WO2018072454A1 - 有机发光二极管器件及其制作方法和显示面板 - Google Patents

有机发光二极管器件及其制作方法和显示面板 Download PDF

Info

Publication number
WO2018072454A1
WO2018072454A1 PCT/CN2017/087182 CN2017087182W WO2018072454A1 WO 2018072454 A1 WO2018072454 A1 WO 2018072454A1 CN 2017087182 W CN2017087182 W CN 2017087182W WO 2018072454 A1 WO2018072454 A1 WO 2018072454A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode layer
layer
organic light
light emitting
emitting diode
Prior art date
Application number
PCT/CN2017/087182
Other languages
English (en)
French (fr)
Inventor
黄磊
许凯
叶志杰
王欣欣
彭锐
贾文斌
Original Assignee
京东方科技集团股份有限公司
合肥鑫晟光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 合肥鑫晟光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/736,330 priority Critical patent/US20190006628A1/en
Priority to JP2017565265A priority patent/JP2019532454A/ja
Publication of WO2018072454A1 publication Critical patent/WO2018072454A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/50OLEDs integrated with light modulating elements, e.g. with electrochromic elements, photochromic elements or liquid crystal elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/858Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/814Anodes combined with auxiliary electrodes, e.g. ITO layer combined with metal lines
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • H10K50/828Transparent cathodes, e.g. comprising thin metal layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/852Arrangements for extracting light from the devices comprising a resonant cavity structure, e.g. Bragg reflector pair
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/879Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8052Cathodes
    • H10K59/80524Transparent cathodes, e.g. comprising thin metal layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/876Arrangements for extracting light from the devices comprising a resonant cavity structure, e.g. Bragg reflector pair

Definitions

  • Embodiments of the present disclosure relate to an organic light emitting diode device, a method of fabricating the same, and a display panel.
  • Organic light-emitting diode devices are favored by people because of their self-illumination, low power consumption, fast response, flexibility, high contrast, wide viewing angle, ultra-thin and low cost.
  • the organic light-emitting diode device can be divided into a bottom emission type organic light emitting diode device, a top emission type organic light emitting diode device, and a two-side emission type light emitting diode device.
  • the bottom emission type organic light emitting diode device refers to an organic light emitting diode device in which light is emitted from one side of the substrate substrate
  • the top emission type organic light emitting diode device refers to an organic light emitting diode device in which light is emitted from the top of the device, and an emission type organic light emitting diode on both sides
  • the device refers to an organic light emitting diode device in which light is simultaneously emitted from one side of the substrate substrate and the top of the device.
  • the existing organic light emitting diode device cannot adjust the output wavelength after the design is completed, and thus the color deviation caused by the aging of the device cannot be improved.
  • Embodiments of the present disclosure provide an organic light emitting diode device including a first electrode layer, a second electrode layer disposed at least partially overlapping the first electrode layer, away from the second electrode layer a third electrode layer, an electro-refractive index changing layer and an organic light-emitting layer, which are disposed on one side of the first electrode layer and at least partially overlap the second electrode layer.
  • An electro-index change layer is disposed between the first electrode layer and the second electrode layer and configured to operate according to a voltage difference between the first electrode layer and the second electrode layer Changing a refractive index of the electro-refractive index changing layer itself; an organic light-emitting layer disposed between the second electrode layer and the third electrode layer, and configured to operate according to the second electrode layer and The voltage difference between the third electrode layers emits light.
  • Embodiments of the present disclosure also provide a display panel including the above-described organic light emitting diode device.
  • Embodiments of the present disclosure also provide a display device including the above display panel.
  • An embodiment of the present disclosure further provides a method of fabricating an organic light emitting diode device, the method comprising: forming a first electrode layer; forming a second electrode layer; and separating the second electrode layer from the first electrode layer Forming a third electrode layer on the side; forming an electro-index change layer between the first electrode layer and the second electrode layer; and forming an organic layer between the second electrode layer and the third electrode layer Light-emitting layer.
  • FIG. 1 is a schematic structural diagram of an organic light emitting diode device according to an embodiment of the present disclosure
  • FIG. 2 is a schematic structural diagram of an organic light emitting diode device according to another embodiment of the present disclosure.
  • FIG. 3 is a schematic structural diagram of a display panel according to still another embodiment of the present disclosure.
  • FIG. 4 is a schematic diagram of a display device according to still another embodiment of the present disclosure.
  • FIG. 5 is a flow chart of a method of fabricating an organic light emitting diode device according to still another embodiment of the present disclosure.
  • Embodiments of the present disclosure provide an organic light emitting diode device, a method for fabricating the same, a display panel, and a display device.
  • the introduction of an electrorefractive index changing layer realizes adjustment of an emission wavelength of the organic light emitting diode device, and reduces or eliminates the device.
  • the color deviation caused by aging is a parameter that influences the color of the organic light emitting diode device.
  • At least one embodiment of the present disclosure provides an organic light emitting diode device including a first electrode layer, a second electrode layer at least partially overlapping the first electrode layer, and at least a portion of the second electrode layer
  • the third electrode layer, the electrorefractive index changing layer, and the organic light emitting layer are disposed overlapping each other.
  • An organic light emitting layer is disposed between the second electrode layer and the third electrode layer, and is configured to emit light according to a voltage difference between the second electrode layer and the third electrode layer during operation;
  • the electrorefractive index changing layer is disposed at Between the first electrode layer and the second electrode layer, and configured to change the refractive index of the electro-refractive index changing layer itself according to a voltage difference between the first electrode layer and the second electrode layer during operation.
  • At least one embodiment of the present disclosure can control an optical cavity length of an organic light emitting diode device by introducing an electrorefractive index changing layer in the organic light emitting diode device and controlling a voltage difference between the first electrode layer and the second electrode layer The optical path of the light in the organic light emitting diode device, thereby controlling and adjusting the wavelength of the light emitted by the organic light emitting diode device.
  • the organic light emitting diode device 100 includes a first electrode layer 111, an electro-refractive index changing layer 120, a second electrode layer 112, an organic light-emitting layer 130, and a third electrode layer 113, which are sequentially disposed, that is, The three electrode layer 113 is disposed on a side of the second electrode layer away from the first electrode layer.
  • the electro-index change layer 120 is configured to change the refractive index of the electro-refractive index-changing layer 120 itself according to a voltage difference applied between the first electrode layer 111 and the second electrode layer 112 during operation; the organic light-emitting layer 130 is configured To emit light according to a voltage difference applied between the second electrode layer 112 and the third electrode layer 113 during operation.
  • the organic light emitting diode device 100 may further include a substrate 110 in order to provide protection, support, and the like.
  • the substrate 110 is, for example, a transparent substrate, which may be a glass substrate, a quartz substrate, a plastic substrate such as a polyethylene terephthalate (PET) substrate, or a substrate made of other suitable materials.
  • PET polyethylene terephthalate
  • the first electrode layer 111, the electro-refractive index changing layer 120, the second electrode layer 112, the organic light-emitting layer 130, and the third electrode layer 113 are sequentially disposed on the substrate, in the structure
  • the electrorefractive index changing layer is closer to the substrate than the organic light emitting layer.
  • the electrorefractive index changing layer is set to be organic relative to The light emitting layer is further away from the substrate, that is, the third electrode layer, the organic light emitting layer, the second electrode layer, the electrorefractive index changing layer, and the first electrode layer are sequentially disposed on the substrate.
  • the organic light-emitting layer 130 when the organic light-emitting layer 130 is subjected to a voltage applied to both sides thereof, electrons and holes are injected into the organic light-emitting layer and compositely form excitons, which can radiate light and emit light.
  • the wavelength depends on the material from which the organic light-emitting layer 130 is formed; for example, the light-emitting intensity of the organic light-emitting layer 130 is related to the magnitude of the current flowing therethrough.
  • the material for fabricating the organic light-emitting layer 130 includes an organic fluorescent light-emitting material or an organic phosphorescent light-emitting material.
  • a luminescent material comprising at least one of materials such as DCM, DCJTB, DCJ, DCJT, etc.
  • the luminescent material can emit red light; comprising C-545T (coumarin), C-545MT, quinacridone (QA)
  • the luminescent material of at least one of materials such as polyaromatic hydrocarbons (PAH) may emit green light; the luminescent material containing at least one of materials such as TBP, DSA-Ph, BD1, BD2 may emit blue light; An organic fluorescent luminescent material containing DCJTB and TBP that emits white light.
  • the luminescent material comprising at least one of PtOEP, Btp 2 Ir(acac), Ir(piq) 2 (acac) and the like may emit red light; including Ir(ppy) 3 , Ir(mppy) 3
  • the luminescent material of at least one of (ppy) 2 Ir(acac) and the like may emit green light; the luminescent material containing at least one of materials such as FIrpic, FIRtaz, FIrN4 and the like may emit blue light.
  • the material of the electro-refractive index changing layer 120 may be a transparent material in which the refractive index of the material changes under the action of an applied electric field.
  • the electro-refractive index changing layer 120 is subjected to an applied electric field, its own refractive index changes, and the optical path of the light transmitted through the electro-refractive index changing layer 120 is changed accordingly, thereby achieving the
  • the tuning of the optical path of the light transmitted by the electro-index change layer 120 effects the adjustment of the wavelength of the light transmitted through the electro-refractive index changing layer 120, reducing or eliminating color deviation due to device aging.
  • optical path tuning by changing the refractive index can avoid mechanical motion during optical path tuning and tuning frequency limitation caused by mechanical motion, thereby improving correlation.
  • the material for fabricating the electro-index change layer 120 may be at least one of an electro-optic ceramic material, an organic electro-optic material, and an electro-optic crystal material.
  • Electro-optic ceramic materials may be selected from lead magnesium niobate (PMN)-lead titanate (PT) or other suitable materials; organic electro-optic materials may be selected from potassium dihydrogen phosphate (DKDP), dihydrogen phosphate (ADP) or other suitable materials.
  • the material of the electro-optical crystal material may be a lithium niobate crystal (LN) or a strontium strontium (LT) crystal.
  • Electrorefractive index change The layer 120 may be required according to the electro-optic coefficient of the electro-optic index change layer 120 of the organic light-emitting diode device 100 (ie, the ratio of the applied electric field to the refractive index change of the electro-refractive index change layer), the transmittance requirement, and the response speed (ie, the tuning frequency). ) requirements and other factors to choose.
  • a suitable fabrication process such as evaporation, coating, or chemical vapor deposition may be selected according to the material of the electro-refractive index-changing layer 120.
  • the second electrode layer 112 is an anode electrode layer of the organic light emitting diode device 100, and the light emitted by the organic light emitting layer 130 needs to pass through the second electrode layer 112. Therefore, the anode material of the second electrode layer 112 needs to have good electrical conductivity. And the light emitted from the organic light-emitting layer 130 has a high transmittance, that is, the second electrode layer 112 needs to be a transparent conductive layer.
  • the material of the second electrode layer 112 may be selected from a material having a high work function.
  • the second electrode layer 112 may be made of indium tin oxide (ITO), indium zinc oxide (IZO), zinc oxide (ZnO), zinc aluminum oxide (AZO), or other suitable materials.
  • the second electrode layer 112 can be formed by sputtering, chemical vapor deposition, laser pulse spraying, ion beam assisted deposition or other suitable methods.
  • the specific manufacturing method can be based on the material of the second electrode layer 112, the material of the transparent substrate, and the process. Choose factors such as compatibility.
  • the organic light-emitting diode device at this time is referred to as a top emission type organic light emitting diode device; light emitted from the organic light emitting layer may also be emitted through the first electrode layer.
  • the organic light emitting diode device is called a bottom emission type organic light emitting diode device; the light emitted from the organic light emitting layer can also be emitted through the first electrode layer and the third electrode layer, and the organic light emitting diode device at this time is called both sides emitting Type organic light emitting diode device.
  • the third electrode layer 113 is a cathode electrode layer of the organic light emitting diode device 100, thereby fabricating a third electrode layer
  • the material of 113 needs to have good electrical conductivity and high transmittance to light emitted from the organic light-emitting layer 130, that is, the third electrode layer 113 needs to be a transparent conductive layer.
  • the third electrode layer 113 may be a transparent alloy material (for example, Mg:Ag or Ca:Ag), a transparent conductive oxide material (for example, ITO or AZO), a combination of a transparent alloy material and a transparent conductive oxide material (for example, , Mg: Ag / ITO) or made of other suitable materials. Since the light is emitted through the third electrode layer 113, in order to enhance the organic hair For the efficiency of the photodiode device 100, the material for fabricating the first electrode layer 111 may be a material having high reflectance (for example, Al, Ag, Au, Ni, or Pt) to the light emitted from the organic light-emitting layer 130, or otherwise formed separately. Reflective layer.
  • a transparent alloy material for example, Mg:Ag or Ca:Ag
  • a transparent conductive oxide material for example, ITO or AZO
  • a combination of a transparent alloy material and a transparent conductive oxide material for example, Mg: Ag / ITO
  • the top emission type organic light-emitting diode device 100 may further include a cover.
  • the layer 140 is disposed on a side of the third electrode layer 113 away from the second electrode layer 112.
  • the cover layer 140 may be an inorganic cover layer or an organic cover layer.
  • the inorganic cover layer may be composed of a glass substrate, a microlens layer or a scattering layer which is roughened by an upper surface (a side in contact with an external environment such as air).
  • the organic cover layer may be composed of an organic small molecule Alq film.
  • the cover layer 140 may also function to protect the third electrode layer 113.
  • the substrate 110 may also be an opaque substrate.
  • the light emitted from the organic light emitting layer 130 is emitted through the first electrode layer 111, so that the material for fabricating the first electrode layer 111 needs to have good electrical conductivity and emit light to the organic light emitting layer 130.
  • the light has a high transmittance, that is, the first electrode layer 111 needs to be a transparent conductive layer.
  • the first electrode layer 111 may be made of a transparent conductive glass material, a transparent conductive oxide material, a transparent alloy material, or other suitable materials.
  • the third electrode layer 113 is a cathode electrode layer of the organic light emitting diode device 100, and the material for fabricating the third electrode layer 113 needs to have good electrical conductivity.
  • the material for fabricating the third electrode layer 113 may be a material having high reflectance to the light emitted from the organic light emitting layer 130 (for example, metal or metal). Alloy), or prepare a separate reflective layer.
  • the material for fabricating the third electrode layer 113 may select a material having a low work function.
  • the third electrode layer 113 may be made of Ca, Li, MgAg (90% Mg), LiAl (0.6% Li), or other suitable materials.
  • the materials for fabricating the first electrode layer 111 and the third electrode layer 113 are required to have good electrical conductivity and have good transmittance to the light emitted from the organic light-emitting layer 130, that is, the first electrode layer 111 and the third electrode layer 113. All Need to be a transparent conductive layer.
  • the first electrode layer 111 may be made of a transparent conductive glass material, a transparent conductive oxide material, a transparent alloy material, or other suitable materials.
  • the third electrode layer 113 may be a transparent alloy material (for example, Mg:Ag or Ca:Ag), a transparent conductive oxide material (for example, ITO or AZO), a combination of a transparent alloy material and a transparent conductive oxide material (for example, , Mg: Ag / ITO) or made of other suitable materials.
  • a transparent alloy material for example, Mg:Ag or Ca:Ag
  • a transparent conductive oxide material for example, ITO or AZO
  • a combination of a transparent alloy material and a transparent conductive oxide material for example, Mg: Ag / ITO
  • the second electrode layer 112 is an anode electrode layer
  • the third electrode layer 113 is a cathode electrode layer
  • the second electrode layer 112 and the third electrode layer 113 can be used to apply a voltage to the organic light emitting layer 130.
  • the organic light emitting layer 130 emits light according to a voltage difference between the second electrode layer 112 and the third electrode layer 113. Since the first electrode layer 111 and the third electrode layer 113 have a certain reflectance to the light emitted from the organic light-emitting layer 130, the organic light-emitting diode device 100 has a resonant cavity effect.
  • the cavity effect mainly means that the photon densities of different energy states are redistributed, so that the output light of the cavity is a specific wavelength ⁇ according to the cavity mode.
  • the electrorefractive index changing layer 120 is located in a resonant cavity formed by the first electrode layer 111 and the third electrode layer 113.
  • the first electrode layer 111 and the second electrode layer 112 may be used to apply a voltage to the electro-refractive index changing layer 120, and the electro-index change layer 120 may be adjusted according to a voltage difference between the first electrode layer 111 and the second electrode layer 112.
  • the refractive index of itself which in turn regulates the optical path of the light in the resonant cavity.
  • the organic light emitting diode device can be realized.
  • the tuning of the output wavelength of 100 enables adjustment of the wavelength of light transmitted through the electro-refractive indexing layer 120, reducing or eliminating color deviation due to device aging.
  • optical path tuning by changing the refractive index can avoid mechanical motion during optical path tuning and tuning frequency limitation caused by mechanical motion, thereby enhancing organic
  • the stability and tuning frequency of LED device 100 during optical path and output wavelength tuning can also narrow the full width at half maximum (FWMH) of the output light wave, thereby improving the color gamut of the display device based on the OLED device 100 and the image quality of the displayed image.
  • the organic light emitting diode device 200 has a first electrode layer 211, an electrorefractive index changing layer 220, a second electrode layer 212, and organic light emission, as compared with the organic light emitting diode device 100 shown in FIG.
  • the layer 230 and the third electrode layer 213 may further have one or more of a hole transport layer 252, an electron transport layer 262, a hole injection layer 251, and an electron injection layer 261.
  • the organic light emitting diode device 200 may further include a transparent substrate 210 in order to provide protection, support, and the like.
  • the top emission type organic light-emitting diode device 200 may further include a cover.
  • the optical cavity length of the organic light emitting diode device 200 and the light in the organic light emitting diode device 200 can be controlled.
  • the process further controls and adjusts the wavelength of the light emitted by the organic light emitting diode device 200.
  • the first electrode layer 211, the electro-refractive index changing layer 220, the second electrode layer 212, the organic light-emitting layer 230, the third electrode layer 213, the transparent substrate 210, and the cover layer 240 in this embodiment are organic as shown in FIG.
  • the LED device 200 is the same and will not be described herein.
  • the hole transport layer 252, the electron transport layer 262, the hole injection layer 251, and the electron injection layer 261 will be described below with reference to FIG.
  • the hole transport layer 252 and/or the hole injection layer 251 are disposed between the second electrode layer 212 and the organic light-emitting layer 230, and if both the hole transport layer 252 and the hole injection layer 251 are disposed, the hole transport layer 252 is disposed between the hole injection layer 251 and the organic light-emitting layer 230.
  • the electron transport layer 262 and/or the electron injection layer 261 are disposed between the third electrode layer 213 and the organic light emitting layer 230. If both the electron transport layer 262 and the electron injection layer 261 are disposed, the electron transport layer 262 is disposed at the electron injection layer 261. Between and the organic light emitting layer 230.
  • the hole transport layer 252 can be made of a material having high hole mobility, relatively small electron affinity, relatively low ionization energy, and high heat stability.
  • hole transport layer 252 can be made of TPD, NPB, m-MTDATA, or other suitable materials.
  • the electron transport layer 262 may be selected from materials having strong electron accepting ability and capable of efficiently transmitting electrons under forward bias.
  • the electron transport layer 262 can be made of BND, OXD, TAZ, or other suitable materials.
  • the hole injection layer 251 may select a material in which the HOMO (highest occupied molecular orbital) energy level is the closest match to the work function of the second electrode layer 212.
  • the hole injection layer 251 may be CuPc (yttrium copper), TNATA, PEDOT (PEDT: PSS) or other suitable Made of materials.
  • the electron injection layer 261 is configured to assist in injecting electrons from the cathode into the organic layer, and by using an electron injecting material, the cathode can be made using a corrosion-resistant high work function metal (for example, Al, Ag).
  • the electron injection layer 261 may be made of lithium oxide, lithium boron oxide, potassium oxychloride or other suitable materials.
  • the hole transport layer 252, the electron transport layer 262, the hole injection layer 251, or the electron injection layer 261 can enhance the effect of electron or hole injection into the organic light emitting layer 230, thereby improving the performance of the organic light emitting diode device 200.
  • the display panel 10 includes the above-described organic light emitting diode device 100 or organic light emitting diode device 200.
  • the display panel 10 is exemplified below by including the organic light emitting diode device 100.
  • the display panel 10 includes a plurality of sub-pixels 300 disposed in at least a portion of the sub-pixels 300.
  • the display panel 10 may further include a voltage control circuit 400 configured to apply a first voltage to the first electrode layer 111 and a second voltage to the second electrode layer 112.
  • the display panel 10 may further include a display driving circuit 500 configured to apply a third voltage to the third electrode layer 113.
  • the display panel 10 controls the optical cavity length of the organic light emitting diode device 100 and the light in the organic light emitting diode by introducing a refractive index change layer so that the voltage difference between the first electrode layer 111 and the second electrode layer 112 can be controlled.
  • the optical path in the device 100 and the control and adjustment of the illumination wavelength of the organic light emitting diode device 100 are realized, thereby improving the color gamut of the display panel 10 and the image quality of the displayed image.
  • a further embodiment of the present disclosure provides a display device 20, as shown in FIG. 4, the display device 20 includes a display panel 10, which is a display panel 10 according to any of the embodiments of the present disclosure.
  • the display device 20 can be any product or component having a display function, such as a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame, a navigator, and the like.
  • a display function such as a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame, a navigator, and the like.
  • the display device 20 can control and adjust the illumination wavelength of the organic light emitting diode device by introducing the electro-refractive index changing layer, thereby improving the color gamut of the display device and the image quality of the displayed image.
  • another embodiment of the present disclosure provides a method for fabricating an organic light emitting diode device.
  • the manufacturing method may include the following step:
  • Step S10 forming a first electrode layer
  • Step S20 forming an electro-refractive index changing layer on the first electrode layer
  • Step S30 forming a second electrode layer on the electro-refractive index changing layer
  • Step S40 forming an organic light-emitting layer on the second electrode layer
  • Step S50 forming a third electrode layer on the organic light-emitting layer (ie, forming a third electrode layer on a side of the second electrode layer away from the first electrode layer).
  • the manufacturing method may also include the following steps:
  • Step S110 forming a third electrode layer
  • Step S120 forming an organic light-emitting layer on the third electrode layer
  • Step S130 forming a second electrode layer on the organic light emitting layer
  • Step S140 forming an electro-refractive index changing layer on the second electrode layer
  • Step S150 forming a first electrode layer on the electrorefractive index changing layer.
  • the organic light emitting diode device may be formed on a transparent substrate.
  • the third electrode may be A cover layer is formed on a side of the layer remote from the second electrode layer.
  • the first electrode layer, the electro-refractive index change layer, the second electrode layer, and the organic light-emitting layer may be selected according to the type of the organic light-emitting diode device (for example, a bottom emission type, a top emission type, or a two-side emission type).
  • the material of the third electrode layer, the transparent substrate, and the cover layer may be made to the above, and details are not described herein again.
  • the method for fabricating the organic light emitting diode device provided by the embodiment of the present disclosure may further include forming a hole transport layer and forming an electron transport, as compared with the case illustrated in FIG. A layer, a hole injecting layer, and an electron injecting layer are formed.
  • the organic light emitting diode device can change the optical path of the organic light emitting diode device by controlling the voltage difference between the first electrode layer and the second electrode layer by introducing an electrorefractive index changing layer, thereby realizing the organic light emitting diode device. Tuning of the output wavelength.
  • the length of the way to achieve optical path tuning by changing the refractive index to achieve optical path tuning can avoid the mechanical motion during the optical path tuning, as well as the tuning frequency limit caused by mechanical motion, thereby improving the organic light-emitting diode device in the light Stability and tuning frequency during process and output wavelength tuning.
  • the cavity effect can also narrow the full width at half maximum (FWMH) of the output light wave, thereby improving the color gamut of the display device based on the organic light emitting diode device and the image quality of the displayed image.
  • FWMH full width at half maximum
  • Embodiments of the present disclosure provide an organic light emitting diode device, a method of fabricating the same, a display panel, and a display device.
  • the introduction of an electro-refractive index changing layer realizes adjustment of an emission wavelength of an organic light emitting diode device, thereby realizing The adjustment of the wavelength of the light transmitted by the refractive index changing layer reduces or eliminates color deviation due to aging of the device.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种有机发光二极管器件(100)及其制作方法和显示面板(10)。该有机发光二极管器件(100)包括第一电极层(111),与第一电极层(111)至少部分交叠设置的第二电极层(112),在第二电极层(112)远离第一电极层(111)的一侧并与第二电极层(112)至少部分交叠设置的第三电极层(113),电致折射率变化层(120)和有机发光层(130)。电致折射率变化层(120)设置在第一电极层(111)和第二电极层(112)之间,并被配置为在工作时根据第一电极层(111)和第二电极层(112)之间的电压差改变电致折射率变化层(120)自身的折射率;有机发光层(130)设置在第二电极层(112)和第三电极层(113)之间,并被配置为在工作时根据第二电极层(112)和第三电极层(113)之间的电压差发光。该有机发光二极管器件(100)通过引入电致折射率变化层(120)实现了对有机发光二极管器件(100)发光波长的调节,减少或消除了因器件老化而造成的颜色偏离。

Description

有机发光二极管器件及其制作方法和显示面板 技术领域
本公开的实施例涉及一种有机发光二极管器件及其制作方法和显示面板。
背景技术
由于具备自发光、功耗小、响应快、可弯曲、对比度高、视角广、超轻薄和成本低等优点,有机发光二极管器件倍受人们的青睐。
按照出光方向,有机发光二极管器件可以划分为底发射型有机发光二极管器件、顶发射形有机发光二极管器件和两侧发射型发光二极管器件。底发射型有机发光二极管器件是指光线从衬底基板一侧射出的有机发光二极管器件,顶发射型有机发光二极管器件是指光线从器件顶部射出的有机发光二极管器件,两侧发射型有机发光二极管器件是指光线同时从衬底基板一侧和器件顶部射出的有机发光二极管器件。然而,现有的有机发光二极管器件在设计完成后无法调节输出波长,因此无法改善因器件老化引起的颜色偏离问题。
发明内容
本公开的实施例提供一种有机发光二极管器件,该有机发光二极管器件包括第一电极层,与所述第一电极层至少部分交叠设置的第二电极层,在所述第二电极层远离所述第一电极层的一侧并与所述第二电极层至少部分交叠设置的第三电极层,电致折射率变化层和有机发光层。电致折射率变化层设置在所述第一电极层和所述第二电极层之间,并被配置为在工作时根据所述第一电极层和所述第二电极层之间的电压差改变所述电致折射率变化层自身的折射率;有机发光层设置在所述第二电极层和所述第三电极层之间,并被配置为在工作时根据所述第二电极层和所述第三电极层之间的电压差发光。
本公开的实施例还提供一种显示面板,该显示面板包括上述的有机发光二极管器件。
本公开的实施例还提供一种显示设备,该显示设备包括上述的显示面板。
本公开的实施例还提供一种有机发光二极管器件的制作方法,该制作方法包括:形成第一电极层;形成第二电极层;在所述第二电极层远离所述第一电极层的一侧形成第三电极层;在所述第一电极层和所述第二电极层之间形成电致折射率变化层;以及在所述第二电极层和所述第三电极层之间形成有机发光层。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例或相关技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例,并非对本公开的限制。
图1是本公开一个实施例提供的有机发光二极管器件的结构示意图;
图2是本公开另一个实施例提供的有机发光二极管器件的结构示意图;
图3是本公开再一个实施例提供的显示面板的结构示意图;
图4是本公开再一个实施例提供的显示设备的示意图;以及
图5是本公开再一个实施例提供的有机发光二极管器件的制作方法的流程图。
具体实施方式
下面将结合附图,对本公开实施例中的技术方案进行清楚、完整地描述参考在附图中示出并在以下描述中详述的非限制性示例实施例,更加全面地说明本公开的示例实施例和它们的多种特征及有利细节。应注意的是,图中示出的特征不是必须按照比例绘制。本公开省略了已知材料、组件和工艺技术的描述,从而不使本公开的示例实施例模糊。所给出的示例仅旨在有利于理解本公开示例实施例的实施,以及进一步使本领域技术人员能够实施示例实施例。因而,这些示例不应被理解为对本公开的实施例的范围的限制。
除非另外特别定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。此外,在本公开各个实施例中,相同或类似的参考标号表示相同或类似的构件。
本公开的实施例提供了一种有机发光二极管器件及其制作方法、显示面板和显示设备,通过引入电致折射率变化层实现了对有机发光二极管器件发光波长的调节,减少或消除了因器件老化而造成的颜色偏离。
本公开的至少一个实施例提供了一种有机发光二极管器件,该有机发光二极管器件包括第一电极层、与第一电极层至少部分交叠设置的第二电极层、与第二电极层至少部分交叠设置的第三电极层、电致折射率变化层和有机发光层。有机发光层设置在该第二电极层和第三电极层之间,并且被配置为在工作时根据第二电极层和第三电极层之间的电压差发光;电致折射率变化层设置在第一电极层和第二电极层之间,并且被配置为在工作时根据第一电极层和第二电极层之间的电压差改变电致折射率变化层自身的折射率。
本公开的至少一个实施例通过在有机发光二极管器件中引入电致折射率变化层,并且控制第一电极层和第二电极层之间的电压差,可以控制有机发光二极管器件的光学腔长以及光线在有机发光二极管器件中的光程,进而实现对有机发光二极管器件发光波长的控制和调节。
例如,本公开一个实施例提供了一种有机发光二极管器件100。如图1所示,该有机发光二极管器件100包括顺次设置的第一电极层111、电致折射率变化层120、第二电极层112、有机发光层130和第三电极层113,即第三电极层113设置在所述第二电极层远离所述第一电极层的一侧。电致折射率变化层120被配置为在工作时根据第一电极层111和第二电极层112之间施加的电压差改变电致折射率变化层120自身的折射率;有机发光层130被配置为在工作时根据第二电极层112和第三电极层113之间施加的电压差发光。
例如,为了提供保护、支撑等作用,该有机发光二极管器件100还可以包括基板110。基板110例如为透明基板,透明基板可以是玻璃基板、石英基板、塑料基板(例如聚对苯二甲酸乙二醇酯(PET)基板)或者由其它适合的材料制成的基板。
在图1所示的实施例中,第一电极层111、电致折射率变化层120、第二电极层112、有机发光层130和第三电极层113顺次设置在基板上,该结构中电致折射率变化层相对于有机发光层更靠近基板。但是本公开的实施例不限于此,例如,在另一个实施例中,将电致折射率变化层设置得相对于有机 发光层更远离基板,也即,第三电极层、有机发光层、第二电极层、电致折射率变化层和第一电极层顺次设置在基板上。
例如,有机发光层130在受到施加在其两侧的电压作用时,电子和空穴会被注入到该有机发光层中并且复合形成激子,该激子可以会辐射发出光线,并且发出光线的波长取决于制作有机发光层130的材料;例如,有机发光层130的发光强度与流经的电流大小相关。制作有机发光层130的材料包括有机荧光发光材料或者有机磷光发光材料。例如,对于有机荧光发光材料,包含DCM、DCJTB、DCJ、DCJT等材料中至少一种的发光材料可以发出红光;包含C-545T(香豆素)、C-545MT、喹吖啶酮(QA)、多芳香族碳氢化合物(PAH)等材料中至少一种的发光材料可以发出绿光;包含TBP、DSA-Ph、BD1、BD2等材料中至少一种的发光材料可以发出蓝光;对于同时包含DCJTB和TBP的有机荧光发光材料,可以发出白光。对于有机磷光发光材料,包含PtOEP、Btp2Ir(acac)、Ir(piq)2(acac)等材料中至少一种的发光材料可以发出红光;包含Ir(ppy)3、Ir(mppy)3、(ppy)2Ir(acac)等材料中至少一种的发光材料可以发出绿光;包含FIrpic、FIrtaz、FIrN4等材料中至少一种的发光材料可以发出蓝光。
例如,电致折射率变化层120的材料可以选用在外加电场作用下,材料的折射率发生变化的透明材料。电致折射率变化层120受到外加电场作用时,其自身的折射率发生改变,并导致了经由该电致折射率变化层120传输的光线的光程随之发生改变,从而实现了对经由该电致折射率变化层120传输的光线的光程的调谐,进而实现对经由该电致折射率变化层120传输的光线的波长的调节,减少或消除了因器件老化而造成的颜色偏离。相比于通过改变物理长度的方式来实现光程调谐,通过改变折射率的方式来实现光程调谐可以避免光程调谐过程中的机械运动,以及机械运动引起的调谐频率限制,进而提升了相关器件在光程调谐过程中的稳定性和调谐频率。
例如,制作电致折射率变化层120的材料可以是电光陶瓷材料、有机电光材料和电光晶体材料中的至少一种。电光陶瓷材料可以选用铌镁酸铅(PMN)-钛酸铅(PT)或者其它适合的材料;有机电光材料可以选用氛化磷酸二氢钾(DKDP)、磷酸二氢胺(ADP)或者其它适合的材料;电光晶体材料可以选用铌酸锂晶体(LN)和钮酸锉(LT)晶体。电致折射率变化 层120可以根据有机发光二极管器件100对电致折射率变化层120的电光系数(即外加电场与电致折射率变化层折射率变化的比例)要求、透过率要求、响应速度(即调谐频率)要求以及其它因素进行选择。在具体形成电致折射率变化层120时,可根据电致折射率变化层120的材料选择合适的制作工艺,例如蒸镀、涂布或者化学气相沉积。
例如,第二电极层112是有机发光二极管器件100的阳极电极层,有机发光层130发出的光线需要透过第二电极层112,因此制作第二电极层112的阳极材料需要具有良好的导电性能以及对有机发光层130发出的光线具有高透射率,即第二电极层112需要是一种透明导电层。为了提升空穴注入有机发光层130的效果以及有机发光二极管器件100的性能,制作该第二电极层112的材料可以选择高功函数的材料。例如,第二电极层112可以采用氧化铟锡(ITO)、氧化铟锌(IZO)、氧化锌(ZnO)、氧化锌铝(AZO)或者由其它适合的材料制成。第二电极层112可以采用溅渡、化学气相沉积、激光脉冲溶射、离子束辅助沉积或者其它合适的方法制作,具体的制作方法可以根据第二电极层112的制作材料、透明基板的材料、工艺兼容性等因素进行选择。
例如,有机发光层发出的光线可以经由第三电极层出射,此时的有机发光二极管器件被称为顶发射型有机发光二极管器件;有机发光层发出的光线也可以经由第一电极层出射,此时的有机发光二极管器件被称为底发射型有机发光二极管器件;有机发光层发出的光线还可以经由第一电极层和第三电极层出射,此时的有机发光二极管器件被称为两侧发射型有机发光二极管器件。
例如,对于顶发射型有机发光二极管器件100,有机发光层130发出的光线经由第三电极层113出射,并且第三电极层113是有机发光二极管器件100的阴极电极层,因此制作第三电极层113的材料需要具有良好的导电性能以及对有机发光层130发出的光线具有高透射率,即第三电极层113需要是一种透明导电层。例如,第三电极层113可以采用透明合金材料(例如,Mg:Ag或者Ca:Ag)、透明导电氧化物材料(例如,ITO或者AZO)、透明合金材料与透明导电氧化物材料的组合(例如,Mg:Ag/ITO)或者由其它适合的材料制成。由于光线经由第三电极层113出射,为了提升有机发 光二极管器件100的效率,制作第一电极层111的材料可以选用对有机发光层130发出的光线具有高反射率的材料(例如,Al、Ag、Au、Ni或Pt),或者另外形成单独的反射层。
例如,为了降低有机发光层130发出的光线在出射时(出射面与外界环境介质例如空气形成的界面)的全反射,增加光的导出,对于顶发射型有机发光二极管器件100,还可以包括覆盖层140,覆盖层140设置在第三电极层113上远离第二电极层112的一侧。覆盖层140可以是无机覆盖层,也可以是有机覆盖层。例如,无机覆盖层可以是由上表面(与外界环境例如空气接触的一侧)粗糙的玻璃基板、微透镜层或者散射层构成。有机覆盖层可以是由有机小分子Alq薄膜构成。例如,覆盖层140还可以起到保护第三电极层113的作用。
例如,对于顶发射型有机发光二极管器件100,基板110也可以是不透明的基板。
例如,对于底发射型有机发光二极管器件100,有机发光层130发出的光线经由第一电极层111出射,因此制作第一电极层111的材料需要具有良好的导电性能以及对有机发光层130发出的光线具有高透射率,即第一电极层111需要是一种透明导电层。例如,第一电极层111可以采用透明导电玻璃材料、透明导电氧化物材料、透明合金材料或者由其它适合的材料制成。第三电极层113是有机发光二极管器件100的阴极电极层,制作第三电极层113的材料需要具有良好的导电性能。由于光线经由第一电极层111出射,为了提升有机发光二极管器件100的效率,制作第三电极层113的材料可以选用对有机发光层130发出的光线具有高反射率的材料(例如,金属或金属合金),或者制备单独的反射层。为了提升电子注入有机发光层130的效果以及有机发光二极管器件100的性能,制作该第三电极层113的材料可以选择低功函数的材料。例如,第三电极层113可以采用Ca、Li、MgAg(90%Mg)、LiAl(0.6%Li)或者由其它适合的材料制成。
例如,对于两侧发射型有机发光二极管器件100,有机发光层130发出的光线经由第一电极层111和第三电极层113出射。因此,制作第一电极层111和第三电极层113的材料均需要具有良好的导电性能以及对有机发光层130发出的光线具有良好的透射率,即第一电极层111和第三电极层113均 需要是透明导电层。例如,第一电极层111可以采用透明导电玻璃材料、透明导电氧化物材料、透明合金材料或者由其它适合的材料制成。例如,第三电极层113可以采用透明合金材料(例如,Mg:Ag或者Ca:Ag)、透明导电氧化物材料(例如,ITO或者AZO)、透明合金材料与透明导电氧化物材料的组合(例如,Mg:Ag/ITO)或者由其它适合的材料制成。
下面结合图1阐述该有机发光二极管器件100的工作原理。例如,对于该有机发光二极管器件100,第二电极层112是阳极电极层,第三电极层113是阴极电极层,第二电极层112和第三电极层113可用于对有机发光层130施加电压,有机发光层130根据第二电极层112和第三电极层113之间的电压差发光。由于第一电极层111和第三电极层113对有机发光层130发出的光线具有一定的反射率,有机发光二极管器件100存在着共振腔效应。共振腔效应主要是指不同能态的光子密度被重新分配,使得共振腔的输出光线为符合共振腔模式的特定波长λ。对于垂直于出射面的光线,输出光线的波长λ需要满足2Δ=mλ(m=1,2,3,……),其中Δ为光程,光程等于介质折射率乘以光在介质中传播的距离乘以介质的折射率。因此,当共振腔的光程改变时,共振腔的输出光线的波长将随之发生改变。对于该有机发光二极管器件100,电致折射率变化层120位于第一电极层111和第三电极层113形成的共振腔中。第一电极层111和第二电极层112可用于对电致折射率变化层120施加电压,电致折射率变化层120可以根据第一电极层111和第二电极层112之间的电压差调节自身的折射率,进而调节光线在共振腔中的光程。因此,通过控制第一电极层111和第二电极层112之间的电压差改变有机发光二极管器件100的光学腔长以及光线在有机发光二极管器件100中的光程,可以实现对有机发光二极管器件100的输出波长的调谐,进而实现对经由该电致折射率变化层120传输的光线的波长的调节,减少或消除了因器件老化而造成的颜色偏离。相比于通过改变物理长度的方式来实现光程调谐,通过改变折射率的方式来实现光程调谐可以避免光程调谐过程中的机械运动,以及机械运动引起的调谐频率限制,进而提升了有机发光二极管器件100在光程和输出波长调谐过程中的稳定性和调谐频率。此外,共振腔效应还能够使得输出光波的半高宽(FWMH)变窄,进而可以提升基于有机发光二极管器件100的显示设备的色域及其显示图像的画质。
例如,本公开另一个实施例提供了一种有机发光二极管器件200。如图2所示,与图1所示的有机发光二极管器件100相比,该有机发光二极管器件200除了具有第一电极层211、电致折射率变化层220、第二电极层212、有机发光层230和第三电极层213外,还可以具有空穴传输层252、电子传输层262、空穴注入层251、电子注入层261的一种或多种。例如,为了提供保护、支撑等作用,该有机发光二极管器件200还可以包括透明基板210。例如,为了降低有机发光层230发出的光线在出射时(出射面与外界环境介质例如空气形成的界面)的全反射,增加光的导出,对于顶发射型有机发光二极管器件200,还可以包括覆盖层240。
通过引入电致折射率变化层220并且控制第一电极层211和第二电极层212之间的电压差,可以控制有机发光二极管器件200的光学腔长以及光线在有机发光二极管器件200中的光程,进而实现对有机发光二极管器件200发光波长的控制和调节。
本实施例中的第一电极层211、电致折射率变化层220、第二电极层212、有机发光层230、第三电极层213、透明基板210、覆盖层240与图1所示的有机发光二极管器件200相同,在此不再赘述。下面结合图2对空穴传输层252、电子传输层262、空穴注入层251、电子注入层261进行阐述。
例如,空穴传输层252和/或空穴注入层251设置在第二电极层212和有机发光层230之间,如果空穴传输层252和空穴注入层251均有设置,空穴传输层252设置在空穴注入层251和有机发光层230之间。电子传输层262和/或电子注入层261设置在第三电极层213和有机发光层230之间,如果电子传输层262和电子注入层261均有设置,电子传输层262设置在电子注入层261和有机发光层230之间。例如,空穴传输层252可选用高空穴迁移率、相对较小的电子亲和能、相对较低的电离能、高耐热稳定性的材料制成。例如,空穴传输层252可由TPD、NPB、m-MTDATA或者其它合适的材料制成。例如,电子传输层262可选用具有较强的电子接受能力、在正向偏压下能够有效传递电子的材料。例如,电子传输层262可由BND、OXD、TAZ或者其它合适的材料制成。例如,空穴注入层251可选用HOMO(最高占据分子轨道)能级与第二电极层212功函数最匹配的材料。例如,空穴注入层251可由CuPc(酞箐铜)、TNATA、PEDOT(PEDT:PSS)或者其它合适 的材料制成。例如,电子注入层261被配置成帮助电子从阴极注入有机层,通过采用电子注入材料,可以使阴极能够使用抗腐蚀的高功函数金属(例如,Al,Ag)制成。例如,电子注入层261可由氧化锂、氧化锂硼、硅氧化钾或者其它合适的材料制成。空穴传输层252、电子传输层262、空穴注入层251或电子注入层261可以提升电子或空穴注入有机发光层230的效果,进而提升有机发光二极管器件200的性能。
例如,本公开再一个实施例提供了一种显示面板。该显示面板10包括上述的有机发光二极管器件100或有机发光二极管器件200,下面以包含有机发光二极管器件100为例阐述该显示面板10。如图3所示,该显示面板10包括多个子像素300,有机发光二极管器件设置在至少部分子像素300中。该显示面板10还可包括电压控制电路400,电压控制电路400被配置为向该第一电极层111施加第一电压,以及向该第二电极层112施加第二电压。该显示面板10还可包括显示驱动电路500,显示驱动电路500被配置为向该第三电极层113施加第三电压。尽管图3中的电压控制电路400和显示驱动电路500是分开设置的,但是电压控制电路400和显示驱动电路500还可以设置在一起,即整合成一个统一的电路。该显示面板10通过引入电致折射率变化层,使得可以通过控制第一电极层111和第二电极层112之间的电压差,控制有机发光二极管器件100的光学腔长以及光线在有机发光二极管器件100中的光程,并实现对有机发光二极管器件100发光波长的控制和调节,进而可以提升显示面板10的色域及其显示图像的画质。
本公开的再一个实施例的提供了一种显示设备20,如图4所示,该显示设备20包括显示面板10,显示面板10为本公开任一实施例所述的显示面板10。
例如,该显示设备20可以为:手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。
需要说明的是,对于该显示设备20的其它必不可少的组成部分均为本领域的普通技术人员应该理解具有的,在此不做赘述,也不应作为对本发明的限制。该显示设备20通过引入电致折射率变化层可以实现对有机发光二极管器件发光波长的控制和调节,进而可以提升显示设备的色域及其显示图像的画质。
例如,基于同一发明构思,本公开实施例再一个实施例提供了一种有机发光二极管器件的制作方法,以图1所示出的情形为例,如图5所示,该制作方法可以包括以下步骤:
步骤S10:形成第一电极层;
步骤S20:在第一电极层上形成电致折射率变化层;
步骤S30:在电致折射率变化层上形成第二电极层;
步骤S40:在第二电极层形成有机发光层;
步骤S50:在有机发光层上形成第三电极层(即在所述第二电极层远离所述第一电极层的一侧形成第三电极层)。
在另一个实施例中,该制作方法也可以包括以下的步骤:
步骤S110:形成第三电极层;
步骤S120:在第三电极层上形成有机发光层;
步骤S130:在有机发光层上形成第二电极层;
步骤S140:在第二电极层形成电致折射率变化层;
步骤S150:在电致折射率变化层上形成第一电极层。
例如,为了提供保护、支撑等作用,该有机发光二极管器件可以形成在透明基板上。
例如,为了降低有机发光层发出的光线在出射时(出射面与外界环境介质例如空气形成的界面)的全反射,增加光的导出,对于顶发射型有机发光二极管器件,还可以在第三电极层上远离该第二电极层的一侧形成覆盖层。
在本实施例中,可以根据有机发光二极管器件的类型(例如底发射型、顶发射型或两侧发射型)选择第一电极层、电致折射率变化层、第二电极层、有机发光层、第三电极层、透明基板、覆盖层的材料。对此,可参考上文,在此不再赘述。
例如,以图2所示出的情形为例,相比于以图1所示出的情形,本公开实施例提供的有机发光二极管器件的制作方法还可以包括形成空穴传输层、形成电子传输层、形成空穴注入层以及形成电子注入层。
例如,有机发光二极管器件通过引入电致折射率变化层,使得可以通过控制第一电极层和第二电极层之间的电压差改变有机发光二极管器件的光程,进而实现对有机发光二极管器件的输出波长的调谐。相比于通过改变物 理长度的方式来实现光程调谐,通过改变折射率的方式来实现光程调谐可以避免光程调谐过程中的机械运动,以及机械运动引起的调谐频率限制,进而提升了有机发光二极管器件在光程和输出波长调谐过程中的稳定性和调谐频率。此外,共振腔效应还能够使得输出光波的半高宽(FWMH)变窄,进而可以提升基于有机发光二极管器件的显示设备的色域及其显示图像的画质。
本公开的实施例提供了一种有机发光二极管器件及其制作方法、显示面板和显示设备,通过引入电致折射率变化层实现了对有机发光二极管器件发光波长的调节,进而实现对经由该电致折射率变化层传输的光线的波长的调节,减少或消除了因器件老化而造成的颜色偏离。
虽然上文中已经用一般性说明及具体实施方式,对本公开作了详尽的描述,但在本公开实施例基础上,可以对之作一些修改或改进,这对本领域技术人员而言是显而易见的。因此,在不偏离本公开精神的基础上所做的这些修改或改进,均属于本公开要求保护的范围。
本申请要求于2016年10月17日递交的中国专利申请第201610903223.8号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。

Claims (15)

  1. 一种有机发光二极管器件,包括:
    第一电极层;
    与所述第一电极层至少部分交叠设置的第二电极层;
    在所述第二电极层远离所述第一电极层的一侧并与所述第二电极层至少部分交叠设置的第三电极层;
    电致折射率变化层,设置在所述第一电极层和所述第二电极层之间;以及
    有机发光层,设置在所述第二电极层和所述第三电极层之间;
    其中,所述电致折射率变化层被配置为在工作时根据所述第一电极层和所述第二电极层之间的电压差改变所述电致折射率变化层自身的折射率;
    所述有机发光层被配置为在工作时根据所述第二电极层和所述第三电极层之间的电压差发光。
  2. 根据权利要求1所述的有机发光二极管器件,其中,制作所述电致折射率变化层的材料包括电光陶瓷材料、有机电光材料和电光晶体材料中的至少一种。
  3. 根据权利要求1或2所述的有机发光二极管器件,其中,制作所述有机发光层的材料包括有机荧光发光材料或者有机磷光发光材料。
  4. 根据权利要求1-3任一所述的有机发光二极管器件,其中,所述第二电极层为透明导电层,制作所述第二电极层的材料包括氧化铟锡、氧化铟锌、氧化锌和氧化锌铝中的一种或其组合。
  5. 根据权利要求1-4任一所述的有机发光二极管器件,其中,所述第一电极层为金属层。
  6. 根据权利要求5所述的有机发光二极管器件,其中,所述第三电极层为透明导电层,制作所述第三电极层的材料包括透明合金材料和透明导电氧化物材料中的一种或其组合。
  7. 根据权利要求6所述的有机发光二极管器件,还包括覆盖层,设置在所述第三电极层上远离所述第二电极层的一侧。
  8. 根据权利要求1-4任一所述的有机发光二极管器件,其中,所述第一 电极层为透明导电层,制作所述第一电极层的材料包括透明导电玻璃、透明导电氧化物和透明合金材料中的一种或其组合。
  9. 根据权利要求8所述的有机发光二极管器件,其中,制作所述第三电极层的材料包括金属、金属合金、透明合金材料和透明导电氧化物材料中的一种或其组合。
  10. 一种显示面板,包括如权利要求1-9任一项所述的有机发光二极管器件。
  11. 根据权利要求10所述的显示面板,包括多个子像素,其中,所述有机发光二极管器件设置在至少部分子像素中。
  12. 根据权利要求10或11所述的显示面板,还包括电压控制电路,其中,所述电压控制电路被配置为向所述第一电极层施加第一电压,以及向所述第二电极层施加第二电压。
  13. 根据权利要求10-12任一所述的显示面板,还包括显示驱动电路,其中,所述显示驱动电路被配置为向所述第三电极层施加第三电压。
  14. 一种如权利要求1-9任一项所述的有机发光二极管器件的制作方法,包括:
    形成第一电极层;
    形成第二电极层;
    在所述第二电极层远离所述第一电极层的一侧形成第三电极层;
    在所述第一电极层和所述第二电极层之间形成电致折射率变化层;以及
    在所述第二电极层和所述第三电极层之间形成有机发光层。
  15. 根据权利要求14所述的制作方法,还包括在所述第三电极层上远离所述第二电极层的一侧形成覆盖层。
PCT/CN2017/087182 2016-10-17 2017-06-05 有机发光二极管器件及其制作方法和显示面板 WO2018072454A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/736,330 US20190006628A1 (en) 2016-10-17 2017-06-05 Organic Light-Emitting Diode Device and Manufacturing Method Thereof and Display Panel
JP2017565265A JP2019532454A (ja) 2016-10-17 2017-06-05 有機発光ダイオード素子およびその製造方法、並びにディスプレイパネル

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610903223.8A CN106299145A (zh) 2016-10-17 2016-10-17 有机发光二极管器件及其制作方法和显示面板
CN201610903223.8 2016-10-17

Publications (1)

Publication Number Publication Date
WO2018072454A1 true WO2018072454A1 (zh) 2018-04-26

Family

ID=57718551

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/087182 WO2018072454A1 (zh) 2016-10-17 2017-06-05 有机发光二极管器件及其制作方法和显示面板

Country Status (4)

Country Link
US (1) US20190006628A1 (zh)
JP (1) JP2019532454A (zh)
CN (1) CN106299145A (zh)
WO (1) WO2018072454A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106299145A (zh) * 2016-10-17 2017-01-04 京东方科技集团股份有限公司 有机发光二极管器件及其制作方法和显示面板
CN107817637B (zh) * 2017-12-15 2020-09-22 合肥京东方光电科技有限公司 防蓝光结构、显示装置以及防蓝光调节方法
US11903243B2 (en) 2018-01-03 2024-02-13 Lg Chem, Ltd. Optical film
CN108336114B (zh) * 2018-01-31 2020-11-03 昆山国显光电有限公司 一种oled发光器件和oled显示屏
CN109742256B (zh) * 2019-01-03 2021-01-15 京东方科技集团股份有限公司 一种显示面板及驱动方法、显示装置
CN110767716B (zh) * 2019-04-30 2023-05-02 昆山国显光电有限公司 显示面板和显示装置
CN113972335A (zh) * 2020-07-23 2022-01-25 Tcl科技集团股份有限公司 发光器件以及调制发光器件发射峰的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5559400A (en) * 1993-11-15 1996-09-24 Hitachi, Ltd. Variable wavelength luminescent device and control method therefor
CN104752475A (zh) * 2013-12-27 2015-07-01 乐金显示有限公司 有机发光显示装置
CN106299145A (zh) * 2016-10-17 2017-01-04 京东方科技集团股份有限公司 有机发光二极管器件及其制作方法和显示面板

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7078856B2 (en) * 2002-03-26 2006-07-18 Sanyo Electric Co., Ltd. Wavelength variable light source
JP2003317971A (ja) * 2002-04-26 2003-11-07 Semiconductor Energy Lab Co Ltd 発光装置およびその作製方法
JP2009152040A (ja) * 2007-12-20 2009-07-09 Toyota Central R&D Labs Inc 発光デバイス
US9853325B2 (en) * 2011-06-29 2017-12-26 Space Charge, LLC Rugged, gel-free, lithium-free, high energy density solid-state electrochemical energy storage devices
US20130135264A1 (en) * 2011-11-29 2013-05-30 Qualcomm Mems Technologies, Inc. Multilayer piezoelectric thin film resonator structure
US20140035702A1 (en) * 2012-07-31 2014-02-06 Qualcomm Mems Technologies, Inc. Hybrid filter including lc- and mems-based resonators
JP2015029089A (ja) * 2013-07-04 2015-02-12 キヤノン株式会社 有機発光素子、表示装置、画像情報処理装置及び画像形成装置
TW201602648A (zh) * 2014-07-01 2016-01-16 群創光電股份有限公司 顯示面板

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5559400A (en) * 1993-11-15 1996-09-24 Hitachi, Ltd. Variable wavelength luminescent device and control method therefor
CN104752475A (zh) * 2013-12-27 2015-07-01 乐金显示有限公司 有机发光显示装置
CN106299145A (zh) * 2016-10-17 2017-01-04 京东方科技集团股份有限公司 有机发光二极管器件及其制作方法和显示面板

Also Published As

Publication number Publication date
JP2019532454A (ja) 2019-11-07
CN106299145A (zh) 2017-01-04
US20190006628A1 (en) 2019-01-03

Similar Documents

Publication Publication Date Title
WO2018072454A1 (zh) 有机发光二极管器件及其制作方法和显示面板
KR102122335B1 (ko) 유기전계발광 표시장치
US10340314B2 (en) Organic light-emitting diode display panel, electronic device and manufacturing method
US10826021B2 (en) Organic electroluminescence device including a plurality of unit regions each including a light emitting area and a transmissive area
TW201411833A (zh) 顯示單元及其製造方法及電子裝置
TW200932041A (en) Organic EL display device and method of manufacturing the same
US11362311B2 (en) Sub-electrode microlens array for organic light emitting devices
US10312471B2 (en) Method of manufacturing display device, display device, and electronic device
US20170193897A1 (en) Electroluminescent device, manufacturing method and driving method thereof, and display device
US20170229519A1 (en) Display device and electornic apparatus
US10516128B2 (en) White organic light emitting device
KR101383454B1 (ko) 전계발광소자
KR102116414B1 (ko) 유기전계발광 표시장치
US10043856B2 (en) Organic light emitting display device and organic light emitting stacked structure
KR101888088B1 (ko) 유기발광표시장치 및 그 제조 방법
US10020348B2 (en) Organic light emitting display device with multiple emission layers
TW200428310A (en) Full color display panel and color-seperating substrate thereof
KR101383490B1 (ko) 전계발광소자
JP2008140621A (ja) 有機elディスプレイおよびその製造方法
US20220077426A1 (en) Light-emitting diode, display panel, display apparatus and light-emitting apparatus
KR101604495B1 (ko) 유기발광다이오드 표시장치 및 이를 제조하는 방법
US9859529B2 (en) Organic light emitting display device
CN116806446A (zh) 显示装置和显示装置制造方法
KR102113609B1 (ko) 유기 발광 표시 장치 및 그의 제조 방법
KR20160073461A (ko) 유기발광 표시장치

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017565265

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17862763

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17862763

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 22/08/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17862763

Country of ref document: EP

Kind code of ref document: A1