WO2018000388A1 - 一种电致发光器件及其制备方法 - Google Patents

一种电致发光器件及其制备方法 Download PDF

Info

Publication number
WO2018000388A1
WO2018000388A1 PCT/CN2016/088027 CN2016088027W WO2018000388A1 WO 2018000388 A1 WO2018000388 A1 WO 2018000388A1 CN 2016088027 W CN2016088027 W CN 2016088027W WO 2018000388 A1 WO2018000388 A1 WO 2018000388A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
light
light extraction
electrode layer
electroluminescent device
Prior art date
Application number
PCT/CN2016/088027
Other languages
English (en)
French (fr)
Inventor
张磊
Original Assignee
深圳市柔宇科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市柔宇科技有限公司 filed Critical 深圳市柔宇科技有限公司
Priority to PCT/CN2016/088027 priority Critical patent/WO2018000388A1/zh
Priority to CN201680019622.6A priority patent/CN107466429B/zh
Publication of WO2018000388A1 publication Critical patent/WO2018000388A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/854Arrangements for extracting light from the devices comprising scattering means

Definitions

  • the present invention relates to the field of semiconductor technology, and in particular, to an electroluminescent device and a method of fabricating the same.
  • the electroluminescent device may include an Organic Light-Emitting Diode (OLED), a Polymer Light-Emitting Diode (PLED), and an inorganic electroluminescent device, which may be applied to a display screen.
  • OLED Organic Light-Emitting Diode
  • PLED Polymer Light-Emitting Diode
  • the electroluminescent device is affected by factors such as reflection and refraction of the glass substrate and the air surface layer, and most of the light generated by the light-emitting functional layer cannot escape to the light-emitting surface of the electroluminescent device, but is emitted from the side of the light-emitting surface. Thereby, the electroluminescent device has a low light extraction rate.
  • a multilayer light extraction layer having an increased refractive index is sequentially prepared on the surface of the cathode layer, and light generated by the light-emitting functional layer is extracted to increase the light-emitting rate of the electroluminescent device;
  • the surface of the light extraction layer is flat, so that the angle of light emitted from the electroluminescent device is limited, and the prepared display screen has a small viewing angle, which affects the user's visual experience.
  • an embodiment of the present invention provides an electroluminescent device, including:
  • a first electrode layer for outputting holes under voltage driving, and a second motor layer for outputting electrons under voltage driving;
  • a light emitting layer between the first electrode layer and the second motor layer, the light emitting layer for generating light under excitation of holes of the first electrode layer and electrons of the second electrode layer ;as well as
  • the light extraction layer includes a light extraction surface and a light diffusion surface, wherein the light extraction surface is opposite to the light diffusion surface, and the light extraction surface is configured to pass the light generated by the light emitting layer
  • An electrode layer or the second electrode layer is conducted to the light extraction layer, the light diffusion surface for reflecting light conducted to the light extraction layer into air above the light diffusion surface.
  • the light diffusing surface is a wave-shaped curved surface
  • the light extracting surface is a wave-shaped curved surface or a plane.
  • the light extraction layer comprises a first light extraction layer, a second light extraction layer, and a third light extraction layer disposed in sequence away from the substrate, wherein the first light extraction layer has a refractive index smaller than the second light extraction layer, and the second The light extraction layer has a refractive index smaller than the third light extraction layer, the first light extraction layer includes a first light extraction surface and a first light diffusion surface, and the second light extraction layer includes a second light extraction surface and a a light diffusing surface, the third light extracting layer includes a third light extracting surface and a third light diffusing surface; wherein the first light extracting surface is a wave-shaped curved surface or a plane, and the third light diffusing surface is a wave Shaped surface.
  • the electroluminescent device further includes an organic protective layer, wherein the organic protective layer is located in the first Between the two electrode layers and the light extraction layer.
  • the organic protective layer includes a first surface and a second surface, the first surface and the second surface are oppositely disposed, and the first surface is a wavy curved surface Or a plane, the first surface is attached to the light extraction surface of the light extraction layer, the second surface is a flat surface, and the second surface is attached to the second electrode layer.
  • the organic protective layer has a thickness of 10 to 20 nm.
  • the material of the organic protective layer comprises one of tetrafluoroethylene, polytetrafluoroethylene, polyethylene, polyvinyl chloride, and polystyrene. Or a combination of multiples.
  • the light emitting layer includes a hole transport layer, an organic light emitting layer, and an electron transport layer which are sequentially stacked on the first electrode layer; the electron transport layer Another surface of the second electrode layer is bonded to the surface of the second electrode layer; the hole transport layer is configured to conduct holes output from the first electrode layer to the organic light emitting layer, and the electron transport layer is used for Electrons output from the second electrode layer are conducted to the organic light-emitting layer such that the electrons and the holes can be recombined in the organic light-emitting layer, and the light-emitting molecules in the organic light-emitting layer are excited to emit light.
  • the present invention also provides a method of fabricating an electroluminescent device, comprising:
  • first electrode layer Forming a first electrode layer, a light emitting layer, and a second motor layer sequentially on the base substrate; wherein the first electrode layer is for outputting holes under voltage driving, and the second electrode layer is for using voltage Driving electrons under driving; the light emitting layer is used for holes in the first electrode layer and electricity in the second electrode layer Produce light under the excitation of the child; and,
  • the light extraction layer Preparing a light extraction layer, the light extraction layer comprising a light extraction surface and a light diffusion surface disposed opposite to each other, the light extraction surface for passing light generated by the light emitting layer through the first electrode layer or the second electrode layer Conducted to the light extraction layer, the light diffusing surface is for reflecting light transmitted to the light extraction layer into the air above the light diffusing surface.
  • the preparing the light extraction layer comprises:
  • Controlling the surface topography of the light extraction layer by controlling the relative motion of the target body and the substrate substrate 10 and/or the rotation of the substrate substrate by a pulsed laser method or a magnetron sputtering method
  • the light diffusing surface is a wave-shaped curved surface
  • the light extracting surface is a wave-shaped curved surface or a plane.
  • the preparing the light extraction layer comprises:
  • first light extraction layer Forming a first light extraction layer, a second light extraction layer, and a third light extraction layer; wherein a refractive index of the first light extraction layer is smaller than the second light extraction layer, and the second light extraction layer is refractive
  • the rate is smaller than the third light extraction layer
  • the first light extraction layer includes a first light extraction surface and a first light diffusion surface
  • the second light extraction layer includes a second light extraction surface and a second light diffusion surface
  • the third light extraction layer includes a third light extraction surface and a third light diffusion surface;
  • the first light extraction surface is a wave-shaped curved surface or a plane, and the third light diffusion surface is a wave-shaped curved surface.
  • the sequentially forming the first light extraction layer, the second light extraction layer, and the third light extraction layer includes:
  • the third light extraction layer is formed by sputtering a third target.
  • the method comprises:
  • An organic protective layer is formed on a surface of the second electrode layer facing away from the base substrate.
  • the forming the organic protective layer on the surface of the second electrode layer facing away from the substrate substrate comprises:
  • the preparing the light extraction layer is specifically:
  • At least one layer of the light extraction layer is deposited on the surface of the undulating curved surface of the organic protective layer by physical vapor deposition.
  • the organic protective layer has a thickness of 10 to 20 nm.
  • the electroluminescent device includes a first electrode layer, a light emitting layer, a second electrode layer, and a light extracting layer, wherein the light extracting layer includes oppositely disposed light extracting surfaces and light diffusing surfaces, wherein The light extraction surface is configured to conduct light generated by the light emitting layer to the light extraction layer through the first electrode layer or the second electrode layer, and the light diffusion surface is configured to reflect light transmitted to the light extraction layer to the air above the light diffusion surface
  • the scattering effect on the light generated by the luminescent layer can be enhanced, the viewing angle of the display screen can be increased, and the visual experience of the user can be improved.
  • an organic protective layer may be added between the second electrode layer of the electroluminescent device and the light extraction layer to prevent oxidation of the cathode or the anode, and the organic protective layer of the wave-shaped curved structure may also be used as a substrate to realize thereon.
  • the covered light extraction layers have the same wavy curved structure.
  • FIG. 1 is a schematic structural view of an electroluminescent device according to an embodiment of the present invention in a first state
  • FIG. 2 is a schematic structural view of an electroluminescent device according to an embodiment of the present invention in a first state
  • FIG. 3 is a schematic structural view of an electroluminescent device according to an embodiment of the present invention in a first state
  • FIG. 4 is a schematic structural view of an electroluminescent device according to an embodiment of the present invention in a first state
  • FIG. 5 is a schematic flow chart of a preferred embodiment of a method for fabricating an electroluminescent device according to an embodiment of the present invention
  • FIG. 6 is another preferred embodiment of a method for fabricating an electroluminescent device according to an embodiment of the present invention Schematic diagram of the process
  • FIG. 7 is a schematic flow chart of still another preferred embodiment of a method for fabricating an electroluminescent device according to an embodiment of the present invention.
  • FIG. 1 is a schematic structural diagram of an electroluminescent device according to an embodiment of the present invention in a first state.
  • the electroluminescent device may include a base substrate 10, a first electrode layer 11, a light emitting layer 12, a second electrode layer 13, and a light extraction layer 14, wherein the first electrode layer 11 or the second electrode layer 1312 is located in the lining On the base substrate 10; the first electrode layer 11 is an anode of an electroluminescent device for outputting holes under voltage driving; the second electrode layer 13 is a cathode of an electroluminescent device for driving at a voltage Outputting electrons; the light emitting layer 12 is located between the first electrode layer 11 and the second electrode layer 13, and the light emitting layer 12 is used for holes in the first electrode layer 11 and the first Light is generated by excitation of electrons of the two electrode layers 13; the light extraction layer 14 includes a light extraction surface 1001 and a light diffusion surface 1002, and the light extraction surface 1001 and the light diffusion surface 1002 are oppositely disposed, and the light extraction surface 1001 is used for The light generated by the light-emitting layer 12 is conducted to the light extraction layer 14 through the first electrode 11 or the
  • the layer structure of the electroluminescent device may be the first electrode layer 11, the luminescent layer 12, the second electrode layer 13 and the light extraction layer 14 which are sequentially stacked on the base substrate 10;
  • the second electrode layer 13, the light-emitting layer 12, the first motor layer 13, and the light extraction layer 14 are stacked in this order.
  • the light emitting layer 12 includes a hole transport layer, an organic light emitting layer 12, and an electron transport layer which are sequentially stacked on the first electrode layer 11; another surface of the electron transport layer is bonded a surface of the second electrode layer 13; the hole transport layer is for conducting holes output from the first electrode layer 11 to the organic light emitting layer 12, and the electron transport layer is for using a second electrode Electrons output from the layer 13 are conducted to the organic light-emitting layer 12 such that the electrons and the holes can recombine in the organic light-emitting layer 12, and the light-emitting molecules in the organic light-emitting layer 12 are excited to emit light.
  • the electroluminescent device provided by the present invention may be an Organic Light-Emitting Diode (OLED), a Polymer Light-Emitting Diode (PLED), or an inorganic electroluminescent device.
  • the base substrate 10 may be a glass-lined substrate, a transparent polymer flexible substrate, or the like.
  • the materials of the first electrode layer 11, the light-emitting layer 12, the second electrode layer 13, and the light extraction layer 14 are not particularly limited, and materials existing in the art are suitable for use in the present invention.
  • the material of the first electrode layer 11 may be indium tin oxide (ITO), indium zinc oxide (IZO), Au, Pt, etc.; the material of the second electrode layer 13 may be Ag, Al, Ca, In, Li , the light-emitting layer 12 may include a hole transport layer, an organic light-emitting layer 12, and an electron transport layer which are sequentially stacked on the first electrode layer 11, wherein the hole transport layer is used for The holes in one electrode layer 11 are transported to the organic light-emitting layer 12, and the electron transport layer is used to transport electrons in the second electrode layer 13 to the organic light-emitting layer 12, thereby realizing recombination of holes and electrons in the organic light-emitting layer 12.
  • ITO indium tin oxide
  • IZO indium zinc oxide
  • Au Pt
  • the material of the second electrode layer 13 may be Ag, Al, Ca, In, Li
  • the light-emitting layer 12 may include a hole transport layer, an organic light-emitting layer 12, and an electron transport
  • the molecules in the organic light-emitting layer 12 are excited to emit radiation.
  • the material of the hole transport layer is usually an aromatic amine fluorescent compound such as TPD, TDATA or the like; the electron transport layer is usually a fluorescent dye compound such as Alq, Znq, Gaq, Be bq, DPVBi, ZnSPB, PBD, BBOT, Balq and the like.
  • the light extraction layer 14 may include silicon oxide (SiO), silicon dioxide (SiO 2 ), titanium oxide (TiO 2 ), nitrogen silicide (SiN x ), niobium oxide (Nb 2 O 5 ), or the like.
  • the light diffusing surface 1002 is a wave-shaped curved surface
  • the light extracting surface 1001 is a wave-shaped curved surface or a flat surface.
  • FIG. 2 is a schematic structural diagram of an electroluminescent device according to an embodiment of the present invention in a second state.
  • the light extraction layer 14 includes a first light extraction layer 141, a second light extraction layer 142, and a third light extraction layer 143 disposed in turn away from the substrate substrate 10, the first light extraction layer.
  • the refractive index of the layer 141 is smaller than the second light extraction layer 142
  • the refractive index of the second light extraction layer 142 is smaller than the third light extraction layer 143
  • the first light extraction layer 141 includes a first light extraction surface.
  • the second light extraction layer 142 includes a second light extraction surface and a second light diffusion surface
  • the third light extraction layer 143 includes a third light extraction surface and a third light diffusion surface
  • the extraction surface is a wave-shaped curved surface or a plane
  • the third light diffusion surface is a wave-shaped curved surface.
  • first light diffusion surface, the second light extraction surface 1, the second light diffusion surface, and the third light extraction surface may be a wave-shaped curved surface or a flat surface.
  • FIG. 3 is a schematic structural diagram of an electroluminescent device according to an embodiment of the present invention in a third state.
  • the electroluminescent device further includes an organic protective layer 15 between the second electrode layer 13 and the light extraction layer 14.
  • the material of the organic protective layer 15 may include one or more of tetrafluoroethylene (TFE), polytetrafluoroethylene (PTFE), polyethylene (PE), polyvinyl chloride (PVC), polystyrene (PS), and the like.
  • the combination may have a thickness of 1 nm to 200 nm, and preferably, the organic protective layer 15 has a thickness of 10 nm to 20 nm.
  • the organic protective layer 15 covers the second electrode layer 13, and the surface of the organic protective layer 15 to which the light extraction layer 14 is attached may be a flat surface.
  • the organic protective layer 15 can protect the second electrode layer 13 from oxidation of the second electrode layer 13 during subsequent preparation.
  • FIG. 4 is a schematic structural diagram of an electroluminescent device according to an embodiment of the present invention in a fourth state.
  • the organic protective layer 15 includes a first surface and a second surface. The first surface and the second surface are oppositely disposed. The first surface is a wavy curved surface or a plane, and the first surface is attached to the light.
  • the light extraction surface 1001 of the extraction layer 14 has a second surface that is planar and a second surface that is bonded to the second electrode layer 13.
  • the organic protective layer 15 can protect the second electrode layer 13 from oxidation of the second electrode layer 13 during subsequent preparation, and can also serve as a substrate such that the light extraction layer 14 covered on the organic protective layer 15 has the same wave shape. Surface.
  • the electroluminescent device comprises a first electrode layer 11, a light emitting layer 12, a second electrode layer 13, and a light extraction layer 14, wherein the light extraction layer 14 includes oppositely disposed light extraction surfaces 1001. And a light diffusing surface 1002, wherein the light extraction surface 1001 is configured to conduct light generated by the light emitting layer 12 to the light extracting layer 14 through the first electrode layer 11 or the second electrode layer 13, and the light diffusing surface 1002 is used for conducting to light extraction
  • the light of the layer 14 is reflected into the air above the light diffusing surface 1002, which can enhance the scattering effect on the light generated by the light emitting layer 12, can increase the viewing angle of the display screen, and improve the user's visual experience.
  • an organic protective layer 15 may be added between the second electrode layer 13 of the electroluminescent device and the light extraction layer 14 to prevent oxidation of the cathode or the anode, and the organic protective layer 15 of the wavy curved structure is further As the substrate, the light extraction layer 14 covered thereon can have the same wave-shaped curved structure.
  • FIG. 5 is a schematic flow chart of a preferred embodiment of a method for fabricating an electroluminescent device according to an embodiment of the present invention.
  • the electroluminescent device shown in FIG. 1 can be referred to, and the electroluminescent device manufacturing method comprises the following steps:
  • Step S501 providing a base substrate 10.
  • the base substrate 10 may be a glass-lined substrate, a transparent polymer flexible substrate, or the like.
  • Step S502 sequentially preparing the first electrode layer 11, the light emitting layer 12, and the second electrode layer 13 on the base substrate 10.
  • the first electrode layer 11 is for outputting holes under voltage driving
  • the second electrode layer 13 is for outputting electrons under voltage driving
  • the luminescent layer 12 is for being used in the first electrode layer 11 The holes and the electrons of the second electrode layer 13 are excited to generate light.
  • a glass substrate 10 can be provided, and the glass substrate 10 can be placed in a vacuum coating chamber, and the vacuum coating chamber can have a vacuum of 10 -3 Pa or less. , such as 10 -5 Pa.
  • the first electrode layer 11, the light-emitting layer 12, and the second electrode layer 13 may be sequentially formed on the glass substrate 10 by vacuum evaporation.
  • the first electrode layer 11, the light emitting layer 12, and the second electrode layer 13 may be planar structures.
  • the material of the first electrode layer 11 may be indium tin oxide (ITO), indium zinc oxide (IZO), Au, Pt, etc.; the material of the second electrode layer 13 may be Ag, Al, Ca, In, Li, Mg, ITO, IZO, and the like. It can be understood that the light emitting layer 12 includes a hole transport layer, an organic light emitting layer 12, and an electron transport layer which are sequentially stacked on the first electrode layer 11; the other surface of the electron transport layer is attached to the first layer.
  • ITO indium tin oxide
  • IZO indium zinc oxide
  • Au Pt
  • the material of the second electrode layer 13 may be Ag, Al, Ca, In, Li, Mg, ITO, IZO, and the like.
  • the light emitting layer 12 includes a hole transport layer, an organic light emitting layer 12, and an electron transport layer which are sequentially stacked on the first electrode layer 11; the other surface of the electron transport layer is attached to the first layer.
  • the material of the hole transport layer is usually an aromatic amine fluorescent compound such as TPD, TDATA or the like; the electron transport layer is usually a fluorescent dye compound such as Alq, Znq, Gaq, Be bq, DPVBi, ZnSPB, PBD, BBOT, Balq and the like.
  • the light extraction layer 14 may include silicon oxide (SiO), silicon dioxide (SiO 2 ), titanium oxide (TiO 2 ), nitrogen silicide (SiN x ), niobium oxide (Nb 2 O 5 ), or the like.
  • Step S503 Preparing the light extraction layer 14.
  • the light extraction layer 14 includes a light extraction surface 1001 and a light diffusion surface 1002.
  • the light extraction surface 1001 is configured to pass the light generated by the light emitting layer 12 through the first electrode layer 11 or the first
  • the two electrode layer 13 is conducted to the light extraction layer 14 for reflecting light conducted to the light extraction layer 14 into the air above the light diffusion surface 1002.
  • the substrate substrate 10 on which the first electrode layer 11, the light-emitting layer 12, and the second electrode layer 13 have been deposited may be fixed on a tray and sent into a vacuum chamber of a magnetron sputtering device or a pulsed laser deposition device.
  • the vacuum in the vacuum chamber is below 10 -3 Pa.
  • a gas such as argon (Ar) can be introduced to adjust the sputtering pressure and the sputtering power of the target by controlling the target and
  • the relative movement of the base substrate 10 and/or the rotation of the base substrate 10 controls the surface topography of the light extraction layer 14 such that the light diffusion surface 1002 is a wave-shaped curved surface, and the light extraction surface 1001 is a wave shape.
  • the controlling the relative movement of the target and the substrate 10 may be to control the left and right movement and/or the up and down movement of the target to maintain the stationary or rotating of the substrate 10; or to control the left and right movement of the substrate 10 and/or Or move up and down to keep the target still.
  • the light extraction layer 14 may be a plurality of layers.
  • the electroluminescent device shown in FIG. 2 may be referred to.
  • the first light extraction layer 141, the second light extraction layer 142, and the third light may be sequentially formed.
  • the first light extraction layer 141 includes a first light extraction surface and a first light diffusion surface
  • the second light extraction layer 142 includes a second light extraction surface and a second light diffusion surface
  • the third light extraction layer 143 includes a three-light extraction surface and a third light diffusion surface;
  • the first light extraction surface is a wave-shaped curved surface or a plane, and the third light diffusion surface is a wave-shaped curved surface.
  • the method of sequentially forming the first light extraction layer 141, the second light extraction layer 142, and the third light extraction layer 143 may include: forming the first light extraction layer 141 by sputtering a first target; The second light extraction layer 142 is formed by sputtering a second target; and the third light extraction layer 143 is formed by sputtering a third target.
  • the light extraction layer 14 may include a first light extraction layer 141, a second light extraction layer 142, and a third light extraction layer 143, wherein the first light extraction layer may be SiO 2 and the second light extraction layer 142 may be Si 3 N 4 , the third light extraction layer 143 may be TiO 2 , wherein the vacuum chamber may have a plurality of targets, wherein the first target is a SiO 2 target, the second target is Si 3 N 4 , and the third target The material is a TiO 2 target.
  • the first light extraction layer 141SiO 2 may be deposited on the second electrode layer 13 by sputtering the TiO 2 target, and the SiO 2 target may be controlled to move left and right and/or up and down during the deposition of the SiO 2 to keep the substrate 10 stationary.
  • the N 4 target forms a second light extraction layer 142, that is, a Si 3 N 4 layer, and a third light extraction layer 143, that is, a TiO 2 layer, in which a Si 3 N 4 layer and a TiO 2 layer are deposited by sputtering a TiO 2 target.
  • the relative movement between the Si 3 N 4 target and the substrate 10 or between the TiO 2 target and the substrate 10 can be controlled, and relative movement between them can be controlled.
  • the light extraction layer 14 can both be a nitrogen silicide (SiN x , 0 ⁇ x ⁇ 20), the SiN x increases with x, and the SiN x refractive index decreases.
  • the first light extraction layer 141 can be SiN.
  • X1 the second light extraction layer may be SiN x2
  • the third light extraction layer may be SiN x3 , wherein 20>x1>x2>x3>0
  • the vacuum cavity may have a SiN target, and the vacuum cavity is in the process of preparation.
  • the morphology of the formed light extraction layer 14SiN x is controlled, by controlling the sputtering power of SiN, the deposition pressure,
  • the N 2 /Ar ratio controls the N/Si ratio in the formed light extraction layer 14SiN x .
  • the first electrode layer 11, the luminescent layer 12, the second electrode layer 13, and the light extraction layer 14 are sequentially prepared on the base substrate 10, wherein the prepared light extraction layer 14 includes relatively disposed light extraction.
  • the light extraction surface 1001 is configured to conduct light generated by the light emitting layer 12 to the light extraction layer 14 through the first electrode layer 11 or the second electrode layer 13
  • the light diffusing surface 1002 is configured to reflect the light transmitted to the light extracting layer 14 into the air above the light diffusing surface 1002, thereby enhancing the scattering effect on the light generated by the light emitting layer 12, and increasing the preparation thereof.
  • the viewing angle of the display enhances the user's visual experience.
  • FIG. 6 is a schematic flow chart of another preferred embodiment of a method for fabricating an electroluminescent device according to an embodiment of the present invention. Includes the following steps:
  • Step S601 providing a base substrate 10
  • Step S602 sequentially preparing the first electrode layer 11, the light emitting layer 12, and the second electrode layer 13 on the base substrate 10.
  • a substrate substrate 10 can be provided, and the substrate substrate 10 is placed in a vacuum coating chamber, and the degree of vacuum of the vacuum coating chamber can be 10 -3 Pa or less. , such as 10 -5 Pa.
  • the first electrode layer 11, the light-emitting layer 12, and the second electrode layer 13 may be sequentially formed on the base substrate 10 by vacuum evaporation.
  • Step S603 forming an organic protective layer 15 on a surface of the second electrode layer 13 facing away from the base substrate 10.
  • the organic protective layer 15 may be formed on the surface of the second electrode layer 13 facing away from the base substrate 10 by a physical vapor deposition method, a spin coating method, or the like, and the surface of the organic protective layer 15 may be a planar structure.
  • the material of the protective layer 15 may include one or more of tetrafluoroethylene (TFE), polytetrafluoroethylene (PTFE), polyethylene (PE), polyvinyl chloride (PVC), polystyrene (PS), and the like.
  • the thickness may be from 1 nm to 200 nm, and preferably the thickness of the organic protective layer 15 is from 10 nm to 20 nm.
  • the organic protective layer 15 can protect the second electrode layer 13 from oxidation of the second electrode layer 13 during subsequent preparation.
  • the physical vapor deposition method includes a vacuum evaporation method, a magnetron sputtering method, a pulsed laser deposition method, and the like.
  • Step S604 controlling the surface topography of the light extraction layer 14 by controlling the relative movement of the target body and the base substrate 10 and/or the rotation of the base substrate 10 to prepare the said surface having a wave-shaped curved surface structure Light extraction layer 14.
  • the glass substrate 10 on which the first electrode layer 11, the light-emitting layer 12, the second electrode layer 13, and the organic protective layer 15 have been deposited may be fixed on a tray and sent to a magnetron sputtering device or a pulsed laser deposition device.
  • a gas such as argon (Ar) can be introduced to adjust the sputtering pressure and the sputtering power of the target.
  • Controlling the surface topography of the light extraction layer 14 by controlling the relative motion of the target and the substrate 10 and/or the rotation of the substrate 10 such that the light diffusing surface 1002 is a wavy curved surface, the light
  • the extraction surface 1001 is a wave-shaped curved surface or a plane.
  • the controlling the relative movement of the target and the substrate 10 may be to control the left and right movement and/or the up and down movement of the target to maintain the stationary or rotating of the substrate 10; or to control the left and right movement of the substrate 10 and/or Or move up and down to keep the target still.
  • the light extraction layer 14 may be a plurality of layers. Specifically, the first light extraction layer 141, the second light extraction layer 142, and the third light extraction layer 143 may be sequentially formed; wherein the first light extraction The refractive index of the layer 141 is smaller than the second light extraction layer 142, the refractive index of the second light extraction layer 142 is smaller than the third light extraction layer 143, and the first light extraction layer 141 includes a first light extraction surface.
  • a first light diffusion layer 142 comprising a second light extraction surface and a second light diffusion surface
  • the third light extraction layer 143 comprising a third light extraction surface and a third light diffusion surface
  • the first light extraction surface is a wave-shaped curved surface or a plane
  • the third light diffusion surface is a wave-shaped curved surface.
  • the method of sequentially forming the first light extraction layer 141, the second light extraction layer 142, and the third light extraction layer 143 may include: forming the first light extraction layer 141 by sputtering a first target; The second light extraction layer 142 is formed by sputtering a second target; and the third light extraction layer 143 is formed by sputtering a third target.
  • organic protection is formed on the surface of the second electrode layer 13 facing away from the base substrate 10.
  • the layer 15 controls the surface topography of the light extraction layer 14 by controlling the relative movement of the target and the substrate 10 and/or the rotation of the substrate 10 such that the light diffusion surface 1002 is a wavy curved surface, the light extraction surface 1001 is a wave-shaped curved surface or a plane, wherein the light diffusion surface 1002 is configured to reflect light transmitted to the light extraction layer 14 into the air above the light diffusion surface 1002,
  • the scattering effect of the light generated by the luminescent layer 12 is enhanced, the viewing angle of the display screen can be increased, and the visual experience of the user is improved; the organic protective layer 15 can protect the second electrode layer 13 from the second electrode layer 13 in the subsequent preparation process. Oxidation in.
  • FIG. 7 is a schematic flow chart of still another preferred embodiment of a method for fabricating an electroluminescent device according to an embodiment of the present invention. Includes the following steps:
  • Step S701 providing a base substrate 10.
  • Step S702 The first electrode layer 11, the light emitting layer 12, and the second electrode layer 13 are sequentially prepared on the base substrate 10.
  • the method for sequentially preparing the first electrode layer 11, the luminescent layer 12, and the second electrode layer 13 on the substrate substrate 10 can be referred to the related description in step S602 in FIG. Narration.
  • Step S703 forming an organic protective layer 15 on a surface of the second electrode layer 13 facing away from the base substrate 10.
  • Step S704 Patterning the organic protective layer 15 such that the surface of the organic protective layer 15 facing away from the second electrode layer 13 is a wavy curved surface.
  • the method of patterning the organic protective layer 15 to form the organic protective layer 15 having a surface having a wave-shaped curved surface may be, by using a pulsed laser method or a magnetron sputtering method, by controlling the target body and the base substrate
  • the relative movement of 10 and/or the rotation of the base substrate 10 controls the surface topography of the organic protective layer 15 to form a wave shape on the surface of the second electrode layer 13 facing away from the base substrate 10.
  • the organic protective layer 15 of the curved structure may be, by using a pulsed laser method or a magnetron sputtering method, by controlling the target body and the base substrate
  • the relative movement of 10 and/or the rotation of the base substrate 10 controls the surface topography of the organic protective layer 15 to form a wave shape on the surface of the second electrode layer 13 facing away from the base substrate 10.
  • the method of patterning the organic protective layer 15 to form the organic protective layer 15 having a wave-shaped curved surface structure may further be: patterning the organic protective layer 15 by a mask etching process, specifically, in the organic protection
  • the layer 15 is coated with a photoresist layer away from the surface of the second electrode layer 13; the photoresist layer is patterned, a part of the photoresist layer is removed, and a photoresist layer of a wave-shaped curved surface is formed; the substrate is formed by an etching process
  • the upper film is entirely removed from the predetermined thickness, and the photoresist layer and a portion of the organic protective layer 15 are removed to form an organic protective layer 15 having a wavy curved structure.
  • Step S705 depositing at least one layer of the light extraction layer 14 on the surface of the organic protective layer 15 by physical vapor deposition.
  • the organic protective layer 15 having a wavy curved surface is used as a substrate, and at least one light extraction layer 14 such as a first light extraction layer, a second light extraction layer, and a third is formed thereon by physical vapor deposition deposition.
  • the first light extraction layer 141 includes a first light extraction surface and a first light diffusion surface
  • the second light extraction layer 142 includes a second light extraction surface and a second light diffusion surface
  • the third light extraction layer 143 includes a three-light extraction surface and a third light diffusion surface
  • the first light extraction surface is a wave-shaped curved surface or a plane
  • the third light diffusion surface is a wave-shaped curved surface.
  • the etching in the present invention may include dry etching and wet etching.
  • the dry etching gas may be CF4, SF6 or a mixed gas of CL2 and O2
  • the wet etching liquid may be oxalic acid, sulfuric acid or hydrochloric acid. Or a mixture of oxalic acid, sulfuric acid and hydrochloric acid.
  • the patterning refers to a patterning process, which may include a photolithography process, or may include a photolithography process and an etching step, and may also include other processes for forming a predetermined pattern, such as printing, inkjet, and the like;
  • Photolithography process refers to the use of photoresist, masking, including film formation, exposure, development, and the like.
  • a process of forming a pattern such as a template or an exposure machine. The corresponding patterning process can be selected in accordance with the structure formed in the present invention.
  • organic protection is formed on the surface of the second electrode layer 13 facing away from the base substrate 10.
  • the layer 15, the organic protective layer 15 is patterned, the organic protective layer 15 having a surface having a wavy curved surface is formed, and the organic protective layer 15 having a wavy curved surface is used as a substrate, and the surface of the organic protective layer 15 is formed by physical vapor deposition.
  • Depositing at least one light extraction layer 14 which may protect the second electrode layer 13 from oxidation of the second electrode layer 13 during subsequent preparation, and may also serve as a substrate such that the organic protective layer 15 is covered
  • the light extraction surface 1001 and the light diffusion surface 1002 of the light extraction layer 14 have the same wave-shaped curved surface, which can enhance the scattering effect on the light generated by the light-emitting layer 12, can increase the viewing angle of the display screen, and improve the user's visual experience.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种电致发光器件,包括第一电极层(11)、发光层(12)、第二电极层(13)以及光提取层(14),其中光提取层(14)包括相对设置的光提取面(1001)和光扩散面(1002),其中,光提取面(1001)用于将发光层(12)生成的光线通过第一电极层(11)或第二电极层(13)传导至光提取层(14),光扩散面(1002)用于将传导至光提取层(14)的光线反射至光扩散面(1002)上方的空气中,可以增强对发光层(12)生成的光线的散射作用,可增大其制备的显示屏视角,提高用户的视觉体验。

Description

一种电致发光器件及其制备方法 技术领域
本发明涉及半导体技术领域,尤其涉及一种电致发光器件及其制备方法。
背景技术
电致发光器件可以包括有机发光二极管(Organic Light-Emitting Diode,OLED)、高分子电致发光器件(polymerLight-Emitting Diode,PLED)以及无机电致发光器件,可以应用于显示屏。电致发光器件受玻璃基底与空气表面层的反射及折射等因素的影响,发光功能层产生的大部分光线并不能逸出至电致发光器件的发光表面,而会从发光表面的侧面射出,从而使得电致发光器件出光率较低。通常,为了提高电致发光器件的出光率,在阴极层的的表面制备折射率依次增加的多层光提取层,对发光功能层产生的光进行提取,增大电致发光器件出光率;然而,通常光提取层的表面为平面,使得射出电致发光器件的光的角度有限,其制备的显示屏视角小,影响用户的视觉体验。
发明内容
第一方面,本发明实施例提供了一种电致发光器件,包括:
衬底基板;
第一电极层和第二电机层,位于所述衬底基板上,所述第一电极层用于在电压驱动下输出空穴,所述第二电极层用于在电压驱动下输出电子;
发光层,位于所述第一电极层和所述第二电机层之间,所述发光层用于在所述第一电极层的空穴和所述第二电极层的电子的激发下生产光线;以及
光提取层,所述光提取层包括光提取面和光扩散面,所述光提取面和所述光扩散面相对设置,所述光提取面用于将所述发光层生成的光线通过所述第一电极层或所述第二电极层传导至所述光提取层,所述光扩散面用于将传导至所述光提取层的光线反射至所述光扩散面上方的空气中。
结合第一方面,在第一方面第一种实现中,所述光扩散面为波浪形曲面,所述光提取面为浪形曲面或平面。
结合第一方面第一种实现,在第一方面第二种实现中,所述光提取层包括 背离所述衬底基板依次设置的第一光提取层、第二光提取层以及第三光提取层,所述第一光提取层的折射率小于所述第二光提取层,所述第二光提取层的折射率小于所述第三光提取层,所述第一光提取层包括第一光提取面和第一光扩散面,所述第二光提取层包括第二光提取面和第二光扩散面,所述第三光提取层包括第三光提取面和第三光扩散面;其中,所述第一光提取面为浪形曲面或平面,所述第三光扩散面为波浪形曲面。
结合第一方面的第一种实现和第二种实现,在第一方面第三种实现中,其特征在于,所述电致发光器件还包括有机保护层,所述有机保护层位于所述第二电极层和所述光提取层之间。
结合第一方面第三种实现,在第一方面第四种实现中,所述有机保护层包括第一表面和第二表面,第一表面和第二表面相对设置,第一表面为波浪形曲面或平面,第一表面贴合所述光提取层的光提取面,第二表面为平面,第二表面贴合第二电极层。
结合第一方面第三种实现,在第一方面第五种实现中,所述有机保护层的厚度为10~20nm。
结合第一方面第三种实现,在第一方面第六种实现中,所述有机保护层的材质包括四氟乙烯、聚四氟乙烯、聚乙烯、聚氯乙烯、聚苯乙烯中的一种或多种的组合。
结合第一方面,在第一方面第七种实现中,所述发光层包括依次层叠设置于所述第一电极层上的空穴传输层、有机发光层以及电子传输层;所述电子传输层的另一表面贴合所述第二电极层的表面;所述空穴传输层用于将所述第一电极层输出的空穴传导至所述有机发光层,所述电子传输层用于将第二电极层输出的电子传导至所述有机发光层,以使所述电子和所述空穴可以在所述有机发光层复合,激发所述有机发光层中发光分子辐射出光线。
第二方面,本发明还提供了一种电致发光器件制备方法,包括:
提供一衬底基板;
在所述衬底基板上依次制备第一电极层、发光层以及第二电机层;其中,所述第一电极层用于在电压驱动下输出空穴,所述第二电极层用于在电压驱动下输出电子;所述发光层用于在所述第一电极层的空穴和所述第二电极层的电 子的激发下生产光线;以及,
制备光提取层,所述光提取层包括相对设置的光提取面和光扩散面,所述光提取面用于将所述发光层生成的光线通过所述第一电极层或所述第二电极层传导至所述光提取层,所述光扩散面用于将传导至所述光提取层的光线反射至所述光扩散面上方的空气中。
结合第二方面,在第二方面第一种实现中,所述制备光提取层包括:
利用脉冲激光法或磁控溅射法,通过控制靶体与所述衬底基板10的相对运动和/或所述衬底基板的转动,控制所述光提取层的表面形貌,以使所述光扩散面为波浪形曲面,所述光提取面为浪形曲面或平面。
结合第二方面第一种实现,在第二方面第二种实现中,所述制备光提取层包括:
依次形成第一光提取层、第二光提取层以及第三光提取层;其中,所述第一光提取层的折射率小于所述第二光提取层,所述第二光提取层的折射率小于所述第三光提取层,所述第一光提取层包括第一光提取面和第一光扩散面,所述第二光提取层包括第二光提取面和第二光扩散面,所述第三光提取层包括第三光提取面和第三光扩散面;所述第一光提取面为浪形曲面或平面,所述第三光扩散面为波浪形曲面。
结合第二方面第二种实现,在第二方面第三种实现中,所述依次形成第一光提取层、第二光提取层以及第三光提取层包括:
通过溅射第一靶材形成所述第一光提取层;
通过溅射第二靶材形成所述第二光提取层;以及
通过溅射第三靶材形成所述第三光提取层。
结合第二方面以及第一方面的第一至三种实现,在第二方面第四种实现中,所述在所述衬底基板上依次制备第一电极层、发光层以及第二电机层之后,所述制备光提取层之前包括:
在所述第二电极层的背离所述衬底基板的表面形成有机保护层。
结合第二方面第四种实现,在第二方面第五实现中,所述在所述第二电极层的背离所述衬底基板的表面形成有机保护层具体包括:
图案化所述有机保护层,以使所述有机保护层背离所述第二电极层的表面 为波浪形曲面。
结合第二方面第五种实现,在第二方面第六种实现中,所述制备光提取层具体为:
通过物理气相沉积法在所述有机保护层的波浪形曲面的表面沉积至少一层所述光提取层。
结合第二方面第四种实现,在第二方面第七种实现中,所述有机保护层的厚度为10~20nm。
相较于现有技术,本发明提供的电致发光器件包括第一电极层、发光层、第二电极层以及光提取层,其中光提取层包括相对设置的光提取面和光扩散面,其中,光提取面用于将发光层生成的光线通过第一电极层或第二电极层传导至光提取层,光扩散面用于将传导至光提取层的光线反射至所述光扩散面上方的空气中,可以增强对发光层生成的光线的散射作用,可增大其制备的显示屏视角,提高用户的视觉体验。
而且,可以在电致发光器件第二电极层和所述光提取层之间增加有机保护层,防止阴极或阳极的氧化,且波浪型曲面结构的有机保护层还可以作为衬底,实现其上覆盖的光提取层具有相同的波浪型曲面结构。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的电致发光器件在第一状态下的结构示意图;
图2为本发明实施例提供的电致发光器件在第一状态下的结构示意图;
图3为本发明实施例提供的电致发光器件在第一状态下的结构示意图;
图4为本发明实施例提供的电致发光器件在第一状态下的结构示意图;
图5为本发明实施例提供的电致发光器件制备方法一较佳实施方式的流程示意图;
图6为本发明实施例提供的电致发光器件制备方法另一较佳实施方式的 流程示意图;
图7为本发明实施例提供的电致发光器件制备方法又一较佳实施方式的流程示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参阅图1,图1为本发明实施例提供的电致发光器件在第一状态下的结构示意图。
该电致发光器件可以包括衬底基板10、第一电极层11、发光层12、第二电极层13以及光提取层14,其中,第一电极层11或第二电极层1312位于所述衬底基板10上;所述第一电极层11为电致发光器件的阳极,用于在电压驱动下输出空穴;所述第二电极层13为电致发光器件的阴极,用于在电压驱动下输出电子;所述发光层12位于所述第一电极层11和所述第二电极层13之间,所述发光层12用于在所述第一电极层11的空穴和所述第二电极层13的电子的激发下生产光线;所述光提取层14包括光提取面1001和光扩散面1002,所述光提取面1001和光扩散面1002相对设置,所述光提取面1001用于将发光层12生成的光线通过所述第一电极11或所述第二电极层13传导至所述光提取层14,所述光扩散面1002用于将传导至所述光提取层14的光线反射至所述光扩散面1002上方的空气中,可以增强对发光层12生成的光线的散射作用。
可以理解,该电致发光器件的层结构可以是衬底基板10上依次层叠设置的第一电极层11、发光层12、第二电极层13以及光提取层14;也可以是衬底基板10上依次层叠设置的第二电极层13、发光层12、第一电机层13以及光提取层14。
可以理解,所述发光层12包括依次层叠设置于所述第一电极层11上的空穴传输层、有机发光层12以及电子传输层;所述电子传输层的另一表面贴合 所述第二电极层13的表面;所述空穴传输层用于将所述第一电极层11输出的空穴传导至所述有机发光层12,所述电子传输层用于将第二电极层13输出的电子传导至所述有机发光层12,以使所述电子和所述空穴可以在所述有机发光层12复合,激发所述有机发光层12中发光分子辐射出光线。
需要说明的是,本发明提供的电致发光器件可以是有机发光二极管(Organic Light-Emitting Diode,OLED)、高分子电致发光器件(polymerLight-Emitting Diode,PLED)或无机电致发光器件等。所述衬底基板10可以是玻璃衬基板、透明高分子柔性基板等。第一电极层11、发光层12、第二电极层13、光提取层14的材质不作具体限定,本领域现有的材料均适用于本发明。优选地,第一电极层11的材料可以是氧化铟锡(ITO)、氧化铟锌(IZO)、Au、Pt等;第二电极层13的材料可以是的Ag、Al、Ca、In、Li、Mg、ITO、IZO等;发光层12可以包括依次层叠设置于所述第一电极层11上的空穴传输层、有机发光层12以及电子传输层,其中,空穴传输层用于将第一电极层11中的空穴传输至有机发光层12,电子传输层用于第二电极层13中的电子传输至有机发光层12,从而实现空穴和电子在有机发光层12中的复合,激发有机发光层12中分子产生辐射出光线。空穴传输层的材料通常为芳香胺荧光化合物如TPD、TDATA等;电子传输层通常为荧光染料化合物,如,Alq、Znq、Gaq、Be bq、DPVBi、ZnSPB、PBD、BBOT、Balq等。光提取层14可以包括氧化硅(SiO)、二氧化硅(SiO2)、二氧化钛(TiO2)、氮硅化物(SiNx)、氧化铌(Nb2O5)等。
本发明实施例中,所述光扩散面1002为波浪形曲面,所述光提取面1001为浪形曲面或平面。
请参阅图2,图2为本发明实施例提供的电致发光器件在第二状态下的结构示意图。本发明实施例中,所述光提取层14包括背离所述衬底基板10依次设置的第一光提取层141、第二光提取层142以及第三光提取层143,所述第一光提取层141的折射率小于所述第二光提取层142,所述第二光提取层142的折射率小于所述第三光提取层143,所述第一光提取层141包括第一光提取面和第一光扩散面所述第二光提取层142包括第二光提取面和第二光扩散面,所述第三光提取层143包括第三光提取面和第三光扩散面;其中,所述第一光 提取面为浪形曲面或平面,所述第三光扩散面为波浪形曲面。
可以理解,第一光扩散面、第二光提取面1、第二光扩散面以及第三光提取面可以为浪形曲面也可以是平面。
请参阅图3,图3为本发明实施例提供的电致发光器件在第三状态下的结构示意图。本发明实施例中,所述电致发光器件还包括有机保护层15,所述有机保护层15位于所述第二电极层13和所述光提取层14之间。其中有机保护层15的材料可以包括四氟乙烯(TFE)、聚四氟乙烯(PTFE)、聚乙烯(PE)、聚氯乙烯(PVC)、聚苯乙烯(PS)等中的一种或多种的组合,其厚度可以是1nm~200nm,优选地,该有机保护层15的厚度为10nm~20nm。其中有机保护层15为覆盖第二电极层13,所述有机保护层15贴合所述光提取层14的表面可以是平面。有机保护层15可以保护第二电极层13防止第二电极层13在后续制备过程中的氧化。
请参阅图4,图4为本发明实施例提供的电致发光器件在第四状态下的结构示意图。本发明实施例中,,所述有机保护层15包括第一表面和第二表面,第一表面和第二表面相对设置,第一表面为波浪形曲面或平面,第一表面贴合所述光提取层14的光提取面1001,第二表面为平面,第二表面贴合第二电极层13。该有机保护层15可以保护第二电极层13防止第二电极层13在后续制备过程中的氧化,而且还可以作为衬底,使得有机保护层15上覆盖的光提取层14具有相同的波浪型曲面。
相较于现有技术,本发明提供的电致发光器件包括第一电极层11、发光层12、第二电极层13以及光提取层14,其中光提取层14包括相对设置的光提取面1001和光扩散面1002,其中,光提取面1001用于将发光层12生成的光线通过第一电极层11或第二电极层13传导至光提取层14,光扩散面1002用于将传导至光提取层14的光线反射至所述光扩散面1002上方的空气中,可以增强对发光层12生成的光线的散射作用,可增大其制备的显示屏视角,提高用户的视觉体验。
而且,可以在电致发光器件第二电极层13和所述光提取层14之间增加有机保护层15,防止阴极或阳极的氧化,且波浪型曲面结构的有机保护层15还 可以作为衬底,实现其上覆盖的光提取层14具有相同的波浪型曲面结构。
请参照图5,图5为本发明实施例提供的电致发光器件制备方法一较佳实施方式的流程示意图。可以并参照图1所示的电致发光器件,该电致发光器件制备方法包括以下步骤:
步骤S501:提供一衬底基板10。
可以理解,该衬底基板10可以是玻璃衬基板、透明高分子柔性基板等。
步骤S502:在所述衬底基板10上依次制备第一电极层11、发光层12以及第二电极层13。
其中,所述第一电极层11用于在电压驱动下输出空穴,所述第二电极层13用于在电压驱动下输出电子;所述发光层12用于在所述第一电极层11的空穴和所述第二电极层13的电子的激发下生产光线。
具体地,可一并参考图1所示的电致发光器,可以提供一玻璃衬底基板10,将玻璃基板10至于真空镀膜室中,该真空镀膜室的真空度可以是10-3Pa以下,比如10-5Pa。可以采用真空蒸镀法依次在玻璃基板10上形成第一电极层11、发光层12以及第二电极层13。其中,第一电极层11、发光层12以及第二电极层13可以是平面结构。
其中,第一电极层11的材料可以是氧化铟锡(ITO)、氧化铟锌(IZO)、Au、Pt等;第二电极层13的材料可以是的Ag、Al、Ca、In、Li、Mg、ITO、IZO等。可以理解,所述发光层12包括依次层叠设置于所述第一电极层11上的空穴传输层、有机发光层12以及电子传输层;所述电子传输层的另一表面贴合所述第二电极层13的表面;所述空穴传输层用于将所述第一电极层11输出的空穴传导至所述有机发光层12,所述电子传输层用于将第二电极层13输出的电子传导至所述有机发光层12,以使所述电子和所述空穴可以在所述有机发光层12复合,激发所述有机发光层12中发光分子辐射出光线。空穴传输层的材料通常为芳香胺荧光化合物如TPD、TDATA等;电子传输层通常为荧光染料化合物,如,Alq、Znq、Gaq、Be bq、DPVBi、ZnSPB、PBD、BBOT、Balq等。光提取层14可以包括氧化硅(SiO)、二氧化硅(SiO2)、二氧化钛(TiO2)、氮硅化物(SiNx)、氧化铌(Nb2O5)等。
步骤S503:制备光提取层14。
其中,所述光提取层14包括相对设置的光提取面1001和光扩散面1002,所述光提取面1001用于将所述发光层12生成的光线通过所述第一电极层11或所述第二电极层13传导至所述光提取层14,所述光扩散面1002用于将传导至所述光提取层14的光线反射至所述光扩散面1002上方的空气中。
具体地,可以将已沉积第一电极层11、发光层12以及第二电极层13的衬底基板10固定于托盘上,送入磁控溅射设备或脉冲激光沉积设备的真空腔体内,当真空腔体内的真空度达到10-3Pa以下,比如10-5Pa时,可以通入气体,如氩气(Ar),调节溅射气压,以及靶材的溅射功率,通过控制靶体与衬底基板10的相对运动和/或所述衬底基板10的转动控制光提取层14的表面形貌,以使所述光扩散面1002为波浪形曲面,所述光提取面1001为浪形曲面或平面。其中,控制靶体与衬底基板10的相对运动可以是控制靶体的左右移动和/或上下移动,保持衬底基板10的静止或转动;也可以是控制衬底基板10的左右移动和/或上下移动,保持靶体静止。
可选地,制备光提取层14可以是多层,可以并参照图2所示的电致发光器件,具体地,可以依次形成第一光提取层141、第二光提取层142以及第三光提取层143;其中,所述第一光提取层141的折射率小于所述第二光提取层142,所述第二光提取层142的折射率小于所述第三光提取层143,所述第一光提取层141包括第一光提取面和第一光扩散面,所述第二光提取层142包括第二光提取面和第二光扩散面,所述第三光提取层143包括第三光提取面和第三光扩散面;所述第一光提取面为浪形曲面或平面,所述第三光扩散面为波浪形曲面。
本发明实施例中,依次形成第一光提取层141、第二光提取层142以及第三光提取层143的方法可以包括:通过溅射第一靶材形成所述第一光提取层141;通过溅射第二靶材形成所述第二光提取层142;以及,通过溅射第三靶材形成所述第三光提取层143。
例如,光提取层14可以包括第一光提取层141、第二光提取层142以及第三光提取层143,其中,第一光提取层可以是SiO2,第二光提取层142可以是Si3N4,第三光提取层143可以是TiO2,其中,真空腔体内可以具有多个靶, 其中,第一靶材为SiO2靶、第二靶材为Si3N4、第三靶材为TiO2靶。
可以通过溅射TiO2靶在第二电极层13上沉积形成第一光提取层141SiO2,SiO2沉积的过程中可以控制SiO2靶体左右移动和/或上下移动,保持衬底基板10的静止或转动,或控制衬底基板10的左右移动和/或上下移动,保持SiO2靶体静止,此时形成波浪型结构的第一金属层141,即SiO2层;进而可以通过溅射Si3N4靶形成第二光提取层142,即Si3N4层,以及通过溅射TiO2靶形成第三光提取层143,即TiO2层,其中Si3N4层和TiO2层在沉积过程中,可以控制Si3N4靶体与衬底基板10之间或TiO2靶体与衬底基板10之间相对运动,也可以控制其之间不发生相对运动。
可以理解,光提取层14可以都为氮硅化物(SiNx,0<x<20),SiNx随x的增大,SiNx折射率减小,其中,第一光提取层141可以是SiNx1,第二光提取层可以是SiNx2,第三光提取层可以是SiNx3,其中,20>x1>x2>x3>0,真空腔体内可以有SiN靶,在制备过程中真空腔体内通入氮气(N2)和Ar的混合气体,通过控制SiN靶的与衬底基板10之间相对运动,控制形成的光提取层14SiNx的形貌,通过控制SiN的溅射功率、沉积气压、N2/Ar比控制形成的光提取层14SiNx中N/Si比。
本发明实施例中,通过在衬底基板10上依次制备第一电极层11、发光层12、第二电极层13以及光提取层14,其中,制备的光提取层14包括相对设置的光提取面1001和光扩散面1002,所述光提取面1001用于将所述发光层12生成的光线通过所述第一电极层11或所述第二电极层13传导至所述光提取层14,所述光扩散面1002用于将传导至所述光提取层14的光线反射至所述光扩散面1002上方的空气中,可以增强对发光层12生成的光线的散射作用,可增大其制备的显示屏视角,提高用户的视觉体验。
请参照图6,图6为本发明实施例提供的电致发光器件制备方法另一较佳实施方式的流程示意图。包括以下步骤:
步骤S601:提供一衬底基板10
步骤S602:在所述衬底基板10上依次制备第一电极层11、发光层12以及第二电极层13。
具体地,可一并参考图3所示的电致发光器,可以提供一衬底基板10,将衬底基板10至于真空镀膜室中,该真空镀膜室的真空度可以是10-3Pa以下,比如10-5Pa。可以采用真空蒸镀法依次在衬底基板10上形成第一电极层11、发光层12以及第二电极层13。
步骤S603:在所述第二电极层13的背离所述衬底基板10的表面形成有机保护层15。
具体地,可以通过物理气相沉积法、旋涂法等在第二电极层13的背离所述衬底基板10的表面形成有机保护层15,该有机保护层15的表面可以是平面结构,该有机保护层15的材料可以包括四氟乙烯(TFE)、聚四氟乙烯(PTFE)、聚乙烯(PE)、聚氯乙烯(PVC)、聚苯乙烯(PS)等中的一种或多种的组合,其厚度可以是1nm~200nm,优选地该有机保护层15的厚度为10nm~20nm。该有机保护层15可以保护第二电极层13防止第二电极层13在后续制备过程中的氧化。
本发明中,物理气相沉积法包括真空蒸镀法、磁控溅射法、脉冲激光沉积法等。
步骤S604:通过控制靶体与所述衬底基板10的相对运动和/或所述衬底基板10的转动,控制所述光提取层14的表面形貌,制备具有波浪型曲面结构的所述光提取层14。
具体地,可以将已沉积第一电极层11、发光层12、第二电极层13以及有机保护层15的玻璃衬底基板10固定于托盘上,送入磁控溅射设备或脉冲激光沉积设备的真空腔体内,当真空腔体内的真空度达到10-3Pa以下,比如10-5Pa时,可以通入气体,如氩气(Ar),调节溅射气压,以及靶材的溅射功率,通过控制靶体与衬底基板10的相对运动和/或所述衬底基板10的转动控制光提取层14的表面形貌,以使所述光扩散面1002为波浪形曲面,所述光提取面1001为浪形曲面或平面。其中,控制靶体与衬底基板10的相对运动可以是控制靶体的左右移动和/或上下移动,保持衬底基板10的静止或转动;也可以是控制衬底基板10的左右移动和/或上下移动,保持靶体静止。
可选地,制备光提取层14可以是多层,具体地,可以依次形成第一光提取层141、第二光提取层142以及第三光提取层143;其中,所述第一光提取 层141的折射率小于所述第二光提取层142,所述第二光提取层142的折射率小于所述第三光提取层143,所述第一光提取层141包括第一光提取面和第一光扩散面,所述第二光提取层142包括第二光提取面和第二光扩散面,所述第三光提取层143包括第三光提取面和第三光扩散面;所述第一光提取面为浪形曲面或平面,所述第三光扩散面为波浪形曲面。
本发明实施例中,依次形成第一光提取层141、第二光提取层142以及第三光提取层143的方法可以包括:通过溅射第一靶材形成所述第一光提取层141;通过溅射第二靶材形成所述第二光提取层142;以及,通过溅射第三靶材形成所述第三光提取层143。
本发明实施例中,通过在衬底基板10上依次制备第一电极层11、发光层12以及第二电极层13,在第二电极层13的背离所述衬底基板10的表面形成有机保护层15,通过控制靶体与所述衬底基板10的相对运动和/或所述衬底基板10的转动,控制所述光提取层14的表面形貌,以使所述光扩散面1002为波浪形曲面,所述光提取面1001为浪形曲面或平面,其中,光扩散面1002用于将传导至所述光提取层14的光线反射至所述光扩散面1002上方的空气中,可以增强对发光层12生成的光线的散射作用,可增大其制备的显示屏视角,提高用户的视觉体验;该有机保护层15可以保护第二电极层13防止第二电极层13在后续制备过程中的氧化。
请参照图7,图7为本发明实施例提供的电致发光器件制备方法又一较佳实施方式的流程示意图。包括以下步骤:
步骤S701:提供一衬底基板10。
步骤S702:在所述衬底基板10上依次制备第一电极层11、发光层12以及第二电极层13。
具体地,可一并参阅图4,在衬底基板10上依次制备第一电极层11、发光层12以及第二电极层13的方法可参见图6中步骤S602中相关描述,此处不再赘述。
步骤S703:在所述第二电极层13的背离所述衬底基板10的表面形成有机保护层15。
具体地,可参见图6中步骤S603中相关描述,此处不再赘述。
步骤S704:图案化所述有机保护层15,以使所述有机保护层15背离所述第二电极层13的表面为波浪形曲面。
具体地,图案化所述有机保护层15,形成具有波浪型曲面的表面的有机保护层15的方法可以是,利用脉冲激光法或磁控溅射法,通过控制靶体与所述衬底基板10的相对运动和/或所述衬底基板10的转动,控制所述有机保护层15的表面形貌,在所述第二电极层13的背离所述衬底基板10的表面形成具有波浪型曲面结构的有机保护层15。图案化所述有机保护层15,形成具有波浪型曲面结构的有机保护层15的方法还可以是,通过光罩蚀刻工艺,图案化所述有机保护层15,具体可以是,在所述有机保护层15背离所述第二电极层13的表面涂布光刻胶层;图案化光刻胶层,移除部分光刻胶层,形成波浪型曲面的光刻胶层;通过刻蚀工艺使基板上的薄膜整体去除离预设厚度,去除光刻胶层以及部分有机保护层15,形成具有波浪型曲面结构的有机保护层15。
步骤S705:通过物理气相沉积法在所述有机保护层15的表面沉积至少一层所述光提取层14。
具体地,以具有波浪型曲面的有机保护层15为衬底,在其上通过物理气相沉积法沉积形成至少一层光提取层14,比如第一光提取层、第二光提取层以及第三光提取层,其中,所述第一光提取层141的折射率小于所述第二光提取层142,所述第二光提取层142的折射率小于所述第三光提取层143,所述第一光提取层141包括第一光提取面和第一光扩散面,所述第二光提取层142包括第二光提取面和第二光扩散面,所述第三光提取层143包括第三光提取面和第三光扩散面;所述第一光提取面为浪形曲面或平面,所述第三光扩散面为波浪形曲面。
本发明中刻蚀可以包括干刻蚀以及湿刻蚀,所述干蚀刻的气体可以是为CF4,SF6或CL2和O2的混合气体,所示湿蚀刻的液体可以是为草酸,硫酸,盐酸,或草酸、硫酸及盐酸的混合液。
在本发明中,所述图案化即是指构图工艺,可包括光刻工艺,或,包括光刻工艺以及刻蚀步骤,同时还可以包括打印、喷墨等其他用于形成预定图形的工艺;光刻工艺,是指包括成膜、曝光、显影,等工艺过程的利用光刻胶、掩 模板、曝光机等形成图形的工艺。可根据本发明中所形成的结构选择相应的构图工艺。
本发明实施例中,通过在衬底基板10上依次制备第一电极层11、发光层12以及第二电极层13,在第二电极层13的背离所述衬底基板10的表面形成有机保护层15,图案化有机保护层15,形成具有波浪型曲面的表面的有机保护层15,再以具有波浪型曲面的有机保护层15为衬底,通过物理气相沉积法在有机保护层15的表面沉积至少一层光提取层14,该有机保护层15可以保护第二电极层13防止第二电极层13在后续制备过程中的氧化,而且还可以作为衬底,使得有机保护层15上覆盖的光提取层14的光提取面1001和光扩散面1002具有相同的波浪型曲面,可以增强对发光层12生成的光线的散射作用,可增大其制备的显示屏视角,提高用户的视觉体验。
本发明实施例中所使用的技术术语仅用于说明特定实施例而并不旨在限定本发明。在本文中,单数形式“一”、“该”及“所述”用于同时包括复数形式,除非上下文中明确另行说明。进一步地,在说明书中所使用的用于“包括”和/或“包含”是指存在所述特征、整体、步骤、操作、元件和/或构件,但是并不排除存在或增加一个或多个其它特征、整体、步骤、操作、元件和/或构件。
在所附权利要求中对应结构、材料、动作以及所有装置或者步骤以及功能元件的等同形式(如果存在的话)旨在包括结合其他明确要求的元件用于执行该功能的任何结构、材料或动作。本发明的描述出于实施例和描述的目的被给出,但并不旨在是穷举的或者将被发明限制在所公开的形式。在不偏离本发明的范围和精神的情况下,多种修改和变形对于本领域的一般技术人员而言是显而易见的。本发明中所描述的实施例能够更好地揭示本发明的原理与实际应用,并使本领域的一般技术人员可了解本发明。
本发明中所描述的流程图仅仅为一个实施例,在不偏离本发明的精神的情况下对此图示或者本发明中的步骤可以有多种修改变化。比如,可以不同次序的执行这些步骤,或者可以增加、删除或者修改某些步骤。本领域的一般技术人员可以理解实现上述实施例的全部或部分流程,并依本发明权利要求所作的 等同变化,仍属于发明所涵盖的范围。

Claims (16)

  1. 一种电致发光器件,其特征在于,包括:
    衬底基板;
    第一电极层和第二电机层,位于所述衬底基板上,所述第一电极层用于在电压驱动下输出空穴,所述第二电极层用于在电压驱动下输出电子;
    发光层,位于所述第一电极层和所述第二电机层之间,所述发光层用于在所述第一电极层的空穴和所述第二电极层的电子的激发下生产光线;以及
    光提取层,所述光提取层包括光提取面和光扩散面,所述光提取面和所述光扩散面相对设置,所述光提取面用于将所述发光层生成的光线通过所述第一电极层或所述第二电极层传导至所述光提取层,所述光扩散面用于将传导至所述光提取层的光线反射至所述光扩散面上方的空气中。
  2. 如权利要求1所述电致发光器件,其特征在于,所述光扩散面为波浪形曲面,所述光提取面为浪形曲面或平面。
  3. 如权利要求2所述的电致发光器件,其特征在于,所述光提取层包括背离所述衬底基板依次设置的第一光提取层、第二光提取层以及第三光提取层,所述第一光提取层的折射率小于所述第二光提取层,所述第二光提取层的折射率小于所述第三光提取层,所述第一光提取层包括第一光提取面和第一光扩散面,所述第二光提取层包括第二光提取面和第二光扩散面,所述第三光提取层包括第三光提取面和第三光扩散面;其中,所述第一光提取面为浪形曲面或平面,所述第三光扩散面为波浪形曲面。
  4. 如权利要求2或3所述电致发光器件,其特征在于,所述电致发光器件还包括有机保护层,所述有机保护层位于所述第二电极层和所述光提取层之间。
  5. 如权利要求4所述的电致发光器件,其特征在于,所述有机保护层包括第一表面和第二表面,第一表面和第二表面相对设置,第一表面为波浪形曲面或平面,第一表面贴合所述光提取层的光提取面,第二表面为平面,第二表面贴合第二电极层。
  6. 如权利要求4所述的电致发光器件,其特征在于,所述有机保护层的厚度为10~20nm。
  7. 如权利要求4所述的电致发光器件,其特征在于,所述有机保护层的材质包括四氟乙烯、聚四氟乙烯、聚乙烯、聚氯乙烯、聚苯乙烯中的一种或多种的组合。
  8. 如权利要求1所述的电致发光器件,其特征在于,所述发光层包括依次层叠设置于所述第一电极层上的空穴传输层、有机发光层以及电子传输层;所述电子传输层的另一表面贴合所述第二电极层的表面;所述空穴传输层用于将所述第一电极层输出的空穴传导至所述有机发光层,所述电子传输层用于将第二电极层输出的电子传导至所述有机发光层,以使所述电子和所述空穴可以在所述有机发光层复合,激发所述有机发光层中发光分子辐射出光线。
  9. 一种电致发光器件制备方法,其特征在于,包括:
    提供一衬底基板;
    在所述衬底基板上依次制备第一电极层、发光层以及第二电机层;其中,所述第一电极层用于在电压驱动下输出空穴,所述第二电极层用于在电压驱动下输出电子;所述发光层用于在所述第一电极层的空穴和所述第二电极层的电子的激发下生产光线;以及,
    制备光提取层,所述光提取层包括相对设置的光提取面和光扩散面,所述光提取面用于将所述发光层生成的光线通过所述第一电极层或所述第二电极层传导至所述光提取层,所述光扩散面用于将传导至所述光提取层的光线反射至所述光扩散面上方的空气中。
  10. 如权利要求9所述的电致发光器件制备方法,其特征在于,所述制备光提取层包括:
    利用脉冲激光法或磁控溅射法,通过控制靶体与所述衬底基板的相对运动 和/或所述衬底基板的转动,控制所述光提取层的表面形貌,以使所述光扩散面为波浪形曲面,所述光提取面为浪形曲面或平面。
  11. 如权利要求10所述的电致发光器件制备方法,其特征在于,所述制备光提取层包括:
    依次形成第一光提取层、第二光提取层以及第三光提取层;其中,所述第一光提取层的折射率小于所述第二光提取层,所述第二光提取层的折射率小于所述第三光提取层,所述第一光提取层包括第一光提取面和第一光扩散面,所述第二光提取层包括第二光提取面和第二光扩散面,所述第三光提取层包括第三光提取面和第三光扩散面;所述第一光提取面为浪形曲面或平面,所述第三光扩散面为波浪形曲面。
  12. 如权利要求11所述的电致发光器件制备方法,其特征在于,所述依次形成第一光提取层、第二光提取层以及第三光提取层包括:
    通过溅射第一靶材形成所述第一光提取层;
    通过溅射第二靶材形成所述第二光提取层;以及
    通过溅射第三靶材形成所述第三光提取层。
  13. 如权利要求9-12任一权利要求所述的电致发光器件制备方法,其特征在于,所述在所述衬底基板上依次制备第一电极层、发光层以及第二电机层之后,所述制备光提取层之前包括:
    在所述第二电极层的背离所述衬底基板的表面形成有机保护层。
  14. 如权利要求13所述的电致发光器件制备方法,其特征在于,所述在所述第二电极层的背离所述衬底基板的表面形成有机保护层具体包括:
    图案化所述有机保护层,以使所述有机保护层背离所述第二电极层的表面为波浪形曲面。
  15. 如权利要求14所述的电致发光器件制备方法,其特征在于,所述制 备光提取层具体为:
    通过物理气相沉积法在所述有机保护层的波浪形曲面的表面沉积至少一层所述光提取层。
  16. 如权利要求13所述的电致发光器件制备方法,其特征在于,所述有机保护层的厚度为10~20nm。
PCT/CN2016/088027 2016-06-30 2016-06-30 一种电致发光器件及其制备方法 WO2018000388A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2016/088027 WO2018000388A1 (zh) 2016-06-30 2016-06-30 一种电致发光器件及其制备方法
CN201680019622.6A CN107466429B (zh) 2016-06-30 2016-06-30 一种电致发光器件及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/088027 WO2018000388A1 (zh) 2016-06-30 2016-06-30 一种电致发光器件及其制备方法

Publications (1)

Publication Number Publication Date
WO2018000388A1 true WO2018000388A1 (zh) 2018-01-04

Family

ID=60544685

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/088027 WO2018000388A1 (zh) 2016-06-30 2016-06-30 一种电致发光器件及其制备方法

Country Status (2)

Country Link
CN (1) CN107466429B (zh)
WO (1) WO2018000388A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109841753A (zh) * 2019-02-02 2019-06-04 京东方科技集团股份有限公司 光取出层及其制作方法、显示面板
CN110335967B (zh) * 2019-07-02 2021-08-03 深圳市华星光电半导体显示技术有限公司 Oled面板及其制作方法
CN110379940B (zh) * 2019-08-27 2021-09-03 昆山工研院新型平板显示技术中心有限公司 显示基板、显示面板以及显示装置
CN110729413B (zh) * 2019-09-25 2021-12-03 武汉华星光电半导体显示技术有限公司 显示面板以及显示装置
WO2023159550A1 (zh) * 2022-02-28 2023-08-31 京东方科技集团股份有限公司 一种显示面板、显示装置和显示面板的制作方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1937872A (zh) * 2005-09-22 2007-03-28 铼宝科技股份有限公司 提升出光效率的有机发光装置
CN102293054A (zh) * 2009-01-26 2011-12-21 旭硝子株式会社 电子器件用基板及使用该基板的电子器件
CN103682160A (zh) * 2013-12-30 2014-03-26 北京维信诺科技有限公司 一种有机电致发光器件及其制备方法
CN104900811A (zh) * 2014-03-05 2015-09-09 群创光电股份有限公司 有机发光二极管及使用其的显示面板

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103531720A (zh) * 2013-10-29 2014-01-22 南京第壹有机光电有限公司 一种高效发光的电致发光器件
CN104808267A (zh) * 2015-05-08 2015-07-29 南昌航空大学 一种oled照明光提取膜

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1937872A (zh) * 2005-09-22 2007-03-28 铼宝科技股份有限公司 提升出光效率的有机发光装置
CN102293054A (zh) * 2009-01-26 2011-12-21 旭硝子株式会社 电子器件用基板及使用该基板的电子器件
CN103682160A (zh) * 2013-12-30 2014-03-26 北京维信诺科技有限公司 一种有机电致发光器件及其制备方法
CN104900811A (zh) * 2014-03-05 2015-09-09 群创光电股份有限公司 有机发光二极管及使用其的显示面板

Also Published As

Publication number Publication date
CN107466429A (zh) 2017-12-12
CN107466429B (zh) 2020-06-02

Similar Documents

Publication Publication Date Title
WO2018000388A1 (zh) 一种电致发光器件及其制备方法
TWI292491B (en) Method for manufacturing microlens and method for manufacturing organic electroluminescence element
TWI445445B (zh) 有機發光裝置及其製造方法
US7786665B2 (en) Organic electroluminescent device having a diffraction grating for enhancing light extraction efficiency
WO2018107535A1 (zh) Oled封装方法与oled封装结构
JP2011108632A (ja) 有機発光表示装置及びその製造方法
JPH11283751A (ja) 有機エレクトロルミネッセンス素子
TW200524460A (en) Highly efficient organic light emitting device using substrate having nanosized hemispherical recesses and method for preparing the same
TW200908780A (en) Electroluminescent device having improved light output
KR100699998B1 (ko) 유기 전계 발광 소자 및 그의 제조 방법
WO2018112992A1 (zh) 有机发光器件及其制作方法
JP2006164937A (ja) 有機電界発光素子及びその製造方法
JP2011507196A (ja) 発光ダイオードの外部効率の向上
JP2006093078A (ja) 有機エレクトロルミネッセンス素子及びその製造方法
JP2011113973A (ja) 有機発光素子、これを含む照明装置、およびこれを備える有機発光ディスプレイ装置
TW202125868A (zh) 具有uv固化填料的有機發光二極體(oled)顯示器裝置
WO2019228183A1 (zh) 显示基板、显示装置及显示器件的封装方法
US20150162494A1 (en) Light-emitting device and method for manufacturing light-emitting device
JPH11214163A (ja) 有機エレクトロルミネッセンス素子およびその製造方法
TWI315162B (en) Organic electroluminescent device
JP2848386B1 (ja) 有機エレクトロルミネッセンス素子およびその製造方法
WO2019196629A1 (zh) Oled器件及其制作方法、显示装置
JP5244378B2 (ja) 有機発光表示装置
WO2013146350A1 (ja) 発光装置および発光装置の製造方法
WO2016192479A1 (zh) 有机电致发光器件及其制备方法、显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16906788

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 28/05/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 16906788

Country of ref document: EP

Kind code of ref document: A1