WO2019228183A1 - 显示基板、显示装置及显示器件的封装方法 - Google Patents

显示基板、显示装置及显示器件的封装方法 Download PDF

Info

Publication number
WO2019228183A1
WO2019228183A1 PCT/CN2019/086882 CN2019086882W WO2019228183A1 WO 2019228183 A1 WO2019228183 A1 WO 2019228183A1 CN 2019086882 W CN2019086882 W CN 2019086882W WO 2019228183 A1 WO2019228183 A1 WO 2019228183A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
organic
inorganic barrier
base substrate
barrier layer
Prior art date
Application number
PCT/CN2019/086882
Other languages
English (en)
French (fr)
Inventor
宫奎
张志海
段献学
李纪龙
崔海峰
Original Assignee
京东方科技集团股份有限公司
合肥京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 合肥京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/756,163 priority Critical patent/US20210193965A1/en
Publication of WO2019228183A1 publication Critical patent/WO2019228183A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/854Arrangements for extracting light from the devices comprising scattering means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/302Details of OLEDs of OLED structures
    • H10K2102/3023Direction of light emission
    • H10K2102/3026Top emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment

Definitions

  • the present disclosure relates to the field of display technology, and in particular, to a display substrate, a display device, and a packaging method for a display device.
  • OLED organic light-emitting diode
  • OLED organic light-emitting diodes
  • the present disclosure provides a display substrate, a display device, and a packaging method of a display device.
  • the technical solution is as follows:
  • a display substrate including:
  • the packaging structure includes an organic scattering layer and an inorganic barrier layer on at least one side of the organic scattering layer, and the organic scattering layer has a bubble structure.
  • the preparation material of the organic scattering layer includes epoxy resin.
  • the inorganic barrier layer includes a first inorganic barrier layer and a second inorganic barrier layer
  • the packaging structure includes the first inorganic barrier layer, the organic layer, and the organic layer that are sequentially disposed in a direction away from the base substrate.
  • a scattering layer and the second inorganic barrier layer are sequentially disposed in a direction away from the base substrate.
  • the packaging structure further includes a first organic buffer layer, and the first organic buffer layer is located between the organic scattering layer and the second inorganic barrier layer.
  • the packaging structure further includes at least one laminated structure located on a side of the second inorganic barrier layer away from the base substrate, and each of the laminated structures includes a direction away from the base substrate
  • the second organic buffer layer and the third inorganic barrier layer are stacked.
  • the preparation material of the inorganic barrier layer includes at least one of a metal oxide, a metal sulfide, and a metal nitride.
  • the display substrate further includes a thin film transistor located between the base substrate and the light emitting device.
  • the light emitting device is a top emission type light emitting device.
  • the light emitting device is one of an organic light emitting diode OLED device and a quantum dot light emitting diode QLED device.
  • a display device including the display substrate according to any one of the aspects.
  • a packaging method for a display device includes:
  • a packaging structure is formed on a side of the light emitting device remote from the base substrate.
  • the packaging structure includes an organic scattering layer and an inorganic barrier layer on at least one side of the organic scattering layer.
  • the organic scattering layer has a bubble structure. .
  • the forming a packaging structure on a side of the light emitting device remote from the base substrate includes:
  • a second inorganic barrier layer is formed on a side of the organic scattering layer remote from the base substrate.
  • the melting point of the organic material is lower than the lowest decomposition temperature of the foaming agent, and the foaming treatment of the organic material layer includes:
  • the bubble structure is formed inside the organic material layer.
  • the step of heating the organic material layer includes:
  • the organic material layer is subjected to a temperature increasing treatment in a light irradiation manner.
  • the step of heating the organic material layer includes:
  • the organic material layer is heated up by heating.
  • the doping ratio of the foaming agent in the organic material is 0.5% to 2%.
  • the foaming agent includes a foaming agent body, and the foaming agent body includes at least one of azobiscarboxamide, diethylpropyl azodicarboxylate, and p-toluenesulfonylurea.
  • the foaming agent further includes a foaming aid, and the foaming aid includes at least one of zinc oxide and zinc stearate.
  • the method further includes:
  • the step of forming a second inorganic barrier layer on a side of the organic scattering layer remote from the base substrate includes:
  • the second inorganic barrier layer is formed on a side of the first organic buffer layer remote from the base substrate.
  • the method further includes:
  • a third inorganic barrier layer is formed on a side of the second organic buffer layer remote from the base substrate.
  • FIG. 1 is a schematic structural diagram of an OLED display substrate known to the inventors
  • FIG. 2 is a schematic structural diagram of a display panel according to an embodiment of the present disclosure
  • FIG. 3 is a schematic structural diagram of another display panel according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic structural diagram of another display panel according to an embodiment of the present disclosure.
  • FIG. 5 is a flowchart of a method for packaging a display panel according to an embodiment of the present disclosure
  • FIG. 6 is a flowchart of another method for packaging a display panel according to an embodiment of the present disclosure.
  • OLED device is a current-type light-emitting device, because of its low power consumption, self-emission, fast response (response time is about 1 microsecond), wide viewing angle (angle of view up to 175 °), thin thickness and large size can be made.
  • fast response response time is about 1 microsecond
  • wide viewing angle angle of view up to 175 °
  • thin thickness and large size can be made.
  • FIG. 1 is a schematic structural diagram of an OLED display substrate known by the inventors.
  • the OLED display substrate includes: an array substrate 101, and an OLED device 102 and a laminated film 103 which are sequentially disposed along a direction away from the array substrate 101. Orthographic projection of 102 on the array substrate 101.
  • the laminated film 103 includes an inorganic barrier layer 1031 and an organic buffer layer 1032 that are interlaced and stacked.
  • the inorganic barrier layer 1031 is used to block water and oxygen from entering the OLED device.
  • the organic buffer layer 1032 is used to increase the length of the permeation channel and release the stress between the inorganic barrier layers 1031, and play a planarization role.
  • FIG. 2 is a schematic structural diagram of a display substrate provided by an embodiment of the present disclosure. As shown in FIG. 2, the display substrate includes:
  • the base substrate 201, and the light emitting device 202 and the package structure 203 which are sequentially disposed on the base substrate 201 in a direction away from the base substrate 201.
  • the packaging structure 203 includes an organic scattering layer 2031 and an inorganic barrier layer 2032 on at least one side of the organic scattering layer 2031.
  • the organic scattering layer 2031 has a bubble structure M.
  • the packaging structure includes an organic scattering layer and an inorganic blocking layer on at least one side of the organic scattering layer, including: the packaging structure includes an organic scattering layer and an inorganic blocking layer on a side of the organic scattering layer near the base substrate; or, The packaging structure includes an organic scattering layer and an inorganic blocking layer located on a side of the organic scattering layer away from the substrate.
  • the packaging structure includes an organic scattering layer and inorganic blocking layers on two sides of the organic scattering layer.
  • the package structure includes an organic scattering layer and inorganic barrier layers located on two sides of the organic scattering layer as examples.
  • the light emitting device provided in the embodiment of the present disclosure is a top emission type light emitting device, that is, the display substrate is a top emission type structure.
  • the light emitting device may be one of an OLED device and a Quantum Dot Light Emitting Diodes (QLED) device.
  • the light emitting device may include an anode, a hole injection layer, a hole transport layer, a light emitting material layer, an electron transport layer, an electron injection layer, and a cathode disposed in a stacked manner.
  • the light emitting material layer is an organic light emitting material layer
  • the light emitting material layer is a quantum dot material layer.
  • the inorganic barrier layer is used to block water and oxygen from invading the light emitting device, and plays a protective role of blocking water and oxygen to the light emitting device.
  • the material for preparing the inorganic barrier layer includes at least one of a metal oxide, a metal sulfide, and a metal nitride.
  • the metal oxide may include calcium oxide, tantalum pentoxide, titanium dioxide, zirconium dioxide, copper oxide, zinc oxide, aluminum oxide, tin oxide, and the like.
  • Metal sulfides may include titanium disulfide, iron sulfide, chromium trisulfide, copper sulfide, zinc sulfide, tin disulfide, lead sulfide, and the like.
  • the metal nitride may include silicon nitride, aluminum nitride, and the like.
  • the inorganic barrier layer 2032 includes a first inorganic barrier layer 2032a and a second inorganic barrier layer 2032b
  • the packaging structure 203 includes a first inorganic barrier layer 2032a, an organic layer, and an organic layer arranged sequentially in a direction away from the substrate 201.
  • the organic scattering layer can serve as a buffer layer between the first inorganic barrier layer and the second inorganic barrier layer, so as to increase the permeation channel of water and oxygen and release the stress between the inorganic barrier layers.
  • the material for preparing the organic scattering layer includes epoxy resin.
  • the display substrate provided in the embodiment of the present disclosure includes an organic scattering layer in the packaging structure. Because the organic scattering layer has a plurality of bubble structures, when the light emitted from the light emitting device passes through the organic scattering layer, the bubble structure can play a role in the light. To the scattering effect, the light is emitted uniformly from the display substrate. On the one hand, the light coupling efficiency of the display substrate is improved. While ensuring that the packaging structure can effectively prevent water and oxygen from entering the light emitting device, the light output efficiency of the display substrate is improved. On the other hand, the problem of the viewing angle winding of the top emission type display substrate due to the microcavity effect is improved, so that the display content on the display substrate can be seen from all angles, and the display effect of the display substrate is improved.
  • FIG. 3 is a schematic structural diagram of another display substrate provided by an embodiment of the present disclosure.
  • the packaging structure 203 further includes a first organic buffer layer 2033.
  • the first organic buffer layer 2033 is located between the organic scattering layer 2031 and the second inorganic barrier layer 2032b.
  • the preparation material of the first organic buffer layer and the organic material in the organic scattering layer may be the same or different.
  • the preparation material of the first organic buffer layer includes polyethylene terephthalate (PET), polyethylene naphthalate (polyethylene naphthalate), two acidic acid ester (PEN), polymer Polycarbonate (PC), Polyimide (PI), Polyvinyl chloride (PVC), Polystyrene (PS), Polymethylmethacrylate (PMMA), Polybutylene terephthalate (PBT), polysulfone (PSO), polyethylene succinate, polyethylene (PE), polypropylene (Polypropylene, PP), At least one of Polyamide (PA), Polytetrafluoroethylene (PTFE), and Epoxy resin.
  • PET polyethylene terephthalate
  • PEN polymer Polycarbonate
  • PI Polyimide
  • PVC Polyvinyl chloride
  • PS Polystyrene
  • PMMA Polymethylmethacrylate
  • PBT Polybutylene
  • the first organic buffer layer can play a role of planarization, and can also increase the length of the water and oxygen permeation channels and release the stress between the inorganic barrier layers.
  • FIG. 4 is a schematic structural diagram of still another display substrate provided by an embodiment of the present disclosure.
  • the packaging structure 203 further includes at least one stacked structure 2034 located on a side of the second inorganic barrier layer 2032 b away from the base substrate 201.
  • Each of the stacked structures 2034 includes a second organic buffer layer 2034a and a third inorganic barrier layer 2034b that are stacked in a direction away from the base substrate 201.
  • the embodiment of the present disclosure is described by using the package structure in FIG. 4 as an example, and the package structure may further include two, three, or more laminated structures, which are not limited in the embodiments of the present disclosure.
  • the material of the second organic buffer layer may refer to the material of the first organic buffer layer
  • the material of the third inorganic barrier layer may refer to the material of the above-mentioned inorganic barrier layer, which is not described in the embodiment of the present disclosure.
  • An organic buffer layer and an inorganic barrier layer are stacked on the side of the first inorganic barrier layer away from the base substrate, which can further improve the ability of the package structure to block water and oxygen.
  • the display substrate further includes a thin film transistor 204 located between the base substrate 201 and the light emitting device 202.
  • the thin film transistor is used to control the light emitting device to emit light.
  • the thin film transistor may be a top gate thin film transistor or a bottom gate thin film transistor, which is not limited in the embodiments of the present disclosure.
  • the display substrate provided in the embodiment of the present disclosure includes an organic scattering layer in the packaging structure. Because the organic scattering layer has a plurality of bubble structures, when the light emitted by the light emitting device passes through the organic scattering layer, the bubble structure is capable of emitting light To the scattering effect, the light is emitted uniformly from the display substrate. On the one hand, the light coupling efficiency of the display substrate is improved. While ensuring that the packaging structure can effectively prevent water and oxygen from entering the light emitting device, the light output efficiency of the display substrate is improved. On the other hand, the problem of the viewing angle winding of the top emission type display substrate due to the microcavity effect is improved, so that the display content on the display substrate can be seen from all angles, and the display effect of the display substrate is improved.
  • the display device may include a display substrate as shown in any one of FIGS. 2 to 4.
  • the display device may be a flexible top-emitting OLED display device or a flexible top-emitting QLED display device.
  • the display device may be any product or component having a display function, such as a display panel, an electronic paper, a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame, a navigator, and the like.
  • the display device provided in the embodiment of the present disclosure includes an organic scattering layer in the packaging structure. Since the organic scattering layer has a plurality of bubble structures, when the light emitted from the light emitting device passes through the organic scattering layer, the bubble structure can play a role in the light. To the scattering effect, the light is emitted uniformly from the display substrate. On the one hand, the light coupling efficiency of the display substrate is improved. While ensuring that the packaging structure can effectively prevent water and oxygen from entering the light emitting device, the light output efficiency of the display substrate is improved. On the other hand, the issue of viewing angle winding of the top emission display device due to the microcavity effect is improved, so that the display content on the display device can be seen from all angles, thereby improving the display effect of the display device.
  • FIG. 5 is a flowchart of a method for packaging a display device according to an embodiment of the present disclosure. As shown in Figure 5, the method includes:
  • Step 301 Provide a display device, which includes a base substrate and a light emitting device located on the base substrate.
  • Step 302 A packaging structure is formed on a side of the light emitting device remote from the substrate.
  • the packaging structure includes an organic scattering layer and an inorganic barrier layer on at least one side of the organic scattering layer.
  • the organic scattering layer has a bubble structure.
  • the packaging structure 203 includes a first inorganic barrier layer 2032 a, an organic scattering layer 2031, and a second inorganic barrier layer 2032 b that are sequentially disposed in a direction away from the substrate 201.
  • the implementation process of the above step 302 includes the following steps:
  • Step 3021 a first inorganic barrier layer is formed on a side of the light emitting device remote from the base substrate.
  • Step 3022 An organic material layer is formed on the side of the first inorganic barrier layer away from the substrate using the organic material doped with a foaming agent.
  • Step 3023 Perform a foaming treatment on the organic material layer to obtain an organic scattering layer.
  • Step 3024 A second inorganic barrier layer is formed on a side of the organic scattering layer away from the substrate.
  • the packaging method for a display substrate includes an organic scattering layer in the packaging structure. Because the organic scattering layer has a plurality of bubble structures, when the light emitted from the light emitting device passes through the organic scattering layer, the bubble structure can It has a scattering effect on the light, so that the light is uniformly emitted from the display substrate. On the one hand, the light coupling efficiency of the display substrate is improved. While ensuring that the packaging structure can effectively prevent water and oxygen from entering the light emitting device, the light output efficiency of the display substrate is improved. On the other hand, the issue of viewing angle winding of the top emission type display substrate due to the microcavity effect is improved, so that the display content on the display substrate can be seen from all angles, and the display effect of the display substrate is improved.
  • FIG. 6 is a flowchart of another method for packaging a display substrate according to an embodiment of the present disclosure. As shown in Figure 6, the method includes:
  • Step 401 Provide a base substrate.
  • the substrate can be made of transparent materials such as glass, silicon wafer, quartz, and plastic, and is cleaned by standard methods.
  • Step 402 Form a thin film transistor on the base substrate.
  • the foregoing thin film transistor may be a top-gate thin film transistor or a bottom-gate thin film transistor, which is not limited in the embodiments of the present disclosure.
  • Step 403 A light emitting device is formed on the base substrate on which the thin film transistor is formed.
  • the light emitting device may be an OLED device or a QLED device.
  • the light emitting device includes an anode, a hole injection layer, a hole transport layer, a light emitting material layer, an electron transport layer, an electron injection layer, and a cathode, which are arranged in a stack.
  • a metal layer may be formed on a base substrate on which a thin film transistor is formed by depositing indium tin oxide (ITO), and an anode may be formed by a patterning process.
  • ITO indium tin oxide
  • An acrylic layer is formed on the base substrate formed with the anode by spin-coating an acrylic material, and a pixel defining layer is formed by processes such as photolithography and curing.
  • a hole injection layer and a hole transport layer are prepared by using an inkjet printing process, respectively.
  • the hole injection layer can be prepared from a thermoplastic polymer PEDOT: PSS (3,4-ethylenedioxythiophene / polystyrenesulfonate), and the hole transport layer can be made from 1,2,4,5-tetra (Trifluoromethyl) benzene (1,2,4,5-Tetrakis (trifluoromethyl) Benzene, TFB) is prepared. Then, a luminescent material layer (such as a quantum dot material layer) is formed by printing. The electron transport layer and the electron injection layer are formed by printing or sputtering. The cathode is formed by depositing ITO.
  • PEDOT thermoplastic polymer
  • PSS 3,4-ethylenedioxythiophene / polystyrenesulfonate
  • TFB 1,2,4,5-tetra (Trifluoromethyl) benzene
  • TFB 1,2,4,5-tetra (Trifluoromethyl) benzene
  • a luminescent material layer such as a quantum dot
  • Step 404 Form a first inorganic barrier layer on the base substrate on which the light emitting device is formed.
  • PECVD plasma enhanced chemical vapor deposition
  • atomic layer deposition atomic layer deposition
  • laser pulse deposition or sputtering.
  • First inorganic barrier layer First inorganic barrier layer.
  • the material of the first inorganic barrier layer reference may be made to the material of the inorganic barrier layer described on the side of the device, which is not described in the embodiment of the present disclosure.
  • Step 405 Use an organic material doped with a foaming agent to form an organic material layer on a side of the first inorganic barrier layer away from the substrate.
  • an organic material layer doped with an organic material doped with a foaming agent may be formed on a side of the first inorganic barrier layer away from the base substrate by coating, printing, or deposition.
  • the organic material layer may be made of an organic material (such as epoxy resin) having a lower melting point.
  • the foaming agent may have various forms.
  • the blowing agent includes a blowing agent main body, and the blowing agent main body includes at least one of azobisformamide (AC), diethyl azodicarboxylate, and p-toluenesulfonylurea.
  • the foaming agent main body is used to decompose and generate gas during foaming treatment.
  • optional foaming agents include a foaming agent body and a foaming assistant.
  • the foaming assistant is used to adjust the gas volume and reaction rate of the foaming agent body when the foaming agent body is subjected to a foaming treatment.
  • the foaming aid includes at least one of zinc oxide and zinc stearate.
  • AC has a high decomposition temperature, about 200 degrees Celsius, which is much higher than the melting point of common organic materials (such as organic resins), and AC has a large amount of gas and is non-toxic, so AC is an ideal foam.
  • Agent body zinc oxide or zinc stearate can be used as a foaming aid for AC decomposition. Zinc oxide or zinc stearate can promote AC decomposition, so that it has a larger gas volume and a faster decomposition rate.
  • Step 406 Perform foaming treatment on the organic material layer to obtain an organic scattering layer.
  • the manner of foaming treatment depends on the chemical and physical properties of the foaming agent doped in the organic material layer.
  • the foaming agent includes a single type of foaming agent body, or the foaming agent body and a foaming assistant, when the melting point of the organic material is lower than the minimum decomposition temperature of the foaming agent, the following methods can be selected:
  • the organic material layer is foamed, including:
  • the organic material layer is heated until the temperature of the organic material layer is within the decomposition temperature range of the foaming agent, and the foaming agent is decomposed to release a gas, so that the gas forms a bubble structure inside the organic material layer in a molten state.
  • the organic material layer is subjected to a temperature increase treatment by a light irradiation method or a heating method.
  • the way of illumination includes the way of ultraviolet light irradiation or the way of specific ray radiation.
  • the organic scattering layer is provided with a plurality of bubble structures, when the light emitted by the light emitting device passes through the organic scattering layer, the bubble structure can scatter light, so that the light is uniformly emitted from the display substrate, which improves the display.
  • the light coupling efficiency of the substrate improves the light output efficiency of the display substrate.
  • the amount of the doped foaming agent in the organic material layer needs to be controlled within a certain ratio range. If the doped foaming agent is excessive, a large amount of gas is generated when the foaming agent is decomposed, resulting in Too many bubble structures are formed, which may affect the transmittance of light emitted from the light emitting device, while too few doped foaming agents may not achieve the purpose of improving the light coupling efficiency.
  • the doping ratio of the optional blowing agent in the organic material is 0.5% to 2%.
  • Step 407 Form a first organic buffer layer on a side of the organic scattering layer remote from the substrate.
  • a first organic buffer layer may be formed on a side of the organic scattering layer away from the substrate by coating, printing or deposition.
  • Step 408 Form a second inorganic barrier layer on a side of the first organic buffer layer away from the substrate.
  • step 404 which is not described in the embodiment of the present disclosure.
  • Step 409 Form a second organic buffer layer on a side of the second inorganic barrier layer away from the substrate.
  • step 407 which is not described in the embodiment of the present disclosure.
  • Step 410 Form a third inorganic barrier layer on a side of the second organic buffer layer away from the base substrate.
  • step 404 which is not described in the embodiment of the present disclosure.
  • step 407 may not be performed, or it may be continued after step 410.
  • the organic buffer layer and the inorganic barrier layer are arranged in a stack. Any person skilled in the art can easily think of changes within the technical scope disclosed in the present disclosure should be covered by the protection scope of the present disclosure, so it will not be repeated here. .
  • an organic scattering layer is provided in the packaging structure. Because the organic scattering layer is provided with a plurality of bubble structures, when light emitted from the light emitting device passes through the organic scattering layer, the bubble structure It can scatter the light, so that the light is emitted uniformly from the display substrate. On the one hand, the light coupling efficiency of the display substrate is improved. While ensuring that the packaging structure can effectively prevent water and oxygen from entering the light emitting device, the light output efficiency of the display substrate is improved. On the other hand, the issue of viewing angle winding of the top emission type display substrate due to the microcavity effect is improved, so that the display content on the display substrate can be seen from all angles, and the display effect of the display substrate is improved.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种显示基板、显示装置及显示器件的封装方法,属于显示技术领域。显示基板包括:衬底基板(201),以及沿远离衬底基板(201)的方向依次设置在衬底基板(201)上的发光器件(202)和封装结构(203);其中,封装结构(203)包括有机散射层(2031)以及位于有机散射层(2031)至少一侧的无机阻挡层(2032),有机散射层(2031)中具有气泡结构(M)。通过在封装结构(203)中设置有机散射层(2031),能够在保证封装结构(203)的封装效果的同时,提高显示基板的光耦合效率。

Description

显示基板、显示装置及显示器件的封装方法
本公开要求于2018年05月31日提交的申请号为201810550968.X、发明名称为“显示面板及其封装方法、显示装置”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及显示技术领域,特别涉及一种显示基板、显示装置及显示器件的封装方法。
背景技术
由于有机发光二极管(Organic Light-Emitting Diode,OLED)器件中的有机发光材料与水氧接触后,会影响有机发光材料的发光效果,进而影响OLED器件的质量和使用寿命,因此对OLED器件的封装至关重要。
发明内容
本公开提供了一种显示基板、显示装置及显示器件的封装方法。所述技术方案如下:
一方面,提供了一种显示基板,包括:
衬底基板,以及沿远离所述衬底基板的方向依次设置在所述衬底基板上的发光器件和封装结构;
其中,所述封装结构包括有机散射层以及位于所述有机散射层至少一侧的无机阻挡层,所述有机散射层中具有气泡结构。
可选地,所述有机散射层的制备材料包括环氧树脂。
可选地,所述无机阻挡层包括第一无机阻挡层和第二无机阻挡层,所述封装结构包括沿远离所述衬底基板的方向依次设置的所述第一无机阻挡层、所述有机散射层和所述第二无机阻挡层。
可选地,所述封装结构还包括第一有机缓冲层,所述第一有机缓冲层位于所述有机散射层与所述第二无机阻挡层之间。
可选地,所述封装结构还包括位于所述第二无机阻挡层远离所述衬底基板 一侧的至少一个叠层结构,每个所述叠层结构包括沿远离所述衬底基板的方向层叠设置的第二有机缓冲层和第三无机阻挡层。
可选地,所述无机阻挡层的制备材料包括金属氧化物、金属硫化物和金属氮化物中的至少一种。
可选地,所述显示基板还包括位于所述衬底基板与所述发光器件之间的薄膜晶体管。
可选地,所述发光器件为顶发射型发光器件。
可选地,所述发光器件为有机发光二极管OLED器件和量子点发光二极管QLED器件中的一种。
另一方面,提供了一种显示装置,包括:如一方面任一所述的显示基板。
又一方面,提供了一种显示器件的封装方法,所述方法包括:
提供显示器件,所述显示器件包括衬底基板以及位于所述衬底基板上的发光器件;
在所述发光器件远离所述衬底基板的一侧形成封装结构,所述封装结构包括有机散射层以及位于所述有机散射层至少一侧的无机阻挡层,所述有机散射层中具有气泡结构。
可选地,所述在所述发光器件远离所述衬底基板的一侧形成封装结构,包括:
在所述发光器件远离所述衬底基板的一侧形成第一无机阻挡层;
采用掺杂有发泡剂的有机材料在所述第一无机阻挡层远离所述衬底基板的一侧形成有机材料层;
对所述有机材料层进行发泡处理,得到所述有机散射层;
在所述有机散射层远离所述衬底基板的一侧形成第二无机阻挡层。
可选地,所述有机材料的熔点低于所述发泡剂的最低分解温度,所述对所述有机材料层进行发泡处理,包括:
对所述有机材料层进行升温处理,直至所述有机材料层的温度处于所述发泡剂的分解温度范围内,使所述发泡剂分解释放气体,使得所述气体在熔融状态下的所述有机材料层内部形成所述气泡结构。
可选地,所述对所述有机材料层进行升温处理,包括:
通过光照的方式对所述有机材料层进行升温处理。
可选地,所述对所述有机材料层进行升温处理,包括:
通过加热的方式对所述有机材料层进行升温处理。
可选地,所述有机材料中所述发泡剂的掺杂比例为0.5%至2%。
可选地,所述发泡剂包括发泡剂主体,所述发泡剂主体包括偶氮二甲酰胺,偶氮二甲酸二乙丙酯和对甲苯磺酰氨基脲中的至少一种。
可选地,所述发泡剂还包括发泡助剂,所述发泡助剂包括氧化锌和硬脂酸锌中的至少一种。
可选地,在所述对所述有机材料层进行发泡处理,得到所述有机散射层之后,所述方法还包括:
在所述有机散射层远离所述衬底基板的一侧形成第一有机缓冲层;
所述在所述有机散射层远离所述衬底基板的一侧形成第二无机阻挡层,包括:
在所述第一有机缓冲层远离所述衬底基板的一侧形成所述第二无机阻挡层。
可选地,其中,所述在所述有机散射层远离所述衬底基板的一侧形成第二无机阻挡层之后,所述方法还包括:
在所述第二无机阻挡层远离所述衬底基板的一侧形成第二有机缓冲层;
在所述第二有机缓冲层远离所述衬底基板的一侧形成第三无机阻挡层。
附图说明
图1是发明人已知的一种OLED显示基板的结构示意图;
图2是本公开实施例提供的一种显示面板的结构示意图;
图3是本公开实施例提供的另一种显示面板的结构示意图;
图4是本公开实施例提供的又一种显示面板的结构示意图;
图5是本公开实施例提供的一种显示面板的封装方法的流程图;
图6是本公开实施例提供的另一种显示面板的封装方法的流程图。
具体实施方式
为使本公开的目的、技术方案和优点更加清楚,下面将结合附图对本公开实施方式作进一步地详细描述。
OLED器件作为一种电流型发光器件,因其具有低功耗、自发光、快速响应(响应时间约为1微秒)、广视角(视角可达175°以上)、厚度薄和可制作大尺 寸的柔性显示面板等特点,越来越多地被应用于高性能显示领域当中。
目前,通常采用叠层薄膜对柔性OLED器件进行封装得到OLED显示基板。图1是发明人已知的一种OLED显示基板的结构示意图。如图1所示,OLED显示基板包括:阵列基板101,以及沿远离阵列基板101的方向依次设置的OLED器件102和叠层薄膜103,叠层薄膜103在阵列基板101上的正投影覆盖OLED器件102在阵列基板101上的正投影。其中,叠层薄膜103包括层叠交错的无机阻挡层1031和有机缓冲层1032。无机阻挡层1031用于阻隔水氧侵入OLED器件内。有机缓冲层1032用于增加渗透通道长度以及释放无机阻挡层1031之间的应力,并起到平坦化作用。
但是,在OLED器件的出光侧设置叠层薄膜,会导致OLED显示基板的光耦合效率较低,进而导致OLED显示基板的出光效率较低。
图2是本公开实施例提供的一种显示基板的结构示意图。如图2所示,该显示基板包括:
衬底基板201,以及沿远离衬底基板201的方向依次设置在衬底基板201上的发光器件202和封装结构203。其中,封装结构203包括有机散射层2031以及位于有机散射层2031至少一侧的无机阻挡层2032,有机散射层2031中具有气泡结构M。
可选地,封装结构包括有机散射层以及位于有机散射层至少一侧的无机阻挡层,包括:封装结构包括有机散射层以及位于有机散射层靠近衬底基板的一侧的无机阻挡层;或者,封装结构包括有机散射层以及位于有机散射层远离衬底基板的一侧的无机阻挡层;又或者,封装结构包括有机散射层以及分别位于有机散射层两侧的无机阻挡层。本公开以下实施例均以封装结构包括有机散射层以及分别位于有机散射层两侧的无机阻挡层为例进行说明。
需要说明的是,本公开实施例提供的发光器件为顶发射型发光器件,即显示基板为顶发射型结构。发光器件可以为OLED器件和量子点发光二极管(Quantum Dot Light Emitting Diodes,QLED)器件中的一种。发光器件可以包括层叠设置的阳极、空穴注入层、空穴传输层、发光材料层、电子传输层、电子注入层和阴极。当发光器件为OLED器件时,发光材料层为有机发光材料层;当发光器件为QLED器件时,发光材料层为量子点材料层。
可选地,无机阻挡层用于阻挡水氧侵入发光器件,对发光器件起到阻隔水 氧的保护作用。无机阻挡层的制备材料包括金属氧化物、金属硫化物和金属氮化物中的至少一种。例如,金属氧化物可以包括氧化钙、五氧化二钽、二氧化钛、二氧化锆、氧化铜、氧化锌、三氧化二铝和二氧化锡等。金属硫化物可以包括二硫化钛、硫化铁、三硫化二铬、硫化铜、硫化锌、二硫化锡和硫化铅等。金属氮化物可以包括氮化硅和氮化铝等。
可选地,参见图2,无机阻挡层2032包括第一无机阻挡层2032a和第二无机阻挡层2032b,封装结构203包括沿远离衬底基板201的方向依次设置的第一无机阻挡层2032a、有机散射层2031和第二无机阻挡层2032b。该有机散射层可以作为第一无机阻挡层与第二无机阻挡层之间的缓冲层,以增加水氧的渗透通道并释放无机阻挡层之间的应力。可选地,有机散射层的制备材料包括环氧树脂。
综上所述,本公开实施例提供的显示基板,封装结构中设置有机散射层,由于有机散射层中具有多个气泡结构,发光器件发出的光经过有机散射层时,气泡结构能够对光线起到散射作用,使得光线从显示基板中均匀出射。一方面,提高了显示基板的光耦合效率,在保证封装结构能够有效防止水氧侵入发光器件的同时,提高了显示基板的出光效率。另一方面,改善了顶发射型显示基板由于微腔效应导致的视角收线问题,使得从各个角度均能看清显示基板上的显示内容,提高了显示基板的显示效果。
可选地,图3是本公开实施例提供的另一种显示基板的结构示意图。如图3所示,封装结构203还包括第一有机缓冲层2033。第一有机缓冲层2033位于有机散射层2031与第二无机阻挡层2032b之间。
其中,第一有机缓冲层的制备材料与有机散射层中的有机材料可以相同,也可以不同。可选地,第一有机缓冲层的制备材料包括聚对苯二甲酸乙二醇酯(Polyethylene terephthalate,PET)、聚萘二甲酸乙二醇酯(Polyethylene naphthalate two formic acid glycol ester,PEN)、聚碳酸酯(Polycarbonate,PC)、聚酰亚胺(Polyimide,PI)、聚氯乙烯(Polyvinyl chloride,PVC)、聚苯乙烯(Polystyrene,PS)、聚甲基丙烯酸甲酯(Polymethyl methacrylate,PMMA)、聚对苯二甲酸丁二醇酯(Polybutylene terephthalate,PBT)、聚砜(Polysulfone resin,PSO)、聚丁二酸乙二醇酯、聚乙烯(Polyethylene,PE)、聚丙烯(Polypropylene,PP)、聚酰胺(Polyamide,PA)、聚四氟乙烯(Polytetrafluoroethylene,PTFE)和环氧树脂(Epoxy resin)中的至少一种。
需要说明的是,由于有机散射层中具有气泡结构,因此有机散射层表面的平坦度较低。该第一有机缓冲层可以起到平坦化的作用,另外还可以增加水氧的渗透通道长度以及释放无机阻挡层之间的应力。
可选地,图4是本公开实施例提供的又一种显示基板的结构示意图。如图4所示,封装结构203还包括位于第二无机阻挡层2032b远离衬底基板201一侧的至少一个叠层结构2034。每个叠层结构2034包括沿远离衬底基板201的方向层叠设置的第二有机缓冲层2034a和第三无机阻挡层2034b。本公开实施例以图4中封装结构包括一个叠层结构为例进行说明,该封装结构中还可以包括两个、三个或更多的叠层结构,本公开实施例对此不做限定。
需要说明的是,第二有机缓冲层的材质可以参考第一有机缓冲层的材质,第三无机阻挡层的材质可以参考上述无机阻挡层的材质,本公开实施例在此不做赘述。在第一无机阻挡层远离衬底基板的一侧层叠设置有机缓冲层和无机阻挡层,可以进一步提高封装结构阻隔水氧的能力。
可选地,参见图2至图4,显示基板还包括位于衬底基板201与发光器件202之间的薄膜晶体管204。该薄膜晶体管用于控制发光器件发光。该薄膜晶体管可以是顶栅型薄膜晶体管,也可以是底栅型薄膜晶体管,本公开实施例对此不做限定。
综上所述,本公开实施例提供的显示基板,封装结构中设置有机散射层,由于有机散射层中具有多个气泡结构,发光器件发出的光经过有机散射层时,气泡结构能够对光线起到散射作用,使得光线从显示基板中均匀出射。一方面,提高了显示基板的光耦合效率,在保证封装结构能够有效防止水氧侵入发光器件的同时,提高了显示基板的出光效率。另一方面,改善了顶发射型显示基板由于微腔效应导致的视角收线问题,使得从各个角度均能看清显示基板上的显示内容,提高了显示基板的显示效果。
本公开实施例提供了一种显示装置,该显示装置可以包括:如图2至图4任一所示的显示基板。
可选地,该显示装置可以为柔性顶发射OLED显示装置或柔性顶发射QLED显示装置。
可选地,显示装置可以为显示面板、电子纸、手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。
综上所述,本公开实施例提供的显示装置,封装结构中设置有机散射层,由于有机散射层中具有多个气泡结构,发光器件发出的光经过有机散射层时,气泡结构能够对光线起到散射作用,使得光线从显示基板中均匀出射。一方面,提高了显示基板的光耦合效率,在保证封装结构能够有效防止水氧侵入发光器件的同时,提高了显示基板的出光效率。另一方面,改善了顶发射型显示装置由于微腔效应导致的视角收线问题,使得从各个角度均能看清显示装置上的显示内容,进而提高了显示装置的显示效果。
图5是本公开实施例提供的一种显示器件的封装方法的流程图。如图5所示,该方法包括:
步骤301、提供显示器件,该显示器件包括衬底基板以及位于衬底基板上的发光器件。
步骤302、在发光器件远离衬底基板的一侧形成封装结构,该封装结构包括有机散射层以及位于有机散射层至少一侧的无机阻挡层,该有机散射层中具有气泡结构。
可选地,参见图2,封装结构203包括沿远离衬底基板201的方向依次设置的第一无机阻挡层2032a、有机散射层2031和第二无机阻挡层2032b。则上述步骤302的实现过程包括以下步骤:
步骤3021、在发光器件远离衬底基板的一侧形成第一无机阻挡层。
步骤3022、采用掺杂有发泡剂的有机材料在第一无机阻挡层远离衬底基板的一侧形成有机材料层。
步骤3023、对有机材料层进行发泡处理,得到有机散射层。
步骤3024、在有机散射层远离衬底基板的一侧形成第二无机阻挡层。
综上所述,本公开实施例提供的显示基板的封装方法,封装结构中设置有机散射层,由于有机散射层中具有多个气泡结构,发光器件发出的光经过有机散射层时,气泡结构能够对光线起到散射作用,使得光线从显示基板中均匀出射。一方面,提高了显示基板的光耦合效率,在保证封装结构能够有效防止水氧侵入发光器件的同时,提高了显示基板的出光效率。另一方面,改善了顶发射型的显示基板由于微腔效应导致的视角收线问题,使得从各个角度均能看清显示基板上的显示内容,提高了显示基板的显示效果。
图6是本公开实施例提供的另一种显示基板的封装方法的流程图。如图6所示,该方法包括:
步骤401、提供衬底基板。
可选地,该衬底基板可以由玻璃、硅片、石英以及塑料等透明材料制成,并采用标准方法清洗。
步骤402、在衬底基板上形成薄膜晶体管。
可选地,上述薄膜晶体管可以为顶栅型薄膜晶体管,也可以为底栅型薄膜晶体管,本公开实施例对此不做限定。
步骤403、在形成有薄膜晶体管的衬底基板上形成发光器件。
可选地,发光器件可以为OLED器件或QLED器件。发光器件包括层叠设置的阳极、空穴注入层、空穴传输层、发光材料层、电子传输层、电子注入层和阴极。
示例的,可以在形成有薄膜晶体管的衬底基板通过沉积氧化铟锡(Indium Tin Oxide,ITO)的方式形成金属层,并通过构图工艺形成阳极。在形成有阳极的衬底基板上通过旋涂沉积亚克力材料的方式形成亚克力层,并通过光刻和固化等工艺形成像素界定层。进一步的,在采用等离子体技术处理像素界定层远离衬底基板的一面后,采用喷墨打印的工艺分别制备得到空穴注入层和空穴传输层。其中,空穴注入层可以由热塑聚合物PEDOT:PSS(3,4-乙烯二氧噻吩/聚苯乙烯磺酸盐)制备得到,空穴传输层可以由1,2,4,5-四(三氟甲基)苯(1,2,4,5-Tetrakis(trifluoromethyl)Benzene,TFB)制备得到。再通过打印的方式形成发光材料层(例如量子点材料层)。通过打印或溅射的方式形成电子传输层和电子注入层。通过沉积ITO的方式形成阴极。
步骤404、在形成有发光器件的衬底基板上形成第一无机阻挡层。
可选地,可以通过等离子体增强化学气相沉积法(Plasma Enhanced Chemical Vapor Deposition,PECVD)、原子层沉积法、激光脉冲沉积法或溅射法(Sputter)在形成有发光器件的衬底基板上形成第一无机阻挡层。
需要说明的是,第一无机阻挡层的材质可以参考装置侧描述的无机阻挡层的材质,本公开实施例在此不做赘述。
步骤405、采用掺杂有发泡剂的有机材料在第一无机阻挡层远离衬底基板的一侧形成有机材料层。
可选地,可以采用掺杂有发泡剂的有机材料,通过涂覆、印刷或沉积的方 式在第一无机阻挡层远离衬底基板的一侧形成有机材料层。可以选用熔点较低的有机材料(例如环氧树脂)制备有机材料层。
在本公开实施例中,发泡剂可以有多种形式。发泡剂包括发泡剂主体,发泡剂主体包括偶氮二甲酰胺(Azobisformamide,AC),偶氮二甲酸二乙丙酯和对甲苯磺酰氨基脲中的至少一种。发泡剂主体用于进行发泡处理时分解产生气体。为了进一步促进发泡剂主体的分解,可选发泡剂包括发泡剂主体和发泡助剂。发泡助剂用于对发泡剂主体进行发泡处理时调整发泡剂主体的发气量和反应速率。可选地,发泡助剂包括氧化锌和硬脂酸锌中的至少一种。
示例的,由于AC的分解温度较高,约为200摄氏度,远高于常用有机材料(例如有机树脂)的熔点,且AC的发气量大,无毒,因此AC是一种较理想的发泡剂主体。同时可选用氧化锌或硬脂酸锌作为AC分解的发泡助剂。氧化锌或硬脂酸锌可以促进AC分解,使其有较大的发气量和较快的分解速率。
步骤406、对有机材料层进行发泡处理,得到有机散射层。
需要说明的是,发泡处理的方式取决于有机材料层中所掺杂的发泡剂的化学性质和物理性质。可选地,无论发泡剂包括单一种类的发泡剂主体,还是包括发泡剂主体和发泡助剂,当有机材料的熔点低于发泡剂的最低分解温度时,可选以下方式对有机材料层进行发泡处理,包括:
对有机材料层进行升温处理,直至有机材料层的温度处于发泡剂的分解温度范围内,使发泡剂分解释放气体,使得该气体在熔融状态下的有机材料层内部形成气泡结构。
可选地,通过光照的方式或加热的方式对有机材料层进行升温处理。其中,光照的方式包括紫外光照射的方式或特定射线辐射的方式。
需要说明的是,由于有机散射层中设置有多个气泡结构,发光器件发出的光经过有机散射层时,气泡结构能够对光线起到散射作用,使得光线从显示基板中均匀出射,提高了显示基板的光耦合效率,从而提高了显示基板的出光效率。
在本公开实施例中,上述有机材料层中所掺杂的发泡剂的量需控制在一定比例范围内,如果掺杂的发泡剂过量,发泡剂分解时会产生大量的气体,导致形成的气泡结构过多,可能会影响发光器件出射光线的透过率,而掺杂的发泡剂过少,可能无法达到提高光耦合效率的目的。可选发泡剂在有机材料中的掺杂比例为0.5%至2%。
步骤407、在有机散射层远离衬底基板的一侧形成第一有机缓冲层。
由于有机散射层是由有机材料层中的发泡剂分解产生气体形成气泡结构得到的,因此有机散射层表面的平坦度通常较低。为了起到平坦化的作用,可以通过涂覆、印刷或沉积的方式在有机散射层远离衬底基板的一侧形成第一有机缓冲层。
可选地,第一有机缓冲层的材质可以参考装置侧的描述,本公开实施例在此不做赘述。
步骤408、在第一有机缓冲层远离衬底基板的一侧形成第二无机阻挡层。
可选地,此步骤的实现过程可参考步骤404,本公开实施例在此不做赘述。
步骤409、在第二无机阻挡层远离衬底基板的一侧形成第二有机缓冲层。
可选地,此步骤的实现过程可参考步骤407,本公开实施例在此不做赘述。
步骤410、在第二有机缓冲层远离衬底基板的一侧形成第三无机阻挡层。
可选地,此步骤的实现过程可参考步骤404,本公开实施例在此不做赘述。
需要说明的是,本公开实施例提供的显示基板的封装方法步骤的先后顺序可以进行适当调整,步骤也可以根据情况进行相应增减,例如步骤407可以不执行,或者,在步骤410后可以继续层叠设置有机缓冲层和无机阻挡层,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化的方法,都应涵盖在本公开的保护范围之内,因此不再赘述。
综上所述,本公开实施例提供的显示基板的封装方法,封装结构中设置有机散射层,由于有机散射层中设置有多个气泡结构,发光器件发出的光经过有机散射层时,气泡结构能够对光线起到散射作用,使得光线从显示基板中均匀出射。一方面,提高了显示基板的光耦合效率,在保证封装结构能够有效防止水氧侵入发光器件的同时,提高了显示基板的出光效率。另一方面,改善了顶发射型的显示基板由于微腔效应导致的视角收线问题,使得从各个角度均能看清显示基板上的显示内容,提高了显示基板的显示效果。
以上所述仅为本公开的可选实施例,并不用以限制本公开,凡在本公开的构思和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (20)

  1. 一种显示基板,包括:
    衬底基板(201),以及沿远离所述衬底基板(201)的方向依次设置在所述衬底基板(201)上的发光器件(202)和封装结构(203);
    其中,所述封装结构(203)包括有机散射层(2031)以及位于所述有机散射层(2031)至少一侧的无机阻挡层(2032),所述有机散射层(2031)中具有气泡结构。
  2. 根据权利要求1所述的显示基板,其中,所述有机散射层(2031)的制备材料包括环氧树脂。
  3. 根据权利要求1或2所述的显示基板,其中,所述无机阻挡层(2032)包括第一无机阻挡层和第二无机阻挡层,所述封装结构(203)包括沿远离所述衬底基板(201)的方向依次设置的所述第一无机阻挡层、所述有机散射层(2031)和所述第二无机阻挡层。
  4. 根据权利要求3所述的显示基板,其中,所述封装结构(203)还包括第一有机缓冲层(2033),所述第一有机缓冲层(2033)位于所述有机散射层(2031)与所述第二无机阻挡层之间。
  5. 根据权利要求3或4所述的显示基板,其中,所述封装结构(203)还包括位于所述第二无机阻挡层远离所述衬底基板(201)一侧的至少一个叠层结构(2034),每个所述叠层结构(2034)包括沿远离所述衬底基板(201)的方向层叠设置的第二有机缓冲层和第三无机阻挡层。
  6. 根据权利要求1至5任一所述的显示基板,其中,所述无机阻挡层(2032)的制备材料包括金属氧化物、金属硫化物和金属氮化物中的至少一种。
  7. 根据权利要求1至6任一所述的显示基板,其中,所述显示基板还包括位于所述衬底基板(201)与所述发光器件(202)之间的薄膜晶体管(204)。
  8. 根据权利要求1至7任一所述的显示基板,其中,所述发光器件(202)为顶发射型发光器件。
  9. 根据权利要求1至8任一所述的显示基板,其中,所述发光器件(202)为有机发光二极管OLED器件和量子点发光二极管QLED器件中的一种。
  10. 一种显示装置,包括:如权利要求1至9任一所述的显示基板。
  11. 一种显示器件的封装方法,所述方法包括:
    提供显示器件,所述显示器件包括衬底基板以及位于所述衬底基板上的发光器件;
    在所述发光器件远离所述衬底基板的一侧形成封装结构,所述封装结构包括有机散射层以及位于所述有机散射层至少一侧的无机阻挡层,所述有机散射层中具有气泡结构。
  12. 根据权利要求11所述的方法,其中,所述在所述发光器件远离所述衬底基板的一侧形成封装结构,包括:
    在所述发光器件远离所述衬底基板的一侧形成第一无机阻挡层;
    采用掺杂有发泡剂的有机材料在所述第一无机阻挡层远离所述衬底基板的一侧形成有机材料层;
    对所述有机材料层进行发泡处理,得到所述有机散射层;
    在所述有机散射层远离所述衬底基板的一侧形成第二无机阻挡层。
  13. 根据权利要求12所述的方法,其中,所述有机材料的熔点低于所述发泡剂的最低分解温度,所述对所述有机材料层进行发泡处理,包括:
    对所述有机材料层进行升温处理,直至所述有机材料层的温度处于所述发泡剂的分解温度范围内,使所述发泡剂分解释放气体,使得所述气体在熔融状态下的所述有机材料层内部形成所述气泡结构。
  14. 根据权利要求13所述的方法,其中,所述对所述有机材料层进行升温处理,包括:
    通过光照的方式对所述有机材料层进行升温处理。
  15. 根据权利要求13所述的方法,其中,所述对所述有机材料层进行升温处理,包括:
    通过加热的方式对所述有机材料层进行升温处理。
  16. 根据权利要求12至15任一所述的方法,其中,所述有机材料中所述发泡剂的掺杂比例为0.5%至2%。
  17. 根据权利要求12至16任一所述的方法,其中,所述发泡剂包括发泡剂主体,所述发泡剂主体包括偶氮二甲酰胺,偶氮二甲酸二乙丙酯和对甲苯磺酰氨基脲中的至少一种。
  18. 根据权利要求17所述的方法,其中,所述发泡剂还包括发泡助剂,所述发泡助剂包括氧化锌和硬脂酸锌中的至少一种。
  19. 根据权利要求12至18任一所述的方法,其中,在所述对所述有机材料层进行发泡处理,得到所述有机散射层之后,所述方法还包括:
    在所述有机散射层远离所述衬底基板的一侧形成第一有机缓冲层;
    所述在所述有机散射层远离所述衬底基板的一侧形成第二无机阻挡层,包括:
    在所述第一有机缓冲层远离所述衬底基板的一侧形成所述第二无机阻挡层。
  20. 根据权利要求12至19任一所述的方法,其中,所述在所述有机散射层远离所述衬底基板的一侧形成第二无机阻挡层之后,所述方法还包括:
    在所述第二无机阻挡层远离所述衬底基板的一侧形成第二有机缓冲层;
    在所述第二有机缓冲层远离所述衬底基板的一侧形成第三无机阻挡层。
PCT/CN2019/086882 2018-05-31 2019-05-14 显示基板、显示装置及显示器件的封装方法 WO2019228183A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/756,163 US20210193965A1 (en) 2018-05-31 2019-05-14 Display substrate, display apparatus and method of encapsulation display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810550968.X 2018-05-31
CN201810550968.XA CN108767138B (zh) 2018-05-31 2018-05-31 显示面板及其封装方法、显示装置

Publications (1)

Publication Number Publication Date
WO2019228183A1 true WO2019228183A1 (zh) 2019-12-05

Family

ID=64001642

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/086882 WO2019228183A1 (zh) 2018-05-31 2019-05-14 显示基板、显示装置及显示器件的封装方法

Country Status (3)

Country Link
US (1) US20210193965A1 (zh)
CN (1) CN108767138B (zh)
WO (1) WO2019228183A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108767138B (zh) * 2018-05-31 2020-02-21 京东方科技集团股份有限公司 显示面板及其封装方法、显示装置
CN110231727B (zh) * 2019-05-14 2020-11-24 深圳市华星光电半导体显示技术有限公司 膜结构及其制备方法
CN112786623B (zh) * 2021-01-12 2022-05-31 武汉华星光电半导体显示技术有限公司 显示装置及其制作方法
CN114220800A (zh) * 2021-12-01 2022-03-22 深圳市瑞丰光电子股份有限公司 一种高均匀度led模组及其制造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101867020A (zh) * 2010-06-01 2010-10-20 友达光电股份有限公司 发光元件
US20120193645A1 (en) * 2009-06-16 2012-08-02 Benjamin Claus Krummacher Radiation Emitting Device
CN102738403A (zh) * 2011-04-11 2012-10-17 三星移动显示器株式会社 有机发光二极管显示器
CN102845130A (zh) * 2010-04-08 2012-12-26 旭硝子株式会社 有机led元件、透光性基板及有机led元件的制造方法
CN107546338A (zh) * 2017-08-29 2018-01-05 上海天马微电子有限公司 有机发光显示面板及有机发光显示装置
CN108767138A (zh) * 2018-05-31 2018-11-06 京东方科技集团股份有限公司 显示面板及其封装方法、显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120193645A1 (en) * 2009-06-16 2012-08-02 Benjamin Claus Krummacher Radiation Emitting Device
CN102845130A (zh) * 2010-04-08 2012-12-26 旭硝子株式会社 有机led元件、透光性基板及有机led元件的制造方法
CN101867020A (zh) * 2010-06-01 2010-10-20 友达光电股份有限公司 发光元件
CN102738403A (zh) * 2011-04-11 2012-10-17 三星移动显示器株式会社 有机发光二极管显示器
CN107546338A (zh) * 2017-08-29 2018-01-05 上海天马微电子有限公司 有机发光显示面板及有机发光显示装置
CN108767138A (zh) * 2018-05-31 2018-11-06 京东方科技集团股份有限公司 显示面板及其封装方法、显示装置

Also Published As

Publication number Publication date
CN108767138A (zh) 2018-11-06
CN108767138B (zh) 2020-02-21
US20210193965A1 (en) 2021-06-24

Similar Documents

Publication Publication Date Title
WO2019228183A1 (zh) 显示基板、显示装置及显示器件的封装方法
TWI688089B (zh) 有機發光二極體顯示器、包含該有機發光二極體顯示器之電子裝置、及製造該有機發光二極體顯示器之方法
WO2019223456A1 (zh) 显示面板及其制备方法、显示装置
US10205123B2 (en) Packaging method for organic semiconductor device
KR102342596B1 (ko) 표시 장치
US10693105B2 (en) OLED packaging method
US11581507B2 (en) Display panel and method for manufacturing same, and display apparatus
WO2017049627A1 (zh) 柔性有机电致发光器件的封装结构、柔性显示装置
CN106066729B (zh) 有机发光二极管显示器及其制造方法
US20210367210A1 (en) Packaging structure, display component and display device
KR102416017B1 (ko) 표시 장치
WO2019179395A1 (zh) 显示基板及其制造方法
US11069865B2 (en) Flexible display panel and fabrication method thereof
US20170244064A1 (en) Display device and method for manufacturing display device
CN103887322A (zh) 有机发光显示装置及其制造方法
US20190131568A1 (en) Encapsulation structure of oled and encapsulation method for oled
US10826016B2 (en) Organic light-emitting diode package, display panel and method for manufacturing the same
US10411081B2 (en) Organic electroluminescent display panel, preparation method thereof, and display device
WO2019090837A1 (zh) 双面显示器及其制作方法
US11393999B2 (en) Display substrate with nano-grooves and method for manufacturing same, and display panel
US10600821B2 (en) Organic light emitting diode display device and manufacturing method thereof
US20210408456A1 (en) Display panel, method for fabricating same, and display device
KR102408471B1 (ko) 전계발광 표시장치
US20170352833A1 (en) Package structure of flexible oled device and display device
US20170084871A1 (en) Touch control organic light-emitting display panel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19811001

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 03-05-2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19811001

Country of ref document: EP

Kind code of ref document: A1