WO2016192479A1 - 有机电致发光器件及其制备方法、显示装置 - Google Patents

有机电致发光器件及其制备方法、显示装置 Download PDF

Info

Publication number
WO2016192479A1
WO2016192479A1 PCT/CN2016/079735 CN2016079735W WO2016192479A1 WO 2016192479 A1 WO2016192479 A1 WO 2016192479A1 CN 2016079735 W CN2016079735 W CN 2016079735W WO 2016192479 A1 WO2016192479 A1 WO 2016192479A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic electroluminescent
unit
layer
electroluminescent unit
light
Prior art date
Application number
PCT/CN2016/079735
Other languages
English (en)
French (fr)
Inventor
张晓晋
陈磊
谢蒂旎
Original Assignee
京东方科技集团股份有限公司
鄂尔多斯市源盛光电有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 鄂尔多斯市源盛光电有限责任公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/322,555 priority Critical patent/US20170141077A1/en
Publication of WO2016192479A1 publication Critical patent/WO2016192479A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/90Assemblies of multiple devices comprising at least one organic light-emitting element
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/868Arrangements for polarized light emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/32Stacked devices having two or more layers, each emitting at different wavelengths
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/30Organic light-emitting transistors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/858Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/86Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/302Details of OLEDs of OLED structures
    • H10K2102/3023Direction of light emission
    • H10K2102/3026Top emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to the field of display technologies, and in particular, to an organic electroluminescent device, a method for fabricating the same, and a display device.
  • the illuminating color adjustable function can be realized by the structural design of the stacked organic electroluminescent unit (stacked OLED), and the stacked OLED structure is stacked with a plurality of individual OLED units through the vertical substrate surface, And using a single power source to drive each OLED unit to manufacture, by controlling the illuminating state of each OLED unit separately, the OLED device can finally emit light of different colors, thereby realizing the function of adjustable light color.
  • the existing stacked OLED structure device light emitted by one OLED unit may pass through other OLED units stacked thereon before being emitted through the light emitting surface of the OLED device, and the light wave passes through other OLED units. In the structure, if the photon energy of the light wave is large, the light-emitting layer in the other OLED unit may be excited to emit light, thereby causing the color of the light emitted by the OLED device to be impure.
  • Embodiments of the present invention provide an organic electroluminescent device, a method for fabricating the same, and a display device, wherein the organic electroluminescent device can adjust a color of light and a color purity of light emitted is relatively high.
  • An organic electroluminescent device comprising:
  • a substrate having phase retardation characteristics wherein one side of the substrate is provided with a polarization structure;
  • a first organic electroluminescent unit located on a side of the polarizing structure facing away from the substrate, the side of the first organic electroluminescent unit facing away from the substrate is the light emitting side of the organic electroluminescent device;
  • At least a second organic electroluminescent unit located on a side of the substrate opposite the first organic electroluminescent unit.
  • the first organic electroluminescence can be separately controlled
  • the light-emitting state of the unit and the second organic electroluminescent unit is such that light of different colors is emitted, thereby realizing the function of light color adjustment.
  • the polarizing structure and the substrate are provided on the side of the first organic electroluminescent unit opposite to the light exiting side, most of the first organic electroluminescent unit is generated when the first organic electroluminescent unit emits light.
  • the light will be emitted through the light exiting side, and only a small part of the light can pass through the polarizing structure and the substrate into the light emitting layer of the second organic electroluminescent unit; even if a part of the light emitted by the first organic electroluminescent unit Passing through the polarizing structure and the substrate into the second organic electroluminescent unit, the partial light will also not pass through the polarizing structure due to the isolation of the substrate and the polarizing structure having phase retardation characteristics
  • the light exit side is emitted.
  • the first organic electroluminescent unit emits a wavelength smaller than a wavelength emitted by the second organic electroluminescent unit.
  • the first organic electroluminescent unit is a blue organic electroluminescent unit
  • the second organic electroluminescent unit is a green organic electroluminescent unit or a red organic electroluminescent unit.
  • the organic electroluminescent device further includes a third organic electroluminescent unit located on a side of the substrate opposite the first organic electroluminescent unit; the second organic electroluminescent unit and the third The organic electroluminescent units are arranged along the extending direction of the base substrate.
  • the first organic electroluminescent unit emits a wavelength smaller than a wavelength emitted by the second organic electroluminescent unit and a wavelength emitted by the third organic electroluminescent unit.
  • the first organic electroluminescent unit is a blue organic electroluminescent unit
  • the second organic electroluminescent unit is one of a green organic electroluminescent unit and a red organic electroluminescent unit.
  • the third organic electroluminescent unit is the other of the green organic electroluminescent unit and the red organic electroluminescent unit.
  • light colors of different colors can be realized by controlling the light-emitting states of the blue organic electroluminescent unit, the green organic electroluminescent unit, and the red organic electroluminescent unit, respectively, thereby realizing light color. Adjustable function;
  • the side opposite to the light exiting side of the blue organic electroluminescent unit is provided with a polarizing structure and a base substrate, most of the generated blue light is emitted when the blue organic electroluminescent unit emits light.
  • the blue light wave becomes linearly polarized after passing through the polarization structure, and then passes through the substrate substrate having phase retardation characteristics, and the portion The blue light wave will become elliptically polarized light, and if the green light organic electroluminescent unit and/or the red organic organic light emitting unit radiate light waves by the excitation of the blue light having the elliptically polarized state, the excited light wave
  • the polarization state will be similar or identical to that of the excitation light (the blue light wave in the ellipsic polarization state); if the above-mentioned stimulated radiation light wave passes through the substrate substrate having
  • the polarizing structure is unable to enter the blue organic electroluminescent unit and is not emitted from the light emitting side of the organic electroluminescent device, and therefore, the blue organic electroluminescent unit generates less light noise when emitting light;
  • the blue organic electroluminescent unit since the photon energy of the light emitted by the green organic electroluminescent unit and the red organic electroluminescent unit is relatively small, the light emitting layer of the blue organic electroluminescent unit cannot be excited to emit light, and the green organic electroluminescent unit And the red organic electroluminescent unit is arranged along the extending direction of the substrate, that is, the light emitting surfaces of each other are parallel, so that each other is excited.
  • the possibility of generating light noise is small, and therefore, the light noise generated when the green organic electroluminescent unit and/or the red organic electroluminescent unit emit light is small; in summary, the blue organic electroluminescent unit, The green organic electroluminescent unit and the red organic electroluminescent unit emit light with less light noise
  • the above organic electroluminescent device can adjust the luminescent color and the color purity of the emitted light is relatively high.
  • the reflectance of the entire organic electroluminescent device to external light can be greatly reduced, and therefore, the contrast of the organic electroluminescent device is high.
  • the base substrate is a base substrate made of a wave plate, and a polarization direction of the polarization structure is at an angle of 45 degrees with an optical axis of the wave plate.
  • the base substrate is a base substrate made of a wave plate having a phase retardation effect for light having a wavelength of 435 to 760 nm.
  • the base substrate is a base substrate made of a wave plate having a ⁇ /2 phase retardation effect for light of a specific wavelength ranging from 435 to 760 nm.
  • the thickness d of the base substrate satisfies the following formula:
  • is the wavelength of light for which the ⁇ /2 phase retardation characteristic of the base substrate is; n o and n e are ordinary light and extraordinary light which are generated after the light wave of the wavelength ⁇ enters the base substrate made of the wave plate, respectively.
  • Refractive index; m is a natural number.
  • the second organic electroluminescent unit comprises a transparent anode layer, a hole injection layer, a hole transport layer, a light emitting layer, and an electron transport formed in sequence from the base substrate in a direction away from the base substrate. a layer and a total reflection cathode layer;
  • the third organic electroluminescence unit includes a transparent anode layer, a hole injection layer, a hole transport layer, and a light-emitting layer sequentially formed from the base substrate in a direction away from the base substrate , an electron transport layer and a fully reflective cathode layer.
  • the total reflection cathode layer of the second organic electroluminescence unit and the total reflection cathode layer of the third organic electroluminescence unit are in the same layer integrated structure.
  • the first organic electroluminescent unit comprises a transparent anode layer, a hole injection layer, a hole transport layer, a light emitting layer, and an electron transport formed in sequence from the base substrate in a direction away from the base substrate.
  • Layer and transparent cathode layer are transparent anode layer, a hole injection layer, a hole transport layer, a light emitting layer, and an electron transport formed in sequence from the base substrate in a direction away from the base substrate.
  • Layer and transparent cathode layer is transparent cathode layer.
  • a first control circuit electrically connected to the transparent anode layer and the transparent cathode layer of the first organic electroluminescent unit, for controlling the light emitting state of the first organic electroluminescent unit; and the second organic electro a transparent anode layer of the light emitting unit and a total reflection cathode layer electrically connected, a second control circuit for controlling the light emitting state of the second organic electroluminescent unit; a transparent anode layer and total reflection with the third organic electroluminescent unit
  • the cathode layer is electrically connected to a third control circuit for controlling the light emitting state of the third organic electroluminescent unit.
  • the transparent anode layer of the second organic electroluminescent unit and the transparent anode layer of the third organic electroluminescent unit are electrically connected to the transparent anode layer of the first organic electroluminescent unit, respectively.
  • the hole injection layer and the second organic electricity of the first organic electroluminescent unit The hole injection layer of the electroluminescence unit and the material of the hole injection layer of the third organic electroluminescence unit are the same; and/or the hole transport layer of the first organic electroluminescence unit and the second organic electroluminescence
  • the hole transport layer of the unit and the material of the hole transport layer of the third organic electroluminescence unit are the same; and/or the electron transport layer of the first organic electroluminescence unit and the electron of the second organic electroluminescence unit
  • the material of the electron transport layer of the transport layer and the third organic electroluminescent unit is the same.
  • a thickness of a hole injection layer of the first organic electroluminescence unit, a hole injection layer of the second organic electroluminescence unit, and a hole injection layer of the third organic electroluminescence unit The range is 5 to 40 nm; and/or,
  • the hole transport layer of the first organic electroluminescence unit, the hole transport layer of the second organic electroluminescence unit, and the hole transport layer of the third organic electroluminescence unit have a thickness ranging from 10 to 100 nm; and / or,
  • the thickness of the light emitting layer of the first organic electroluminescent unit, the light emitting layer of the second organic electroluminescent unit, and the light emitting layer of the third organic electroluminescent unit is in the range of 20 to 50 nm; and/or
  • the electron transport layer of the first organic electroluminescence unit, the electron transport layer of the second organic electroluminescence unit, and the electron transport layer of the third organic electroluminescence unit have a thickness ranging from 10 to 100 nm.
  • the embodiment of the present invention further provides a method for fabricating an organic electroluminescent device according to any one of the preceding aspects, comprising: providing a polarization structure on one side of a substrate substrate having phase retardation characteristics; a first organic electroluminescent unit is formed on a side of the structure away from the substrate, a side of the first organic electroluminescent unit facing away from the substrate is a light exiting side of the organic electroluminescent device; The bottom substrate forms at least a second organic electroluminescent unit away from the side of the first organic electroluminescent unit.
  • the method further includes: forming a third organic electroluminescent unit on a side of the substrate opposite the first organic electroluminescent unit; the second organic electroluminescent unit and the third organic The electroluminescent units are arranged along the extending direction of the base substrate.
  • the embodiment of the invention further provides a display device comprising the organic electroluminescent device described in any one of the above aspects.
  • FIG. 1 is a schematic structural diagram of an organic electroluminescent device according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a blue light wave entering an organic organic electroluminescent unit and/or a red organic electroluminescent unit and exciting to generate stimulated emission light in an organic electroluminescent device according to an embodiment of the invention
  • FIG. 3 is a flow chart of a method for fabricating an organic electroluminescent device according to an embodiment of the present invention.
  • an organic electroluminescent device provided by an embodiment of the present invention includes:
  • a substrate substrate 1 having phase retardation characteristics one side of the substrate substrate 1 is provided with a polarization structure 2 (for example, a wire grid polarization structure);
  • a polarization structure 2 for example, a wire grid polarization structure
  • a blue organic electroluminescent unit 3 on the side of the polarizing structure 2 facing away from the substrate 1 the side of the blue organic electroluminescent unit 3 facing away from the substrate 1 is the light emitting side of the organic electroluminescent device;
  • the light-emitting surface areas of the green organic electroluminescence unit 4 and the red organic electroluminescence unit 5 may be the same or different, and specifically, the selection ratio may be selected according to the white balance of the device.
  • the polarizing structure 2 and the substrate 1 are provided on the side of the blue organic electroluminescent unit 3 opposite to the light exiting side, when the blue organic electroluminescent unit 3 emits light, Part of the generated blue light is emitted through the light exiting side, and only a small portion of the blue light can pass through the polarizing structure 2 and the base substrate 1 into the green organic electroluminescent unit 4 and/or the red organic electroluminescent unit 5.
  • the luminescent layer if part of the blue light passes through the polarizing structure and the substrate into the green organic electroluminescent unit and/or the red organic electroluminescent unit, according to the optical principle, as shown in FIG.
  • the blue light wave x After passing through the polarization structure 2, it will become blue line polarized light x 1 , and after passing through the base substrate 1 having phase retardation characteristics, the blue line polarized light x 1 will become blue elliptically polarized light x 2 ;
  • the excitation of the blue elliptically polarized light x 2 causes the green organic electroluminescent unit 4 and/or the red organic electroluminescent unit 5 to radiate light waves (such as the light wave y in FIG.
  • the circularly polarized light x 2 is a similar or identical polarization state, that is, the excited light wave y is also elliptically polarized light; therefore, when the above-mentioned light wave y passes through the base substrate 1 having phase retardation characteristics, most of the light waves will become The line is polarized, and the partial line polarization will have a large angle with the polarization direction of the polarization structure (for example, for the wire grid polarization structure, perpendicular to the direction in which the wire grid 21 extends).
  • the optical principle only the polarization component parallel to the polarization direction of the polarization structure can pass through the polarization structure; therefore, the light wave generated by the portion of the stimulated radiation will have a severe extinction when passing through the polarization structure 2 (as shown in FIG. 2).
  • the polarization component y 1 of the above-mentioned polarized light perpendicular to the polarization direction of the polarization structure 2 cannot pass through the polarization structure 2).
  • the light noise generated when the blue organic electroluminescent unit 3 emits light is small; on the other hand, since the photon energy of the light emitted by the green organic electroluminescent unit 4 and the red organic electroluminescent unit 5 is relatively small, The light-emitting layer of the blue organic electroluminescent unit 3 cannot be excited to emit light, and the green organic electroluminescent unit 3 and the red organic electroluminescent unit 3 are arranged along the extending direction of the substrate 1 , that is, the light-emitting surfaces of each other are parallel.
  • the excitation of each other is less likely to cause light noise, and therefore, the light noise generated when the green organic electroluminescent unit 4 and/or the red organic electroluminescent unit 5 emits light is small;
  • the organic electroluminescent unit 3, the green organic electroluminescent unit 4, and the red organic electroluminescent unit 5 emit less light noise, and therefore, the color of the light emitted by the organic electroluminescent device is relatively high. .
  • the above organic electroluminescent device can adjust the luminescent color and the color purity of the emitted light is relatively high.
  • the reflectance of the entire organic electroluminescent device to external light can be greatly reduced, and therefore, the contrast of the organic electroluminescent device is high.
  • the organic electroluminescent device of this embodiment also has the advantages described in the embodiment shown in FIG. 1.
  • the base substrate 1 is a base substrate made of a wave plate, and the polarization direction of the polarization structure 2 can be at an angle of 45 degrees with the optical axis of the wave plate. As shown in FIG. 2, when the polarization direction of the polarization structure 2 is at an angle of 45 degrees with the optical axis of the wave plate, the light wave passes through the polarization structure 2 and then passes through the base substrate 1 to become elliptically polarized light.
  • a fine parallel metal line may be formed on one side of the base substrate 1 by mask evaporation, magnetron sputtering, or the like to constitute the wire grid polarization structure 2.
  • the wave plate may be a wave plate of a polymer material.
  • the base substrate 1 is made of a wave plate made of a polymer material, since the refractive index of the polymer is close to the refractive index of the organic electroluminescent unit material, total reflection occurring at the interface of the substrate substrate can be reduced;
  • the organic electroluminescent device of the embodiment of the invention can also be used as a flexible organic electroluminescent device.
  • the wave plate may also be a crystal wave plate, and may be formed by slicing a uniaxial crystal in a direction parallel to the optical axis.
  • the base substrate 1 is a base substrate made of a wave plate having a phase retarding action for light having a wavelength of 435 to 760 nm.
  • the base substrate 1 is a base substrate made of a wave plate having a ⁇ /2 phase retardation action for light of a specific wavelength ranging from 435 to 760 nm.
  • the wave plate may be a wave plate having a ⁇ /2 phase retardation effect for blue light having a wavelength of 450 nm; or, considering the light emission of three organic electroluminescent units in the organic electroluminescent device of the embodiment of the present invention.
  • the color plate may be a wave plate having a ⁇ /2 phase retardation effect for light having a wavelength of 550 nm.
  • the thickness d of the base substrate 1 can satisfy the following formula:
  • is the wavelength of light for which the ⁇ /2 phase retardation characteristic of the base substrate 1 is directed, specifically 450 nm or 550 nm in the above embodiment may be selected; n o and n e respectively are light waves of wavelength ⁇ entering the wave plate.
  • the refractive index of the o-light and the e-light generated after the base substrate 1; m is a natural number such as 0, 1, 2, 3, or the like.
  • the green organic electroluminescent unit 4 may be sequentially formed from the substrate 1 along a direction away from the substrate 1 .
  • the red organic electroluminescent unit 5 may include a distance from the base substrate 1
  • the transparent anode layer 51, the hole injection layer 52, the hole transport layer 53, the green light-emitting layer 54, the electron transport layer 55, and the total reflection cathode layer are sequentially formed in the direction of the base substrate 1.
  • the transparent anode layer 41 of the green organic electroluminescent unit 4 and the transparent anode layer 51 of the red organic electroluminescent unit 5 may be prepared by using an indium tin oxide (ITO) material, and may be simultaneously formed;
  • the preparation process may include first forming an indium tin oxide (ITO) film of about 100 nm thick on one side of the back substrate offline polarization structure 2 of the substrate substrate 1 by magnetron sputtering or the like, and then forming two separate electrodes by etching.
  • the ITO layer, the two separate ITO layers are used as the transparent anode layer 41 and the transparent anode layer 51, respectively.
  • the total reflection cathode layer of the green organic electroluminescent unit 4 and the total reflection cathode of the red organic electroluminescent unit 5 are shown.
  • the layer may be a monolithic unitary structure, that is, the green organic electroluminescent unit 4 and the red organic electroluminescent unit 5 may use the same total reflection cathode layer 10 in common.
  • the light inside the organic electroluminescent device can be totally reflected on the surface of the total reflection cathode layer 10 to be transmitted toward the light exiting side, so that the organic electroluminescent device can be ensured to have a high output efficiency.
  • the total reflection cathode layer 10 may be Mg:Ag (9:1, 1 to 5 nm) / Ag (100 to 200 nm), LiF (1 nm) / Al (100 to 200 nm) or Yb (1 nm) / Ag. (100 to 200 nm) such a composite structure can be formed, for example, by evaporation.
  • the blue organic electroluminescent unit 3 may include a transparent anode formed from the substrate substrate 1 in a direction away from the substrate 1 .
  • the above blue organic The transparent anode layer 31 of the electroluminescent unit 3 can be prepared using an indium tin oxide (ITO) material.
  • ITO indium tin oxide
  • the transparent cathode layer 36 may be transparent or translucent; when the transparent cathode layer 36 is in a transparent state, LiF (0.5 nm) / Al (1 ⁇ 3 nm) / ITO (30 ⁇ 50 nm) or Li (1 nm) / ITO (30) may be used. ⁇ 50nm) such a composite structure, light transmittance of 80% to 90%; when the transparent cathode layer 36 is translucent, vapor deposition of Mg: Ag or LiF (1nm) / Al film can be achieved, the total thickness is 10 ⁇ 15nm The light transmittance is required to be at least greater than 60%.
  • the hole injection layer 32 of the blue organic electroluminescent unit 3, the hole injection layer 42 of the green organic electroluminescence unit 4, and the red organic electro-electrode functions the same, that is, both for improving hole injection efficiency and improving defects of the transparent anode layer; the materials thereof may be the same or different, and specifically, HAT-CN, a-NPD may be selected: Materials such as F4-TCNQ, and their thickness may range from 5 to 40 nm.
  • the hole transport layer 33 of the blue organic electroluminescent unit 3, the hole transport layer 43 of the green organic electroluminescence unit 4, and the hole transport layer 53 of the red organic electroluminescence unit 5 have the same function, that is, In order to promote the transport of holes into the luminescent layer; their materials may be the same or different, specifically NPB, Spiro-TAD and other materials, their thickness may range from 10 to 100 nm.
  • the blue light-emitting layer 34, the green light-emitting layer 44, and the red light-emitting layer 54 may have a thickness ranging from 20 to 50 nm.
  • the blue light-emitting layer 34 may be a short-wave organic light-emitting system in the organic light-emitting material.
  • the green light-emitting layer 44 and the red light-emitting layer 54 may be selected from a long-wave organic light-emitting system in the organic light-emitting material.
  • the green light-emitting layer 44 may be a green light system CBP: Ir(ppy)3
  • the red light-emitting layer 54 may be a red light system.
  • CBP Q3IR or yellow light system
  • CPB (bt) Ir (acac) and the like.
  • the electron transport layer 35 of the blue organic electroluminescent unit 3, the electron transport layer 45 of the green organic electroluminescence unit 4, and the electron transport layer 55 of the red organic electroluminescence unit 5 all have the same function, that is, the electron transport can be reduced.
  • Interface barriers in the process their materials may be the same or different, specifically n-doping structures, such as Alq3:Li, BPhen:Cs, have a conductivity of about 10 -5 S/cm; They may range in thickness from 10 to 100 nm.
  • each layer structure in the above organic electroluminescent unit can be prepared by vacuum coating.
  • the organic electroluminescent device may further include: a first control circuit 6 electrically connected to the transparent anode layer 31 and the transparent cathode layer 36 of the blue organic electroluminescent unit 3 for controlling the light emitting state of the blue organic electroluminescent unit 3; a second control circuit 7 electrically connected to the transparent anode layer 41 and the total reflection cathode layer of the green organic electroluminescent unit 4, for controlling the light emission state of the green organic electroluminescence unit 4; and red organic electroluminescence
  • the transparent anode layer 51 of the unit 5 and the total reflection cathode layer are electrically connected to a third control circuit 8 for controlling the light-emitting state of the red organic electroluminescent unit 5.
  • the three organic control electroluminescent units 3, the green organic electroluminescent unit 4, and the red organic electroluminescent unit 5 can be respectively driven to emit light by the three control circuits, and can respectively control their light-emitting states, thereby realizing different emission.
  • the light of the color For example, when the blue organic electroluminescent unit 3, the green organic electroluminescent unit 4, and the red organic electroluminescent unit 5 are both illuminated by the driving of the three control circuits, the organic electroluminescent device can be emitted. White light.
  • the transparent anode layer 41 of the green organic electroluminescent unit 4 and the transparent anode layer 51 of the red organic electroluminescent unit 5 may respectively be transparent anodes with the blue organic electroluminescent unit 3.
  • the layers 31 are electrically connected to keep the two sides of the substrate 1 at an equipotential, so that the substrate 1 and the transparent electrodes on both sides can be avoided when the organic electroluminescent units on both sides of the substrate 1 are simultaneously driven to emit light. A capacitive effect is formed between them to cause an influence on the driving voltage.
  • the embodiment of the invention further provides a method for preparing an organic electroluminescent device according to any of the above embodiments, which may include:
  • a blue organic electroluminescent unit 3, a green organic electroluminescent unit 4, and a red organic electroluminescent unit 5 are respectively formed on opposite sides of the base substrate 1;
  • the light-emitting unit 4 and the red organic electroluminescent unit 5 are formed on a side of the base substrate 1 facing away from the blue organic electroluminescent unit 3 and arranged along an extending direction of the base substrate 1 a side of the blue organic electroluminescent unit 3 facing away from the base substrate 1 to form a light exiting side of the organic electroluminescent device;
  • the base substrate 1 is a base substrate having phase retardation characteristics
  • a polarizing structure 2 is provided on a side of the base substrate 1 facing the blue organic electroluminescent unit 3.
  • the organic electroluminescent device prepared by the above preparation method has an adjustable luminescent color and a relatively high color purity of emitted light, and the contrast of the organic electroluminescent device is high.
  • the above organic electroluminescent device may specifically include:
  • Step S101 preparing a parallel metal wire grid on one side of the substrate substrate 1 having a phase shift characteristic of ⁇ /2 by mask evaporation, magnetron sputtering, or the like to form a wire grid polarization structure 2;
  • Step S102 forming a blue organic electroluminescent unit 3 on the wire grid polarizing structure 2 by mask evaporation, magnetron sputtering, or the like;
  • Step S103 forming a green organic electroluminescent unit 4 and red light on one side of the back offline gate polarization structure 2 of the base substrate 1 having a phase shifting characteristic of ⁇ /2 by mask evaporation, magnetron sputtering, or the like.
  • the above embodiment is only one specific embodiment of the method for preparing the organic electroluminescent device of the present invention, and the method for preparing the organic electroluminescent device of the present invention is not limited to the contents of the above embodiment.
  • the organic electroluminescent device of this embodiment also has the advantages described in the embodiment shown in FIG. 1.
  • the embodiment of the invention further provides a display device comprising the organic electroluminescent device described in any of the above embodiments.
  • the display device can adjust the illuminating color and the color purity of the emitted light is relatively high.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种有机电致发光器件及其制备方法、显示装置。有机电致发光器件包括:具有相位延迟特性的衬底基板(1),衬底基板(1)的一侧设有偏振结构(2);位于偏振结构(2)背离衬底基板(1)一侧的第一有机电致发光单元(3),第一有机电致发光单元(3)背离衬底基板(1)的一侧为有机电致发光器件的出光侧;以及位于衬底基板(1)背离第一有机电致发光单元(3)一侧的至少第二有机电致发光单元(4,5)。有机电致发光器件可以调节发光颜色且发出的光的色纯度比较高,对比度也较高。

Description

有机电致发光器件及其制备方法、显示装置 技术领域
本发明涉及显示技术领域,尤其是涉及一种有机电致发光器件及其制备方法、显示装置。
背景技术
现有的有机电致发光器件中,可以通过层叠式有机电致发光单元(stacked OLED)的结构设计来实现发光颜色可调节的功能,层叠式OLED结构通过垂直基板表面堆叠若干单个的OLED单元、并使用单个电源来驱动每一个OLED单元而制造,通过分别控制每一个OLED单元的发光状态,可以使OLED器件最终发出不同颜色的光,从而实现光色可调的功能。然而,由于现有的层叠式OLED结构器件中,一个OLED单元发出的光在通过OLED器件的出光面发射出去之前,可能会穿过与其层叠设置的其他OLED单元,而光波在穿过其他OLED单元结构时,如果该光波的光子能量较大,可能会激发其他的OLED单元中的发光层发光,从而导致该OLED器件发出的光的颜色不纯。
发明内容
本发明实施例提供了一种有机电致发光器件及其制备方法、显示装置,其中,上述有机电致发光器件可以调节发光颜色且发出的光的色纯度比较高。
为达到上述目的,本发明实施例提供以下技术方案:
一种有机电致发光器件,包括:
具有相位延迟特性的衬底基板,所述衬底基板的一侧设有偏振结构;
位于偏振结构背离衬底基板一侧的第一有机电致发光单元,所述第一有机电致发光单元背离所述衬底基板的一侧为所述有机电致发光器件的出光侧;以及
位于衬底基板背离第一有机电致发光单元一侧的至少第二有机电致发光单元。
上述有机电致发光器件中,可以通过分别控制第一有机电致发光 单元和第二有机电致发光单元的发光状态以实现发射出不同颜色的光,从而实现光色可调的功能。
且上述有机电致发光器件中,由于第一有机电致发光单元的与出光侧相对的一侧设有偏振结构和衬底基板,所以,当第一有机电致发光单元发光时,大部分产生的光都会通过出光侧发射出去,只有很少部分的光可以穿过偏振结构和衬底基板进入到第二有机电致发光单元的发光层中;即使一部分第一有机电致发光单元发出的光穿过偏振结构和衬底基板进入到第二有机电致发光单元中,由于具有相位延迟特性的衬底基板和偏振结构的隔离作用,该部分光也将无法经过所述偏振结构并从所述出光侧发射出去。
可选地,所述第一有机电致发光单元发出的波长小于所述第二有机电致发光单元发出的波长。
可选地,所述第一有机电致发光单元为蓝光有机电致发光单元,所述第二有机电致发光单元为绿光有机电致发光单元或红光有机电致发光单元。
可选地,所述有机电致发光器件还包括位于衬底基板背离第一有机电致发光单元一侧的第三有机电致发光单元;所述第二有机电致发光单元和所述第三有机电致发光单元沿所述衬底基板的延展方向排列。
可选地,所述第一有机电致发光单元发出的波长小于所述第二有机电致发光单元发出的波长和所述第三有机电致发光单元发出的波长。
可选地,所述第一有机电致发光单元为蓝光有机电致发光单元,所述第二有机电致发光单元为绿光有机电致发光单元和红光有机电致发光单元之一,所述第三有机电致发光单元为绿光有机电致发光单元和红光有机电致发光单元之另一者。
上述有机电致发光器件中,可以通过分别控制蓝光有机电致发光单元、绿光有机电致发光单元和红光有机电致发光单元的发光状态以实现发射出不同颜色的光,从而实现光色可调的功能;
且上述有机电致发光器件中,由于蓝光有机电致发光单元的与出光侧相对的一侧设有偏振结构和衬底基板,所以,当蓝光有机电致发光单元发光时,大部分产生的蓝光都会通过出光侧发射出去,只有很 少部分的蓝光可以穿过偏振结构和衬底基板进入到绿光有机电致发光单元和/或红光有机电致发光单元的发光层中;如果部分蓝光穿过偏振结构和衬底基板进入到绿光有机电致发光单元和/或红光有机电致发光单元中,根据光学原理,蓝光光波在通过偏振结构后将变为线偏光,再通过具有相位延迟特性的衬底基板后,该部分蓝光光波将变成椭圆偏振光,如果受到这部分呈椭圆偏振态的蓝光的激发导致绿光有机电致发光单元和/或红光有机电致发光单元辐射出光波,则受激辐射出的光波将具有与激发光(呈椭圆偏振态的蓝光光波)相似或相同的偏振态;如果上述受激辐射出的光波通过具有相位延迟特性的衬底基板,则其中大部分光波将变为线偏光,且该部分线偏光与偏振结构的起偏方向存在较大夹角,而根据光学原理,只有与起偏方向平行的偏振分量能够通过偏振结构,因此,该部分受激辐射产生的光波在通过偏振结构时将产生严重的消光作用,使得受激辐射出的光波大部分无法通过偏振结构;综上,只有很少部分的蓝光能够穿过偏振结构和衬底基板并激发绿光有机电致发光单元和/或红光有机电致发光单元发光,因此受激辐射产生的光波很少,并且受激辐射出的光波大部分无法通过偏振结构,从而无法进入到蓝光有机电致发光单元中,也不会从该有机电致发光器件的出光侧发射出去,因此,蓝光有机电致发光单元发光时产生的光噪音较小;另一方面,由于绿光有机电致发光单元和红光有机电致发光单元发出的光的光子能量相对较小,无法激发蓝色有机电致发光单元的发光层发光,且绿光有机电致发光单元和红光有机电致发光单元为沿衬底基板的延展方向排列,即彼此的出光面平行,所以彼此激发导致产生光噪音的可能性较小,因此,绿光有机电致发光单元和/或红光有机电致发光单元发光时产生的光噪音较小;综上所述,蓝光有机电致发光单元、绿光有机电致发光单元和红光有机电致发光单元发光时产生的光噪音都较小,因此,上述有机电致发光器件发出的光的色纯度比较高。
因此,上述有机电致发光器件可以调节发光颜色且发出的光的色纯度比较高。
另外,由于偏振结构的消光作用,可以使得整个有机电致发光器件对外部光线的反射率大大降低,因此,该有机电致发光器件的对比度较高。
可选地,所述衬底基板为利用波片制成的衬底基板,所述偏振结构的起偏方向与所述波片的光轴之间成45度夹角。
可选地,所述衬底基板为利用针对波长为435~760nm的光具有相位延迟作用的波片制成的衬底基板。
可选地,所述衬底基板为利用针对范围在435~760nm内的特定波长的光具有π/2相位延迟作用的波片制成的衬底基板。
可选地,所述衬底基板的厚度d满足下述公式:
Figure PCTCN2016079735-appb-000001
其中,λ为衬底基板的π/2相位延迟特性针对的光波长;no和ne分别为波长为λ的光波进入由波片制成的衬底基板后产生的寻常光和非常光的折射率;m为自然数。
可选地,所述第二有机电致发光单元包括从所述衬底基板沿着远离衬底基板的方向依次形成的透明阳极层、空穴注入层、空穴传输层、发光层、电子传输层和全反射阴极层;所述第三有机电致发光单元包括从所述衬底基板沿着远离衬底基板的方向依次形成的透明阳极层、空穴注入层、空穴传输层、发光层、电子传输层和全反射阴极层。
可选地,所述第二有机电致发光单元的全反射阴极层和所述第三有机电致发光单元的全反射阴极层为同层一体式结构。
可选地,所述第一有机电致发光单元包括从所述衬底基板沿着远离衬底基板的方向依次形成的透明阳极层、空穴注入层、空穴传输层、发光层、电子传输层和透明阴极层。
可选地,与第一有机电致发光单元的透明阳极层和透明阴极层电连接、用于控制所述第一有机电致发光单元的发光状态的第一控制电路;与第二有机电致发光单元的透明阳极层和全反射阴极层电连接、用于控制所述第二有机电致发光单元的发光状态的第二控制电路;与第三有机电致发光单元的透明阳极层和全反射阴极层电连接、用于控制所述第三有机电致发光单元的发光状态的第三控制电路。
可选地,所述第二有机电致发光单元的透明阳极层和所述第三有机电致发光单元的透明阳极层分别与所述第一有机电致发光单元的透明阳极层电连接。
可选地,所述第一有机电致发光单元的空穴注入层、第二有机电 致发光单元的空穴注入层和第三有机电致发光单元的空穴注入层的材料相同;和/或,所述第一有机电致发光单元的空穴传输层、第二有机电致发光单元的空穴传输层和第三有机电致发光单元的空穴传输层的材料相同;和/或,所述第一有机电致发光单元的电子传输层、第二有机电致发光单元的电子传输层和第三有机电致发光单元的电子传输层的材料相同。
可选地,所述第一有机电致发光单元的空穴注入层、所述第二有机电致发光单元的空穴注入层和所述第三有机电致发光单元的空穴注入层的厚度范围为5~40nm;和/或,
所述第一有机电致发光单元的空穴传输层、第二有机电致发光单元的空穴传输层和第三有机电致发光单元的空穴传输层的厚度范围为10~100nm;和/或,
所述第一有机电致发光单元的发光层、第二有机电致发光单元的发光层和第三有机电致发光单元的发光层的厚度范围为20~50nm;和/或,
所述第一有机电致发光单元的电子传输层、第二有机电致发光单元的电子传输层和第三有机电致发光单元的电子传输层的厚度范围为10~100nm。
本发明实施例还提供了一种如上述任一项技术方案中所述的有机电致发光器件的制备方法,包括:在具有相位延迟特性的衬底基板的一侧设置偏振结构;在位于偏振结构背离衬底基板一侧形成第一有机电致发光单元,所述第一有机电致发光单元背离所述衬底基板的一侧为所述有机电致发光器件的出光侧;以及在位于衬底基板背离第一有机电致发光单元一侧形成至少第二有机电致发光单元。
可选地,所述方法还包括:在位于衬底基板背离第一有机电致发光单元一侧形成第三有机电致发光单元;所述第二有机电致发光单元和所述第三有机电致发光单元沿所述衬底基板的延展方向排列。
本发明实施例还提供了一种显示装置,该显示装置包括上述任意一项技术方案中所述的有机电致发光器件。
附图说明
图1为本发明实施例提供的一种有机电致发光器件的结构示意图;
图2为本发明实施例的有机电致发光器件中蓝光光波进入绿光有机电致发光单元和/或红光有机电致发光单元中并激发产生受激发射光的示意图;
图3为本发明实施例提供的一种有机电致发光器件的制备方法流程图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参考图1和图2。
如图1所示,本发明实施例提供的一种有机电致发光器件,包括:
具有相位延迟特性的衬底基板1,衬底基板1的一侧设有偏振结构2(例如,线栅偏振结构);
位于偏振结构2背离衬底基板1一侧的蓝光有机电致发光单元3,蓝光有机电致发光单元3背离衬底基板1的一侧为该有机电致发光器件的出光侧;
位于衬底基板1背离蓝光有机电致发光单元3一侧的绿光有机电致发光单元4和红光有机电致发光单元5,绿光有机电致发光单元4和红光有机电致发光单元5沿衬底基板1的延展方向排列。上述绿光有机电致发光单元4和红光有机电致发光单元5的出光面面积可以相同,也可以不同,具体可以根据器件的白平衡情况进行选择比例。
上述有机电致发光器件中,通过分别控制蓝光有机电致发光单元3、绿光有机电致发光单元4和红光有机电致发光单元5的发光状态,可以实现发射出不同颜色的光,从而可以实现光色可调的功能;
且上述有机电致发光器件中,由于蓝光有机电致发光单元3的与出光侧相对的一侧设有偏振结构2和衬底基板1,所以,当蓝光有机电致发光单元3发光时,大部分产生的蓝光都会通过出光侧发射出去,只有很少部分的蓝光可以穿过偏振结构2和衬底基板1进入到绿光有机电致发光单元4和/或红光有机电致发光单元5的发光层中;如果部 分蓝光穿过偏振结构和衬底基板进入到绿光有机电致发光单元和/或红光有机电致发光单元中,根据光学原理,如图2所示,蓝色光波x通过偏振结构2后将变为蓝色线偏光x1,该蓝色线偏光x1再通过具有相位延迟特性的衬底基板1后,将变成蓝色椭圆偏振光x2;如果受到这部分蓝色椭圆偏振光x2的激发导致绿光有机电致发光单元4和/或红光有机电致发光单元5辐射出光波(如图2中的光波y),则受激发射光(光波y)将具有与激发光(蓝色椭圆偏振光x2)相似或相同的偏振态,即受激产生的光波y也为椭圆偏振光;因此,上述光波y通过具有相位延迟特性的衬底基板1,则其中大部分光波将变为线偏光,且该部分线偏光将与偏振结构的起偏方向(例如,对于线栅偏振结构,垂直于线栅21的延伸方向)存在较大夹角。根据光学原理,只有与偏振结构的起偏方向平行的偏振分量能够通过偏振结构;因此,该部分受激辐射产生的光波在通过偏振结构2时将产生严重的消光作用(如图2中所示,上述偏振光中与偏振结构2的起偏方向垂直的偏振分量y1无法通过偏振结构2)。因此,受激辐射出的光波y大部分无法通过偏振结构2;综上所述,只有很少部分的蓝光光波x能够穿过偏振结构2和衬底基板1并激发绿光有机电致发光单元4和/或红光有机电致发光单元5发光,因此受激辐射产生的光波y很少,并且受激辐射出的光波y大部分无法通过偏振结构2,从而无法进入到蓝光有机电致发光单元3中,也不会从该有机电致发光器件的出光侧发射出去而形成噪音。因此,蓝光有机电致发光单元3发光时产生的光噪音较小;另一方面,由于绿光有机电致发光单元4和红光有机电致发光单元5发出的光的光子能量相对较小,无法激发蓝色有机电致发光单元3的发光层发光,且绿光有机电致发光单元3和红光有机电致发光单元3为沿衬底基板1的延展方向排列,即彼此的出光面平行,所以彼此激发导致产生光噪音的可能性较小,因此,绿光有机电致发光单元4和/或红光有机电致发光单元5发光时产生的光噪音较小;综上所述,蓝光有机电致发光单元3、绿光有机电致发光单元4和红光有机电致发光单元5发光时产生的光噪音都较小,因此,上述有机电致发光器件发出的光的色纯度比较高。
因此,上述有机电致发光器件可以调节发光颜色且发出的光的色纯度比较高。
另外,由于偏振结构2和衬底基板1的消光作用,可以使得整个有机电致发光器件对外部光线的反射率大大降低,因此,该有机电致发光器件的对比度较高。
本领域技术人员能够理解,在一个实施例中,位于衬底基板1背离蓝光有机电致发光单元3一侧也可以仅形成绿光有机电致发光单元或红光有机电致发光单元;在这种情况下,两种颜色的光可以组合从而产生其他的颜色,并且该实施例的有机电致发光器件同样具有如图1所示的实施例中所描述的优点。
一种具体的实施例中,衬底基板1为利用波片制成的衬底基板,偏振结构2的起偏方向可以与波片的光轴之间成45度夹角。如图2所示,当偏振结构2的起偏方向与波片的光轴之间成45度夹角时,光波通过偏振结构2后再经过衬底基板1将变为椭圆偏振光。可选地,可以通过采用掩膜蒸镀、磁控溅射等方法在衬底基板1的一侧形成细微的平行金属线以构成线栅偏振结构2。
可选地,上述波片可以为聚合物材质的波片。当衬底基板1采用聚合物材质的波片制成时,由于聚合物的折射率与有机电致发光单元材料的折射率接近,从而可以减少在衬底基板界面处发生的全反射;因此,本发明实施例的有机电致发光器件亦可以作为一种柔性有机电致发光器件。当然,上述波片也可以为晶体波片,具体可以通过对单轴晶体沿平行于光轴方向切片而制备形成。
在上述实施例的基础上,一种具体的实施例中,衬底基板1为利用针对波长为435~760nm的光具有相位延迟作用的波片制成的衬底基板。可选地,衬底基板1为利用针对范围在435~760nm内的特定波长的光具有π/2相位延迟作用的波片制成的衬底基板。具体地,上述波片可以为针对波长为450nm的蓝光具有π/2相位延迟作用的波片;或者,综合考虑本发明实施例的有机电致发光器件中的三个有机电致发光单元的发光颜色,上述波片可以为针对波长为550nm的光具有π/2相位延迟作用的波片。
在上述各实施例的基础上,一种具体的实施例中,衬底基板1的厚度d可以满足下述公式:
Figure PCTCN2016079735-appb-000002
其中,λ为衬底基板1的π/2相位延迟特性针对的光波长,具体可以选择上述实施例中的450nm或者550nm;no和ne分别为波长为λ的光波进入由波片制成的衬底基板1后产生的寻常光(o光)和非常光(e光)的折射率;当λ选择550nm时,则no和ne分别波长为550nm的光波进入由波片制成的衬底基板1后产生的o光和e光的折射率;m为自然数,如0,1,2,3等。
如图1所示,在上述各实施例的基础上,一种具体的实施例中,绿光有机电致发光单元4可以包括从衬底基板1沿着远离衬底基板1的方向依次形成的透明阳极层41、空穴注入层42、空穴传输层43、绿色发光层44、电子传输层45和全反射阴极层;红光有机电致发光单元5可以包括从衬底基板1沿着远离衬底基板1的方向依次形成的透明阳极层51、空穴注入层52、空穴传输层53、绿色发光层54、电子传输层55和全反射阴极层。
可选地,上述绿光有机电致发光单元4的透明阳极层41和红光有机电致发光单元5的透明阳极层51可以采用氧化铟锡(ITO)材料制备,且可以同时制备形成;具体制备过程可以包括:首先通过磁控溅射等方式在衬底基板1背离线栅偏振结构2的一侧形成大约100nm厚的氧化铟锡(ITO)薄膜,然后通过刻蚀的方法形成两个分立的ITO层,这两个分立的ITO层分别用作透明阳极层41和透明阳极层51。
如图1所示,在上述各实施例的基础上,一种可选的实施例中,绿光有机电致发光单元4的全反射阴极层和红光有机电致发光单元5的全反射阴极层可以为同层一体式结构,即绿光有机电致发光单元4和红光有机电致发光单元5可以为共同使用同一个全反射阴极层10。有机电致发光器件内部的光可以在该全反射阴极层10的表面发生全反射从而朝向出光侧传输,因此可以保证该有机电致发光器件具有较高的输出效率。可选地,上述全反射阴极层10可采用Mg∶Ag(9∶1,1~5nm)/Ag(100~200nm)、LiF(1nm)/Al(100~200nm)或Yb(1nm)/Ag(100~200nm)这种复合结构,并可以例如通过蒸镀形成。
如图1所示,在上述实施例的基础上,一种具体的实施例中,蓝光有机电致发光单元3可以包括从衬底基板1沿着远离衬底基板1的方向依次形成的透明阳极层31、空穴注入层32、空穴传输层33、蓝色发光层34、电子传输层35和透明阴极层36。可选地,上述蓝光有机 电致发光单元3的透明阳极层31可以采用氧化铟锡(ITO)材料制备。透明阴极层36可以为透明或半透明;当透明阴极层36为透明态时可采用LiF(0.5nm)/Al(1~3nm)/ITO(30~50nm)或Li(1nm)/ITO(30~50nm)这种复合结构,光透过率80%~90%;当透明阴极层36为半透明时可采用蒸镀Mg∶Ag或LiF(1nm)/Al薄膜实现,总厚度为10~15nm,光透过率要求至少大于60%。
在上述实施例的基础上,一种具体的实施例中,蓝光有机电致发光单元3的空穴注入层32、绿光有机电致发光单元4的空穴注入层42和红光有机电致发光单元5的空穴注入层52的作用都相同,即都用于提高空穴注入效率,改善透明阳极层缺陷;它们的材料可以相同也可以不同,具体可以选用HAT-CN,a-NPD:F4-TCNQ等材料,且它们的厚度范围可以为5~40nm。
蓝光有机电致发光单元3的空穴传输层33、绿光有机电致发光单元4的空穴传输层43和红光有机电致发光单元5的空穴传输层53的作用都相同,即用于促进空穴传输进入发光层;它们的材料可以相同也可以不同,具体可以选用NPB,Spiro-TAD等材料,它们的厚度范围可以为10~100nm。
蓝色发光层34、绿色发光层44和红色发光层54的厚度范围可以为20~50nm;其中,蓝色发光层34可以选用有机发光材料中的短波有机发光体系,具体可以选用蓝光体系CBP:FIrpic;绿色发光层44和红色发光层54可以选用有机发光材料中的长波有机发光体系,如绿色发光层44可以选用绿光体系CBP:Ir(ppy)3,红色发光层54可以选用红光体系CBP:Q3IR或者是黄光体系CPB:(bt)Ir(acac)等。
蓝光有机电致发光单元3的电子传输层35、绿光有机电致发光单元4的电子传输层45和红光有机电致发光单元5的电子传输层55的作用都相同,即可以降低电子传输过程中的界面势垒;它们的材料可以相同也可以不同,具体可选用n掺杂(n-doping)结构,如Alq3:Li,BPhen:Cs,电导率大约为10-5S/cm;并且它们的厚度范围可以为10~100nm。
可选地,上述有机电致发光单元中的各层结构都可以通过真空镀膜的方式制备。
如图1所示,在上述各实施例的基础上,一种具体的实施例中, 有机电致发光器件还可以包括:与蓝光有机电致发光单元3的透明阳极层31和透明阴极层36电连接、用于控制蓝光有机电致发光单元3的发光状态的第一控制电路6;与绿光有机电致发光单元4的透明阳极层41和全反射阴极层电连接、用于控制绿光有机电致发光单元4的发光状态的第二控制电路7;与红光有机电致发光单元5的透明阳极层51和全反射阴极层电连接、用于控制红光有机电致发光单元5的发光状态的第三控制电路8。通过这三个控制电路可以分别驱动蓝光有机电致发光单元3、绿光有机电致发光单元4和红光有机电致发光单元5发光,且可以分别控制它们的发光状态,从而实现发射出不同颜色的光。例如,当通过这三个控制电路的驱动使蓝光有机电致发光单元3、绿光有机电致发光单元4和红光有机电致发光单元5都发光时,则可以使有机电致发光器件发射出白光。
如图1所示,可选地,绿光有机电致发光单元4的透明阳极层41和红光有机电致发光单元5的透明阳极层51可以分别与蓝光有机电致发光单元3的透明阳极层31电连接,以保持衬底基板1两侧为等电位,从而可以避免当衬底基板1两侧的有机电致发光单元同时被驱动而发光时,衬底基板1与两侧的透明电极之间形成电容效应从而导致影响驱动电压。
本发明实施例还提供了一种上述任一项实施例中的有机电致发光器件的制备方法,可以包括:
如图1所示,在衬底基板1的相对的两侧分别形成蓝光有机电致发光单元3、绿光有机电致发光单元4和红光有机电致发光单元5;所述绿光有机电致发光单元4和所述红光有机电致发光单元5形成于所述衬底基板1背离所述蓝光有机电致发光单元3的一侧、且沿所述衬底基板1的延展方向排列,所述蓝光有机电致发光单元3背离所述衬底基板1的一侧形成所述有机电致发光器件的出光侧;其中,所述衬底基板1为具有相位延迟特性的衬底基板,所述衬底基板1朝向所述蓝光有机电致发光单元3的一侧设有偏振结构2。
通过上述制备方法制备的有机电致发光器件,其发光颜色可调节且发出的光的色纯度比较高,另外,该有机电致发光器件的对比度较高。
如图1和图3所示,一种具体的实施例中,上述有机电致发光器 件的制备方法,具体可以包括:
步骤S101,通过掩膜蒸镀、磁控溅射等方式在具有π/2相位延迟特性的衬底基板1的一侧制备平行金属线栅,以形成线栅偏振结构2;
步骤S102,通过掩膜蒸镀、磁控溅射等方式在线栅偏振结构2上形成蓝光有机电致发光单元3;
步骤S103,通过掩膜蒸镀、磁控溅射等方式在具有π/2相位延迟特性的衬底基板1的背离线栅偏振结构2的一侧形成绿光有机电致发光单元4和红光有机电致发光单元5。
当然,上述实施例只是本发明中有机电致发光器件的制备方法的一个具体的实施例,本发明中的有机电致发光器件的制备方法不局限于上述实施例的内容。
本领域技术人员能够理解,在一个实施例中,位于衬底基板1背离蓝光有机电致发光单元3一侧也可以仅形成绿光有机电致发光单元或红光有机电致发光单元;在这种情况下,两种颜色的光可以组合从而产生其他的颜色,并且该实施例的有机电致发光器件同样具有如图1所示的实施例中所描述的优点。
本发明实施例还提供了一种显示装置,该显示装置包括上述任意一项实施例中所描述的有机电致发光器件。该显示装置可以调节发光颜色且发出的光的色纯度比较高。
显然,本领域的技术人员可以对本发明实施例进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (20)

  1. 一种有机电致发光器件,其特征在于,包括:
    具有相位延迟特性的衬底基板,所述衬底基板的一侧设有偏振结构;
    位于偏振结构背离衬底基板一侧的第一有机电致发光单元,所述第一有机电致发光单元背离所述衬底基板的一侧为所述有机电致发光器件的出光侧;以及
    位于衬底基板背离第一有机电致发光单元一侧的至少第二有机电致发光单元。
  2. 根据权利要求1所述的有机电致发光器件,其特征在于,所述第一有机电致发光单元发出的波长小于所述第二有机电致发光单元发出的波长。
  3. 根据权利要求2所述的有机电致发光器件,其特征在于,所述第一有机电致发光单元为蓝光有机电致发光单元,所述第二有机电致发光单元为绿光有机电致发光单元或红光有机电致发光单元。
  4. 根据权利要求1所述的有机电致发光器件,其特征在于,所述有机电致发光器件还包括位于衬底基板背离第一有机电致发光单元一侧的第三有机电致发光单元;所述第二有机电致发光单元和所述第三有机电致发光单元沿所述衬底基板的延展方向排列。
  5. 根据权利要求4所述的有机电致发光器件,其特征在于,所述第一有机电致发光单元发出的波长小于所述第二有机电致发光单元发出的波长和所述第三有机电致发光单元发出的波长。
  6. 根据权利要求5所述的有机电致发光器件,其特征在于,所述第一有机电致发光单元为蓝光有机电致发光单元,所述第二有机电致发光单元为绿光有机电致发光单元和红光有机电致发光单元之一,所述第三有机电致发光单元为绿光有机电致发光单元和红光有机电致发光单元之另一者。
  7. 根据权利要求1所述的有机电致发光器件,其特征在于,所述衬底基板为利用波片制成的衬底基板,所述偏振结构的起偏方向与所述波片的光轴之间成45度夹角。
  8. 根据权利要求7所述的有机电致发光器件,其特征在于,所述 衬底基板为利用针对波长为435~760nm的光具有相位延迟作用的波片制成的衬底基板。
  9. 根据权利要求8所述的有机电致发光器件,其特征在于,所述衬底基板为利用针对范围在435~760nm内的特定波长的光具有π/2相位延迟作用的波片制成的衬底基板。
  10. 根据权利要求9所述的有机电致发光器件,其特征在于,所述衬底基板的厚度d满足下述公式:
    Figure PCTCN2016079735-appb-100001
    其中,λ为衬底基板的π/2相位延迟特性针对的光波长;no和ne分别为波长为λ的光波进入由波片制成的衬底基板后产生的寻常光和非常光的折射率;m为自然数。
  11. 根据权利要求6所述的有机电致发光器件,其特征在于,
    所述第二有机电致发光单元包括从所述衬底基板沿着远离衬底基板的方向依次形成的透明阳极层、空穴注入层、空穴传输层、发光层、电子传输层和全反射阴极层;
    所述第三有机电致发光单元包括从所述衬底基板沿着远离衬底基板的方向依次形成的透明阳极层、空穴注入层、空穴传输层、发光层、电子传输层和全反射阴极层。
  12. 根据权利要求11所述的有机电致发光器件,其特征在于,所述第二有机电致发光单元的全反射阴极层和所述第三有机电致发光单元的全反射阴极层为同层一体式结构。
  13. 根据权利要求11所述的有机电致发光器件,其特征在于,
    所述第一有机电致发光单元包括从所述衬底基板沿着远离衬底基板的方向依次形成的透明阳极层、空穴注入层、空穴传输层、发光层、电子传输层和透明阴极层。
  14. 根据权利要求13所述的有机电致发光器件,其特征在于,还包括:
    与第一有机电致发光单元的透明阳极层和透明阴极层电连接、用于控制所述第一有机电致发光单元的发光状态的第一控制电路;
    与第二有机电致发光单元的透明阳极层和全反射阴极层电连接、用于控制所述第二有机电致发光单元的发光状态的第二控制电路;
    与第三有机电致发光单元的透明阳极层和全反射阴极层电连接、用于控制所述第三有机电致发光单元的发光状态的第三控制电路。
  15. 根据权利要求14所述的有机电致发光器件,其特征在于,所述第二有机电致发光单元的透明阳极层和所述第三有机电致发光单元的透明阳极层分别与所述第一有机电致发光单元的透明阳极层电连接。
  16. 根据权利要求13所述的有机电致发光器件,其特征在于,
    所述第一有机电致发光单元的空穴注入层、第二有机电致发光单元的空穴注入层和第三有机电致发光单元的空穴注入层的材料相同;和/或,
    所述第一有机电致发光单元的空穴传输层、第二有机电致发光单元的空穴传输层和第三有机电致发光单元的空穴传输层的材料相同;和/或,
    所述第一有机电致发光单元的电子传输层、第二有机电致发光单元的电子传输层和第三有机电致发光单元的电子传输层的材料相同。
  17. 根据权利要求13所述的有机电致发光器件,其特征在于,
    所述第一有机电致发光单元的空穴注入层、所述第二有机电致发光单元的空穴注入层和所述第三有机电致发光单元的空穴注入层的厚度范围为5~40nm;和/或,
    所述第一有机电致发光单元的空穴传输层、第二有机电致发光单元的空穴传输层和第三有机电致发光单元的空穴传输层的厚度范围为10~100nm;和/或,
    所述第一有机电致发光单元的发光层、第二有机电致发光单元的发光层和第三有机电致发光单元的发光层的厚度范围为20~50nm;和/或,
    所述第一有机电致发光单元的电子传输层、第二有机电致发光单元的电子传输层和第三有机电致发光单元的电子传输层的厚度范围为10~100nm。
  18. 一种有机电致发光器件的制备方法,其特征在于,包括:
    在具有相位延迟特性的衬底基板的一侧设置偏振结构;
    在位于偏振结构背离衬底基板一侧形成第一有机电致发光单元,所述第一有机电致发光单元背离所述衬底基板的一侧为所述有机电致 发光器件的出光侧;以及
    在位于衬底基板背离第一有机电致发光单元一侧形成至少第二有机电致发光单元。
  19. 根据权利要求18所述的方法,其特征在于,还包括:
    在位于衬底基板背离第一有机电致发光单元一侧形成第三有机电致发光单元;所述第二有机电致发光单元和所述第三有机电致发光单元沿所述衬底基板的延展方向排列。
  20. 一种显示装置,其特征在于,包括如权利要求1~17任一项所述的有机电致发光器件。
PCT/CN2016/079735 2015-06-04 2016-04-20 有机电致发光器件及其制备方法、显示装置 WO2016192479A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/322,555 US20170141077A1 (en) 2015-06-04 2016-04-20 Organic electroluminescent device, manufacturing method thereof and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510303036.1 2015-06-04
CN201510303036.1A CN104868061B (zh) 2015-06-04 2015-06-04 一种有机电致发光器件及其制备方法、显示装置

Publications (1)

Publication Number Publication Date
WO2016192479A1 true WO2016192479A1 (zh) 2016-12-08

Family

ID=53913748

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/079735 WO2016192479A1 (zh) 2015-06-04 2016-04-20 有机电致发光器件及其制备方法、显示装置

Country Status (3)

Country Link
US (1) US20170141077A1 (zh)
CN (1) CN104868061B (zh)
WO (1) WO2016192479A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104868061B (zh) * 2015-06-04 2017-07-04 京东方科技集团股份有限公司 一种有机电致发光器件及其制备方法、显示装置
CN106935727B (zh) * 2017-03-14 2018-09-04 淮阴工学院 一种线偏振出光有机发光二极管
KR20210076624A (ko) * 2019-12-16 2021-06-24 엘지디스플레이 주식회사 전계 발광소자 및 그를 포함하는 전계 발광 표시장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200607392A (en) * 2004-08-10 2006-02-16 Ind Tech Res Inst Full-color organic electroluminescence device and display panel using the same
CN1983665A (zh) * 2005-12-13 2007-06-20 三星Sdi株式会社 有机发光显示装置
CN101170107A (zh) * 2006-10-24 2008-04-30 富士电机控股株式会社 白色发光有机el元件的制造方法
CN104183743A (zh) * 2013-05-21 2014-12-03 海洋王照明科技股份有限公司 一种双面显示有机电致发光器件及其制备方法
CN104868061A (zh) * 2015-06-04 2015-08-26 京东方科技集团股份有限公司 一种有机电致发光器件及其制备方法、显示装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1983665A (en) * 1931-12-18 1934-12-11 Cleveland Patents Inc Electrical measuring instrument
US5917280A (en) * 1997-02-03 1999-06-29 The Trustees Of Princeton University Stacked organic light emitting devices
US6312836B1 (en) * 1998-04-10 2001-11-06 The Trustees Of Princeton University Color-tunable organic light emitting devices
JP2002260859A (ja) * 2001-02-28 2002-09-13 Matsushita Electric Ind Co Ltd 照明装置
US8475624B2 (en) * 2005-09-27 2013-07-02 Lam Research Corporation Method and system for distributing gas for a bevel edge etcher
JP5460107B2 (ja) * 2008-06-20 2014-04-02 キヤノン株式会社 積層型有機発光素子およびそれを有する画像表示装置またはデジタルカメラ
JP5522991B2 (ja) * 2008-07-11 2014-06-18 キヤノン株式会社 有機el表示装置
US8476624B1 (en) * 2012-06-01 2013-07-02 Au Optronics Corporation Organic light emitting diode (OLED) device
US9917281B2 (en) * 2012-09-07 2018-03-13 Nitto Denko Corporation Top-emitting white organic light-emitting diodes having improved efficiency and stability
KR101659121B1 (ko) * 2013-06-28 2016-09-22 제일모직주식회사 Oled용 편광판 및 이를 포함하는 oled 표시장치
CN103682116A (zh) * 2013-12-02 2014-03-26 京东方科技集团股份有限公司 一种oled器件及显示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200607392A (en) * 2004-08-10 2006-02-16 Ind Tech Res Inst Full-color organic electroluminescence device and display panel using the same
CN1983665A (zh) * 2005-12-13 2007-06-20 三星Sdi株式会社 有机发光显示装置
CN101170107A (zh) * 2006-10-24 2008-04-30 富士电机控股株式会社 白色发光有机el元件的制造方法
CN104183743A (zh) * 2013-05-21 2014-12-03 海洋王照明科技股份有限公司 一种双面显示有机电致发光器件及其制备方法
CN104868061A (zh) * 2015-06-04 2015-08-26 京东方科技集团股份有限公司 一种有机电致发光器件及其制备方法、显示装置

Also Published As

Publication number Publication date
US20170141077A1 (en) 2017-05-18
CN104868061A (zh) 2015-08-26
CN104868061B (zh) 2017-07-04

Similar Documents

Publication Publication Date Title
JP4951130B2 (ja) 有機発光素子及びその製造方法
TWI284492B (en) Organic EL device
US10249848B2 (en) Organic light-emitting panel and method for producing same
US11158840B2 (en) Organic light emitting display panel, method for manufacturing the same and display device thereof
US20180226024A1 (en) Oled display device and manufacture method thereof
JP4769068B2 (ja) 有機発光素子及びその製造方法
WO2016123916A1 (zh) 一种显示基板及其制备方法和一种显示设备
WO2016033884A1 (zh) 有机发光二极管显示装置及其制作方法
CN102257649A (zh) 有机电致发光元件
US10319290B2 (en) Electroluminescent device, manufacturing method and driving method thereof, and display device
JP5832809B2 (ja) 有機発光素子
WO2015161584A1 (zh) Oled显示器及其制备方法
JP6089338B2 (ja) 有機el素子及びその製造方法
WO2018072454A1 (zh) 有机发光二极管器件及其制作方法和显示面板
WO2013123779A1 (zh) 多色oled、多色oled单元及显示器件
WO2016192479A1 (zh) 有机电致发光器件及其制备方法、显示装置
JP2013500559A (ja) 電子構成素子ならびに電気コンタクト
JP2006155940A (ja) 調光調色特性を備えた有機el光源装置及び照明装置
WO2019006793A1 (zh) 一种白光oled器件
TWM564831U (zh) 有機電致發光裝置及其電極
CN104157793A (zh) Oled发光器件及其制备方法
KR102113609B1 (ko) 유기 발광 표시 장치 및 그의 제조 방법
KR102023943B1 (ko) 유기 발광 표시 장치 및 그 제조 방법
WO2014084159A1 (ja) 有機el素子及びその製造方法
JP2007257909A (ja) 有機el素子

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15322555

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16802402

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16802402

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 19.04.2018)

122 Ep: pct application non-entry in european phase

Ref document number: 16802402

Country of ref document: EP

Kind code of ref document: A1