiation is off, and has been transmitted through the first semiconductor substrate 11 (photoelectric It is a component of visible light that has leaked into near-infrared light detected by the converter 102.
  • the difference calculation unit 170 calculates the difference between the near-infrared light irradiation pixel signal S1 and the near-infrared light non-irradiation pixel signal S2. Thereby, the difference calculation unit 170 includes the wavelength in the range of the graph S3 illustrated in FIG. 13, that is, includes only the near-infrared light component detected by the photoelectric conversion unit 102 of the near-infrared light detection pixel.
  • the pixel signal S3 is generated.
  • the image signal including only the visible light component is a pixel signal from the photoelectric conversion unit of the visible light detection pixel obtained by photographing performed with the near-infrared light irradiation turned off.
  • a process for obtaining a pixel signal that includes only a near-infrared light component based only on the pixel signal acquired from the photoelectric conversion unit 102 of the near-infrared light detection pixel is performed.
  • the same idea may be applied to the pixel signal acquired from the photoelectric conversion unit of the visible light detection pixel.
  • the pixel signal from the photoelectric conversion unit of the visible light detection pixel obtained with the near-infrared light irradiation turned on, and the photoelectric conversion unit of the visible light detection pixel obtained with the near-infrared light irradiation turned off The pixel signal including only the near-infrared light component detected by the photoelectric conversion unit of the visible light detection pixel may be generated by calculating the difference from the pixel signal from Further, the pixel signal S3 including only the near-infrared light component detected by the photoelectric conversion unit 102 of the near-infrared light detection pixel is used as the pixel signal including only the near-infrared light component generated here. To the pixel signal of the component of near infrared light including the pixel signal detected (absorbed) by the photoelectric conversion unit of the visible light detection pixel.
  • the solid-state imaging device 70 visible light and near-infrared light having a specific wavelength are separated by performing processing on the pixel signals photoelectrically converted by the respective photoelectric conversion units. It is possible to obtain a pixel signal in which the light is detected.
  • the first electrical signal (near-field) photoelectrically converted by the second photoelectric conversion layer (the photoelectric conversion unit 102 of the near-infrared light detection pixel) is irradiated.
  • solid-state imaging device 70 further including an arithmetic processing unit (difference calculating unit 170) that generates an electrical signal (pixel signal) containing only near-infrared light is configured. .
  • the solid-state imaging device 70 includes the difference calculation unit 170 that performs a calculation for correcting the pixel signal. With such a configuration, the solid-state imaging device 70 performs arithmetic processing on the pixel signals photoelectrically converted by the respective photoelectric conversion units. Thereby, in the solid-state imaging device 70, it is possible to separate visible light and near-infrared light having a specific wavelength by a method other than an optical configuration and obtain a pixel signal in which each light is detected.
  • a pixel signal that detects near-infrared light having a wavelength of f_high (for example, 800 nm) or more.
  • f_high for example, 800 nm
  • a function of detecting near-infrared light having a specific wavelength such as 850 nm or 940 nm irradiated by near-infrared light illumination (for example, LED illumination) is provided.
  • LED illumination for example, LED illumination
  • the difference calculation unit 170 may be provided in the first semiconductor substrate 11 that constitutes the solid-state imaging device 70.
  • the difference calculation unit 170 may be provided in the first semiconductor substrate 11 that constitutes the solid-state imaging device 70.
  • one of the processing units provided in the imaging system (imaging application) in which the solid-state imaging device 70 is mounted is a function of the difference calculation unit 170. You may make it the structure which implement
  • the solid-state imaging device has a configuration in which a plurality of semiconductor substrates are stacked, and is arranged on the upper surface when viewed from the side on which light (light rays) is incident.
  • a normal pixel for detecting visible light is formed on the semiconductor substrate, and a near-infrared light pixel for detecting near-infrared light is formed on the second semiconductor substrate disposed on the lower surface.
  • an NPN semiconductor structure, an insulating film, and a conductive layer are formed on the second semiconductor substrate.
  • a photogate photoelectric conversion unit (photodiode) is configured by the conductive layer and the N-type semiconductor on the light incident side in the NPN semiconductor structure, A PN junction type photoelectric conversion unit (photodiode) is formed by a PN junction between the P-type semiconductor and the second semiconductor substrate which is an N-type semiconductor.
  • the photogate photoelectric conversion unit functions as a pixel that detects and suppresses a slight amount of visible light transmitted through the first semiconductor substrate.
  • the unit functions as a pixel for near infrared light.
  • each embodiment of the present invention visible light and near-infrared light are separated with high accuracy, visible light is detected by a normal pixel, and a pixel for near-infrared light, that is, a PN junction type Only near infrared light can be detected by photoelectric conversion. Thereby, in each embodiment of the present invention, it is possible to simultaneously acquire both a normal image obtained by visible light and an image obtained by near-infrared light.
  • various functions using a normal image obtained by visible light and an image obtained by near-infrared light are realized. can do.
  • the spectral sensitivity characteristic of the photoelectric conversion unit of a normal pixel and the PN junction type of a pixel for near-infrared light are provided on the surface on which light (light rays) enters the solid-state imaging device.
  • an optical filter having a transmission characteristic determined based on a spectral sensitivity characteristic of a PN junction photoelectric conversion of a pixel for near-infrared light, the first semiconductor substrate, a conductive layer, Form between.
  • the slight visible light transmitted through the first semiconductor substrate is more reliably suppressed together with the photogate photoelectric conversion unit.
  • visible light and near-infrared light are separated with higher accuracy, and a normal image obtained by visible light and an image obtained by near-infrared light of a specific wavelength And both images can be acquired simultaneously.
  • each embodiment is not an exclusive configuration, and may have the configuration shown in each embodiment at the same time. That is, a plurality of the respective constituent elements shown in the first to seventh embodiments may be provided at the same time.
  • the silicon oxide film 133 shown in the third embodiment, the gate voltage control unit 140 shown in the fourth embodiment, and the fifth embodiment show.
  • the solid optical filter 150, the optical filter 160 shown in the sixth embodiment, and the difference calculation unit 170 shown in the seventh embodiment are provided with any one configuration, a plurality of configurations, or all at the same time.
  • An imaging device may be formed. This constitutes a solid-state imaging device that acquires each image obtained by separating visible light and near-infrared light with higher accuracy, and various functions desired in an imaging system (imaging application) equipped with this solid-state imaging device. Can be realized.
  • the configuration of the solid-state imaging device in which the two semiconductor substrates of the first semiconductor substrate 11 and the second semiconductor substrate 12 are stacked has been described.
  • the number of substrates stacked in the solid-state imaging device is not limited to two, and a configuration in which a larger number of substrates are stacked may be used.
  • visible light and near-infrared light can be separated with high accuracy and each light can be detected.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

 入射された第1の波長帯域の光を光電変換する第1の光電変換層が二次元のマトリクス状に形成された第1の半導体基板と、入射された光を光電変換する第2の光電変換層が二次元のマトリクス状に形成された第2の半導体基板と、第1の半導体基板と第2の半導体基板との間に配置され、第2の光電変換層に対応した導電性を有する導電層と、第2の半導体基板と導電層との間に配置され、第2の光電変換層に対応した絶縁性を有する絶縁膜と、を備え、第1の光電変換層、導電層、および絶縁膜を透過した光が第2の半導体基板に入射し、導電層には所定の電圧が印加され、所定の電圧が導電層に印加されている場合に第2の光電変換層が光電変換する第2の波長帯域の光の波長は、所定の電圧が導電層に印加されていない場合に第2の光電変換層が光電変換する波長帯域の光の波長よりも長い。

Description

固体撮像装置
 本発明は、固体撮像装置に関する。
 従来から、可視光と近赤外光とを受光する固体撮像装置に関する複数の技術が開示されている。このような固体撮像装置では、可視光によって得られる通常の画像(以下、「可視光画像」という)と、近赤外光によって得られる被写体までの距離などの情報が含まれた画像(以下、「近赤外光画像」という)とを1つの固体撮像装置で取得することができる。
 例えば、特許文献1には、可視光を受光する通常の画素(以下、「可視光検出画素」という)と、近赤外光を受光する近赤外光用の画素(以下、「近赤外光検出画素」という)とのそれぞれを、画素領域内の同一平面上に配置した固体撮像装置が開示されている。より具体的には、特許文献1に開示された固体撮像装置では、近赤外光を受光しない一般的な固体撮像装置において1つの組として扱われる、縦と横に隣接した赤色(R)、緑色(G)、青色(B)、緑色(G)の4つの可視光検出画素の組と、近赤外光用画素とのそれぞれを、画素領域内で重複しない位置に千鳥状に配置している。このとき、特許文献1に開示された固体撮像装置には、例えば、非特許文献1に開示されたような技術が適用されているものと考えられる。より具体的には、千鳥状に配置された可視光検出画素の組のそれぞれに、近赤外光による電荷の影響を受けない、つまり、近赤外光による電荷が漏れ込まないようにするためのポテンシャルバリアが配置されていると考えられる。
 また、例えば、特許文献2および非特許文献2には、可視光検出画素と近赤外光検出画素とのそれぞれを、同じシリコン基板内で深さ方向の位置を変えて形成した固体撮像装置が開示されている。より具体的には、高いエネルギーでイオン注入した深い位置の空乏層と、通常のエネルギーでイオン注入した表面に近い位置(浅い位置)の空乏層とのそれぞれを、同じシリコン基板に形成している。そして、浅い位置に空乏層が形成された可視光検出画素で可視光を検出し、深い位置に空乏層が形成された近赤外光用画素で近赤外光を検出している。このため、特許文献2および非特許文献2に開示された固体撮像装置では、可視光検出画素のそれぞれに対応して貼付されるカラーフィルタ(色フィルタ)が、可視光と近赤外光との両方を透過する特性を持っている。これは、固体撮像装置の画素領域を受光面から見ると、同じ位置に可視光検出画素と近赤外光検出画素とが形成されており、深さ方向の違いによって可視光と近赤外光とのそれぞれを検出するためである。
日本国特開2010-081609号公報 米国特許第7872234号明細書
"A 1.5Mpixel RGBZ CMOS Image Sensor for Simultaneous Color and Range Image Capture",Solid-State Circuits Conference Digest of Technical Papers(ISSCC),Session 22/Image Sensore/22.7,2012 IEEE International,Feb. 2012 "IR/Color Composite Image Sensor with VIPS(Vertically Integrated Photodiode Structure)",International Image Sensor Workshop(IISW),2007
 しかしながら、非特許文献1の技術を適用した特許文献1、特許文献2、および非特許文献2のそれぞれで開示された技術は、1つの固体撮像装置で可視光と近赤外光とを検出することができる技術であるが、それぞれの技術を適用した固体撮像装置では、以下のような問題から、可視光と近赤外光とを高い精度で分離し、それぞれの光を検出することができない。
 特許文献1に開示された、非特許文献1の技術を適用した構成の固体撮像装置では、近赤外光検出画素にも可視光が入射する。そして、近赤外光検出画素は、可視光から近赤外光までの広い範囲の光に対する感度を持っている。このため、近赤外光検出画素は、近赤外光のみではなく可視光も検出してしまい、つまり、可視光による電荷が近赤外光の電荷に混ざってしまい、近赤外光のみを検出することができない。また、特許文献1に開示された固体撮像装置の画素の配置では、近赤外光検出画素が配置された位置に可視光検出画素が存在しないため、特許文献1に開示された固体撮像装置を搭載した撮像システムで可視光画像を生成する処理においては、近赤外光検出画素が配置された位置が欠陥画素としての扱いになってしまう。
 また、特許文献2および非特許文献2に開示された固体撮像装置では、深さ方向の違いによって可視光と近赤外光とのそれぞれを分けて検出するという構成であるため、可視光検出画素と近赤外光検出画素との間に、例えば、非特許文献1に開示された技術のような、可視光と近赤外光とを分離する働きをするポテンシャルバリアを配置することができない。このため、可視光検出画素に近赤外光による電荷の漏れ込みが発生してしまう。また、逆に、近赤外光検出画素に可視光による電荷(特に、赤色(R)の可視光による電荷)の漏れ込みも発生してしまう。
 このようなことから、非特許文献1の技術を適用した特許文献1、特許文献2、および非特許文献2のそれぞれに開示された固体撮像装置は、例えば、十分に明るい照明など、特定の撮影条件の下で使用しなければ、可視光と近赤外光とを高い精度で分離して検出することができない。
 本発明は、上記の課題に基づいてなされたものであり、可視光と近赤外光とを高い精度で分離してそれぞれの光を検出することができる固体撮像装置を提供することを目的としている。
 本発明の第1の態様の固体撮像装置は、入射された第1の波長帯域の光を光電変換する第1の光電変換層が二次元のマトリクス状に形成された第1の半導体基板と、入射された光を光電変換する第2の光電変換層が二次元のマトリクス状に形成された第2の半導体基板と、前記第1の半導体基板と前記第2の半導体基板との間に配置され、前記第2の光電変換層に対応した導電性を有する導電層と、前記第2の半導体基板と前記導電層との間に配置され、前記第2の光電変換層に対応した絶縁性を有する絶縁膜と、を備え、前記第1の光電変換層、前記導電層、および前記絶縁膜を透過した光が前記第2の半導体基板に入射し、前記導電層には所定の電圧が印加され、前記所定の電圧が前記導電層に印加されている場合に前記第2の光電変換層が光電変換する第2の波長帯域の光の波長は、前記所定の電圧が前記導電層に印加されていない場合に前記第2の光電変換層が光電変換する波長帯域の光の波長よりも長い。
 本発明の第2の態様によれば、上記第1の態様の固体撮像装置において、予め定めた第1の波長から、前記第1の波長よりも長い予め定めた第2の波長までの光を遮光する第1の光学フィルタ、をさらに備え、前記第1の半導体基板は、前記第1の光学フィルタと前記第2の半導体基板との間に配置され、前記第1の波長帯域の上限の波長は、前記第1の波長よりも短い波長であり、前記第2の波長帯域の下限の波長は、前記第2の波長よりも長い波長であってもよい。
 本発明の第3の態様によれば、上記第2の態様の固体撮像装置において、前記第1の半導体基板と前記導電層との間に配置され、予め定めた第3の波長以下の波長の光を遮光する第2の光学フィルタ、をさらに備え、前記第3の波長は、前記第1の波長以上で前記第2の波長以下であってもよい。
 本発明の第4の態様によれば、上記第3の態様の固体撮像装置において、前記第2の光学フィルタが遮光する下限の波長は、前記第2の光電変換層が光電変換する下限の波長以下の波長であってもよい。
 本発明の第5の態様によれば、上記第4の態様の固体撮像装置において、前記第2の光学フィルタは、少なくとも赤色の波長の光を遮光してもよい。
 本発明の第6の態様によれば、上記第1の態様から上記第5の態様のいずれか一態様の固体撮像装置において、前記第1の光電変換層および前記第2の光電変換層は、PN接合型の光電変換部であり、前記第1の光電変換層を形成する第1のN型半導体層の厚さは、前記第2の光電変換層を形成する第2のN型半導体層の厚さよりも薄くてもよい。
 本発明の第7の態様によれば、上記第6の態様の固体撮像装置において、前記第1のN型半導体層を形成する際の不純物の濃度は、前記第2のN型半導体層を形成する際の不純物の濃度と同じ、または前記第2のN型半導体層を形成する際の不純物の濃度よりも濃い濃くてもよい。
 本発明の第8の態様によれば、上記第1の態様から上記第7の態様のいずれか一態様の固体撮像装置において、前記第1の光電変換層は、赤色の波長の光を透過する第1の色フィルタ、緑色の波長の光を透過する第2の色フィルタ、または青色の波長の光を透過する第3の色フィルタのいずれか1つの色フィルタが、前記第1の波長帯域の光が入射する側に配置され、前記第1の色フィルタ、前記第2の色フィルタ、および前記第3の色フィルタのそれぞれは、さらに、少なくとも前記第2の波長帯域の光を透過してもよい。
 本発明の第9の態様によれば、上記第1の態様から上記第8の態様のいずれか一態様の固体撮像装置において、前記第1の半導体基板と前記導電層との間に配置され、前記第1の光電変換層を透過した光の反射を防止する反射防止膜、をさらに備えてもよい。
 本発明の第10の態様によれば、上記第1の態様から上記第9の態様のいずれか一態様の固体撮像装置において、前記導電層に印加する前記所定の電圧を制御するゲート電圧制御部、をさらに備えてもよい。
 本発明の第11の態様によれば、上記第10の態様の固体撮像装置において、ゲート電圧制御部は、前記第2の光電変換層に対応する導電層毎、または複数の前記導電層毎に、異なる電圧値の前記所定の電圧を印加してもよい。
 本発明の第12の態様によれば、上記第1の態様から上記第11の態様のいずれか一態様の固体撮像装置において、近赤外光が照射されている場合に前記第2の光電変換層が光電変換した第1の電気信号と、前記近赤外光が照射されていない場合に前記第2の光電変換層が光電変換した第2の電気信号とに基づいて、前記近赤外光のみが含まれている電気信号を生成する演算処理部、をさらに備えてもよい。
 上記各態様によれば、可視光と近赤外光とを高い精度で分離してそれぞれの光を検出することができる固体撮像装置を提供することができる。
本発明の第1の実施形態の固体撮像装置の概略構造を示した図である。 本発明の第2の実施形態の固体撮像装置の概略構造を示した図である。 本発明の第3の実施形態の固体撮像装置の概略構造を示した図である。 本発明の第4の実施形態の固体撮像装置の概略構造を示した図である。 本発明の第4の実施形態の固体撮像装置における変形例の概略構造を示した図である。 本発明の第5の実施形態の固体撮像装置の概略構造を示した図である。 本発明の第5の実施形態の固体撮像装置に備えた光学フィルタの透過特性を説明する図である。 本発明の第5の実施形態の固体撮像装置に備えた光学フィルタの透過特性と撮像システムとの関係を説明する図である。 本発明の第6の実施形態の固体撮像装置の概略構造を示した図である。 本発明の第6の実施形態の固体撮像装置に備えた光学フィルタの透過特性を説明する図である。 本発明の第6の実施形態の固体撮像装置に備えた光学フィルタの別の透過特性を説明する図である。 本発明の第7の実施形態の固体撮像装置の概略構造を示した図である。 本発明の第7の実施形態の固体撮像装置を備えた撮像システムにおける処理を模式的に示した図である。
(第1の実施形態)
 以下、本発明の実施形態について、図面を参照して説明する。図1は、本発明の第1の実施形態の固体撮像装置の概略構造を示した図である。第1の実施形態の固体撮像装置10は、可視光によって得られる通常の画像(以下、「可視光画像」という)と、近赤外光によって得られる画像(以下、「近赤外光画像」という)とを取得することができる固体撮像装置である。この近赤外光画像には、被写体までの距離の情報が含まれている。
 固体撮像装置10は、複数の半導体基板を積層することによって構成される。図1には、第1の半導体基板11と第2の半導体基板12とが積層(接合)された構成の固体撮像装置10を示している。
 なお、固体撮像装置10には、固体撮像装置10の機能を実現するための回路が、第1の半導体基板11および第2の半導体基板12のそれぞれの半導体基板上に形成されている。固体撮像装置10の機能を実現するための回路としては、入射してきた光(光線)を電気信号に変換するフォトダイオードなどの光電変換部を含む画素が二次元のマトリクス状に複数配置された画素アレイ部、光電変換部によって光電変換された電気信号(以下、「画素信号」という)を処理する列処理回路、画素アレイ部内の画素を駆動するための駆動回路などがある。また、固体撮像装置10の機能を実現するための回路には、列処理回路によって処理された画素信号を信号処理する信号処理回路などもある。
 図1には、固体撮像装置10に形成された画素アレイ部の一部分を側面から見たときの縦構造を示している。固体撮像装置10では、光線が入射される側から見て上面に配置された第1の半導体基板11に形成された通常の画素(以下、「可視光検出画素」という)で、可視光のみを検出して光電変換する。また、固体撮像装置10では、光線が入射される側から見て下面に配置された第2の半導体基板12に形成された近赤外光用の画素(以下、「近赤外光検出画素」という)で、近赤外光のみを検出して光電変換する。
 固体撮像装置10では、P型半導体である第1の半導体基板11と、第1の半導体基板11に形成したN型半導体110とのPN接合で、可視光検出画素の光電変換部(フォトダイオード)を構成する。この可視光検出画素の光電変換部は、固体撮像装置10の画素アレイ部に、二次元のマトリクス状に複数形成される。図1には、第1の半導体基板11内に3つのN型半導体110が形成された、すなわち、第1の半導体基板11に3つの可視光検出画素が形成された状態を示している。
 なお、第1の半導体基板11の構造は、一般的な固体撮像装置の構造と同様である。従って、第1の半導体基板11を、光線が入射してくる側の面がシリコン層となるように第2の半導体基板12と接合する、いわゆる、裏面照射(BackSide Illumination:BSI)型の固体撮像装置としてもよい。
 また、固体撮像装置10では、N型半導体である第2の半導体基板12にP型半導体120を形成し、さらに、P型半導体120の領域内に、N型半導体121を形成することによってNPN半導体の構造を形成する。このNPN半導体の構造は、第1の半導体基板11内に形成された可視光検出画素の光電変換部の1つ、または複数に対応して、二次元のマトリクス状に複数形成する。図1には、第1の半導体基板11内に形成された3つのN型半導体110、すなわち、第1の半導体基板11内に形成された3つの可視光検出画素に対して1つのNPN半導体の構造が形成された状態を示している。
 なお、固体撮像装置10では、第2の半導体基板12内にN型半導体121を形成する際に、以下の条件を満たすようにする。
 (条件1)
 第2の半導体基板12内に形成するN型半導体121の厚さW2は、第1の半導体基板11内に形成するN型半導体110の厚さW1よりも厚く(W2>W1)形成する。
 (条件2)
 N型半導体121を形成する際の不純物の濃度X2は、N型半導体110を形成する際の不純物の濃度X1と同じ、またはN型半導体110を形成する際の不純物の濃度X1よりも薄い濃度(X2≦X1)にする。
 これらの条件を満たすようにそれぞれの半導体基板にN型半導体を形成することによって、固体撮像装置10では、第1の半導体基板11に形成されたN型半導体110と第2の半導体基板12に形成したN型半導体121を比較した場合、N型半導体121の空乏層の位置が、N型半導体110の空乏層の位置よりも深い位置に形成される。
 また、固体撮像装置10では、第2の半導体基板12においてN型半導体121が形成された位置の表面に、絶縁膜であるシリコン酸化膜131と、導電層であるポリシリコンゲート電極132とを形成する。なお、固体撮像装置10において形成するシリコン酸化膜131およびポリシリコンゲート電極132のそれぞれは共に、近赤外光を遮光することなく透過する特性を持った酸化膜および金属電極である。
 なお、図1に示した固体撮像装置10の構成では、第2の半導体基板12に、絶縁膜であるシリコン酸化膜131と導電層であるポリシリコンゲート電極132とを、酸化膜および金属電極として形成した構成を示した。しかし、固体撮像装置10に形成する絶縁膜および導電層は、シリコン酸化膜131およびポリシリコンゲート電極132に限定されるものではない。つまり、シリコン酸化膜131およびポリシリコンゲート電極132と同様に近赤外光を遮光することなく透過する特性と機能とを実現することができる絶縁膜と導電層とであれば、他の材料によって形成した絶縁膜(酸化膜)と導電層(金属電極)との組み合わせを固体撮像装置10に形成してもよい。
 第2の半導体基板12では、ポリシリコンゲート電極132とN型半導体121とによってフォトゲート型の光電変換部(フォトダイオード)101を構成し、P型半導体120とN型半導体121とのPN接合で、PN接合型の光電変換部(フォトダイオード)102を構成する。固体撮像装置10では、PN接合型の光電変換部102が、近赤外光検出画素の光電変換部(フォトダイオード)となる。図1には、第2の半導体基板12内に構成されたフォトゲート型の光電変換部101と、PN接合型の光電変換部102(近赤外光検出画素の光電変換部)とのそれぞれを、ダイオードの記号で模式的に示している。
 また、固体撮像装置10では、ポリシリコンゲート電極132にゲート電圧VGを印加する。このゲート電圧VGを印加することによって、光電変換部102の空乏層103の位置が、ゲート電圧VGを印加していないときに比べて第2の半導体基板12内の深い位置となる。これにより、光電変換部102が検出する近赤外光の波長は、ゲート電圧VGを印加していないときに検出する近赤外光の波長よりも、ゲート電圧VGを印加したときに検出する近赤外光の波長の方が、より長い波長となる。図1には、ポリシリコンゲート電極132に印加したゲート電圧VGによって、光電変換部102の空乏層103が、破線で示した深い位置となっている状態を模式的に表している。
 なお、このゲート電圧VGの電圧値を制御することによって、光電変換部102の空乏層103の深さを制御することができる。つまり、ゲート電圧VGの電圧値を制御することによって、光電変換部102が検出する近赤外光の波長を制御することができる。
 第1の実施形態によれば、入射された第1の波長帯域の光(可視光)を光電変換する第1の光電変換層(可視光検出画素の光電変換部)が二次元のマトリクス状に形成された第1の半導体基板(第1の半導体基板11)と、入射された光を光電変換する第2の光電変換層(近赤外光検出画素の光電変換部102)が二次元のマトリクス状に形成された第2の半導体基板(第2の半導体基板12)と、第1の半導体基板11と第2の半導体基板12との間に配置され、近赤外光検出画素の光電変換部102に対応した導電性を有する導電層(ポリシリコンゲート電極132)と、第2の半導体基板12とポリシリコンゲート電極132との間に配置され、近赤外光検出画素の光電変換部102に対応した絶縁性を有する絶縁膜(シリコン酸化膜131)と、を備え、可視光検出画素の光電変換部、ポリシリコンゲート電極132、およびシリコン酸化膜131を透過した光が第2の半導体基板12に入射し、ポリシリコンゲート電極132には所定の電圧(ゲート電圧VG)が印加され、ゲート電圧VGがポリシリコンゲート電極132に印加されている場合に近赤外光検出画素の光電変換部102が光電変換する第2の波長帯域の光(近赤外光)の波長は、ゲート電圧VGがポリシリコンゲート電極132に印加されていない場合に近赤外光検出画素の光電変換部102が光電変換する波長帯域の光の波長よりも長い固体撮像装置(固体撮像装置10)が構成される。
 また、第1の実施形態によれば、可視光検出画素の光電変換部および近赤外光検出画素の光電変換部102は、PN接合型の光電変換部(フォトダイオード)であり、可視光検出画素の光電変換部を形成する第1のN型半導体層(N型半導体110)の厚さは、近赤外光検出画素の光電変換部102を形成する第2のN型半導体層(N型半導体121)の厚さよりも薄い固体撮像装置10が構成される。
 また、第1の実施形態によれば、N型半導体110を形成する際の不純物の濃度は、N型半導体121を形成する際の不純物の濃度と同じ、またはN型半導体121を形成する際の不純物の濃度よりも濃い固体撮像装置10が構成される。
 このような構成によって固体撮像装置10では、第1の半導体基板11に形成された可視光検出画素の光電変換部で可視光を検出し、第2の半導体基板12に形成された近赤外光検出画素の光電変換部102で近赤外光を検出する。ここで、図1に示した光電変換部101は、第1の半導体基板11を透過してきたわずかな可視光を検出(吸収)する画素として機能する。つまり、光電変換部101は、可視光検出画素の光電変換部によって検出されずに(吸収されずに)近赤外光と共に第1の半導体基板11を透過し、光電変換部102で検出する近赤外光に漏れ込んでしまう可能性がある可視光を吸収して抑圧する構成(画素)として機能している。このような構成によって固体撮像装置10では、可視光と近赤外光とを高い精度で分離して、可視光検出画素の光電変換部で可視光を検出し、近赤外光検出画素の光電変換部102で近赤外光のみを検出することができる。
 なお、光電変換部101が検出した、第1の半導体基板11をわずかに透過してきた可視光を光電変換した電気信号(画素信号)は破棄してもよい。
 また、図1に示した固体撮像装置10においては、第1の半導体基板11内に形成された3つのN型半導体110、つまり、3つの可視光検出画素(実際には、一般的な固体撮像装置において1つの組として扱われる、縦と横に隣接した4つの可視光検出画素であることが望ましい)に対して1つのN型半導体121、つまり、1つの近赤外光検出画素を形成した場合の構成を示した。しかし、近赤外光検出画素は、それぞれの可視光検出画素に対応して形成、つまり、1つの可視光検出画素に対して1つの近赤外光検出画素を形成する構成であってもよい。この場合、それぞれの近赤外光検出画素に対応する光電変換部101が検出して光電変換した画素信号を破棄せず、対応する可視光検出画素が光電変換した可視光の画素信号の一部として用いる構成にしてもよい。
 なお、固体撮像装置10においては、可視光検出画素のそれぞれが検出する可視光の波長(色)に応じたカラーフィルタ(色フィルタ)を貼付することができる。これにより、固体撮像装置10は、カラーの可視光画像と近赤外画像とを取得することができる。言い換えれば、図1に示した固体撮像装置10の構成は、モノクロの可視光画像と近赤外画像とを取得する構成であるが、同様の構成でカラーの可視光画像と近赤外画像とを取得することもできる。
(第2の実施形態)
 次に、本発明の第2の実施形態の固体撮像装置について説明する。図2は、本発明の第2の実施形態の固体撮像装置の概略構造を示した図である。第2の実施形態の固体撮像装置20は、第1の実施形態の固体撮像装置10にカラーフィルタ111が貼付された構成である。図2も、固体撮像装置20に形成された画素アレイ部の一部分を側面から見たときの縦構造として示している。以下の説明においては、固体撮像装置20において第1の実施形態の固体撮像装置10と異なる点のみを説明し、第1の実施形態の固体撮像装置10と同様の構成には、同一の符号を付加して詳細な説明は省略する。
 第2の実施形態の固体撮像装置20も、第1の実施形態の固体撮像装置10と同様に、可視光画像と近赤外光画像とを取得することができる固体撮像装置である。ただし、固体撮像装置20には、第1の半導体基板11に形成されたそれぞれの可視光検出画素の光電変換部(第1の半導体基板11内に形成するN型半導体110)の位置に、それぞれの可視光検出画素が検出する波長(色)の可視光を透過するカラーフィルタ111が貼付されている。このため、固体撮像装置20では、カラーの可視光画像と近赤外画像とを取得することができる。
 固体撮像装置20のそれぞれの可視光検出画素の位置に貼付されたカラーフィルタ111は、対応する波長(色)の可視光と近赤外光との両方を透過する特性を持っている。図2には、緑色(G)に対応する波長の可視光と近赤外光との両方を透過するカラーフィルタ111Gと、青色(B)に対応する波長の可視光と近赤外光との両方を透過するカラーフィルタ111Bと、赤色(R)に対応する波長の可視光と近赤外光との両方を透過するカラーフィルタ111Rとのそれぞれのカラーフィルタ111が対応する可視光検出画素の位置に貼付されている場合を示している。
 第2の実施形態によれば、第1の光電変換層(可視光検出画素の光電変換部)は、赤色(R)の波長の光を透過する第1の色フィルタ(カラーフィルタ111R)、緑色(G)の波長の光を透過する第2の色フィルタ(カラーフィルタ111G)、または青色(B)の波長の光を透過する第3の色フィルタ(カラーフィルタ111B)のいずれか1つの色フィルタ(カラーフィルタ111)が、第1の波長帯域の光(可視光)が入射する側に配置され、カラーフィルタ111R、カラーフィルタ111G、およびカラーフィルタ111Bのそれぞれは、さらに、少なくとも第2の波長帯域の光(近赤外光)を透過する固体撮像装置(固体撮像装置20)が構成される。
 このような構成によって固体撮像装置20では、第1の半導体基板11に形成されたカラーフィルタ111Gが貼付された可視光検出画素の光電変換部で緑色(G)の可視光のみを検出し、カラーフィルタ111Bが貼付された可視光検出画素の光電変換部で青色(B)の可視光のみを検出し、カラーフィルタ111Rが貼付された可視光検出画素の光電変換部で赤色(R)の可視光のみを検出する。また、固体撮像装置20では、第2の半導体基板12に形成された近赤外光検出画素の光電変換部102で、カラーフィルタ111G、カラーフィルタ111B、およびカラーフィルタ111Rが貼付されたそれぞれの可視光検出画素を透過してきた近赤外光を検出する。そして、固体撮像装置20でも、光電変換部101は、それぞれの可視光検出画素の光電変換部によって検出されずに(吸収されずに)近赤外光と共に透過してきた、緑色(G)、青色(B)および赤色(R)のわずかな可視光を検出(吸収)して抑圧する画素として機能する。このような構成によって固体撮像装置20では、それぞれの波長(色)の可視光と近赤外光とを高い精度で分離して、可視光検出画素の光電変換部でそれぞれの波長(色)の可視光を検出し、近赤外光検出画素の光電変換部102で近赤外光のみを検出することができる。
(第3の実施形態)
 次に、本発明の第3の実施形態の固体撮像装置について説明する。図3は、本発明の第3の実施形態の固体撮像装置の概略構造を示した図である。第3の実施形態の固体撮像装置30も、第1の実施形態の固体撮像装置10と同様に、複数の半導体基板を積層することによって構成される。図3には、第1の実施形態の固体撮像装置10と同様に、第1の半導体基板11と第2の半導体基板12とが積層(接合)された構成の固体撮像装置30において、固体撮像装置30に形成された画素アレイ部の一部分を側面から見たときの縦構造を示している。
 なお、固体撮像装置30を構成する第1の半導体基板11と第2の半導体基板12との構成には、第1の実施形態の固体撮像装置10における第1の半導体基板11と第2の半導体基板12の構成と同様の構成要素を含んでいる。従って、以下の説明においては、固体撮像装置30において第1の実施形態の固体撮像装置10と異なる点のみを説明し、第1の実施形態の固体撮像装置10と同様の構成には、同一の符号を付加して詳細な説明は省略する。
 第3の実施形態の固体撮像装置30も、第1の実施形態の固体撮像装置10と同様に、可視光画像と近赤外光画像とを取得することができる固体撮像装置である。ただし、固体撮像装置30では、第1の半導体基板11と、第2の半導体基板12に形成されたポリシリコンゲート電極132との間に、シリコン酸化膜133を形成している。このシリコン酸化膜133は、可視光検出画素の光電変換部を透過した可視光と近赤外光とが出射する側の第1の半導体基板11との界面における光の反射を防止する反射防止膜として機能する。これにより、第1の半導体基板11を透過した可視光と近赤外光との全てが第2の半導体基板12に入射される。なお、シリコン酸化膜131も、第1の半導体基板11を透過した可視光と近赤外光とが入射する側の第2の半導体基板12との界面における光の反射を防止する反射防止膜として機能している。つまり、固体撮像装置30では、シリコン酸化膜131、ポリシリコンゲート電極132、およびシリコン酸化膜133の多層構造によって、第1の半導体基板11と第2の半導体基板12との間における光の反射を防止している。
 第3の実施形態によれば、第1の半導体基板(第1の半導体基板11)と導電層(ポリシリコンゲート電極132)との間に配置され、第1の光電変換層(可視光検出画素の光電変換部)を透過した光の反射を防止する反射防止膜(シリコン酸化膜133)、をさらに備える固体撮像装置(固体撮像装置30)が構成される。
 このような構成によって固体撮像装置30では、第1の実施形態の固体撮像装置10と同様に、第1の半導体基板11に形成された可視光検出画素の光電変換部で可視光を検出し、第2の半導体基板12に形成された近赤外光検出画素の光電変換部102で近赤外光のみを検出する。このとき、固体撮像装置30では、シリコン酸化膜133を形成することにより、シリコン酸化膜131、ポリシリコンゲート電極132、およびシリコン酸化膜133の多層構造で、第1の半導体基板11と第2の半導体基板12との間に反射防止膜を構成する。このような構成によって固体撮像装置30では、可視光と近赤外光とを、第1の実施形態の固体撮像装置10よりも多く第2の半導体基板12に透過して、近赤外光検出画素の光電変換部102で近赤外光をより多く検出することができる。
(第4の実施形態)
 次に、本発明の第4の実施形態の固体撮像装置について説明する。図4は、本発明の第4の実施形態の固体撮像装置の概略構造を示した図である。第4の実施形態の固体撮像装置40は、第1の実施形態の固体撮像装置10において、ポリシリコンゲート電極132に印加するゲート電圧VGの電圧値を可変にする構成である。図4も、固体撮像装置40に形成された画素アレイ部の一部分を側面から見たときの縦構造として示している。以下の説明においては、固体撮像装置40において第1の実施形態の固体撮像装置10と異なる点のみを説明し、第1の実施形態の固体撮像装置10と同様の構成には、同一の符号を付加して詳細な説明は省略する。
 第4の実施形態の固体撮像装置40も、第1の実施形態の固体撮像装置10と同様に、可視光画像と近赤外光画像とを取得することができる固体撮像装置である。ただし、固体撮像装置40では、第2の半導体基板12においてN型半導体121が形成された位置に形成したポリシリコンゲート電極132に印加するゲート電圧VGの電圧値を変更するゲート電圧制御部140を備えている。
 上述したように、ゲート電圧VGの電圧値を制御することによって、光電変換部102の空乏層103の深さ、つまり、光電変換部102が検出する近赤外光の波長に長さを制御することができる。固体撮像装置40では、ゲート電圧制御部140が出力するゲート電圧VGの電圧値を変更することによって、図4に破線で模式的に表した光電変換部102の空乏層103の深さを、光電変換部102で検出したい近赤外光の波長に応じた深さに制御することができる。より具体的には、ゲート電圧VGの電圧値を現在の電圧値よりも高くすることによって、空乏層103の位置を現在よりも深い位置に移動させ、光電変換部102が、より波長の長い近赤外光を検出するように制御することができる。逆に、ゲート電圧VGの電圧値を現在の電圧値よりも低くすることによって、空乏層103の位置を現在よりも浅い位置に移動させ、光電変換部102が、より波長の短い近赤外光を検出するように制御することもできる。
 なお、本発明においては、ゲート電圧制御部140が出力するゲート電圧VGの電圧値を変更する方法に関しては、特に規定しない。例えば、第2の半導体基板12内(第1の半導体基板11内であってもよい)にゲート電圧制御部140を備え、このゲート電圧制御部140が、固体撮像装置40の外部の制御部からの制御に応じて設定された電圧値のゲート電圧VGを生成する、つまり、外部の制御部からの制御に応じてゲート電圧VGの電圧値を変更(制御)する構成であってもよい。また、例えば、固体撮像装置40の外部で生成した電圧値のゲート電圧VGを直接入力する構成であってもよい。
 このような構成によって固体撮像装置40では、第1の実施形態の固体撮像装置10と同様に、第1の半導体基板11に形成された可視光検出画素の光電変換部で可視光を検出し、第2の半導体基板12に形成された近赤外光検出画素の光電変換部102で近赤外光のみを検出する。このとき、固体撮像装置40では、ゲート電圧制御部140によってポリシリコンゲート電極132に印加するゲート電圧VGの電圧値を変更する。これにより、固体撮像装置40は、所望の波長の近赤外光を検出した近赤外光画像を取得することができる。
 なお、固体撮像装置40では、ポリシリコンゲート電極132に印加するゲート電圧VGの電圧値を、全ての近赤外光検出画素で同じ値にする、つまり、全ての近赤外光検出画素の光電変換部102で同じ波長の近赤外光を検出する構成にする。しかし、それぞれの近赤外光画素毎、あるいは予め定めた近赤外光検出画素の組毎に、異なる電圧値のゲート電圧VGを印加する構成にしてもよい。つまり、それぞれのポリシリコンゲート電極132毎、あるいは予め定めたポリシリコンゲート電極132の組毎に、異なる電圧値のゲート電圧VGを印加する構成にしてもよい。これにより、固体撮像装置40では、それぞれの近赤外光画素毎、あるいは予め定めた近赤外光検出画素の組毎に、異なる波長の近赤外光を検出することができる。
 ここで、それぞれの近赤外光画素毎に異なる電圧値のゲート電圧VGを印加する構成の一例について説明する。図5は、本発明の第4の実施形態の固体撮像装置における変形例の概略構造を示した図である。図5も、第4の実施形態の固体撮像装置40における変形例の概略構造を、画素アレイ部の一部分を側面から見たときの縦構造として示している。以下の説明においては、図5に示した第4の実施形態の変形例の固体撮像装置40を、「固体撮像装置41」という。
 図5には、第1の半導体基板11内に形成された3つのN型半導体110、つまり、3つの可視光検出画素(実際には、一般的な固体撮像装置において1つの組として扱われる、縦と横に隣接した4つの可視光検出画素であることが望ましい)が含まれる可視光検出画素の組に対応するそれぞれの近赤外光検出画素に、異なる電圧値のゲート電圧VGを印加する構成の一例を示している。なお、図5では、一方の可視光検出画素の組に対応する近赤外光検出画素を「近赤外光検出画素a」とし、他方の可視光検出画素の組に対応する近赤外光検出画素を「近赤外光検出画素b」として示している。そして、図5では、それぞれの近赤外光画素に対応する構成の符号に、対応する近赤外光検出画素を区別するための符号「a」、または符号「b」を付加して示している。
 固体撮像装置41では、近赤外光検出画素aに対応するポリシリコンゲート電極132aにゲート電圧VGaを印加し、近赤外光検出画素bに対応するポリシリコンゲート電極132bにゲート電圧VGbを印加している。ここで、ゲート電圧VGaの電圧値が、ゲート電圧VGbの電圧値よりも低い、つまり、VGa<VGbである場合を考える。この場合、図5示したように、空乏層103bの位置は、空乏層103aの位置よりも深い位置になる。従って、近赤外光検出画素bの光電変換部102bは、近赤外光検出画素aの光電変換部102aよりも波長の長い近赤外光を検出することになる。これにより、固体撮像装置41は、近赤外光検出画素aの光電変換部102aが検出した波長の近赤外光画像と、近赤外光検出画素bの光電変換部102bが検出した波長の近赤外光画像との2つの近赤外光画像を取得することができる。
 第4の実施形態によれば、導電層(ポリシリコンゲート電極132)に印加する所定の電圧(ゲート電圧VG)を制御するゲート電圧制御部(ゲート電圧制御部140)、をさらに備える固体撮像装置(固体撮像装置40)が構成される。
 また、第4の実施形態によれば、ゲート電圧制御部140は、第2の光電変換層(近赤外光検出画素の光電変換部102)に対応するポリシリコンゲート電極132毎、または複数のポリシリコンゲート電極132毎に、異なる電圧値のゲート電圧VGを印加する固体撮像装置40が構成される。
 上記に述べたように、本発明の第1~第4の実施形態の固体撮像装置では、第1の半導体基板11にN型半導体110を形成することによって、可視光を検出する可視光検出画素の光電変換部を構成し、第2の半導体基板12にNPN半導体の構造、シリコン酸化膜131、およびポリシリコンゲート電極132を形成することによって、近赤外光を検出する近赤外光検出画素の光電変換部102を構成する。また、本発明の第1~第4の実施形態の固体撮像装置では、ポリシリコンゲート電極132と第2の半導体基板12に形成されたN型半導体121とによって、フォトゲート型の光電変換部101を構成する。そして、本発明の第1~第4の実施形態の固体撮像装置では、光電変換部101で第1の半導体基板11を透過してきたわずかな可視光を検出して抑圧する。これにより、本発明の第1~第4の実施形態の固体撮像装置では、可視光と近赤外光とを高い精度で分離して、可視光検出画素の光電変換部で可視光を検出し、近赤外光検出画素の光電変換部102で近赤外光のみを検出することができる。そして、本発明の第1~第4の実施形態の固体撮像装置を搭載した撮像システム(撮像アプリケーション)では、可視光画像と近赤外光画像との両方を同時に得て、それぞれの画像を利用した処理を実行することができる。
 なお、固体撮像装置を搭載した撮像システム(撮像アプリケーション)では、近赤外光照明(例えば、LED照明)が照射した850nmや940nmの近赤外光など、特定の波長の近赤外光を検出する場合がある。このような撮像システム(撮像アプリケーション)に搭載する固体撮像装置では、所望の波長の近赤外光を検出する構成を備えていることが望ましい。
(第5の実施形態)
 次に、本発明の第5の実施形態の固体撮像装置について説明する。図6は、本発明の第5の実施形態の固体撮像装置の概略構造を示した図である。第5の実施形態の固体撮像装置50は、第1の実施形態の固体撮像装置10に光学フィルタ150を備えることによって、可視光と特定の波長の近赤外光とを検出する固体撮像装置である。図6も、固体撮像装置50に形成された画素アレイ部の一部分を側面から見たときの縦構造として示している。以下の説明においては、固体撮像装置50において第1の実施形態の固体撮像装置10と異なる点のみを説明し、第1の実施形態の固体撮像装置10と同様の構成には、同一の符号を付加して詳細な説明は省略する。
 光学フィルタ150は、固体撮像装置50に入射する光(光線)の内、予め定めた波長の光のみを遮光(吸収や反射)する特性を持っている。より具体的には、光学フィルタ150は、固体撮像装置50に備えた可視光検出画素が検出することができる上限の波長以上の予め定めた波長の近赤外光から、近赤外光検出画素が検出することができる下限の波長以下の予め定めた波長の可視光までの光を遮光する特性である。言い換えれば、光学フィルタ150における光の透過特性は、固体撮像装置50に備えた可視光検出画素が検出することができる上限の波長よりも長い予め定めた波長の近赤外光と、近赤外光検出画素が検出することができる下限の波長よりも短い予め定めた波長の可視光との両方の光を透過する特性である。なお、光学フィルタ150が透過する可視光の上限の波長と近赤外光の下限の波長とは、固体撮像装置50に形成された可視光検出画素の光電変換部の分光感度と、近赤外光検出画素の光電変換部102の分光感度とに合わせて決定する。
 ここで、光学フィルタ150の透過特性と、可視光検出画素および近赤外光検出画素の分光感度との関係について説明する。図7は、本発明の第5の実施形態の固体撮像装置50に備えた光学フィルタ150の透過特性を説明する図である。図7には、光の波長を横軸にして、光学フィルタ150の光の透過特性A1と、可視光検出画素の光電変換部の分光感度特性B1と、近赤外光検出画素の光電変換部102の分光感度特性C1との一例をそれぞれグラフで示している。なお、図7において縦軸は、横軸に示した光の波長に対する透過率や感度の高さを表しているが、図7では、説明を容易にするためにそれぞれのグラフを分離して示しているため、それぞれのグラフは、透過率や感度の絶対的な高さを表しているものではない。
 可視光検出画素の光電変換部の分光感度および近赤外光検出画素の光電変換部102の分光感度の特性が、図7に示した分光感度特性B1および分光感度特性C1である場合、光学フィルタ150の光の透過特性を、透過特性A1のようにする。
 より具体的には、可視光検出画素の光電変換部の感度が波長f_high(例えば、800nm)からゼロになり、波長f_highよりも長い波長では感度がゼロである場合、光学フィルタ150が透過する近赤外光の下限の波長を、可視光検出画素の光電変換部の感度がゼロになる波長f_high以上の波長にする。つまり、図7に示した光学フィルタ150の光の透過特性A1におけるグラフの立ち上がりの位置を、波長f_high以上の位置にする。
 また、近赤外光検出画素の光電変換部102の感度が波長f_low(例えば、700nm)からゼロになり、波長f_lowよりも短い波長では感度がゼロであり場合、光学フィルタ150が透過する可視光の上限の波長を、近赤外光検出画素の光電変換部102の感度がゼロになる波長f_low以下の波長にする。つまり、図7に示した光学フィルタ150の光の透過特性A1におけるグラフの立ち下がりの位置を、波長f_low以下の位置にする。
 言い換えれば、光学フィルタ150は、少なくとも、可視光検出画素の光電変換部および近赤外光検出画素の光電変換部102の両方が光に対する感度を持っている波長の範囲の透過率をゼロにする。つまり、図7に示した光学フィルタ150の光の透過特性A1のように、少なくとも波長f_lowよりも長い波長~波長f_highよりも短い波長までの範囲の光を遮光する。
 なお、この透過特性A1は、光学フィルタ150を、いわゆる、ノッチ型(バンドイルミネート型)の光学フィルタとすることによって実現することができる。
 このように、光学フィルタ150の光の透過特性を透過特性A1とすることによって、固体撮像装置50では、可視光検出画素の光電変換部による波長f_low以上の波長の光(近赤外光)の検出と、近赤外光検出画素の光電変換部102による波長f_high以下の波長の光(可視光)の検出とが行われなくなり、可視光と近赤外光とをより高い精度で分離して、それぞれの光を検出することができる。
 第5の実施形態によれば、予め定めた第1の波長(波長f_low(例えば、700nm))から、波長f_lowよりも長い予め定めた第2の波長(波長f_high(例えば、800nm))までの光を遮光する第1の光学フィルタ(光学フィルタ150)、をさらに備え、第1の半導体基板(第1の半導体基板11)は、光学フィルタ150と第2の半導体基板(第2の半導体基板12)との間に配置され、第1の波長帯域の上限の波長(透過する可視光の上限の波長)は、波長f_lowよりも短い波長であり、第2の波長帯域の下限の波長(透過する近赤外光の下限の波長)は、波長f_highよりも長い波長である固体撮像装置(固体撮像装置50)が構成される。
 上記に述べたように、固体撮像装置50では、可視光検出画素の光電変換部の分光感度特性B1と、近赤外光検出画素の光電変換部102の分光感度特性C1とに基づいて決定された透過特性の光学フィルタ150を備える。このような構成によって固体撮像装置50では、可視光と近赤外光とを高い精度で分離して、可視光検出画素の光電変換部で可視光を検出し、近赤外光検出画素の光電変換部102で特定の波長の近赤外光のみを検出することができる。
 例えば、図7に示した透過特性A1の光学フィルタ150を備えた固体撮像装置50では、波長f_low(例えば、700nm)以下の波長の可視光と、波長f_high(例えば、800nm)以上の波長の近赤外光とに、より高い精度で分離して、それぞれの波長の光を検出することができる。これにより、固体撮像装置50を搭載した撮像システム(撮像アプリケーション)では、近赤外光照明(例えば、LED照明)が照射した850nmや940nmなど、特定の波長の近赤外光を検出する機能を実現することができる。
 なお、光学フィルタ150が透過する可視光の上限の波長と近赤外光の下限の波長とは、上述したように、固体撮像装置50に形成された可視光検出画素の光電変換部の分光感度と、近赤外光検出画素の光電変換部102の分光感度とに合わせて決定するが、固体撮像装置50を搭載する撮像システム(撮像アプリケーション)における仕様にも適合する必要がある。ここで、撮像システム(撮像アプリケーション)における仕様としては、取得(撮影)する画像の波長の範囲や、撮像システム(撮像アプリケーション)に備えた照明装置(例えば、LED照明)が照射する光の波長などがある。
 ここで、図7に示した光学フィルタ150の光の透過特性A1、つまり、光学フィルタ150が透過する可視光の上限の波長および近赤外光の下限の波長と、固体撮像装置50を搭載する撮像システム(撮像アプリケーション)における波長の仕様との関係について、いくつかの例を説明する。図8は、本発明の第5の実施形態の固体撮像装置50に備えた光学フィルタ150の透過特性と撮像システムとの関係を説明する図である。図8には、図7に示した光学フィルタ150における特性のグラフに、以下で説明する撮像システムにおける波長の仕様を合わせて示したグラフである。なお、以下の説明においては、光学フィルタ150が透過する可視光の上限の波長が波長f_low=700nmであり、下限の波長が波長f_high=800nmであるとして説明する。また、撮像システムが取得する可視光画像における波長の範囲、すなわち、可視光に対する視感度が400nm~700nmであるとして説明する。
 まず、固体撮像装置50を搭載する撮像システムが、近赤外光照明(例えば、LED照明)を備え、撮影対象の空間に照射した近赤外光(パルス光)が被写体で反射して戻ってくる時間を計測する、いわゆる、タイム・オブ・フライト(TOF:Time of Flight)方式、もしくは三角測量法などの原理によって撮像システムと被写体との距離の情報を取得するシステム、あるいは近赤外光照明を備えた監視カメラである場合について考える。この場合、固体撮像装置50は、可視光画像の波長の範囲の他に、近赤外光照明が照射する近赤外光の波長f_lightを検出することが望まれる。例えば、撮像システムに備えた近赤外光照明が照射する近赤外光の波長f_lightが850nmであるとした場合に、図8(図7)に示した光学フィルタ150の透過特性A1が撮像システムに適合するか否かを確認する。光学フィルタ150が透過する近赤外光の下限の波長f_highは、近赤外光照明が照射する近赤外光の波長f_lightよりも短い波長である。また、光学フィルタ150が透過する可視光の上限の波長f_lowは、撮像システムにおける可視光の視感度の上限の波長(=700nm)と一致している。このため、固体撮像装置50は、可視光検出画素の光電変換部で通常の可視光画像を取得し、近赤外光検出画素の光電変換部102で距離の情報を含む近赤外光画像(距離画像)を取得することができる。従って、図8に示した光学フィルタ150の透過特性A1は、被写体との距離の情報を取得するシステムや監視カメラなどの撮像システムに適合する。
 続いて、固体撮像装置50を搭載する撮像システムが、血管、皮下、脳などの状態の造影と、生体の表面とを同時に撮影する医療用のシステム、あるいは、静脈と指紋とを同時に撮影する保安システムである場合について考える。このような撮像システムも、近赤外光照明を備えている。この場合、固体撮像装置50は、可視光画像の波長の範囲の他に、近赤外光照明が照射する近赤外光の波長f_lightを検出することが望まれる。例えば、撮像システムに備えた近赤外光照明が照射する近赤外光の波長f_lightが940nmまたは1000nmであるとした場合に、図8(図7)に示した光学フィルタ150の透過特性A1が撮像システムに適合するか否かを確認する。光学フィルタ150が透過する近赤外光の下限の波長f_highは、近赤外光照明が照射する近赤外光の波長f_lightよりも短い波長である。また、光学フィルタ150が透過する可視光の上限の波長f_lowは、撮像システムにおける可視光の視感度の上限の波長(=700nm)と一致している。このため、固体撮像装置50は、可視光検出画素の光電変換部で生体の表面の可視光画像を取得し、近赤外光検出画素の光電変換部102で血管などの近赤外光画像を取得することができる。なお、近赤外光検出画素の光電変換部102が検出する近赤外光の波長は、図4および図5に示した第4の実施形態の固体撮像装置40と同様に、ポリシリコンゲート電極132に印加するゲート電圧VGの電圧値を変更することによって変えることができる。従って、図8に示した光学フィルタ150の透過特性A1は、血管などを造影する医療用のシステムや保安システムなどの撮像システムに適合する。
 続いて、固体撮像装置50を搭載する撮像システムが、癌などを診断するためにICG(インドシアニングリーン)などの蛍光薬剤を人体に投与し、近赤外光による励起によって蛍光発光した特定のタンパク質を造影する医療用のシステムである場合について考える。このような撮像システムも、近赤外光照明を備えているが、固体撮像装置50には、近赤外光照明が照射する近赤外光、つまり、励起させるための近赤外光(励起光)は検出せず、蛍光発光した特定のタンパク質の近赤外光のみを検出することが望まれる。このとき、例えば、蛍光発光を励起させるために撮像システムに備えた近赤外光照明が照射する励起光の波長f_extが770nmであり、特定のタンパク質が蛍光発光した波長が810nmである(以下の説明においては、仮に、「波長f_light」とする)とした場合に、図8(図7)に示した光学フィルタ150の透過特性A1が撮像システムに適合するか否かを確認する。撮像システムにおいて照射する励起光の波長f_extは、光学フィルタ150が透過する可視光の上限の波長f_lowと、光学フィルタ150が透過する近赤外光の下限の波長f_highとの間の波長である。つまり、光学フィルタ150は、波長f_lowよりも長い波長~波長f_highよりも短い波長までの範囲の光を遮光するため、撮像システムが照射する励起光を遮光する。また、光学フィルタ150が透過する近赤外光の下限の波長f_highは、特定のタンパク質が蛍光発光した近赤外光の波長f_lightよりも短い波長である。このため、固体撮像装置50は、近赤外光検出画素の光電変換部102で、励起光を含まず、蛍光発光した近赤外光のみを含む近赤外光画像を取得することができる。従って、図8に示した光学フィルタ150の透過特性A1は、近赤外光で励起して蛍光発光させる蛍光薬剤を使用して診断する医療用のシステムなどの撮像システムに適合する。
 このように、固体撮像装置50は、可視光と近赤外光とを高い精度で分離するため、様々な撮像システム(撮像アプリケーション)に搭載され、固体撮像装置50を搭載した撮像システム(撮像アプリケーション)において様々な機能を実現することができる。
 なお、固体撮像装置50の構成を実現する方法、つまり、光学フィルタ150を備えるための方法としては、固体撮像装置50の製造工程において、第1の実施形態の固体撮像装置10に光学フィルタ150を貼付する方法が考えられる。しかし、固体撮像装置50の構成を実現する方法は、この方法に限定されるものではない。例えば、撮像システムの撮像部に第1の実施形態の固体撮像装置10を組み付ける際に、つまり、撮像部の組み立て工程において、固体撮像装置10に光(光線)を集光する光学レンズと固体撮像装置50との間に光学フィルタ150を挿入することによって、固体撮像装置50の構成を実現してもよい。
(第6の実施形態)
 次に、本発明の第6の実施形態の固体撮像装置について説明する。図9は、本発明の第6の実施形態の固体撮像装置の概略構造を示した図である。第6の実施形態の固体撮像装置60も、第5の実施形態の固体撮像装置50と同様に、複数の半導体基板を積層することによって構成される。図9には、第5の実施形態の固体撮像装置50と同様に、第1の半導体基板11と第2の半導体基板12とが積層(接合)された構成の固体撮像装置60において、固体撮像装置60に形成された画素アレイ部の一部分を側面から見たときの縦構造を示している。
 なお、固体撮像装置60を構成する第1の半導体基板11と第2の半導体基板12との構成には、第5の実施形態の固体撮像装置50における第1の半導体基板11と第2の半導体基板12の構成と同様の構成要素を含んでいる。従って、以下の説明においては、固体撮像装置60において第5の実施形態の固体撮像装置50と異なる点のみを説明し、第5の実施形態の固体撮像装置50と同様の構成には、同一の符号を付加して詳細な説明は省略する。
 第6の実施形態の固体撮像装置60も、第5の実施形態の固体撮像装置50と同様に、可視光画像と近赤外光画像とを取得することができる固体撮像装置である。そして、固体撮像装置60では、第5の実施形態の固体撮像装置50と同様に、光学フィルタ150を備えている。さらに、固体撮像装置60では、第1の半導体基板11と、第2の半導体基板12に形成されたポリシリコンゲート電極132との間に、光学フィルタ160を形成している。この光学フィルタ160は、近赤外光と共に第1の半導体基板11を透過してきた、予め定めた波長以下の可視光を遮光(吸収や反射)する特性を持っている。
 なお、固体撮像装置60でも、第5の実施形態の固体撮像装置50と同様に、第2の半導体基板12に形成された光電変換部101で第1の半導体基板11を透過してきたわずかな可視光を検出(吸収)する機能を有しているが、光学フィルタ160は、第2の半導体基板12に入射する可視光をより確実に抑圧するための機能として備えている。この光学フィルタ160は、例えば、近赤外光検出画素の光電変換部102が、光学フィルタ150が透過する可視光の上限の波長よりも短い波長に対しても感度がある場合に、より有効に機能し、近赤外光検出画素の光電変換部102で、より精度よく近赤外光のみを検出することができる。
 ここで、固体撮像装置60内のそれぞれの位置での光と、光学フィルタ150および光学フィルタ160の透過特性と、可視光検出画素および近赤外光検出画素の分光感度との関係について説明する。図10は、本発明の第6の実施形態の固体撮像装置60に備えた光学フィルタ(光学フィルタ150および光学フィルタ160)の透過特性を説明する図である。図10には、光の波長を横軸にして、光学フィルタ150の光の透過特性A1と、可視光検出画素の光電変換部の分光感度特性B1と、近赤外光検出画素の光電変換部102の分光感度特性C2と、光学フィルタ160の光の透過特性D2との一例をそれぞれグラフで示している。また、図10には、可視光検出画素の位置における光の透過特性E2、第1の半導体基板11を透過してくる光の特性F2、および光学フィルタ160を透過した光の特性G2の一例も併せてグラフで示している。なお、図10においても縦軸は、横軸に示した光の波長に対する透過率や感度の高さを表しているが、図10においても、図7に示した第5の実施形態における特性のグラフと同様にそれぞれのグラフを分離して示しているため、透過率や感度の絶対的な高さを表しているものではない。
 なお、図10に示した光学フィルタ150の光の透過特性A1と、可視光検出画素の光電変換部の分光感度特性B1とは、図7に示したそれぞれの特性と同様であるため、詳細な説明は省略する。
 第1の半導体基板11における可視光検出画素の位置における光の透過特性が、図10に示した透過特性E2である場合を考える。この場合、図10に示した第1の半導体基板11を透過してくる光の特性F2のように、光学フィルタ150が透過する近赤外光の下限の波長である波長f_high(例えば、800nm)以上の波長の近赤外光の他に、光学フィルタ150が透過する可視光の上限の波長である波長f_low(例えば、700nm)以下の波長の可視光が、第2の半導体基板12に入射される。
 仮に、近赤外光検出画素の光電変換部102の分光感度の特性が、図10に示した分光感度特性C2である場合、近赤外光検出画素の光電変換部102は、光学フィルタ150によって遮光していない可視光を検出してしまう可能性がある。すなわち、近赤外光検出画素の光電変換部102が、光学フィルタ150が透過する可視光の上限の波長である波長f_low以下の波長の光に対しても感度を持っている場合には、光電変換部102で検出する近赤外光に、波長f_low以下の波長の可視光(図10において丸で囲んで示した範囲を参照)が漏れ込んでしまう可能性がある。そして、近赤外光検出画素の光電変換部102が波長f_low以下の波長の可視光を検出してしまうと、近赤外光検出画素の光電変換部102は、近赤外光のみを検出していることにはならない。
 そこで、固体撮像装置60では、光学フィルタ160の光の透過特性を、透過特性D2のようにする。より具体的には、光学フィルタ160が透過する近赤外光の下限の波長を、光学フィルタ150が透過する可視光の上限の波長である波長f_lowよりも長い波長にする。なお、光学フィルタ160が透過する近赤外光の下限の波長は、光学フィルタ150が透過する近赤外光の下限の波長である波長f_highよりも短い波長である。つまり、光学フィルタ160によって波長f_low以下の可視光の透過率をゼロにし、光学フィルタ150と光学フィルタ160とによって第2の半導体基板12に入射する可視光を遮光する。
 この光学フィルタ150と光学フィルタ160とによって、第2の半導体基板12には、図10に示した光学フィルタ160を透過した光の特性G2のように、光学フィルタ150が透過する近赤外光の下限の波長である波長f_high以上の波長の近赤外光のみが入射されるようになる。
 このように、光学フィルタ160の光の透過特性を透過特性D2とすることによって、固体撮像装置60の第2の半導体基板12に形成された近赤外光検出画素の光電変換部102では、波長f_highよりも短い波長の光(可視光)の検出が行われなくなる。これにより、固体撮像装置60では、可視光と特定の波長の近赤外光とをより高い精度で分離して、それぞれの光を検出することができる。
 上記に述べたように、固体撮像装置60では、第5の実施形態の固体撮像装置50と同様に、可視光と近赤外光とを高い精度で分離して、可視光検出画素の光電変換部で可視光を検出し、近赤外光検出画素の光電変換部102で特定の波長の近赤外光のみを検出することができる。また、固体撮像装置60では、近赤外光検出画素の光電変換部102の分光感度特性C2に基づいて決定された透過特性の光学フィルタ160を備える。このような構成によって固体撮像装置60では、第1の半導体基板11を透過してきたわずかな可視光が第2の半導体基板12に入射される前に抑圧し、光電変換部101によるわずかな可視光の抑圧をより確実なものとする。これにより、固体撮像装置60では、可視光と近赤外光とをより高い精度で分離して、近赤外光検出画素の光電変換部102で特定の波長の近赤外光のみを検出することができる。
 例えば、図10に示した透過特性A1の光学フィルタ150と、透過特性D2の光学フィルタ160とを備えた固体撮像装置60では、波長f_low(例えば、700nm)以下の波長の可視光と、波長f_high(例えば、800nm)以上の波長の近赤外光とのそれぞれの光の検出を、第5の実施形態の固体撮像装置50よりもさらに高い精度で分離して行うことができる。これにより、固体撮像装置60を、例えば、監視カメラなどの撮像システム(撮像アプリケーション)に搭載した場合、監視カメラなどで多く用いられる近赤外光照明(例えば、LED照明)が照射した850nmや940nmの近赤外光を高い精度で分離して検出することができ、より高精細な近赤外光画像を得ることができる。また、固体撮像装置60を、例えば、医療用の撮像システム(撮像アプリケーション)に搭載した場合、医療用のシステムにおいて撮影する蛍光発光した近赤外光の波長と近赤外の近赤外光照明の波長とを高い精度で分離して検出することができ、より高精細な近赤外光画像を得ることができる。
 なお、固体撮像装置60では、光学フィルタ160を、例えば、第2の半導体基板12を形成する製造工程、つまり、半導体の製造工程において形成することを想定したため、図10に示したように、光学フィルタ160の光の透過特性D2において近赤外光を透過する範囲の透過特性を山なりの形で示した。しかし、光学フィルタ160を形成する方法は、半導体の製造工程において形成する方法に限定されるものではない。例えば、光学フィルタ160と同じ特性の光学フィルタを半導体の製造工程とは別に作製し、この光学フィルタを、第1の半導体基板11と第2の半導体基板12とを積層する工程において貼り合わせることによって光学フィルタ160としてもよい。この場合、光学フィルタ160の光の透過特性D2は、近赤外光を透過する波長における透過率が、光学フィルタ150の光の透過特性A1と同様に、急峻に立ち上がる透過特性になると考えられる。
 また、固体撮像装置60では、第1の実施形態の固体撮像装置10に光学フィルタ150を備えた第5の実施形態の固体撮像装置50に光学フィルタ160を形成する場合について説明した。しかし、光学フィルタ160は、第3の実施形態の固体撮像装置30のように、第1の半導体基板11と、第2の半導体基板12に形成されたポリシリコンゲート電極132との間にシリコン酸化膜133、すなわち、反射防止膜が形成された固体撮像装置にも形成することができる。この場合、光学フィルタ160は、シリコン酸化膜133と、第2の半導体基板12に形成されたポリシリコンゲート電極132との間に形成する。
 なお、光学フィルタ160は、図10に示した光学フィルタ160の光の透過特性D2のグラフのように、波長f_lowよりも長い波長の光の透過率がゼロである、つまり、ハイパス型の光学フィルタである場合について説明した。しかし、光学フィルタ160の透過特性は、近赤外光検出画素の光電変換部102が検出してしまう可能性がある、光学フィルタ150が透過する可視光の上限の波長以下の波長の可視光を遮光することができる透過特性であればよい。従って、光学フィルタ160では、近赤外光検出画素の光電変換部102が持っている感度の下限の波長よりも短い波長の光に関しては、特に透過特性に規定はない。これは、近赤外光検出画素の光電変換部102が持っている感度の下限の波長よりも短い波長の可視光であれば、光学フィルタ160を透過して第2の半導体基板12に入射されても、近赤外光検出画素の光電変換部102における近赤外光の検出に影響を及ぼさないからである。
 従って、光学フィルタ160をより容易に形成することができれば、光学フィルタ160は、近赤外光検出画素の光電変換部102が持っている感度の下限の波長以下の予め定めた波長の可視光から、波長f_lowよりも長い波長~波長f_highよりも短い波長までの範囲内のいずれかの位置の波長の近赤外光を遮光することができる透過特性であればよい。このため、透過特性が適合していれば、光学フィルタ160を、光学フィルタ150と同様の、いわゆる、ノッチ型(バンドイルミネート型)の光学フィルタで構成してもよい。
 ここで、光学フィルタ160をノッチ型(バンドイルミネート型)の光学フィルタで構成した場合の一例について説明する。図11は、本発明の第6の実施形態の固体撮像装置60に備えた光学フィルタ160の別の透過特性を説明する図である。図11には、図10に示した固体撮像装置60における光の波長に対するそれぞれの特性と同様に、光の波長を横軸にして、光学フィルタ150の光の透過特性A1と、可視光検出画素の光電変換部の分光感度特性B1と、近赤外光検出画素の光電変換部102の分光感度特性C2と、光学フィルタ160の光の透過特性D3との一例をそれぞれグラフで示している。また、図11には、図10に示した固体撮像装置60における光の波長に対するそれぞれの特性と同様に、可視光検出画素の位置における光の透過特性E2、第1の半導体基板11を透過してくる光の特性F2、および光学フィルタ160を透過した光の特性G2の一例も併せてグラフで示している。なお、図11においても縦軸は、横軸に示した光の波長に対する透過率や感度の高さを表しているが、透過率や感度の絶対的な高さを表しているものではない。
 なお、図11に示した光学フィルタ150の光の透過特性A1、可視光検出画素の光電変換部の分光感度特性B1、可視光検出画素の位置における光の透過特性E2、第1の半導体基板11を透過してくる光の特性F2、および光学フィルタ160を透過した光の特性G2のそれぞれは、図10に示したそれぞれの特性と同様であるため、詳細な説明は省略する。
 第1の半導体基板11を透過してくる可能性が高い可視光は、近赤外光に近い波長である赤色(R)に対応する可視光であると考えられる。言い換えれば、近赤外光と波長が離れている青色(B)に対応する可視光と、緑色(G)に対応する可視光とは、第1の半導体基板11を透過してくる可能性が低いと考えられる。図11には、青色(B)に対応する波長の可視光と近赤外光との両方を透過する、青色(B)に対応した可視光検出画素用の有機または無機の光学フィルタ(ノッチ型の光学フィルタ)を、光学フィルタ160とした場合における光学フィルタ160の光の透過特性D3のグラフを示している。
 仮に、近赤外光検出画素の光電変換部102の分光感度の特性が、図11に示した分光感度特性C3である場合、つまり、近赤外光検出画素の光電変換部102が波長f_low_filterから光に対しても感度を持っている場合について考える。そして、光学フィルタ160の光の透過特性が、図11に示した透過特性D3のように、近赤外光検出画素の光電変換部102が感度を持つ波長f_low_filter以下の波長から透過率がゼロになり、波長f_lowよりも長い波長~波長f_highよりも短い波長までの範囲内のいずれかの波長の位置から透過率が立ち上がる透過特性である場合を考える。すなわち、図11において丸で囲んで示した範囲に示したように、光学フィルタ160における透過率がゼロではない波長と、近赤外光検出画素の光電変換部102が感度を持つ波長f_low_filterとに重なりがないものとする。この場合、例え光の特性F2のように可視光が第1の半導体基板11を透過してきた場合でも、光学フィルタ160と光学フィルタ150とによって、第2の半導体基板12には、図11に示した光学フィルタ160を透過した光の特性G2の特性の光が入射される。つまり、第2の半導体基板12には、光学フィルタ150が透過する近赤外光の下限の波長である波長f_highよりも短い波長の可視光や近赤外光が入射されることがなくなる。
 これにより、第2の半導体基板12に形成された近赤外光検出画素の光電変換部102では、波長f_highよりも短い波長の光(可視光)の検出が行われなくなる。このように、固体撮像装置60において第2の半導体基板12に形成する光学フィルタ160を、青色(B)に対応した可視光検出画素用の有機または無機の光学フィルタ(ノッチ型の光学フィルタ)場合でも、可視光と特定の波長の近赤外光とをより高い精度で分離して、それぞれの光を検出することができる。
 なお、図11においては、光学フィルタ160の光の透過特性が青色(B)に対応した可視光検出画素用の有機または無機の光学フィルタ(ノッチ型の光学フィルタ)の透過特性である場合について説明した。しかし、上述したように、光学フィルタ160は、近赤外光検出画素の光電変換部102が持っている感度の下限の波長以下の波長の可視光から、波長f_lowよりも長い波長~波長f_highよりも短い波長までの範囲内のいずれかの位置の波長の近赤外光を遮光することができる透過特性であればよい。従って、透過特性が適合していれば、光学フィルタ160を、緑色(G)に対応した可視光検出画素用の有機または無機の光学フィルタ(ノッチ型の光学フィルタ)で構成してもよい。つまり、光学フィルタ160は、近赤外光に近い波長である赤色(R)に対応する可視光を少なくとも遮光することができる透過特性であればよい。
 第6の実施形態によれば、第1の半導体基板(第1の半導体基板11)と導電層(ポリシリコンゲート電極132)との間に配置され、予め定めた第3の波長以下の波長の光を遮光する第2の光学フィルタ(光学フィルタ160)、をさらに備え、第3の波長は、第1の波長(波長f_lowよりも長い波長)以上で第2の波長(波長f_highよりも短い波長)以下である固体撮像装置(固体撮像装置60)が構成される。
 また、第6の実施形態によれば、光学フィルタ160が遮光する下限の波長は、第2の光電変換層(近赤外光検出画素の光電変換部102)が光電変換する下限の波長(波長f_low_filter)以下の波長である固体撮像装置60が構成される。
 また、第6の実施形態によれば、光学フィルタ160は、少なくとも赤色(R)の波長の光(可視光)を遮光する固体撮像装置60が構成される。
 上記に述べたように、本発明の第5および第6の実施形態の固体撮像装置では、可視光検出画素の光電変換部の分光感度特性や近赤外光検出画素の光電変換部102の分光感度特性に基づいて決定した透過特性の光学フィルタ(光学フィルタ150や光学フィルタ160)を備える。これにより、本発明の第5および第6の実施形態の固体撮像装置では、可視光と近赤外光とを光学的にも分離して、可視光検出画素の光電変換部で可視光を検出し、近赤外光検出画素の光電変換部102で特定の波長の近赤外光のみを検出することができる。そして、本発明の第5および第6の実施形態の固体撮像装置を搭載した撮像システム(撮像アプリケーション)では、可視光画像と近赤外光画像との両方を同時に得て、それぞれの画像を利用した処理を実行することができる。
 なお、可視光と近赤外光とを高い精度で分離して、可視光検出画素の光電変換部で可視光のみを検出し、近赤外光検出画素の光電変換部102で近赤外光のみを検出することができる構成は、上述したような光学的な構成以外にも考えられる。
(第7の実施形態)
 次に、本発明の第7の実施形態の固体撮像装置について説明する。図12は、本発明の第7の実施形態の固体撮像装置の概略構造を示した図である。第7の実施形態の固体撮像装置70は、第5の実施形態の固体撮像装置50内に、それぞれの光電変換部によって光電変換された電気信号(画素信号)に基づいて可視光および近赤外光を検出するための処理を行う構成である。図12も、固体撮像装置40に形成された画素アレイ部の一部分を側面から見たときの縦構造として示している。以下の説明においては、固体撮像装置40において第5の実施形態の固体撮像装置50と異なる点のみを説明し、第5の実施形態の固体撮像装置50と同様の構成には、同一の符号を付加して詳細な説明は省略する。
 第7の実施形態の固体撮像装置70も、第5の実施形態の固体撮像装置50と同様に、可視光画像と近赤外光画像とを取得することができる固体撮像装置である。ただし、固体撮像装置70では、第2の半導体基板12内に、それぞれの光電変換部によって光電変換された画素信号に対して処理を行う差分演算部170を備えている。
 差分演算部170は、第2の半導体基板12に形成された近赤外光検出画素の光電変換部102が近赤外光を検出して光電変換した画素信号を補正する演算を行う。より具体的には、近赤外光が照射されているときに近赤外光検出画素の光電変換部102が光電変換した画素信号(以下、「近赤外光照射画素信号」という)と、近赤外光が照射されていないときに近赤外光検出画素の光電変換部102が光電変換した画素信号(以下、「近赤外光未照射画素信号」という)とに基づいて、近赤外光として検出された可視光を除外するための演算を行う。これにより、差分演算部170は、近赤外光検出画素の光電変換部102が検出した近赤外光のみが含まれている画素信号を生成することができる。
 なお、固体撮像装置70では、上述したように、近赤外光が照射されているときと近赤外光が照射されていないときとのそれぞれで画素信号(近赤外光照射画素信号および近赤外光未照射画素信号)を取得する。従って、固体撮像装置70を搭載した撮像システム(撮像アプリケーション)には、近赤外光を照射するための近赤外光照明(例えば、LED照明)を備える必要がある。
 ここで、固体撮像装置70を搭載した撮像システムにおいて、近赤外光検出画素の光電変換部102が検出した近赤外光のみが含まれている画素信号を生成するための処理について説明する。図13は、本発明の第7の実施形態の固体撮像装置70を備えた撮像システムにおける処理を模式的に示した図である。図13には、光の波長を横軸にして、光学フィルタ150の光の透過特性A1と、それぞれの処理段階における画素信号に含まれる光の波長の成分との一例をそれぞれグラフで示している。なお、図13において縦軸は、横軸に示した光の波長に対する透過率や、画素信号に含まれる波長の成分の量を表しているが、図13では、説明を容易にするためにそれぞれのグラフを分離して示しているため、それぞれのグラフは、透過率の絶対的な高さや、波長の成分の絶対的な量を表しているものではない。以下の説明においては、適宜、図13に示したそれぞれグラフを参照する。
 まず、撮像システムは、近赤外光照明が近赤外光を照射した状態(近赤外光の照射がオンの状態)で撮影を行う。このときの撮影では、差分演算部170は、近赤外光検出画素の光電変換部102から、図13に示したグラフS1の範囲の波長が含まれる近赤外光照射画素信号を取得する。この近赤外光照射画素信号S1には、近赤外光の成分と、近赤外光として検出された可視光、つまり、第1の半導体基板11を透過してきてしまった(光電変換部102で検出する近赤外光に漏れ込んでしまった)可視光の成分が含まれている。
 その後、撮像システムは、近赤外光照明が近赤外光の照射を停止した状態(近赤外光の照射がオフの状態)で撮影を行う。このときの撮影では、差分演算部170は、可視光検出画素の光電変換部からの画素信号と、近赤外光検出画素の光電変換部102から、図13に示したグラフS2の範囲の波長が含まれる近赤外光未照射画素信号とを取得する。この近赤外光未照射画素信号S2には、可視光の成分(図13では、波長f_high(例えば、800nm)よりも短い波長の成分)が含まれている。この可視光の成分は、近赤外光の照射がオフの状態であるにもかかわらず、近赤外光として検出された成分であり、第1の半導体基板11を透過してきてしまった(光電変換部102で検出する近赤外光に漏れ込んでしまった)可視光の成分である。
 そして、差分演算部170は、近赤外光照射画素信号S1と近赤外光未照射画素信号S2との差分を演算する。これにより、差分演算部170は、図13に示したグラフS3の範囲の波長が含まれる、つまり、近赤外光検出画素の光電変換部102が検出した近赤外光の成分のみが含まれている画素信号S3を生成する。
 なお、可視光のみの成分が含まれた画像信号は、近赤外光の照射がオフの状態で行った撮影によって得られた可視光検出画素の光電変換部からの画素信号である。
 なお、上述した処理では、近赤外光検出画素の光電変換部102から取得した画素信号のみに基づいて近赤外光の成分のみが含まれている画素信号を得るための処理を行う場合について説明したが、同様の考え方を、可視光検出画素の光電変換部から取得した画素信号に適用してもよい。例えば、近赤外光の照射がオンの状態で得た可視光検出画素の光電変換部からの画素信号と、近赤外光の照射がオフの状態で得た可視光検出画素の光電変換部からの画素信号との差分を演算することによって、可視光検出画素の光電変換部が検出した近赤外光の成分のみが含まれる画素信号を生成してもよい。また、ここで生成した近赤外光の成分のみが含まれた画素信号を、近赤外光検出画素の光電変換部102が検出した近赤外光の成分のみが含まれている画素信号S3に加算することによって、可視光検出画素の光電変換部によって検出(吸収)されてしまった画素信号を含めた近赤外光の成分の画素信号としてもよい。
 このように、固体撮像装置70では、それぞれの光電変換部によって光電変換された画素信号に対して処理を施すことによっても、可視光と特定の波長の近赤外光とを分離して、それぞれの光を検出した画素信号を得ることができる。
 第7の実施形態によれば、近赤外光が照射されている場合に第2の光電変換層(近赤外光検出画素の光電変換部102)が光電変換した第1の電気信号(近赤外光照射画素信号)と、近赤外光が照射されていない場合に近赤外光検出画素の光電変換部102が光電変換した第2の電気信号(近赤外光未照射画素信号)とに基づいて、近赤外光のみが含まれている電気信号(画素信号)を生成する演算処理部(差分演算部170)、をさらに備える固体撮像装置(固体撮像装置70)が構成される。
 上記に述べたように、固体撮像装置70では、画素信号を補正する演算を行う差分演算部170を備える。このような構成によって固体撮像装置70では、それぞれの光電変換部によって光電変換された画素信号に対して演算処理を行う。これにより、固体撮像装置70では、光学的な構成以外の方法で、可視光と特定の波長の近赤外光とを分離して、それぞれの光を検出した画素信号を得ることができる。
 例えば、図13に示した一例では、波長f_high(例えば、800nm)以上の波長の近赤外光を検出した画素信号を得ることができる。これにより、固体撮像装置70を搭載した撮像システム(撮像アプリケーション)でも、近赤外光照明(例えば、LED照明)が照射した850nmや940nmなど、特定の波長の近赤外光を検出する機能を実現することができる。
 なお、図12に示した固体撮像装置70の構成では、差分演算部170を第2の半導体基板12内に備える場合について説明したが、差分演算部170を備える場所は、第2の半導体基板12に限定されるものではない。例えば、固体撮像装置70を構成する第1の半導体基板11内に差分演算部170を備える構成にしてもよい。また、固体撮像装置70内に差分演算部170を備えるのではなく、例えば、固体撮像装置70を搭載した撮像システム(撮像アプリケーション)内に備えたいずれかの処理部が、差分演算部170の機能を実現する構成にしてもよい。
 上記に述べたように、本発明の各実施形態によれば、固体撮像装置を複数の半導体基板を積層した構成にし、光(光線)が入射される側から見て上面に配置された第1の半導体基板に可視光を検出する通常の画素を形成し、下面に配置された第2の半導体基板に近赤外光を検出する近赤外光用の画素を形成する。このとき、本発明の各実施形態では、第2の半導体基板にNPN半導体の構造、および絶縁膜と導電層とを形成する。そして、本発明の各実施形態では、導電層とNPN半導体の構造において光線が入射される側のN型半導体とによってフォトゲート型の光電変換部(フォトダイオード)を構成し、NPN半導体の構造内のP型半導体とN型半導体である第2の半導体基板とのPN接合によってPN接合型の光電変換部(フォトダイオード)を構成する。この構成によって本発明の各実施形態では、フォトゲート型の光電変換部を、第1の半導体基板を透過してきたわずかな可視光を検出して抑圧する画素として機能させ、PN接合型の光電変換部を近赤外光用の画素として機能させる。これにより、本発明の各実施形態では、可視光と近赤外光とを高い精度で分離して、通常の画素で可視光を検出し、近赤外光用の画素、つまり、PN接合型の光電変換で近赤外光のみを検出することができる。このことにより、本発明の各実施形態では、可視光によって得られる通常の画像と、近赤外光によって得られる画像との両方の画像を同時に取得することができる。そして、本発明の各実施形態の固体撮像装置を搭載した撮像システム(撮像アプリケーション)では、可視光によって得られる通常の画像と、近赤外光によって得られる画像とを用いた様々な機能を実現することができる。
 また、本発明の各実施形態では、固体撮像装置に光(光線)が入射する側の面に、通常の画素の光電変換部の分光感度特性と、近赤外光用の画素のPN接合型の光電変換の分光感度特性とに基づいて決定された、予め定めた波長の光のみを透過する特性を持っている光学フィルタを備える。この構成によって本発明の各実施形態では、可視光と近赤外光とをより高い精度で分離して、可視光によって得られる通常の画像と、特定の波長の近赤外光によって得られる画像との両方の画像を同時に取得することができる。
 また、本発明の各実施形態では、近赤外光用の画素のPN接合型の光電変換の分光感度特性に基づいて決定された透過特性の光学フィルタを、第1の半導体基板と導電層との間に形成する。これにより、本発明の各実施形態では、フォトゲート型の光電変換部を併せて、第1の半導体基板を透過してきたわずかな可視光の抑圧をより確実に行う。この構成によって本発明の各実施形態では、可視光と近赤外光とをさらに高い精度で分離して、可視光によって得られる通常の画像と、特定の波長の近赤外光によって得られる画像との両方の画像を同時に取得することができる。
 なお、本発明の各実施形態では、それぞれの実施形態毎に異なる固体撮像装置の構成を示した。しかし、それぞれの実施形態は、排他的な構成ではなく、それぞれの実施形態で示した構成を同時に備えてもよい。つまり、第1~第7の実施形態で示したそれぞれの構成要素の複数を同時に備えてもよい。例えば、第2の実施形態の固体撮像装置20に、第3の実施形態で示したシリコン酸化膜133と、第4の実施形態で示したゲート電圧制御部140と、第5の実施形態で示した光学フィルタ150と、第6の実施形態で示した光学フィルタ160と、第7の実施形態で示した差分演算部170とのいずれか1つの構成、複数の構成、または全てを同時に備えた固体撮像装置を形成してもよい。これにより、可視光と近赤外光とをさらに高い精度で分離したそれぞれの画像を取得する固体撮像装置を構成し、この固体撮像装置を搭載した撮像システム(撮像アプリケーション)において望まれる様々な機能を実現することができる。
 また、本発明の各実施形態においては、第1の半導体基板11と第2の半導体基板12との2枚の半導体基板を積層した固体撮像装置の構成について説明した。しかし、固体撮像装置において積層する基板の枚数は2枚に限らず、さらに多くの枚数の基板を積層する構成であってもよい。
 以上、本発明の実施形態について、図面を参照して説明してきたが、具体的な構成はこの実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲においての種々の変更も含まれる。
 上記各実施形態によれば、固体撮像装置において、可視光と近赤外光とを高い精度で分離してそれぞれの光を検出することができる。
 10,20,30,40,41,50,60,70 固体撮像装置
 11 第1の半導体基板
 110 N型半導体(第1の光電変換層,第1のN型半導体層)
 111 カラーフィルタ(色フィルタ)
 111G カラーフィルタ(第2の色フィルタ,色フィルタ)
 111B カラーフィルタ(第3の色フィルタ,色フィルタ)
 111R カラーフィルタ(第1の色フィルタ,色フィルタ)
 12 第2の半導体基板
 120,120a,120b P型半導体(第2の光電変換層)
 121,121a,121b N型半導体(第2の光電変換層,第2のN型半導体層)
 101,101a,101b 光電変換部
 102,102a,102b 光電変換部(第2の光電変換層)
 103,103a,103b 空乏層(第2の光電変換層)
 131,131a,131b シリコン酸化膜(絶縁膜)
 132,132a,132b ポリシリコンゲート電極(導電層)
 133 シリコン酸化膜(反射防止膜)
 140 ゲート電圧制御部
 150 光学フィルタ(第1の光学フィルタ)
 160 光学フィルタ(第2の光学フィルタ)
 170 差分演算部(演算処理部)

Claims (12)

  1.  入射された第1の波長帯域の光を光電変換する第1の光電変換層が二次元のマトリクス状に形成された第1の半導体基板と、
     入射された光を光電変換する第2の光電変換層が二次元のマトリクス状に形成された第2の半導体基板と、
     前記第1の半導体基板と前記第2の半導体基板との間に配置され、前記第2の光電変換層に対応した導電性を有する導電層と、
     前記第2の半導体基板と前記導電層との間に配置され、前記第2の光電変換層に対応した絶縁性を有する絶縁膜と、
     を備え、
     前記第1の光電変換層、前記導電層、および前記絶縁膜を透過した光が前記第2の半導体基板に入射し、
     前記導電層には所定の電圧が印加され、
     前記所定の電圧が前記導電層に印加されている場合に前記第2の光電変換層が光電変換する第2の波長帯域の光の波長は、前記所定の電圧が前記導電層に印加されていない場合に前記第2の光電変換層が光電変換する波長帯域の光の波長よりも長い
     固体撮像装置。
  2.  予め定めた第1の波長から、前記第1の波長よりも長い予め定めた第2の波長までの光を遮光する第1の光学フィルタ、
     をさらに備え、
     前記第1の半導体基板は、
     前記第1の光学フィルタと前記第2の半導体基板との間に配置され、
     前記第1の波長帯域の上限の波長は、前記第1の波長よりも短い波長であり、
     前記第2の波長帯域の下限の波長は、前記第2の波長よりも長い波長である
     請求項1に記載の固体撮像装置。
  3.  前記第1の半導体基板と前記導電層との間に配置され、予め定めた第3の波長以下の波長の光を遮光する第2の光学フィルタ、
     をさらに備え、
     前記第3の波長は、
     前記第1の波長以上で前記第2の波長以下である
     請求項2に記載の固体撮像装置。
  4.  前記第2の光学フィルタが遮光する下限の波長は、前記第2の光電変換層が光電変換する下限の波長以下の波長である
     請求項3に記載の固体撮像装置。
  5.  前記第2の光学フィルタは、
     少なくとも赤色の波長の光を遮光する
     請求項4に記載の固体撮像装置。
  6.  前記第1の光電変換層および前記第2の光電変換層は、
     PN接合型の光電変換部であり、
     前記第1の光電変換層を形成する第1のN型半導体層の厚さは、
     前記第2の光電変換層を形成する第2のN型半導体層の厚さよりも薄い
     請求項1から請求項5のいずれか1の項に記載の固体撮像装置。
  7.  前記第1のN型半導体層を形成する際の不純物の濃度は、
     前記第2のN型半導体層を形成する際の不純物の濃度と同じ、または前記第2のN型半導体層を形成する際の不純物の濃度よりも濃い
     請求項6に記載の固体撮像装置。
  8.  前記第1の光電変換層は、
     赤色の波長の光を透過する第1の色フィルタ、緑色の波長の光を透過する第2の色フィルタ、または青色の波長の光を透過する第3の色フィルタのいずれか1つの色フィルタが、前記第1の波長帯域の光が入射する側に配置され、
     前記第1の色フィルタ、前記第2の色フィルタ、および前記第3の色フィルタのそれぞれは、さらに、
     少なくとも前記第2の波長帯域の光を透過する
     請求項1から請求項7のいずれか1の項に記載の固体撮像装置。
  9.  前記第1の半導体基板と前記導電層との間に配置され、前記第1の光電変換層を透過した光の反射を防止する反射防止膜、
     をさらに備える
     請求項1から請求項8のいずれか1の項に記載の固体撮像装置。
  10.  前記導電層に印加する前記所定の電圧を制御するゲート電圧制御部、
     をさらに備える
     請求項1から請求項9のいずれか1の項に記載の固体撮像装置。
  11.  ゲート電圧制御部は、
     前記第2の光電変換層に対応する導電層毎、または複数の前記導電層毎に、異なる電圧値の前記所定の電圧を印加する
     請求項10に記載の固体撮像装置。
  12.  近赤外光が照射されている場合に前記第2の光電変換層が光電変換した第1の電気信号と、前記近赤外光が照射されていない場合に前記第2の光電変換層が光電変換した第2の電気信号とに基づいて、前記近赤外光のみが含まれている電気信号を生成する演算処理部、
     をさらに備える
     請求項1から請求項11のいずれか1の項に記載の固体撮像装置。
PCT/JP2015/050523 2015-01-09 2015-01-09 固体撮像装置 WO2016111010A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2015/050523 WO2016111010A1 (ja) 2015-01-09 2015-01-09 固体撮像装置
JP2016568252A JP6388669B2 (ja) 2015-01-09 2015-01-09 固体撮像装置
US15/631,283 US10700108B2 (en) 2015-01-09 2017-06-23 Solid-state imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/050523 WO2016111010A1 (ja) 2015-01-09 2015-01-09 固体撮像装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/631,283 Continuation US10700108B2 (en) 2015-01-09 2017-06-23 Solid-state imaging device

Publications (1)

Publication Number Publication Date
WO2016111010A1 true WO2016111010A1 (ja) 2016-07-14

Family

ID=56355730

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/050523 WO2016111010A1 (ja) 2015-01-09 2015-01-09 固体撮像装置

Country Status (3)

Country Link
US (1) US10700108B2 (ja)
JP (1) JP6388669B2 (ja)
WO (1) WO2016111010A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019004001A (ja) * 2017-06-13 2019-01-10 ルネサスエレクトロニクス株式会社 固体撮像素子およびその製造方法
KR20190106387A (ko) * 2018-03-09 2019-09-18 삼성전자주식회사 3차원 이미지 센서
WO2020149096A1 (ja) * 2019-01-18 2020-07-23 ソニーセミコンダクタソリューションズ株式会社 撮像装置及び電子機器
WO2023171008A1 (ja) * 2022-03-09 2023-09-14 ソニーセミコンダクタソリューションズ株式会社 光検出装置および電子機器ならびに光検出システム
US12009382B2 (en) 2019-01-18 2024-06-11 Sony Semiconductor Solutions Corporation Imaging device and electronic device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105956584A (zh) * 2016-06-30 2016-09-21 京东方科技集团股份有限公司 指纹识别模组及其制作方法和驱动方法、显示装置
JP7005317B2 (ja) * 2017-12-04 2022-01-21 キヤノン株式会社 撮像装置、撮像装置の制御方法およびプログラム
JP7323787B2 (ja) * 2019-07-31 2023-08-09 日亜化学工業株式会社 照明装置及び赤外線カメラ付き照明装置
CN112786625A (zh) * 2019-11-08 2021-05-11 精準基因生物科技股份有限公司 图像传感器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011049240A (ja) * 2009-08-25 2011-03-10 Toshiba Corp 固体撮像装置及びその製造方法
JP2011530165A (ja) * 2008-08-01 2011-12-15 オムニヴィジョン テクノロジーズ インコーポレイテッド 複数のセンシング層を有するイメージセンサ
JP2012506206A (ja) * 2008-10-16 2012-03-08 オムニヴィジョン テクノロジーズ インコーポレイテッド 複数個のセンサ層を有するイメージセンサ並びにその稼働及び製造方法
JP2014039078A (ja) * 2012-08-10 2014-02-27 Olympus Corp 固体撮像装置および撮像装置
JP5604703B1 (ja) * 2013-09-10 2014-10-15 弘一 関根 固体撮像装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100863497B1 (ko) 2007-06-19 2008-10-14 마루엘에스아이 주식회사 이미지 감지 장치, 이미지 신호 처리 방법, 광 감지 소자, 제어 방법 및 화소 어레이
KR101484111B1 (ko) 2008-09-25 2015-01-19 삼성전자주식회사 입체 이미지 센서
US9595558B2 (en) * 2013-11-12 2017-03-14 Intrinsix Corporation Photodiode architectures and image capture methods having a plurality of photodiode with a shared electrode

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011530165A (ja) * 2008-08-01 2011-12-15 オムニヴィジョン テクノロジーズ インコーポレイテッド 複数のセンシング層を有するイメージセンサ
JP2012506206A (ja) * 2008-10-16 2012-03-08 オムニヴィジョン テクノロジーズ インコーポレイテッド 複数個のセンサ層を有するイメージセンサ並びにその稼働及び製造方法
JP2011049240A (ja) * 2009-08-25 2011-03-10 Toshiba Corp 固体撮像装置及びその製造方法
JP2014039078A (ja) * 2012-08-10 2014-02-27 Olympus Corp 固体撮像装置および撮像装置
JP5604703B1 (ja) * 2013-09-10 2014-10-15 弘一 関根 固体撮像装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019004001A (ja) * 2017-06-13 2019-01-10 ルネサスエレクトロニクス株式会社 固体撮像素子およびその製造方法
KR20190106387A (ko) * 2018-03-09 2019-09-18 삼성전자주식회사 3차원 이미지 센서
KR102523281B1 (ko) 2018-03-09 2023-04-18 삼성전자주식회사 3차원 이미지 센서
US11810941B2 (en) 2018-03-09 2023-11-07 Samsung Electronics Co., Ltd. 3D image sensor
WO2020149096A1 (ja) * 2019-01-18 2020-07-23 ソニーセミコンダクタソリューションズ株式会社 撮像装置及び電子機器
US12009382B2 (en) 2019-01-18 2024-06-11 Sony Semiconductor Solutions Corporation Imaging device and electronic device
WO2023171008A1 (ja) * 2022-03-09 2023-09-14 ソニーセミコンダクタソリューションズ株式会社 光検出装置および電子機器ならびに光検出システム

Also Published As

Publication number Publication date
JPWO2016111010A1 (ja) 2017-10-19
US10700108B2 (en) 2020-06-30
US20170294467A1 (en) 2017-10-12
JP6388669B2 (ja) 2018-09-12

Similar Documents

Publication Publication Date Title
JP6388669B2 (ja) 固体撮像装置
TWI550841B (zh) 影像感測器及其形成方法
JP5651746B2 (ja) イメージセンシング装置
US9679933B2 (en) Image sensors and methods of forming the same
JP2021073722A (ja) 撮像素子、および電子装置
US10578739B2 (en) Optoelectronic modules for the acquisition of spectral and distance data
JP5438374B2 (ja) 固体撮像装置
WO2020036025A1 (ja) 固体撮像装置及び電子機器
JP2011243862A (ja) 撮像デバイス及び撮像装置
CN105580138B (zh) 固态成像装置和电子设备
CN105009288A (zh) 固体摄像元件、摄像装置、电子设备和制造方法
KR20170099657A (ko) 이미지 센서 및 그 제조 방법
US11335722B2 (en) Solid-state imaging device and electronic apparatus
US20170221956A1 (en) Solid-state imaging device and imaging apparatus
JP2011205085A (ja) 撮像素子
US10425597B2 (en) Combined visible and infrared image sensor incorporating selective infrared optical filter
US20140285691A1 (en) Solid state imaging device
WO2017169719A1 (ja) 固体撮像素子、および電子機器
US10609309B1 (en) Combined visible and infrared image sensor incorporating selective infrared optical filter
WO2017051749A1 (ja) 放射線画像撮影装置
KR102129453B1 (ko) 이미지 센서 및 이를 포함하는 전자 장치
US20180301492A1 (en) Solid-state imaging device
CN111129048A (zh) 一种近红外增强的cmos图像传感器结构及形成方法
WO2017068713A1 (ja) 固体撮像装置および撮像装置
KR20210028256A (ko) 멀티스펙트럼 이미지 센서 및 이미지 센서를 제조하기 위한 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15876885

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016568252

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15876885

Country of ref document: EP

Kind code of ref document: A1