WO2019196629A1 - Oled器件及其制作方法、显示装置 - Google Patents

Oled器件及其制作方法、显示装置 Download PDF

Info

Publication number
WO2019196629A1
WO2019196629A1 PCT/CN2019/079301 CN2019079301W WO2019196629A1 WO 2019196629 A1 WO2019196629 A1 WO 2019196629A1 CN 2019079301 W CN2019079301 W CN 2019079301W WO 2019196629 A1 WO2019196629 A1 WO 2019196629A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
microstructure
anode
organic light
oled device
Prior art date
Application number
PCT/CN2019/079301
Other languages
English (en)
French (fr)
Inventor
黄清雨
焦志强
闫华杰
刘晓云
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/491,300 priority Critical patent/US11108022B2/en
Publication of WO2019196629A1 publication Critical patent/WO2019196629A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/877Arrangements for extracting light from the devices comprising scattering means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/854Arrangements for extracting light from the devices comprising scattering means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/19Tandem OLEDs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/302Details of OLEDs of OLED structures
    • H10K2102/3023Direction of light emission
    • H10K2102/3026Top emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/351Thickness

Definitions

  • Embodiments of the present disclosure relate to the field of display technologies, and in particular, to an OLED device, a method of fabricating the same, and a display device.
  • OLED Organic Light Emitting Diodes
  • OLED Organic Light Emitting Diodes
  • An OLED device comprising:
  • At least two organic light emitting layers disposed between the anode and the cathode;
  • At least one of the two sides of the charge generation layer adjacent to the two organic light-emitting layers is provided with a microstructure.
  • one side of the charge generation layer remote from the anode is provided with a microstructure and the microstructure is convex toward a direction away from the anode.
  • the charge generation layer is provided with a microstructure adjacent to one side of the anode, and the microstructure is recessed away from the anode.
  • the shape of the microstructure is one of a hemisphere, a semi-ellipsoid, a hexahedron, a cylinder, a cone, a prism, a pyramid, a truncated cone, and a prism.
  • the microstructures are multiple and a plurality of the microstructure arrays are distributed.
  • the at least two organic light emitting layers include a first organic light emitting layer and a second organic light emitting layer, and the first organic light emitting layer is disposed between the anode and the charge generating layer, and the second organic light emitting layer a layer is disposed between the charge generation layer and the cathode,
  • the first organic light emitting layer includes: a first hole injecting layer, a first hole transporting layer, a first light emitting layer, a first electron transporting layer, and a first electron injecting layer which are sequentially stacked on the anode; the second The organic light emitting layer includes a second hole injecting layer, a second hole transporting layer, a second light emitting layer, a second electron transporting layer, and a second electron injecting layer which are sequentially laminated on the charge generating layer.
  • the OLED device is a top emission type light emitting device.
  • a substrate is further included, the substrate being disposed on a side of the anode remote from the charge generation layer.
  • the base substrate is a glass substrate or a flexible substrate.
  • the structure in which the organic light-emitting layer, the charge generation layer, and the organic light-emitting layer are sequentially stacked includes: forming a microstructure on at least one of two surfaces adjacent to the charge generation layer and the two organic light-emitting layers.
  • forming the microstructure on at least one of the two sides adjacent to the charge generating layer and the two organic light emitting layers comprises:
  • a microstructure is formed on a side of the charge generation layer away from the anode, wherein the microstructure is convex toward a direction away from the anode.
  • forming the microstructure on at least one of the two sides adjacent to the charge generating layer and the two organic light emitting layers comprises:
  • a microstructure is formed on a side of the charge generation layer adjacent to the anode, wherein the microstructure is recessed away from the anode.
  • the method further includes: forming an anode; and forming a cathode,
  • the structure in which the organic light emitting layer, the charge generating layer, and the organic light emitting layer are sequentially stacked includes:
  • a stacked second hole injection layer, a second hole transport layer, a second light-emitting layer, a second electron transport layer, and a second electron injection layer are sequentially formed on the charge generation layer.
  • the manufacturing method further includes forming a substrate, before the forming the anode,
  • the anode is disposed on the base substrate.
  • the base substrate is a glass substrate or a flexible substrate.
  • the manufacturing method before the forming a microstructure on the side of the charge generating layer adjacent to the anode, the manufacturing method includes: away from the anode of the organic light emitting layer between the anode and the charge generating layer A raised microstructure is formed on one side.
  • the microstructure is formed using an evaporation, sputtering or plasma deposition process.
  • a display device comprising the OLED device of any of the preceding embodiments.
  • Figure 1 shows the light output of a bottom-emitting OLED device
  • FIG. 2 is a schematic overall structural diagram of an OLED device according to an embodiment of the present disclosure
  • FIG. 3 is a schematic structural diagram of an OLED device according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic flow chart of a method for fabricating an OLED device according to the embodiment of FIG. 3;
  • FIG. 5 is a view showing an optical simulation case in which the distribution parameter of the raised microstructure provided by the embodiment of FIG. 3 is a combination of the first parameters;
  • FIG. 6 shows the distribution parameter of the raised microstructure provided by the embodiment of FIG. 3 as the current condition of the OLED device in the case of the first parameter combination
  • FIG. 7 is a schematic structural diagram of an OLED device according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic flow chart of a method for fabricating an OLED device provided by the embodiment of FIG. 7;
  • FIG. 9 is a schematic structural diagram of an OLED device according to an embodiment of the present disclosure.
  • the related art stacks a plurality of independent light-emitting units, so that the same-sized current flows through a plurality of different light-emitting units to collectively emit light, thereby improving the light-emitting brightness and Efficiency, forming a series OLED.
  • a plurality of light-emitting unit devices are connected in series by using a charge generation layer (CGL) as a connection layer, and the current efficiency and the light-emitting luminance of the series device can be multiplied compared with a single light-emitting unit device, but the device is multiplied.
  • CGL charge generation layer
  • the cathode used is a metal film, and the strong reflection characteristic of the metal inevitably produces a strong microcavity effect, which affects the light extraction efficiency and color rendering of the device.
  • the light emission of the bottom emission OLED device is as shown in FIG.
  • the bottom-emitting OLED device comprises a metal electrode, an electron transport layer, a light-emitting layer, a hole transport layer, an anode and a glass substrate which are sequentially stacked, and the light emitted from the light-emitting layer undergoes refraction, reflection and absorption of the respective layers, and the light-emitting rate is about 20%.
  • An object of an embodiment of the present disclosure is to provide an OLED device, a method of fabricating the same, and a display device, which increase the contact area between a charge generation layer and an adjacent functional layer in a charge generation layer, thereby improving charge generation layer generation and transmission of charge.
  • An embodiment of the present disclosure first provides an OLED device, including: an anode 200, a cathode 500, and at least two organic light-emitting layers disposed between the anode 200 and the cathode 500, between two adjacent organic light-emitting layers.
  • a charge generation layer 70 is provided; at least one of the two surfaces adjacent to the two charge-generating layers 70 and the two organic light-emitting layers is provided with a microstructure.
  • At least one of the two sides of the charge generation layer adjacent to the two organic light-emitting layers is provided with a microstructure, including: providing a microstructure on a side of the charge generation layer near the anode, or/and A side of the charge generating layer away from the anode is provided with a microstructure.
  • FIG. 2 a schematic structural view of an OLED device is shown in FIG. 2, the OLED device includes two organic light emitting layers, and an organic light emitting layer disposed between the anode 200 and the charge generating layer 70 is referred to as a first organic light emitting layer.
  • the layer 300, the organic light-emitting layer disposed between the charge generation layer 70 and the cathode 500 is the second organic light-emitting layer 400.
  • the organic light emitting layer includes a hole transport layer, a light emitting layer, and an electron transport layer which are sequentially stacked.
  • the microstructure refers to a phenomenon of non-uniform structure in a crystal structure that must be observed by means of an optical microscope or an electron microscope.
  • the microstructure may be a convex structure or a concave structure.
  • the shape of the microstructure includes, but is not limited to, a hemisphere, a semi-ellipsoid, a hexahedron, a cylinder, One of a cone, a prism, a pyramid, a truncated cone, and a prism.
  • the OLED device is a top emission type light emitting device.
  • the OLED device is a top emission type light emitting device.
  • the microstructure is a plurality of micro-structures of the same size and array distribution, such as a bottom area of each of the microstructures being 30*30 um 2 , and an interval between two adjacent micro-structures is 20um.
  • the microstructures formed also include the case where the single or multiple microstructures are non-uniformly distributed.
  • a side of the anode 200 remote from the charge generation layer 70 is further provided with a base substrate 100, which may be a glass substrate, a flexible substrate, or the like.
  • the charge generation layer serves as a functional layer of the tandem multi-light-emitting unit, and the two charge-generating layers are used to connect the two organic light-emitting layers to form a multi-light-emitting unit device to increase the device voltage.
  • Embodiments of the present disclosure increase the contact area between the charge generation layer and its adjacent layer by providing a microstructure on at least one side of the charge generation layer 70, thereby increasing the effective area of the charge generation layer to generate and inject charge, and improving charge generation.
  • the ability of the layer to generate and transport charge reduces the operating voltage of the OLED device.
  • an embodiment of the present disclosure further provides an OLED manufacturing method, where the OLED is the OLED described in any one of the foregoing technical solutions, including the following steps:
  • a charge generation layer is formed between the two organic light-emitting layers, and at least one of the two sides adjacent to the two charge-generating layers is provided with a microstructure.
  • the microstructure is formed on at least one side of the charge generation layer, and the microstructure is formed by evaporation.
  • the microstructure is formed by an evaporation process, and the composition and thickness of the microstructure are easily controlled, and the fabrication precision of the microstructure is improved.
  • the method for fabricating the OLED device further includes: forming an organic light emitting layer on the anode; forming a charge generating layer on the organic light emitting layer; and forming another organic light emitting layer on the charge generating layer.
  • the organic light-emitting layer includes a hole injection layer, a hole transport layer, a light-emitting layer, an electron transport layer, and an electron injection layer.
  • the OLED device includes two organic light emitting layers, and the first organic light emitting layer 300 includes a first hole injecting layer 20, a first hole transporting layer 30, and a first light emitting layer 40, which are sequentially stacked on the anode 200.
  • first electron-emitting layer 50 a first electron-emitting layer 50, a second electron-emitting layer 60, and a second hole-emitting layer 80, a second hole-transporting layer 90, and a second hole-transporting layer 90, which are sequentially stacked on the charge-generating layer,
  • the schematic diagram of the structure of the OLED device provided in this embodiment is as shown in FIG. 3 .
  • the OLED device includes a substrate 200 having a stacked anode 200, a first hole injection layer 20 and a first hole transport layer 30.
  • the charge generation layer 70 is provided with a first microstructure 61 on a side of the first electron injection layer 60.
  • the first microstructure 61 is recessed toward a direction away from the base substrate 100, and a surface of the charge generation layer 70 adjacent to the first electron injection layer 60 is provided with a recessed first microstructure 61, correspondingly,
  • the first electron injecting layer forms a convex microstructure on a side close to the charge generating layer.
  • the first microstructure 61 can be optionally distributed in an array of a plurality of first microstructures 61.
  • the plurality of array-distributed first microstructures 61 scatter light emitted by the first luminescent layer 40, and the charges generated throughout the charge-generating layer 70 are uniformly distributed to make the light emission uniform.
  • the contact area between the charge generation layer and its adjacent layer is increased by providing the recessed first microstructure 61 on the side of the charge generation layer 70 close to the first electron injection layer 60, thereby increasing the charge generation layer.
  • the effective area of the charge is generated and injected, the ability of the charge generation layer to generate and transport charge is increased, and the operating voltage of the OLED device is reduced.
  • the embodiment further provides a method for fabricating an OLED device.
  • the OLED device is the OLED device according to any one of the above technical solutions. step:
  • the base substrate includes a glass substrate or a flexible substrate.
  • Step S31 includes: forming a first hole injection layer on the base substrate; forming a first hole transport layer on the first hole injection layer; forming a first on the first hole transport layer a light emitting layer; a first electron transport layer formed on the first light emitting layer; and a first electron injecting layer formed on the first electron transport layer.
  • each of the device layers is formed by using an open mask, and the forming process includes a deposition method such as evaporation, sputtering, or plasma, and the present embodiment optionally forms the above-mentioned respective methods by evaporation. Functional layer.
  • each of the functional layers formed by the above-described functional layers and the respective functional layers formed by evaporation are as follows:
  • a first hole injecting layer having a thickness of 10 nm was formed by vapor deposition on the base substrate with tetrafluorotetracyanoquinodimethane (abbreviation: F4TCNQ) using N,N'-diphenyl-N,N'- A bis(3-methylphenyl)-1,1'-biphenyl-4,4'-diamine (abbreviation: TPD) material forms a first cavity having a thickness of 25 nm on the first hole injection layer a transport layer using (acetylacetone) bis(2-methyldibenzo[f,h]quinoxaline) ruthenium (abbreviation: NPD: Ir(MDQ) 2 (acac)) material in the first cavity Forming a first light-emitting layer having a thickness of 30 nm on the injection layer, using a 1,3,5-tris[(3-pyridyl)-3-phenyl]benzene (abbreviation: TmPyPB)
  • the materials and thicknesses of the above functional layers are only an optional implementation, and the materials for forming the above functional layers other than the above-mentioned materials are not limited, and the thickness of each functional layer is also The values listed in the above-described alternative embodiments are not to be construed as limiting the embodiments of the present disclosure.
  • a high-precision metal template is used on the first electron injection layer to form a convex microstructure, and the raised microstructure is away from the substrate.
  • the direction of the substrate is convex, and the shape of the raised microstructure includes, but is not limited to, a hemisphere, a semi-ellipsoid, a hexahedron, a cylinder, a cone, a prism, a pyramid, a truncated cone, and a prism.
  • the fabrication process optionally uses a 1,3,5-tris[(3-pyridyl)-3-phenyl]benzene (abbreviation: TmPyPB) material to form a microstructure having a height of 5 nm on the first electron injecting layer.
  • TmPyPB 1,3,5-tris[(3-pyridyl)-3-phenyl]benzene
  • the raised microstructure optionally includes a plurality of microstructures of the same size and array distribution, such as a bottom surface area of each of the microstructures of 30*30 um 2 , between two adjacent microstructures of the protrusions The interval is 20um.
  • the raised microstructures formed may also be single or multiple non-uniformly distributed raised microstructures.
  • This embodiment optionally forms a charge generation layer (CGL for short) on the first electron injection layer by using an open mask, optionally using 4,7-diphenyl-1,10-phenanthrene.
  • a porphyrin (chemical formula: Bphen:Li) material evaporates a charge generating layer having a thickness of 15 nm, and the charge generating layer is adjacent to the charge generating layer because the convex microstructure is convex toward a direction away from the base substrate
  • One side of the base substrate naturally forms a microstructure having a concave structure, and the microstructure of the recess is a first microstructure.
  • the distribution parameter of the convex microstructure corresponding to the first microstructure is optionally tested as a first parameter combination, and the first parameter combination includes: the convex microstructure is in the first electron
  • the axial section width L1 on the injection layer was 30 ⁇ m
  • the distance L2 between two uniformly distributed microstructures was 20 ⁇ m
  • the height H of the microstructure was 7 nm
  • the thickness of the charge generation layer was 20 nm.
  • the axial section width refers to a dimension in one direction of a section perpendicular to the axis of the convex direction of the convex microstructure; the distance between two adjacent microstructures refers to the same side of two adjacent microstructures The distance between the sides, such as the distance between the sides of the left side of two adjacent microstructures.
  • the first electron injection layer has no microstructure (FIG. 5(a)) and the first microstructure is provided.
  • the optical simulation of (Fig. 5(b)) is shown in Fig. 5.
  • Fig. 5(a) is located in the upper half of Fig. 5
  • Fig. 5(b) is located in the lower half of Fig. 5, where the x coordinate represents the OLED.
  • the lateral position coordinate, the y coordinate represents the longitudinal position coordinate of the OLED, and the gray scale bar on the right side represents the relative intensity value of the exit wavelength, so the intensity distribution of the exit wavelength can be seen from the light and dark stripes in the figure.
  • FIG. 5(a) is located in the upper half of Fig. 5
  • Fig. 5(b) is located in the lower half of Fig. 5
  • the x coordinate represents the OLED.
  • the first electron injection layer when the first electron injection layer is not a microstructure, that is, when the first electron injection layer is a flat layer, the light emitted by the first light-emitting layer is reflected and refracted by the functional layers of the devices.
  • the loss rate of light is large, and the light emission rate is low.
  • the brightness of the OLED device is low.
  • the first electron injection layer is provided with a first microstructure, and the first microstructure increases the scattering of light in the OLED device, thereby breaking the original total reflection path of the light.
  • the light output rate is increased, and the light loss rate is reduced. Accordingly, the brightness of the OLED device is high.
  • the first microstructure changes the incident angle of the original light on the light exit surface, thereby changing the wavelength of the emitted light, the color rendering of the OLED device is improved.
  • the distribution parameter of the convex microstructure corresponding to the first microstructure is that the current condition of the OLED device in the case of the first parameter combination is as shown in FIG. 6 , and the first electron injection layer is compared in the figure.
  • the current changes.
  • the current increases exponentially regardless of whether the OLED device contains the first microstructure.
  • the current of the OLED device provided with the first microstructure is larger than that of the OLED device without microstructure, and this current difference becomes larger as the voltage increases.
  • Experimental data indicates that the first microstructure in the OLED device increases the ability of the charge generation layer to generate and transfer charge, thereby reducing the operating voltage of the device and increasing the operating current.
  • the first microstructured OLED device is provided, which reduces the operating voltage of the OLED device.
  • the light extraction rate of the device is increased, the display brightness of the device is increased correspondingly, and the current efficiency in the OLED device is improved.
  • the method for fabricating an OLED device further includes: forming a second organic light-emitting layer and a cathode sequentially stacked on the charge generation layer by vapor deposition, including sequentially forming a second hole injection layered. a layer, a second hole transport layer, a second light emitting layer, a second electron transport layer, a second electron injection layer, and a cathode.
  • a double-layer OLED display device is taken as an example.
  • the fabrication materials of the above functional layers are selectively formed adjacent to the side of the substrate on which the charge generation layer is adjacent.
  • the functional layers are the same, and the thickness of each functional layer formed may be the same, or may be adjusted to different values according to actual needs.
  • the step of fabricating the cathode includes vapor deposition on the second electron injecting layer to form a cathode.
  • a cathode having a thickness of 8 nm is formed by using a Mg:Ag material, and a side of the cathode away from the substrate is a light-emitting surface.
  • the nano-scale cathode is selected to facilitate light emission and reduce light loss rate.
  • the organic light-emitting layer includes a hole injection layer, a hole transport layer, a light-emitting layer, an electron transport layer, and an electron injection layer.
  • the OLED device includes two organic light-emitting layers, and the first organic light-emitting layer 300 includes a first hole injection layer 20, a first hole transport layer 30, and a first light-emitting layer 40, which are sequentially stacked on the anode 200.
  • first electron-emitting layer 50 a first electron-emitting layer 50, a second electron-emitting layer 60, and a second hole-emitting layer 80, a second hole-transporting layer 90, and a second hole-transporting layer 90, which are sequentially stacked on the charge-generating layer,
  • the structure of the OLED device provided in this embodiment is as shown in FIG. 7.
  • the OLED device includes: a substrate substrate 100, an anode 200 sequentially stacked on the substrate substrate, a first hole injection layer 20, and a first Hole transport layer 30, first light emitting layer 40, first electron transport layer 50, first electron injection layer 60, charge generation layer 70, second hole injection layer 80, second hole transport layer 90, second light emission a layer 110, a second electron transport layer 120, a second electron injection layer 130, and a cathode 500.
  • the charge generation layer 70 is disposed adjacent to the second hole injection layer 80 with a second microstructure 71.
  • the second The microstructures 71 are convex toward a direction away from the base substrate 100.
  • the shape of the second microstructure 71 includes, but is not limited to, one of a hemisphere, a semi-ellipsoid, a hexahedron, a cylinder, a cone, a prism, a pyramid, a truncated cone, and a prism.
  • the second microstructure formed optionally includes a plurality of microstructures of the same size and uniform distribution, such as a bottom area of each of the second microstructures of 30*30 um 2 and two adjacent second The spacing between the microstructures is 20um.
  • the second microstructure formed also includes the case where the single or multiple second microstructures are non-uniformly distributed.
  • the embodiment of the present disclosure further provides a method for fabricating an OLED device, and the OLED device is the OLED device according to any one of the above technical solutions. Including the following steps:
  • the base substrate includes: a glass substrate or a flexible substrate.
  • Step S71 includes the steps of: forming a first hole injection layer on the base substrate; forming a first hole transport layer on the first hole injection layer; forming on the first hole transport layer a first light emitting layer; a first electron transport layer formed on the first light emitting layer; a first electron injecting layer formed on the first electron transporting layer; and a charge generating layer formed on the first electron injecting layer.
  • the functional layers of the above devices are formed by using an open mask.
  • the forming process includes a deposition method such as evaporation, sputtering or plasma.
  • the embodiment may optionally form the above method by evaporation.
  • Each functional layer are formed by using an open mask.
  • a high-precision metal template (abbreviated as FMM) on the charge generation layer to form a second microstructure, the second microstructure being located on a side of the charge generation layer away from the substrate, optionally using 4
  • FMM high-precision metal template
  • the 7-diphenyl-1,10-phenanthroline (chemical formula: Bphen:Li) material was deposited with a microstructure having a thickness of 5 nm, and the material was the same as that of the charge generating layer.
  • the method for fabricating the OLED device of the present embodiment further includes sequentially depositing a second hole injection layer, a second hole transport layer, a second light emitting layer, and a second electron transport layer on the charge generation layer. a second electron injection layer and a cathode, the second hole injection layer covering the microstructure provided on the charge generation layer.
  • the material for forming the functional layers and the cathode may be the same as the functional layers of the charge generating layer on the side of the substrate, and the thickness of each functional layer formed may be the same. Adjust to different values according to actual needs.
  • This embodiment is different from the embodiment of FIG. 3 in that the position and shape of the first microstructure and the second microstructure are different in the two embodiments: the first microstructure of the embodiment of FIG. 3 is disposed on the charge. a second layer of the embodiment of FIG. 7 is disposed on a side of the charge generation layer away from the substrate; the first microstructure is a recessed microstructure, The two microstructures are raised microstructures. Although the positions and shapes of the microstructures are different, they are all located on one side of the light-emitting layer, which can increase the contact area of the charge generation layer and its adjacent layers, increase the light emission rate, and improve the display brightness of the OLED device.
  • the uneven structure of the first microstructure and the second microstructure increases the contact area between the charge generation layer and the adjacent functional layer, that is, increases the effective area of the charge generation layer to generate charges and inject charges, thereby increasing the charge generation layer.
  • the ability to generate and transfer charge effectively reduces the operating voltage of the device.
  • the organic light-emitting layer includes a hole injection layer, a hole transport layer, a light-emitting layer, an electron transport layer, and an electron injection layer.
  • the OLED device includes two organic light-emitting layers, and the first organic light-emitting layer 300 includes a first hole injection layer 20, a first hole transport layer 30, and a first light-emitting layer 40, which are sequentially stacked on the anode 200.
  • first electron-emitting layer 50 a first electron-emitting layer 50, a second electron-emitting layer 60, and a second hole-emitting layer 80, a second hole-transporting layer 90, and a second hole-transporting layer 90, which are sequentially stacked on the charge-generating layer,
  • An embodiment of the present disclosure provides an OLED device, and a schematic structural view thereof is shown in FIG. 9 , including: a substrate substrate 100 , a first hole injection layer 20 sequentially stacked on the substrate substrate 100 , and a first empty Hole transport layer 30, first light emitting layer 40, first electron transport layer 50, first electron injection layer 60, charge generation layer 70, second hole injection layer 80, second hole transport layer 90, second light emitting layer 110, a second electron transport layer 120, a second electron injection layer 130, and a cathode 500.
  • the charge generation layer 70 is disposed adjacent to a surface of the first electron injection layer 60 with a first microstructure 61.
  • the charge generation layer 70 A second microstructure 71 is provided on a side adjacent to the second hole injection layer 80.
  • the OLED device provided in this embodiment is provided with two layers of microstructures, and the micro-structures are provided on both sides of the charge generation layer 70, including the figure.
  • the propagation path of the light is as follows: the light emitted from the first luminescent layer 40 is scattered by the first microstructure 61 near the first electron injection layer 60 of the charge generation layer 70, thereby breaking the original total reflection light.
  • the propagation path increases the light extraction rate, and further expands the scattering range of the light through the second microstructure 71 disposed on the side of the charge generation layer 70 away from the first electron injection layer 60, thereby increasing the light extraction rate and the uniformity of light emission.
  • the embodiment of FIG. 3 or the embodiment of FIG. 7 further improves the light emission efficiency and the uniformity of light emission, and the presence of the first microstructure or/and the second microstructure changes the angle at which the original light is emitted from the charge generation layer. In turn, the wavelength of the emitted light is changed to improve the color rendering of the OLED device.
  • the structure in which the first microstructure and the second microstructure are not flat causes the contact area of the charge generation layer 70 and its adjacent functional layer to increase, causing the charge generation layer 60 to generate charges and increase the effective area of the injected charge.
  • the technical effect brought about by the embodiment of FIG. 3 or the technical effect brought by the embodiment of FIG. 7 further improves the ability of the charge generation layer to generate and transfer charges, and effectively reduces the operating voltage of the device.
  • the method for fabricating the OLED device of the present embodiment includes: sequentially depositing a stacked anode, a first hole injection layer, a first hole transport layer, a first light emitting layer, a first electron transport layer, and a first layer on the base substrate.
  • An electron injecting layer depositing a raised microstructure on a side of the first electron injecting layer away from the substrate; depositing a charge generating layer on the first electron injecting layer, the charge generating layer covering a microstructure of the protrusion; depositing a raised microstructure on a side of the charge generation layer away from the substrate; depositing a second hole injection layer on the charge generation layer, the second a hole injection layer covering the convex microstructure; sequentially depositing the stacked second hole transport layer, the second light emitting layer, the second electron transport layer, and the second electron injection layer on the second hole layer And the cathode.
  • the second hole injection layer is adjacent to one surface of the charge generation layer to form a recessed microstructure, and a side away from the charge generation layer may be a flat surface, as shown in FIG. 9 to reduce process complexity.
  • an embodiment of the present disclosure further provides a display device, which includes the OLED device described in any one of the above technical solutions.
  • the display device may be any product or component having a display function such as an electronic paper, a display panel, an OLED panel, a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame, a navigator, and the like.
  • a display function such as an electronic paper, a display panel, an OLED panel, a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame, a navigator, and the like.
  • the OLED device provided by the embodiment of the present disclosure increases the contact area of the charge generation layer and the adjacent organic light-emitting layer by adding a microstructure to at least one of the two sides adjacent to the two charge-generating layers and the two organic light-emitting layers.
  • the charge generation layer generates an electric charge and an effective area for injecting the electric charge, thereby improving the ability of the charge generation layer to generate and transfer electric charges, thereby effectively reducing the operating voltage of the device.
  • At least one of two sides adjacent to the charge generating layer and the two organic light emitting layers is provided with a microstructure, and light emitted from the light emitting layer passes through the charge generating layer to approach or/and away from the
  • the microstructure of one side of the electron injection layer is scattered, which breaks the original total reflection light propagation path, increases the light extraction rate and the uniformity of light emission, and the establishment of the microstructure changes the incident angle of the original light on the light exit surface, and further The wavelength of the emitted light is changed to improve the color rendering of the OLED device.
  • the display device Since the display device is improved on the basis of the OLED device, the display device naturally inherits all the advantages of the OLED device.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种OLED器件及其制作方法、显示装置。所述OLED器件包括:阳极;阴极;至少两层有机发光层,设于所述阳极与阴极之间;以及电荷生成层,设于两相邻所述有机发光层之间,其中,所述电荷生成层与两层有机发光层相邻的两面中至少有一面设有微结构。

Description

OLED器件及其制作方法、显示装置
相关申请的交叉引用
本申请要求于2018年4月13日递交的中国专利申请CN201810333526.X的权益,其全部内容通过参考并入本文中。
技术领域
本公开的实施例涉及显示技术领域,尤其涉及一种OLED器件及其制作方法、显示装置。
背景技术
OLED(Organic Light Emitting Diodes,有机电致发光器件)具有自主发光、视角广、重量轻、温度适应范围广、面积大、全固化、柔性化,功耗低、响应速度快以及制造成本低等众多优点,在显示与照明领域有着重要应用,因而受到学术界和工业界的广泛关注。
然而,对于串联OLED,需要考虑器件的电压增加以及器件的功耗增加问题。
公开内容
本公开的实施例提供以下技术方案:
一种OLED器件,包括:
阳极;
阴极;
至少两层有机发光层,设于所述阳极与阴极之间;以及
电荷生成层,设于两相邻所述有机发光层之间,
其中,所述电荷生成层与两层有机发光层相邻的两面中至少有一面设有微结构。
在一个可选实施例中,所述电荷生成层远离所述阳极的一面设有微结构,并且所述微结构朝着远离所述阳极的方向凸起。
在一个可选实施例中,所述电荷生成层靠近所述阳极的一面设有微结 构,并且所述微结构朝着远离所述阳极的方向凹陷。
在一个可选实施例中,所述微结构的形状为半球体、半椭球体、六面体、圆柱体、圆锥体、棱柱体、棱锥体、圆锥台体和棱台体中的一种。
在一个可选实施例中,所述微结构为多个,多个所述微结构阵列分布。
在一个可选实施例中,所述至少两层有机发光层包括第一有机发光层和第二有机发光层,第一有机发光层设于所述阳极与电荷生成层之间,第二有机发光层设于所述电荷生成层与阴极之间,
所述第一有机发光层包括:依次层叠于阳极上的第一空穴注入层、第一空穴传输层、第一发光层、第一电子传输层和第一电子注入层;所述第二有机发光层包括:依次层叠于所述电荷生成层上的第二空穴注入层、第二空穴传输层、第二发光层、第二电子传输层和第二电子注入层。
在一个可选实施例中,所述OLED器件为顶发射型发光器件。
在一个可选实施例中,还包括衬底基板,所述衬底基板设于所述阳极远离所述电荷生成层的一面上。
在一个可选实施例中,所述衬底基板为玻璃基板或柔性基板。
根据本公开的另一个方面,还提供了一种如前述实施例中任一项所述的OLED器件的制作方法,包括:
形成有机发光层、电荷生成层、有机发光层依次叠置的结构,
其中,形成有机发光层、电荷生成层、有机发光层依次叠置的结构包括:在电荷生成层与两层有机发光层相邻的两面中至少一面上形成微结构。
在一个可选实施例中,所述在电荷生成层与两层有机发光层相邻的两面中至少一面上形成微结构包括:
在所述电荷生成层远离所述阳极的一面形成微结构,其中所述微结构朝着远离所述阳极的方向凸起。
在一个可选实施例中,所述在电荷生成层与两层有机发光层相邻的两面中至少一面上形成微结构包括:
在所述电荷生成层靠近所述阳极的一面形成微结构,其中所述微结构朝着远离所述阳极的方向凹陷。
在一个可选实施例中,还包括:形成阳极;和形成阴极,
其中,所述形成有机发光层、电荷生成层、有机发光层依次叠置的结构包括:
在阳极上依次形成层叠的第一空穴注入层、第一空穴传输层、第一发光层、第一电子传输层和第一电子注入层;
在第一电子注入层上形成所述电荷生成层;以及
在电荷生成层上依次形成层叠的第二空穴注入层、第二空穴传输层、第二发光层、第二电子传输层和第二电子注入层。
在一个可选实施例中,在所述形成阳极之前,所述制造方法还包括形成衬底基板,
其中,阳极设于所述衬底基板上。
在一个可选实施例中,所述衬底基板为玻璃基板或柔性基板。
在一个可选实施例中,在所述在所述电荷生成层靠近所述阳极的一面形成微结构之前,所述制造方法包括:在阳极与电荷生成层之间的有机发光层的远离阳极的一面上形成凸起的微结构。
在一个可选实施例中,采用蒸镀、溅射或等离子体沉积工艺形成所述微结构。
根据本公开的再一个方面,还提供了一种显示装置,包括如前述实施例中任一项所述的OLED器件。
本公开的实施例的附加的方面和优点将在下面的描述中部分给出,这些将从下面的描述中变得明显,或通过本公开的实施例的实践了解到。
附图说明
本公开的实施例的上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1示出了底发射OLED器件的出光情况;
图2为本公开的实施例提供的OLED器件的总体结构示意图;
图3为本公开的一个实施例提供的OLED器件的结构示意图;
图4为图3的实施例提供的OLED器件的制作方法的流程示意图;
图5示出了图3的实施例提供的凸起的微结构的分布参数为第一参数组合情况下的光学模拟情况;
图6示出了图3的实施例提供的凸起的微结构的分布参数为第一参数组合情况下OLED器件的电流情况;
图7为本公开的一个实施例提供的OLED器件的结构示意图;
图8为图7的实施例提供的OLED器件的制作方法的流程示意图;以及
图9为本公开的一个实施例提供的OLED器件的结构示意图。
具体实施方式
下面详细描述本公开的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本公开,而不能解释为对本公开的限制。
为了实现高PPI(Pixels Per Inch,每英寸像素数)显示,相关技术将多个独立的发光单元堆叠起来,使同样大小的电流先后流经多个不同的发光单元进行共同发光从而提高发光亮度与效率,形成串联OLED。通常用电荷生成层(charge generation layer,CGL)作为连接层将多个发光单元器件串联起来,与单发光单元器件相比,串联器件的电流效率和发光亮度都能成倍增加,但该种器件采用的阴极为金属薄膜,其金属的强反射特性不可避免会产生强的微腔效应,影响器件的出光效率和显色性,底发射OLED器件的出光情况如图1所示。底发射OLED器件包括依次层叠的金属电极、电子传输层、发光层、空穴传输层、阳极和玻璃基板,发光层发出的光经历各层的折射、反射、吸收,出光率在20%左右。而且,对于串联结构的OLED,由于具有多发光单元,需要在器件中引入电荷生成层作为器件的内部电极,但这样会导致器件的电压增加以及器件的功耗增加,限制了OLED显示技术在微显示领域的应用。
本公开的实施例的目的旨在提供一种OLED器件及其制作方法、显示装置,通过在电荷生成层增大电荷生成层与相邻功能层的接触面积,提高 电荷生成层产生并传输电荷的能力,减小OLED器件的工作电压。
本公开的实施例首先提供了一种OLED器件,包括:阳极200、阴极500及设于所述阳极200与阴极500之间的至少两层有机发光层,两层相邻的有机发光层之间设有电荷生成层70;所述电荷生成层70与两层有机发光层相邻的两面中至少有一面设有微结构。
具体地,所述电荷生成层与两层有机发光层相邻的两面中至少有一面设有微结构,包括:在所述电荷生成层靠近阳极的一面设有微结构,或/和在所述电荷生成层远离所述阳极的一面设有微结构。
在一个示例中,OLED器件的结构示意图如图2所示,所述OLED器件包括两层有机发光层,设于所述阳极200与电荷生成层70之间的有机发光层称为第一有机发光层300,设于所述电荷生成层70与阴极500之间的有机发光层为第二有机发光层400。
在一个示例中,所述有机发光层包括:依次层叠的空穴传输层、发光层、电子传输层。
所述微结构是指须借助于光学显微镜或电子显微镜才能观察到的晶体结构中的非均一结构现象。所述微结构可以是凸起结构,也可以包括凹陷结构,当所述微结构为凸起结构时,所述微结构的形状包括但不限于:半球体、半椭球体、六面体、圆柱体、圆锥体、棱柱体、棱锥体、圆锥台体和棱台体中的一种。
当所述电荷生成层远离所述阳极的一面设有的微结构为凸起的微结构,或者所述电荷生成层靠近所述阳极的一面设有的微结构为凹陷的微结构时,所述OLED器件为顶发射型发光器件。在本公开的实施例中,可选地,所述OLED器件为顶发射型发光器件。
可选地,所述微结构为多个大小相同且阵列分布的微结构,如每个所述微结构的底面积均为30*30um 2,两个相邻所述微结构之间的间隔为20um。当然这只是一种可选实施情况,形成的所述微结构也包括单个或多个微结构非均匀分布的情况。
在一个示例中,所述阳极200远离所述电荷生成层70的一面还设有衬底基板100,所述衬底基板可以为玻璃基板、柔性基板等。
所述电荷生成层作为串联多发光单元的功能层,用所述电荷生成层连接两层有机发光层两层有机发光层形成多发光单元设备,增大器件电压。本公开的实施例通过在所述电荷生成层70的至少一面设置微结构来增加电荷生成层与其相邻层之间的接触面积,进而增加电荷生成层产生并注入电荷的有效面积,提高电荷生成层产生并运输电荷的能力,减小OLED器件的工作电压。
进一步地,本公开的实施例还提供了一种OLED的制作方法,所述OLED为上述任一技术方案所述的OLED,包括如下步骤:
在两层有机发光层之间形成电荷生成层,所述电荷生成层与两层有机发光层相邻的两面中至少有一面设有微结构。具体包括:在所述电荷生成层的至少一面形成微结构,所述微结构的形成方式可选为蒸镀。采用蒸镀工艺形成所述微结构,易于控制所述微结构的成分及厚度,提高微结构的制作精度。
所述OLED器件的制作方法,还包括:在所述阳极上形成一有机发光层;在所述有机发光层上形成电荷生成层;在所述电荷生成层上形成另一有机发光层。
具体地,本公开的实施例提供了不同的实施方式来阐述本公开的实施例的实施过程,如下:
在图3的实施例中,所述有机发光层包括:空穴注入层、空穴传输层、发光层、电子传输层、电子注入层。所述OLED器件包括两层有机发光层,所述第一有机发光层300包括:依次层叠于阳极200上的第一空穴注入层20、第一空穴传输层30、第一发光层40、第一电子传输层50、第一电子注入层60;所述第二有机发光层400包括:依次层叠于所述电荷生成层上的第二空穴注入层80、第二空穴传输层90、第二发光层110、第二电子传输层120、第二电子注入层130。
本实施例提供的OLED器件的结构示意图如图3所示,所述OLED器件包括:衬底基板100上依次设有层叠的阳极200、第一空穴注入层20、第一空穴传输层30、第一发光层40、第一电子传输层50、第一电子注入层60、电荷生成层70、第二空穴注入层80、第二空穴传输层90、第二发 光层110、第二电子传输层120、第二电子注入层130、阴极500;所述电荷生成层70靠近所述第一电子注入层60的一面设有第一微结构61。所述第一微结构61朝着远离所述衬底基板100的方向凹陷,所述电荷生成层70靠近所述第一电子注入层60的一面设有凹陷的第一微结构61,对应地,所述第一电子注入层在靠近电荷生成层的一面形成凸起的微结构。
所述第一微结构61可选为多个第一微结构61阵列分布。多个阵列分布的第一微结构61对第一发光层40发出的光进行散射,电荷生成层70各处产生的电荷均匀分布,使光线出射均匀。
本实施例通过在所述电荷生成层70靠近所述第一电子注入层60的一面设置凹陷的第一微结构61来增加电荷生成层与其相邻层之间的接触面积,进而增加电荷生成层产生并注入电荷的有效面积,提高电荷生成层产生并运输电荷的能力,减小OLED器件的工作电压。
相应地,本实施例还提供了一种OLED器件的制作方法,该方法制作出的OLED器件为本实施例上述任一技术方案所述的OLED器件,其流程示意图如图4所示,包括如下步骤:
S31,在衬底基板上依次形成层叠的阳极、第一空穴注入层、第一空穴传输层、第一发光层、第一电子传输层、第一电子注入层;
所述衬底基板包括玻璃基板或柔性基板。步骤S31包括:在所述衬底基板上形成第一空穴注入层;在所述第一空穴注入层上形成第一空穴传输层;在所述第一空穴传输层上形成第一发光层;在所述第一发光层上形成第一电子传输层;在所述第一电子传输层上形成第一电子注入层。
上述形成过程均采用开放掩膜板(open mask)形成上述各器件层,所述形成过程包括蒸镀、溅射或等离子体等沉积方法,本实施例可选地以蒸镀的方式形成上述各功能层。
在一个示例中,制作上述各功能层可选地采用的材料及蒸镀形成的各功能层的厚度如下:
用四氟四氰基醌二甲烷(缩写:F4TCNQ)在所述衬底基板上蒸镀形成厚度为10nm的第一空穴注入层,采用N,N'-二苯基-N,N'-二(3-甲基苯基)-1,1'-联苯-4,4'-二胺(缩写:TPD)材料在所述第一空穴注入层上形成 厚度为25nm的第一空穴传输层,采用(乙酰丙酮)双(2-甲基二苯并[f,h]喹喔啉)合铱(缩写:NPD:Ir(MDQ)2(acac))材料在所述第一空穴注入层上形成厚度为30nm的第一发光层,采用1,3,5-三[(3-吡啶基)-3-苯基]苯(缩写:TmPyPB)材料在所述第一电子传输层上形成厚度为10nm的第一电子注入层。
值得说明的是,上述各功能层的制作材料及形成的厚度仅为一种可选实施情况,不限制除上述制作材料之外能够形成上述各功能层的制作材料,上述各功能层的厚度也不局限于上述可选实施例所列数值,并不能理解为对本公开的实施例的限制。
S32,在所述第一电子注入层远离所述衬底基板的一面形成凸起的微结构;
本实施例可选地在所述第一电子注入层上采用高精度金属模板(Fine Metal Mask,FMM)蒸镀形成凸起的微结构,所述凸起的微结构朝着远离所述衬底基板的方向凸起,所述凸起的微结构的形状包括但不限于:半球体、半椭球体、六面体、圆柱体、圆锥体、棱柱体、棱锥体、圆锥台体和棱台体中的一种。制作过程可选地采用1,3,5-三[(3-吡啶基)-3-苯基]苯(缩写:TmPyPB)材料在所述第一电子注入层上形成高度为5nm的微结构。所述凸起的微结构可选地包括多个大小相同且阵列分布的微结构,如各所述微结构的底面积为30*30um 2,两个相邻所述凸起的微结构之间的间隔为20um。当然这只是一种可选实施情况,形成的所述凸起的微结构也可以是单个或多个非均匀分布的凸起的微结构。
S33,在所述第一电子注入层上形成电荷生成层,所述电荷生成层覆盖所述凸起的微结构,在所述电荷生成层靠近所述第一电子注入层的一面对应形成凹陷的第一微结构。
本实施例可选地采用开放掩膜板(open mask)在所述第一电子注入层上形成电荷生成层(简称CGL),可选地采用4,7-二苯基-1,10-菲罗啉(化学式:Bphen:Li)材料蒸镀厚度为15nm的电荷生成层,由于所述凸起的微结构是朝着远离所述衬底基板的方向凸起,所述电荷生成层靠近所述衬底基板的一面自然形成具有凹陷结构的微结构,所述凹陷的微结构为 第一微结构。
本实施例可选地对所述第一微结构对应的凸起的微结构的分布参数为第一参数组合进行实验,第一参数组合包括:所述凸起的微结构在所述第一电子注入层上的轴截面宽度L1为30um,均匀分布的两个相邻微结构之间的距离L2为20um,所述微结构的高度H为7nm,电荷生成层的厚度为20nm。其中,轴截面宽度是指与沿凸起的微结构的凸起方向的轴垂直的截面的一个方向的尺度;两个相邻微结构之间的距离是指两个相邻微结构的同一侧的边之间的距离,例如两个相邻微结构的左侧的边之间的距离。
本实施例在所述第一微结构对应的凸起的微结构的分布参数为第一参数组合时,第一电子注入层上无微结构(图5(a))与设有第一微结构(图5(b))的光学模拟情况如图5所示,图5(a)位于图5的上半部分,图5(b)位于图5的下半部分,其中,x坐标表示OLED的横向位置坐标,y坐标表示OLED的纵向位置坐标,右侧的灰度bar表示出射波长的相对强度值,因此由图中的明暗条纹可以看出出射波长的强度分布。如图5(a)所示,所述第一电子注入层上无微结构,即所述第一电子注入层为平坦层时,第一发光层发出的光由于各器件功能层的反射及折射,光的损失率大,光的出射率低,当然,OLED器件的亮度低。如图5(b)所示,所述第一电子注入层上设有第一微结构,由于所述第一微结构增加OLED器件内光的散射,打破了光线原有的全反射路径,增大了出光率,减少光的损耗率,相应地,OLED器件的亮度高。而且,由于第一微结构改变了原有光线在出光面的入射角度,进而改变了出射光的波长,提高OLED器件的显色性。
本公开的实施例所述第一微结构对应的凸起的微结构的分布参数为第一参数组合情况下OLED器件的电流情况如图6所示,图中对比了第一电子注入层上无微结构与设有第一微结构时,电流的变化情况,从图中可以看出,随着电压的升高,无论OLED器件中是否包含第一微结构,电流都以指数形式递增,但能明显看出,在同一电压值下,设有第一微结构的OLED器件的电流比无微结构的OLED器件的电流大,且随着电压的升高, 这种电流差越来越大。实验数据表明OLED器件中的第一微结构增大了电荷生成层产生并传输电荷的能力,从而减小器件的工作电压,增大工作电流。
本设计人在实验过程中测得在所述第一微结构对应的凸起的微结构的分布参数为第一参数组合情况下,将OLED器件无微结构及设有第一微结构情况下的电学性能进行对比,对比结果如表1所示:
表1
Figure PCTCN2019079301-appb-000001
由表1测得的实验数据对比可以看出,与所述第一电子注入层上未设有微结构的OLED器件对比,设有第一微结构的OLED器件,降低了OLED器件的工作电压,增大了器件的出光率,相应提高了器件的显示亮度,同时提高了OLED器件中的电流效率。
本公开的实施例提供的OLED器件的制作方法,还包括:采用蒸镀的方式在所述电荷生成层上形成依次层叠的第二有机发光层及阴极,包括依次形成层叠的第二空穴注入层、第二空穴传输层、第二发光层、第二电子传输层、第二电子注入层及阴极。此处以双层OLED显示器件为例,对于多层OLED显示器件的制作方法以此类推,形成上述各功能层的制作材料可选地与所述电荷生成层靠近所述衬底基板一侧的各功能层对应相同,形成的各功能层厚度可以相同,也可以根据实际需要调整成不同的数值。
所述阴极的制作步骤包括:在所述第二电子注入层上蒸镀形成阴极。可选地采用Mg:Ag材料形成厚度为8nm的阴极,该阴极远离所述衬底基板的一面为出光面,选择这种材料制作纳米级阴极便于光线的出射,降低光的损耗率。
在图7的实施例中,所述有机发光层包括:空穴注入层、空穴传输层、发光层、电子传输层、电子注入层。所述OLED器件包括两层有机发光层, 所述第一有机发光层300包括:依次层叠于阳极200上的第一空穴注入层20、第一空穴传输层30、第一发光层40、第一电子传输层50、第一电子注入层60;所述第二有机发光层400包括:依次层叠于所述电荷生成层上的第二空穴注入层80、第二空穴传输层90、第二发光层110、第二电子传输层120、第二电子注入层130。
本实施例提供的OLED器件的结构示意图如图7所示,所述OLED器件包括:衬底基板100,依次层叠于所述衬底基板上的阳极200、第一空穴注入层20、第一空穴传输层30、第一发光层40、第一电子传输层50、第一电子注入层60、电荷生成层70、第二空穴注入层80、第二空穴传输层90、第二发光层110、第二电子传输层120、第二电子注入层130、阴极500,所述电荷生成层70靠近所述第二空穴注入层80的一面设有第二微结构71,所述第二微结构71朝着远离所述衬底基板100的方向凸起。
所述第二微结构71的形状包括但不限于半球体、半椭球体、六面体、圆柱体、圆锥体、棱柱体、棱锥体、圆锥台体和棱台体中的一种。形成的所述第二微结构可选地包括多个大小相同且分布均匀的微结构,如每个所述第二微结构的底面积均为30*30um 2,两个相邻所述第二微结构之间的间隔为20um。当然这只是一种可选实施情况,形成的所述第二微结构也包括单个或多个第二微结构非均匀分布的情况。
相应地,本公开的实施例还提供了一种OLED器件的制作方法,该方法制作出的OLED器件为本实施例上述任一技术方案所述的OLED器件,其流程示意图如图8所示,包括如下步骤:
S71,在衬底基板上依次形成层叠的阳极、第一空穴注入层、第一空穴传输层、第一发光层、第一电子传输层、第一电子注入层及电荷生成层;
具体地,所述衬底基板包括:玻璃基板或柔性基板。步骤S71包括如下步骤:在所述衬底基板上形成第一空穴注入层;在所述第一空穴注入层上形成第一空穴传输层;在所述第一空穴传输层上形成第一发光层;在所述第一发光层上形成第一电子传输层;在所述第一电子传输层上形成第一电子注入层;在所述第一电子注入层上形成电荷生成层。
上述形成过程均采用开放掩膜版(open mask)形成上述各器件功能 层,所述形成过程包括蒸镀、溅射或等离子体等沉积方法,本实施例可选地以蒸镀的方式形成上述各功能层。
上述各功能层的制作材料及形成的厚度可选地与上一实施例相同,在此不再赘述。
S72,在所述电荷生成层远离所述第一电子注入层的一面形成凸起的第二微结构。
在所述电荷生成层上采用高精度金属模板(简称FMM)蒸镀形成第二微结构,所述第二微结构位于所述电荷生成层远离所述衬底基板的一面,可选地采用4,7-二苯基-1,10-菲罗啉(化学式:Bphen:Li)材料蒸镀厚度为5nm的微结构,制作材料与所述电荷生成层的制作材料相同。
本实施例提供的OLED器件的制作方法还包括:在所述电荷生成层上依次蒸镀形成层叠的第二空穴注入层、第二空穴传输层、第二发光层、第二电子传输层、第二电子注入层及阴极,所述第二空穴注入层覆盖所述电荷生成层上设有的微结构。同样地,所述形成上述各功能层及阴极的制作材料可选地与所述电荷生成层靠近所述衬底基板一侧的各功能层对应相同,形成的各功能层厚度可以相同,也可以根据实际需要调整成不同的数值。
本实施例与图3的实施例不同的是,两种实施例中所述第一微结构与第二微结构的位置、形状不同:图3的实施例的第一微结构设在所述电荷生成层靠近所述衬底基板的一面,图7的实施例的第二微结构设在所述电荷生成层远离所述衬底基板的一面;所述第一微结构为凹陷的微结构,第二微结构为凸起的微结构。虽然微结构所处的位置及形状不同,但均位于所述发光层的一侧,均能增大电荷生成层与其相邻层的接触面积,增大光的出射率,提高OLED器件的显示亮度;第一微结构及第二微结构的不平坦结构,增加了电荷生成层与相邻功能层之间的接触面积,即增加电荷生成层产生电荷、注入电荷的有效面积,进而提高电荷生成层产生并传输电荷的能力,有效减小器件的工作电压。
在图9的实施例中,所述有机发光层包括:空穴注入层、空穴传输层、发光层、电子传输层、电子注入层。所述OLED器件包括两层有机发光层, 所述第一有机发光层300包括:依次层叠于阳极200上的第一空穴注入层20、第一空穴传输层30、第一发光层40、第一电子传输层50、第一电子注入层60;所述第二有机发光层400包括:依次层叠于所述电荷生成层上的第二空穴注入层80、第二空穴传输层90、第二发光层110、第二电子传输层120、第二电子注入层130。
本公开的实施例提供了一种OLED器件,其结构示意图如图9所示,包括:衬底基板100,依次层叠于所述衬底基板100上的第一空穴注入层20、第一空穴传输层30、第一发光层40、第一电子传输层50、第一电子注入层60、电荷生成层70、第二空穴注入层80、第二空穴传输层90、第二发光层110、第二电子传输层120、第二电子注入层130、阴极500,所述电荷生成层70靠近所述第一电子注入层60的一面设有第一微结构61,所述电荷生成层70靠近所述第二空穴注入层80的一面设有第二微结构71。
本实施例与图3、7的实施例的不同之处在于,本实施例提供的OLED器件中设有两层微结构,在所述电荷生成层70的两面均设有微结构,包括了图3的实施例中提供的第一微结构61和图7的实施例提供的第二微结构71。光线的传播路径如下:从第一发光层40发出的光经过所述电荷生成层70靠近所述第一电子注入层60一面的第一微结构61进行散射,打破了原有的全反射的光线传播路径,增大了出光率,再经过电荷生成层70远离所述第一电子注入层60一面设有的第二微结构71进一步扩大光的散射范围,增大出光率及出光均匀度,在图3的实施例或图7的实施例的基础上进一步提高光的出射效率及出光均匀性,第一微结构或/和第二微结构的存在改变了原有光线从电荷生成层出射的角度,进而改变了出射光的波长,提高OLED器件的显色性。同样地,第一微结构及第二微结构不平坦的结构导致电荷生成层70与其相邻功能层的接触面积增大,引起电荷生成层60产生电荷、注入电荷的有效面积增加,本实施例带来的技术效果是在图3的实施例或图7的实施例带来的技术效果的基础上,进一步提高电荷生成层产生并传输电荷的能力,有效减小器件的工作电压。
制作本实施例提供的OLED器件的方法包括:在衬底基板上依次蒸镀 层叠的阳极、第一空穴注入层、第一空穴传输层、第一发光层、第一电子传输层、第一电子注入层;在所述第一电子注入层远离所述衬底基板的一面蒸镀凸起的微结构;在所述第一电子注入层上蒸镀电荷生成层,所述电荷生成层覆盖所述凸起的微结构;在所述电荷生成层远离所述衬底基板的一面蒸镀凸起的微结构;在所述电荷生成层上蒸镀第二空穴注入层,所述第二空穴注入层覆盖所述凸起的微结构;在所述第二空穴层上依次蒸镀层叠的第二空穴传输层、第二发光层、第二电子传输层、第二电子注入层及阴极。
所述第二空穴注入层靠近所述电荷生成层的一面对应形成凹陷的微结构,在远离所述电荷生成层的一面可选为平坦面,如图9所示,以降低工艺复杂度。
所述各功能层的制作材料及形成厚度可选地与前述实施例相同,在此不再赘述。
更进一步地,本公开的实施例还提供了一种显示装置,所述显示装置包括上述任一技术方案所述的OLED器件。
所述显示装置可以为电子纸、显示面板、OLED面板、手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。
本公开的实施例的方案具有以下优点:
本公开的实施例提供的OLED器件,通过在电荷生成层与两层有机发光层相邻的两面中至少有一面设置微结构,增大电荷生成层与相邻有机发光层的接触面积,即增加电荷生成层产生电荷、注入电荷的有效面积,进而提高电荷生成层产生并传输电荷的能力,有效减小器件的工作电压。
本公开的实施例提供的OLED器件,在电荷生成层与两层有机发光层相邻的两面中至少有一面设置微结构,从发光层发出的光经过所述电荷生成层靠近或/和远离所述电子注入层一面的微结构进行散射,打破了原有的全反射的光线传播路径,增大了出光率及出光均匀度,微结构的设立改变了原有光线在出光面的入射角度,进而改变了出射光的波长,提高OLED器件的显色性。
由于所述显示装置是在所述OLED器件的基础上进行改进的,因此,所述显示装置自然继承了所述OLED器件的全部优点。
以上所述仅是本公开的部分实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本公开的实施例的原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本公开的保护范围。

Claims (18)

  1. 一种OLED器件,包括:
    阳极;
    阴极;
    至少两层有机发光层,设于所述阳极与阴极之间;以及
    电荷生成层,设于两相邻所述有机发光层之间,
    其中,所述电荷生成层与两层有机发光层相邻的两面中至少有一面设有微结构。
  2. 根据权利要求1所述的OLED器件,其中,所述电荷生成层远离所述阳极的一面设有微结构,并且所述微结构朝着远离所述阳极的方向凸起。
  3. 根据权利要求1或2所述的OLED器件,其中,所述电荷生成层靠近所述阳极的一面设有微结构,并且所述微结构朝着远离所述阳极的方向凹陷。
  4. 根据权利要求2所述的OLED器件,其中,所述微结构的形状为半球体、半椭球体、六面体、圆柱体、圆锥体、棱柱体、棱锥体、圆锥台体和棱台体中的一种。
  5. 根据权利要求1所述的OLED器件,其中,所述微结构为多个,多个所述微结构阵列分布。
  6. 根据权利要求1所述的OLED器件,其中,所述至少两层有机发光层包括第一有机发光层和第二有机发光层,第一有机发光层设于所述阳极与电荷生成层之间,第二有机发光层设于所述电荷生成层与阴极之间,
    所述第一有机发光层包括:依次层叠于阳极上的第一空穴注入层、第一空穴传输层、第一发光层、第一电子传输层和第一电子注入层;所述第二有机发光层包括:依次层叠于所述电荷生成层上的第二空穴注入层、第二空穴传输层、第二发光层、第二电子传输层和第二电子注入层。
  7. 根据权利要求1所述的OLED器件,其中,所述OLED器件为顶发射型发光器件。
  8. 根据权利要求1所述的OLED器件,还包括衬底基板,所述衬底基板设于所述阳极远离所述电荷生成层的一面上。
  9. 根据权利要求8所述的OLED器件,其中,所述衬底基板为玻璃基板或柔性基板。
  10. 如权利要求1至9中任一项所述的OLED器件的制作方法,包括:
    形成有机发光层、电荷生成层、有机发光层依次叠置的结构,
    其中,形成有机发光层、电荷生成层、有机发光层依次叠置的结构包括:在电荷生成层与两层有机发光层相邻的两面中至少一面上形成微结构。
  11. 根据权利要求10所述的OLED器件的制作方法,其中,所述在电荷生成层与两层有机发光层相邻的两面中至少一面上形成微结构包括:
    在所述电荷生成层远离所述阳极的一面形成微结构,其中所述微结构朝着远离所述阳极的方向凸起。
  12. 根据权利要求10或11所述的OLED器件的制作方法,其中,所述在电荷生成层与两层有机发光层相邻的两面中至少一面上形成微结构包括:
    在所述电荷生成层靠近所述阳极的一面形成微结构,其中所述微结构朝着远离所述阳极的方向凹陷。
  13. 根据权利要求10-12中任一项所述的OLED器件的制作方法,还包括:形成阳极;和形成阴极,
    其中,所述形成有机发光层、电荷生成层、有机发光层依次叠置的结构包括:
    在阳极上依次形成层叠的第一空穴注入层、第一空穴传输层、第一发光层、第一电子传输层和第一电子注入层;
    在第一电子注入层上形成所述电荷生成层;以及
    在电荷生成层上依次形成层叠的第二空穴注入层、第二空穴传输层、第二发光层、第二电子传输层和第二电子注入层。
  14. 根据权利要求13所述的OLED器件的制作方法,其中,在所述形成阳极之前,所述制造方法还包括形成衬底基板,
    其中,阳极设于所述衬底基板上。
  15. 根据权利要求14所述的OLED器件的制作方法,其中,所述衬底基板为玻璃基板或柔性基板。
  16. 根据权利要求12所述的OLED器件的制作方法,其中,在所述在所述电荷生成层靠近所述阳极的一面形成微结构之前,所述制造方法包括:在阳极与电荷生成层之间的有机发光层的远离阳极的一面上形成凸起的微结构。
  17. 根据权利要求10-16中任一项所述的OLED器件的制作方法,其中,采用蒸镀、溅射或等离子体沉积工艺形成所述微结构。
  18. 一种显示装置,包括如权利要求1至9中任一项所述的OLED器件。
PCT/CN2019/079301 2018-04-13 2019-03-22 Oled器件及其制作方法、显示装置 WO2019196629A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/491,300 US11108022B2 (en) 2018-04-13 2019-03-22 OLED device, method for manufacturing the same, and display apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810333526.XA CN108470847A (zh) 2018-04-13 2018-04-13 Oled器件及其制作方法、显示装置
CN201810333526.X 2018-04-13

Publications (1)

Publication Number Publication Date
WO2019196629A1 true WO2019196629A1 (zh) 2019-10-17

Family

ID=63263048

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/079301 WO2019196629A1 (zh) 2018-04-13 2019-03-22 Oled器件及其制作方法、显示装置

Country Status (3)

Country Link
US (1) US11108022B2 (zh)
CN (1) CN108470847A (zh)
WO (1) WO2019196629A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108470847A (zh) * 2018-04-13 2018-08-31 京东方科技集团股份有限公司 Oled器件及其制作方法、显示装置
CN110649084B (zh) * 2019-10-12 2022-04-05 深圳市华星光电半导体显示技术有限公司 显示面板及显示装置
CN114068776B (zh) * 2021-11-12 2024-05-14 义乌清越光电技术研究院有限公司 叠层发光器件及显示装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104716159A (zh) * 2013-12-16 2015-06-17 三星显示有限公司 有机发光显示装置及其制造方法
CN104966789A (zh) * 2015-06-30 2015-10-07 深圳市华星光电技术有限公司 一种电荷连接层及其制造方法、叠层oled器件
CN108470847A (zh) * 2018-04-13 2018-08-31 京东方科技集团股份有限公司 Oled器件及其制作方法、显示装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1830421A3 (en) 2006-03-03 2012-03-14 Semiconductor Energy Laboratory Co., Ltd. Light emitting device, manufacturing method of light emitting device, and sheet-like sealing material
JP5536977B2 (ja) * 2007-03-30 2014-07-02 パナソニック株式会社 面発光体
CN101598909B (zh) * 2009-07-06 2011-04-06 苏州吴中恒久光电子科技有限公司 多层结构的有机光导体
AU2013275607B2 (en) 2012-06-11 2015-08-27 Jx Nippon Oil & Energy Corporation Organic EL element and method for manufacturing same
CN103972403A (zh) * 2013-01-31 2014-08-06 海洋王照明科技股份有限公司 有机电致发光器件及其制备方法
CN106654051B (zh) 2017-03-03 2019-01-22 江苏集萃有机光电技术研究所有限公司 一种具有光取出结构的oled和oled灯具

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104716159A (zh) * 2013-12-16 2015-06-17 三星显示有限公司 有机发光显示装置及其制造方法
CN104966789A (zh) * 2015-06-30 2015-10-07 深圳市华星光电技术有限公司 一种电荷连接层及其制造方法、叠层oled器件
CN108470847A (zh) * 2018-04-13 2018-08-31 京东方科技集团股份有限公司 Oled器件及其制作方法、显示装置

Also Published As

Publication number Publication date
US11108022B2 (en) 2021-08-31
CN108470847A (zh) 2018-08-31
US20200295306A1 (en) 2020-09-17

Similar Documents

Publication Publication Date Title
US10665638B2 (en) Array substrate, display device having the same, and manufacturing method thereof
TWI445445B (zh) 有機發光裝置及其製造方法
TWI292491B (en) Method for manufacturing microlens and method for manufacturing organic electroluminescence element
WO2016123916A1 (zh) 一种显示基板及其制备方法和一种显示设备
WO2015143840A1 (zh) 有机电致发光显示面板、其制作方法及显示装置
WO2019196629A1 (zh) Oled器件及其制作方法、显示装置
TW201535821A (zh) 有機電致發光元件、照明裝置及顯示裝置
US10121983B2 (en) Light-emitting device including nano particle having core shell structure
US10600980B1 (en) Quantum dot light-emitting diode (LED) with roughened electrode
KR101654360B1 (ko) 유기 발광소자용 기판 및 그 제조방법
JP2011113973A (ja) 有機発光素子、これを含む照明装置、およびこれを備える有機発光ディスプレイ装置
TWI834533B (zh) 具有uv固化填料的有機發光二極體(oled)顯示器裝置及製造方法
WO2020020341A1 (zh) 发光二极管结构及其制造方法和显示面板
US20220367836A1 (en) Flexible electronic display device
US9425432B2 (en) Organic electroluminescent element and light emitting device with optical path control layer
JP2004104064A (ja) 発光素子
WO2016076221A1 (ja) 有機エレクトロルミネッセンス装置、照明装置および表示装置
WO2018149023A1 (zh) 发光器件及显示装置
KR101262816B1 (ko) 발광 소자
KR101604495B1 (ko) 유기발광다이오드 표시장치 및 이를 제조하는 방법
KR20050064863A (ko) 유기전계발광소자 및 그 제조방법
TWI584494B (zh) 具備量子井結構之膠體量子點電激發光元件及其製作方法
KR101489780B1 (ko) 유기발광다이오드 및 그 제조방법
CN111477760B (zh) 有机电致发光器件及显示装置
US20060163991A1 (en) Organic light emitting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19785030

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 21-01-2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19785030

Country of ref document: EP

Kind code of ref document: A1