WO2018094801A1 - Oled显示装置及其制作方法 - Google Patents

Oled显示装置及其制作方法 Download PDF

Info

Publication number
WO2018094801A1
WO2018094801A1 PCT/CN2016/112250 CN2016112250W WO2018094801A1 WO 2018094801 A1 WO2018094801 A1 WO 2018094801A1 CN 2016112250 W CN2016112250 W CN 2016112250W WO 2018094801 A1 WO2018094801 A1 WO 2018094801A1
Authority
WO
WIPO (PCT)
Prior art keywords
film layer
inorganic film
layer
inorganic
oled
Prior art date
Application number
PCT/CN2016/112250
Other languages
English (en)
French (fr)
Inventor
黄静
Original Assignee
武汉华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电技术有限公司 filed Critical 武汉华星光电技术有限公司
Priority to US15/509,194 priority Critical patent/US10276832B2/en
Publication of WO2018094801A1 publication Critical patent/WO2018094801A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/879Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/846Passivation; Containers; Encapsulations comprising getter material or desiccants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/858Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • H10K50/8445Encapsulations multilayered coatings having a repetitive structure, e.g. having multiple organic-inorganic bilayers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/873Encapsulations
    • H10K59/8731Encapsulations multilayered coatings having a repetitive structure, e.g. having multiple organic-inorganic bilayers

Definitions

  • the present invention relates to the field of display technologies, and in particular, to an OLED display device and a method of fabricating the same.
  • OLED Organic Light-Emitting Diode
  • organic electroluminescent display also known as an organic electroluminescent display
  • OLED Organic Light-Emitting Diode
  • High definition and contrast ratio, near 180° viewing angle, wide temperature range, flexible display and large-area full-color display, etc., are recognized by the industry as the most promising display device.
  • OLED can be divided into two types: passive matrix OLED (PMOLED) and active matrix OLED (AMOLED), namely direct addressing and thin film transistor matrix addressing.
  • PMOLED passive matrix OLED
  • AMOLED active matrix OLED
  • the AMOLED has pixels arranged in an array, belongs to an active display type, has high luminous efficiency, and is generally used as a high-definition large-sized display device.
  • the OLED device generally includes a substrate, an anode disposed on the substrate, a hole injection layer disposed on the anode, a hole transport layer disposed on the hole injection layer, and a light-emitting layer disposed on the hole transport layer.
  • the principle of luminescence of OLED display devices is that semiconductor materials and organic luminescent materials are driven by electric fields, causing luminescence by carrier injection and recombination.
  • an OLED display device generally employs an ITO pixel electrode and a metal electrode as anodes and cathodes of the device, respectively.
  • electrons and holes are injected from the cathode and the anode to the electron transport layer and the hole transport layer, respectively.
  • the holes migrate to the light-emitting layer through the electron transport layer and the hole transport layer, respectively, and meet in the light-emitting layer to form excitons and excite the light-emitting molecules, and the latter emits visible light through radiation relaxation.
  • the thin film packaging technology is one of the common OLED packaging technologies.
  • An inorganic/organic film alternate growth method is mainly used to form an encapsulation layer of an OLED device, wherein the inorganic film can be subjected to plasma enhanced chemical vapor deposition (PECVD), atomic layer deposition (ALD), sputtering (Sputter) or pulsed laser. Prepared by methods such as deposition (PLD).
  • OLEDs organic light-emitting diodes
  • the luminous flux emitted by OLED mainly has the following three directions: waveguide mode, substrate mode, and air mode, and usually only about 20% of light energy is emitted outside the device.
  • a microlens array structure is usually added to the substrate and air interface to reduce the loss of light flux due to the substrate mode. The results show that the optical coupling efficiency of the OLED can be increased by about 50%.
  • the optical calculation results also show that when the refractive index of the hemispherical microprism material and the substrate are matched, the optical coupling efficiency can be improved by 45%.
  • the preparation of hemispherical microlens arrays is usually done by photoresist hot melt or etching, which is not only complicated in process but also limited in material selection.
  • An object of the present invention is to provide a method for fabricating an OLED display device, which can improve the light extraction efficiency of an OLED device.
  • Another object of the present invention is to provide an OLED display device, which has high light extraction efficiency.
  • the present invention provides a method of fabricating an OLED display device, comprising the following steps:
  • Step 1 providing an OLED substrate, the OLED substrate comprising a substrate, a TFT layer disposed on the substrate, and an OLED device disposed on the TFT layer;
  • Step 2 Form a hydrophobic film on the second inorganic film layer, and form a microlens array on the hydrophobic film.
  • the material of the hydrophobic film comprises polytetrafluoroethylene; the hydrophobic film has a thickness of 10 nm to 1000 nm; in the step 2, the hydrophobic film is prepared by a pulse laser deposition apparatus.
  • the microlens array includes a plurality of microlenses arranged in an array, the microlenses being spherical or ellipsoidal in shape; the material of the microlenses comprising polycarbonate;
  • a plurality of droplets of microlens material arranged in an array are printed on the hydrophobic film by using an inkjet printing device, and after curing, a plurality of microlenses are formed to constitute the microlens array.
  • the method for fabricating the OLED display device further includes: Step 3, forming a third inorganic film layer on the microlens array and the hydrophobic film.
  • the manufacturing method of the OLED display device further includes: step 4, in the Forming a plurality of second organic film layers and a plurality of fourth inorganic film layers on the third inorganic film layer;
  • the second organic film layer and the fourth inorganic film layer are alternately disposed, and the film layer adjacent to the third inorganic film layer is Two organic film layers;
  • the materials of the first inorganic film layer, the second inorganic film layer, the third inorganic film layer, and the fourth inorganic film layer respectively include at least one of silicon nitride, silicon oxide, and aluminum oxide;
  • the first inorganic film layer, the second inorganic film layer, the third inorganic film layer, and the fourth inorganic film layer have a thickness of 1 ⁇ m to 2 ⁇ m, respectively;
  • the thicknesses of the first organic film layer and the second organic film layer are respectively 1 ⁇ m to 10 ⁇ m.
  • the present invention also provides an OLED display device comprising: a substrate substrate, a TFT layer disposed on the substrate substrate, an OLED device disposed on the TFT layer, and the OLED device and the TFT layer a first inorganic film layer, a first organic film layer disposed on the first inorganic film layer, and a second inorganic film layer disposed on the first organic film layer, disposed on the second inorganic film layer a hydrophobic film, and a microlens array disposed on the hydrophobic film.
  • the material of the hydrophobic film comprises polytetrafluoroethylene; the hydrophobic film has a thickness of 10 nm to 1000 nm.
  • the microlens array includes a plurality of microlenses arranged in an array, the microlenses being spherical or ellipsoidal in shape; and the material of the microlenses comprises polycarbonate.
  • the OLED display device further includes: a third inorganic film layer disposed on the microlens array and the hydrophobic film.
  • the OLED display device further includes: a plurality of second organic film layers and a plurality of fourth inorganic film layers disposed on the third inorganic film layer; and the plurality of second organic film layers and the number In the fourth inorganic film layer, the second organic film layer and the fourth inorganic film layer are alternately disposed, and the film layer adjacent to the third inorganic film layer is a second organic film layer;
  • the materials of the first inorganic film layer, the second inorganic film layer, the third inorganic film layer, and the fourth inorganic film layer respectively include at least one of silicon nitride, silicon oxide, and aluminum oxide;
  • the first inorganic film layer, the second inorganic film layer, the third inorganic film layer, and the fourth inorganic film layer have a thickness of 1 ⁇ m to 2 ⁇ m, respectively;
  • the thicknesses of the first organic film layer and the second organic film layer are respectively 1 ⁇ m to 10 ⁇ m.
  • the invention also provides a method for fabricating an OLED display device, comprising the following steps:
  • Step 1 providing an OLED substrate, the OLED substrate comprising a substrate, a TFT layer disposed on the substrate, and an OLED device disposed on the TFT layer;
  • Step 2 forming a hydrophobic film on the second inorganic film layer, forming a microlens array on the hydrophobic film;
  • the material of the hydrophobic film comprises polytetrafluoroethylene; the thickness of the hydrophobic film is from 10 nm to 1000 nm; in the step 2, the hydrophobic film is prepared by using a pulse laser deposition apparatus;
  • the microlens array comprises a plurality of microlenses arranged in an array, the microlenses being spherical or ellipsoidal in shape; the material of the microlenses comprises polycarbonate;
  • a plurality of droplets of microlens material arranged in an array are printed on the hydrophobic film by using an inkjet printing device, and after curing, a plurality of microlenses are formed to constitute the microlens array.
  • the present invention provides a method for fabricating an OLED display device by adding a hydrophobic film to a thin film encapsulation structure of an OLED device, and then printing a droplet of the microlens material onto the hydrophobic film to cure Then, a microlens array composed of a plurality of microlenses arranged in an array is formed; the manufacturing method is not only simple in process, but also can be realized by using an existing packaging device, the process economy is high, and the microlens material is dropped. Printing onto the hydrophobic film, the contact angle of the microlens formed after curing is large, which is advantageous for improving the light coupling efficiency of the microlens array, thereby improving the light extraction efficiency of the OLED device.
  • the present invention provides an OLED display device by adding a hydrophobic film to a thin film encapsulation structure of an OLED device, and then forming a microlens array composed of a plurality of microlenses arranged in an array on the hydrophobic film.
  • the contact angle of the microlens is large, which is beneficial to improving the optical coupling efficiency of the microlens array, thereby improving the light extraction efficiency of the OLED device.
  • FIG. 1 is a flow chart of a method of fabricating an OLED display device of the present invention
  • step 1 of a method for fabricating an OLED display device of the present invention is a schematic diagram of step 1 of a method for fabricating an OLED display device of the present invention
  • FIG. 4 is a schematic diagram of a step 2 of a method for fabricating an OLED display device of the present invention and a schematic structural view of the OLED display device of the present invention;
  • FIG. 5 is a schematic diagram of a step 3 of a method for fabricating an OLED display device of the present invention and a schematic structural view of a preferred embodiment of the OLED display device of the present invention
  • FIG. 6 is a schematic view showing a step 4 of a method of fabricating an OLED display device of the present invention and a schematic structural view of another preferred embodiment of the OLED display device of the present invention.
  • the present invention firstly provides a method for fabricating an OLED display device, including the following steps:
  • the OLED substrate 10 includes a base substrate 11, a TFT layer 12 disposed on the base substrate 11, and a TFT layer 12 disposed on the TFT layer 12.
  • a first inorganic film layer 20 is formed on the OLED device 13 and the TFT layer 12, and a first organic film layer 30 is formed on the first inorganic film layer 20, in the first organic film.
  • a second inorganic film layer 40 is formed on the layer 30.
  • the base substrate 11 is a flexible substrate
  • the OLED display device is a flexible OLED display device after the OLED device 13 is packaged by a thin film encapsulation technology (TFE).
  • TFE thin film encapsulation technology
  • the first is prepared by a plasma enhanced chemical vapor deposition (PECVD) device, an atomic layer deposition (ALD) device, a sputtering device, or a pulsed laser deposition (PLD) device.
  • PECVD plasma enhanced chemical vapor deposition
  • ALD atomic layer deposition
  • PLD pulsed laser deposition
  • the first organic film layer 30 is prepared by using an inkjet printing (IJP) apparatus.
  • IJP inkjet printing
  • the thicknesses of the first inorganic film layer 20 and the second inorganic film layer 40 are respectively 1 ⁇ m to 2 ⁇ m.
  • the materials of the first inorganic film layer 20 and the second inorganic film layer 40 respectively include at least one of silicon nitride (SiN x ), silicon oxide (SiO x ), and aluminum oxide (Al 2 O 3 ).
  • SiN x silicon nitride
  • SiO x silicon oxide
  • Al 2 O 3 aluminum oxide
  • the first inorganic film layer 20 and the second inorganic film layer 40 mainly function to block water vapor and oxygen.
  • the first organic film layer 30 has a thickness of 1 ⁇ m to 10 ⁇ m.
  • the material of the first organic film layer 30 includes at least one of polyacrylamide, polyvinylidene fluoride, polyacrylate, and fluorine-containing acrylic block copolymer.
  • the first organic film layer 30 mainly functions to further planarize the surface of the OLED substrate 10 and release stress to realize flexible display.
  • Step 2 as shown in FIG. 4, forming a hydrophobic film 50 on the second inorganic film layer 40, A microlens array 60 is formed on the hydrophobic film 50.
  • the hydrophobic film 50 is prepared by a pulsed laser deposition (PLD) apparatus.
  • PLD pulsed laser deposition
  • the hydrophobic film 50 is a superhydrophobic film having a surface contact angle with water of more than 150°.
  • the material of the hydrophobic film 50 comprises polytetrafluoroethylene (Teflon).
  • the hydrophobic film 50 has a thickness of 10 nm to 1000 nm.
  • the microlens array 60 includes a plurality of microlenses 61 arranged in an array, and the microlenses 61 are spherical or ellipsoidal in shape.
  • the material of the microlens 61 comprises polycarbonate (PC).
  • a plurality of microlens material droplets arranged in an array are printed on the hydrophobic film 50 by using an inkjet printing (IJP) device, and after curing, a plurality of microlenses 61 are formed, and the composition is formed.
  • IJP inkjet printing
  • the droplet angle (contact angle) of the droplet of the microlens material printed on the hydrophobic film 50 is larger than that printed on the other substrate, and the contact angle of the microlens 61 formed after curing is also large.
  • the hydrophobic film 50 includes a pixel region 51 corresponding to the upper surface of the OLED device 13 and a non-pixel region 52 other than the pixel region.
  • the microlens array 60 is formed only on the pixel region 51 of the hydrophobic film 50.
  • the method for fabricating the OLED display device further includes: Step 3. As shown in FIG. 5, a third inorganic film layer 70 is formed on the microlens array 60 and the hydrophobic film 50. Since the third inorganic film layer 70 can function to block moisture and oxygen, the microlens array 60 can be protected and the encapsulation effect of the OLED device 13 can be further improved.
  • the material of the third inorganic film layer 70 includes at least one of silicon nitride (SiN x ), silicon oxide (SiO x ), and aluminum oxide (Al 2 O 3 ).
  • the third inorganic film layer 70 has a thickness of 1 ⁇ m to 2 ⁇ m.
  • the third is prepared by a plasma enhanced chemical vapor deposition (PECVD) device, an atomic layer deposition (ALD) device, a sputtering device, or a pulsed laser deposition (PLD) device.
  • PECVD plasma enhanced chemical vapor deposition
  • ALD atomic layer deposition
  • PLD pulsed laser deposition
  • Inorganic film layer 70 Inorganic film layer 70.
  • the manufacturing method of the OLED display device further includes: step 4, forming a plurality of second organic film layers 80 and a plurality of fourth inorganic films on the third inorganic film layer 70 as shown in FIG. Layer 90 to further enhance the packaging effect of the OLED device 13;
  • the plurality of second organic film layers 80 and the plurality of fourth inorganic film layers 90, the second organic The film layer 80 and the fourth inorganic film layer 90 are alternately arranged, and the film layer adjacent to the third inorganic film layer 70 is the second organic film layer 80.
  • the outermost film layer is the fourth inorganic film layer 90.
  • the material of the fourth inorganic film layer 90 includes at least one of silicon nitride (SiN x ), silicon oxide (SiO x ), and aluminum oxide (Al 2 O 3 ).
  • the fourth inorganic film layer 90 has a thickness of 1 ⁇ m to 2 ⁇ m.
  • the fourth is prepared by using a plasma enhanced chemical vapor deposition (PECVD) device, an atomic layer deposition (ALD) device, a sputtering device, or a pulsed laser deposition (PLD) device.
  • PECVD plasma enhanced chemical vapor deposition
  • ALD atomic layer deposition
  • PLD pulsed laser deposition
  • Inorganic film layer 90 is prepared by using a plasma enhanced chemical vapor deposition (PECVD) device, an atomic layer deposition (ALD) device, a sputtering device, or a pulsed laser deposition (PLD) device.
  • PECVD plasma enhanced chemical vapor deposition
  • ALD atomic layer deposition
  • PLD pulsed laser deposition
  • the material of the second organic film layer 80 includes at least one of polyacrylamide, polyvinylidene fluoride, polyacrylate, and fluorine-containing acrylic block copolymer.
  • the second organic film layer 80 has a thickness of from 1 ⁇ m to 10 ⁇ m.
  • the second organic film layer 80 is prepared by using an inkjet printing (IJP) device.
  • IJP inkjet printing
  • the OLED display device produced by the method for fabricating the OLED display device is a top-emitting OLED display device, and the light emitted by the OLED device 13 is emitted from the top, and is coupled to the OLED display device via the microlens array 60. Since the optical coupling efficiency of the microlens array 60 is high, the light extraction efficiency of the OLED device 13 is improved.
  • the above OLED display device is manufactured by adding a hydrophobic film 50 to a thin film encapsulation (TFE) structure of an OLED device, and then printing a droplet of the microlens material onto the hydrophobic film 50, and forming a layer after curing.
  • TFE thin film encapsulation
  • the microlens array 60 is composed of a plurality of microlenses 61 arranged in an array; the manufacturing method is not only simple in process, but also can be realized by using existing packaging equipment, no other equipment is required, process economy is high, and droplets of microlens material are Printing onto the hydrophobic film 50, the contact angle of the microlens 61 formed after curing is large, which is advantageous for improving the light coupling efficiency of the microlens array 60, thereby improving the light extraction efficiency of the OLED device 13.
  • the present invention further provides an OLED display device, comprising: a substrate substrate 11, a TFT layer 12 disposed on the substrate substrate 11, and an OLED device 13 disposed on the TFT layer 12.
  • a first inorganic film layer 20 on the OLED device 13 and the TFT layer 12 a first organic film layer 30 disposed on the first inorganic film layer 20, and a first organic film layer 30 disposed on the first organic film layer 30.
  • the OLED display device further includes: a third inorganic film layer 70 disposed on the microlens array 60 and the hydrophobic film 50.
  • the OLED display device further includes: a plurality of second organic film layers 80 and a plurality of fourth inorganic film layers 90 disposed on the third inorganic film layer 70;
  • the second organic film layer 80 and the fourth inorganic film layer 90 are alternately disposed adjacent to the third inorganic film layer 70.
  • the film layer is the second organic film layer 80.
  • the outermost film layer is the fourth inorganic film layer 90.
  • the base substrate 11 is a flexible substrate
  • the OLED display device is a flexible OLED display device.
  • the OLED display device is a top-emitting OLED display device.
  • the thicknesses of the first inorganic film layer 20, the second inorganic film layer 40, the third inorganic film layer 70, and the fourth inorganic film layer 90 are each 1 ⁇ m to 2 ⁇ m.
  • the first inorganic layer 20, a second inorganic layer 40, the third inorganic layer 70, and the fourth inorganic layer 90 of material include a silicon nitride (SiN x), silicon oxide (SiO x And at least one of alumina (Al 2 O 3 ).
  • the first organic film layer 30 and the second organic film layer 80 have a thickness of 1 ⁇ m to 10 ⁇ m.
  • the materials of the first organic film layer 30 and the second organic film layer 80 respectively include at least one of polyacrylamide, polyvinylidene fluoride, polyacrylate, and fluorine-containing acrylic block copolymer.
  • the first inorganic film layer 20, the second inorganic film layer 40, the third inorganic film layer 70, and the fourth inorganic film layer 90 mainly function to block water vapor and oxygen;
  • the first organic film layer 30 and the second organic film layer 80 mainly serve to flatten and release stress to achieve flexible display.
  • the hydrophobic film 50 is a superhydrophobic film having a surface contact angle with water of more than 150°.
  • the material of the hydrophobic film 50 comprises polytetrafluoroethylene (Teflon).
  • the hydrophobic film 50 has a thickness of 10 nm to 1000 nm.
  • the microlens array 60 includes a plurality of microlenses 61 arranged in an array, and the microlenses 61 are spherical or ellipsoidal in shape.
  • the material of the microlens 61 comprises polycarbonate (PC).
  • the hydrophobic film 50 includes a pixel region 51 corresponding to the upper surface of the OLED device 13 and a non-pixel region 52 other than the pixel region 51.
  • the microlens array Column 60 is formed only on the pixel region 51 of the hydrophobic film 50.
  • a microlens composed of a plurality of microlenses 61 arranged in an array is formed on the hydrophobic film 50 by adding a hydrophobic film 50 to the thin film encapsulation (TFE) structure of the OLED device.
  • the array 60 has a large contact angle of the microlens 61, which is advantageous for improving the optical coupling efficiency of the microlens array 60, thereby improving the light extraction efficiency of the OLED device 13.
  • the present invention provides an OLED display device and a method of fabricating the same.
  • the method for fabricating the OLED display device of the present invention comprises: adding a hydrophobic film to the thin film encapsulation structure of the OLED device, and printing the droplets of the microlens material onto the hydrophobic film, and forming a layer by array after curing
  • the microlens array composed of a plurality of microlenses; the manufacturing method is not only simple in process, but also can be realized by using existing packaging equipment, has high process economy, and is formed by printing microlens material droplets onto the hydrophobic film and curing.
  • the contact angle of the microlens is large, which is advantageous for improving the optical coupling efficiency of the microlens array, thereby improving the light extraction efficiency of the OLED device.
  • the OLED display device of the present invention by adding a hydrophobic film to the thin film encapsulation structure of the OLED device, and forming a microlens array composed of a plurality of microlenses arranged in an array on the hydrophobic film, The contact angle of the microlens is large, which is advantageous for improving the optical coupling efficiency of the microlens array, thereby improving the light extraction efficiency of the OLED device.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种OLED显示装置及其制作方法,制作方法包括:通过在OLED器件的薄膜封装结构中加入一层疏水薄膜,再将微透镜材料液滴打印到疏水薄膜上,固化之后形成一层由呈阵列排布的数个微透镜构成的微透镜阵列。不仅工艺简单,而且可以利用现有的封装设备实现,制程经济性高,并且由于微透镜的接触角较大,有利于提高微透镜阵列的光耦合效率,进而提升OLED器件的出光效率。

Description

OLED显示装置及其制作方法 技术领域
本发明涉及显示技术领域,尤其涉及一种OLED显示装置及其制作方法。
背景技术
有机发光二极管(Organic Light-Emitting Diode,OLED)显示器,也称为有机电致发光显示器,是一种新兴的平板显示装置,由于其具有自发光、驱动电压低、发光效率高、响应时间短、清晰度与对比度高、近180°视角、使用温度范围宽,可实现柔性显示与大面积全色显示等诸多优点,被业界公认为是最有发展潜力的显示装置。
OLED按照驱动方式可以分为无源矩阵型OLED(Passive Matrix OLED,PMOLED)和有源矩阵型OLED(Active Matrix OLED,AMOLED)两大类,即直接寻址和薄膜晶体管矩阵寻址两类。其中,AMOLED具有呈阵列式排布的像素,属于主动显示类型,发光效能高,通常用作高清晰度的大尺寸显示装置。
OLED器件通常包括:基板、设于基板上的阳极、设于阳极上的空穴注入层、设于空穴注入层上的空穴传输层、设于空穴传输层上的发光层、设于发光层上的电子传输层、设于电子传输层上的电子注入层、及设于电子注入层上的阴极。OLED显示器件的发光原理为半导体材料和有机发光材料在电场驱动下,通过载流子注入和复合导致发光。具体的,OLED显示器件通常采用ITO像素电极和金属电极分别作为器件的阳极和阴极,在一定电压驱动下,电子和空穴分别从阴极和阳极注入到电子传输层和空穴传输层,电子和空穴分别经过电子传输层和空穴传输层迁移到发光层,并在发光层中相遇,形成激子并使发光分子激发,后者经过辐射弛豫而发出可见光。
OLED器件制备完成后,为防止外界环境中的水汽和氧气侵入器件内部,影响其使用寿命,通常还需要对OLED器件进行封装,薄膜封装技术(TFE)是目前常见的OLED封装技术之一,其主要采用无机/有机薄膜交替生长的方法来形成OLED器件的封装层,其中所述无机薄膜可以通过等离子体增强化学气相沉积(PECVD)、原子层沉积(ALD)、溅射(Sputter)或脉冲激光沉积(PLD)等方法制备。
随着新材料和新工艺的不断开发,有机发光二极管(OLED)的理论内量子效率已经接近100%,但其光耦合效率仍然很低。因为基板、有机层以及封装层等材料的折射率差异,OLED发出的光通量主要有以下三个去向:波导模式、基板模式、及空气模式,而通常只有20%左右的光能出射到器件外。为了提高OLED的光耦合效率,人们通常会在基板和空气界面加上一层微透镜阵列结构来减小因基板模式而损失的光通量,结果表明OLED的光耦合效率可以提高50%左右。而光学计算结果也表明当半球形的微棱镜材料和基板的折射率匹配时,光耦合效率可以提高45%。半球形微透镜阵列的制备通常采用光刻胶热熔法或刻蚀法,这些方法不仅工艺复杂,而且材料选择有限。
发明内容
本发明的目的在于提供一种OLED显示装置的制作方法,能够提高OLED器件的出光效率。
本发明的目的还在于提供一种OLED显示装置,OLED器件的出光效率较高。
为实现上述目的,本发明提供一种OLED显示装置的制作方法,包括如下步骤:
步骤1、提供一OLED基板,所述OLED基板包括衬底基板、设于所述衬底基板上的TFT层、及设于所述TFT层上的OLED器件;
在所述OLED器件及TFT层上形成第一无机膜层,在所述第一无机膜层上形成第一有机膜层,在所述第一有机膜层上形成第二无机膜层;
步骤2、在所述第二无机膜层上形成一疏水薄膜,在所述疏水薄膜上形成微透镜阵列。
所述疏水薄膜的材料包括聚四氟乙烯;所述疏水薄膜的厚度为10nm-1000nm;所述步骤2中,采用脉冲激光沉积设备来制备所述疏水薄膜。
所述微透镜阵列包括呈阵列排布的数个微透镜,所述微透镜的形状为球形或椭球形;所述微透镜的材料包括聚碳酸酯;
所述步骤2中,采用喷墨打印设备在所述疏水薄膜上打印出呈阵列排布的数个微透镜材料液滴,固化后,形成数个微透镜,构成所述微透镜阵列。
优选的,所述OLED显示装置的制作方法还包括:步骤3、在所述微透镜阵列及疏水薄膜上形成第三无机膜层。
更优选的,所述OLED显示装置的制作方法还包括:步骤4、在所述 第三无机膜层上形成数层第二有机膜层与数层第四无机膜层;
所述数层第二有机膜层与数层第四无机膜层中,所述第二有机膜层与第四无机膜层交错设置,且与所述第三无机膜层邻接的膜层为第二有机膜层;
所述第一无机膜层、第二无机膜层、第三无机膜层、及第四无机膜层的材料分别包括氮化硅、氧化硅、及氧化铝中的至少一种;
所述第一无机膜层、第二无机膜层、第三无机膜层、及第四无机膜层的厚度分别为1μm-2μm;
所述第一有机膜层与第二有机膜层的厚度分别为1μm-10μm。
本发明还提供一种OLED显示装置,包括:衬底基板、设于所述衬底基板上的TFT层、设于所述TFT层上的OLED器件、设于所述OLED器件及TFT层上的第一无机膜层、设于所述第一无机膜层上的第一有机膜层、设于所述第一有机膜层上的第二无机膜层、设于所述第二无机膜层上的疏水薄膜、及设于所述疏水薄膜上的微透镜阵列。
所述疏水薄膜的材料包括聚四氟乙烯;所述疏水薄膜的厚度为10nm-1000nm。
所述微透镜阵列包括呈阵列排布的数个微透镜,所述微透镜的形状为球形或椭球形;所述微透镜的材料包括聚碳酸酯。
优选的,所述OLED显示装置还包括:设于所述微透镜阵列及疏水薄膜上的第三无机膜层。
更优选的,所述OLED显示装置还包括:设于所述第三无机膜层上的数层第二有机膜层与数层第四无机膜层;所述数层第二有机膜层与数层第四无机膜层中,所述第二有机膜层与第四无机膜层交错设置,且与所述第三无机膜层邻接的膜层为第二有机膜层;
所述第一无机膜层、第二无机膜层、第三无机膜层、及第四无机膜层的材料分别包括氮化硅、氧化硅、及氧化铝中的至少一种;
所述第一无机膜层、第二无机膜层、第三无机膜层、及第四无机膜层的厚度分别为1μm-2μm;
所述第一有机膜层与第二有机膜层的厚度分别为1μm-10μm。
本发明还提供一种OLED显示装置的制作方法,包括如下步骤:
步骤1、提供一OLED基板,所述OLED基板包括衬底基板、设于所述衬底基板上的TFT层、及设于所述TFT层上的OLED器件;
在所述OLED器件及TFT层上形成第一无机膜层,在所述第一无机膜层上形成第一有机膜层,在所述第一有机膜层上形成第二无机膜层;
步骤2、在所述第二无机膜层上形成一疏水薄膜,在所述疏水薄膜上形成微透镜阵列;
其中,所述疏水薄膜的材料包括聚四氟乙烯;所述疏水薄膜的厚度为10nm-1000nm;所述步骤2中,采用脉冲激光沉积设备来制备所述疏水薄膜;
其中,所述微透镜阵列包括呈阵列排布的数个微透镜,所述微透镜的形状为球形或椭球形;所述微透镜的材料包括聚碳酸酯;
所述步骤2中,采用喷墨打印设备在所述疏水薄膜上打印出呈阵列排布的数个微透镜材料液滴,固化后,形成数个微透镜,构成所述微透镜阵列。
本发明的有益效果:本发明提供的一种OLED显示装置的制作方法,通过在OLED器件的薄膜封装结构中加入一层疏水薄膜,再将微透镜材料液滴打印到所述疏水薄膜上,固化之后形成一层由呈阵列排布的数个微透镜构成的微透镜阵列;该制作方法不仅工艺简单,而且可以利用现有的封装设备实现,制程经济性高,并且由于将微透镜材料液滴打印到疏水薄膜上,固化后形成的微透镜的接触角较大,有利于提高所述微透镜阵列的光耦合效率,进而提升OLED器件的出光效率。本发明提供的一种OLED显示装置,通过在OLED器件的薄膜封装结构中加入一层疏水薄膜,再于所述疏水薄膜上形成一层由呈阵列排布的数个微透镜构成的微透镜阵列,所述微透镜的接触角较大,有利于提高所述微透镜阵列的光耦合效率,进而提升OLED器件的出光效率。
为了能更进一步了解本发明的特征以及技术内容,请参阅以下有关本发明的详细说明与附图,然而附图仅提供参考与说明用,并非用来对本发明加以限制。
附图说明
为更进一步阐述本发明所采取的技术手段及其效果,以下结合本发明的优选实施例及其附图进行详细描述。
附图中,
图1为本发明的OLED显示装置的制作方法的流程图;
图2-3为本发明的OLED显示装置的制作方法的步骤1的示意图;
图4为本发明的OLED显示装置的制作方法的步骤2的示意图暨本发明的OLED显示装置的结构示意图;
图5为本发明的OLED显示装置的制作方法的步骤3的示意图暨本发明的OLED显示装置的一优选实施例的结构示意图;
图6为本发明的OLED显示装置的制作方法的步骤4的示意图暨本发明的OLED显示装置的另一优选实施例的结构示意图。
具体实施方式
为更进一步阐述本发明所采取的技术手段及其效果,以下结合本发明的优选实施例进行详细描述。
请参阅图1,本发明首先提供一种OLED显示装置的制作方法,包括如下步骤:
步骤1、如图2所示,提供一OLED基板10,所述OLED基板10包括衬底基板11、设于所述衬底基板11上的TFT层12、及设于所述TFT层12上的OLED器件13;
如图3所示,在所述OLED器件13及TFT层12上形成第一无机膜层20,在所述第一无机膜层20上形成第一有机膜层30,在所述第一有机膜层30上形成第二无机膜层40。
优选的,所述衬底基板11为柔性衬底,从而后续采用薄膜封装技术(TFE)对所述OLED器件13进行封装后,制得的OLED显示装置为柔性OLED显示装置。
具体的,所述步骤1中,采用等离子体增强化学气相沉积(PECVD)设备、原子层沉积(ALD)设备、溅射(Sputter)设备、或脉冲激光沉积(PLD)设备来制备所述第一无机膜层20与第二无机膜层40。
具体的,所述步骤1中,采用喷墨打印(IJP)设备来制备所述第一有机膜层30。
具体的,所述第一无机膜层20与第二无机膜层40的厚度分别为1μm-2μm。
具体的,所述第一无机膜层20与第二无机膜层40的材料分别包括氮化硅(SiNx)、氧化硅(SiOx)、及氧化铝(Al2O3)中的至少一种。
具体的,所述第一无机膜层20与第二无机膜层40主要起到阻隔水汽和氧气的作用。
具体的,所述第一有机膜层30的厚度为1μm-10μm。
具体的,所述第一有机膜层30的材料包括聚丙烯酰胺、聚偏二氟乙烯、聚丙烯酸酯、及含氟丙烯酸嵌段共聚物中的至少一种。
具体的,所述第一有机膜层30主要起到进一步平坦化所述OLED基板10的表面并释放应力的作用,以实现柔性显示。
步骤2、如图4所示,在所述第二无机膜层40上形成一疏水薄膜50, 在所述疏水薄膜50上形成微透镜阵列60。
优选的,所述步骤2中,采用脉冲激光沉积(PLD)设备来制备所述疏水薄膜50。
优选的,所述疏水薄膜50为表面与水的接触角大于150°的超疏水薄膜。
优选的,所述疏水薄膜50的材料包括聚四氟乙烯(Teflon)。
具体的,所述疏水薄膜50的厚度为10nm-1000nm。
具体的,所述微透镜阵列60包括呈阵列排布的数个微透镜61,所述微透镜61的形状为球形或椭球形。
优选的,所述微透镜61的材料包括聚碳酸酯(PC)。
具体的,所述步骤2中,采用喷墨打印(IJP)设备在所述疏水薄膜50上打印出呈阵列排布的数个微透镜材料液滴,固化后,形成数个微透镜61,构成所述微透镜阵列60。
具体的,与打印于其它衬底上相比,打印于疏水薄膜50上的微透镜材料液滴的水滴角(接触角)较大,固化后形成的微透镜61的接触角也较大,所述微透镜61的接触角越大,聚光效果越好,从而提高所述微透镜阵列60的光耦合效率,提升OLED器件13的出光效率。
具体的,所述疏水薄膜50包括对应于OLED器件13上方的像素区域51以及除所述像素区域以外的非像素区域52。优选的,所述微透镜阵列60仅形成于所述疏水薄膜50的像素区域51上。
优选的,所述OLED显示装置的制作方法还包括:步骤3、如图5所示,在所述微透镜阵列60及疏水薄膜50上形成第三无机膜层70。由于所述第三无机膜层70可以起到阻隔水汽和氧气的作用,从而能够对所述微透镜阵列60形成保护并进一步提升所述OLED器件13的封装效果。
具体的,所述第三无机膜层70的材料包括氮化硅(SiNx)、氧化硅(SiOx)、及氧化铝(Al2O3)中的至少一种。所述第三无机膜层70的厚度为1μm-2μm。
具体的,所述步骤3中,采用等离子体增强化学气相沉积(PECVD)设备、原子层沉积(ALD)设备、溅射(Sputter)设备、或脉冲激光沉积(PLD)设备来制备所述第三无机膜层70。
更优选的,所述OLED显示装置的制作方法还包括:步骤4、如图6所示,在所述第三无机膜层70上形成数层第二有机膜层80与数层第四无机膜层90,以进一步提升所述OLED器件13的封装效果;
所述数层第二有机膜层80与数层第四无机膜层90中,所述第二有机 膜层80与第四无机膜层90交错设置,且与所述第三无机膜层70邻接的膜层为第二有机膜层80。
优选的,所述数层第二有机膜层80与数层第四无机膜层90中,最外侧的膜层为第四无机膜层90。
具体的,所述第四无机膜层90的材料包括氮化硅(SiNx)、氧化硅(SiOx)、及氧化铝(Al2O3)中的至少一种。所述第四无机膜层90的厚度为1μm-2μm。
具体的,所述步骤4中,采用等离子体增强化学气相沉积(PECVD)设备、原子层沉积(ALD)设备、溅射(Sputter)设备、或脉冲激光沉积(PLD)设备来制备所述第四无机膜层90。
具体的,所述第二有机膜层80的材料包括聚丙烯酰胺、聚偏二氟乙烯、聚丙烯酸酯、及含氟丙烯酸嵌段共聚物中的至少一种。所述第二有机膜层80的厚度为1μm-10μm。
具体的,所述步骤4中,采用喷墨打印(IJP)设备来制备所述第二有机膜层80。
具体的,上述OLED显示装置的制作方法制得的OLED显示装置为顶发光OLED显示装置,所述OLED器件13发出的光线从顶部射出,经由所述微透镜阵列60耦合后射出所述OLED显示装置,由于所述微透镜阵列60的光耦合效率较高,从而提升OLED器件13的出光效率。
上述OLED显示装置的制作方法,通过在OLED器件的薄膜封装(TFE)结构中加入一层疏水薄膜50,再将微透镜材料液滴打印到所述疏水薄膜50上,固化之后形成一层由呈阵列排布的数个微透镜61构成的微透镜阵列60;该制作方法不仅工艺简单,而且可以利用现有的封装设备实现,无需其它设备,制程经济性高,并且由于将微透镜材料液滴打印到疏水薄膜50上,固化后形成的微透镜61的接触角较大,有利于提高所述微透镜阵列60的光耦合效率,进而提升OLED器件13的出光效率。
请参阅图4,本发明还提供一种OLED显示装置,包括:衬底基板11、设于所述衬底基板11上的TFT层12、设于所述TFT层12上的OLED器件13、设于所述OLED器件13及TFT层12上的第一无机膜层20、设于所述第一无机膜层20上的第一有机膜层30、设于所述第一有机膜层30上的第二无机膜层40、设于所述第二无机膜层40上的疏水薄膜50、及设于所述疏水薄膜50上的微透镜阵列60。
优选的,如图5所示,所述OLED显示装置还包括:设于所述微透镜阵列60及疏水薄膜50上的第三无机膜层70。
更优选的,如图6所示,所述OLED显示装置还包括:设于所述第三无机膜层70上的数层第二有机膜层80与数层第四无机膜层90;
所述数层第二有机膜层80与数层第四无机膜层90中,所述第二有机膜层80与第四无机膜层90交错设置,且与所述第三无机膜层70邻接的膜层为第二有机膜层80。
优选的,所述数层第二有机膜层80与数层第四无机膜层90中,最外侧的膜层为第四无机膜层90。
优选的,所述衬底基板11为柔性衬底,所述OLED显示装置为柔性OLED显示装置。
具体的,所述OLED显示装置为顶发光OLED显示装置。
具体的,所述第一无机膜层20、第二无机膜层40、第三无机膜层70、及第四无机膜层90的厚度分别为1μm-2μm。
具体的,所述第一无机膜层20、第二无机膜层40、第三无机膜层70、及第四无机膜层90的材料分别包括氮化硅(SiNx)、氧化硅(SiOx)、及氧化铝(Al2O3)中的至少一种。
具体的,所述第一有机膜层30与第二有机膜层80的厚度为1μm-10μm。
优选的,所述第一有机膜层30与第二有机膜层80的材料分别包括聚丙烯酰胺、聚偏二氟乙烯、聚丙烯酸酯、及含氟丙烯酸嵌段共聚物中的至少一种。
具体的,所述OLED显示装置中,所述第一无机膜层20、第二无机膜层40、第三无机膜层70、及第四无机膜层90主要起到阻隔水汽和氧气的作用;
所述第一有机膜层30与第二有机膜层80主要起到平坦化及释放应力的作用,以实现柔性显示。
优选的,所述疏水薄膜50为表面与水的接触角大于150°的超疏水薄膜。
优选的,所述疏水薄膜50的材料包括聚四氟乙烯(Teflon)。
具体的,所述疏水薄膜50的厚度为10nm-1000nm。
具体的,所述微透镜阵列60包括呈阵列排布的数个微透镜61,所述微透镜61的形状为球形或椭球形。
优选的,所述微透镜61的材料包括聚碳酸酯(PC)。
具体的,所述疏水薄膜50包括对应于OLED器件13上方的像素区域51以及除所述像素区域51以外的非像素区域52。优选的,所述微透镜阵 列60仅形成于所述疏水薄膜50的像素区域51上。
上述OLED显示装置,通过在OLED器件的薄膜封装(TFE)结构中加入一层疏水薄膜50,再于所述疏水薄膜50上形成一层由呈阵列排布的数个微透镜61构成的微透镜阵列60,所述微透镜61的接触角较大,有利于提高所述微透镜阵列60的光耦合效率,进而提升OLED器件13的出光效率。
综上所述,本发明提供一种OLED显示装置及其制作方法。本发明的OLED显示装置的制作方法,通过在OLED器件的薄膜封装结构中加入一层疏水薄膜,再将微透镜材料液滴打印到所述疏水薄膜上,固化之后形成一层由呈阵列排布的数个微透镜构成的微透镜阵列;该制作方法不仅工艺简单,而且可以利用现有的封装设备实现,制程经济性高,并且由于将微透镜材料液滴打印到疏水薄膜上,固化后形成的微透镜的接触角较大,有利于提高所述微透镜阵列的光耦合效率,进而提升OLED器件的出光效率。本发明的OLED显示装置,通过在OLED器件的薄膜封装结构中加入一层疏水薄膜,再于所述疏水薄膜上形成一层由呈阵列排布的数个微透镜构成的微透镜阵列,所述微透镜的接触角较大,有利于提高所述微透镜阵列的光耦合效率,进而提升OLED器件的出光效率。
以上所述,对于本领域的普通技术人员来说,可以根据本发明的技术方案和技术构思作出其他各种相应的改变和变形,而所有这些改变和变形都应属于本发明权利要求的保护范围。

Claims (13)

  1. 一种OLED显示装置的制作方法,包括如下步骤:
    步骤1、提供一OLED基板,所述OLED基板包括衬底基板、设于所述衬底基板上的TFT层、及设于所述TFT层上的OLED器件;
    在所述OLED器件及TFT层上形成第一无机膜层,在所述第一无机膜层上形成第一有机膜层,在所述第一有机膜层上形成第二无机膜层;
    步骤2、在所述第二无机膜层上形成一疏水薄膜,在所述疏水薄膜上形成微透镜阵列。
  2. 如权利要求1所述的OLED显示装置的制作方法,其中,所述疏水薄膜的材料包括聚四氟乙烯;所述疏水薄膜的厚度为10nm-1000nm;所述步骤2中,采用脉冲激光沉积设备来制备所述疏水薄膜。
  3. 如权利要求1所述的OLED显示装置的制作方法,其中,所述微透镜阵列包括呈阵列排布的数个微透镜,所述微透镜的形状为球形或椭球形;所述微透镜的材料包括聚碳酸酯;
    所述步骤2中,采用喷墨打印设备在所述疏水薄膜上打印出呈阵列排布的数个微透镜材料液滴,固化后,形成数个微透镜,构成所述微透镜阵列。
  4. 如权利要求1所述的OLED显示装置的制作方法,还包括:步骤3、在所述微透镜阵列及疏水薄膜上形成第三无机膜层。
  5. 如权利要求4所述的OLED显示装置的制作方法,还包括:步骤4、在所述第三无机膜层上形成数层第二有机膜层与数层第四无机膜层;
    所述数层第二有机膜层与数层第四无机膜层中,所述第二有机膜层与第四无机膜层交错设置,且与所述第三无机膜层邻接的膜层为第二有机膜层;
    所述第一无机膜层、第二无机膜层、第三无机膜层、及第四无机膜层的材料分别包括氮化硅、氧化硅、及氧化铝中的至少一种;
    所述第一无机膜层、第二无机膜层、第三无机膜层、及第四无机膜层的厚度分别为1μm-2μm;
    所述第一有机膜层与第二有机膜层的厚度分别为1μm-10μm。
  6. 一种OLED显示装置,包括:衬底基板、设于所述衬底基板上的TFT层、设于所述TFT层上的OLED器件、设于所述OLED器件及TFT层上的第一无机膜层、设于所述第一无机膜层上的第一有机膜层、设于所 述第一有机膜层上的第二无机膜层、设于所述第二无机膜层上的疏水薄膜、及设于所述疏水薄膜上的微透镜阵列。
  7. 如权利要求6所述的OLED显示装置,其中,所述疏水薄膜的材料包括聚四氟乙烯;所述疏水薄膜的厚度为10nm-1000nm。
  8. 如权利要求6所述的OLED显示装置,其中,所述微透镜阵列包括呈阵列排布的数个微透镜,所述微透镜的形状为球形或椭球形;所述微透镜的材料包括聚碳酸酯。
  9. 如权利要求6所述的OLED显示装置,还包括:设于所述微透镜阵列及疏水薄膜上的第三无机膜层。
  10. 如权利要求9所述的OLED显示装置,还包括:设于所述第三无机膜层上的数层第二有机膜层与数层第四无机膜层;所述数层第二有机膜层与数层第四无机膜层中,所述第二有机膜层与第四无机膜层交错设置,且与所述第三无机膜层邻接的膜层为第二有机膜层;
    所述第一无机膜层、第二无机膜层、第三无机膜层、及第四无机膜层的材料分别包括氮化硅、氧化硅、及氧化铝中的至少一种;
    所述第一无机膜层、第二无机膜层、第三无机膜层、及第四无机膜层的厚度分别为1μm-2μm;
    所述第一有机膜层与第二有机膜层的厚度分别为1μm-10μm。
  11. 一种OLED显示装置的制作方法,包括如下步骤:
    步骤1、提供一OLED基板,所述OLED基板包括衬底基板、设于所述衬底基板上的TFT层、及设于所述TFT层上的OLED器件;
    在所述OLED器件及TFT层上形成第一无机膜层,在所述第一无机膜层上形成第一有机膜层,在所述第一有机膜层上形成第二无机膜层;
    步骤2、在所述第二无机膜层上形成一疏水薄膜,在所述疏水薄膜上形成微透镜阵列;
    其中,所述疏水薄膜的材料包括聚四氟乙烯;所述疏水薄膜的厚度为10nm-1000nm;所述步骤2中,采用脉冲激光沉积设备来制备所述疏水薄膜;
    其中,所述微透镜阵列包括呈阵列排布的数个微透镜,所述微透镜的形状为球形或椭球形;所述微透镜的材料包括聚碳酸酯;
    所述步骤2中,采用喷墨打印设备在所述疏水薄膜上打印出呈阵列排布的数个微透镜材料液滴,固化后,形成数个微透镜,构成所述微透镜阵列。
  12. 如权利要求11所述的OLED显示装置的制作方法,还包括:步骤3、在所述微透镜阵列及疏水薄膜上形成第三无机膜层。
  13. 如权利要求12所述的OLED显示装置的制作方法,还包括:步骤4、在所述第三无机膜层上形成数层第二有机膜层与数层第四无机膜层;
    所述数层第二有机膜层与数层第四无机膜层中,所述第二有机膜层与第四无机膜层交错设置,且与所述第三无机膜层邻接的膜层为第二有机膜层;
    所述第一无机膜层、第二无机膜层、第三无机膜层、及第四无机膜层的材料分别包括氮化硅、氧化硅、及氧化铝中的至少一种;
    所述第一无机膜层、第二无机膜层、第三无机膜层、及第四无机膜层的厚度分别为1μm-2μm;
    所述第一有机膜层与第二有机膜层的厚度分别为1μm-10μm。
PCT/CN2016/112250 2016-11-28 2016-12-27 Oled显示装置及其制作方法 WO2018094801A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/509,194 US10276832B2 (en) 2016-11-28 2016-12-27 Oled display and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611069717.7A CN106784365A (zh) 2016-11-28 2016-11-28 Oled显示装置及其制作方法
CN201611069717.7 2016-11-28

Publications (1)

Publication Number Publication Date
WO2018094801A1 true WO2018094801A1 (zh) 2018-05-31

Family

ID=58905095

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/112250 WO2018094801A1 (zh) 2016-11-28 2016-12-27 Oled显示装置及其制作方法

Country Status (3)

Country Link
US (1) US10276832B2 (zh)
CN (1) CN106784365A (zh)
WO (1) WO2018094801A1 (zh)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107528010A (zh) * 2017-08-21 2017-12-29 武汉华星光电半导体显示技术有限公司 一种oled器件的制备方法
US10453907B2 (en) 2017-08-21 2019-10-22 Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. OLED device and method for fabricating the same
CN107768417B (zh) * 2017-10-27 2020-04-14 武汉华星光电半导体显示技术有限公司 一种显示基板及其制备方法、显示装置
CN109980118A (zh) * 2017-12-27 2019-07-05 宁波长阳科技股份有限公司 一种水汽阻隔膜
CN108198836A (zh) * 2017-12-27 2018-06-22 武汉华星光电半导体显示技术有限公司 显示装置
CN108389877B (zh) * 2018-02-09 2020-12-25 武汉华星光电半导体显示技术有限公司 薄膜封装结构及其制作方法和显示面板
CN109166898A (zh) * 2018-09-04 2019-01-08 武汉华星光电半导体显示技术有限公司 一种有机发光二极管显示器的制作方法
CN109346618A (zh) * 2018-09-13 2019-02-15 武汉华星光电半导体显示技术有限公司 Oled显示装置及其制备方法
US10868277B2 (en) 2018-09-19 2020-12-15 Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Organic light emitting diode display panel and manufacturing method thereof
CN109346619B (zh) * 2018-09-19 2020-04-10 武汉华星光电半导体显示技术有限公司 Oled显示面板及其制备方法
CN109192766A (zh) * 2018-09-30 2019-01-11 云谷(固安)科技有限公司 显示面板及显示面板的制作方法
CN109348127A (zh) * 2018-11-12 2019-02-15 德淮半导体有限公司 图像传感器的制造方法、图像传感器以及成像装置
CN109524567A (zh) * 2018-11-30 2019-03-26 华南理工大学 一种基于喷涂工艺制备光取出微透镜提升双注入型发光二极管光取出率的方法
CN110137386A (zh) * 2019-04-17 2019-08-16 深圳市华星光电半导体显示技术有限公司 Oled器件的制备方法、oled器件及显示装置
CN111509141B (zh) 2020-05-06 2023-08-01 上海天马微电子有限公司 一种显示面板及其制备方法、显示装置
CN111933824A (zh) * 2020-07-06 2020-11-13 华南理工大学 一种作为光取出层的微透镜、散射层及其制备方法
CN113066916A (zh) * 2021-03-05 2021-07-02 致晶科技(北京)有限公司 制备凸面微透镜的方法和制造白光led器件的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102590901A (zh) * 2012-03-28 2012-07-18 西安交通大学 一种用具有大数值孔径的微透镜阵列制造工艺
US20130228786A1 (en) * 2012-03-02 2013-09-05 Yong-Woo Park Organic light-emitting display device
CN103490019A (zh) * 2013-09-29 2014-01-01 京东方科技集团股份有限公司 有机电致发光器件的封装结构及封装方法、显示装置
CN104377225A (zh) * 2013-08-14 2015-02-25 三星显示有限公司 有机发光显示装置和制造该装置的方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4340199B2 (ja) * 2004-07-09 2009-10-07 セイコーエプソン株式会社 有機エレクトロルミネッセンス装置の製造方法
US7295375B2 (en) * 2005-08-02 2007-11-13 International Business Machines Corporation Injection molded microlenses for optical interconnects
US20070217019A1 (en) * 2006-03-16 2007-09-20 Wen-Kuei Huang Optical components array device, microlens array and process of fabricating thereof
US7564063B2 (en) * 2006-03-23 2009-07-21 Eastman Kodak Company Composite electrode for light-emitting device
US7902748B2 (en) * 2007-05-31 2011-03-08 Global Oled Technology Llc Electroluminescent device having improved light output
US7982396B2 (en) * 2007-06-04 2011-07-19 Global Oled Technology Llc Light-emitting device with light-scattering particles and method of making the same
US7777416B2 (en) * 2007-06-14 2010-08-17 Global Oled Technology Llc Light emitting device with microlens array
JP2012059692A (ja) * 2010-08-09 2012-03-22 Canon Inc 有機エレクトロルミネッセンス表示装置
US8242684B2 (en) * 2010-09-27 2012-08-14 Osram Sylvania Inc. LED wavelength-converting plate with microlenses
KR20140018548A (ko) * 2012-08-02 2014-02-13 삼성디스플레이 주식회사 광효율이 향상된 유기발광 표시장치 및 그 제조방법
KR101416474B1 (ko) * 2012-09-04 2014-08-06 피에스케이 주식회사 도광판 제조 장치 및 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130228786A1 (en) * 2012-03-02 2013-09-05 Yong-Woo Park Organic light-emitting display device
CN102590901A (zh) * 2012-03-28 2012-07-18 西安交通大学 一种用具有大数值孔径的微透镜阵列制造工艺
CN104377225A (zh) * 2013-08-14 2015-02-25 三星显示有限公司 有机发光显示装置和制造该装置的方法
CN103490019A (zh) * 2013-09-29 2014-01-01 京东方科技集团股份有限公司 有机电致发光器件的封装结构及封装方法、显示装置

Also Published As

Publication number Publication date
CN106784365A (zh) 2017-05-31
US20180241003A1 (en) 2018-08-23
US10276832B2 (en) 2019-04-30

Similar Documents

Publication Publication Date Title
WO2018094801A1 (zh) Oled显示装置及其制作方法
WO2018113019A1 (zh) Oled显示面板及其制作方法
WO2018113018A1 (zh) Oled显示面板及其制作方法
KR101990116B1 (ko) 유기발광장치 및 그것의 제조방법
WO2017206216A1 (zh) Oled显示装置
TWI700829B (zh) 有機發光顯示裝置及其製造方法
WO2017190373A1 (zh) 自发光型显示装置及其制作方法
EP2704227B1 (en) Oled encapsulating structure and manufacturing method thereof, and light-emitting device
US10510990B2 (en) Groove structure for printing OLED display and manufacturing method for OLED display
CN102456704B (zh) 有机发光显示装置
WO2016004709A1 (zh) Oled显示器及其制备方法
KR102096887B1 (ko) 유기발광 표시장치 및 그것의 제조 방법
KR101654360B1 (ko) 유기 발광소자용 기판 및 그 제조방법
WO2018113007A1 (zh) Oled封装方法与oled封装结构
WO2017210927A1 (zh) 自发光显示装置
CN108682753B (zh) Oled显示面板及其制作方法
WO2019071703A1 (zh) Qled器件的封装方法及封装结构
WO2018090444A1 (zh) Oled基板及其制作方法
US11322563B2 (en) Electroluminescent device with improved luminous efficiency and viewing angle and method of manufacturing the same
TW201423978A (zh) 顯示裝置及其製造方法
KR20150044723A (ko) 유기 발광 장치 및 이의 제조 방법
US20030117067A1 (en) OLED having improved light extraction efficiency
KR101908512B1 (ko) 유기 전계 발광 표시 패널 및 그의 제조 방법
CN111162188A (zh) 薄膜封装结构及其制备方法和显示面板
WO2020077698A1 (zh) 一种有机发光二极管器件的封装结构及其制作方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15509194

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16922144

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16922144

Country of ref document: EP

Kind code of ref document: A1