WO2023159550A1 - 一种显示面板、显示装置和显示面板的制作方法 - Google Patents

一种显示面板、显示装置和显示面板的制作方法 Download PDF

Info

Publication number
WO2023159550A1
WO2023159550A1 PCT/CN2022/078221 CN2022078221W WO2023159550A1 WO 2023159550 A1 WO2023159550 A1 WO 2023159550A1 CN 2022078221 W CN2022078221 W CN 2022078221W WO 2023159550 A1 WO2023159550 A1 WO 2023159550A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
base substrate
display panel
emitting device
light extraction
Prior art date
Application number
PCT/CN2022/078221
Other languages
English (en)
French (fr)
Inventor
张渊明
王好伟
高阳
Original Assignee
京东方科技集团股份有限公司
北京京东方技术开发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方技术开发有限公司 filed Critical 京东方科技集团股份有限公司
Priority to PCT/CN2022/078221 priority Critical patent/WO2023159550A1/zh
Priority to CN202280000357.2A priority patent/CN117223412A/zh
Publication of WO2023159550A1 publication Critical patent/WO2023159550A1/zh

Links

Images

Definitions

  • the present disclosure relates to the technical field of semiconductors, and in particular, to a display panel, a display device, and a manufacturing method of the display panel.
  • Embodiments of the present disclosure provide a display panel, a display device, and a manufacturing method of the display panel.
  • the display panel including:
  • a plurality of light emitting devices, a plurality of the light emitting devices are located on one side of the base substrate;
  • An additional component is located on the side of the light-emitting device away from the base substrate, the additional component includes a light extraction structure and an electrochromic structure;
  • the orthographic projection of the light extraction structure on the base substrate is the same as the The orthographic projections of the light-emitting devices on the base substrate overlap, and are configured to gather the light emitted by the light-emitting devices;
  • the orthographic projections of the electrochromic structure on the base substrate are located adjacent to the light-emitting
  • the device is configured between the orthographic projections of the base substrate so that when the light-emitting device emits light, the electrochromic structure is in a transparent state, and when the light-emitting device does not emit light, the electrochromic structure In blackout state.
  • the orthographic projection of the light extraction structure on the base substrate only covers the orthographic projection of the light emitting device on the base substrate.
  • the ratio of the orthographic projection area of the light extraction structure on the base substrate to the orthographic projection area of the electrochromic structure on the base substrate is 0.7 ⁇ 1.6.
  • the orthographic projection of the light extraction structure on the substrate covers the orthographic projection of the light-emitting device on the substrate, and the electrochromic structure is covered on the substrate.
  • the electrochromic structure is located on a side of the light extraction structure facing the base substrate.
  • the electrochromic structure includes: a first electrode, an electrochromic layer located on a side of the first electrode away from the base substrate, and an electrochromic layer located on a side away from the electrochromic layer. a second electrode on one side of the first electrode.
  • the material of the electrochromic layer includes: tungsten trioxide, molybdenum trioxide, polythiophenes and their derivatives, viologens, tetrathiafulvalenes, and metal phthalocyanines one or more of the compounds.
  • the light extraction structure includes a plurality of light extraction film layers stacked in sequence, and each of the light extraction film layers has a rectangular cross-sectional shape in a direction perpendicular to the base substrate.
  • the refractive index of each of the light extraction film layers increases sequentially.
  • the light extraction film layer includes a first body and a first dopant mixed with the first body; the refractive index of the first dopant is higher than that of the first dopant the refractive index of a body;
  • the content ratio of the first dopant in each of the light extraction layers increases gradually.
  • the material of the first body includes: silicon oxide, and the material of the first dopant includes: boron nitride;
  • the material of the first body includes: organic matter or polymer
  • the material of the first dopant includes: titanium dioxide, zirconium dioxide, lead sulfide, or zinc sulfide.
  • the cross-sectional area of each of the light extraction film layers parallel to the base substrate decreases sequentially.
  • the difference between any two adjacent light extraction film layers in the same direction parallel to the base substrate is approximately the same.
  • the light extraction structure includes a circular dome lens structure.
  • the light extraction structure further includes a planarization structure located between the light emitting device and the lens structure, and the refractive index of the planarization structure is smaller than the refractive index of the lens structure.
  • the orthographic projection of the planarization structure on the base substrate and the orthographic projection of the lens structure on the base substrate coincide with each other.
  • the display panel further includes a retaining wall structure for separating different light emitting devices
  • the retaining wall structure includes: a first retaining wall structure surrounding the light emitting device.
  • the first retaining wall structure is a light-shielding structure of a single film layer.
  • the first barrier structure includes an electrochromic material, and the first barrier structure is configured to switch between a transparent state and an opaque state according to driving of a voltage or a current.
  • the first barrier structure includes: a first electrode, a second electrode, and an electrochromic material layer located between the first electrode and the second electrode.
  • the electrochromic material includes: tungsten trioxide, molybdenum trioxide, polythiophenes and their derivatives, viologens, tetrathiafulvalenes, or metal phthalocyanines .
  • the light emitting device includes: a first light emitting electrode, a light emitting layer located on the side of the first light emitting electrode away from the base substrate, and a light emitting layer located on the side of the light emitting layer away from the first light emitting electrode. a second light emitting electrode on one side of the light emitting electrode;
  • the first light emitting electrode is multiplexed as the first electrode, and/or the second light emitting electrode is multiplexed as the second electrode.
  • the retaining wall structure further includes a second retaining wall structure, the second retaining wall structure is located on a side of the first retaining wall structure facing the light-emitting device, and the second retaining wall structure
  • the blocking wall structure is configured to reflect the light emitted by the light emitting device and directed towards the second blocking wall structure to the light extraction structure.
  • the second retaining wall structure includes: a reflective metal film or a metal electrolyte reflective film.
  • the material of the reflective metal film includes: silver or aluminum.
  • the metal dielectric reflective film includes a base film, and at least one dielectric layer located on the side of the base film facing the light-emitting device;
  • the material of the bottom film includes silicon monoxide, magnesium fluoride, silicon dioxide or aluminum oxide.
  • the retaining wall structure further includes a third retaining wall structure located on the side of the second retaining wall structure facing the light-emitting device, and when the base substrate points to the light-emitting device In the direction of , the opening surrounded by the third retaining wall structure in a direction parallel to the base substrate gradually increases.
  • the third retaining wall structure includes a plurality of light guide film layers stacked in sequence; The refractive index of the layer gradually increases.
  • each of the light guide film layers includes a second body, and a second dopant mixed with the second body; the refractive index of the second dopant is higher than that of the the refractive index of the second body;
  • the content ratio of the second dopant in each light-guiding film layer gradually increases.
  • the cross-sectional area of each of the light guide film layers in each cross section parallel to the base substrate gradually decreases.
  • the thicknesses of the light guide film layers in a direction perpendicular to the base substrate are substantially the same.
  • the third retaining wall structure is an inclined integral slope structure.
  • An embodiment of the present disclosure further provides a display device, which includes the display panel as provided in the embodiment of the present disclosure.
  • the embodiment of the present disclosure also provides a method for manufacturing the display panel as provided in the embodiment of the present disclosure, which includes:
  • An additional component including a light extraction structure and an electrochromic structure is formed on the side of the light emitting device away from the base substrate, wherein the orthographic projection of the light extraction structure on the base substrate is identical to that of the light emitting device
  • the orthographic projections on the base substrate have overlapping areas; the orthographic projections of the electrochromic structure on the base substrate are located between the orthographic projections of adjacent light-emitting devices on the base substrate.
  • the light extraction structure includes a plurality of light extraction film layers laminated in sequence; the formation of the light extraction structure on the side of the light emitting device away from the base substrate includes:
  • the formation of multiple light extraction film layers through multiple evaporation steps includes:
  • a plurality of the light extraction film layers including the first body and the first dopant are formed through multiple evaporation steps, and the light extraction film layer formed in the subsequent evaporation step is controlled
  • the proportion of the first dopant in the present evaporation step is greater than the proportion of the first dopant in the light extraction film layer formed in the current evaporation step.
  • the light extraction structure includes a circular dome lens structure; the formation of an additional component on the side of the light emitting device away from the base substrate includes:
  • the second ink is irradiated with ultraviolet light to form the lens structure.
  • the light extraction structure further includes a planarization structure located between the light emitting device and the lens structure; before printing the second ink through the first inkjet printing process, the An additional component is formed on the side of the light emitting device away from the base substrate, further comprising:
  • the first ink is dried by a drying device to volatilize the solvent in the first ink to form the planarized structure whose surface away from the light-emitting device is flat.
  • the formation of the electrochromic structure on the side of the light emitting device away from the base substrate includes:
  • a first electrode, an electrochromic layer, and a second electrode are sequentially formed in a region adjacent to the light emitting device on a side of the light emitting device away from the base substrate.
  • FIG. 1 is one of the cross-sectional views of a display panel provided by an embodiment of the present disclosure
  • FIG. 2 is a second sectional view of a display panel provided by an embodiment of the present disclosure
  • FIG. 3 is a third sectional view of a display panel provided by an embodiment of the present disclosure.
  • FIG. 4 is a fourth sectional view of a display panel provided by an embodiment of the present disclosure.
  • FIG. 5 is a fifth sectional view of a display panel provided by an embodiment of the present disclosure.
  • FIG. 6 is a sixth sectional view of a display panel provided by an embodiment of the present disclosure.
  • FIG. 7 is a seventh cross-sectional view of a display panel provided by an embodiment of the present disclosure.
  • FIG. 8 is an eighth cross-sectional view of a display panel provided by an embodiment of the present disclosure.
  • FIG. 9 is a ninth sectional view of a display panel provided by an embodiment of the present disclosure.
  • FIG. 10 is a tenth cross-sectional view of a display panel provided by an embodiment of the present disclosure.
  • FIG. 11 is an eleventh cross-sectional view of a display panel provided by an embodiment of the present disclosure.
  • FIG. 12 is a schematic diagram of a manufacturing process of a display panel provided by an embodiment of the present disclosure.
  • an embodiment of the present disclosure provides a display panel, which includes:
  • a plurality of light emitting devices 2, the plurality of light emitting devices 2 are located on one side of the base substrate 1;
  • the additional component is located on the side of the light-emitting device 2 away from the base substrate 1.
  • the additional component includes a light extraction structure 3 and an electrochromic structure 4;
  • the orthographic projections on the substrate 1 overlap, and are configured to gather the light emitted by the light emitting device 2;
  • the orthographic projection of the electrochromic structure 4 on the base substrate 1 is located between the orthographic projections of the adjacent light emitting devices 2 on the base substrate 1
  • the electrochromic structure is configured to be in a transparent state when the light-emitting device is emitting light, that is, when the display panel is displaying, and is in a light-shielding state when the light-emitting device is not emitting light, that is, when the display panel is not displaying.
  • the side of the light emitting device 2 facing away from the substrate 1 is further provided with additional components, the additional components include a light extraction structure 3 and an electrochromic structure 4, wherein the light extraction structure 3 can emit light to the light emitting device 2 The light is collected, and then the light emitted by the light-emitting device 2 is concentrated to improve the light extraction efficiency of the display panel; and the electrochromic structure 4 arranged in the area where the adjacent light-emitting device 2 is located can be used when the light-emitting device emits light, that is, When the display panel is displaying, the electrochromic structure is in a transparent state, and when the light-emitting device is not emitting light, that is, when the display panel is not displaying, the electrochromic structure is in a light-shielding state, which can play a role similar to a circular polarizer, reducing When the external ambient light enters the display panel and is reflected by the internal structure of the display panel, it will affect the display panel, and compared with
  • the electrochromic structure provided in the embodiment of the present disclosure while having a polarizer, can reduce the influence of the display panel on external ambient light, and can also improve the light output brightness of the display panel and reduce the power of the display panel. consumption.
  • the light extraction structure 3 gathers the light emitted by the light-emitting device 2. As shown in FIG. 1, it can be considered as the first light S1 emitted by the light-emitting device 2, and then converted into the second light S2 after passing through the light-extraction member 3, wherein, Compared with the first light S1, the second light S2 is deflected to the side where the center of the light emitting device 2 is located, and then plays the role of concentrating the light emitted by the light emitting device 2;
  • the second ray S2 emitted after the light rays are shrunk can be perpendicular to the base substrate 1, or form an acute or obtuse angle with the base substrate 1, as long as it can direct to the center of the light emitting device 2 relative to the first ray S1.
  • the lateral deflection can be regarded as shrinking the light emitted by the light emitting device 2 .
  • the orthographic projection of the light extraction structure 3 on the base substrate 1 only covers the orthographic projection of the light emitting device 2 on the base substrate 1, that is, only where the light emitting device 2 is located
  • the light extraction structure 3 is arranged in the area to gather the light emitted by the light emitting device 2 .
  • the light-emitting device 2 may specifically include a first light-emitting electrode 21, a light-emitting layer 24, and a second light-emitting electrode 26, which are sequentially located on the base substrate 1; Orthographic projection of the active luminescent layer 24 on the base substrate 1 .
  • the light-emitting device can be a positive structure
  • the first light-emitting electrode 21 can be an anode
  • the second light-emitting electrode 26 can be a cathode
  • the light-emitting device can also include a hole injection hole between the first light-emitting electrode 21 and the light-emitting layer 24.
  • the light emitting device 2 can also be other The film layer structure, the light emitting device 2 may also be an inverted structure, which is not limited in the embodiments of the present disclosure.
  • the light emitting device 2 in the embodiment of the present disclosure may be a quantum dot light emitting device, the material of the light emitting layer 24 may specifically be a quantum dot, the light emitting device 2 may also be an organic light emitting device, and the material of the light emitting layer 24 may be an organic light emitting material .
  • the ratio of the orthographic projection area A1 of the light extraction structure 3 on the base substrate 1 to the orthographic projection area A2 of the electrochromic structure 4 on the base substrate 1 is 0.7- 1.6.
  • the orthographic projection of the light extraction structure 3 on the base substrate 1 covers the orthographic projection of the light emitting device 2 on the base substrate 1 , and covers the electrochromic structure 4 on the substrate.
  • Orthographic projection of the substrate 1 in the area where the orthographic projection of the light extraction structure 3 overlaps with the orthographic projection of the electrochromic structure 4 , the electrochromic structure 4 is located on the side of the light extraction structure 3 facing the base substrate 1 . That is, during specific implementation, the light extraction structure 3 can also be arranged in an area other than the area where the light emitting device 2 is located. For example, the light extraction structure 3 is also provided in the area where the electrochromic structure 4 is located. The overlapping area of the structure 4 orthographic projection, compared with the light extraction structure 3 , the electrochromic structure 4 is located below the light extraction structure 3 .
  • the electrochromic structure 4 includes: a first electrode 41, an electrochromic layer 42 located on the side of the first electrode 41 away from the base substrate 1, and The second electrode 43 located on the side of the electrochromic layer 42 away from the first electrode 41 .
  • the first electrodes 41 of each electrochromic structure 4 can be mutually independent structures, and the second electrodes 43 of each electrochromic structure 4 can be an integrated structure; in combination with FIG. 4 , each The first electrode 41 of the electrochromic structure 4 can be an integral structure, and the second electrode 43 of each electrochromic structure 4 can be a structure independent of each other. Specifically, the second electrode 43 can be multiplexed as the second electrode of the light emitting device 2. light emitting electrode 26 .
  • the electrochromic structure 4 can be fabricated on the light emitting device 2 of the base substrate 1; in another possible implementation manner, the display panel is also It can include a package structure 5, which can be a package cover, for example, a glass cover, and the electrochromic structure 4 can also be made on the package cover first, and then the package cover with the electrochromic structure 4 will be made to have One side of the electrochromic structure 4 is covered on the base substrate 1 with the light emitting device 2, thereby forming the display panel shown in the embodiment of the present disclosure.
  • a package structure 5 can be a package cover, for example, a glass cover
  • the encapsulation structure 5 may also be a thin-film encapsulation layer, which may include a first inorganic encapsulation layer, an organic encapsulation layer, and a second inorganic encapsulation layer stacked in sequence.
  • the width of the electrochromic layer 42 parallel to the base substrate 1 is 5 ⁇ m ⁇ 25 ⁇ m.
  • the material of the electrochromic layer 42 includes: tungsten trioxide/molybdenum trioxide, polythiophenes and their derivatives, viologens, tetrathiafulvalenes, and metal phthalocyanines one or more of the compounds.
  • the light extraction structure 3 includes a plurality of light extraction film layers stacked in sequence.
  • the light extraction structure 3 may include a Side: the first sub-light extraction film layer 31, the second sub-light extraction film layer 32, the third sub-light extraction film layer 33, and the fourth sub-light extraction film layer 34; each light extraction film layer is perpendicular to the base substrate
  • the cross-sectional shape in the 1 direction is a rectangle.
  • the light extraction structure 3 including a plurality of light extraction film layers can be formed by sequentially evaporating each light extraction film layer.
  • each light extraction film layer can be formed by chemical vapor deposition.
  • the refractive index of each light extraction film layer increases sequentially. That is, the refractive index of the first sub-light extraction film layer 31 is smaller than the refractive index of the second sub-light extraction film layer 32, and the refractive index of the second sub-light extraction film layer 32 is smaller than the refractive index of the third sub-light extraction film layer 33, The refractive index of the third sub-light extraction layer 33 is smaller than the refractive index of the fourth sub-light extraction layer 34 .
  • the refractive index of each light-extraction film layer increases sequentially, thereby achieving the effect of constricting the light emitted by the light-emitting device 2 .
  • the light extraction film layer includes a first body and a first dopant mixed with the first body; the refractive index of the first dopant is higher than that of the first body The refractive index; in the direction from the light-emitting device to the light-extraction structure, the content ratio of the first dopant in each light-extraction film layer gradually increases.
  • each light extraction film layer is formed by vapor deposition, by controlling the contents of the first body and the first dopant, the effect of sequentially increasing the refractive index of each light extraction film layer can be achieved.
  • the material of the first body includes: silicon oxide
  • the material of the first dopant body includes: boron nitride.
  • the material of the first dopant body includes: boron nitride.
  • the material of the first body includes: organic matter or polymer
  • the first dopant include: titanium dioxide, zirconium dioxide, lead sulfide, or zinc sulfide, specifically, titanium dioxide (TiO2), zirconium dioxide (ZrO2), lead sulfide (PbS), zinc sulfide (ZnS) high refractive index inorganic materials can be Doping with organic substrates or polymer substrates on a nanometer scale, and then adjusting the ratio between inorganic materials and organic materials to prepare various light extraction
  • each light extraction film layer parallel to the base substrate 1 decreases sequentially.
  • the light extraction structure 3 formed by each light extraction film layer can be formed into a lens-like structure in structure, and further have the effect of concentrating the light emitted by the light emitting device 2 .
  • the difference a between any two adjacent light extraction film layers in the same direction parallel to the base substrate 1 is substantially the same. Specifically, due to actual process errors, the difference a is required to be exactly the same, which is relatively difficult. Specifically, the difference a between any two adjacent light extraction layers in the same direction parallel to the base substrate 1 is roughly the same, which can be understood The deviation of the difference a between any two adjacent light extraction layers in the same direction parallel to the base substrate 1 may be less than or equal to 0.5 ⁇ m.
  • the first sub-light extraction film layer 31, the second sub-light extraction film layer 32, the third sub-light extraction film layer 33, and the fourth sub-light extraction film layer 34 are in two perpendicular directions parallel to the plane of the base substrate 1.
  • the length and width can be related to the size of the corresponding light-emitting device 2.
  • the first sub-light extraction film layer 31, the second sub-light extraction film layer 32, and the third sub-light extraction film layer The length, width and width of the light extraction film layer 33 and the fourth sub-light extraction film layer 34 can be (X+5 ⁇ m ⁇ X+10 ⁇ m, Y+5 ⁇ m ⁇ Y+10 ⁇ m), (X+4 ⁇ m ⁇ X+9 ⁇ m, Y +4 ⁇ m ⁇ Y+9 ⁇ m), (X+3 ⁇ m ⁇ X+8 ⁇ m, Y+3 ⁇ m ⁇ Y+8 ⁇ m), (X+2 ⁇ m ⁇ X+7 ⁇ m, Y+2 ⁇ m ⁇ Y+7 ⁇ m);
  • the first sub-light extraction film layer 31, the second sub-light extraction film layer 32, the third sub-light extraction film layer 33, and the fourth sub-light extraction film layer 34 may have substantially the same thickness parallel to the base substrate 1, and may be 0.4 ⁇ m to 0.6 ⁇ m, more specifically, 0.3 ⁇ m to 0.5 ⁇ m. Specifically, due to actual process errors, it is strictly required that the thickness of each light extraction film layer is exactly the same, which is difficult to achieve.
  • the first sub-light extraction film layer 31, the second sub-light extraction film layer 32, and the third The light extraction layer 33 and the fourth sub-light extraction layer 34 have approximately the same thickness parallel to the base substrate 1 , which can be understood as the difference between any two of them and the thickness ratio of one of them is 0-20%.
  • the light extraction structure 3 includes a circular dome lens structure 36 .
  • the light extraction structure 3 includes a circular dome lens structure 36 , which can realize concentrating the light emitted by the light emitting device 2 .
  • a circular dome lens structure 36 can be formed by printing transparent photocurable ink, which can collect light after curing.
  • the circular dome lens structure 36 can also be formed in other ways, and the embodiment of the present disclosure is not limited thereto, but compared to other ways of forming the circular dome lens structure 36, the inkjet printing process The method of forming the lens structure 36 of the circular dome is relatively mature and easy to manufacture.
  • the light extraction structure 3 further includes a planarization structure 35 located between the light emitting device 2 and the lens structure 36 , and the refractive index of the planarization structure 35 is smaller than that of the lens structure 36 . Rate.
  • the flattened structure 35 can be formed by an inkjet printing process, that is, the printing ink can be divided into two printings, the first ink is printed first, and the number of drops of the first ink is set to 1 to 3 drops, and then the ink can be printed. Use drying equipment to dry the solvent in the first ink to obtain a relatively flat film, and then print the second ink, the second ink is photocurable ink, and the number of printing drops is 1 to 10 drops.
  • the thickness of the planarized structure 35 formed after the first ink is dried is 0.01 ⁇ m to 0.1 ⁇ m, and the thickness at the maximum position of the second ink 0.7-2 ⁇ m; the main function of the first ink is to have a smaller contact angle with the lower film layer.
  • the refractive index of the first ink is smaller than that of the second ink, and the refractive index of the first ink can be 1.4-1.6 , the refractive index of the second ink may be 1.6-2.
  • the orthographic projection of the planarization structure 35 on the base substrate 1 and the orthographic projection of the lens structure 36 on the base substrate 1 coincide with each other.
  • the display panel further includes a retaining wall structure 6 for separating different light emitting devices; referring to FIG. 7 , the retaining wall structure 6 includes: surrounding the light emitting device 2 The first retaining wall structure 63.
  • the first retaining wall structure 63 is a light-shielding structure of a single film layer.
  • transparent display there are mainly several schemes for transparent display, transparent organic light-emitting display, transparent liquid crystal display, transparent liquid crystal display realizes transparent display through the dimming characteristics of liquid crystal display itself, but it cannot be separated from the backlight, so it is mainly used in vending machines at present.
  • Scenes that provide backlight cannot be applied to cars or high-speed trains.
  • the transparent organic light-emitting display is mainly to set a light-transmitting area on the back panel to achieve a high light transmittance, and because of the advantage of self-illumination, it has wider application scenarios.
  • the transmittance of the light-transmitting area is fixed, it is impossible to change the transparency, so the image quality will be affected by the light.
  • the embodiment of the present disclosure also proposes a new display panel, which combines quantum dot light-emitting pixels and electrochromic pixels to realize an active quantum dot light-emitting display with adjustable transparency, that is, in a possible implementation manner, combining
  • the first wall structure 63 is an electrochromic pixel structure, and the electrochromic pixel structure is configured to switch between a transparent state and a display state according to driving of voltage or current.
  • the first barrier structure 63 is an electrochromic pixel structure, which can realize the adjustable transparency of the display panel according to the transparency requirements of the display panel.
  • the electrochromic pixel structure includes: a first electrode 631, an electrochromic pixel layer 632 located on the side of the first electrode 631 away from the base substrate 1, and an electrochromic pixel layer 632 located on the side away from the electrochromic pixel layer 632.
  • the second electrode 633 on one side of the first electrode 631 .
  • the first electrodes 631 share the first light emitting electrode 21 , and/or the second electrodes 633 share the second light emitting electrode 26 .
  • the first electrode 631 shares the first light emitting electrode 21; it may also be that only the second electrode 633 shares the second light emitting electrode 26; it may also be that the first electrode 631 shares the first light emitting electrode 21, and at the same time, the second The electrodes 633 share the second light emitting electrodes 26 .
  • separate first electrodes 631 and second electrodes 633 may also be prepared for the electrochromic pixel structure.
  • the material of the electrochromic pixel layer 632 may include: tungsten trioxide, molybdenum trioxide, polythiophenes and their derivatives, viologens, tetrathiafulvalene, or metal phthalates Cyanine compounds.
  • the retaining wall structure 6 further includes a second retaining wall structure 62 , and the second retaining wall structure 62 is located on the first retaining wall structure 61 facing the light emitting device 2 On one side of the wall, the second barrier structure 62 is configured to reflect the light emitted by the light emitting device 2 and directed toward the second barrier structure 62 toward the light extraction structure 3 side to the light extraction structure 36 .
  • the second retaining wall structure 62 includes: a reflective metal film or a metal electrolyte reflective film.
  • the material of the reflective metal film may include: silver or aluminum.
  • the metal dielectric reflective film includes a bottom film and at least one dielectric layer on the side of the bottom film facing the light-emitting device; the material of the bottom film includes: silicon monoxide, magnesium fluoride, silicon dioxide or aluminum oxide.
  • the metal dielectric reflective film is based on multi-beam interference. Contrary to the anti-reflection film, the reflectivity of the optical surface can be increased by coating a film with a higher refractive index than the base film material on the optical surface.
  • the first dielectric layer is alternately evaporated from two materials with high and low refractive index.
  • the retaining wall structure 6 further includes a third retaining wall structure 61 located on the side of the second retaining wall structure 62 facing the light-emitting device 2 .
  • the opening surrounded by the third wall structure 61 in a direction parallel to the base substrate 1 gradually increases.
  • the opening of the third retaining wall structure 61 in the direction parallel to the base substrate 1 gradually increases, which can facilitate light extraction of the light emitted by the light emitting device 2 .
  • the third wall structure 61 includes a plurality of light guide film layers stacked in sequence.
  • the third wall structure 61 includes The first sub-light guiding film layer 611, the second sub-light guiding film layer 612 and the third sub-light guiding film layer 613 on one side of the substrate 1;
  • the refractive index of the first sub-light guiding film layer 611 gradually increases, that is, the refractive index of the first sub-light guiding film layer 611 is smaller than the refractive index of the second sub-light guiding film layer 612, and the refractive index of the second sub-light guiding film layer 612 is smaller than that of the third sub-light guiding film layer.
  • the refractive index of the film layer 613 In the embodiment of the present disclosure, the refractive index of each light guiding film layer increases gradually, which can further facilitate light extraction of the light emitted by the light emitting device 2 .
  • the refractive index n1 of the first sub-light guiding film layer 611, the refractive index n2 of the second sub-light guiding film layer 612, and the refractive index n3 of the third sub-light guiding film layer 613 may be n1 ⁇ n2 ⁇ n3, Among them, 1.4 ⁇ n1 ⁇ 1.5; n1 ⁇ n2 ⁇ 1.6; n2 ⁇ n3 ⁇ 1.8.
  • each light guide film layer includes a second body, and a second dopant mixed with the second body; the refractive index of the second dopant is higher than that of the second body; From the base substrate 1 to the direction of the light emitting device 2 , the content ratio of the second dopant in each light guiding film layer gradually increases.
  • the second body and the second dopant can be deposited by chemical vapor phase, and the amount of the second body (for example, silicon oxide) and the second dopant (for example, boron nitride) can be controlled to realize the doping of the upper layer.
  • the content of boron nitride is relatively high, and the refractive index of the upper layer is stronger than that of the lower layer, so that light can be induced to be taken out from the inside of the light emitting device 2 .
  • each light guide film layer parallel to the base substrate 1 decreases gradually.
  • the width of each light guide film layer gradually decreases in the same direction parallel to the base substrate 1 .
  • the thickness of each light guiding film layer in a direction perpendicular to the base substrate is approximately the same, specifically, the thickness of each light guiding film layer is 0.3 ⁇ m ⁇ 0.5 ⁇ m.
  • the third retaining wall structure 61 is an inclined integral slope structure.
  • the third retaining wall structure 61 is an inclined integral slope structure, which can also facilitate light extraction of the light emitted by the light emitting device 2 .
  • the display panel further includes a light guide layer 7 located at the edge of the light emitting device 2 , the light guide layer 7 is located between the light emitting device 2 and the electrochromic structure 3 , As shown in FIG. 10 ; or, the light guiding layer 7 is located on the side of the electrochromic structure 3 away from the light emitting device 2 , as shown in FIG. 11 .
  • the display panel also includes a light guide layer 7 located at the edge of the light-emitting device 2, which can effectively guide the photons generated inside the light-emitting device 2 after power-on, and improve the light extraction efficiency. This structure can reduce the large Pressure drop across size panels.
  • the material of the light guide layer 7 may include: ethylene-vinyl acetate, TP-THPE copolymerized epoxy, or epoxy and episulfide resin polymer.
  • the light guide layer 7 can be prepared by inkjet printing, and the light guide layer 7 can be a transparent glue with a high refractive index.
  • the material of the glue can be: organic glue such as ethylene-vinyl acetate, light guide
  • the material of layer 7 can also be TP-THPE copolymerized epoxy, specifically, it can be synthesized from THPE, sulfur-containing monomer dihydroxydiphenyl sulfide (TP) and ECH; the material of light guiding layer 7 can also be It is a high-refractive epoxy and episulfide resin polymer with high sulfur content (refractive index range: 1.65 to 1.75).
  • TDBT Mercapto diphenyl sulfide
  • an embodiment of the present disclosure further provides a display device, which includes the display panel as provided in the embodiment of the present disclosure.
  • the embodiment of the present disclosure also provides a method for manufacturing a display panel as provided in the embodiment of the present disclosure, which includes:
  • Step S100 providing a base substrate
  • Step S200 forming a plurality of light emitting devices on one side of the base substrate
  • Step S300 forming additional components including a light extraction structure and an electrochromic structure on the side of the light emitting device away from the base substrate, wherein the orthographic projection of the light extraction structure on the base substrate is the same as the orthographic projection of the light emitting device on the base substrate There are overlapping regions in the projections; the orthographic projection of the electrochromic structure on the base substrate is located between the orthographic projections of adjacent light-emitting devices on the base substrate.
  • the light extraction structure includes a plurality of light extraction film layers stacked in sequence; correspondingly, in step S300, forming the light extraction structure on the side of the light-emitting device away from the substrate may include:
  • forming multiple light extraction film layers through multiple evaporation steps may include:
  • a plurality of light extraction layers including the first body and the first dopant are formed through multiple evaporation steps, and the first dopant in the light extraction layer formed in the subsequent evaporation step is controlled
  • the ratio of is greater than the ratio of the first dopant in the light extraction film layer formed in the current evaporation step.
  • the light extraction structure includes a circular dome lens structure; correspondingly, in step S300, forming an additional component on the side of the light-emitting device away from the substrate may include:
  • the second ink is irradiated with ultraviolet light to form a lens structure.
  • the light extraction structure also includes a planarization structure located between the light-emitting device and the lens structure; before printing the photocurable ink through the first inkjet printing process, an additional member is formed on the side of the light-emitting device away from the substrate ,Also includes:
  • the first ink is dried by a drying device to volatilize the solvent in the first ink to form a planarized structure with a flat surface facing away from the light-emitting device.
  • step S300 forming an electrochromic structure on the side of the light-emitting device away from the base substrate includes:
  • the first electrode, the electrochromic layer, and the second electrode are sequentially formed in the region where the adjacent light-emitting device is located on the side of the light-emitting device away from the base substrate.
  • the light emitting device 2, the electrochromic structure 3, and the light extraction structure 4 can be sequentially fabricated on the array substrate.
  • the fabrication method of the display panel can include:
  • Multiple light extraction film layers can be prepared by evaporation.
  • FMM mask is used to achieve light concentration by evaporating light extraction film layers with different refractive indices.
  • Different light extraction film layers can use different FMM masks, and the preparation area is gradually increased. reduce;
  • the first sub-light extraction film layer 31, the second sub-light extraction film layer 32, the third sub-light extraction film layer 33, and the fourth sub-light extraction film layer 34 have a thickness ranging from 0.4um to 0.6um;
  • the film layer 31, the second sub-light extraction film layer 32, the third sub-light extraction film layer 33, and the fourth sub-light extraction film layer 34 have lengths and widths in two perpendicular directions parallel to the plane of the base substrate 1, which can be Related to the size of the corresponding light-emitting device 2, when the length of the light-emitting device 2 is X ⁇ m and the width is Y ⁇ m, the first sub-light extraction film layer 31, the second sub-light extraction film layer 32, and the third sub-light extraction film layer 33 ,
  • the length, width and width of the fourth sub-light extraction film layer 34 can be respectively (X+5 ⁇ m ⁇ X+10 ⁇ m, Y+5 ⁇ m ⁇ Y+10 ⁇ m), (X+4 ⁇ m ⁇ X+9 ⁇ m
  • Each light extraction film layer can be chemical vapor deposited boron nitride and silicon oxide with different contents, and the amount of boron nitride and silicon oxide can be controlled to achieve a higher content of boron nitride doped in the upper layer, forming a stronger refractive index of the upper layer than that of the lower layer
  • the material of each light extraction film layer can also be: such as titanium dioxide (Ti O2), zirconium dioxide (ZrO2), lead sulfide (PbS), zinc sulfide (ZnS) and other high-refractive-index inorganic materials on the nanoscale and organic groups It is prepared by doping the material or the polymer substrate, and then adjusting the ratio between the inorganic material and the organic material.
  • the refractive index of each light extraction film layer ranges from 1.4 to 2;
  • the gap between the light extraction structures 3 is an electrochromic structure 4, and the width of the electrochromic layer 42 in the electrochromic structure 4 can be 5um-25um;
  • the light extraction structure 3 can be prepared by printing, and by printing the transparent second ink, the second ink can be a photocurable ink to form a circular dome structure, and play a role in concentrating light after curing;
  • the first ink and the second ink can be the polyimide of full aromatic ring, or the polymer doping 2 methoxyethanol with aromatic ring as basic skeleton, alkane (13 alkane to 16 alkane), the first ink of gained and The viscosity of the second ink is 5 ⁇ 12cp, and the surface tension is 22 ⁇ 35mN/m;
  • Printing parameters can be set, printing light to solidified ink between the electrochromic structure 4, the size of the ink droplet can be adjusted to 3.5pl ⁇ 5pl, the number of printing drops can be set to 1 ⁇ 10 drops, the ink can be divided into 2 times of printing, first Print the first ink, set the number of ink drops to 1 to 3 drops, you can use VCD and other parameters to drain the ink 1 to obtain a relatively flat film, and then print the second ink, the second ink is photocurable ink, print drops The number is 1-10 drops.
  • the thickness of the first ink is 0.01um-0.1um, the second The thickness of the ink is 0.7 ⁇ 2um;
  • the main function of the first ink is to have a smaller contact angle with the substrate.
  • the refractive index of the first ink is smaller than ink 2, the refractive index of the first ink is 1.4-1.6, and the refractive index of the second ink is 1.6-2;
  • the light-emitting device 2 can be sequentially fabricated on the array substrate, the electrochromic structure 3 and the light extraction structure 4 can be fabricated on the packaging cover plate.
  • the fabrication method of the display panel can include:
  • Multiple light extraction film layers can be prepared by evaporation.
  • FMM mask is used to achieve light concentration by evaporating light extraction film layers with different refractive indices.
  • Different light extraction film layers can use different FMM masks, and the preparation area is gradually increased. reduce;
  • the first sub-light extraction film layer 31, the second sub-light extraction film layer 32, the third sub-light extraction film layer 33, and the fourth sub-light extraction film layer 34 have a thickness ranging from 0.4um to 0.6um;
  • the film layer 31, the second sub-light extraction film layer 32, the third sub-light extraction film layer 33, and the fourth sub-light extraction film layer 34 have lengths and widths in two perpendicular directions parallel to the plane of the base substrate 1, which can be Related to the size of the corresponding light-emitting device 2, when the length of the light-emitting device 2 is X ⁇ m and the width is Y ⁇ m, the first sub-light extraction film layer 31, the second sub-light extraction film layer 32, and the third sub-light extraction film layer 33 ,
  • the length, width and width of the fourth sub-light extraction film layer 34 can be respectively (X+5 ⁇ m ⁇ X+10 ⁇ m, Y+5 ⁇ m ⁇ Y+10 ⁇ m), (X+4 ⁇ m ⁇ X+9 ⁇ m
  • Each light extraction film layer can be chemical vapor deposited boron nitride and silicon oxide with different contents, and the amount of boron nitride and silicon oxide can be controlled to achieve a higher content of boron nitride doped in the upper layer, forming a stronger refractive index of the upper layer than that of the lower layer
  • the material of each light extraction film layer can also be: such as titanium dioxide (Ti O2), zirconium dioxide (ZrO2), lead sulfide (PbS), zinc sulfide (ZnS) and other high-refractive-index inorganic materials on the nanoscale and organic groups It is prepared by doping the material or the polymer substrate, and then adjusting the ratio between the inorganic material and the organic material.
  • the refractive index of each light extraction film layer ranges from 1.4 to 2;
  • the gap between the light extraction structures 3 is an electrochromic structure 4, and the width of the electrochromic layer 42 in the electrochromic structure 4 can be 5um-25um;
  • the light extraction structure 3 can be prepared by printing, and by printing the transparent second ink, the second ink can be a photocurable ink to form a circular dome structure, and play a role in concentrating light after curing;
  • the first ink and the second ink can be the polyimide of full aromatic ring, or the polymer doping 2 methoxyethanol with aromatic ring as basic skeleton, alkane (13 alkane to 16 alkane), the first ink of gained and The viscosity of the second ink is 5 ⁇ 12cp, and the surface tension is 22 ⁇ 35mN/m;
  • Printing parameters can be set, printing light to solidified ink between the electrochromic structure 4, the size of the ink droplet can be adjusted to 3.5pl ⁇ 5pl, the number of printing drops can be set to 2 ⁇ 10 drops, the ink can be divided into 2 times of printing, first Print the first ink, set the number of ink drops to 1 to 3 drops, you can use VCD and other parameters to drain the ink 1 to obtain a relatively flat film, and then print the second ink, the second ink is photocurable ink, print drops The number is 2-10 drops.
  • the thickness of the first ink is 0.01um-0.1um, the second The thickness of the ink is 0.7 ⁇ 2um;
  • the main function of the first ink is to have a smaller contact angle with the substrate.
  • the refractive index of the first ink is smaller than ink 2, the refractive index of the first ink is 1.4-1.6, and the refractive index of the second ink is 1.6-2;
  • a glass package cover is used to prepare the film layer of the electrochromic structure on the package cover; the electrochromic structure 4 can be prepared on the package cover as follows:
  • the second electrode 43 is a transparent material, which can be a Mg:Ag electrode (3nm-10nm) or a thin Al electrode (3nm-10nm);
  • the electrochromic layer is prepared by FMM mask evaporation, or the patterned electrochromic layer is prepared by exposure and development;
  • a third wall structure 61 including a plurality of light guiding film layers can be formed, and the manufacturing method of the display panel can include:
  • the material of quantum dot luminescent layer can be CdSe/ZnS quantum dot (can be formed by inkjet printing, the concentration of quantum dot ink can be 15mg/ml specifically, solvent can be octane), the material of hole injection layer can be PEDOT, The material of the hole transport layer can be TFB (chlorobenzene solvent, 10mg/ml), and the material of the electron transport layer can be zinc oxide nanoparticles (30mg/ml, ethanol solvent);
  • the preparation method of retaining wall structure 6 may comprise:
  • boron nitride and silicon oxide are simultaneously deposited by chemical vapor deposition, and the deposited film thickness is 300nm; the mass ratio of boron nitride and silicon oxide in the first 150nm film layer is 1:9, and the last 150nm film The mass ratio of boron nitride and silicon oxide in the layer is 3:7; after the deposition is completed, the photoresist is spin-coated, and after exposure and development, a pattern is formed, and dry etching is performed to nitride the silicon oxide in the area where the light guide bank is not required to be deposited. Boron is etched, and after the etching is completed, the excess photoresist is peeled off to form the third light-guiding wall structure 61 required by the substrate;
  • the specific process parameters can be: spin coating at 4000rpm for 30s, annealing at 200°C for 5 minutes;
  • the specific process parameters can be: spin coating at 3000rpm for 30s, annealing at 180 degrees for 15 minutes;
  • spin coating quantum dot film layer specific process parameters can be: 2500rpm spin coating 30s, 120 degree annealing 20 minutes;
  • spin-coated zinc oxide film layer as electron transport layer 25 specific process parameters can be: 2500rpm spin-coating 30s, 120 degree of annealing 20 minutes;
  • the vacuum-evaporated cathode is used as the second light-emitting electrode 26, which is encapsulated by the chemical vapor phase method.
  • the light-guiding layer 7 is prepared by inkjet printing, and after UV curing, the encapsulation glass is used for encapsulation;
  • an inverted trapezoidal structure can be used to prepare the third retaining wall structure 61 , and the second retaining wall structure 62 on the reflective surface is a slope, thereby increasing light extraction;
  • the material of quantum dot luminescent layer can be CdSe/ZnS quantum dot (can be formed by inkjet printing, the concentration of quantum dot ink can be 15mg/ml specifically, solvent can be octane), the material of hole injection layer can be PEDOT, The material of the hole transport layer can be TFB (chlorobenzene solvent, 10mg/ml), and the material of the electron transport layer can be zinc oxide nanoparticles (30mg/ml, ethanol solvent);
  • the preparation method of retaining wall structure 6 may comprise:
  • the specific process parameters can be: spin coating at 4000rpm for 30s, annealing at 200°C for 5 minutes;
  • the specific process parameters can be: spin coating at 3000rpm for 30s, annealing at 180 degrees for 15 minutes;
  • spin coating quantum dot film layer specific process parameters can be: 2500rpm spin coating 30s, 120 degree annealing 20 minutes;
  • spin-coated zinc oxide film layer as electron transport layer 25 specific process parameters can be: 2500rpm spin-coating 30s, 120 degree of annealing 20 minutes;
  • the vacuum-evaporated cathode is used as the second light-emitting electrode 26, which is encapsulated by chemical vapor phase method.
  • the light guide layer 7 is prepared by inkjet printing, and after UV curing, it is encapsulated by encapsulating glass.

Abstract

一种显示面板、显示装置和显示面板的制作方法。显示面板包括:衬底基板(1);多个发光器件(2),多个发光器件(2)位于衬底基板(1)的一侧;附加构件,位于发光器件(2)远离衬底基板(1)的一侧,附加构件包括光取出结构(3)和电致变色结构(4);光取出结构(3)在衬底基板(1)上的正投影与发光器件(2)在衬底基板(1)上的正投影存在交叠,被配置对发光器件(2)出射的光线进行收拢;电致变色结构(4)在衬底基板(1)的正投影位于相邻发光器件(2)在衬底基板(1)的正投影之间,被配置为在发光器件(2)发光时,电致变色结构(4)处于透明状态,以及在发光器件(2)不发光时,电致变色结构(4)处于遮光状态。

Description

一种显示面板、显示装置和显示面板的制作方法 技术领域
本公开涉及半导体技术领域,尤其涉及一种显示面板、显示装置和显示面板的制作方法。
背景技术
随着量子点技术的深入发展,电致量子点发光二极管的研究日益深入,量子效率不断提升,已基本达到产业化的水平,进一步采用新的工艺和技术来实现其产业化已成为未来的趋势。
发明内容
本公开实施例提供一种显示面板、显示装置和显示面板的制作方法。所述显示面板,其中,包括:
衬底基板;
多个发光器件,多个所述发光器件位于所述衬底基板的一侧;
附加构件,位于所述发光器件远离所述衬底基板的一侧,所述附加构件包括光取出结构和电致变色结构;所述光取出结构在所述衬底基板上的正投影与所述发光器件在所述衬底基板上的正投影存在交叠,被配置对所述发光器件出射的光线进行收拢;所述电致变色结构在所述衬底基板的正投影位于相邻所述发光器件在所述衬底基板的正投影之间,被配置为在所述发光器件发光时,所述电致变色结构处于透明状态,以及在所述发光器件不发光时,所述电致变色结构处于遮光状态。
在一种可能的实施方式中,所述光取出结构在所述衬底基板的正投影仅覆盖所述发光器件在所述衬底基板的正投影。
在一种可能的实施方式中,所述光取出结构在所述衬底基板的正投影面积,与所述电致变色结构在所述衬底基板的正投影面积比例为0.7~1.6。
在一种可能的实施方式中,所述光取出结构在所述衬底基板的正投影覆盖所述发光器件在所述衬底基板的正投影,以及覆盖所述电致变色结构在所述衬底基板的正投影;
在所述光取出结构的正投影与所述电致变色结构正投影重叠的所在区域,所述电致变色结构位于所述光取出结构面向所述衬底基板的一侧。
在一种可能的实施方式中,所述电致变色结构包括:第一电极,位于所述第一电极远离所述衬底基板一侧的电致变色层,以及位于所述电致变色层远离所述第一电极一侧的第二电极。
在一种可能的实施方式中,所述电致变色层的材料包括:三氧化钨、三氧化钼、聚噻吩类及其衍生物、紫罗精类、四硫富瓦烯、和金属酞菁类化合物中的一种或多种。
在一种可能的实施方式中,所述光取出结构包括依次叠层的多个光取出膜层,各所述光取出膜层在垂直于所述衬底基板方向的截面形状为长方形。
在一种可能的实施方式中,在由所述发光器件指向所述光取出结构的方向,各所述光取出膜层的折射率依次增加。
在一种可能的实施方式中,所述光取出膜层包括第一本体,以及混合于所述第一本体的第一掺杂体;所述第一掺杂体的折射率高于所述第一本体的折射率;
在由所述发光器件指向所述光取出结构的方向,各所述光取出膜层的所述第一掺杂体的含量比例逐渐增大。
在一种可能的实施方式中,所述第一本体的材料包括:氧化硅,所述第一掺杂体的材料包括:氮化硼;
或者,所述第一本体的材料包括:有机物或聚合物,所述第一掺杂体的材料包括:二氧化钛,二氧化锆,硫化铅,或硫化锌。
在一种可能的实施方式中,在由所述发光器件指向所述光取出结构的方向,各所述光取出膜层在平行于所述衬底基板的各截面的截面面积依次减小。
在一种可能的实施方式中,任意相邻两个所述光取出膜层在平行于所述 衬底基板的同一方向上差值大致相同。
在一种可能的实施方式中,所述光取出结构包括圆形穹顶的透镜结构。
在一种可能的实施方式中,所述光取出结构还包括位于所述发光器件与所述透镜结构之间的平坦化结构,所述平坦化结构的折射率小于所述透镜结构的折射率。
在一种可能的实施方式中,所述平坦化结构在所述衬底基板的正投影与所述透镜结构在所述衬底基板的正投影相互重合。
在一种可能的实施方式中,所述显示面板还包括用于间隔不同所述发光器件的挡墙结构;
所述挡墙结构包括:包围所述发光器件的第一挡墙结构。
在一种可能的实施方式中,所述第一挡墙结构为单膜层的遮光结构。
在一种可能的实施方式中,所述第一挡墙结构包括电致变色材料,所述第一挡墙结构被配置为根据电压或电流的驱动,在透明态与不透明态之间进行转换。
在一种可能的实施方式中,所述第一挡墙结构包括:第一电极,第二电极,以及位于所述第一电极和所述第二电极之间的电致变色材料层。
在一种可能的实施方式中,所述电致变色材料包括:三氧化钨、三氧化钼、聚噻吩类及其衍生物、紫罗精类、四硫富瓦烯、或金属酞菁类化合物。
在一种可能的实施方式中,所述发光器件包括:第一发光电极,位于所述第一发光电极背离所述衬底基板一侧的发光层,以及位于所述发光层背离所述第一发光电极一侧的第二发光电极;
所述第一发光电极复用为所述第一电极,和/或,所述第二发光电极复用为所述第二电极。
在一种可能的实施方式中,所述挡墙结构还包括第二挡墙结构,所述第二挡墙结构位于所述第一挡墙结构朝向所述发光器件的一侧,所述第二挡墙结构被配置为将由所述发光器件发出并射向所述第二挡墙结构的光反射至所述光取出结构。
在一种可能的实施方式中,所述第二挡墙结构包括:反光金属膜或金属电解质反射膜。
在一种可能的实施方式中,所述反光金属膜的材料包括:银或铝。
在一种可能的实施方式中,所述金属电介质反射膜包括底膜,以及位于所述底膜朝向所述发光器件一侧的至少一层电介质层;
所述底膜的材料包括:一氧化硅、氟化镁、二氧化硅或三氧化二铝。
在一种可能的实施方式中,所述挡墙结构还包括位于所述第二挡墙结构朝向所述发光器件一侧的第三挡墙结构,在由所述衬底基板指向所述发光器件的方向上,所述第三挡墙结构在平行于所述衬底基板方向围成的开口逐渐增大。
在一种可能的实施方式中,所述第三挡墙结构包括依次叠层设置的多个导光膜层;由所述衬底基板指向所述发光器件的方向上,各所述导光膜层的折射率逐渐增大。
在一种可能的实施方式中,各所述导光膜层包括第二本体,以及混合于所述第二本体的第二掺杂体;所述第二掺杂体的折射率高于所述第二本体的折射率;
在由衬底基板指向所述发光器件的方向,各所述导光膜层的所述第二掺杂体的含量比例逐渐增大。
在一种可能的实施方式中,由所述衬底基板指向所述发光器件的方向上,各所述导光膜层在平行于所述衬底基板的各截面的截面面积逐渐减小。
在一种可能的实施方式中,各所述导光膜层在垂直于所述衬底基板方向的厚度大致相同。
在一种可能的实施方式中,所述第三挡墙结构为倾斜的一体斜坡结构。
本公开实施例还提供一种显示装置,其中,包括如本公开实施例提供的所述显示面板。
本公开实施例还提供一种如本公开实施例提供的所述显示面板的制作方法,其中,包括:
提供一衬底基板;
在所述衬底基板的一侧形成多个发光器件;
在所述发光器件背离所述衬底基板的一侧形成包括光取出结构和电致变色结构的附加构件,其中,所述光取出结构在所述衬底基板上的正投影与所述发光器件在所述衬底基板上的正投影存在交叠区域;所述电致变色结构在所述衬底基板的正投影位于相邻所述发光器件在所述衬底基板的正投影之间。
在一种可能的实施方式中,所述光取出结构包括依次叠层的多个光取出膜层;所述在所述发光器件背离所述衬底基板的一侧形成光取出结构,包括:
通过多次蒸镀步骤形成多个所述光取出膜层,并控制后一蒸镀步骤形成的所述光取出膜层在所述衬底基板的正投影面积,小于当前蒸镀步骤形成的所述光取出膜层在所述衬底基板的正投影。
在一种可能的实施方式中,所述通过多次蒸镀步骤形成多个所述光取出膜层,包括:
在所述发光器件所在区域,通过多次蒸镀步骤形成多个包括第一本体以及第一掺杂体的所述光取出膜层,并控制后一蒸镀步骤形成的所述光取出膜层中所述第一掺杂体的比例,大于当前蒸镀步骤形成的所述光取出膜层中所述第一掺杂体的比例。
在一种可能的实施方式中,所述光取出结构包括圆形穹顶的透镜结构;所述在所述发光器件背离所述衬底基板的一侧形成附加构件,包括:
在所述发光器件所在区域,通过第一次喷墨打印工艺打印第二墨水;
采用紫外光照射对所述第二墨水,形成所述透镜结构。
在一种可能的实施方式中,所述光取出结构还包括位于所述发光器件与所述透镜结构之间的平坦化结构;在通过第一次喷墨打印工艺打印第二墨水之前,所述在所述发光器件背离所述衬底基板的一侧形成附加构件,还包括:
通过第二次喷墨打印工艺打印第一墨水;
通过干燥设备对所述第一墨水干燥,以使所述第一墨水中的溶剂挥发,形成背离所述发光器件的表面为平整的所述平坦化结构。
在一种可能的实施方式中,所述在所述发光器件背离所述衬底基板的一侧形成电致变色结构,包括:
在所述发光器件背离所述衬底基板一侧的相邻所述发光器件所在区域,依次形成第一电极,电致变色层,以及第二电极。
附图说明
图1为本公开实施例提供的显示面板剖视图之一;
图2为本公开实施例提供的显示面板剖视图之二;
图3为本公开实施例提供的显示面板剖视图之三;
图4为本公开实施例提供的显示面板剖视图之四;
图5为本公开实施例提供的显示面板剖视图之五;
图6为本公开实施例提供的显示面板剖视图之六;
图7为本公开实施例提供的显示面板剖视图之七;
图8为本公开实施例提供的显示面板剖视图之八;
图9为本公开实施例提供的显示面板剖视图之九;
图10为本公开实施例提供的显示面板剖视图之十;
图11为本公开实施例提供的显示面板剖视图之十一;
图12为本公开实施例提供的显示面板制作流程示意图。
具体实施方式
为了使得本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第 二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
如本文中使用的“大约”或“大致相同”包括所陈述的值且意味着在如由本领域普通技术人员考虑到所讨论的测量和与具体量的测量有关的误差(即,测量系统的限制)而确定的对于具体值的可接受的偏差范围内。例如,“大致相同”可意味着相对于所陈述的值的差异在一种或多种标准偏差范围内,或者在±30%、20%、10%、5%范围内。
在附图中,为了清楚,放大了层、膜、面板、区域等的厚度。在本文中参照作为理想化实施方式的示意图的横截面图描述示例性实施方式。这样,将预计到作为例如制造技术和/或公差的结果的与图的形状的偏差。因而,本文中描述的实施方式不应解释为限于如本文中所示的区域的具体形状,而是包括由例如制造所导致的形状方面的偏差。例如,图示或描述为平坦的区域可典型地具有粗糙的和/或非线性的特征。此外,所图示的尖锐的角可为圆形的。因而,图中所示的区域在本质上是示意性的,并且它们的形状不意图示区域的精确形状,且不意图限制本权利要求的范围。
为了保持本公开实施例的以下说明清楚且简明,本公开省略了已知功能和已知部件的详细说明。
参见图1和图2所示,本公开实施例提供一种显示面板,其中,包括:
衬底基板1;
多个发光器件2,多个发光器件2位于衬底基板1的一侧;
附加构件,位于发光器件2远离衬底基板1的一侧,附加构件包括光取 出结构3和电致变色结构4;光取出结构3在衬底基板1上的正投影与发光器件2在衬底基板1上的正投影存在交叠,被配置对发光器件2出射的光线进行收拢;电致变色结构4在衬底基板1的正投影位于相邻发光器件2在衬底基板1的正投影之间,被配置为在发光器件发光时,即显示面板进行显示时,电致变色结构处于透明状态,以及在发光器件不发光时,即显示面板不进行显示时,电致变色结构处于遮光状态。
本公开实施例中,发光器件2背离衬底基板1的一侧还设置有附加构件,附加构件包括光取出结构3和电致变色结构4,其中,光取出结构3可以对发光器件2出射的光线进行收拢,进而以对发光器件2发出的光进行聚光,提高显示面板的光取出效率;而设置于相邻发光器件2所在区域的电致变色结构4,可以在发光器件发光时,即显示面板进行显示时,电致变色结构处于透明状态,以及在发光器件不发光时,即显示面板不进行显示时,电致变色结构处于遮光状态,可以起到类似于圆偏光片的作用,降低外界环境光进入到显示面板内部并经显示面板内部结构进行反射时对显示面板产生的影响,且相比于传统的圆偏光片会将所有光的都过滤,使显示面板的亮度降低50%左右,增加显示面板的功耗,而本公开实施例设置的电致变色结构,在具有偏光片可以降低显示面板对外界环境光影响的同时,还可以提高显示面板的出光亮度,降低显示面板的功耗。
光取出结构3对发光器件2出射的光线进行收拢,结合图1所示,可以认为是发光器件2出射的第一光线S1,再经光取出构件3后,转变为第二光线S2,其中,第二光线S2相比于第一光线S1向发光器件2的中心所在侧偏转,进而起到对发光器件2出射的光线进行收拢聚光的作用;其中,光取出结构3对发光器件2出射的光线进行收拢后出射的第二光线S2,可以是垂直于衬底基板1的方向,也可以是与衬底基板1呈锐角或钝角,只要能够相对于第一光线S1向发光器件2的中心所在侧偏转,即可以认为是对发光器件2出射的光线进行收拢。
在一种可能的实施方式中,结合图1所示,光取出结构3在衬底基板1 的正投影仅覆盖发光器件2在衬底基板1的正投影,即,仅在发光器件2所在的区域设置光取出结构3,以对发光器件2出射的光线进行收拢。
发光器件2具体可以包括依次位于衬底基板1依次的第一发光电极21,发光层24,以及第二发光电极26;发光器件2在衬底基板1的正投影,可以认为是其中主要起发光作用的发光层24在衬底基板1的正投影。具体的,发光器件可以为正置结构,第一发光电极21可以为阳极,第二发光电极26可以为阴极,发光器件还可以包括位于第一发光电极21与发光层24之间的空穴注入层22,位于空穴注入层22与发光层24之间的空穴传输层23,位于发光层24与第二发光电极26之间的电子传输层25,具体的,发光器件2还可以是其它的膜层结构,发光器件2也可以为倒置结构,本公开实施例不以此为限。具体的,本公开实施例中的发光器件2可以为量子点发光器件,发光层24的材料具体可以为量子点,发光器件2也可以为有机发光器件,发光层24的材料可以为有机发光材料。
在一种可能的实施方式中,结合图1所示,光取出结构3在衬底基板1的正投影面积A1,与电致变色结构4在衬底基板1的正投影面积A2比例为0.7~1.6。
在一种可能的实施方式中,结合图2所示,光取出结构3在衬底基板1的正投影覆盖发光器件2在衬底基板1的正投影,以及覆盖电致变色结构4在衬底基板1的正投影;在光取出结构3的正投影与电致变色结构4正投影重叠的所在区域,电致变色结构4位于光取出结构3面向衬底基板1的一侧。即,在具体实施时,也可以在发光器件2所在区域以外的区域设置光取出结构3,例如,在电致变色结构4所在区域也设置光取出结构3,在光取出结构3与电致变色结构4正投影重叠的所在区域,相比于光取出结构3,电致变色结构4位于光取出结构3的下方。
在一种可能的实施方式中,结合图3或图4所示,电致变色结构4包括:第一电极41,位于第一电极41远离衬底基板1一侧的电致变色层42,以及位于电致变色层42远离第一电极41一侧的第二电极43。
具体的,结合图3所示,各电致变色结构4的第一电极41可以为相互独立的结构,各电致变色结构4的第二电极43可以为一体结构;结合图4所示,各电致变色结构4的第一电极41可以为一体结构,各电致变色结构4的第二电极43可以为相互独立的结构,具体的,第二电极43可以复用为发光器件2的第二发光电极26。
在具体制作电致变色结构4时,可以在形成发光器件2之后,在衬底基板1的发光器件2之上接着制作电致变色结构4;在另一种可能的实施方式中,显示面板也可以包括封装结构5,封装结构5可以为封装盖板,例如,玻璃盖板,电致变色结构4也可以先制作于封装盖板,之后将制作有电致变色结构4的封装盖板以具有电致变色结构4的一面覆盖于具有发光器件2的衬底基板1之上,进而形成本公开实施例所示的显示面板。具体的,封装结构5也可以为薄膜封装层,可以包括依次叠置的第一无机封装层、有机封装层和第二无机封装层。
在一种可能的实施方式中,电致变色层42在平行于衬底基板1上的宽度为5μm~25μm。
在一种可能的实施方式中,电致变色层42的材料包括:三氧化钨/三氧化钼、聚噻吩类及其衍生物、紫罗精类、四硫富瓦烯、和金属酞菁类化合物中的一种或多种。
在一种可能的实施方式中,结合图3所示,光取出结构3包括依次叠层的多个光取出膜层,例如,光取出结构3可以包括依次位于发光器件2远离衬底基板1一侧的:第一子光取出膜层31,第二子光取出膜层32,第三子光取出膜层33,第四子光取出膜层34;各光取出膜层在垂直于衬底基板1方向的截面形状为长方形。在具体实施时,可以通过依次蒸镀各光取出膜层,进而形成包括多个光取出膜层的光取出结构3。具体的,可以通过化学气相沉积法形成各光取出膜层。
在一种可能的实施方式中,结合图3所示,在由发光器件2指向光取出结构3的方向,各光取出膜层的折射率依次增加。即,第一子光取出膜层31 的折射率小于第二子光取出膜层32的折射率,第二子光取出膜层32的折射率小于第三子光取出膜层33的折射率,第三子光取出膜层33的折射率小于第四子光取出膜层34的折射率。本公开实施例中,在由发光器件2指向光取出结构3的方向,各光取出膜层的折射率依次增加,进而可以实现对发光器件2出射的光线进行收拢的效果。
在一种可能的实施方式中,结合图3所示,光取出膜层包括第一本体,以及混合于第一本体的第一掺杂体;第一掺杂体的折射率高于第一本体的折射率;在由发光器件指向光取出结构的方向,各光取出膜层的第一掺杂体的含量比例逐渐增大。具体的,可以在蒸镀形成各光取出膜层时,通过控制第一本体与第一掺杂体的含量,进而实现各光取出膜层的折射率依次增大的效果。
在一种可能的实施方式中,第一本体的材料包括:氧化硅,第一掺杂体的材料包括:氮化硼,具体的,在通过化学气相沉积法制作各光取出膜层时,通过控制氮化硼和氧化硅的用量,实现上层掺杂的氮化硼含量较高,形成上层的折射率强于下层;或者,第一本体的材料包括:有机物或聚合物,第一掺杂体的材料包括:二氧化钛,二氧化锆,硫化铅,或硫化锌,具体的,可以将二氧化钛(TiO2),二氧化锆(ZrO2),硫化铅(PbS),硫化锌(ZnS)高折射率无机材料在纳米尺度上与有机基材或者聚合物基材进行掺杂,再调节无机材料与有机材料之间的比例制备得到各光取出膜层。
在一种可能的实施方式中,结合图3所示,在由发光器件2指向光取出结构3的方向,各光取出膜层在平行于衬底基板1的各截面的截面面积依次减小。如此,可以使由各光取出膜层形成的光取出结构3,在结构上形成为类似透镜的结构,进一步对发光器件2出射的光线具有收拢聚光的效果。
在一种可能的实施方式中,结合图3所示,任意相邻两个光取出膜层在平行于衬底基板1的同一方向上差值a大致相同。具体的,由于实际工艺误差,要求差值a完全相同,难度较大,具体的,任意相邻两个光取出膜层在平行于衬底基板1的同一方向上差值a大致相同,可以理解为任意相邻两个 光取出膜层在平行于衬底基板1的同一方向上差值a的偏差可以小于或等于0.5μm。
第一子光取出膜层31,第二子光取出膜层32,第三子光取出膜层33,第四子光取出膜层34在平行于衬底基板1平面上的两个垂直方向的长度和宽度,可以与对应的发光器件2尺寸大小相关,当发光器件2的长为Xμm,宽度为Yμm时,第一子光取出膜层31、第二子光取出膜层32、第三子光取出膜层33、第四子光取出膜层34的长宽、宽度可以分别为(X+5μm~X+10μm,Y+5μm~Y+10μm)、(X+4μm~X+9μm,Y+4μm~Y+9μm)、(X+3μm~X+8μm,Y+3μm~Y+8μm)、(X+2μm~X+7μm,Y+2μm~Y+7μm);
第一子光取出膜层31,第二子光取出膜层32,第三子光取出膜层33,第四子光取出膜层34在平行于衬底基板1的厚度可以大致相同,可以为0.4μm~0.6μm,更具体的,可以为0.3μm~0.5μm。具体的,由于实际工艺误差,严格要求各光取出膜层的厚度完全相同,较难达到,在具体实施时,第一子光取出膜层31,第二子光取出膜层32,第三子光取出膜层33,第四子光取出膜层34在平行于衬底基板1的厚度大致相同,可以理解为其中任意二者的差值与一者本身的厚度比例在0~20%。
在一种可能的实施方式中,结合图5所示,光取出结构3包括圆形穹顶的透镜结构36。本公开实施例中,光取出结构3包括圆形穹顶的透镜结构36,可以实现对发光器件2出射的光线进行收拢聚光。
在具体实施时,可以通过打印透明的光致固化墨水,形成圆形穹顶的透镜结构36,固化后起到聚光作用。当然,在具体实施时,也可以通过其它方式形成圆形穹顶的透镜结构36,本公开实施例不以此为限,但相对于其它形成圆形穹顶的透镜结构36的方式,喷墨打印工艺形成圆形穹顶的透镜结构36的方式较为成熟,制作方便。
在一种可能的实施方式中,结合图6所示,光取出结构3还包括位于发光器件2与透镜结构36之间的平坦化结构35,平坦化结构35的折射率小于透镜结构36的折射率。在具体实施时,可以通过喷墨打印工艺形成平坦化结 构35,即,打印墨水可以分为2次打印,先打印第一墨水,设置第一墨水墨滴滴数为1~3滴,之后可以使用干燥设备将第一墨水中的溶剂抽干,获得相对平整的膜,再打印第二墨水,第二墨水为光致固化墨水,打印滴数为1~10滴,打印完成后,使用紫外光(如365nm的紫外光)照射500ms~40s使墨水固化,形成一个透镜结构3;第一墨水干燥后形成的平坦化结构35的厚度为0.01μm~0.1μm,第二墨水的最大位置处的厚度为0.7~2μm;第一墨水的主要作用为和下方膜层的接触角较小。方便第二墨水铺展,避免第二墨水仅在发光器件2所在区域的部分区域聚集;具体的,第一墨水的折射率小于第二墨水的折射率,第一墨水的折射率可以为1.4~1.6,第二墨水的折射率可以为1.6~2。
在一种可能的实施方式中,结合图6所示,平坦化结构35在衬底基板1的正投影与透镜结构36在衬底基板1的正投影相互重合。
在一种可能的实施方式中,结合图1-图6所示,显示面板还包括用于间隔不同发光器件的挡墙结构6;参见图7所示,挡墙结构6包括:包围发光器件2的第一挡墙结构63。
在一种可能的实施方式中,结合图7或图8所示,第一挡墙结构63为单膜层的遮光结构。
目前透明显示主要有几种方案,透明有机发光显示,透明液晶显示,透明液晶显示是通过液晶显示本身的调光特性来实现透明显示,但是无法离开背光,因此目前主要使用在自动售货机等可以提供背光源的场景,无法应用于汽车或高铁等。而透明有机发光显示主要是在背板上设置透光区域来实现较高的透光率,并且因为自发光的优势,因此应用场景更广。但是由于透光区的透过率是固定的,因此无法实现透明度的改变,因此画质会受到光线影响。因此本公开实施例还提出一种新的显示面板,将量子点发光像素和电致变色像素结合,实现透明度可调的主动式量子点发光显示,即,在一种可能的实施方式中,结合图9所示,第一挡墙结构63为电致变色像素结构,电致变色像素结构被配置为根据电压或电流的驱动,在透明态与显示态之间进行 转换。本公开实施例中,第一挡墙结构63为电致变色像素结构,可以根据显示面板对透明度的要求,实现对显示面板的透明度可调。
具体的,结合图9所示,电致变色像素结构包括:第一电极631,位于第一电极631远离衬底基板1一侧的电致变色像素层632,以及位于电致变色像素层632远离第一电极631一侧的第二电极633。
在一种可能的实施方式中,第一电极631共用第一发光电极21,和/或,第二电极633共用第二发光电极26。具体的,可以是仅第一电极631共用第一发光电极21;也可以是仅第二电极633共用第二发光电极26;也可以是第一电极631共用第一发光电极21,同时,第二电极633共用第二发光电极26。当然,在具体实施时,也可以为电致变色像素结构制备单独的第一电极631以及第二电极633。
在一种可能的实施方式中,电致变色像素层632的材料可以包括:三氧化钨、三氧化钼、聚噻吩类及其衍生物、紫罗精类、四硫富瓦烯、或金属酞菁类化合物。
在一种可能的实施方式中,结合图7或图8所示,挡墙结构6还包括第二挡墙结构62,第二挡墙结构62位于所述第一挡墙结构61朝向发光器件2的一侧,第二挡墙结构62被配置为将由发光器件2发出并射向第二挡墙结构62的光朝光取出结构3一侧反射至光取出结构36。
在一种可能的实施方式中,第二挡墙结构62包括:反光金属膜或金属电解质反射膜。
具体的,反光金属膜的材料可以包括:银或铝。
具体的,金属电介质反射膜包括底膜,以及位于底膜朝向发光器件一侧的至少一层电介质层;底膜的材料包括:一氧化硅、氟化镁、二氧化硅或三氧化二铝。金属电介质反射膜是建立在多光束干涉基础上的,与增透膜相反,在光学表面上镀一层折射率高于底膜材料的薄膜,就可以增加光学表面的反射率,最简单的多层电介质层是由高、低折射率的二种材料交替蒸镀而成的。
在一种可能的实施方式中,结合图7所示,挡墙结构6还包括位于第二 挡墙结构62朝向发光器件2一侧的第三挡墙结构61,在由衬底基板1指向发光器件2的方向上,第三挡墙结构61在平行于衬底基板1方向围成的开口逐渐增大。本公开实施例中,第三挡墙结构61在平行于衬底基板1方向的开口逐渐增大,可以有利于将发光器件2出射的光进行光取出。
在一种可能的实施方式中,结合图7所示,第三挡墙结构61包括依次叠层设置的多个导光膜层,具体的,例如,第三挡墙结构61包括依次位于衬底基板1一侧的第一子导光膜层611、第二子导光膜层612和第三子导光膜层613;由衬底基板1指向发光器件2的方向上,各导光膜层的折射率逐渐增大,即,第一子导光膜层611的折射率小于第二子导光膜层612的折射率,第二子导光膜层612的折射率小于第三子导光膜层613的折射率。本公开实施例中,各导光膜层的折射率逐渐增大,可以进一步有利于将发光器件2出射的光进行光取出。
具体的,第一子导光膜层611的折射率n1、第二子导光膜层612的折射率n2、第三子导光膜层613的折射率n3,可以是n1<n2<n3,其中1.4<n1<1.5;n1<n2<1.6;n2<n3<1.8。
在一种可能的实施方式中,各导光膜层包括第二本体,以及混合于第二本体的第二掺杂体;第二掺杂体的折射率高于第二本体的折射率;在由衬底基板1指向发光器件2的方向,各导光膜层的第二掺杂体的含量比例逐渐增大。在具体实施时,可以通过化学气相沉积第二本体和第二掺杂体,控制第二本体(例如,氧化硅)和第二掺杂体(例如,氮化硼)的用量,实现上层掺杂的氮化硼含量较高,形成上层的折射率强于下层,这样能够诱导光从发光器件2内部取出。
在一种可能的实施方式中,结合图7所示,由衬底基板1指向发光器件2的方向上,各导光膜层在平行于衬底基板1的各截面的截面面积逐渐减小。具体的,各导光膜层在平行于衬底基板1的同一方向的宽度逐渐减小。具体的,0.3μm>第一子导光膜层611的宽度>第一子导光膜层611的宽度>第三子导光膜层613的宽度>0.1μm。
在一种可能的实施方式中,结合图7所示,各导光膜层在垂直于衬底基板方向的厚度大致相同,具体的,各导光膜层的厚度为0.3μm~0.5μm。
在一种可能的实施方式中,结合图8所示,第三挡墙结构61为倾斜的一体斜坡结构。本公开实施例中,第三挡墙结构61为倾斜的一体斜坡结构,也可以实现有利于将发光器件2出射的光进行光取出。
在一种可能的实施方式中,参见图10或图11所示,显示面板还包括位于发光器件2边缘的导光层7,导光层7位于发光器件2与电致变色结构3之间,如图10所示;或者,导光层7位于电致变色结构3背离发光器件2的一侧,如图11所示。本公开实施例中,显示面板还包括位于发光器件2边缘的导光层7,可以有效地将通电后发光器件2内部产生的光子有效导出,提高出光效率,该结构在一定程度上可以降低大尺寸面板的压降。
在一种可能的实施方式中,导光层7的材料可以包括:乙烯-醋酸乙烯酯,TP-THPE共聚性环氧物,或环氧和环硫树脂聚合物。具体的,导光层7可以通过喷墨打印制备,导光层7可以为一种高折射率的透明胶材,该胶材可以的材料为:乙烯-醋酸乙烯酯等有机胶材,导光层7的材料也可以为TP-THPE共聚性环氧物,具体的,可以通过THPE、含硫单体二羟基二苯硫醚(TP)和ECH为原料合成;导光层7的材料也可以为高含硫量的高折射率环氧和环硫树脂聚合物(折射率范围为:1.65~1.75),该聚合物可以通过环氧和环硫树脂单体与等摩尔的4,4-二巯基二苯硫醚(TDBT)固化剂,通过开环聚合反应得到。
基于同一发明构思,本公开实施例还提供一种显示装置,其中,包括如本公开实施例提供的显示面板。
基于同一发明构思,参见图12所示,本公开实施例还提供一种如本公开实施例提供的显示面板的制作方法,其中,包括:
步骤S100、提供一衬底基板;
步骤S200、在衬底基板的一侧形成多个发光器件;
步骤S300、在发光器件背离衬底基板的一侧形成包括光取出结构和电致 变色结构的附加构件,其中,光取出结构在衬底基板上的正投影与发光器件在衬底基板上的正投影存在交叠区域;电致变色结构在衬底基板的正投影位于相邻发光器件在衬底基板的正投影之间。
在一种可能的实施方式中,光取出结构包括依次叠层的多个光取出膜层;相应的,步骤S300中,在发光器件背离衬底基板的一侧形成光取出结构,可以包括:
通过多次蒸镀步骤形成多个光取出膜层,并控制后一蒸镀步骤形成的光取出膜层在衬底基板的正投影面积,小于当前蒸镀步骤形成的光取出膜层在衬底基板的正投影。
具体的,通过多次蒸镀步骤形成多个光取出膜层,可以包括:
在发光器件所在区域,通过多次蒸镀步骤形成多个包括第一本体以及第一掺杂体的光取出膜层,并控制后一蒸镀步骤形成的光取出膜层中第一掺杂体的比例,大于当前蒸镀步骤形成的光取出膜层中第一掺杂体的比例。
在一种可能的实施方式中,光取出结构包括圆形穹顶的透镜结构;相应的,步骤S300中,在发光器件背离衬底基板的一侧形成附加构件,可以包括:
在发光器件所在区域,通过第一次喷墨打印工艺打印第二墨水;
采用紫外光照射对第二墨水,形成透镜结构。
具体的,光取出结构还包括位于发光器件与透镜结构之间的平坦化结构;在通过第一次喷墨打印工艺打印光致固化墨水之前,在发光器件背离衬底基板的一侧形成附加构件,还包括:
通过第二次喷墨打印工艺打印第一墨水;
通过干燥设备对第一墨水干燥,以使第一墨水中的溶剂挥发,形成背离发光器件的表面为平整的平坦化结构。
在一种可能的实施方式中,步骤S300中,在发光器件背离衬底基板的一侧形成电致变色结构,包括:
在发光器件背离衬底基板一侧的相邻发光器件所在区域,依次形成第一电极,电致变色层,以及第二电极。
为了更清楚地理解本公开实施例提供的显示面板的制作方法,以下进行进一步举例说明:
实施例一:
结合图4所示,可以在阵列基板上依次制作发光器件2,电致变色结构3,以及光取出结构4,具体的,显示面板的制作方法可以包括:
1、制备包含挡墙结构6的阵列基板;
2、在挡墙结构6形成的像素坑区域制备发光器件2的多个膜层,具体工艺可以为通过蒸镀或者喷墨打印制备,可以分别制备空穴注入层/空穴传输层/量子点发光层/电子传输层;
3、采用开口掩膜板(OPEN MASK)蒸镀第二发光电极;
4、采用精细掩膜板(FMM MASK)进行电致变色结构中膜层的沉积;
5、制备包括多个光取出膜层的光取出结构3:
5.1、多个光取出膜层可以通过蒸镀制备,采用FMM mask,通过蒸镀不同折射率的光取出膜层实现聚光作用,不同的光取出膜层可以采用不同的FMM mask,制备面积逐步减少;
第一子光取出膜层31,第二子光取出膜层32,第三子光取出膜层33,第四子光取出膜层34的厚度范围为0.4um~0.6um;第一子光取出膜层31,第二子光取出膜层32,第三子光取出膜层33,第四子光取出膜层34在平行于衬底基板1平面上的两个垂直方向的长度和宽度,可以与对应的发光器件2尺寸大小相关,当发光器件2的长为Xμm,宽度为Yμm时,第一子光取出膜层31、第二子光取出膜层32、第三子光取出膜层33、第四子光取出膜层34的长宽、宽度可以分别为(X+5μm~X+10μm,Y+5μm~Y+10μm)、(X+4μm~X+9μm,Y+4μm~Y+9μm)、(X+3μm~X+8μm,Y+3μm~Y+8μm)、(X+2μm~X+7μm,Y+2μm~Y+7μm);
各光取出膜层可以通过化学气相沉积含量不同的氮化硼和氧化硅,控制氮化硼和氧化硅的用量,实现上层掺杂的氮化硼含量较高,形成上层的折射率强于下层,各光取出膜层的材料也可以为:诸如二氧化钛(Ti O2),二氧化 锆(ZrO2),硫化铅(PbS),硫化锌(ZnS)等高折射率无机材料在纳米尺度上与有机基材或者聚合物基材进行掺杂,再调节无机材料与有机材料之间的比例制备得到,各光取出膜层的折射率范围1.4~2;
光取出结构3之间的间隙为电致变色结构4,电致变色结构4中电致变色层42的宽度可以为5um~25um;
5.2、光取出结构3可以通过打印制备,通过打印透明的第二墨水,第二墨水可以为光致固化墨水,形成圆形穹顶的结构,固化后起到聚光作用;
第一墨水和第二墨水可以为全芳环的聚酰亚胺,或以芳环为基本骨架的聚合物掺杂2甲氧基乙醇,烷烃(13烷到16烷),所得第一墨水和第二墨水黏度5~12cp,表面张力22~35mN/m;
可设置打印参数,在电致变色结构4之间打印光至固化墨水,可以调试墨滴大小为3.5pl~5pl,可设置打印滴数为1~10滴,墨水可以分为2次打印,先打印第一墨水,设置墨滴滴数为1~3滴,可以使用VCD等参数将墨水1抽干,获得相对平整的膜,再打印第二墨水,第二墨水为光致固化墨水,打印滴数为1~10滴,打印完成后,使用UV照射500ms~40s使墨水固化,形成一个凸透镜结构;也可以直接打印第二墨水形成凸透镜;第一墨水的厚度为0.01um~0.1um,第二墨水的厚度为0.7~2um;
第一墨水的主要作用为和基底的接触角较小。方便第二墨水铺展,第一墨水的折射率小于墨水2,第一墨水的折射率为1.4~1.6,第二墨水的折射率为1.6~2;
6、采用FMMmask制备电致变色结构的第二电极43;
实施例二:
结合图6所示,可以在阵列基板上依次制作发光器件2,在封装盖板上制备电致变色结构3,以及光取出结构4,具体的,显示面板的制作方法可以包括:
1、制备包含挡墙结构6的阵列基板;
2、在挡墙结构6形成的像素坑区域制备发光器件2的多个膜层,具体工 艺可以为通过蒸镀或者喷墨打印制备,可以分别制备空穴注入层/空穴传输层/量子点发光层/电子传输层;
3、采用开口掩膜板(OPEN MASK)蒸镀第二发光电极;
4、在封装盖板上与挡墙结构6对应的区域制备包括多个光取出膜层的光取出结构3:
4.1、多个光取出膜层可以通过蒸镀制备,采用FMM mask,通过蒸镀不同折射率的光取出膜层实现聚光作用,不同的光取出膜层可以采用不同的FMM mask,制备面积逐步减少;
第一子光取出膜层31,第二子光取出膜层32,第三子光取出膜层33,第四子光取出膜层34的厚度范围为0.4um~0.6um;第一子光取出膜层31,第二子光取出膜层32,第三子光取出膜层33,第四子光取出膜层34在平行于衬底基板1平面上的两个垂直方向的长度和宽度,可以与对应的发光器件2尺寸大小相关,当发光器件2的长为Xμm,宽度为Yμm时,第一子光取出膜层31、第二子光取出膜层32、第三子光取出膜层33、第四子光取出膜层34的长宽、宽度可以分别为(X+5μm~X+10μm,Y+5μm~Y+10μm)、(X+4μm~X+9μm,Y+4μm~Y+9μm)、(X+3μm~X+8μm,Y+3μm~Y+8μm)、(X+2μm~X+7μm,Y+2μm~Y+7μm);
各光取出膜层可以通过化学气相沉积含量不同的氮化硼和氧化硅,控制氮化硼和氧化硅的用量,实现上层掺杂的氮化硼含量较高,形成上层的折射率强于下层,各光取出膜层的材料也可以为:诸如二氧化钛(Ti O2),二氧化锆(ZrO2),硫化铅(PbS),硫化锌(ZnS)等高折射率无机材料在纳米尺度上与有机基材或者聚合物基材进行掺杂,再调节无机材料与有机材料之间的比例制备得到,各光取出膜层的折射率范围1.4~2;
光取出结构3之间的间隙为电致变色结构4,电致变色结构4中电致变色层42的宽度可以为5um~25um;
4.2、光取出结构3可以通过打印制备,通过打印透明的第二墨水,第二墨水可以为光致固化墨水,形成圆形穹顶的结构,固化后起到聚光作用;
第一墨水和第二墨水可以为全芳环的聚酰亚胺,或以芳环为基本骨架的聚合物掺杂2甲氧基乙醇,烷烃(13烷到16烷),所得第一墨水和第二墨水黏度5~12cp,表面张力22~35mN/m;
可设置打印参数,在电致变色结构4之间打印光至固化墨水,可以调试墨滴大小为3.5pl~5pl,可设置打印滴数为2~10滴,墨水可以分为2次打印,先打印第一墨水,设置墨滴滴数为1~3滴,可以使用VCD等参数将墨水1抽干,获得相对平整的膜,再打印第二墨水,第二墨水为光致固化墨水,打印滴数为2~10滴,打印完成后,使用UV照射1s~40s使墨水固化,形成一个凸透镜结构;也可以直接打印第二墨水形成凸透镜;第一墨水的厚度为0.01um~0.1um,第二墨水的厚度为0.7~2um;
第一墨水的主要作用为和基底的接触角较小。方便第二墨水铺展,第一墨水的折射率小于墨水2,第一墨水的折射率为1.4~1.6,第二墨水的折射率为1.6~2;
5、采用玻璃封装盖板,在封装盖板上制备电致变色结构的膜层;在封装盖板制作电致变色结构4可以按如下方法制备:
5.1、在玻璃封装盖板整面制备第二电极43,第二电极43为透明材料,可以为Mg:Ag电极(3nm~10nm)或者薄Al电极(3nm~10nm);
5.2、采用FMM mask蒸镀制备电致变色层,或者曝光显影方法制备图案化的电致变色层;
5.3、采用FMM MASK制备图案化的第一电极41。实施例三:
结合图7或图10所示,可以形成包括多个导光膜层的第三挡墙结构61,显示面板的制作方法可以包括:
量子点发光层的材料可以为CdSe/ZnS量子点(可以通过喷墨打印形成,量子点墨水的浓度具体可以为15mg/ml,溶剂可以为辛烷),空穴注入层的材料可以为PEDOT,空穴传输层的材料可以为TFB(氯苯溶剂,10mg/ml),电子传输层的材料可以为氧化锌纳米粒子(30mg/ml,乙醇溶剂);
挡墙结构6的制备方法可以包括:
采用曝光显影的方法在阵列基板制备黑色的第一挡墙结构63;
在阵列基板上沉积反射的第二挡墙结构62,沉积完成后曝光显影,进行图案化;
在第二挡墙结构62上利用进行化学气相沉积同时沉积氮化硼和氧化硅,沉积膜厚为300nm;前150nm膜层中氮化硼和氧化硅的质量比为1:9,后150nm膜层中氮化硼和氧化硅的质量比为3:7;沉积完成后旋涂光刻胶,曝光显影后形成图形,进行干法刻蚀,对不需要沉积导光bank区域的氧化硅氮化硼进行刻蚀,刻蚀完成后将多余的光刻胶剥离掉,形成基板需要的导光的第三挡墙结构61;
量子点发光器件的制备:
(1)、在第一发光电极21上沉积PEDOT作为空穴注入层22,具体工艺参数可以为:4000rpm旋涂30s,200度退火5分钟;
(2)、旋涂TFB作为空穴传输层23,具体工艺参数可以为:3000rpm旋涂30s,180度退火15分钟;
(3)、旋涂量子点膜层,具体工艺参数可以为:2500rpm旋涂30s,120度退火20分钟;
(4)、旋涂氧化锌膜层作为电子传输层25,具体工艺参数可以为:2500rpm旋涂30s,120度退火20分钟;
(5)、真空蒸镀阴极作为第二发光电极26,通过化学气相法封装,封装完成后通过喷墨打印制备导光层7,UV固化后,再采用封装玻璃封装;
实施例四:
结合图8所示,可以采用倒梯形结构制备第三挡墙结构61,反射面的第二挡墙结构62为一个斜面,从而增加光取出;
量子点发光层的材料可以为CdSe/ZnS量子点(可以通过喷墨打印形成,量子点墨水的浓度具体可以为15mg/ml,溶剂可以为辛烷),空穴注入层的材 料可以为PEDOT,空穴传输层的材料可以为TFB(氯苯溶剂,10mg/ml),电子传输层的材料可以为氧化锌纳米粒子(30mg/ml,乙醇溶剂);
挡墙结构6的制备方法可以包括:
采用曝光显影的方法在阵列基板制备黑色的第一挡墙结构63;
在阵列基板上沉积反射的第二挡墙结构62,沉积完成后曝光显影,进行图案化,形成斜面的第二挡墙结构62;
在第二挡墙结构62,上进行导光材料修饰,旋涂导光材料,曝光显影后形成最终的第三挡墙结构;
QLED器件的制备:
(1)、在第一发光电极21上沉积PEDOT作为空穴注入层22,具体工艺参数可以为:4000rpm旋涂30s,200度退火5分钟;
(2)、旋涂TFB作为空穴传输层23,具体工艺参数可以为:3000rpm旋涂30s,180度退火15分钟;
(3)、旋涂量子点膜层,具体工艺参数可以为:2500rpm旋涂30s,120度退火20分钟;
(4)、旋涂氧化锌膜层作为电子传输层25,具体工艺参数可以为:2500rpm旋涂30s,120度退火20分钟;
(5)、真空蒸镀阴极作为第二发光电极26,通过化学气相法封装,封装完成后通过喷墨打印制备导光层7,UV固化后,再采用封装玻璃封装。
尽管已描述了本发明的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。
显然,本领域的技术人员可以对本发明实施例进行各种改动和变型而不脱离本发明实施例的精神和范围。这样,倘若本发明实施例的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些 改动和变型在内。

Claims (38)

  1. 一种显示面板,其中,包括:
    衬底基板;
    多个发光器件,多个所述发光器件位于所述衬底基板的一侧;
    附加构件,位于所述发光器件远离所述衬底基板的一侧,所述附加构件包括光取出结构和电致变色结构;所述光取出结构在所述衬底基板上的正投影与所述发光器件在所述衬底基板上的正投影存在交叠,被配置对所述发光器件出射的光线进行收拢;所述电致变色结构在所述衬底基板的正投影位于相邻所述发光器件在所述衬底基板的正投影之间,被配置为在所述发光器件发光时,所述电致变色结构处于透明状态,以及在所述发光器件不发光时,所述电致变色结构处于遮光状态。
  2. 如权利要求1所述的显示面板,其中,所述光取出结构在所述衬底基板的正投影仅覆盖所述发光器件在所述衬底基板的正投影。
  3. 如权利要求2所述的显示面板,其中,所述光取出结构在所述衬底基板的正投影面积,与所述电致变色结构在所述衬底基板的正投影面积比例为0.7~1.6。
  4. 如权利要求1所述的显示面板,其中,所述光取出结构在所述衬底基板的正投影覆盖所述发光器件在所述衬底基板的正投影,以及覆盖所述电致变色结构在所述衬底基板的正投影;
    在所述光取出结构的正投影与所述电致变色结构正投影重叠的所在区域,所述电致变色结构位于所述光取出结构面向所述衬底基板的一侧。
  5. 如权利要求1-4任一项所述的显示面板,其中,所述电致变色结构包括:第一电极,位于所述第一电极远离所述衬底基板一侧的电致变色层,以及位于所述电致变色层远离所述第一电极一侧的第二电极。
  6. 如权利要求5所述的显示面板,其中,所述电致变色层的材料包括:三氧化钨、三氧化钼、聚噻吩类及其衍生物、紫罗精类、四硫富瓦烯、和金 属酞菁类化合物中的一种或多种。
  7. 如权利要求1-6任一项所述的显示面板,其中,所述光取出结构包括依次叠层的多个光取出膜层,各所述光取出膜层在垂直于所述衬底基板方向的截面形状为长方形。
  8. 如权利要求7所述的显示面板,其中,在由所述发光器件指向所述光取出结构的方向,各所述光取出膜层的折射率依次增加。
  9. 如权利要求8所述的显示面板,其中,所述光取出膜层包括第一本体,以及混合于所述第一本体的第一掺杂体;所述第一掺杂体的折射率高于所述第一本体的折射率;
    在由所述发光器件指向所述光取出结构的方向,各所述光取出膜层的所述第一掺杂体的含量比例逐渐增大。
  10. 如权利要求9所述的显示面板,其中,所述第一本体的材料包括:氧化硅,所述第一掺杂体的材料包括:氮化硼;
    或者,所述第一本体的材料包括:有机物或聚合物,所述第一掺杂体的材料包括:二氧化钛,二氧化锆,硫化铅,或硫化锌。
  11. 如权利要求7-10任一项所述的显示面板,其中,在由所述发光器件指向所述光取出结构的方向,各所述光取出膜层在平行于所述衬底基板的各截面的截面面积依次减小。
  12. 如权利要求11所述的显示面板,其中,任意相邻两个所述光取出膜层在平行于所述衬底基板的同一方向上差值大致相同。
  13. 如权利要求1-6任一项所述的显示面板,其中,所述光取出结构包括圆形穹顶的透镜结构。
  14. 如权利要求13所述的显示面板,其中,所述光取出结构还包括位于所述发光器件与所述透镜结构之间的平坦化结构,所述平坦化结构的折射率小于所述透镜结构的折射率。
  15. 如权利要求14所述的显示面板,其中,所述平坦化结构在所述衬底基板的正投影与所述透镜结构在所述衬底基板的正投影相互重合。
  16. 如权利要求1-15任一项所述的显示面板,其中,所述显示面板还包括用于间隔不同所述发光器件的挡墙结构;
    所述挡墙结构包括:包围所述发光器件的第一挡墙结构。
  17. 如权利要求16所述的显示面板,其中,所述第一挡墙结构为单膜层的遮光结构。
  18. 如权利要求16所述的显示面板,其中,所述第一挡墙结构包括电致变色材料,所述第一挡墙结构被配置为根据电压或电流的驱动,在透明态与不透明态之间进行转换。
  19. 如权利要求18所述的显示面板,其中,所述第一挡墙结构包括:第一电极,第二电极,以及位于所述第一电极和所述第二电极之间的电致变色材料层。
  20. 如权利要求19所述的显示面板,其中,所述电致变色材料包括:三氧化钨、三氧化钼、聚噻吩类及其衍生物、紫罗精类、四硫富瓦烯、或金属酞菁类化合物。
  21. 如权利要求19所述的显示面板,其中,所述发光器件包括:第一发光电极,位于所述第一发光电极背离所述衬底基板一侧的发光层,以及位于所述发光层背离所述第一发光电极一侧的第二发光电极;
    所述第一发光电极复用为所述第一电极,和/或,所述第二发光电极复用为所述第二电极。
  22. 如权利要求16-21任一项所述的显示面板,其中,所述挡墙结构还包括第二挡墙结构,所述第二挡墙结构位于所述第一挡墙结构朝向所述发光器件的一侧,所述第二挡墙结构被配置为将由所述发光器件发出并射向所述第二挡墙结构的光反射至所述光取出结构。
  23. 如权利要求22所述的显示面板,其中,所述第二挡墙结构包括:反光金属膜或金属电解质反射膜。
  24. 如权利要求23所述的显示面板,其中,所述反光金属膜的材料包括:银或铝。
  25. 如权利要求24所述的显示面板,其中,所述金属电介质反射膜包括底膜,以及位于所述底膜朝向所述发光器件一侧的至少一层电介质层;
    所述底膜的材料包括:一氧化硅、氟化镁、二氧化硅或三氧化二铝。
  26. 如权利要求22-25任一项所述的显示面板,其中,所述挡墙结构还包括位于所述第二挡墙结构朝向所述发光器件一侧的第三挡墙结构,在由所述衬底基板指向所述发光器件的方向上,所述第三挡墙结构在平行于所述衬底基板方向围成的开口逐渐增大。
  27. 如权利要求26所述的显示面板,其中,所述第三挡墙结构包括依次叠层设置的多个导光膜层;由所述衬底基板指向所述发光器件的方向上,各所述导光膜层的折射率逐渐增大。
  28. 如权利要求27所述的显示面板,其中,各所述导光膜层包括第二本体,以及混合于所述第二本体的第二掺杂体;所述第二掺杂体的折射率高于所述第二本体的折射率;
    在由衬底基板指向所述发光器件的方向,各所述导光膜层的所述第二掺杂体的含量比例逐渐增大。
  29. 如权利要求27或28所述的显示面板,其中,由所述衬底基板指向所述发光器件的方向上,各所述导光膜层在平行于所述衬底基板的各截面的截面面积逐渐减小。
  30. 如权利要求29所述的显示面板,其中,各所述导光膜层在垂直于所述衬底基板方向的厚度大致相同。
  31. 如权利要求26所述的显示面板,其中,所述第三挡墙结构为倾斜的一体斜坡结构。
  32. 一种显示装置,其中,包括如权利要求1-31任一项所述的显示面板。
  33. 一种如权利要求1-31任一项所述的显示面板的制作方法,其中,包括:
    提供一衬底基板;
    在所述衬底基板的一侧形成多个发光器件;
    在所述发光器件背离所述衬底基板的一侧形成包括光取出结构和电致变色结构的附加构件,其中,所述光取出结构在所述衬底基板上的正投影与所述发光器件在所述衬底基板上的正投影存在交叠区域;所述电致变色结构在所述衬底基板的正投影位于相邻所述发光器件在所述衬底基板的正投影之间。
  34. 如权利要求33所述的制作方法,其中,所述光取出结构包括依次叠层的多个光取出膜层;所述在所述发光器件背离所述衬底基板的一侧形成光取出结构,包括:
    通过多次蒸镀步骤形成多个所述光取出膜层,并控制后一蒸镀步骤形成的所述光取出膜层在所述衬底基板的正投影面积,小于当前蒸镀步骤形成的所述光取出膜层在所述衬底基板的正投影。
  35. 如权利要求34所述的制作方法,其中,所述通过多次蒸镀步骤形成多个所述光取出膜层,包括:
    在所述发光器件所在区域,通过多次蒸镀步骤形成多个包括第一本体以及第一掺杂体的所述光取出膜层,并控制后一蒸镀步骤形成的所述光取出膜层中所述第一掺杂体的比例,大于当前蒸镀步骤形成的所述光取出膜层中所述第一掺杂体的比例。
  36. 如权利要求33所述的制作方法,其中,所述光取出结构包括圆形穹顶的透镜结构;所述在所述发光器件背离所述衬底基板的一侧形成附加构件,包括:
    在所述发光器件所在区域,通过第一次喷墨打印工艺打印第二墨水;
    采用紫外光照射对所述第二墨水,形成所述透镜结构。
  37. 如权利要求36所述的制作方法,其中,所述光取出结构还包括位于所述发光器件与所述透镜结构之间的平坦化结构;在通过第一次喷墨打印工艺打印第二墨水之前,所述在所述发光器件背离所述衬底基板的一侧形成附加构件,还包括:
    通过第二次喷墨打印工艺打印第一墨水;
    通过干燥设备对所述第一墨水干燥,以使所述第一墨水中的溶剂挥发, 形成背离所述发光器件的表面为平整的所述平坦化结构。
  38. 如权利要求33-37任一项所述的制作方法,其中,所述在所述发光器件背离所述衬底基板的一侧形成电致变色结构,包括:
    在所述发光器件背离所述衬底基板一侧的相邻所述发光器件所在区域,依次形成第一电极,电致变色层,以及第二电极。
PCT/CN2022/078221 2022-02-28 2022-02-28 一种显示面板、显示装置和显示面板的制作方法 WO2023159550A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/078221 WO2023159550A1 (zh) 2022-02-28 2022-02-28 一种显示面板、显示装置和显示面板的制作方法
CN202280000357.2A CN117223412A (zh) 2022-02-28 2022-02-28 一种显示面板、显示装置和显示面板的制作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/078221 WO2023159550A1 (zh) 2022-02-28 2022-02-28 一种显示面板、显示装置和显示面板的制作方法

Publications (1)

Publication Number Publication Date
WO2023159550A1 true WO2023159550A1 (zh) 2023-08-31

Family

ID=87764342

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/078221 WO2023159550A1 (zh) 2022-02-28 2022-02-28 一种显示面板、显示装置和显示面板的制作方法

Country Status (2)

Country Link
CN (1) CN117223412A (zh)
WO (1) WO2023159550A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103682160A (zh) * 2013-12-30 2014-03-26 北京维信诺科技有限公司 一种有机电致发光器件及其制备方法
CN107466429A (zh) * 2016-06-30 2017-12-12 深圳市柔宇科技有限公司 一种电致发光器件及其制备方法
CN107644895A (zh) * 2017-09-22 2018-01-30 上海天马微电子有限公司 有机发光显示面板、其制备方法、驱动方法及显示装置
CN108091678A (zh) * 2017-12-19 2018-05-29 上海中航光电子有限公司 一种量子点显示面板及三维打印装置
CN108987451A (zh) * 2018-08-01 2018-12-11 京东方科技集团股份有限公司 显示面板及其控制方法和显示装置
CN109326222A (zh) * 2018-09-28 2019-02-12 合肥鑫晟光电科技有限公司 一种显示基板及其制备方法、调节方法、显示装置
CN210536818U (zh) * 2019-07-05 2020-05-15 华引芯(武汉)科技有限公司 一种Micro LED微投影装置
KR20210015205A (ko) * 2019-08-01 2021-02-10 엘지디스플레이 주식회사 투명 표시 장치
CN216435908U (zh) * 2021-12-10 2022-05-03 海信视像科技股份有限公司 一种显示装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103682160A (zh) * 2013-12-30 2014-03-26 北京维信诺科技有限公司 一种有机电致发光器件及其制备方法
CN107466429A (zh) * 2016-06-30 2017-12-12 深圳市柔宇科技有限公司 一种电致发光器件及其制备方法
CN107644895A (zh) * 2017-09-22 2018-01-30 上海天马微电子有限公司 有机发光显示面板、其制备方法、驱动方法及显示装置
CN108091678A (zh) * 2017-12-19 2018-05-29 上海中航光电子有限公司 一种量子点显示面板及三维打印装置
CN108987451A (zh) * 2018-08-01 2018-12-11 京东方科技集团股份有限公司 显示面板及其控制方法和显示装置
CN109326222A (zh) * 2018-09-28 2019-02-12 合肥鑫晟光电科技有限公司 一种显示基板及其制备方法、调节方法、显示装置
CN210536818U (zh) * 2019-07-05 2020-05-15 华引芯(武汉)科技有限公司 一种Micro LED微投影装置
KR20210015205A (ko) * 2019-08-01 2021-02-10 엘지디스플레이 주식회사 투명 표시 장치
CN216435908U (zh) * 2021-12-10 2022-05-03 海信视像科技股份有限公司 一种显示装置

Also Published As

Publication number Publication date
CN117223412A (zh) 2023-12-12

Similar Documents

Publication Publication Date Title
KR102295953B1 (ko) 유기 발광 표시 장치 및 유기 발광 표시 장치 제조 방법
KR102478491B1 (ko) 유기발광다이오드 표시장치 및 그의 제조 방법
US20230200184A1 (en) Organic light emitting diode display device and manufacturing method thereof
US20210408126A1 (en) Color filter cover plate, preparation method thereof, and display panel
KR20100001597A (ko) 표시 장치와 그 제조 방법
KR101903774B1 (ko) 유기발광다이오드 표시장치와 그 제조방법
CN111710770B (zh) 一种显示面板及其制备方法和显示装置
JP5244191B2 (ja) 薄膜付き基板、有機エレクトロルミネセンス表示装置、カラーフィルタ基板及び薄膜付き基板の製造方法
CN214672621U (zh) 显示面板和显示装置
KR20190023268A (ko) 플렉서블 컬러 필터 기판 및 이를 포함하는 플렉서블 발광 디스플레이 장치
US20100078630A1 (en) Organic Electroluminescence Element, Method for Manufacturing the Same, Image Display Unit and Illuminating Device
US8389980B2 (en) Light emitting apparatus
CN111415973B (zh) 显示面板及其制备方法
KR20200100903A (ko) 광 변환 기판, 표시 장치와 그의 제조 방법
KR20100131074A (ko) 상부 발광방식 유기전계발광소자 및 이의 제조방법
CN109786431B (zh) 显示基板及其制备方法、和显示装置
KR102052432B1 (ko) 유기전계발광소자 및 그 제조방법
CN113782572B (zh) 彩膜基板及其制备方法、显示面板
KR20130126408A (ko) 유기전계 발광소자의 제조 방법
WO2023159550A1 (zh) 一种显示面板、显示装置和显示面板的制作方法
US11402685B2 (en) Display substrate and method for manufacturing the same, and display apparatus
JP4752814B2 (ja) 有機デバイスおよびその製造方法
US11430836B2 (en) Display device and manufacturing method thereof
CN115954371A (zh) 微显示器件及其制备方法
CN114038864A (zh) 显示基板及其制作方法、显示面板

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 18017225

Country of ref document: US