WO2017210927A1 - 自发光显示装置 - Google Patents

自发光显示装置 Download PDF

Info

Publication number
WO2017210927A1
WO2017210927A1 PCT/CN2016/087328 CN2016087328W WO2017210927A1 WO 2017210927 A1 WO2017210927 A1 WO 2017210927A1 CN 2016087328 W CN2016087328 W CN 2016087328W WO 2017210927 A1 WO2017210927 A1 WO 2017210927A1
Authority
WO
WIPO (PCT)
Prior art keywords
green
red
blue
layer
light emitting
Prior art date
Application number
PCT/CN2016/087328
Other languages
English (en)
French (fr)
Inventor
李先杰
郝鹏
吴元均
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Publication of WO2017210927A1 publication Critical patent/WO2017210927A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs

Definitions

  • the present invention relates to the field of display technologies, and in particular, to a self-luminous display device.
  • OLED display devices have self-luminous, low driving voltage, high luminous efficiency, short response time, high definition and contrast ratio, near 180° viewing angle, wide temperature range, and flexible display.
  • a large-area full-color display and many other advantages have been recognized by the industry as the most promising display device.
  • the OLED display device is a self-luminous type display device, and generally includes a pixel electrode respectively serving as an anode, a cathode, and a common electrode, and an organic light-emitting function layer provided between the pixel electrode and the common electrode, so that an appropriate voltage is applied.
  • a pixel electrode respectively serving as an anode, a cathode, and a common electrode
  • an organic light-emitting function layer provided between the pixel electrode and the common electrode, so that an appropriate voltage is applied.
  • the organic light-emitting functional layer includes a hole injection layer provided on the anode, a hole transport layer provided on the hole injection layer, a light-emitting layer provided on the hole transport layer, and an electron transport layer provided on the light-emitting layer.
  • the electron injection layer disposed on the electron transport layer has a light-emitting mechanism in which electrons and holes are injected from the cathode and the anode to the electron injection layer and the hole injection layer, respectively, and the electrons and holes pass through the electron transport layer, respectively.
  • the hole transport layer migrates to the light-emitting layer and meets in the light-emitting layer to form excitons and excite the light-emitting molecules, and the latter emits visible light through radiation relaxation.
  • Quantum Dots are usually spherical semiconductor nanoparticles composed of II-VI or III-V elements, and the particle size is generally between several nanometers and several tens of nanometers. Due to the existence of the quantum confinement effect of quantum dot materials, the original continuous energy band can be transformed into a separate energy level structure, which can emit visible light after being excited by the outside. Quantum dots Light-emitting Diodes (QLEDs) are self-luminous diodes like OLEDs. Currently, OLED display devices on the market are prepared by vapor deposition film forming process, resulting in low material utilization and cost.
  • the object of the present invention is to provide a self-luminous display device with OLED and QLED, high material utilization rate, low production cost, and excellent cost in a large-sized display device. Potential.
  • the present invention provides a self-luminous display device comprising a plurality of red, green and blue sub-pixel regions arranged in an array;
  • the red sub-pixel region includes a substrate, a TFT unit disposed on the substrate, a red light emitting device driven by the TFT unit and disposed on the TFT unit, a package adhesive disposed on the red light emitting device, and a device a cover plate on the package rubber;
  • the green sub-pixel region includes a substrate, a TFT unit disposed on the substrate, a green light-emitting device driven by the TFT unit and disposed on the TFT unit, a package adhesive disposed on the green light-emitting device, and a device a cover plate on the package rubber;
  • the blue sub-pixel region includes a substrate, a TFT unit disposed on the substrate, a blue light emitting device driven by the TFT unit and disposed on the TFT unit, and a package adhesive disposed on the blue light emitting device. And a cover plate disposed on the package rubber;
  • the red light emitting device includes an anode, a red light hole injection layer, a red light hole transport layer, a red light emitting layer, a red light electron transport layer, and a cathode which are sequentially stacked from bottom to top;
  • the green light emitting device includes an anode, a green hole injection layer, a green hole transport layer, a green light emitting layer, a green light electron transport layer, and a cathode which are sequentially stacked from bottom to top;
  • the blue light emitting device includes an anode, a blue hole hole injection layer, a blue hole hole transport layer, a blue light emitting layer, a blue electron transport layer, and a cathode which are sequentially stacked from bottom to top;
  • the red, green, and blue light emitting layer is an organic light emitting layer or a quantum dot light emitting layer, and the red, green, and blue light emitting layers include at least one organic light emitting layer and one quantum dot light emitting layer; the red, green, The blue light emitting layers are all obtained by a liquid phase film forming method.
  • the film thickness of the organic light-emitting layer in the red, green, and blue light-emitting layers is 5 nm to 100 nm;
  • the film thickness of the quantum dot light-emitting layer in the red, green, and blue light-emitting layers is 1 nm to 100 nm.
  • the material of the anode is selected from the group consisting of a transparent conductive metal oxide material and a high work function metal material, and the anode has a film thickness of 20 nm to 200 nm.
  • the material of the red, green and blue hole injecting layer is selected from the group consisting of an organic small molecule hole injecting material and a polymer hole injecting material, and the red, green and blue hole injecting layers are obtained by a liquid phase film forming method.
  • the red, green, and blue hole injection layers have a film thickness of 1 nm to 100 nm.
  • the material of the red, green and blue hole transport layer is selected from the group consisting of an organic small molecule hole transport material and a polymer hole transport material, and the red, green and blue hole transport layers are prepared by a liquid phase film formation method.
  • the film thickness of the red, green, and blue hole transport layers is from 1 nm to 100 nm.
  • the material of the red, green, and blue electron transport layer is selected from the group consisting of an organic small molecule electron transport material and a polymer electron transport material, and the red, green, and blue electron transport layers are prepared by a liquid phase film formation method.
  • the film thickness of the red, green, and blue electron transport layers is from 1 nm to 200 nm.
  • the material of the red, green, and blue electron transport layer is an organic small molecule electron transport material, and the red, green, and blue electron transport layers are prepared by vacuum evaporation.
  • the material of the cathode is selected from a low work function metal material, and the cathode is prepared by a vacuum evaporation method, and the cathode has a film thickness of 50 nm to 1000 nm.
  • the TFT unit includes an active layer formed on a substrate, a gate insulating layer formed on the substrate, and an active layer, corresponding to both ends of the active layer and formed on the gate insulating layer a source and a drain, a gate formed on the gate insulating layer between the source and the drain, and a gate insulating layer, a gate, a source, and a drain Flat layer
  • the source and the drain are connected to both ends of the active layer through via holes on the gate insulating layer; the drain is connected to the anode through a via hole on the flat layer .
  • the materials of the red, green and blue hole injecting layers are the same; the materials of the red, green and blue hole transporting layers are the same; the materials of the red, green and blue electron transporting layers are the same.
  • the present invention also provides a self-luminous display device comprising a plurality of red, green and blue sub-pixel regions arranged in an array;
  • the red sub-pixel region includes a substrate, a TFT unit disposed on the substrate, a red light emitting device driven by the TFT unit and disposed on the TFT unit, a package adhesive disposed on the red light emitting device, and a device a cover plate on the package rubber;
  • the green sub-pixel region includes a substrate, a TFT unit disposed on the substrate, a green light-emitting device driven by the TFT unit and disposed on the TFT unit, a package adhesive disposed on the green light-emitting device, and a device a cover plate on the package rubber;
  • the blue sub-pixel region includes a substrate, a TFT unit disposed on the substrate, a blue light emitting device driven by the TFT unit and disposed on the TFT unit, and a package adhesive disposed on the blue light emitting device. And a cover plate disposed on the package rubber;
  • the red light emitting device includes an anode, a red light hole injection layer, a red light hole transport layer, a red light emitting layer, a red light electron transport layer, and a cathode which are sequentially stacked from bottom to top;
  • the green light emitting device includes an anode, a green hole injection layer, a green hole transport layer, a green light emitting layer, a green light electron transport layer, and a cathode which are sequentially stacked from bottom to top;
  • the blue light emitting device includes an anode, a blue hole hole injection layer, a blue hole hole transport layer, a blue light emitting layer, a blue electron transport layer, and a cathode which are sequentially stacked from bottom to top;
  • the red, green, and blue light emitting layer is an organic light emitting layer or a quantum dot light emitting layer, and the red, green, and blue light emitting layers include at least one organic light emitting layer and one quantum dot light emitting layer; the red, green, The blue light emitting layer is prepared by a liquid phase film forming method;
  • the film thickness of the organic light-emitting layer in the red, green and blue light-emitting layers is 5 nm to 100 nm;
  • the film thickness of the quantum dot light-emitting layer in the red, green, and blue light-emitting layers is 1 nm to 100 nm;
  • the material of the anode is selected from the group consisting of a transparent conductive metal oxide material and a high work function metal material, and the anode has a film thickness of 20 nm to 200 nm;
  • the material of the red, green and blue hole injection layer is selected from the group consisting of an organic small molecule hole injection material and a polymer hole injection material, and the red, green and blue hole injection layers are formed by a liquid phase film formation method.
  • the film thickness of the red, green, and blue hole injection layers is from 1 nm to 100 nm.
  • the present invention provides a self-luminous display device having both an OLED and a QLED, and red, green, and blue light-emitting layers of the red, green, and blue light-emitting devices are organic light-emitting layers or quantum dot light-emitting layers, and red
  • the green and blue light emitting layers include at least one organic light emitting layer and one quantum dot light emitting layer, and the red, green and blue light emitting layers are all obtained by a liquid phase film forming method, and the material utilization rate is high, and the production cost is low, thereby improving The cost advantage of the product in large size display devices.
  • FIG. 1 is a schematic view showing the structure of a self-luminous display device of the present invention.
  • the present invention provides a self-luminous display device comprising a plurality of red, green and blue sub-pixel regions arranged in an array.
  • the red sub-pixel region includes a substrate 110, a TFT unit 210 disposed on the substrate 110, a red light emitting device 310 driven by the TFT unit 210 and disposed on the TFT unit 210, and the red light emitting device is disposed on the red light emitting device.
  • the green sub-pixel region includes a substrate 110, a TFT unit 210 disposed on the substrate 110, a green light emitting device 320 driven by the TFT unit 210 and disposed on the TFT unit 210, and the green light emitting device disposed on the green light emitting device
  • the blue sub-pixel region includes a substrate 110 and a TFT disposed on the substrate 110.
  • the red light emitting device 310 includes an anode 301, a red light hole injection layer 311, a red light hole transport layer 312, a red light emitting layer 313, a red light electron transport layer 314, and a stacked layer, which are sequentially stacked from bottom to top.
  • the green light emitting device 320 includes an anode 301, a green hole injection layer 321 , a green hole transport layer 322 , a green light emitting layer 323 , a green light electron transport layer 324 , and a cathode which are sequentially stacked from bottom to top. 302.
  • the blue light emitting device 330 includes an anode 301, a blue hole hole injection layer 331, a blue hole hole transport layer 332, a blue light emitting layer 333, a blue light electron transport layer 334, and a cathode 302 which are stacked in this order from bottom to top.
  • the red, green, and blue light emitting layers 313, 323, and 333 are organic light emitting layers or quantum dot light emitting layers, and at least one of the red, green, and blue light emitting layers 313, 323, and 333 includes an organic light emitting layer.
  • a quantum dot luminescent layer that is, the red, green, and blue light emitting devices 310, 320, 330 are OLEDs, or QLEDs, and at least one OLED and one QLED are included therein.
  • the organic light-emitting layer is a light-emitting layer in an OLED, which is a film layer of an organic small molecule light-emitting material or a polymer light-emitting material, and the quantum dot light-emitting layer is a light-emitting layer in the QLED, and is a film layer containing a quantum dot light-emitting material. .
  • the red, green, and blue light emitting layers 313, 323, and 333 are all formed by a liquid phase film forming method, specifically, an inkjet printing (IJP) method, or a nozzle.
  • the Nozzle Printing method can directly form a coating according to a preset pattern, and has a high material utilization rate and a low production cost with respect to a vacuum evaporation film forming method, thereby improving the cost advantage of the product in a large-sized display device. .
  • the organic light-emitting layer of the red, green, and blue light-emitting layers 313, 323, and 333 has a film thickness of 5 nm to 100 nm.
  • the quantum dot light-emitting layer of the red, green, and blue light-emitting layers 313, 323, and 333 has a film thickness of 1 nm to 100 nm.
  • the anode 301 is used for injecting holes into the red, green and blue hole injection layers 311, 321, 331, and the material thereof is selected from transparent conductive metal materials such as Indium Tin Oxide (ITO), indium oxide. Zinc (Indium Zinc Oxide, IZO), and zinc oxide (ZnO), etc., high work function metals such as gold (Au), platinum (Pt), silver (Ag), copper (Cu), etc., or the above high work function metals As the alloy, the above anode materials may be used singly or in combination of two or more.
  • the anode 301 has a film thickness of 20 nm to 200 nm, preferably ITO, and preferably has a film thickness of 100 nm.
  • the red, green, and blue hole injection layers 311, 321, 331 are respectively used to help holes are injected from the anode 301 into the red, green, and blue hole transport layers 312, 322, 332, respectively.
  • the material is selected from the group consisting of an organic small molecule hole injecting material and a polymer hole injecting material, and the red, green and blue hole injecting layers 311, 321, and 331 are obtained by a liquid phase film forming method, specifically by an inkjet printing method.
  • red, green, and blue hole injection layers 311, 321, and 331 have a film thickness of 1 nm to 100 nm, and preferably all of the materials are poly(3,4-ethylenedioxythiophene): poly(benzene).
  • poly(ethylenedioxythiophene) polystyrene sulphonate, PEDT: PSS
  • PEDT polystyrene sulphonate
  • the red, green, and blue hole transport layers 312, 322, 332 are used to transport holes from the red, green, and blue hole injection layers 311, 321, 331 to the red, green, and blue light emitting layers 313, In 323, 333, the material is selected from the group consisting of an organic small molecule hole transporting material and a polymer hole transporting material, and the red, green and blue hole transporting layers 312, 322, and 332 are obtained by a liquid phase film forming method, specifically
  • the red, green, and blue hole transport layers 312, 322, and 332 have a film thickness of 1 nm to 100 nm, and are preferably made of poly(9-vinylcarbazole) by an inkjet printing method or a nozzle printing method. Poly(9-vinlycarbazole), PVK) preferably has a film thickness of 20 nm.
  • the red, green, and blue electron transport layers 314, 324, 334 are used to facilitate electron transport from the cathode 302 to the red, green, and blue light emitting layers 313, 323, 333, the material of which is selected from the group consisting of small organic electron transport.
  • Materials, and polymer electron transport materials, wherein the organic small molecule electron transport material can be formed by vacuum evaporation, or can be formed by a liquid phase film formation method such as inkjet printing, and nozzle printing.
  • the electron transporting material is formed by a liquid phase film forming method such as an inkjet printing method and a nozzle printing method, and the red, green, and blue hole transporting layers 312, 322, and 332 have a film thickness of 1 nm to 200 nm, preferably materials are Tris(8-quinolinolato)aluminum (Liq3) preferably has a film thickness of 30 nm.
  • the cathode 302 is used to inject electrons into the red, green, and blue electron transport layers 314, 324, 334, and the material is selected from low work function metal materials such as lithium (Li), magnesium (Mg), and calcium (Ca). ), ⁇ (Sr), ⁇ (La), ⁇ (Ce), ⁇ (Eu), ⁇ (Yb), aluminum (Al), ⁇ (Cs), and ⁇ (Rb), etc., or the above low work function metal
  • the above-mentioned cathode material may be used singly or in combination of two or more.
  • the cathode 302 has a film thickness of 50 nm to 1000 nm, and the cathode 302 is specifically formed by a vacuum evaporation film forming method.
  • the cathode 302 is preferably made of Al, preferably having a film thickness of 100 nm.
  • the TFT unit 210 includes an active layer 211 formed on the substrate 110, a gate insulating layer 212 formed on the substrate 110 and the active layer 211, and formed on the gate insulating layer 212. a source 214 and a drain 215 corresponding to positions at both ends of the active layer 211, a gate electrode 213 formed on the gate insulating layer 212 and located between the source 214 and the drain 215, and formed The gate insulating layer 212, the gate 213, the source 214, and the flat layer 216 on the drain 215.
  • the source 214 and the drain 215 are connected to both ends of the active layer 211 through via holes on the gate insulating layer 212; the drain 215 passes through the flat layer 216 The via is connected to the anode 301.
  • the materials of the red, green, and blue hole injection layers 311, 321, and 331 may be the same or different, red and green.
  • the materials of the blue hole transport layers 312, 322, and 332 may be the same or different, and the materials of the red, green, and blue electron transport layers 314, 324, and 334 may be the same or different.
  • the materials of the red, green, and blue hole injection layers 311, 321, and 331 are the same, and the materials of the red, green, and blue hole transport layers 312, 322, and 332 are the same, and the red, green, and blue light are the same.
  • the materials of the electron transport layers 314, 324, 334 are the same, so that material and process costs can be reduced.
  • the material is PEDT:PSS, and the film thickness is 30 nm; the red, green and blue hole transport layers 312, 322, 332 have the same material and film thickness, and the materials are all PVK, and the film thickness is 5 nm. ; the red, green, blue light electron transport layer 3 14, 324, 334 materials and film thickness are the same, the material is tris (8-hydroxyquinoline) aluminum (Alq3), the film thickness is 30nm; the anode 301 material is ITO, the film thickness is 100nm The material of the cathode 302 is Al, and the film thickness is 100 nm.
  • the present invention provides a self-luminous display device having both an OLED and a QLED, and the red, green, and blue light-emitting layers of the red, green, and blue light-emitting devices are organic light-emitting layers or quantum dot light-emitting layers, and red.
  • the green and blue light emitting layers include at least one organic light emitting layer and one quantum dot light emitting layer, and the red, green and blue light emitting layers are all obtained by a liquid phase film forming method, and the material utilization rate is high, and the production cost is low, thereby improving The cost advantage of the product in large size display devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种自发光显示装置,同时具有OLED和QLED,红、绿、蓝色发光器件(310,320,330)的红、绿、蓝光发光层(313,323,333)为有机发光层或量子点发光层,且红、绿、蓝光发光层(313,323,333)中至少包括一个有机发光层及一个量子点发光层,所述红、绿、蓝光发光层(313,323,333)均采用液相成膜法制得。

Description

自发光显示装置 技术领域
本发明涉及显示技术领域,尤其涉及一种自发光显示装置。
背景技术
有机发光二极管(Organic Light Emitting Diodes,OLED)显示器件具有自发光、驱动电压低、发光效率高、响应时间短、清晰度与对比度高、近180°视角、使用温度范围宽,可实现柔性显示与大面积全色显示等诸多优点,被业界公认为是最有发展潜力的显示装置。
OLED显示器件属于自发光型显示设备,通常包括分别用作阳极、与阴极的像素电极、和公共电极、以及设在像素电极与公共电极之间的有机发光功能层,使得在适当的电压被施加于阳极与阴极时,从有机发光功能层发光。有机发光功能层包括了设于阳极上的空穴注入层、设于空穴注入层上的空穴传输层、设于空穴传输层上的发光层、设于发光层上的电子传输层、设于电子传输层上的电子注入层,其发光机理为在一定电压驱动下,电子和空穴分别从阴极和阳极注入到电子注入层和空穴注入层,电子和空穴分别经过电子传输层和空穴传输层迁移到发光层,并在发光层中相遇,形成激子并使发光分子激发,后者经过辐射弛豫而发出可见光。
随着显示技术的不断发展,人们对显示装置的显示质量要求也越来越高。量子点(Quantum Dots,QDs)通常是由Ⅱ-Ⅵ、或Ⅲ-Ⅴ族元素组成的球形半导体纳米微粒,粒径一般在几纳米至数十纳米之间。量子点材料由于量子限域效应的存在,原本连续的能带变成分立的能级结构,受外界激发后可发射可见光。量子点电致发光二极管(Quantum dots Light-emitting Diodes,QLED)和OLED一样都是自发光型二极管,目前市面上的OLED显示装置都是采用蒸镀成膜工艺制备,材料利用率低,导致成本居高不下,特别是大尺寸OLED显示装置尤为突出。而如果采用液相成膜工艺制备OLED显示器件或QLED显示器件,则几乎不会产生材料浪费,有利于降低OLED显示器件或QLED显示器件成本。
发明内容
本发明的目的在于提供一种自发光显示装置,同时具有OLED和QLED,材料利用率高,生产成本低,产品在大尺寸显示装置中具有成本优 势。
为实现上述目的,本发明提供一种自发光显示装置,包括数个阵列排布的红、绿、蓝色子像素区域;
所述红色子像素区域包括基板、设于基板上的TFT单元、由所述TFT单元驱动并设于TFT单元之上的红色发光器件、设于所述红色发光器件上的封装胶材、及设于所述封装胶材上的盖板;
所述绿色子像素区域包括基板、设于基板上的TFT单元、由所述TFT单元驱动并设于TFT单元之上的绿色发光器件、设于所述绿色发光器件上的封装胶材、及设于所述封装胶材上的盖板;
所述蓝色子像素区域包括基板、设于基板上的TFT单元、由所述TFT单元驱动并设于TFT单元之上的蓝色发光器件、设于所述蓝色发光器件上的封装胶材、及设于所述封装胶材上的盖板;
所述红色发光器件包括由下至上依次层叠设置的阳极、红光空穴注入层、红光空穴传输层、红光发光层、红光电子传输层、及阴极;
所述绿色发光器件包括由下至上依次层叠设置的阳极、绿光空穴注入层、绿光空穴传输层、绿光发光层、绿光电子传输层、及阴极;
所述蓝色发光器件包括由下至上依次层叠设置的阳极、蓝光空穴注入层、蓝光空穴传输层、蓝光发光层、蓝光电子传输层、及阴极;
所述红、绿、蓝光发光层为有机发光层、或量子点发光层,且所述红、绿、蓝光发光层中至少包括一个有机发光层及一个量子点发光层;所述红、绿、蓝光发光层均采用液相成膜法制得。
所述红、绿、蓝光发光层中的有机发光层的膜厚为5nm-100nm;
所述红、绿、蓝光发光层中的量子点发光层的膜厚为1nm-100nm。
所述阳极的材料选自透明导电金属氧化物材料、和高功函数金属材料,所述阳极的膜厚为20nm-200nm。
所述红、绿、蓝光空穴注入层的材料选自有机小分子空穴注入材料、和聚合物空穴注入材料,所述红、绿、蓝光空穴注入层采用液相成膜法制得,所述红、绿、蓝光空穴注入层的膜厚为1nm-100nm。
所述红、绿、蓝光空穴传输层的材料选自有机小分子空穴传输材料、和聚合物空穴传输材料,所述红、绿、蓝光空穴传输层采用液相成膜法制得,所述红、绿、蓝光空穴传输层的膜厚为1nm-100nm。
可选地,所述红、绿、蓝光电子传输层的材料选自有机小分子电子传输材料、和聚合物电子传输材料,所述红、绿、蓝光电子传输层采用液相成膜法制得,所述红、绿、蓝光电子传输层的膜厚为1nm-200nm。
可选地,所述红、绿、蓝光电子传输层的材料为有机小分子电子传输材料,所述红、绿、蓝光电子传输层采用真空蒸镀的方法制得。
所述阴极的材料选自低功函金属材料,所述阴极采用真空蒸镀方法制得,所述阴极的膜厚为50nm-1000nm。
所述TFT单元包括形成于基板上的有源层、形成于所述基板、及有源层上的栅极绝缘层、对应于所述有源层两端的上方并形成于所述栅极绝缘层上的源极与漏极、形成于所述栅极绝缘层上并位于源极与漏极之间的栅极、及形成于所述栅极绝缘层、栅极、源极、及漏极上的平坦层;
所述源极、及漏极通过所述栅极绝缘层上的过孔与所述有源层的两端相连接;所述漏极通过所述平坦层上的过孔与所述阳极相连接。
红、绿、蓝光空穴注入层的材料相同;所述红、绿、蓝光空穴传输层的材料相同;所述红、绿、蓝光电子传输层的材料相同。
本发明还提供一种自发光显示装置,包括数个阵列排布的红、绿、蓝色子像素区域;
所述红色子像素区域包括基板、设于基板上的TFT单元、由所述TFT单元驱动并设于TFT单元之上的红色发光器件、设于所述红色发光器件上的封装胶材、及设于所述封装胶材上的盖板;
所述绿色子像素区域包括基板、设于基板上的TFT单元、由所述TFT单元驱动并设于TFT单元之上的绿色发光器件、设于所述绿色发光器件上的封装胶材、及设于所述封装胶材上的盖板;
所述蓝色子像素区域包括基板、设于基板上的TFT单元、由所述TFT单元驱动并设于TFT单元之上的蓝色发光器件、设于所述蓝色发光器件上的封装胶材、及设于所述封装胶材上的盖板;
所述红色发光器件包括由下至上依次层叠设置的阳极、红光空穴注入层、红光空穴传输层、红光发光层、红光电子传输层、及阴极;
所述绿色发光器件包括由下至上依次层叠设置的阳极、绿光空穴注入层、绿光空穴传输层、绿光发光层、绿光电子传输层、及阴极;
所述蓝色发光器件包括由下至上依次层叠设置的阳极、蓝光空穴注入层、蓝光空穴传输层、蓝光发光层、蓝光电子传输层、及阴极;
所述红、绿、蓝光发光层为有机发光层、或量子点发光层,且所述红、绿、蓝光发光层中至少包括一个有机发光层及一个量子点发光层;所述红、绿、蓝光发光层均采用液相成膜法制得;
其中,所述红、绿、蓝光发光层中的有机发光层的膜厚为5nm-100nm;
所述红、绿、蓝光发光层中的量子点发光层的膜厚为1nm-100nm;
其中,所述阳极的材料选自透明导电金属氧化物材料、和高功函数金属材料,所述阳极的膜厚为20nm-200nm;
其中,所述红、绿、蓝光空穴注入层的材料选自有机小分子空穴注入材料、和聚合物空穴注入材料,所述红、绿、蓝光空穴注入层采用液相成膜法制得,所述红、绿、蓝光空穴注入层的膜厚为1nm-100nm。
本发明的有益效果:本发明提供一种自发光显示装置,同时具有OLED和QLED,红、绿、蓝色发光器件的红、绿、蓝光发光层为有机发光层或量子点发光层,且红、绿、蓝光发光层中至少包括一个有机发光层及一个量子点发光层,所述红、绿、蓝光发光层均采用液相成膜法制得,材料利用率高,生产成本低,从而提高了产品在大尺寸显示装置中的成本优势。
为了能更进一步了解本发明的特征以及技术内容,请参阅以下有关本发明的详细说明与附图,然而附图仅提供参考与说明用,并非用来对本发明加以限制。
附图说明
下面结合附图,通过对本发明的具体实施方式详细描述,将使本发明的技术方案及其它有益效果显而易见。
附图中,
图1为本发明的自发光显示装置的结构示意图。
具体实施方式
为更进一步阐述本发明所采取的技术手段及其效果,以下结合本发明的优选实施例及其附图进行详细描述。
请参阅图1,本发明提供一种自发光显示装置,包括数个阵列排布的红、绿、蓝色子像素区域。
具体地,所述红色子像素区域包括基板110、设于基板110上的TFT单元210、由所述TFT单元210驱动并设于TFT单元210之上的红色发光器件310、设于所述红色发光器件310上的封装胶材120、及设于所述封装胶材120上的盖板130。
具体地,所述绿色子像素区域包括基板110、设于基板110上的TFT单元210、由所述TFT单元210驱动并设于TFT单元210之上的绿色发光器件320、设于所述绿色发光器件320上的封装胶材120、及设于所述封装胶材120上的盖板130。
具体地,所述蓝色子像素区域包括基板110、设于基板110上的TFT 单元210、由所述TFT单元210驱动并设于TFT单元210之上的蓝色发光器件330、设于所述蓝色发光器件330上的封装胶材120、及设于所述封装胶材120上的盖板130。
具体地,所述红色发光器件310包括由下至上依次层叠设置的阳极301、红光空穴注入层311、红光空穴传输层312、红光发光层313、红光电子传输层314、及阴极302。
具体地,所述绿色发光器件320包括由下至上依次层叠设置的阳极301、绿光空穴注入层321、绿光空穴传输层322、绿光发光层323、绿光电子传输层324、及阴极302。
具体地,所述蓝色发光器件330包括由下至上依次层叠设置的阳极301、蓝光空穴注入层331、蓝光空穴传输层332、蓝光发光层333、蓝光电子传输层334、及阴极302。
具体地,所述红、绿、蓝光发光层313、323、333为有机发光层、或量子点发光层,且所述红、绿、蓝光发光层313、323、333中至少包括一个有机发光层及一个量子点发光层;即相应地,所述红、绿、蓝色发光器件310、320、330为OLED、或QLED,且其中至少包括一个OLED和一个QLED。所述有机发光层为OLED中的发光层,为有机小分子发光材料、或聚合物发光材料的膜层,所述量子点发光层为QLED中的发光层,为包含量子点发光材料的膜层。
具体地,所述红、绿、蓝光发光层313、323、333均采用液相成膜法制得,所述液相成膜法具体为喷墨打印(Ink-jet Printing,IJP)法、或者喷嘴打印(Nozzle Printing)法,能够根据预设的图案直接形成涂层,且相对于真空蒸镀成膜法,材料利用率高,生产成本低,从而提高了产品在大尺寸显示装置中的成本优势。
具体地,所述红、绿、蓝光发光层313、323、333中的有机发光层的膜厚为5nm-100nm。
具体地,所述红、绿、蓝光发光层313、323、333中的量子点发光层的膜厚为1nm-100nm。
具体地,所述阳极301用于向红、绿、蓝光空穴注入层311、321、331注入空穴,其材料选自透明导电金属材料如氧化铟锡(Indium Tin Oxide,ITO)、氧化铟锌(Indium Zinc Oxide,IZO)、及氧化锌(ZnO)等,高功函数金属如金(Au)、铂(Pt)、银(Ag)及铜(Cu)等,或者上述高功函数金属的合金,上述阳极材料可以单独使用,也可两个或者多个组合使用。所述阳极301的膜厚为20nm-200nm,优选材料为ITO,优选膜厚为100nm。
具体地,所述红、绿、蓝光空穴注入层311、321、331分别用于帮助空穴分别从阳极301注入到所述红、绿、蓝光空穴传输层312、322、332中,其材料选自有机小分子空穴注入材料、和聚合物空穴注入材料,所述红、绿、蓝光空穴注入层311、321、331采用液相成膜法制得,具体采用喷墨打印法、或者喷嘴打印法制得,所述红、绿、蓝光空穴注入层311、321、331的膜厚为1nm-100nm,优选材料均为聚(3,4-乙烯基二氧噻吩):聚(苯乙烯磺酸盐)(poly(ethylenedioxythiophene):polystyrene sulphonate,PEDT:PSS),优选膜厚均为10nm。
具体地,所述红、绿、蓝光空穴传输层312、322、332用于将空穴从红、绿、蓝光空穴注入层311、321、331传输到红、绿、蓝光发光层313、323、333中,其材料选自有机小分子空穴传输材料、和聚合物空穴传输材料,所述红、绿、蓝光空穴传输层312、322、332采用液相成膜法制得,具体采用喷墨打印法、或者喷嘴打印法制得,所述红、绿、蓝光空穴传输层312、322、332的膜厚为1nm-100nm,优选材料均为聚(9-乙烯基咔唑)(poly(9-vinlycarbazole),PVK),优选膜厚均为20nm。
具体地,所述红、绿、蓝光电子传输层314、324、334用于帮助电子从阴极302传输到红、绿、蓝光发光层313、323、333中,其材料选自有机小分子电子传输材料、和聚合物电子传输材料,其中,有机小分子电子传输材料可以用真空蒸镀的方法成膜,也可以用液相成膜法如喷墨打印法、及喷嘴打印法成膜,聚合物电子传输材料用液相成膜法如喷墨打印法、及喷嘴打印法成膜,所述红、绿、蓝光空穴传输层312、322、332的膜厚为1nm-200nm,优选材料均为三(8-羟基喹啉锂)(tri(8-quinolinolato)aluminum,Liq3),优选膜厚均为30nm。
具体地,所述阴极302用于将电子注入到红、绿、蓝光电子传输层314、324、334中,材料选自低功函数金属材料如锂(Li)、镁(Mg)、钙(Ca)、锶(Sr)、镧(La)、铈(Ce)、铕(Eu)、镱(Yb)、铝(Al)、铯(Cs)、及铷(Rb)等,或者上述低功函数金属的合金,上述阴极材料可以单独使用,也可两种或者更多组合使用,所述阴极302的膜厚为50nm至1000nm,所述阴极302具体采用真空蒸镀成膜法制得。所述阴极302优选材料为Al,优选膜厚为100nm。
具体地,所述TFT单元210包括形成于基板110上的有源层211、形成于所述基板110、及有源层211上的栅极绝缘层212、形成于所述栅极绝缘层212上对应于所述有源层211两端位置的源极214与漏极215、形成于所述栅极绝缘层212上并位于源极214与漏极215之间的栅极213、及形成 于所述栅极绝缘层212、栅极213、源极214、及漏极215上的平坦层216。
具体地,所述源极214、及漏极215通过所述栅极绝缘层212上的过孔与所述有源层211的两端相连接;所述漏极215通过所述平坦层216上的过孔与所述阳极301相连接。
具体地,无论所述红、绿、蓝色发光器件310、320、330为OLED还是QLED,其红、绿、蓝光空穴注入层311、321、331的材料可以相同也可以不同,红、绿、蓝光空穴传输层312、322、332的材料可以相同也可以不同,红、绿、蓝光电子传输层314、324、334的材料可以相同也可以不同。优选的,所述红、绿、蓝光空穴注入层311、321、331的材料相同,所述红、绿、蓝光空穴传输层312、322、332的材料相同,所述红、绿、蓝光电子传输层314、324、334的材料相同,从而可以降低材料及制程成本。
在本发明的一优选实施例中,所述红、绿色发光器件310、320为OLED,所述蓝色发光器件330为QLED;其中,所述红光发光层313为有机发光层,其材料为聚(2-甲氧基-5-(2-乙基己氧基)-1,4-亚苯基乙撑)(poly[2-methoxy-5-(2′-ethyhexyloxy-1,4-phenylenevinylene)],MEH-PPV),其膜厚为40nm;所述绿光发光层323为有机发光层,其材料为9,9-二正辛基芴-苯并[2,1,3]噻二唑共聚物(poly(9,9-dioctylfluorene-alt-benzothiadiazole),F8BT),其膜厚为50nm;所述蓝光发光层333为量子点发光层,其材料为以硒化镉为核硫化锌为壳的核壳结构的量子点材料(CdSe-ZnS core-shell QDs),其膜厚为30nm;所述红、绿、蓝光空穴注入层311、321、331的材料及膜厚均相同,其材料均为PEDT:PSS,其膜厚均为30nm;所述红、绿、蓝光空穴传输层312、322、332的材料及膜厚均相同,其材料均为PVK,其膜厚均为5nm;所述红、绿、蓝光电子传输层314、324、334的材料及膜厚均相同,其材料均为三(8-羟基喹啉)铝(Alq3),其膜厚均为30nm;所述阳极301的材料为ITO,膜厚为100nm;所述阴极302的材料为Al,膜厚为100nm。
综上所述,本发明提供的一种自发光显示装置,同时具有OLED和QLED,红、绿、蓝色发光器件的红、绿、蓝光发光层为有机发光层或量子点发光层,且红、绿、蓝光发光层中至少包括一个有机发光层及一个量子点发光层,所述红、绿、蓝光发光层均采用液相成膜法制得,材料利用率高,生产成本低,从而提高了产品在大尺寸显示装置中的成本优势。
以上所述,对于本领域的普通技术人员来说,可以根据本发明的技术方案和技术构思作出其他各种相应的改变和变形,而所有这些改变和变形 都应属于本发明权利要求的保护范围。

Claims (17)

  1. 一种自发光显示装置,包括数个阵列排布的红、绿、蓝色子像素区域;
    所述红色子像素区域包括基板、设于基板上的TFT单元、由所述TFT单元驱动并设于TFT单元之上的红色发光器件、设于所述红色发光器件上的封装胶材、及设于所述封装胶材上的盖板;
    所述绿色子像素区域包括基板、设于基板上的TFT单元、由所述TFT单元驱动并设于TFT单元之上的绿色发光器件、设于所述绿色发光器件上的封装胶材、及设于所述封装胶材上的盖板;
    所述蓝色子像素区域包括基板、设于基板上的TFT单元、由所述TFT单元驱动并设于TFT单元之上的蓝色发光器件、设于所述蓝色发光器件上的封装胶材、及设于所述封装胶材上的盖板;
    所述红色发光器件包括由下至上依次层叠设置的阳极、红光空穴注入层、红光空穴传输层、红光发光层、红光电子传输层、及阴极;
    所述绿色发光器件包括由下至上依次层叠设置的阳极、绿光空穴注入层、绿光空穴传输层、绿光发光层、绿光电子传输层、及阴极;
    所述蓝色发光器件包括由下至上依次层叠设置的阳极、蓝光空穴注入层、蓝光空穴传输层、蓝光发光层、蓝光电子传输层、及阴极;
    所述红、绿、蓝光发光层为有机发光层、或量子点发光层,且所述红、绿、蓝光发光层中至少包括一个有机发光层及一个量子点发光层;所述红、绿、蓝光发光层均采用液相成膜法制得。
  2. 如权利要求1所述的自发光显示装置,其中,所述红、绿、蓝光发光层中的有机发光层的膜厚为5nm-100nm;
    所述红、绿、蓝光发光层中的量子点发光层的膜厚为1nm-100nm。
  3. 如权利要求1所述的自发光显示装置,其中,所述阳极的材料选自透明导电金属氧化物材料、和高功函数金属材料,所述阳极的膜厚为20nm-200nm。
  4. 如权利要求1所述的自发光显示装置,其中,所述红、绿、蓝光空穴注入层的材料选自有机小分子空穴注入材料、和聚合物空穴注入材料,所述红、绿、蓝光空穴注入层采用液相成膜法制得,所述红、绿、蓝光空穴注入层的膜厚为1nm-100nm。
  5. 如权利要求1所述的自发光显示装置,其中,所述红、绿、蓝光空 穴传输层的材料选自有机小分子空穴传输材料、和聚合物空穴传输材料,所述红、绿、蓝光空穴传输层采用液相成膜法制得,所述红、绿、蓝光空穴传输层的膜厚为1nm-100nm。
  6. 如权利要求1所述的自发光显示装置,其中,所述红、绿、蓝光电子传输层的材料选自有机小分子电子传输材料、和聚合物电子传输材料,所述红、绿、蓝光电子传输层采用液相成膜法制得,所述红、绿、蓝光电子传输层的膜厚为1nm-200nm。
  7. 如权利要求1所述的自发光显示装置,其中,所述红、绿、蓝光电子传输层的材料为有机小分子电子传输材料,所述红、绿、蓝光电子传输层采用真空蒸镀的方法制得。
  8. 如权利要求1所述的自发光显示装置,其中,所述阴极的材料选自低功函金属材料,所述阴极采用真空蒸镀方法制得,所述阴极的膜厚为50nm-1000nm。
  9. 如权利要求1所述的自发光显示装置,其中,所述TFT单元包括形成于基板上的有源层、形成于所述基板、及有源层上的栅极绝缘层、对应于所述有源层两端的上方并形成于所述栅极绝缘层上的源极与漏极、形成于所述栅极绝缘层上并位于源极与漏极之间的栅极、及形成于所述栅极绝缘层、栅极、源极、及漏极上的平坦层;
    所述源极、及漏极通过所述栅极绝缘层上的过孔与所述有源层的两端相连接;所述漏极通过所述平坦层上的过孔与所述阳极相连接。
  10. 如权利要求1所述的自发光显示装置,其中,红、绿、蓝光空穴注入层的材料相同;所述红、绿、蓝光空穴传输层的材料相同;所述红、绿、蓝光电子传输层的材料相同。
  11. 一种自发光显示装置,包括数个阵列排布的红、绿、蓝色子像素区域;
    所述红色子像素区域包括基板、设于基板上的TFT单元、由所述TFT单元驱动并设于TFT单元之上的红色发光器件、设于所述红色发光器件上的封装胶材、及设于所述封装胶材上的盖板;
    所述绿色子像素区域包括基板、设于基板上的TFT单元、由所述TFT单元驱动并设于TFT单元之上的绿色发光器件、设于所述绿色发光器件上的封装胶材、及设于所述封装胶材上的盖板;
    所述蓝色子像素区域包括基板、设于基板上的TFT单元、由所述TFT单元驱动并设于TFT单元之上的蓝色发光器件、设于所述蓝色发光器件上的封装胶材、及设于所述封装胶材上的盖板;
    所述红色发光器件包括由下至上依次层叠设置的阳极、红光空穴注入层、红光空穴传输层、红光发光层、红光电子传输层、及阴极;
    所述绿色发光器件包括由下至上依次层叠设置的阳极、绿光空穴注入层、绿光空穴传输层、绿光发光层、绿光电子传输层、及阴极;
    所述蓝色发光器件包括由下至上依次层叠设置的阳极、蓝光空穴注入层、蓝光空穴传输层、蓝光发光层、蓝光电子传输层、及阴极;
    所述红、绿、蓝光发光层为有机发光层、或量子点发光层,且所述红、绿、蓝光发光层中至少包括一个有机发光层及一个量子点发光层;所述红、绿、蓝光发光层均采用液相成膜法制得;
    其中,所述红、绿、蓝光发光层中的有机发光层的膜厚为5nm-100nm;
    所述红、绿、蓝光发光层中的量子点发光层的膜厚为1nm-100nm;
    其中,所述阳极的材料选自透明导电金属氧化物材料、和高功函数金属材料,所述阳极的膜厚为20nm-200nm;
    其中,所述红、绿、蓝光空穴注入层的材料选自有机小分子空穴注入材料、和聚合物空穴注入材料,所述红、绿、蓝光空穴注入层采用液相成膜法制得,所述红、绿、蓝光空穴注入层的膜厚为1nm-100nm。
  12. 如权利要求11所述的自发光显示装置,其中,所述红、绿、蓝光空穴传输层的材料选自有机小分子空穴传输材料、和聚合物空穴传输材料,所述红、绿、蓝光空穴传输层采用液相成膜法制得,所述红、绿、蓝光空穴传输层的膜厚为1nm-100nm。
  13. 如权利要求11所述的自发光显示装置,其中,所述红、绿、蓝光电子传输层的材料选自有机小分子电子传输材料、和聚合物电子传输材料,所述红、绿、蓝光电子传输层采用液相成膜法制得,所述红、绿、蓝光电子传输层的膜厚为1nm-200nm。
  14. 如权利要求11所述的自发光显示装置,其中,所述红、绿、蓝光电子传输层的材料为有机小分子电子传输材料,所述红、绿、蓝光电子传输层采用真空蒸镀的方法制得。
  15. 如权利要求11所述的自发光显示装置,其中,所述阴极的材料选自低功函金属材料,所述阴极采用真空蒸镀方法制得,所述阴极的膜厚为50nm-1000nm。
  16. 如权利要求11所述的自发光显示装置,其中,所述TFT单元包括形成于基板上的有源层、形成于所述基板、及有源层上的栅极绝缘层、对应于所述有源层两端的上方并形成于所述栅极绝缘层上的源极与漏极、形成于所述栅极绝缘层上并位于源极与漏极之间的栅极、及形成于所述栅极 绝缘层、栅极、源极、及漏极上的平坦层;
    所述源极、及漏极通过所述栅极绝缘层上的过孔与所述有源层的两端相连接;所述漏极通过所述平坦层上的过孔与所述阳极相连接。
  17. 如权利要求11所述的自发光显示装置,其中,红、绿、蓝光空穴注入层的材料相同;所述红、绿、蓝光空穴传输层的材料相同;所述红、绿、蓝光电子传输层的材料相同。
PCT/CN2016/087328 2016-06-07 2016-06-27 自发光显示装置 WO2017210927A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610404638.0 2016-06-07
CN201610404638.0A CN105932028A (zh) 2016-06-07 2016-06-07 自发光显示装置

Publications (1)

Publication Number Publication Date
WO2017210927A1 true WO2017210927A1 (zh) 2017-12-14

Family

ID=56833740

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/087328 WO2017210927A1 (zh) 2016-06-07 2016-06-27 自发光显示装置

Country Status (2)

Country Link
CN (1) CN105932028A (zh)
WO (1) WO2017210927A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106654048B (zh) * 2016-12-27 2019-01-25 武汉华星光电技术有限公司 顶发光型oled显示单元、制作方法及显示面板
CN106992267A (zh) * 2017-04-28 2017-07-28 深圳市华星光电技术有限公司 一种顶发射oled器件及制备方法、显示面板
US10707437B2 (en) 2017-04-28 2020-07-07 Shenzhen China Star Optoelectronics Technology Co., Ltd. Top-emitting OLED device, method of manufacturing the same, and display panel
CN107424524B (zh) * 2017-07-25 2020-10-02 深圳市华星光电技术有限公司 一种微型led显示面板
CN109585503B (zh) * 2018-10-08 2021-04-02 惠科股份有限公司 显示面板及其制作方法
CN208806261U (zh) * 2018-11-13 2019-04-30 惠科股份有限公司 显示面板及显示装置
CN111883675B (zh) * 2019-09-24 2022-12-06 广东聚华印刷显示技术有限公司 混合型电致发光器件及其制备方法和显示装置
WO2021152672A1 (ja) * 2020-01-27 2021-08-05 シャープ株式会社 表示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100924144B1 (ko) * 2008-06-05 2009-10-28 삼성모바일디스플레이주식회사 유기전계발광소자 및 그의 제조 방법
CN103346266A (zh) * 2013-06-21 2013-10-09 深圳市华星光电技术有限公司 一种发光器件、显示面板及其制造方法
CN103824877A (zh) * 2014-02-28 2014-05-28 上海和辉光电有限公司 Qd-led像素显示器件、制作方法及显示面板
CN104241553A (zh) * 2014-10-13 2014-12-24 深圳市华星光电技术有限公司 Oled器件的制备方法及其制得的oled器件
US9231224B2 (en) * 2013-08-14 2016-01-05 Samsung Display Co., Ltd. Organic light emitting diode display
CN105304681A (zh) * 2015-10-19 2016-02-03 Tcl集团股份有限公司 含有机/无机混合发光层的电致发光显示器及制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100924144B1 (ko) * 2008-06-05 2009-10-28 삼성모바일디스플레이주식회사 유기전계발광소자 및 그의 제조 방법
CN103346266A (zh) * 2013-06-21 2013-10-09 深圳市华星光电技术有限公司 一种发光器件、显示面板及其制造方法
US9231224B2 (en) * 2013-08-14 2016-01-05 Samsung Display Co., Ltd. Organic light emitting diode display
CN103824877A (zh) * 2014-02-28 2014-05-28 上海和辉光电有限公司 Qd-led像素显示器件、制作方法及显示面板
CN104241553A (zh) * 2014-10-13 2014-12-24 深圳市华星光电技术有限公司 Oled器件的制备方法及其制得的oled器件
CN105304681A (zh) * 2015-10-19 2016-02-03 Tcl集团股份有限公司 含有机/无机混合发光层的电致发光显示器及制备方法

Also Published As

Publication number Publication date
CN105932028A (zh) 2016-09-07

Similar Documents

Publication Publication Date Title
WO2017210927A1 (zh) 自发光显示装置
WO2017190373A1 (zh) 自发光型显示装置及其制作方法
TWI445445B (zh) 有機發光裝置及其製造方法
US10756285B2 (en) Display panel, electroluminescent panel and manufacturing method thereof
TWI700829B (zh) 有機發光顯示裝置及其製造方法
WO2018094801A1 (zh) Oled显示装置及其制作方法
WO2017206216A1 (zh) Oled显示装置
JP2004537149A (ja) 有機層を有する発光素子
WO2016188041A1 (zh) 一种电致发光器件及其制备方法、显示基板、显示装置
KR102077142B1 (ko) 유기 발광 소자
CN102456704B (zh) 有机发光显示装置
WO2019095565A1 (zh) 串联量子点发光器件、面板即显示器
CN105938845A (zh) 显示器
KR102595445B1 (ko) 유기 발광 표시 장치 및 이의 제조 방법
WO2016188042A1 (zh) 电致发光器件及其制备方法、显示基板、显示装置
TW201523958A (zh) 有機發光裝置及其製備方法
US9692002B2 (en) Organic light emitting display device
KR101878172B1 (ko) 유기 발광 표시 장치 및 이의 제조 방법
KR20160106847A (ko) 유기 발광 표시 장치 및 그 제조 방법
US7449252B2 (en) Organic electroluminescent device, manufacturing method thereof, and electronic apparatus
TWI245579B (en) Organic light-emitting device and fabrication method thereof
KR20130008754A (ko) 유기 발광 표시 장치 및 이의 제조 방법
US20230380206A1 (en) Photoelectric conversion element, display device, and method of manufacturing photoelectric conversion element
US20230071128A1 (en) Display device
KR102296915B1 (ko) 유기 발광 표시 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16904379

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16904379

Country of ref document: EP

Kind code of ref document: A1