WO2018107535A1 - Oled封装方法与oled封装结构 - Google Patents

Oled封装方法与oled封装结构 Download PDF

Info

Publication number
WO2018107535A1
WO2018107535A1 PCT/CN2016/113037 CN2016113037W WO2018107535A1 WO 2018107535 A1 WO2018107535 A1 WO 2018107535A1 CN 2016113037 W CN2016113037 W CN 2016113037W WO 2018107535 A1 WO2018107535 A1 WO 2018107535A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
organic
thickness
peripheral defining
peripheral
Prior art date
Application number
PCT/CN2016/113037
Other languages
English (en)
French (fr)
Inventor
金江江
徐湘伦
Original Assignee
武汉华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电技术有限公司 filed Critical 武汉华星光电技术有限公司
Priority to US15/505,116 priority Critical patent/US10283732B2/en
Publication of WO2018107535A1 publication Critical patent/WO2018107535A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/873Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass

Definitions

  • the present invention relates to the field of display technologies, and in particular, to an OLED packaging method and an OLED package structure.
  • OLED Organic Light Emitting Display
  • OLED has self-illumination, low driving voltage, high luminous efficiency, short response time, high definition and contrast ratio, near 180° viewing angle, wide temperature range, and flexible display.
  • a large-area full-color display and many other advantages have been recognized by the industry as the most promising display device.
  • OLED can be divided into two types: passive matrix OLED (PMOLED) and active matrix OLED (AMOLED), namely direct addressing and thin film transistor matrix addressing.
  • PMOLED passive matrix OLED
  • AMOLED active matrix OLED
  • the AMOLED has pixels arranged in an array, belongs to an active display type, has high luminous efficiency, and is generally used as a high-definition large-sized display device.
  • the OLED device generally includes a substrate, an anode disposed on the substrate, a hole injection layer disposed on the anode, a hole transport layer disposed on the hole injection layer, and a light-emitting layer disposed on the hole transport layer.
  • the principle of illumination of OLED devices is that semiconductor materials and organic luminescent materials are driven by electric fields, causing luminescence by carrier injection and recombination.
  • an OLED device generally uses an indium tin oxide (ITO) electrode and a metal electrode as anodes and cathodes of the device, respectively.
  • ITO indium tin oxide
  • electrons and holes are injected from the cathode and the anode to the electron transport layer and the hole transport layer, respectively.
  • the electrons and holes migrate to the light-emitting layer through the electron transport layer and the hole transport layer, respectively, and meet in the light-emitting layer to form excitons and excite the light-emitting molecules, and the latter emits visible light through radiation relaxation.
  • the coating method of the organic layer generally adopts an inkjet printing (IJP) method with better precision and high efficiency, and the internationally renowned IJP manufacturer Kateeva An IJP pixel printing technique is reported in the patent application US20140233843.
  • IJP inkjet printing
  • a bank outside the pixel area must be formed with a higher thickness than the printed material in the pixel area to suppress the diffusion of the printing liquid.
  • the fabrication of the retaining wall not only increases the process of substrate fabrication, but also lacks the ability to block oxygen from the outside water.
  • the object of the present invention is to provide an OLED packaging method, which is beneficial to reducing the bending radius of the OLED package structure, realizing a curl display with a smaller bending radius, and at the same time making the prepared OLED package structure more resistant to water and oxygen and longer. The service life.
  • Another object of the present invention is to provide an OLED package structure capable of realizing a curl display with a small bending radius, and having a strong barrier to water oxygen and a long service life.
  • the present invention provides an OLED packaging method, including the following steps:
  • Step 1 Providing an OLED device, forming a first inorganic layer on the OLED device, the first inorganic layer covering the OLED device;
  • Step 2 forming an organic photoresist layer on the first inorganic layer
  • Step 3 exposing and developing the organic photoresist layer, and the developed region on the organic photoresist layer defines a peripheral defined region on the first inorganic layer;
  • Step 4 depositing a dense material layer on the peripheral defining region of the organic photoresist layer and the first inorganic layer, the thickness of the dense material layer being smaller than the thickness of the organic photoresist layer, to obtain a substrate to be peeled off;
  • Step 5 immersing the entire substrate to be stripped in the photoresist stripping liquid, and while removing the organic photoresist layer, the dense material layer located above the organic photoresist layer is stripped off together with the organic photoresist layer a layer of dense material on a peripheral defined area of the first inorganic layer is retained to form a first peripheral defining layer;
  • Step 6 coating an organic material on a region of the first inorganic layer surrounded by the first peripheral defining layer, the thickness of the coated organic material being less than the thickness of the first peripheral defining layer, forming a first organic Floor;
  • Step 7 Form a second inorganic layer on the first organic layer and the first peripheral defining layer.
  • a dense material layer is deposited by plasma enhanced chemical vapor deposition, atomic layer deposition, pulsed laser deposition, sputtering, or evaporation; the material of the dense material layer includes diamond-like, zirconium aluminate. One or more of graphene, silver, aluminum, aluminum nitride, and copper; the dense material layer has a thickness of 0.5 ⁇ m to 3 ⁇ m.
  • the first organic layer is formed by spin coating, screen printing, slit spin coating, dispensing, or inkjet printing; the material of the first organic layer includes acrylate, hexamethyl dimethyl One or more of a silyl ether, a polyacrylate, a polycarbonate, and a polystyrene; the first organic layer has a thickness of 0.5 ⁇ m to 3 ⁇ m.
  • the OLED packaging method further includes: Step 8: forming a plurality of package units disposed on the second inorganic layer, the package unit includes a second peripheral defining layer, and is disposed on the second peripheral defining layer a second organic layer surrounded by the second peripheral defining layer, and a third inorganic layer disposed on the second peripheral defining layer and the second organic layer; the thickness of the second organic layer is less than The thickness of the second peripheral defining layer.
  • the plurality of package units arranged in a stack includes at least one package unit
  • the second peripheral defining layer is prepared in the same manner as the first peripheral defining layer, and the position of the second peripheral defining layer corresponds to the position of the first peripheral defining layer, and the second peripheral defining layer
  • the material and thickness are the same as the first peripheral defining layer
  • the second organic layer is prepared in the same manner as the first organic layer, and the second organic layer has the same material and thickness as the first organic layer.
  • the present invention also provides an OLED package structure, including an OLED device, a first inorganic layer disposed on the OLED device and covering the OLED device, and a first peripheral defining layer disposed on the first inorganic layer. a first organic layer in a region surrounded by the first peripheral defining layer on the first inorganic layer, and a second inorganic layer disposed on the first organic layer and the first peripheral defining layer; The thickness of the first organic layer is less than the thickness of the first peripheral defining layer.
  • the material of the first peripheral defining layer comprises one or more of diamond-like, zirconium aluminate, graphene, silver, aluminum, aluminum nitride, and copper; the thickness of the first peripheral defining layer is 0.5 Mm-3 ⁇ m.
  • the material of the first organic layer includes one or more of acrylate, hexamethyldisiloxane, polyacrylate, polycarbonate, and polystyrene; the thickness of the first organic layer is 0.5 Mm-3 ⁇ m.
  • the OLED package structure further includes: a plurality of package units disposed on the second inorganic layer and stacked, the package unit includes a second peripheral defining layer, and is disposed on the inner side of the second peripheral defining layer a second organic layer surrounded by the second peripheral defining layer, and a third inorganic layer disposed on the second peripheral defining layer and the second organic layer; the second organic layer has a thickness smaller than the second The thickness of the peripheral defining layer.
  • the plurality of package units arranged in a stack includes at least one package unit
  • the second organic layer has the same material and thickness as the first organic layer.
  • the present invention also provides an OLED package structure, including an OLED device, a first inorganic layer disposed on the OLED device and covering the OLED device, and a first peripheral defining layer disposed on the first inorganic layer. a first organic layer in a region surrounded by the first peripheral defining layer on the first inorganic layer, and a second inorganic layer disposed on the first organic layer and the first peripheral defining layer; The thickness of the first organic layer is less than the thickness of the first peripheral defining layer;
  • the material of the first peripheral defining layer comprises one or more of diamond-like, zirconium aluminate, graphene, silver, aluminum, aluminum nitride, and copper; thickness of the first peripheral defining layer 0.5 ⁇ m - 3 ⁇ m;
  • the material of the first organic layer comprises one or more of acrylate, hexamethyldisiloxane, polyacrylate, polycarbonate, and polystyrene; thickness of the first organic layer It is from 0.5 ⁇ m to 3 ⁇ m.
  • the present invention provides an OLED packaging method in which a first organic layer is formed in a region surrounded by the first peripheral defining layer on a first inorganic layer by first forming a first peripheral defining layer.
  • the apparatus for preparing the first organic layer can be more diversified, and the viscosity of the organic material used for preparing the first organic layer is not limited, and the uniformity of the first organic layer can be improved by using an organic material having a small viscosity.
  • the thinner thickness is beneficial to reduce the bending radius of the OLED package structure and realize the curl display with smaller bending radius; in addition, the first peripheral defining layer can further block the erosion of the first organic layer from the side by the external water oxygen.
  • the resulting OLED package structure has a stronger barrier to water oxygen and a longer lifetime.
  • the invention provides an OLED package structure, which can realize a curl display with a small bending radius, and has a strong barrier to water oxygen and a long service life.
  • step 1 of the OLED packaging method of the present invention is a schematic diagram of step 1 of the OLED packaging method of the present invention.
  • step 2 of the OLED packaging method of the present invention is a schematic diagram of step 2 of the OLED packaging method of the present invention.
  • step 3 of the OLED packaging method of the present invention is a schematic diagram of step 3 of the OLED packaging method of the present invention.
  • FIG. 5 is a schematic diagram of step 4 of the OLED packaging method of the present invention.
  • step 5 of the OLED packaging method of the present invention is a schematic diagram of step 5 of the OLED packaging method of the present invention.
  • step 6 of the OLED packaging method of the present invention is a schematic diagram of step 6 of the OLED packaging method of the present invention.
  • FIG. 8 is a schematic cross-sectional view showing a step 7 of the OLED packaging method of the present invention and a first embodiment of the OLED package structure of the present invention
  • FIG. 9 is a schematic cross-sectional view showing a step 8 of the OLED packaging method of the present invention and a second embodiment of the OLED package structure of the present invention.
  • the present invention provides an OLED packaging method, including the following steps:
  • Step 1 as shown in FIG. 2, an OLED device 10 is provided, on which a first inorganic layer 20 is formed, the first inorganic layer 20 covering the OLED device 10.
  • the first inorganic layer 20 is formed by plasma enhanced chemical vapor deposition, atomic layer deposition, pulsed laser deposition, sputtering, or evaporation.
  • the material of the first inorganic layer 20 includes aluminum oxide (Al 2 O 3 ), zinc peroxide (ZnO 2 ), titanium dioxide (TiO 2 ), silicon nitride (SiN x ), silicon carbonitride (SiCN).
  • Al 2 O 3 aluminum oxide
  • ZnO 2 zinc peroxide
  • TiO 2 titanium dioxide
  • SiN x silicon nitride
  • SiCN silicon carbonitride
  • the first inorganic layer 20 has a thickness of 0.5 ⁇ m to 1 ⁇ m.
  • the function of the first inorganic layer 20 is to block the erosion of the OLED device 10 by water and oxygen.
  • Step 2 As shown in FIG. 3, an organic photoresist layer 30 is formed on the first inorganic layer 20.
  • the organic photoresist layer 30 is formed by spin coating, screen printing, slit spin coating, dispensing, or inkjet printing.
  • the material of the organic photoresist layer 30 is an organic negative photoresist; the organic photoresist layer 30 has a thickness of 0.5 ⁇ m to 3 ⁇ m.
  • the thickness of the organic photoresist layer 30 defines the first of subsequent fabrications The thickness range of the peripheral defining layer 45.
  • Step 3 as shown in FIG. 4, the organic photoresist layer 30 is exposed and developed by using a mask 31, and the developed region on the organic photoresist layer 30 defines a peripheral limit on the first inorganic layer 20. Area 21.
  • Step 4 depositing a dense material layer 40 on the peripheral region 21 defined by the organic photoresist layer 30 and the first inorganic layer 20, the dense material layer 40 having a thickness smaller than the organic photoresist layer At a thickness of 30, a substrate 50 to be peeled off is obtained.
  • the dense material layer 40 is deposited by plasma enhanced chemical vapor deposition, atomic layer deposition, pulsed laser deposition, sputtering, or evaporation.
  • the material of the dense material layer 40 includes one of diamond-like carbon (DLC), zirconium aluminate (ZrAl x O y ), graphene, silver, aluminum, aluminum nitride, and copper. Or a plurality of; the dense material layer 40 has a thickness of 0.5 ⁇ m to 3 ⁇ m.
  • Step 5 as shown in FIG. 6, the entire substrate 50 to be peeled off is immersed in the photoresist stripping liquid, and while the organic photoresist layer 30 is removed, the dense material layer 40 located above the organic photoresist layer 30 follows The organic photoresist layer 30 is peeled off together, and the dense material layer 40 located on the peripheral defining region 21 of the first inorganic layer 20 is left to form the first peripheral defining layer 45.
  • the selected photoresist stripping solution selectively strips the organic photoresist layer 30, and the first inorganic layer 20 and the OLED device 10 are not damaged.
  • the photoresist stripping solution is an organic solvent.
  • the first peripheral defining layer 45 is capable of blocking the erosion of the first organic layer 60 that is subsequently produced from the lateral direction by the water oxygen.
  • Step 6 as shown in FIG. 7, coating an organic material on a region of the first inorganic layer 20 surrounded by the first peripheral defining layer 45, the thickness of the coated organic material being less than the first peripheral limit
  • the thickness of the layer 45 forms the first organic layer 60.
  • the first organic layer 60 is formed by spin coating, screen printing, slit spin coating, dispensing, or inkjet printing; since the thickness of the coated organic material is less than the first The periphery defines the thickness of the layer 45 so that overflow can be avoided.
  • the first organic layer 60 is formed in the region surrounded by the first peripheral defining layer 45 on the first inorganic layer 20 by first forming the first peripheral defining layer 45,
  • the advantages of this are as follows: 1.
  • the equipment used in the coating process of organic materials can be more diversified; 2.
  • the viscosity of organic materials used can be smaller, and the smaller the viscosity, the easier the organic materials are to level, thus forming the first
  • the uniformity of the organic layer 60 is better; 3.
  • the thickness of the first organic layer 60 can be made thinner, which is advantageous for achieving a curl display with a smaller bending radius; 4.
  • the first peripheral defining layer 45 is capable of blocking the erosion of the first organic layer 60 from the side by the outside water oxygen.
  • the material of the first organic layer 60 includes one or more of Acrylic, hexamethyldisiloxane (HMDSO), polyacrylate, polycarbonate, and polystyrene.
  • the first organic layer 60 has a thickness of 0.5 ⁇ m to 3 ⁇ m.
  • the primary function of the first organic layer 60 is to flatten and relieve stress.
  • Step 7 As shown in FIG. 8, a second inorganic layer 70 is formed on the first organic layer 60 and the first peripheral defining layer 45.
  • the second inorganic layer 70 is prepared in the same manner as the first inorganic layer 20, and the second inorganic layer 70 has the same material and thickness as the first inorganic layer 20.
  • the OLED packaging method of the present invention may further include:
  • Step 8 as shown in FIG. 9, a plurality of package units 80 are formed on the second inorganic layer 70, and the package unit 80 includes a second peripheral defining layer 85 disposed on the inner side of the second peripheral defining layer 85. a second organic layer 90 surrounded by the second peripheral defining layer 85, and a third inorganic layer 95 disposed on the second peripheral defining layer 85 and the second organic layer 90; the second organic layer 90 The thickness is smaller than the thickness of the second peripheral defining layer 85.
  • the plurality of package units 80 disposed in the stack includes at least one package unit 80 .
  • the second peripheral defining layer 85 is prepared in the same manner as the first peripheral defining layer 45, and the position of the second peripheral defining layer 85 corresponds to the position of the first peripheral defining layer 45.
  • the material and thickness of the second peripheral defining layer 85 are the same as those of the first peripheral defining layer 45.
  • the second organic layer 90 is prepared in the same manner as the first organic layer 60, and the second organic layer 90 has the same material and thickness as the first organic layer 60.
  • the third inorganic layer 95 is prepared in the same manner as the second inorganic layer 70, and the third inorganic layer 95 has the same material and thickness as the second inorganic layer 70.
  • the first organic layer 60 can be prepared by first forming the first peripheral defining layer 45 and then forming the first organic layer 60 in the region surrounded by the first peripheral defining layer 45 on the first inorganic layer 20.
  • the apparatus used for 60 is more diverse, and the viscosity of the organic material used for preparing the first organic layer 60 is not limited.
  • the uniformity of the first organic layer 60 can be made thinner and thinner. It is advantageous to reduce the bending radius of the OLED package structure and realize a curl display with a smaller bending radius; in addition, the first peripheral defining layer 45 can block the erosion of the first organic layer 60 from the side by the external water oxygen, so that the prepared OLED is obtained.
  • Package structure has Stronger barrier to water oxygen and longer life.
  • the present invention further provides an OLED package structure, including an OLED device 10, a first inorganic layer 20 disposed on the OLED device 10 and covering the OLED device 10, and disposed on the OLED package.
  • a first peripheral defining layer 45 on the first inorganic layer 20 a first organic layer 60 disposed in a region of the first inorganic layer 20 surrounded by the first peripheral defining layer 45, and a The first organic layer 60 and the second inorganic layer 70 on the first peripheral defining layer 45; the thickness of the first organic layer 60 is smaller than the thickness of the first peripheral defining layer 45.
  • the material of the first inorganic layer 20 includes aluminum oxide (Al 2 O 3 ), zinc peroxide (ZnO 2 ), titanium dioxide (TiO 2 ), silicon nitride (SiN x ), silicon carbonitride (SiCN).
  • Al 2 O 3 aluminum oxide
  • ZnO 2 zinc peroxide
  • TiO 2 titanium dioxide
  • SiN x silicon nitride
  • SiCN silicon carbonitride
  • the material of the first peripheral defining layer 45 includes diamond-like carbon (DLC), zirconium aluminate (ZrAl x O y ), graphene, silver, aluminum, aluminum nitride, and copper.
  • DLC diamond-like carbon
  • ZrAl x O y zirconium aluminate
  • graphene silver, aluminum, aluminum nitride, and copper.
  • One or more; the first peripheral defining layer 45 has a thickness of 0.5 ⁇ m to 3 ⁇ m.
  • the material of the first organic layer 60 includes one or more of Acrylic, hexamethyldisiloxane (HMDSO), polyacrylate, polycarbonate, and polystyrene.
  • the first organic layer 60 has a thickness of 0.5 ⁇ m to 3 ⁇ m.
  • the material and thickness of the second inorganic layer 70 are the same as those of the first inorganic layer 20.
  • the OLED package structure of the present invention may further include: a plurality of package units 80 disposed on the second inorganic layer 70 and stacked, the package unit 80 including a second peripheral defining layer 85 a second organic layer 90 disposed on the inner side of the second peripheral defining layer 85 surrounded by the second peripheral defining layer 85, and a third inorganic layer disposed on the second peripheral defining layer 85 and the second organic layer 90 Layer 95; the thickness of the second organic layer 90 is less than the thickness of the second peripheral defining layer 85.
  • the plurality of package units 80 disposed in the stack includes at least one package unit 80 .
  • the position of the second peripheral defining layer 85 corresponds to the position of the first peripheral defining layer 45, and the material and thickness of the second peripheral defining layer 85 are the same as the first peripheral defining layer 45.
  • the material and thickness of the second organic layer 90 are the same as those of the first organic layer 60.
  • the material and thickness of the third inorganic layer 95 are the same as those of the second inorganic layer 70.
  • the process difficulty of the first organic layer 60 can be reduced, and the first organic layer can be prepared by using an organic material having a small viscosity. 60 can achieve better uniformity and thinner thickness, which is beneficial to Reducing the bending radius of the OLED package structure to achieve a curl display with a smaller bending radius; in addition, the first peripheral defining layer 45 can block the erosion of the first organic layer 60 from the side by the external water oxygen, so that the OLED package structure is stronger. The barrier to water oxygen and the longer life.
  • the present invention provides an OLED packaging method and an OLED package structure.
  • the OLED packaging method of the present invention by first fabricating a first peripheral defining layer and then fabricating a first organic layer in a region surrounded by the first peripheral defining layer on the first inorganic layer, the first organic layer can be prepared.
  • the apparatus is more diversified, and the viscosity of the organic material used for preparing the first organic layer is not limited. By using an organic material having a small viscosity, the uniformity of the first organic layer can be made better and the thickness is thin, which is advantageous for reducing the OLED package.
  • the bending radius of the structure realizes a curl display with a smaller bending radius; in addition, the first peripheral defining layer can further block the erosion of the first organic layer from the side by the external water oxygen, so that the prepared OLED package structure has stronger Blocks water oxygen capacity and longer life.
  • the OLED package structure of the invention can realize a curl display with a small bending radius, and has a strong barrier to water oxygen and a long service life.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

提供一种OLED封装方法与OLED封装结构。OLED封装方法,通过先制作第一外围限定层(45),再在第一无机层(20)上被第一外围限定层(45)包围的区域内制作第一有机层(60),可以使制备第一有机层(60)采用的设备更加多样化,使用的有机材料的粘度不受限制,通过使用粘度很小的有机材料,能够使第一有机层(60)的均匀性较好、厚度较薄,有利于降低OLED封装结构的弯曲半径,实现弯曲半径更小的卷曲显示;另外,第一外围限定层(45)能够进一步阻隔外界水氧从侧面对第一有机层(60)的侵蚀,使得制成的OLED封装结构具有更强的阻隔水氧能力与更长的使用寿命。OLED封装结构,能够实现弯曲半径较小的卷曲显示,同时具有较强的阻隔水氧能力与较长的使用寿命。

Description

OLED封装方法与OLED封装结构 技术领域
本发明涉及显示技术领域,尤其涉及一种OLED封装方法与OLED封装结构。
背景技术
有机发光二极管显示装置(Organic Light Emitting Display,OLED)具有自发光、驱动电压低、发光效率高、响应时间短、清晰度与对比度高、近180°视角、使用温度范围宽,可实现柔性显示与大面积全色显示等诸多优点,被业界公认为是最有发展潜力的显示装置。
OLED按照驱动方式可以分为无源矩阵型OLED(Passive Matrix OLED,PMOLED)和有源矩阵型OLED(Active Matrix OLED,AMOLED)两大类,即直接寻址和薄膜晶体管矩阵寻址两类。其中,AMOLED具有呈阵列式排布的像素,属于主动显示类型,发光效能高,通常用作高清晰度的大尺寸显示装置。
OLED器件通常包括:基板、设于基板上的阳极、设于阳极上的空穴注入层、设于空穴注入层上的空穴传输层、设于空穴传输层上的发光层、设于发光层上的电子传输层、设于电子传输层上的电子注入层、及设于电子注入层上的阴极。OLED器件的发光原理为半导体材料和有机发光材料在电场驱动下,通过载流子注入和复合导致发光。具体的,OLED器件通常采用氧化铟锡(ITO)电极和金属电极分别作为器件的阳极和阴极,在一定电压驱动下,电子和空穴分别从阴极和阳极注入到电子传输层和空穴传输层,电子和空穴分别经过电子传输层和空穴传输层迁移到发光层,并在发光层中相遇,形成激子并使发光分子激发,后者经过辐射弛豫而发出可见光。
基于OLED的平板显示及照明领域近年来受到科研和学术界的广泛关注。尤其是最近几年以来,具有广阔前景的柔性OLED显示器已经崭露头角,成为各大面板厂商竞争的焦点。柔性OLED显示器在弯曲或折叠的过程中很容易出现裂痕,引起外界水氧进入,从而降解有机发光材料,降低OLED器件的寿命。目前,最广泛的柔性薄膜封装(TFE)一般采用无机层/有机层/无机层交替的结构,无机层用于阻隔水氧,有机层用于缓解应力。可卷式(rollable)OLED显示器作为终极目标对薄膜封装结构提出了更高 的要求,弯曲半径越小,越容易实现可卷式显示。
目前,所述无机层/有机层/无机层交替的柔性薄膜封装结构中,有机层的涂布方式通常采用精度较好、效率较高的喷墨打印(IJP)方法,国际知名IJP厂商Kateeva在专利申请US20140233843中报道了一种IJP像素打印技术,喷墨打印时必须在像素区域外做一层比像素区域内打印材料厚度更高的挡墙(bank),以抑制喷印液体的扩散。然而,所述挡墙的制作不但增加了基板制作的工序,而且往往缺乏对外界水氧阻隔的能力。
韩国首尔国立大学在专利申请US20150042346中报道了一种OLED封装结构,其薄膜封装结构采用多层无机层/有机层交替的结构,其中,有机层的涂布方式采用闪蒸(flash evaporation)、喷墨打印(ink jet printing)或狭缝涂布(slot die coating)。然而,此专利对涂布的厚度、有机物单体的粘度、制备工艺等均无说明,如果采用闪蒸、喷墨打印或狭缝涂布的方式进行有机层涂布,要得到厚度均匀且可卷曲的薄膜封装结构的可行性也有待商榷。
发明内容
本发明的目的在于提供一种OLED封装方法,有利于降低OLED封装结构的弯曲半径,实现弯曲半径更小的卷曲显示,同时使制得的OLED封装结构具有更强的阻隔水氧能力与更长的使用寿命。
本发明的目的还在于提供一种OLED封装结构,能够实现弯曲半径较小的卷曲显示,同时具有较强的阻隔水氧能力与较长的使用寿命。
为实现上述目的,本发明提供一种OLED封装方法,包括如下步骤:
步骤1、提供一OLED器件,在所述OLED器件上形成第一无机层,所述第一无机层覆盖所述OLED器件;
步骤2、在所述第一无机层上形成有机光阻层;
步骤3、对所述有机光阻层进行曝光、显影,所述有机光阻层上被显影掉的区域在第一无机层上限定出外围限定区域;
步骤4、在所述有机光阻层与第一无机层的外围限定区域上沉积致密材料层,所述致密材料层的厚度小于所述有机光阻层的厚度,制得一待剥离基板;
步骤5、将整个待剥离基板浸泡在光阻剥离液中,在去除所述有机光阻层的同时,位于所述有机光阻层上方的致密材料层随所述有机光阻层一起被剥离掉,位于所述第一无机层的外围限定区域上的致密材料层被保留下来,形成第一外围限定层;
步骤6、在所述第一无机层上被所述第一外围限定层包围的区域内涂布有机材料,涂布的有机材料的厚度小于所述第一外围限定层的厚度,形成第一有机层;
步骤7、在所述第一有机层与第一外围限定层上形成第二无机层。
所述步骤4中,采用等离子体增强化学气相沉积、原子层沉积、脉冲激光沉积、溅射、或者蒸镀的方式沉积致密材料层;所述致密材料层的材料包括类金刚石、锆铝酸盐、石墨烯、银、铝、氮化铝、及铜中的一种或多种;所述致密材料层的厚度为0.5μm-3μm。
所述步骤6中,利用旋涂、网印、狭缝旋涂、点胶、或者喷墨打印的方式形成第一有机层;所述第一有机层的材料包括丙烯酸脂、六甲基二甲硅醚、聚丙烯酸酯、聚碳酸脂、及聚苯乙烯中的一种或多种;所述第一有机层的厚度为0.5μm-3μm。
可选的,所述OLED封装方法还包括:步骤8、在所述第二无机层上形成层叠设置的数个封装单元,所述封装单元包括第二外围限定层、设于第二外围限定层内侧被所述第二外围限定层包围起来的第二有机层、以及设于所述第二外围限定层与第二有机层上的第三无机层;所述第二有机层的厚度小于所述第二外围限定层的厚度。
所述层叠设置的数个封装单元包括至少一个封装单元;
所述第二外围限定层的制备方法与所述第一外围限定层相同,所述第二外围限定层的位置与所述第一外围限定层的位置上下对应,所述第二外围限定层的材料和厚度与所述第一外围限定层相同;
所述第二有机层的制备方法与所述第一有机层相同,所述第二有机层的材料和厚度与所述第一有机层相同。
本发明还提供一种OLED封装结构,包括OLED器件、设于所述OLED器件上且覆盖所述OLED器件的第一无机层、设于所述第一无机层上的第一外围限定层、设于所述第一无机层上被所述第一外围限定层包围的区域内的第一有机层、以及设于所述第一有机层与第一外围限定层上的第二无机层;所述第一有机层的厚度小于所述第一外围限定层的厚度。
所述第一外围限定层的材料包括类金刚石、锆铝酸盐、石墨烯、银、铝、氮化铝、及铜中的一种或多种;所述第一外围限定层的厚度为0.5μm-3μm。
所述第一有机层的材料包括丙烯酸脂、六甲基二甲硅醚、聚丙烯酸酯、聚碳酸脂、及聚苯乙烯中的一种或多种;所述第一有机层的厚度为0.5μm-3μm。
可选的,所述OLED封装结构还包括:设于所述第二无机层上且层叠设置的数个封装单元,所述封装单元包括第二外围限定层、设于第二外围限定层内侧被所述第二外围限定层包围起来的第二有机层、以及设于所述第二外围限定层与第二有机层上的第三无机层;所述第二有机层的厚度小于所述第二外围限定层的厚度。
所述层叠设置的数个封装单元包括至少一个封装单元;
所述第二外围限定层的位置与所述第一外围限定层的位置上下对应,所述第二外围限定层的材料和厚度与所述第一外围限定层相同;
所述第二有机层的材料和厚度与所述第一有机层相同。
本发明还提供一种OLED封装结构,包括OLED器件、设于所述OLED器件上且覆盖所述OLED器件的第一无机层、设于所述第一无机层上的第一外围限定层、设于所述第一无机层上被所述第一外围限定层包围的区域内的第一有机层、以及设于所述第一有机层与第一外围限定层上的第二无机层;所述第一有机层的厚度小于所述第一外围限定层的厚度;
其中,所述第一外围限定层的材料包括类金刚石、锆铝酸盐、石墨烯、银、铝、氮化铝、及铜中的一种或多种;所述第一外围限定层的厚度为0.5μm-3μm;
其中,所述第一有机层的材料包括丙烯酸脂、六甲基二甲硅醚、聚丙烯酸酯、聚碳酸脂、及聚苯乙烯中的一种或多种;所述第一有机层的厚度为0.5μm-3μm。
本发明的有益效果:本发明提供的一种OLED封装方法,通过首先制作第一外围限定层,再在第一无机层上被所述第一外围限定层包围的区域内制作第一有机层,可以使制备第一有机层采用的设备更加多样化,制备第一有机层使用的有机材料的粘度不受限制,通过使用粘度很小的有机材料,能够使第一有机层的均匀性较好、厚度较薄,有利于降低OLED封装结构的弯曲半径,实现弯曲半径更小的卷曲显示;另外,所述第一外围限定层能够进一步阻隔外界水氧从侧面对第一有机层的侵蚀,使制得的OLED封装结构具有更强的阻隔水氧能力与更长的使用寿命。本发明提供的一种OLED封装结构,能够实现弯曲半径较小的卷曲显示,同时具有较强的阻隔水氧能力与较长的使用寿命。
为了能更进一步了解本发明的特征以及技术内容,请参阅以下有关本发明的详细说明与附图,然而附图仅提供参考与说明用,并非用来对本发明加以限制。
附图说明
下面结合附图,通过对本发明的具体实施方式详细描述,将使本发明的技术方案及其它有益效果显而易见。
附图中,
图1为本发明的OLED封装方法的流程图;
图2为本发明的OLED封装方法的步骤1的示意图;
图3为本发明的OLED封装方法的步骤2的示意图;
图4为本发明的OLED封装方法的步骤3的示意图;
图5为本发明的OLED封装方法的步骤4的示意图;
图6为本发明的OLED封装方法的步骤5的示意图;
图7为本发明的OLED封装方法的步骤6的示意图;
图8为本发明的OLED封装方法的步骤7的示意图暨本发明的OLED封装结构的第一实施例的剖视示意图;
图9为本发明的OLED封装方法的步骤8的示意图暨本发明的OLED封装结构的第二实施例的剖视示意图。
具体实施方式
为更进一步阐述本发明所采取的技术手段及其效果,以下结合本发明的优选实施例及其附图进行详细描述。
请参阅图1,本发明提供一种OLED封装方法,包括如下步骤:
步骤1、如图2所示,提供一OLED器件10,在所述OLED器件10上形成第一无机层20,所述第一无机层20覆盖所述OLED器件10。
具体的,所述步骤1中,采用等离子体增强化学气相沉积、原子层沉积、脉冲激光沉积、溅射、或者蒸镀的方式形成第一无机层20。
具体的,所述第一无机层20的材料包括氧化铝(Al2O3)、过氧化锌(ZnO2)、二氧化钛(TiO2)、氮化硅(SiNx)、碳氮化硅(SiCNx)、氧化硅(SiOx)、二氧化锆(ZrO2)、及氮化铝(AlN)中的一种或多种;第一无机层20的厚度为0.5μm-1μm。所述第一无机层20的作用在于阻隔水氧对OLED器件10的侵蚀。
步骤2、如图3所示,在所述第一无机层20上形成有机光阻层30。
具体的,所述步骤2中,采用旋涂、网印、狭缝旋涂、点胶、或者喷墨打印的方式形成有机光阻层30。
具体的,所述有机光阻层30的材料为有机负性光阻;所述有机光阻层30的厚度为0.5μm-3μm。该有机光阻层30的厚度限定了后续制作的第一 外围限定层45的厚度范围。
步骤3、如图4所示,采用光罩31对所述有机光阻层30进行曝光、显影,所述有机光阻层30上被显影掉的区域在第一无机层20上限定出外围限定区域21。
步骤4、如图5所示,在所述有机光阻层30与第一无机层20的外围限定区域21上沉积致密材料层40,所述致密材料层40的厚度小于所述有机光阻层30的厚度,制得一待剥离基板50。
具体的,所述步骤4中,采用等离子体增强化学气相沉积、原子层沉积、脉冲激光沉积、溅射、或者蒸镀的方式沉积致密材料层40。
具体的,所述致密材料层40的材料包括类金刚石(Diamond-Like Carbon,DLC)、锆铝酸盐(ZrAlxOy)、石墨烯、银、铝、氮化铝、及铜中的一种或多种;所述致密材料层40的厚度为0.5μm-3μm。
步骤5、如图6所示,将整个待剥离基板50浸泡在光阻剥离液中,在去除所述有机光阻层30的同时,位于所述有机光阻层30上方的致密材料层40随所述有机光阻层30一起被剥离掉,位于所述第一无机层20的外围限定区域21上的致密材料层40被保留下来,形成第一外围限定层45。
具体的,所述步骤5中,要求选用的光阻剥离液选择性的对所述有机光阻层30起到剥离作用,对所述第一无机层20及OLED器件10不会造成损伤。
具体的,所述光阻剥离液为有机溶剂。
具体的,所述第一外围限定层45能够阻隔外界水氧从侧向对后续制作的第一有机层60的侵蚀。
步骤6、如图7所示,在所述第一无机层20上被所述第一外围限定层45包围的区域内涂布有机材料,涂布的有机材料的厚度小于所述第一外围限定层45的厚度,形成第一有机层60。
具体的,所述步骤6中,利用旋涂、网印、狭缝旋涂、点胶、或者喷墨打印的方式形成第一有机层60;由于涂布的有机材料的厚度小于所述第一外围限定层45的厚度,因此可以避免出现溢流现象。
上述步骤2至步骤6中,本发明通过首先制作第一外围限定层45,再在所述第一无机层20上被所述第一外围限定层45包围的区域内制作第一有机层60,这样做的好处是:1、有机材料的涂布制程中采用的设备可以更加多样化;2、使用的有机材料的粘度可以更小,粘度越小有机材料越容易流平,从而形成的第一有机层60的均匀性越好;3、第一有机层60的厚度可以做的更薄,有利于实现弯曲半径更小的卷曲显示;4、第一外围限定层 45能够阻隔外界水氧从侧面对第一有机层60的侵蚀。
具体的,所述第一有机层60的材料包括丙烯酸脂(Acrylic)、六甲基二甲硅醚(HMDSO)、聚丙烯酸酯、聚碳酸脂、及聚苯乙烯中的一种或多种。所述第一有机层60的厚度为0.5μm-3μm。所述第一有机层60的主要作用为平坦化与缓解应力。
步骤7、如图8所示,在所述第一有机层60与第一外围限定层45上形成第二无机层70。
至此,完成对OLED器件10的基本封装。
具体的,所述步骤7中,所述第二无机层70的制备方法与所述第一无机层20相同,所述第二无机层70的材料和厚度与所述第一无机层20相同。
进一步的,为增强对OLED器件10的封装效果,本发明的OLED封装方法还可以包括:
步骤8、如图9所示,在所述第二无机层70上形成层叠设置的数个封装单元80,所述封装单元80包括第二外围限定层85、设于第二外围限定层85内侧被所述第二外围限定层85包围起来的第二有机层90、以及设于所述第二外围限定层85与第二有机层90上的第三无机层95;所述第二有机层90的厚度小于所述第二外围限定层85的厚度。
具体的,如图9所示,所述层叠设置的数个封装单元80包括至少一个封装单元80。
具体的,所述第二外围限定层85的制备方法与所述第一外围限定层45相同,所述第二外围限定层85的位置与所述第一外围限定层45的位置上下对应,所述第二外围限定层85的材料和厚度与所述第一外围限定层45相同。
具体的,所述第二有机层90的制备方法与所述第一有机层60相同,所述第二有机层90的材料和厚度与所述第一有机层60相同。
具体的,所述第三无机层95的制备方法与所述第二无机层70相同,所述第三无机层95的材料和厚度与所述第二无机层70相同。
上述OLED封装方法,通过首先制作第一外围限定层45,再在第一无机层20上被所述第一外围限定层45包围的区域内制作第一有机层60,可以使制备第一有机层60采用的设备更加多样化,制备第一有机层60使用的有机材料的粘度不受限制,通过采用粘度很小的有机材料,能够使第一有机层60的均匀性较好、厚度较薄,有利于降低OLED封装结构的弯曲半径,实现弯曲半径更小的卷曲显示;另外,所述第一外围限定层45能够阻隔外界水氧从侧面对第一有机层60的侵蚀,使制得的OLED封装结构具有 更强的阻隔水氧能力与更长的使用寿命。
请参阅图8,基于上述OLED封装方法,本发明还提供一种OLED封装结构,包括OLED器件10、设于所述OLED器件10上且覆盖所述OLED器件10的第一无机层20、设于所述第一无机层20上的第一外围限定层45、设于所述第一无机层20上被所述第一外围限定层45包围的区域内的第一有机层60、以及设于所述第一有机层60与第一外围限定层45上的第二无机层70;所述第一有机层60的厚度小于所述第一外围限定层45的厚度。
具体的,所述第一无机层20的材料包括氧化铝(Al2O3)、过氧化锌(ZnO2)、二氧化钛(TiO2)、氮化硅(SiNx)、碳氮化硅(SiCNx)、氧化硅(SiOx)、二氧化锆(ZrO2)、及氮化铝(AlN)中的一种或多种;第一无机层20的厚度为0.5μm-1μm。
具体的,所述第一外围限定层45的材料包括类金刚石(Diamond-Like Carbon,DLC)、锆铝酸盐(ZrAlxOy)、石墨烯、银、铝、氮化铝、及铜中的一种或多种;所述第一外围限定层45的厚度为0.5μm-3μm。
具体的,所述第一有机层60的材料包括丙烯酸脂(Acrylic)、六甲基二甲硅醚(HMDSO)、聚丙烯酸酯、聚碳酸脂、及聚苯乙烯中的一种或多种。所述第一有机层60的厚度为0.5μm-3μm。
具体的,所述第二无机层70的材料和厚度与所述第一无机层20相同。
进一步的,请参阅图9,本发明的OLED封装结构还可以包括:设于所述第二无机层70上且层叠设置的数个封装单元80,所述封装单元80包括第二外围限定层85、设于第二外围限定层85内侧被所述第二外围限定层85包围起来的第二有机层90、以及设于所述第二外围限定层85与第二有机层90上的第三无机层95;所述第二有机层90的厚度小于所述第二外围限定层85的厚度。
具体的,如图9所示,所述层叠设置的数个封装单元80包括至少一个封装单元80。
具体的,所述第二外围限定层85的位置与所述第一外围限定层45的位置上下对应,所述第二外围限定层85的材料和厚度与所述第一外围限定层45相同。
具体的,所述第二有机层90的材料和厚度与所述第一有机层60相同。
具体的,所述第三无机层95的材料和厚度与所述第二无机层70相同。
上述OLED封装结构,通过在第一有机层60的外围设置第一外围限定层45,能够使第一有机层60的制程难度降低,通过采用粘度很小的有机材料制备,所述第一有机层60能够实现较好的均匀性与较薄的厚度,有利于 降低OLED封装结构的弯曲半径,实现弯曲半径更小的卷曲显示;另外,所述第一外围限定层45能够阻隔外界水氧从侧面对第一有机层60的侵蚀,使OLED封装结构具有更强的阻隔水氧能力与更长的使用寿命。
综上所述,本发明提供一种OLED封装方法与OLED封装结构。本发明的OLED封装方法,通过首先制作第一外围限定层,再在第一无机层上被所述第一外围限定层包围的区域内制作第一有机层,可以使制备第一有机层采用的设备更加多样化,制备第一有机层使用的有机材料的粘度不受限制,通过使用粘度很小的有机材料,能够使第一有机层的均匀性较好、厚度较薄,有利于降低OLED封装结构的弯曲半径,实现弯曲半径更小的卷曲显示;另外,所述第一外围限定层能够进一步阻隔外界水氧从侧面对第一有机层的侵蚀,使制得的OLED封装结构具有更强的阻隔水氧能力与更长的使用寿命。本发明的OLED封装结构,能够实现弯曲半径较小的卷曲显示,同时具有较强的阻隔水氧能力与较长的使用寿命。
以上所述,对于本领域的普通技术人员来说,可以根据本发明的技术方案和技术构思作出其他各种相应的改变和变形,而所有这些改变和变形都应属于本发明权利要求的保护范围。

Claims (13)

  1. 一种OLED封装方法,包括如下步骤:
    步骤1、提供一OLED器件,在所述OLED器件上形成第一无机层,所述第一无机层覆盖所述OLED器件;
    步骤2、在所述第一无机层上形成有机光阻层;
    步骤3、对所述有机光阻层进行曝光、显影,所述有机光阻层上被显影掉的区域在第一无机层上限定出外围限定区域;
    步骤4、在所述有机光阻层与第一无机层的外围限定区域上沉积致密材料层,所述致密材料层的厚度小于所述有机光阻层的厚度,制得一待剥离基板;
    步骤5、将整个待剥离基板浸泡在光阻剥离液中,在去除所述有机光阻层的同时,位于所述有机光阻层上方的致密材料层随所述有机光阻层一起被剥离掉,位于所述第一无机层的外围限定区域上的致密材料层被保留下来,形成第一外围限定层;
    步骤6、在所述第一无机层上被所述第一外围限定层包围的区域内涂布有机材料,涂布的有机材料的厚度小于所述第一外围限定层的厚度,形成第一有机层;
    步骤7、在所述第一有机层与第一外围限定层上形成第二无机层。
  2. 如权利要求1所述的OLED封装方法,其中,所述步骤4中,采用等离子体增强化学气相沉积、原子层沉积、脉冲激光沉积、溅射、或者蒸镀的方式沉积致密材料层;所述致密材料层的材料包括类金刚石、锆铝酸盐、石墨烯、银、铝、氮化铝、及铜中的一种或多种;所述致密材料层的厚度为0.5μm-3μm。
  3. 如权利要求1所述的OLED封装方法,其中,所述步骤6中,利用旋涂、网印、狭缝旋涂、点胶、或者喷墨打印的方式形成第一有机层;所述第一有机层的材料包括丙烯酸脂、六甲基二甲硅醚、聚丙烯酸酯、聚碳酸脂、及聚苯乙烯中的一种或多种;所述第一有机层的厚度为0.5μm-3μm。
  4. 如权利要求1所述的OLED封装方法,还包括:步骤8、在所述第二无机层上形成层叠设置的数个封装单元,所述封装单元包括第二外围限定层、设于第二外围限定层内侧被所述第二外围限定层包围起来的第二有机层、以及设于所述第二外围限定层与第二有机层上的第三无机层;所述第二有机层的厚度小于所述第二外围限定层的厚度。
  5. 如权利要求4所述的OLED封装方法,其中,所述层叠设置的数个封装单元包括至少一个封装单元;
    所述第二外围限定层的制备方法与所述第一外围限定层相同,所述第二外围限定层的位置与所述第一外围限定层的位置上下对应,所述第二外围限定层的材料和厚度与所述第一外围限定层相同;
    所述第二有机层的制备方法与所述第一有机层相同,所述第二有机层的材料和厚度与所述第一有机层相同。
  6. 一种OLED封装结构,包括OLED器件、设于所述OLED器件上且覆盖所述OLED器件的第一无机层、设于所述第一无机层上的第一外围限定层、设于所述第一无机层上被所述第一外围限定层包围的区域内的第一有机层、以及设于所述第一有机层与第一外围限定层上的第二无机层;所述第一有机层的厚度小于所述第一外围限定层的厚度。
  7. 如权利要求6所述的OLED封装结构,其中,所述第一外围限定层的材料包括类金刚石、锆铝酸盐、石墨烯、银、铝、氮化铝、及铜中的一种或多种;所述第一外围限定层的厚度为0.5μm-3μm。
  8. 如权利要求6所述的OLED封装结构,其中,所述第一有机层的材料包括丙烯酸脂、六甲基二甲硅醚、聚丙烯酸酯、聚碳酸脂、及聚苯乙烯中的一种或多种;所述第一有机层的厚度为0.5μm-3μm。
  9. 如权利要求6所述的OLED封装结构,还包括:设于所述第二无机层上且层叠设置的数个封装单元,所述封装单元包括第二外围限定层、设于第二外围限定层内侧被所述第二外围限定层包围起来的第二有机层、以及设于所述第二外围限定层与第二有机层上的第三无机层;所述第二有机层的厚度小于所述第二外围限定层的厚度。
  10. 如权利要求9所述的OLED封装结构,其中,所述层叠设置的数个封装单元包括至少一个封装单元;
    所述第二外围限定层的位置与所述第一外围限定层的位置上下对应,所述第二外围限定层的材料和厚度与所述第一外围限定层相同;
    所述第二有机层的材料和厚度与所述第一有机层相同。
  11. 一种OLED封装结构,包括OLED器件、设于所述OLED器件上且覆盖所述OLED器件的第一无机层、设于所述第一无机层上的第一外围限定层、设于所述第一无机层上被所述第一外围限定层包围的区域内的第一有机层、以及设于所述第一有机层与第一外围限定层上的第二无机层;所述第一有机层的厚度小于所述第一外围限定层的厚度;
    其中,所述第一外围限定层的材料包括类金刚石、锆铝酸盐、石墨烯、 银、铝、氮化铝、及铜中的一种或多种;所述第一外围限定层的厚度为0.5μm-3μm;
    其中,所述第一有机层的材料包括丙烯酸脂、六甲基二甲硅醚、聚丙烯酸酯、聚碳酸脂、及聚苯乙烯中的一种或多种;所述第一有机层的厚度为0.5μm-3μm。
  12. 如权利要求11所述的OLED封装结构,还包括:设于所述第二无机层上且层叠设置的数个封装单元,所述封装单元包括第二外围限定层、设于第二外围限定层内侧被所述第二外围限定层包围起来的第二有机层、以及设于所述第二外围限定层与第二有机层上的第三无机层;所述第二有机层的厚度小于所述第二外围限定层的厚度。
  13. 如权利要求12所述的OLED封装结构,其中,所述层叠设置的数个封装单元包括至少一个封装单元;
    所述第二外围限定层的位置与所述第一外围限定层的位置上下对应,所述第二外围限定层的材料和厚度与所述第一外围限定层相同;
    所述第二有机层的材料和厚度与所述第一有机层相同。
PCT/CN2016/113037 2016-12-15 2016-12-29 Oled封装方法与oled封装结构 WO2018107535A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/505,116 US10283732B2 (en) 2016-12-15 2016-12-29 OLED packaging method and package structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611163660.7A CN106784398B (zh) 2016-12-15 2016-12-15 Oled封装方法与oled封装结构
CN201611163660.7 2016-12-15

Publications (1)

Publication Number Publication Date
WO2018107535A1 true WO2018107535A1 (zh) 2018-06-21

Family

ID=58892827

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/113037 WO2018107535A1 (zh) 2016-12-15 2016-12-29 Oled封装方法与oled封装结构

Country Status (3)

Country Link
US (2) US10283732B2 (zh)
CN (1) CN106784398B (zh)
WO (1) WO2018107535A1 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108305953B (zh) * 2018-01-19 2019-12-24 昆山国显光电有限公司 薄膜封装结构及其制作方法、以及显示装置
CN108336243B (zh) * 2018-01-27 2020-02-18 武汉华星光电半导体显示技术有限公司 有机半导体器件的封装方法
CN108365117A (zh) * 2018-01-31 2018-08-03 昆山国显光电有限公司 封装结构与封装方法及封装结构制备装置
CN108493356B (zh) * 2018-04-25 2019-07-02 云谷(固安)科技有限公司 薄膜封装结构、薄膜封装方法及显示面板
CN108511629A (zh) 2018-05-31 2018-09-07 京东方科技集团股份有限公司 Oled显示基板及其制作方法、显示装置
CN109461823B (zh) * 2018-08-30 2020-11-10 昆山国显光电有限公司 封装结构及封装器件
CN109378400A (zh) * 2018-09-17 2019-02-22 武汉华星光电半导体显示技术有限公司 Oled显示面板及其制作方法
CN109378402B (zh) * 2018-09-28 2020-06-16 武汉华星光电半导体显示技术有限公司 Oled面板以及制备方法
CN109390278B (zh) * 2018-11-14 2021-04-02 京东方科技集团股份有限公司 一种显示基板及其制备方法、显示装置
CN109686855A (zh) * 2018-12-04 2019-04-26 武汉华星光电半导体显示技术有限公司 一种薄膜封装结构及薄膜封装方法
CN110176479B (zh) * 2019-05-30 2020-09-01 武汉华星光电半导体显示技术有限公司 显示面板及其制备方法
CN111129338B (zh) * 2019-11-25 2023-04-18 京东方科技集团股份有限公司 显示装置、显示面板及其制备方法
CN112420947A (zh) * 2020-11-16 2021-02-26 武汉华星光电半导体显示技术有限公司 显示面板及显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101154711A (zh) * 2006-09-27 2008-04-02 中国科学院微电子研究所 一种有机反熔丝及其制备方法
EP2755250A2 (en) * 2013-01-11 2014-07-16 Samsung Display Co., Ltd. Display Apparatus and Method of Manufacturing the Same
CN104377222A (zh) * 2013-08-14 2015-02-25 三星显示有限公司 显示设备及制造显示设备的方法
CN104538425A (zh) * 2014-12-19 2015-04-22 上海天马微电子有限公司 一种阻挡膜及其制作方法、显示装置
CN105789257A (zh) * 2016-03-23 2016-07-20 京东方科技集团股份有限公司 薄膜封装结构及显示装置
CN105977279A (zh) * 2016-07-07 2016-09-28 京东方科技集团股份有限公司 有机电致发光二极管基板及其制备方法、显示装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070092844A1 (en) * 2005-10-21 2007-04-26 Macronix International Co., Ltd. Method to form photo patterns
KR101440105B1 (ko) * 2007-02-23 2014-09-17 삼성전자주식회사 멀티 디스플레이 장치
US20120138976A1 (en) * 2009-08-24 2012-06-07 Yoshimasa Fujita Organic electroluminescent element, organic electroluminescent display device, and organic electroluminescent illuminating device
KR101255537B1 (ko) * 2010-11-26 2013-04-16 삼성디스플레이 주식회사 평판 표시 장치 및 그 제조방법
US8790867B2 (en) * 2011-11-03 2014-07-29 Rohm And Haas Electronic Materials Llc Methods of forming photolithographic patterns by negative tone development
KR101923176B1 (ko) * 2012-06-11 2018-11-29 삼성디스플레이 주식회사 평판 표시장치 및 그 제조방법
KR20140038113A (ko) * 2012-09-20 2014-03-28 삼성디스플레이 주식회사 봉지 부재, 봉지 부재를 포함하는 유기 발광 표시 장치 및 봉지 부재를 포함하는 유기 발광 표시 장치의 제조 방법
DE102012109140B4 (de) * 2012-09-27 2021-06-24 Pictiva Displays International Limited Optoelektronisches Bauelement und Verfahren zum Herstellen eines optoelektronischen Bauelementes
KR20140089856A (ko) * 2013-01-07 2014-07-16 삼성디스플레이 주식회사 유기발광표시장치 및 그 제조방법
JP2014150057A (ja) * 2013-01-11 2014-08-21 Canon Inc 有機発光装置及びその製造方法
JP6490921B2 (ja) * 2014-08-08 2019-03-27 株式会社ジャパンディスプレイ 表示装置、及びその製造方法
KR101667800B1 (ko) * 2014-08-29 2016-10-20 삼성디스플레이 주식회사 디스플레이 장치 및 이의 제조 방법
CN105990231B (zh) * 2015-02-25 2019-10-18 南京瀚宇彩欣科技有限责任公司 薄膜电晶体基板的制造方法
CN104934441B (zh) * 2015-04-29 2018-03-30 京东方科技集团股份有限公司 一种goa单元及其制作方法、栅极驱动电路及显示器件

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101154711A (zh) * 2006-09-27 2008-04-02 中国科学院微电子研究所 一种有机反熔丝及其制备方法
EP2755250A2 (en) * 2013-01-11 2014-07-16 Samsung Display Co., Ltd. Display Apparatus and Method of Manufacturing the Same
CN104377222A (zh) * 2013-08-14 2015-02-25 三星显示有限公司 显示设备及制造显示设备的方法
CN104538425A (zh) * 2014-12-19 2015-04-22 上海天马微电子有限公司 一种阻挡膜及其制作方法、显示装置
CN105789257A (zh) * 2016-03-23 2016-07-20 京东方科技集团股份有限公司 薄膜封装结构及显示装置
CN105977279A (zh) * 2016-07-07 2016-09-28 京东方科技集团股份有限公司 有机电致发光二极管基板及其制备方法、显示装置

Also Published As

Publication number Publication date
US20190140213A1 (en) 2019-05-09
US20180219178A1 (en) 2018-08-02
CN106784398B (zh) 2019-12-03
US10283732B2 (en) 2019-05-07
CN106784398A (zh) 2017-05-31
US10693105B2 (en) 2020-06-23

Similar Documents

Publication Publication Date Title
WO2018107535A1 (zh) Oled封装方法与oled封装结构
US11114514B2 (en) Organic electroluminescent display panel, manufacturing method thereof, and display device
US9954170B2 (en) Recess structure for print deposition process and manufacturing method thereof
WO2018113019A1 (zh) Oled显示面板及其制作方法
US10510990B2 (en) Groove structure for printing OLED display and manufacturing method for OLED display
US10084132B2 (en) Groove structure for printing coating process and manufacturing method thereof
US10333105B2 (en) Organic light emitting display packaging structure and manufacturing method thereof
WO2018094801A1 (zh) Oled显示装置及其制作方法
US20190115402A1 (en) Pixel definition layer and manufacturing method thereof, display substrate, and display panel
TW200404329A (en) Light emitting device and method of manufacturing the same
TWI834533B (zh) 具有uv固化填料的有機發光二極體(oled)顯示器裝置及製造方法
US11196021B2 (en) Composite film layer, having alternately-stacked sub-film layers with different refractive indexes
KR20080003074A (ko) 유기전기발광소자 및 그 제조방법
US10930868B2 (en) Flexible organic light emitting diode display preventing current leakage between organic light emitting units
US10547029B2 (en) OLED package structure
US20210351376A1 (en) Oled display panel and fabrication method thereof
TW202133469A (zh) 帶有鏡部的有機發光二極體(oled)顯示裝置及其製造方法
CN112018131A (zh) 柔性显示面板及其制备方法
US10109820B2 (en) Array substrate and manufacturing method thereof, and display device
WO2019218558A1 (zh) Oled封装方法及oled封装结构
KR101681454B1 (ko) 유기전계발광 표시장치 및 그 제조 방법
JP2008130312A (ja) エレクトロルミネッセンス素子パネルの製造方法及びエレクトロルミネッセンス素子パネル用封止基板
KR101966160B1 (ko) 유기전계발광 표시장치 및 그 제조 방법
US10811477B2 (en) Flexible organic light emitting display device and manufacturing method thereof
KR100623704B1 (ko) 유기 전계 발광 표시 장치의 제조 방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15505116

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16924053

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16924053

Country of ref document: EP

Kind code of ref document: A1