WO2017221887A1 - 水晶振動素子、水晶振動子、及び水晶片の製造方法 - Google Patents
水晶振動素子、水晶振動子、及び水晶片の製造方法 Download PDFInfo
- Publication number
- WO2017221887A1 WO2017221887A1 PCT/JP2017/022517 JP2017022517W WO2017221887A1 WO 2017221887 A1 WO2017221887 A1 WO 2017221887A1 JP 2017022517 W JP2017022517 W JP 2017022517W WO 2017221887 A1 WO2017221887 A1 WO 2017221887A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- main surface
- crystal
- angle
- long side
- mask
- Prior art date
Links
- 239000013078 crystal Substances 0.000 title claims abstract description 254
- 238000004519 manufacturing process Methods 0.000 title claims description 12
- 238000000034 method Methods 0.000 title claims description 11
- 230000010355 oscillation Effects 0.000 title 1
- 230000005284 excitation Effects 0.000 claims abstract description 68
- 239000010453 quartz Substances 0.000 claims abstract description 36
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 36
- 238000000605 extraction Methods 0.000 claims description 41
- 239000000758 substrate Substances 0.000 claims description 20
- 239000000463 material Substances 0.000 claims description 11
- 238000001039 wet etching Methods 0.000 description 8
- 239000000853 adhesive Substances 0.000 description 7
- 230000001070 adhesive effect Effects 0.000 description 7
- 239000010410 layer Substances 0.000 description 7
- 239000004020 conductor Substances 0.000 description 5
- 239000011810 insulating material Substances 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 230000002093 peripheral effect Effects 0.000 description 4
- 239000007772 electrode material Substances 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000001312 dry etching Methods 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 238000003892 spreading Methods 0.000 description 2
- 230000007480 spreading Effects 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- DDFHBQSCUXNBSA-UHFFFAOYSA-N 5-(5-carboxythiophen-2-yl)thiophene-2-carboxylic acid Chemical compound S1C(C(=O)O)=CC=C1C1=CC=C(C(O)=O)S1 DDFHBQSCUXNBSA-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000003779 heat-resistant material Substances 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- ZPPSOOVFTBGHBI-UHFFFAOYSA-N lead(2+);oxido(oxo)borane Chemical compound [Pb+2].[O-]B=O.[O-]B=O ZPPSOOVFTBGHBI-UHFFFAOYSA-N 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 239000005368 silicate glass Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000009751 slip forming Methods 0.000 description 1
- QUBMWJKTLKIJNN-UHFFFAOYSA-B tin(4+);tetraphosphate Chemical compound [Sn+4].[Sn+4].[Sn+4].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QUBMWJKTLKIJNN-UHFFFAOYSA-B 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
- H03H9/15—Constructional features of resonators consisting of piezoelectric or electrostrictive material
- H03H9/17—Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
- H03H9/19—Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator consisting of quartz
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
- H03H9/02—Details
- H03H9/02007—Details of bulk acoustic wave devices
- H03H9/02157—Dimensional parameters, e.g. ratio between two dimension parameters, length, width or thickness
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
- H03H9/02—Details
- H03H9/05—Holders; Supports
- H03H9/0504—Holders; Supports for bulk acoustic wave devices
- H03H9/0509—Holders; Supports for bulk acoustic wave devices consisting of adhesive elements
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
- H03H9/02—Details
- H03H9/05—Holders; Supports
- H03H9/0595—Holders; Supports the holder support and resonator being formed in one body
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/01—Manufacture or treatment
- H10N30/06—Forming electrodes or interconnections, e.g. leads or terminals
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/01—Manufacture or treatment
- H10N30/08—Shaping or machining of piezoelectric or electrostrictive bodies
- H10N30/082—Shaping or machining of piezoelectric or electrostrictive bodies by etching, e.g. lithography
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
- H03H9/02—Details
- H03H9/05—Holders; Supports
- H03H9/10—Mounting in enclosures
- H03H9/1007—Mounting in enclosures for bulk acoustic wave [BAW] devices
- H03H9/1014—Mounting in enclosures for bulk acoustic wave [BAW] devices the enclosure being defined by a frame built on a substrate and a cap, the frame having no mechanical contact with the BAW device
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
- H03H9/02—Details
- H03H9/125—Driving means, e.g. electrodes, coils
- H03H9/13—Driving means, e.g. electrodes, coils for networks consisting of piezoelectric or electrostrictive materials
Definitions
- the present invention relates to a crystal resonator element, a crystal resonator, and a method for manufacturing a crystal piece, and more particularly to a crystal resonator element including an AT-cut crystal piece.
- Quartz vibrators are widely used as signal sources for reference signals used in oscillators and bandpass filters.
- a crystal resonator a crystal resonator element is accommodated in a holder composed of a base member and a lid member.
- the crystal resonator element as described in Patent Documents 1 and 2, there is an AT-cut type crystal resonator element whose thickness vibration is a main vibration.
- the crystal resonator element described in Patent Document 1 includes a crystal element piece made of an AT-cut crystal plate and an excitation electrode, and both side surfaces in the long side direction of the excitation portion of the crystal element piece are crystal The crystal is formed of two surfaces, an m-plane and a non-m-plane.
- the non-m plane on the side surface of the crystal element piece is in contact with the long side of the main surface at an angle slightly larger than the vertical, so that sputtering or vapor deposition is performed from the main surface of the crystal element piece.
- the electrode material may not be provided on the non-m surface. Therefore, there is a possibility that the extraction electrode that is drawn out to the main surface of the front and back through the side surface of the crystal element piece is disconnected on the non-m surface.
- the present invention has been made in view of such circumstances, and an object of the present invention is to provide a crystal resonator element, a crystal resonator, and a method for manufacturing a crystal piece that can suppress the occurrence of electrical connection failure. To do.
- a quartz crystal resonator element includes a first main surface and a second main surface facing each other with a long side in the X-axis direction and a short side in the Z′-axis direction, a first main surface, An AT-cut crystal piece including a first side surface and a second side surface located on the long side of the second main surface; a first excitation electrode provided on the first main surface of the crystal piece; A second excitation electrode provided on the second main surface; an extraction electrode electrically connected to the first excitation electrode drawn from the first main surface through the first side surface to the second main surface; A first connection electrode provided on the second main surface and electrically connected to the first excitation electrode via the extraction electrode; and provided on the second main surface and electrically connected to the second excitation electrode.
- a first non-m surface of the crystal, and the second side surface has a second non-m surface of the crystal crystal that is in contact with the long side of the first main surface at an angle ⁇ 2 and the long side of the second main surface at an angle ⁇ 1.
- a second m-plane of a quartz crystal in contact with each other, the angles ⁇ 1 and ⁇ 2 are obtuse angles, the angle ⁇ 1 is an obtuse angle larger than the angle ⁇ 2, and the width of the first side surface is perpendicular to the long side in the X-axis direction.
- the width of the first m surface is larger than the width of the second m surface of the second side surface.
- the width of the m-plane is larger on the first side surface through which the extraction electrode drawn around the front and back main surfaces of the crystal piece passes than on the second side surface. Since the m-plane has a gentler inclination angle from the main surface than the non-m-plane, it is easy to form an extraction electrode that is routed over the front and back main surfaces of the crystal piece, and it is possible to prevent disconnection of the extraction electrode. it can. Therefore, occurrence of electrical connection failure can be suppressed.
- a crystal resonator element includes a first main surface and a second main surface that face each other with a long side in the X-axis direction and a short side in the Z′-axis direction, and a first main surface of the crystal crystal.
- An AT-cut crystal piece including a first side surface and a second side surface located on the long side of the surface and the second main surface; a first excitation electrode provided on the first main surface of the crystal piece; The second excitation electrode provided on the second main surface of the crystal piece and the first excitation electrode drawn from the first main surface through the second side surface to the second main surface are electrically connected.
- a first connection electrode provided on the second main surface and electrically connected to the first excitation electrode via the extraction electrode; and provided on the second main surface and electrically connected to the second excitation electrode.
- a first side surface having an angle with a first non-m surface of the quartz crystal that is in contact with the long side of the second main surface at an angle ⁇ 2 and the long side of the first main surface.
- the first side of the quartz crystal that touches at ⁇ 1, and the second side face has the second side of the quartz crystal that touches the long side of the second main surface at an angle ⁇ 1 and the long side of the first main surface at an angle ⁇ 2.
- the width of the second m surface on the side surface is larger than the width of the first m surface on the first side surface.
- the width of the m-plane is greater on the second side surface through which the extraction electrode routed across the front and back main surfaces of the crystal piece passes than on the first side surface. Since the m-plane has a gentler inclination angle from the main surface than the non-m-plane, it is easy to form an extraction electrode that is routed over the front and back main surfaces of the crystal piece, and it is possible to prevent disconnection of the extraction electrode. it can. Therefore, occurrence of electrical connection failure can be suppressed.
- the method for manufacturing a crystal piece according to one aspect of the present invention includes a first main surface and a second main surface that face each other, and each of the first main surfaces extends in the X-axis direction and the Z′-axis direction of the crystal crystal.
- a step of providing on the second main surface of the quartz substrate so as to overlap a part of the quartz substrate, and wet-etching the quartz substrate so that the first principal surface and the second principal surface have long sides in the X-axis direction and Z Forming a crystal piece including a first side surface and a second side surface which are formed in a rectangular shape having a short side in the axial direction and are located on the long side of the first main surface and the second main surface.
- the first side surface is the first m-plane of the crystal that contacts the long side of the first main surface at an angle ⁇ 1 and the water that contacts the long side of the second main surface at an angle ⁇ 2.
- a first non-m surface of the crystal, and the second side surface has a second non-m surface of the crystal crystal that is in contact with the long side of the first main surface at an angle ⁇ 2 and the long side of the second main surface at an angle ⁇ 1.
- the angle m1 is an obtuse angle larger than the angle ⁇ 2
- the width of the first m surface of the first side surface is the second angle in the width direction orthogonal to the long side in the X-axis direction. It is larger than the width of the second m-plane on the side surface.
- the occurrence of electrical connection failure can be suppressed.
- FIG. 1 is a perspective view of a crystal resonator element viewed from one main surface side of a flat plate-shaped crystal piece according to a first embodiment of the present invention.
- FIG. 2 is a perspective view of the crystal resonator element viewed from the other main surface side of the flat plate-shaped crystal piece according to the first embodiment of the present invention.
- FIG. 3 is a cross-sectional view of the crystal resonator according to the first embodiment of the invention.
- FIG. 4 is a perspective view of the crystal resonator (the lid member is omitted) according to the first embodiment of the present invention.
- FIG. 5 is a diagram showing a method for manufacturing a crystal piece according to the first embodiment of the present invention.
- FIG. 1 is a perspective view of a crystal resonator element viewed from one main surface side of a flat plate-shaped crystal piece according to a first embodiment of the present invention.
- FIG. 2 is a perspective view of the crystal resonator element viewed from the other main surface side
- FIG. 6 is a diagram showing a method for manufacturing a crystal piece according to the first embodiment of the present invention.
- FIG. 7 is a perspective view of a crystal resonator element viewed from one main surface side of a plate-shaped crystal piece according to a second embodiment of the present invention.
- FIG. 8 is a perspective view of the crystal resonator element viewed from the other main surface side of the plate-shaped crystal piece according to the second embodiment of the present invention.
- FIG. 9 is a perspective view of a crystal resonator (a lid member is omitted) according to the second embodiment of the present invention.
- FIG. 10 is a perspective view of a crystal resonator element viewed from one main surface side of a crystal piece having a mesa shape according to a third embodiment of the present invention.
- FIG. 11 is a perspective view of a crystal resonator element viewed from the other main surface side of a crystal piece having a mesa shape according to a third embodiment of the present invention.
- FIG. 1 is a perspective view of the crystal resonator element viewed from the first main surface side of the crystal piece
- FIG. 2 is a crystal view from the second main surface side of the crystal piece opposite to FIG. It is a perspective view of a vibration element.
- FIG. 3 is a cross-sectional view of the crystal resonator.
- FIG. 4 is a perspective view of the crystal resonator, and the lid member is omitted.
- the crystal resonator (Quartz Crystal Resonator Unit) 1 includes a crystal resonator element (Quartz Crystal Resonator) 10, a lid member 20, and a base member 30.
- the lid member 20 and the base member 30 are holders for housing the crystal resonator element 10.
- the lid member 20 has a cap shape and the base member 30 has a flat plate shape, but the shapes of the lid member 20 and the base member 30 are limited to these. is not.
- the crystal resonator element 10 includes an AT-cut crystal piece (Quartz Crystal Blank) 11.
- the AT-cut crystal piece 11 has an X-axis, a Y-axis, and a Z-axis which are crystal axes of artificial quartz, and the Y-axis and the Z-axis are 35 degrees 15 minutes around the X-axis from the Y-axis to the Z-axis.
- axes rotated by ⁇ 1 minute 30 seconds are defined as the Y ′ axis and the Z ′ axis, respectively, they are planes parallel to the plane specified by the X axis and the Z ′ axis (hereinafter referred to as “XZ ′ plane”).
- the crystal piece 11 that is an AT-cut crystal piece has a long side parallel to the X-axis direction, a short side parallel to the Z ′ direction, and a side in the thickness direction parallel to the Y′-axis direction. Further, the crystal piece 11 is formed in a rectangular shape on the XZ ′ plane.
- a quartz resonator element using an AT-cut quartz piece has extremely high frequency stability over a wide temperature range, is excellent in aging characteristics, and can be manufactured at low cost. Further, the AT-cut quartz crystal resonator element uses a thickness shear vibration mode as a main vibration.
- each configuration of the crystal unit 1 will be described with reference to the AT-cut axial direction of the crystal.
- the crystal piece 11 includes a first main surface 12a and a second main surface 12b, and a first side surface 13 and a second side surface 14.
- the first main surface 12a and the second main surface 12b face each other. Further, the first main surface 12a and the second main surface 12b have the X-axis direction as a long side and the Z′-axis direction as a short side, respectively.
- the first side surface 13 and the second side surface 14 are side surfaces located on the long sides of the first main surface 12a and the second main surface 12b.
- the first main surface 12a and the second main surface 12b are flat surfaces, and a flat crystal piece in which the thickness of the crystal piece 11 in the Y′-axis direction is uniformly the same is shown.
- the present invention is not limited to this, and as will be described later, a mesa crystal piece having a different thickness in the Y′-axis direction of the crystal piece can be applied. Details of the shape of the crystal piece 11 will be described later.
- the crystal resonator element 10 includes a first excitation electrode 15a and a second excitation electrode 15b.
- the first excitation electrode 15 a is formed on the first main surface 12 a of the crystal piece 11, and the second excitation electrode 15 b is formed on the second main surface 12 b of the crystal piece 11.
- Each of the first excitation electrode 15a and the second excitation electrode 15b is provided in a region including the center of the corresponding main surface, and is disposed as a pair of electrodes so that substantially the whole overlaps on the XZ ′ plane.
- the first excitation electrode 15a and the second excitation electrode 15b are formed in a rectangular shape having a long side and a short side on the XZ ′ plane. In the example shown in FIGS.
- the long sides of the first excitation electrode 15a and the second excitation electrode 15b are aligned with the long side of the crystal piece 11 (that is, the X-axis direction), and the first excitation electrode 15a and The direction of the short side of the second excitation electrode 15b coincides with the short side of the crystal piece 11 (that is, the Z′-axis direction).
- the crystal resonator element 10 includes an extraction electrode 16 electrically connected to the first excitation electrode 15a, a first connection electrode 17a electrically connected to the first excitation electrode 15a via the extraction electrode 16, and a second And a second connection electrode 17b electrically connected to the excitation electrode 15b.
- the first connection electrode 17a and the second connection electrode 17b are formed on the second main surface 12b of the crystal piece 11, and more specifically, one short side (X-axis positive direction side) of the second main surface 12b. It is provided in the vicinity and is arranged along the short side direction of the second main surface 12b.
- the extraction electrode 16 is electrically connected to the first excitation electrode 15a on the first main surface 12a, and is extracted from the first main surface 12a through the first side surface 13 to the second main surface 12b. It is. By drawing the extraction electrode 16 over the front and back main surfaces of the crystal piece 11 in this way, the first excitation electrode 15a formed on the first main surface 12a and the first connection electrode 17a formed on the second main surface 12b, Can be electrically connected.
- the first connection electrode 17a and the second connection electrode 17b are electrically connected to the electrode of the base member 30 via the conductive holding members 36a and 36b.
- the conductive holding members 36a and 36b may be formed by thermally curing a conductive adhesive.
- the electrode materials of the first excitation electrode 15a and the second excitation electrode 15b, the extraction electrode 16, and the connection electrodes 17a and 17b are not particularly limited.
- the first excitation electrode 15a and the second excitation electrode 15b have a chromium (Cr) layer as a base.
- a gold (Au) layer may be further provided on the surface of the layer.
- the lid member 20 has a recess 24 that opens to face the first main surface 32 a of the base member 30.
- the recess 24 is provided with a side wall 22 formed so as to rise from the bottom surface of the recess 24 over the entire circumference of the opening.
- the lid member 20 has a facing surface 26 that faces the first main surface 32 a of the base member 30 at the opening edge of the recess 24.
- the lid member 20 may have a flange portion 28 that protrudes further outward from the side wall portion 22. In this case, the flange portion 28 has a facing surface 26. According to this, since the joint area of both can be enlarged by joining the flange part 28 and the base member 30, the joint strength of both can be improved.
- the shape of the lid member 20 is not particularly limited.
- the flat surface of the base member 30 is used. It may be substantially the same as the shape.
- the lid member 20 has a flange portion.
- the present invention is not limited to this, and the side wall portion is formed so as to rise substantially vertically from the bottom surface of the recess 24 without having the flange portion 28.
- the tip of 22 may be joined to the base member 30.
- the material of the lid member 20 is not particularly limited, but may be made of a conductive material such as metal. According to this, a shield function can be added by electrically connecting the lid member 20 to the ground potential.
- the lid member 20 may be an insulating material or a composite structure of a conductive material and an insulating material.
- the base member 30 supports the crystal resonator element 10 so that it can be excited. Specifically, the crystal resonator element 10 is supported on the first main surface 32a of the base member 30 through the conductive holding members 36a and 36b so as to be able to be excited.
- the base member 30 has a longitudinal direction parallel to the Z′-axis direction, a lateral direction parallel to the X-axis direction, and a thickness direction parallel to the Y′-axis direction.
- the base member 30 has a rectangular shape on the XZ ′ plane. That is, the first main surface 32a and the second main surface 32b of the base member 30 have the long side in the X-axis direction and the short side in the Z′-axis direction, respectively.
- the base member 30 may be formed of, for example, an insulating ceramic, and may be formed by, for example, laminating and baking a plurality of insulating ceramic sheets.
- the base member 30 is made of a glass material (for example, silicate glass or a material mainly composed of materials other than silicate and having a glass transition phenomenon due to a temperature rise), a crystal material (for example, an AT-cut crystal). Or you may form with a glass epoxy resin.
- the base member 30 is preferably made of a heat resistant material.
- the base member 30 may be a single layer or a plurality of layers. In the case of a plurality of layers, the base member 30 may include an insulating layer formed on the outermost layer of the first main surface 32a.
- the base member 30 has a flat plate shape.
- both the lid member 20 and the base member 30 are bonded via the bonding material 70, so that the crystal resonator element 10 is surrounded by the concave portion 24 of the lid member 20 and the base member 30.
- the inner space (cavity) 23 is hermetically sealed.
- the pressure in the internal space is preferably in a vacuum state lower than the atmospheric pressure, and this is preferable because changes over time due to oxidation of the excitation electrodes 15a and 15b can be reduced.
- the bonding material 70 is provided over the entire circumference of the lid member 20 and the base member 30, and between the facing surface 26 of the side wall portion 22 of the lid member 20 and the first main surface 32 a of the base member 30. Intervene.
- the bonding material 70 has an insulating material.
- the insulating material may be a glass adhesive material such as a low-melting glass (for example, lead borate or tin phosphate), or a resin adhesive. According to these insulating materials, the cost is lower than that of metal bonding, the heating temperature can be suppressed, and the manufacturing process can be simplified.
- one end in the longitudinal direction (the end on the side where the conductive holding members 36a and 36b are disposed) is a fixed end, and the other end is a free end.
- the crystal resonator element 10, the lid member 20, and the base member 30 have a rectangular shape on the XZ ′ plane, and are arranged in the directions in which the longitudinal direction and the short direction coincide with each other.
- the position of the fixed end of the crystal resonator element 10 is not particularly limited, and as a modification, the crystal resonator element 10 may be fixed to the base member 30 at both ends in the longitudinal direction.
- the crystal resonator element 10 and the base member 30 may be formed in such a manner that the crystal resonator element 10 is fixed at both ends in the longitudinal direction.
- the base member 30 is formed on the first main surface 32a and the connection electrodes 33a and 33b formed on the first main surface 32a, and is electrically connected to the connection electrodes 33a and 33b.
- connection electrodes 33a and 33b of the base member 30 are provided near one short side (X-axis positive direction side) of the first main surface 32a and are arranged along the short side direction of the first main surface 32a. .
- the connection electrode 33a is connected to the first connection electrode 17a of the crystal resonator element 10 through the conductive holding member 36a, while the connection electrode 33b is connected to the crystal resonator element 10 through the conductive holding member 36b.
- the second connection electrode 17b is connected.
- the plurality of external electrodes 35 a, 35 b, 35 c, and 35 d are formed at the corners of the base member 30.
- the external electrode 35a is formed at the corner portion on the X-axis positive direction and the Z′-axis negative direction side
- the external electrode 35b is formed at the corner portion on the X-axis negative direction and the Z′-axis positive direction side
- the electrode 35c is formed at a corner portion on the X-axis negative direction side and the Z′-axis negative direction side
- the external electrode 35d is formed at a corner portion on the X-axis positive direction and the Z′-axis positive direction side.
- the external electrode 35a is electrically connected to the connection electrode 33a via the extraction electrode 34a
- the external electrode 35b is electrically connected to the connection electrode 33b via the extraction electrode 34b.
- the external electrodes 35a and 35b are input / output terminals that are electrically connected to the first excitation electrode 15a and the second excitation electrode 15b.
- these external electrodes 35 a and 35 b are arranged at corner portions of the first main surface 32 a of the base member 30 that face each other.
- the remaining external electrodes 35c and 35d are arranged at corner portions of the first main surface 32a of the base member 30 that face each other. Note that these external electrodes are dummy electrodes that are not electrically connected to the first excitation electrode 15 a and the second excitation electrode 15 b of the crystal resonator element 10. As described above, since the external electrodes are provided at all corner portions of the base member 30 so that the external electrodes exist in any direction in the plan view of the base member 30, application of a conductive material for forming the external electrodes is provided. In addition, the crystal resonator 1 can be easily mounted on the mounting substrate.
- the dummy electrode is a terminal provided on a mounting board (not shown) on which the crystal unit 1 is mounted, and is electrically connected to a terminal that is not connected to any other electronic element mounted on the mounting board. Also good.
- the lid member 20 is made of a conductive material, a shielding function can be added to the lid member 20.
- the external electrodes 35c and 35d as dummy electrodes may be ground electrodes to which a ground potential is supplied.
- the shield function can be improved by electrically connecting the lid member 20 that is a conductive material to the external electrodes 35c and 35d that are grounding electrodes.
- the corner portion of the base member 30 has a cut-out side surface formed by cutting a part of the corner portion into a cylindrical curved surface shape (also referred to as a castellation shape). 35d is continuously formed over such a cut-out side surface and the second main surface 32b.
- the shape of the corner portion of the base member 30 is not limited to this, and the shape of the cutout may be a flat shape, or a rectangular shape having no cutout and having four corners at right angles in plan view. It may be.
- connection electrodes 33a and 33b, the extraction electrodes 34a and 34b, and the external electrodes 35a to 35d of the base member 30 are not limited to the above example, and can be applied with various modifications.
- the connection electrodes 33 a and 33 b may be disposed at different ends on the first main surface 32 a of the base member 30 such as formed at both ends in the long side direction.
- the crystal resonator element 10 is supported by the base member 30 at both one end and the other end in the longitudinal direction.
- the number of external electrodes is not limited to four, and may be only two as input / output terminals arranged diagonally, for example.
- the external electrode is not limited to the one disposed at the corner portion, and may be formed on any side surface of the base member 30 excluding the corner portion.
- a cut-out side surface obtained by cutting a part of the side surface into a cylindrical curved surface may be formed, and the external electrode may be formed on the side surface excluding the corner portion.
- the other external electrodes 35c and 35d which are dummy electrodes, may not be formed.
- a through hole penetrating from the first main surface 32a to the second main surface 32b is formed in the base member 30, and electrical conduction is established from the connection electrode formed on the first main surface 32a to the second main surface 32b by the through hole. You may plan.
- an alternating electric field is applied between the pair of first excitation electrode 15a and second excitation electrode 15b in the crystal resonator element 10 via the external electrodes 35a and 35b of the base member 30. To do. Thereby, the quartz piece 11 vibrates in the thickness-shear vibration mode, and resonance characteristics associated with the vibration are obtained.
- the first side surface 13 on the long side of the crystal piece 11 has an m surface 13a that contacts the long side of the first main surface 12a at an angle ⁇ 1, and a non-m surface 13b that contacts the long side of the second main surface 12b at an angle ⁇ 2. Consists of. That is, the m-plane 13a and the non-m-plane 13b are two consecutive planes with different inclination angles.
- the m-plane is one of the natural surfaces of the crystal crystal, and the non-m-plane refers to a crystal crystal surface other than the m-plane.
- the m surface 13a is the first m surface
- the non-m surface 13b is the first non-m surface.
- the second side surface 14, which is the side surface on the long side of the crystal piece 11, is a non-m surface 14 b that is in contact with the long side of the first main surface 12 a at an angle ⁇ 2 and m that is in contact with the long side of the second main surface 12 b at an angle ⁇ 1. It consists of surface 14a. That is, the m-plane 14a and the non-m-plane 14b are two consecutive planes with different inclination angles.
- the m surface 14a is the second m surface
- the non-m surface 14b is the second non-m surface.
- the angle ⁇ 2 at which the non-m-planes 13b and 14b are in contact with the corresponding main surfaces is about 93 degrees (that is, about 3 degrees from the normal direction of the main surface). 93 degrees ⁇ 2 degrees (that is, about 3 degrees ⁇ 2 degrees from the normal direction of the main surface).
- the non-m surfaces 13b and 14b are side surfaces that are in contact with the corresponding main surfaces substantially perpendicularly.
- the angle ⁇ 1 at which the m-planes 13a and 14a are in contact with the corresponding main surfaces is an obtuse angle larger than 90 degrees, specifically 144 degrees ⁇ 2 degrees in consideration of processing accuracy and the like. That is, the angles ⁇ 1 and ⁇ 2 have a relationship of ⁇ 1> ⁇ 2.
- the m surfaces 13a and 14a are side surfaces having a gentler inclination angle from the main surface than the non-m surfaces 13b and 14b, respectively.
- the arrangement of the m-plane 13 a and the non-m-plane 13 b of the first side surface 13 is the side surface in the Y′Z ′ plane of the crystal piece 11 (that is, the side surface on the short side of the crystal piece 11).
- the size of the m-plane 14b is different.
- the width Wa1 of the m surface 13a of the first side surface 13 and the m surface 14a of the second side surface 14 has a relationship of Wa1> Wa2.
- the width Wb1 of the non-m-plane 13b of the first side surface 13 and the width Wb2 of the non-m-plane 14b of the second side surface 14 satisfy the relationship of Wb1 ⁇ Wb2.
- the first side surface 13 through which the extraction electrode 16 routed over the front and back main surfaces of the crystal piece 11 passes has a gentler inclination angle from the main surface than the second side surface 14.
- the width ratio (area ratio) of large parts is increased. That is, there is a relationship of Wa1 / Wb1> Wa2 / Wb2. Therefore, in the first side surface 13 on which the extraction electrode 16 is formed, the width Wa1 of the m-surface 13a where the electrode formation is easy is increased, and the width Wb1 of the non-m-surface 13b where the electrode formation is difficult is decreased. can do. Therefore, it is easy to form the extraction electrode 16 that is routed over the front and back main surfaces of the crystal piece 11, and it is possible to prevent disconnection of the extraction electrode 16.
- the length L1 of the short side of the first main surface 12a and the length L2 of the short side of the second main surface 12b have a relationship of L1 ⁇ L2. Therefore, when the crystal piece 11 is viewed in the XZ ′ plane, the front and back of the crystal piece 11 can be easily determined. Therefore, the assembly workability and handling of the crystal unit 1 can be improved.
- the 2nd main surface 12b in which the 1st connection electrode 17a and the 2nd connection electrode 17b were provided is large, the 2nd main surface 12b is maintained, maintaining miniaturization of the crystal piece 11. It is possible to ensure a large distance between the first connection electrode 17a and the second connection electrode 17b arranged along the short side. Therefore, a short circuit between the first connection electrode 17a and the second connection electrode 17b can be easily prevented.
- the conductive holding members 36 a and 36 b provided between the crystal resonator element 10 and the base member 30 are easily wetted with the electrode material formed on the crystal piece 11, the crystal piece passes through the extraction electrode 16. 11 may spread on the side surface.
- the surface in contact with the long side of the second main surface 12b is the non-m surface 13b that is substantially vertical. It is possible to reduce the amount of the conductive adhesive for forming the members 36 a and 36 b spreading through the extraction electrode 16. Therefore, the vibration inhibition of the crystal resonator element 10 due to the wet spread of the conductive adhesive can be reduced.
- the side surface 13 and the second side surface 14 of the crystal piece 11 have a non-m surface that contacts the main surface at an angle ⁇ 2 (about 93 degrees ⁇ 2 degrees), the side surface has an inclination angle of 90 degrees.
- the coupling between the width-shear vibration mode and the thickness-shear vibration mode can be reduced. Therefore, in addition to the energy confinement effect, the frequency temperature characteristics can be improved.
- the shape of the crystal piece according to the present embodiment can be created, for example, by wet etching.
- a quartz substrate 41 having a first main surface 42a and a second main surface 42b facing each other is prepared.
- the first main surface 42a and the second main surface 42b are surfaces extending in the X-axis direction and the Z′-axis direction of the quartz crystal, respectively.
- a first mask 43a and a second mask 43b are provided on the first main surface 42a and the second main surface 42b on the front and back sides of the crystal substrate 41, respectively.
- the first mask 43a and the second mask 43b are metal masks made of, for example, a metal material.
- the opening of the first mask 43a is removed by etching to obtain a predetermined shape.
- a second mask 43b is provided on the second main surface 42b of the quartz substrate 41 by a similar method.
- the first main surface 42a and the second main surface 42b of the quartz substrate 41 correspond to the first main surface 12a and the second main surface 12b of the crystal piece 11 shown in FIG. 1, respectively.
- the first mask 43a and the second mask 43b are formed so as to overlap substantially when the XZ ′ plane is viewed in plan view, but m surfaces 13a and 14a and non-m surfaces 13b and 14b having different widths are formed. In order to form them, they are shifted from each other in the Z′-axis direction. In other words, the masks 43a and 43b are provided so that a part of the mask 43a on the first main surface 42a overlaps a part of the mask 43b on the second main surface 42b.
- the first mask 43a and the second mask 43b are provided so as to overlap each other by the first distance X1 in the Z′-axis direction, and the first mask 43a is in the Z′-axis positive direction with respect to the second mask 43b.
- the first mask 43b is provided by being shifted from the second mask 43a by the third distance X3 in the negative Z′-axis direction side.
- the lengths of the first distance X1, the second distance X2, and the third distance X3 depend on the processing time and processing mode of wet etching.
- the thickness dimension of the vibrating portion of the crystal piece 11 sandwiched between the first excitation electrode 15a and the second excitation electrode 15b is T
- X2 ⁇ X3, 0.4T ⁇ X2 ⁇ 0.75T, and 0.75T It is preferable to have a relationship of ⁇ X3 ⁇ 2T.
- the quartz crystal substrate 41 on which the first mask 43a and the second mask 43b are thus formed is wet-etched.
- the quartz substrate 41 is wet-etched from both sides simultaneously using an ammonium fluoride solution.
- the crystal piece 11 which has the 1st side surface 13 and the 2nd side surface 14 can be created.
- the m-plane 13a having a width larger than the m-plane 14a can be formed corresponding to the lengths of X2 and X3. Further, the first main surface 12a is formed corresponding to the length of X1 + X2, and the second main surface 12b having a shorter side length than the first main surface 12a is formed corresponding to the length of X1 + X3. be able to.
- the processing mode in which the masks 43a and 43b are simultaneously formed on both surfaces of the quartz substrate 41 and wet etching is simultaneously performed from both surfaces has been described.
- the present invention is not limited to this.
- the mask 43a may be formed and wet etched, and then the mask 43b may be formed on the other side of the quartz substrate 41 and wet etched. According to this, since the processing time of the wet etching of the first main surface 42a and the second main surface 42b of the crystal substrate can be made different, the crystal piece 11 according to the present embodiment can be formed more easily. .
- FIG. 7 is a perspective view as seen from the first main surface side of the crystal piece
- FIG. 8 is a perspective view of the crystal resonator element as seen from the second main surface side of the crystal piece opposite to FIG.
- FIG. 9 is a perspective view of the crystal resonator, and the lid member is omitted.
- symbol is attached
- the shape of the crystal piece 111 and the configuration of the base member 30 are the same as those of the first embodiment, and the configuration of the connection electrode and the extraction electrode formed on the crystal piece 111 is the first. It is different from the embodiment. That is, in this embodiment, the three-dimensional shape of the crystal piece itself is the same as that of the first embodiment, but the side surface around which the extraction electrode is routed is different from the side surface of the first embodiment, and accordingly, a connection electrode is provided.
- the main surface is a surface opposite to the main surface of the first embodiment.
- the main surface on which the connection electrode is not provided is referred to as the first main surface
- the main surface on which the connection electrode is provided is the first main surface. It will be referred to as 2 main surfaces.
- the first excitation electrode 115 a is formed on the first main surface 112 a of the crystal piece 111
- the second excitation electrode 115 b is formed on the second main surface 112 b of the crystal piece 111.
- the first connection electrode 117 a and the second connection electrode 117 b are formed on the second main surface 112 b of the crystal piece 111. More specifically, the first connection electrode 117a and the second connection electrode 117b are provided near one short side (X-axis positive direction side) of the second main surface 112b, and the short side of the second main surface 112b. Arranged along the direction.
- the extraction electrode 116 is electrically connected to the first excitation electrode 115a on the first main surface 112a, and is extracted from the first main surface 112a to the second main surface 112b through the second side surface 114. It is. By drawing the extraction electrode 116 over the front and back main surfaces of the crystal piece 111 in this way, the first excitation electrode 115a formed on the first main surface 112a and the first connection electrode 117a formed on the second main surface 112b, Can be electrically connected.
- the second connection electrode 117b is electrically connected to the second excitation electrode 115b formed on the second main surface 112b.
- the first connection electrode 117a and the second connection electrode 117b are electrically connected to the connection electrodes 33a and 33b of the base member 30 through the conductive holding members 36a and 36b.
- the second side surface 114 through which the extraction electrode 116 routed over the front and back main surfaces of the crystal piece 111 passes from the main surface rather than the first side surface 113.
- the ratio of the width (area ratio) of the portion where the inclination angle is gentle is large. That is, there is a relationship of Wa1 / Wb2> Wa2 / Wb2. Therefore, in the second side surface 114 on which the extraction electrode 116 is formed, the width Wa1 of the m-plane 114a where the electrode formation is easy is increased, and the width Wb1 of the non-m-plane 114b where the electrode formation is difficult is reduced. can do. Therefore, it is easy to form the extraction electrode 116 that is routed over the front and back main surfaces of the crystal piece 111, and it is possible to prevent disconnection of the extraction electrode 116.
- the surface in contact with the long side of the second main surface 112b is an m surface 114a that is a gently inclined surface, and the m surface Since the width of 114 a is large, the amount of the conductive adhesive constituting the conductive holding members 36 a and 36 b spreading through the extraction electrode 116 can be increased. Therefore, since the bonding area by the conductive adhesive can be increased, the holding strength by the conductive holding members 36a and 36b can be improved.
- the contents described in the first embodiment can be applied to other configurations and operational effects of the crystal resonator and the crystal resonator element.
- the method for manufacturing the crystal piece 111 is also as described above.
- FIG. 10 is a perspective view seen from the first main surface side of the crystal piece
- FIG. 11 is a perspective view of the crystal resonator element seen from the second main surface side of the crystal piece opposite to FIG. FIG.
- the shape of the crystal piece 211 is different from those of the first and second embodiments. That is, in this embodiment, the crystal piece 211 has a mesa shape.
- the AT-cut crystal piece 211 includes a first portion 218 including the centers of the first main surface 212a and the second main surface 212b, and a second portion adjacent to both ends of the first portion 218 in the X-axis direction.
- the thickness of the second portion 219 in the Y′-axis direction is thinner than the thickness of the first portion 218 in the Y′-axis direction.
- the first portion 218 can be called a thick central portion
- the second portion 219 can be called a thin peripheral portion.
- the first main surface 212a is composed of the first main surface 212a1 of the first portion 218 and the first main surface 212a2 of the second portion 219
- the second main surface 212b is the first portion.
- the second main surface 212b1 of 218 and the second main surface 212b of the second portion 219 are included.
- the contents of the m-plane and non-m-plane of the crystal crystal already described can be applied to the long side surfaces of the first main surface 212a and the second main surface 212b.
- the first side surface 213 on the long side of the crystal piece 211 is an m-plane 213a that contacts the long side of the first main surface 212a2 at an angle ⁇ 1, and a non-m surface that contacts the long side of the second main surface 212b2 at an angle ⁇ 2. 213b.
- the second side 214 on the long side of the crystal piece 211 includes a non-m surface 214b that contacts the long side of the first main surface 212a2 at an angle ⁇ 2, and an m surface that contacts the long side of the second main surface 212b at an angle ⁇ 1. 214a.
- a structure in which the dimension of the step in the normal direction between the main surface of the thick central portion and the thin peripheral portion is 10% or more of the thickness of the crystal piece is additionally processed to the crystal piece disclosed in the first or second embodiment.
- a resist film is provided on the surface of the thick central portion and the step between the thick central portion and the thin peripheral portion is processed by wet etching, the first main surface and the second main surface of the m-plane and non-m-plane The vicinity of the surface is etched together with the thin peripheral portion.
- first crystal plane having an angle with respect to the main surface different from that of the m surface in the vicinity of the first main surface and the second main surface of the m-plane is generated, and In the vicinity, another second crystal plane having an angle with respect to the main surface different from that of the non-m plane is generated.
- the other first crystal plane and the other second crystal plane are both included in the side surfaces.
- the first excitation electrode 215a is formed on the first main surface 212a1 of the crystal piece 211
- the second excitation electrode 215b is formed on the second main surface 212b1 of the crystal piece 211
- the first connection electrode 217a and the second connection electrode 217b are formed on the second main surface 212b2 of the crystal piece 211. More specifically, the first connection electrode 217a and the second connection electrode 217b are provided near one short side (X-axis positive direction side) of the second main surface 212b2, and the short side of the second main surface 212b2 Arranged along the direction.
- the extraction electrode 216 is electrically connected to the first excitation electrode 215a on the first main surface 212a, and passes through the first main surface 212a1 through the first main surface 212a2 and the second side surface 214 to form the second main surface. It has been drawn up to 212b2. By drawing the extraction electrode 216 over the front and back main surfaces of the crystal piece 211 in this way, the first excitation electrode 215a formed on the first main surface 212a1 and the first connection electrode 217a formed on the second main surface 112b2 Can be electrically connected.
- the second connection electrode 217b is electrically connected to the second excitation electrode 215b formed on the second main surface 212b1.
- the mesa-shaped first portion 218 may be formed by dry etching or wet etching, for example.
- dry etching or the like for example, the side surface of the first portion 218 can be formed to extend along the Y′-axis direction.
- wet etching the side surface of the first portion 218 may be formed to be inclined at a predetermined angle from the Y′-axis direction.
- a vibration energy confinement effect due to the mesa shape can also be achieved.
- the aspect composed of two continuous side surfaces has been described.
- the present invention is not limited to this, and may be an aspect composed of three or more side surfaces. That is, the side surface includes an m-plane and a non-m-plane, and may further have one or a plurality of planes between the m-plane and the non-m-plane.
- each embodiment described above is for facilitating understanding of the present invention, and is not intended to limit the present invention.
- the present invention can be changed / improved without departing from the spirit thereof, and the present invention includes equivalents thereof.
- those obtained by appropriately modifying the design of each embodiment by those skilled in the art are also included in the scope of the present invention as long as they include the features of the present invention.
- each element included in each embodiment and its arrangement, material, condition, shape, size, and the like are not limited to those illustrated, and can be changed as appropriate.
- each element included in each embodiment can be combined as much as technically possible, and combinations thereof are included in the scope of the present invention as long as they include the features of the present invention.
- Crystal oscillator 10 Crystal oscillator 11 Crystal piece 12a 1st main surface 12b 2nd main surface 13 1st side surface 14 2nd side surface 13a, 14a m surface 13b, 14b Non m surface 15a 1st excitation electrode 15b 2nd excitation electrode 16 Lead electrode 17a First connection electrode 17b Second connection electrode 20 Lid member 30 Base member 36a, 36b Conductive holding member
Landscapes
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)
- Oscillators With Electromechanical Resonators (AREA)
Abstract
水晶結晶のX軸方向を長辺及びZ´軸方向を短辺とする互いに対向する第1主面(12a)及び第2主面(12b)と、第1主面(12a)及び第2主面(12b)の長辺側に位置する第1側面(13)及び第2側面(14)とを含む、ATカット型の水晶片と、第1励振電極(15a)及び第2励振電極(15b)と、第1主面(12a)から第1側面(13)を通って第2主面(12b)に至るまで引き出された、第1励振電極(15a)に電気的に接続された引出電極(16)とを備え、X軸方向の長辺と直交する幅方向において、第1側面(13)の第1m面(13a)の幅Wa1は、第2側面(14)の第2m面(14a)の幅Wa2よりも大きい。
Description
本発明は、水晶振動素子、水晶振動子、及び水晶片の製造方法に関し、特に、ATカット型の水晶片を含む水晶振動素子に関する。
発振装置や帯域フィルタなどに用いられる基準信号の信号源に水晶振動子が広く用いられている。水晶振動子においては、ベース部材及び蓋部材からなる保持器内に水晶振動素子が収容されている。水晶振動素子の例としては、特許文献1及び2に記載されているように、厚みすべり振動を主振動とするATカット型の水晶振動素子がある。例えば、特許文献1に記載された水晶振動素子においては、ATカット水晶板からなる水晶素子片と、励振電極とを備え、水晶素子片の励振部の長辺方向の両側面が、それぞれ、水晶結晶のm面と非m面との2面で形成されている。
しかしながら、このような従来の構成においては、水晶素子片の側面における非m面が垂直よりも僅かに大きい角度をもって主面の長辺に接しているため、水晶素子片の主面からスパッタ又は蒸着などで励振電極とともに必要な電極を形成する場合、非m面に電極材料が設けられ難い場合があった。そのため、水晶素子片の側面を通って表裏の主面に引き出される引出電極が、非m面において断線する可能性があった。
本発明はこのような事情に鑑みてなされたものであり、電気的な接続不良の発生を抑制することができる水晶振動素子、水晶振動子、及び水晶片の製造方法を提供することを目的とする。
本発明の一側面に係る水晶振動素子は、水晶結晶のX軸方向を長辺及びZ´軸方向を短辺とする互いに対向する第1主面及び第2主面と、第1主面及び第2主面の長辺側に位置する第1側面及び第2側面とを含む、ATカット型の水晶片と、水晶片の第1主面に設けられた第1励振電極と、水晶片の第2主面に設けられた第2励振電極と、第1主面から第1側面を通って第2主面に至るまで引き出された、第1励振電極に電気的に接続された引出電極と、第2主面に設けられ、引出電極を介して第1励振電極に電気的に接続された第1接続電極と、第2主面に設けられ、第2励振電極に電気的に接続された第2接続電極とを備え、第1側面は、第1主面の長辺に角度θ1で接する水晶結晶の第1m面と、第2主面の長辺に角度θ2で接する水晶結晶の第1非m面とを有し、第2側面は、第1主面の長辺に角度θ2で接する水晶結晶の第2非m面と、第2主面の長辺に角度θ1で接する水晶結晶の第2m面とを有し、角度θ1及びθ2は鈍角であって角度θ1は角度θ2よりも大きい鈍角であり、X軸方向の長辺と直交する幅方向において、第1側面の第1m面の幅は、第2側面の第2m面の幅よりも大きい。
上記構成によれば、水晶片の表裏主面にわたって引き回される引出電極が通る第1側面の方が第2側面よりもm面の幅が大きい。m面は非m面よりも主面からの傾斜角度が緩やかであるため、水晶片の表裏主面にわたって引き回される引出電極の形成が容易となり、また、引出電極の断線防止を図ることができる。よって、電気的な接続不良の発生を抑制することができる。
本発明の他の一側面に係る水晶振動素子は、水晶結晶のX軸方向を長辺及びZ´軸方向を短辺とする互いに対向する第1主面及び第2主面と、第1主面及び第2主面の長辺側に位置する第1側面及び第2側面とを含む、ATカット型の水晶片と、水晶片の前記第1主面に設けられた第1励振電極と、水晶片の前記第2主面に設けられた第2励振電極と、第1主面から第2側面を通って第2主面に至るまで引き出された、第1励振電極に電気的に接続された引出電極と、第2主面に設けられ、引出電極を介して第1励振電極に電気的に接続された第1接続電極と、第2主面に設けられ、第2励振電極に電気的に接続された第2接続電極とを備え、第1側面は、第2主面の長辺に角度θ2で接する水晶結晶の第1非m面と、第1主面の長辺に角度θ1で接する水晶結晶の第1m面とを有し、第2側面は、第2主面の長辺に角度θ1で接する水晶結晶の第2m面と、第1主面の長辺に角度θ2で接する水晶結晶の第2非m面とを有し、角度θ1及びθ2は鈍角であって角度θ1は角度θ2よりも大きい鈍角であり、X軸方向の長辺と直交する幅方向において、第2側面の第2m面の幅は、第1側面の第1m面の幅よりも大きい。
上記構成によれば、水晶片の表裏主面にわたって引き回される引出電極が通る第2側面の方が第1側面よりもm面の幅が大きい。m面は非m面よりも主面からの傾斜角度が緩やかであるため、水晶片の表裏主面にわたって引き回される引出電極の形成が容易となり、また、引出電極の断線防止を図ることができる。よって、電気的な接続不良の発生を抑制することができる。
本発明の一側面に係る水晶片の製造方法は、互いに対向する第1主面及び第2主面であって、それぞれ、水晶結晶のX軸方向及びZ´軸方向に延在する第1主面及び第2主面を有する、ATカット型の水晶基板を用意する工程と、第1マスクを水晶基板の第1主面に設け、第2マスクを、第2マスクの一部が第1マスクの一部と重なるように、水晶基板の第2主面に設ける工程と、水晶基板をウェットエッチングして、第1主面及び第2主面を、それぞれ、X軸方向を長辺とし、Z´軸方向を短辺とする矩形状に形成し、第1主面及び第2主面の長辺側に位置する第1側面及び第2側面とを含む水晶片を形成する工程と、を含み、第1側面は、第1主面の長辺に角度θ1で接する水晶結晶の第1m面と、第2主面の長辺に角度θ2で接する水晶結晶の第1非m面とを有し、第2側面は、第1主面の長辺に角度θ2で接する水晶結晶の第2非m面と、第2主面の長辺に角度θ1で接する水晶結晶の第2m面とを有し、角度θ1は角度θ2よりも大きい鈍角であり、X軸方向の長辺と直交する幅方向において、第1側面の第1m面の幅は、第2側面の第2m面の幅よりも大きい。
上記構成によれば、例えば電気的な接続不良の発生を抑制することができる水晶片を製造することができる。
本発明によれば、電気的な接続不良の発生を抑制することができる。
以下に本発明の実施形態を説明する。以下の図面の記載において、同一又は類似の構成要素は同一又は類似の符号で表している。図面は例示であり、各部の寸法や形状は模式的なものであり、本願発明の技術的範囲を当該実施形態に限定して解するべきではない。
<第1実施形態>
図1~図4を参照しつつ、本発明の第1実施形態に係る水晶振動素子及び当該水晶振動素子を備える水晶振動子を説明する。ここで、図1は、水晶片の第1主面側から見た水晶振動素子の斜視図であり、図2は、図1とは表裏反対の水晶片の第2主面側から見た水晶振動素子の斜視図である。図3は、水晶振動子の断面図である。図4は、水晶振動子の斜視図であり、蓋部材は省略している。
図1~図4を参照しつつ、本発明の第1実施形態に係る水晶振動素子及び当該水晶振動素子を備える水晶振動子を説明する。ここで、図1は、水晶片の第1主面側から見た水晶振動素子の斜視図であり、図2は、図1とは表裏反対の水晶片の第2主面側から見た水晶振動素子の斜視図である。図3は、水晶振動子の断面図である。図4は、水晶振動子の斜視図であり、蓋部材は省略している。
図3に示すように、本実施形態に係る水晶振動子(Quartz Crystal Resonator Unit)1は、水晶振動素子(Quartz Crystal Resonator)10と、蓋部材20と、ベース部材30とを備える。蓋部材20及びベース部材30は、水晶振動素子10を収容するための保持器である。本実施形態においては、一例として、蓋部材20はキャップ状をなしており、ベース部材30は平板な板状をなしているが、蓋部材20及びベース部材30の形状はこれらに限定されるものではない。
図1及び図2に示すように、水晶振動素子10は、ATカット型の水晶片(Quartz Crystal Blank)11を有する。ATカット型の水晶片11は、人工水晶の結晶軸であるX軸、Y軸、Z軸のうち、Y軸及びZ軸をX軸の周りにY軸からZ軸の方向に35度15分±1分30秒回転させた軸をそれぞれY´軸及びZ´軸とした場合、X軸及びZ´軸によって特定される面と平行な面(以下、「XZ´面」と呼ぶ。他の軸によって特定される面についても同様である。)を主面として切り出されたものである。本実施形態では、ATカット水晶片である水晶片11は、X軸方向に平行な長辺と、Z´方向に平行な短辺と、Y´軸方向に平行な厚み方向の辺を有する。また、水晶片11は、XZ´面において矩形状に形成されている。
ATカット水晶片を用いた水晶振動素子は、広い温度範囲で極めて高い周波数安定性を有し、また、経時変化特性にも優れている上、低コストで製造することが可能である。また、ATカット水晶振動素子は、厚みすべり振動モード(Thickness Shear Mode)を主振動として用いられる。以下、水晶結晶のATカットの軸方向を基準として水晶振動子1の各構成を説明する。
水晶片11は、第1主面12a及び第2主面12bと、第1側面13及び第2側面14とを含む。第1主面12a及び第2主面12bは互いに対向している。また、第1主面12a及び第2主面12bは、それぞれ、X軸方向を長辺及びZ´軸方向を短辺とする。第1側面13及び第2側面14は、第1主面12a及び第2主面12bの長辺側に位置する側面である。本実施形態では、第1主面12a及び第2主面12bはそれぞれ平面であり、水晶片11のY´軸方向の厚みが一様に同じである平板型の水晶片を示すが、本発明はこれに限るものではなく、後述するように水晶片のY´軸方向の厚みが異なるメサ型の水晶片を適用することができる。なお、水晶片11の形状の詳細は後述する。
水晶振動素子10は、第1励振電極15a及び第2励振電極15bを含む。第1励振電極15aは、水晶片11の第1主面12aに形成され、また、第2励振電極15bは、水晶片11の第2主面12bに形成されている。第1励振電極15a及び第2励振電極15bは、それぞれ、対応する主面の中央を含む領域に設けられ、一対の電極としてXZ´面において略全体が重なり合うように配置されている。また、第1励振電極15a及び第2励振電極15bはXZ´面において長辺及び短辺を有する矩形状に形成されている。図1及び図2に示す例では、第1励振電極15a及び第2励振電極15bの長辺が水晶片11の長辺(すなわちX軸方向)と向きが一致するとともに、第1励振電極15a及び第2励振電極15bの短辺が水晶片11の短辺(すなわちZ´軸方向)と向きが一致する。
水晶振動素子10は、第1励振電極15aに電気的に接続された引出電極16と、第1励振電極15aに引出電極16を介して電気的に接続された第1接続電極17aと、第2励振電極15bに電気的に接続された第2接続電極17bとを有する。第1接続電極17a及び第2接続電極17bは、水晶片11の第2主面12bに形成され、より具体的には、第2主面12bの一方の短辺側(X軸正方向側)付近に設けられ、第2主面12bの短辺方向に沿って配列されている。また、引出電極16は、第1主面12aにおいて第1励振電極15aと電気的に接続されており、第1主面12aから第1側面13を通って第2主面12bに至るまでに引き出されている。引出電極16をこのように水晶片11の表裏主面にわたって引き回すことによって、第1主面12aに形成された第1励振電極15aと、第2主面12bに形成された第1接続電極17aとを電気的に接続することができる。第1接続電極17a及び第2接続電極17bは、導電性保持部材36a,36bを介してベース部材30の電極に電気的に接続される。導電性保持部材36a,36bは、導電性接着剤が熱硬化して形成されたものであってもよい。
第1励振電極15a及び第2励振電極15b、引出電極16、並びに、接続電極17a,17bの電極材料は特に限定されるものではないが、例えば、下地としてクロム(Cr)層を有し、クロム層の表面にさらに金(Au)層を有していてもよい。
図3に示すように、蓋部材20は、ベース部材30の第1主面32aに対向して開口した凹部24を有する。凹部24には、開口の全周に亘って、凹部24の底面から立ち上がるように形成された側壁部22が設けられている。また、蓋部材20は、凹部24の開口縁においてベース部材30の第1主面32aに対向する対向面26を有している。蓋部材20は、側壁部22からさらに開口外方向へ突出するフランジ部28を有していてもよく、この場合、フランジ部28が対向面26を有している。これによれば、フランジ部28とベース部材30を接合することによって、両者の接合面積を大きくできるため、両者の接合強度の向上を図ることができる。
なお、本実施形態において蓋部材20の形状は特に限定されるものではないが、例えば、ベース部材30と保持器を構成して水晶振動素子10を内部に収容するために、ベース部材30の平面形状と略同一であってもよい。また、図2に示す例では蓋部材20はフランジ部を有するが、これに限定されるものではなく、フランジ部28を有することなく、凹部24の底面から略垂直に立ち上げ形成された側壁部22の先端がベース部材30と接合されてもよい。
蓋部材20の材質は特に限定されるものではないが、例えば金属などの導電材料で構成されていてもよい。これによれば、蓋部材20を接地電位に電気的に接続させることによりシールド機能を付加することができる。あるいは、蓋部材20は、絶縁材料又は導電材料・絶縁材料の複合構造であってもよい。
ベース部材30は水晶振動素子10を励振可能に支持するものである。具体的には、水晶振動素子10は導電性保持部材36a,36bを介してベース部材30の第1主面32aに励振可能に支持されている。
図4に示すように、ベース部材30は、Z´軸方向に平行な長手方向と、X軸方向に平行な短手方向と、Y´軸方向に平行な厚さ方向を有している。ベース部材30は、XZ´面において矩形状をなしている。すなわち、ベース部材30の第1主面32a及び第2主面32bは、それぞれ、X軸方向を長辺及びZ´軸方向を短辺とする。
ベース部材30は、例えば絶縁性セラミックで形成されてもよく、例えば複数の絶縁性セラミックシートを積層して焼成することによって形成されてもよい。あるいは、ベース部材30は、ガラス材料(例えばケイ酸塩ガラス、又はケイ酸塩以外を主成分とする材料であって、昇温によりガラス転移現象を有する材料)、水晶材料(例えばATカット水晶)又はガラスエポキシ樹脂などで形成してもよい。ベース部材30は耐熱性材料から構成されることが好ましい。ベース部材30は、単層であっても複数層であってもよく、複数層である場合、第1主面32aの最表層に形成された絶縁層を含んでもよい。また、ベース部材30は、平板な板状をなしている。
図3に示すように、蓋部材20及びベース部材30の両者が接合材70を介して接合されることによって、水晶振動素子10が、蓋部材20の凹部24とベース部材30とによって囲まれた内部空間(キャビティ)23に密封封止される。この場合、内部空間の圧力は大気圧力よりも低圧な真空状態であることが好ましく、これにより励振電極15a,15bの酸化による経時変化などが低減できるため好ましい。
接合材70は、蓋部材20及びベース部材30の各全周に亘って設けられており、蓋部材20の側壁部22の対向面26と、ベース部材30の第1主面32aとの間に介在している。接合材70は絶縁性材料を有する。絶縁性材料としては、低融点ガラス(例えば鉛ホウ酸系や錫リン酸系等)などのガラス接着材料であってもよいし、あるいは、樹脂接着剤を用いてもよい。これらの絶縁性材料によれば、金属接合に比べて低コストであり、また加熱温度を抑えることができ、製造プロセスの簡易化を図ることができる。
本実施形態に係る水晶振動素子10は、長手方向の一方端(導電性保持部材36a,36bが配置される側の端部)が固定端であり、その他方端が自由端となっている。また、水晶振動素子10、蓋部材20及びベース部材30は、XZ´面において、それぞれ矩形状をなしており、互いに長手方向及び短手方向が一致する向きに配置されている。
なお、水晶振動素子10の固定端の位置は特に限定されるものではなく、変形例として、水晶振動素子10は、長手方向の両端においてベース部材30に固定されていてもよい。この場合、水晶振動素子10を長手方向の両端において固定する態様で、水晶振動素子10及びベース部材30の各電極を形成すればよい。
図4に示すように、ベース部材30は、第1主面32aに形成された接続電極33a,33bと、第1主面32a上に形成され、かつ、接続電極33a,33bと電気的に接続された引出電極34a,34bと、第2主面32bにおいて実装基板(図示しない)と電気的に接続するための外部電極35a,35b,35c,35dとを含む。
ベース部材30の接続電極33a,33bは、第1主面32aの一方の短辺側(X軸正方向側)付近に設けられ、第1主面32aの短辺方向に沿って配列されている。接続電極33aには、導電性保持部材36aを介して、水晶振動素子10の第1接続電極17aが接続され、他方、接続電極33bには、導電性保持部材36bを介して、水晶振動素子10の第2接続電極17bが接続される。
複数の外部電極35a,35b,35c,35dはそれぞれベース部材30のコーナー部に形成されている。具体的には、外部電極35aはX軸正方向かつZ´軸負方向側のコーナー部に形成され、外部電極35bはX軸負方向かつZ´軸正方向側のコーナー部に形成され、外部電極35cはX軸負方向側及びZ´軸負方向側のコーナー部に形成され、外部電極35dはX軸正方向かつZ´軸正方向側のコーナー部に形成されている。
複数の外部電極35a~dのうち、外部電極35aは、引出電極34aを介して接続電極33aに電気的に接続され、外部電極35bは、引出電極34bを介して接続電極33bに電気的に接続されている。すなわち、外部電極35a,35bは第1励振電極15a及び第2励振電極15bと電気的に接続された入出力端子である。図4に示すように、これらの外部電極35a,35bは、ベース部材30の第1主面32aにおける互いに対向するコーナー部に配置されている。
また、残りの外部電極35c,35dは、ベース部材30の第1主面32aにおける互いに対向するコーナー部に配置されている。なお、これらの外部電極は水晶振動素子10の第1励振電極15a及び第2励振電極15bとは電気的に接続されないダミー電極である。このように、ベース部材30の平面視のいずれの向きにおいても外部電極が存在するように、ベース部材30の全てのコーナー部に外部電極を設けるので、外部電極を形成するための導電材料の付与、及び、水晶振動子1の実装基板への実装を容易に行うことができる。
ダミー電極は、水晶振動子1が実装される実装基板(図示しない)に設けられた端子であって、実装基板に実装された他のいずれの電子素子とも接続されない端子に電気的に接続されてもよい。また、蓋部材20が導電性材料からなる場合、蓋部材20にシールド機能を付加することができる。ここで、ダミー電極としての外部電極35c,35dは、接地電位が供給される接地用電極であってもよい。この場合、導電性材料である蓋部材20に接地用電極である外部電極35c,35dに電気的に接続することによってシールド機能の向上を図ることができる。
図4に示す例では、ベース部材30のコーナー部は、その一部が円筒曲面状(キャスタレーション形状とも呼ばれる。)に切断して形成された切り欠き側面を有しており、外部電極35a~35dは、このような切り欠き側面及び第2主面32bにかけて連続的に形成されている。なお、ベース部材30のコーナー部の形状はこれに限定されるものではなく、切り欠きの形状は平面状であってもよいし、切り欠きがなく、平面視して、四隅が直角な矩形形状であってもよい。
なお、ベース部材30の接続電極33a,33b、引出電極34a,34b及び外部電極35a~35dの各構成は上記の例に限定されるものではなく、様々に変形して適用することができる。例えば、接続電極33a,33bは、長辺方向の両端に形成されるなど、ベース部材30の第1主面32a上において互いに異なる端部に配置されてもよい。このような構成においては、水晶振動素子10が、長手方向の一方端及び他方端の両方においてベース部材30に支持されることになる。また、外部電極の個数は4つに限るものではなく、例えば対角上に配置された入出力端子としての2つのみであってもよい。また、外部電極はコーナー部に配置されたものに限らず、コーナー部を除くベース部材30のいずれかの側面に形成されてもよい。この場合、既に説明したとおり、側面の一部を円筒曲面状に切断した切り欠き側面を形成し、コーナー部を除く当該側面に外部電極を形成してもよい。さらに、ダミー電極である他の外部電極35c,35dは形成しなくてもよい。また、ベース部材30に第1主面32aから第2主面32bへ貫通するスルーホールを形成し、このスルーホールによって第1主面32aに形成した接続電極から第2主面32bへ電気的導通を図ってもよい。
本実施形態に係る水晶振動子1においては、ベース部材30の外部電極35a,35bを介して、水晶振動素子10における一対の第1励振電極15a及び第2励振電極15bの間に交番電界を印加する。これにより、厚みすべり振動モードによって水晶片11が振動し、該振動に伴う共振特性が得られる。
次に、図1及び図2に戻り、本実施形態に係る水晶片11の形状について詳述する。
水晶片11の長辺側の第1側面13は、第1主面12aの長辺に角度θ1で接するm面13aと、第2主面12bの長辺に角度θ2で接する非m面13bとからなる。すなわち、m面13a及び非m面13bは傾斜角度が異なる連続する2面である。なお、m面とは水晶結晶が有する自然面の1つであり、非m面とはm面以外の水晶結晶の面を指す。m面13aが第1m面であり、非m面13bが第1非m面である。
水晶片11の長辺側の側面である第2側面14は、第1主面12aの長辺に角度θ2で接する非m面14bと、第2主面12bの長辺に角度θ1で接するm面14aとからなる。すなわち、m面14a及び非m面14bは傾斜角度が異なる連続する2面である。m面14aが第2m面であり、非m面14bが第2非m面である。
非m面13b,14bがそれぞれ対応する主面と接する角度θ2は、約93度(すなわち主面の法線方向から約3度)であり、より具体的には加工精度等を考慮して約93度±2度(すなわち主面の法線方向から約3度±2度)である。このように、非m面13b,14bは、それぞれ対応する主面と略垂直に接する側面となっている。
また、m面13a,14aがそれぞれ対応する主面と接する角度θ1は、90度よりも大きい鈍角であり、具体的には、加工精度等を考慮して144度±2度である。すなわち、角度θ1及びθ2は、θ1>θ2の関係を有している。このように、m面13a,14aは、それぞれ対応する主面とは、非m面13b,14bよりも主面からの傾斜角度が緩やかな側面となっている。
図1及び図2に示すように、第1側面13のm面13a及び非m面13bの配置は、水晶片11のY´Z´面における側面(すなわち、水晶片11の短辺側の側面)の中心点を基準として、第2側面14のm面14a及び非m面14bの配置とは点対称となっているが、m面13aとm面14aのサイズ(又は非m面13bと非m面14bのサイズ)は異なっている。具体的には、第1側面13及び第2側面14におけるX軸方向の長辺と直交する幅方向において、第1側面13のm面13aの幅Wa1と、第2側面14のm面14aの幅Wa2は、Wa1>Wa2の関係を有している。そして、このようなm面のサイズ関係に従って、第1側面13の非m面13bの幅Wb1と、第2側面14の非m面14bの幅Wb2は、Wb1<Wb2の関係を満たしている。
このように、本実施形態においては、水晶片11の表裏主面にわたって引き回される引出電極16が通る第1側面13の方が、第2側面14よりも、主面からの傾斜角度が緩やかな部分の幅の比率(面積の比率)が大きくなっている。すなわち、Wa1/Wb1>Wa2/Wb2の関係を有している。このため、引出電極16が形成される第1側面13のうち、電極形成が容易であるm面13aの幅Wa1を大きくし、かつ、電極形成が困難である非m面13bの幅Wb1を小さくすることができる。したがって、水晶片11の表裏主面にわたって引き回される引出電極16の形成が容易となり、また、引出電極16の断線防止を図ることができる。
また、本実施形態においては、第1主面12aの短辺の長さL1と、第2主面12bの短辺の長さL2は、L1<L2の関係を有している。したがって、水晶片11をXZ´面で見たときに、水晶片11の表裏を容易に判定することができる。よって、水晶振動子1の組み立て作業性及び取扱いの向上を図ることができる。
また、第1接続電極17a及び第2接続電極17bが設けられた第2主面12bの短辺の長さL2が大きいため、水晶片11の小型化を維持しつつも、第2主面12bの短辺に沿って配置した第1接続電極17aと第2接続電極17bの間の距離を大きく確保することができる。したがって、第1接続電極17aと第2接続電極17bとの間の短絡を容易に防止することができる。
また、水晶振動素子10とベース部材30との間に設けられた導電性保持部材36a,36bは、水晶片11に形成された電極材料に対して濡れ易いため、引出電極16を通って水晶片11の側面に濡れ広がる場合がある。この点、本実施形態においては、引出電極16が形成された第1側面13において、第2主面12bの長辺に接する面は、略垂直である非m面13bであるため、導電性保持部材36a,36bを形成するための導電性接着剤が、引出電極16を伝って濡れ広がる量を少なくすることができる。したがって、導電性接着剤の濡れ広がりに起因する水晶振動素子10の振動阻害を低減させることができる。
また、水晶片11の第1側面13及び第2側面14が、角度θ2(約93度±2度)をもって主面と接する非m面を有するので、側面の傾斜角度が90度である場合と比べて、幅すべり振動モードと厚みすべり振動モードとの結合を小さくすることができる。したがって、エネルギー閉じ込め効果に加えて、周波数温度特性の改善を併せて奏することができる。
図5及び図6は本実施形態に係る水晶片の製造方法を示したものである。本実施形態に係る水晶片の形状は、例えばウェットエッチングによって作成することができる。
まず、図5に示すように、互いに対向する第1主面42a及び第2主面42bを有する水晶基板41を用意する。ここで、第1主面42a及び第2主面42bは、それぞれ、水晶結晶のX軸方向及びZ´軸方向に延在する面である。次に、このような水晶基板41の表裏の第1主面42a及び第2主面42b上に、それぞれ第1マスク43a及び第2マスク43bを設ける。第1マスク43aおよび第2マスク43bは例えば金属材料からなるメタルマスクである。
マスク43a,43bを設ける工程では、例えば、水晶基板41の第1主面42a全面に金属膜をスパッタ工法で形成したのち、第1マスク43aの開口部をエッチングによって除去して所定の形状を得る。同様の手法により、水晶基板41の第2主面42b上に第2マスク43bを設ける。なお、水晶基板41の第1主面42a及び第2主面42bは、図1に示す水晶片11の第1主面12a及び第2主面12bにそれぞれ対応している。
第1マスク43a及び第2マスク43bは、XZ´面を平面視して略全体が重なり合うように形成されるが、互いに異なる幅を有するm面13a,14a、及び、非m面13b,14bをそれぞれ形成するために、Z´軸方向に互いにずらして配置される。言い換えれば、第1主面42a上のマスク43aの一部が、第2主面42b上のマスク43bの一部と重なるように、マスク43a,43bを設ける。より具体的には、例えば、第1マスク43a及び第2マスク43bはZ´軸方向において第1距離X1だけ重なり合って設けられ、第1マスク43aは第2マスク43bに対してZ´軸正方向側に第2距離X2だけずらして設けられ、第1マスク43bは第2マスク43aに対してZ´軸負方向側に第3距離X3だけずらして設けられる。ここで、第1距離X1、第2距離X2及び第3距離X3の長さは、ウェットエッチングの処理時間や処理態様などに依存する。例えば第1励振電極15aと第2励振電極15bとで挟まれた水晶片11の振動部の厚み寸法をTとした場合、X2<X3、0.4T<X2≦0.75T、かつ0.75T<X3≦2Tの関係を有することが好ましい。
次に、このように第1マスク43a及び第2マスク43bを形成した水晶基板41をウェットエッチングする。例えば水晶基板41を両面から同時にフッ化アンモニウム溶液などを用いてウェットエッチングする。これにより、図6に示すように、第1側面13及び第2側面14を有する水晶片11を作成することができる。
こうして、X2及びX3の長さに対応して、m面14aよりも幅が大きいm面13aを形成することができる。また、X1+X2の長さに対応して第1主面12aを形成し、X1+X3の長さに対応して、第1主面12aよりも短辺の長さが大きい第2主面12bを形成することができる。
なお、上記では、水晶基板41の両面にマスク43a,43bを同時に形成し、両面から同時にウェットエッチングする処理態様を説明したが、これに限定されるものではなく、水晶基板41の一方の片面にマスク43aを形成してウェットエッチングし、次に、水晶基板41の他方の片面にマスク43bを形成してウェットエッチングしてもよい。これによれば、水晶基板の第1主面42aと第2主面42bのウェットエッチングの処理時間を異ならせることができるので、本実施形態に係る水晶片11をより容易に形成することができる。
<第2実施形態>
次に、図7~図9を参照しつつ、本発明の第2実施形態に係る水晶振動素子及び当該水晶振動素子を備える水晶振動子を説明する。ここで、図7は、水晶片の第1主面側から見た斜視図であり、図8は、図7とは表裏反対の水晶片の第2主面側から見た水晶振動素子の斜視図である。また、図9は、水晶振動子の斜視図であり、蓋部材は省略している。なお、第1実施形態と同一の構成について同一の符号を付している。
次に、図7~図9を参照しつつ、本発明の第2実施形態に係る水晶振動素子及び当該水晶振動素子を備える水晶振動子を説明する。ここで、図7は、水晶片の第1主面側から見た斜視図であり、図8は、図7とは表裏反対の水晶片の第2主面側から見た水晶振動素子の斜視図である。また、図9は、水晶振動子の斜視図であり、蓋部材は省略している。なお、第1実施形態と同一の構成について同一の符号を付している。
本実施形態に係る水晶振動素子110においては、水晶片111の形状及びベース部材30の構成は第1実施形態と同一であり、水晶片111に形成される接続電極及び引出電極の構成が第1実施形態と異なっている。すなわち、本実施形態では、水晶片の立体形状自体は第1実施形態と同一であるが、引出電極を引き回す側面が第1実施形態の側面とは異なっており、これに伴い、接続電極を設ける主面が第1実施形態の主面とは反対の面となっている。以下、第1実施形態と異なる点について説明する。なお、本実施形態では、説明の便宜上、第1実施形態と同様に、接続電極が設けられていない側の主面を第1主面と呼び、接続電極が設けられた側の主面を第2主面と呼ぶこととする。
図7及び図8に示すように、本実施形態においては、水晶片111の第1主面112aに第1励振電極115aが形成され、水晶片111の第2主面112bに第2励振電極115bが形成され、第1接続電極117a及び第2接続電極117bは、水晶片111の第2主面112bに形成されている。より具体的には、第1接続電極117a及び第2接続電極117bは、第2主面112bの一方の短辺側(X軸正方向側)付近に設けられ、第2主面112bの短辺方向に沿って配列されている。また、引出電極116は、第1主面112aにおいて第1励振電極115aと電気的に接続されており、第1主面112aから第2側面114を通って第2主面112bに至るまでに引き出されている。引出電極116をこのように水晶片111の表裏主面にわたって引き回すことによって、第1主面112aに形成された第1励振電極115aと、第2主面112bに形成された第1接続電極117aとを電気的に接続することができる。また、第2接続電極117bは、第2主面112bに形成された第2励振電極115bに電気的に接続されている。第1接続電極117a及び第2接続電極117bは、導電性保持部材36a,36bを介してベース部材30の接続電極33a,33bに電気的に接続される。
本実施形態においても、第1実施形態と同様に、水晶片111の表裏主面にわたって引き回される引出電極116が通る第2側面114の方が、第1側面113よりも、主面からの傾斜角度が緩やかな部分の幅の比率(面積の比率)が大きくなっている。すなわち、Wa1/Wb2>Wa2/Wb2の関係を有している。このため、引出電極116が形成される第2側面114のうち、電極形成が容易であるm面114aの幅Wa1を大きくし、かつ、電極形成が困難である非m面114bの幅Wb1を小さくすることができる。したがって、水晶片111の表裏主面にわたって引き回される引出電極116の形成が容易となり、また、引出電極116の断線防止を図ることができる。
また、本実施形態においては、引出電極116が形成された第2側面114において、第2主面112bの長辺に接する面は、緩やかな傾斜面であるm面114aであり、また、m面114aの幅の大きいため、導電性保持部材36a,36bを構成する導電性接着剤が、引出電極116を伝って濡れ広がる量を多くすることができる。したがって、導電性接着剤による接着面積を大きくすることができるため、導電性保持部材36a,36bによる保持強度を向上させることができる。
なお、水晶振動子及び水晶振動素子のその他の構成及び作用効果については、第1実施形態で説明した内容を適用することができる。また、水晶片111の製造方法についても既に説明したとおりである。
<第3実施形態>
次に、図10及び図11を参照しつつ、本発明の第3実施形態に係る水晶振動素子を説明する。ここで、図10は、水晶片の第1主面側から見た斜視図であり、図11は、図10とは表裏反対の水晶片の第2主面側から見た水晶振動素子の斜視図である。
次に、図10及び図11を参照しつつ、本発明の第3実施形態に係る水晶振動素子を説明する。ここで、図10は、水晶片の第1主面側から見た斜視図であり、図11は、図10とは表裏反対の水晶片の第2主面側から見た水晶振動素子の斜視図である。
本実施形態に係る水晶振動素子210においては、水晶片211の形状が第1実施形態及び第2実施形態と異なっている。すなわち、本実施形態では、水晶片211はメサ型形状を有している。具体的には、ATカット型の水晶片211が、第1主面212a及び第2主面212bの中央を含む第1部分218と、第1部分218のX軸方向の両端に隣接する第2部分219とを含み、第2部分219におけるY´軸方向の厚さが第1部分218におけるY´軸方向の厚さよりも薄くなっている。この場合、第1部分218を厚肉中央部、第2部分219を薄肉周辺部と呼ぶことができる。また、本実施形態では、第1主面212aは、第1部分218の第1主面212a1と、第2部分219の第1主面212a2とからなり、第2主面212bは、第1部分218の第2主面212b1と、第2部分219の第2主面212bとからなる。そして、第1主面212a及び第2主面212bの長辺側の各側面に、既に説明した水晶結晶のm面及び非m面の内容を適用することができる。すなわち、水晶片211の長辺側の第1側面213は、第1主面212a2の長辺に角度θ1で接するm面213aと、第2主面212b2の長辺に角度θ2で接する非m面213bとからなる。また、水晶片211の長辺側の第2側面214は、第1主面212a2の長辺に角度θ2で接する非m面214bと、第2主面212bの長辺に角度θ1で接するm面214aとからなる。なお、厚肉中央部と薄肉周辺部の主面の法線方向の段差の寸法が水晶片の厚さの10%以上となる構造を、実施形態1または2で開示した水晶片に追加工して、厚肉中央部の表面にレジスト膜を設けて、ウェットエッチングによって厚肉中央部と薄肉周辺部の間の段差を加工する場合、m面及び非m面の第1主面及び第2主面の近傍が、薄肉周辺部とともにエッチング加工される。これにより、m面の第1主面及び第2主面の近傍において主面に対する角度がm面と異なる別の第1結晶面が生じ、非m面の第1主面及び第2主面の近傍において主面に対する角度が非m面と異なる別の第2結晶面が生じる。本発明において、別の第1結晶面及び別の第2結晶面はともに側面に含まれるものとする。
また、本実施形態においては、水晶片211の第1主面212a1に第1励振電極215aが形成され、水晶片211の第2主面212b1に第2励振電極215bが形成され、第1接続電極217a及び第2接続電極217bは、水晶片211の第2主面212b2に形成されている。より具体的には、第1接続電極217a及び第2接続電極217bは、第2主面212b2の一方の短辺側(X軸正方向側)付近に設けられ、第2主面212b2の短辺方向に沿って配列されている。また、引出電極216は、第1主面212aにおいて第1励振電極215aと電気的に接続されており、第1主面212a1から第1主面212a2及び第2側面214を通って第2主面212b2に至るまでに引き出されている。引出電極216をこのように水晶片211の表裏主面にわたって引き回すことによって、第1主面212a1に形成された第1励振電極215aと、第2主面112b2に形成された第1接続電極217aとを電気的に接続することができる。また、第2接続電極217bは、第2主面212b1に形成された第2励振電極215bに電気的に接続されている。
なお、メサ型形状の第1部分218は、例えばドライエッチングで形成してもよいし、あるいはウェットエッチングで形成してもよい。ドライエッチング等で形成することによって例えば第1部分218の側面をY´軸方向に沿って延在するように形成することができる。あるいは、ウェットエッチングの場合、第1部分218の側面はY´軸方向から所定の角度をもって傾斜して形成されていてもよい。
本実施形態によれば、既に説明した作用効果に加え、メサ形状による振動エネルギー閉じ込め効果も奏することができる。
なお、以上の各実施形態においては、側面が連続する2面からなる態様を説明したが、本発明はこれに限定されるものではなく、側面が3面以上からなる態様であってもよい。すなわち、側面がm面及び非m面を含み、さらに、m面と非m面との間に1つ又は複数の面を有していてもよい。
なお、以上説明した各実施形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。本発明は、その趣旨を逸脱することなく、変更/改良され得るととともに、本発明にはその等価物も含まれる。即ち、各実施形態に当業者が適宜設計変更を加えたものも、本発明の特徴を備えている限り、本発明の範囲に包含される。例えば、各実施形態が備える各要素及びその配置、材料、条件、形状、サイズなどは、例示したものに限定されるわけではなく適宜変更することができる。また、各実施形態が備える各要素は、技術的に可能な限りにおいて組み合わせることができ、これらを組み合わせたものも本発明の特徴を含む限り本発明の範囲に包含される。
1 水晶振動子
10 水晶振動素子
11 水晶片
12a 第1主面
12b 第2主面
13 第1側面
14 第2側面
13a,14a m面
13b,14b 非m面
15a 第1励振電極
15b 第2励振電極
16 引出電極
17a 第1接続電極
17b 第2接続電極
20 蓋部材
30 ベース部材
36a,36b 導電性保持部材
10 水晶振動素子
11 水晶片
12a 第1主面
12b 第2主面
13 第1側面
14 第2側面
13a,14a m面
13b,14b 非m面
15a 第1励振電極
15b 第2励振電極
16 引出電極
17a 第1接続電極
17b 第2接続電極
20 蓋部材
30 ベース部材
36a,36b 導電性保持部材
Claims (10)
- 水晶結晶のX軸方向を長辺及びZ´軸方向を短辺とする互いに対向する第1主面及び第2主面と、前記第1主面及び第2主面の長辺側に位置する第1側面及び第2側面とを含む、ATカット型の水晶片と、
前記水晶片の前記第1主面に設けられた第1励振電極と、
前記水晶片の前記第2主面に設けられた第2励振電極と、
前記第1主面から前記第1側面を通って前記第2主面に至るまで引き出された、前記第1励振電極に電気的に接続された引出電極と、
前記第2主面に設けられ、前記引出電極を介して前記第1励振電極に電気的に接続された第1接続電極と、
前記第2主面に設けられ、前記第2励振電極に電気的に接続された第2接続電極と
を備え、
前記第1側面は、前記第1主面の長辺に角度θ1で接する水晶結晶の第1m面と、前記第2主面の長辺に角度θ2で接する水晶結晶の第1非m面とを有し、
前記第2側面は、前記第1主面の長辺に角度θ2で接する水晶結晶の第2非m面と、前記第2主面の長辺に角度θ1で接する水晶結晶の第2m面とを有し、
前記角度θ1及びθ2は鈍角であって前記角度θ1は前記角度θ2よりも大きい鈍角であり、
前記X軸方向の長辺と直交する幅方向において、前記第1側面の前記第1m面の幅は、前記第2側面の前記第2m面の幅よりも大きい、水晶振動素子。 - 前記第2主面の短辺は前記第1主面の短辺よりも長い、請求項1に記載の水晶振動素子。
- 水晶結晶のX軸方向を長辺及びZ´軸方向を短辺とする互いに対向する第1主面及び第2主面と、前記第1主面及び第2主面の長辺側に位置する第1側面及び第2側面とを含む、ATカット型の水晶片と、
前記水晶片の前記第1主面に設けられた第1励振電極と、
前記水晶片の前記第2主面に設けられた第2励振電極と、
前記第1主面から前記第2側面を通って前記第2主面に至るまで引き出された、前記第1励振電極に電気的に接続された引出電極と、
前記第2主面に設けられ、前記引出電極を介して前記第1励振電極に電気的に接続された第1接続電極と、
前記第2主面に設けられ、前記第2励振電極に電気的に接続された第2接続電極と
を備え、
前記第1側面は、前記第2主面の長辺に角度θ2で接する水晶結晶の第1非m面と、前記第1主面の長辺に角度θ1で接する水晶結晶の第1m面とを有し、
前記第2側面は、前記第2主面の長辺に角度θ1で接する水晶結晶の第2m面と、前記第1主面の長辺に角度θ2で接する水晶結晶の第2非m面とを有し、
前記角度θ1及びθ2は鈍角であって前記角度θ1は前記角度θ2よりも大きい鈍角であり、
前記X軸方向の長辺と直交する幅方向において、前記第2側面の前記第2m面の幅は、前記第1側面の前記第1m面の幅よりも大きい、水晶振動素子。 - 前記第1主面の短辺は前記第2主面の短辺よりも長い、請求項2に記載の水晶振動素子。
- 前記第1主面及び前記第2主面はそれぞれ平面である、請求項1から3のいずれか一項に記載の水晶振動素子。
- 前記水晶片は、前記第1主面及び前記第2主面の中央を含む第1部分と、前記X軸方向における前記第1部分の両端に隣接する第2部分とを含み、前記第2部分の厚さは、前記第1部分の厚さよりも薄い、請求項1から3のいずれか一項に記載の水晶振動素子。
- 請求項1から請求項6のいずれか一項に記載の水晶振動素子と、
導電性保持部材を介して前記水晶振動素子が励振可能に保持するベース部材と、
前記ベース部材に接合材を介して接合され、前記水晶振動子を前記ベース部材上で内部空間に収容する蓋部材と
を備え、
前記導電性保持部材は、前記水晶振動素子における前記第1接続電極及び第2接続電極が設けられた主面と前記ベース部材との間に設けられた、水晶振動子。 - 互いに対向する第1主面及び第2主面を有する、ATカット型の水晶基板を用意する工程と、
第1マスクを前記水晶基板の前記第1主面に設け、第2マスクを、前記第1主面を平面視して当該第2マスクの一部が前記第1マスクの一部と重なるように、前記水晶基板の前記第2主面に設ける工程と、
前記水晶基板をウェットエッチングして、前記第1主面及び前記第2主面を、それぞれ、X軸方向を長辺とし、Z´軸方向を短辺とする矩形状に形成し、前記第1主面及び第2主面の長辺側に位置する第1側面及び第2側面とを含む水晶片を形成する工程と、
を含み、
前記第1側面は、前記第1主面の長辺に角度θ1で接する水晶結晶の第1m面と、前記第2主面の長辺に角度θ2で接する水晶結晶の第1非m面とを有し、
前記第2側面は、前記第1主面の長辺に角度θ2で接する水晶結晶の第2非m面と、前記第2主面の長辺に角度θ1で接する水晶結晶の第2m面とを有し、
前記角度θ1は前記角度θ2よりも大きい鈍角であり、
前記X軸方向の長辺と直交する幅方向において、前記第1側面の前記第1m面の幅は、前記第2側面の前記第2m面の幅よりも大きい、水晶片の製造方法。 - 前記第1マスク及び前記第2マスクを設ける工程において、前記第1主面を平面視して、前記第1マスク及び前記第2マスクがZ´軸方向において第1距離にて重なるとともに、前記第1マスクが前記第2マスクからZ´軸正方向に第2距離にて延在しかつ前記第2マスクが前記第1マスクからZ´軸負方向に第3距離にて延在するように、前記第1マスク及び前記第2マスクを配置する、請求項8に記載の水晶片の製造方法。
- 前記第3距離は前記第2距離よりも大きい、請求項9記載の水晶片の製造方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018513396A JP6384702B2 (ja) | 2016-06-21 | 2017-06-19 | 水晶振動素子、水晶振動子、及び水晶振動素子の製造方法 |
CN201780038034.1A CN109314502B (zh) | 2016-06-21 | 2017-06-19 | 水晶振动元件、水晶振子以及水晶振动元件的制造方法 |
US16/220,651 US11342900B2 (en) | 2016-06-21 | 2018-12-14 | Quartz crystal resonator, quartz crystal resonator unit, and method of manufacturing quartz crystal resonator |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016122948 | 2016-06-21 | ||
JP2016-122948 | 2016-06-21 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/220,651 Continuation US11342900B2 (en) | 2016-06-21 | 2018-12-14 | Quartz crystal resonator, quartz crystal resonator unit, and method of manufacturing quartz crystal resonator |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017221887A1 true WO2017221887A1 (ja) | 2017-12-28 |
Family
ID=60784158
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/022517 WO2017221887A1 (ja) | 2016-06-21 | 2017-06-19 | 水晶振動素子、水晶振動子、及び水晶片の製造方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US11342900B2 (ja) |
JP (1) | JP6384702B2 (ja) |
CN (1) | CN109314502B (ja) |
WO (1) | WO2017221887A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019145978A (ja) * | 2018-02-20 | 2019-08-29 | セイコーエプソン株式会社 | 振動素子、振動子、発振器、電子機器、および移動体 |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109644171B (zh) * | 2016-08-31 | 2022-04-08 | 杜塞尔多夫华为技术有限公司 | 滤波后的多载波通信 |
US11239823B1 (en) | 2017-06-16 | 2022-02-01 | Hrl Laboratories, Llc | Quartz MEMS piezoelectric resonator for chipscale RF antennae |
US11101786B1 (en) | 2017-06-20 | 2021-08-24 | Hrl Laboratories, Llc | HF-VHF quartz MEMS resonator |
US10921360B2 (en) * | 2018-02-09 | 2021-02-16 | Hrl Laboratories, Llc | Dual magnetic and electric field quartz sensor |
US10819276B1 (en) | 2018-05-31 | 2020-10-27 | Hrl Laboratories, Llc | Broadband integrated RF magnetic antenna |
KR20200083860A (ko) * | 2018-12-31 | 2020-07-09 | 삼성디스플레이 주식회사 | 표시 장치 |
US11563420B1 (en) | 2019-03-29 | 2023-01-24 | Hrl Laboratories, Llc | Femto-tesla MEMS RF antenna with integrated flux concentrator |
US11988727B1 (en) | 2019-07-31 | 2024-05-21 | Hrl Laboratories, Llc | Magnetostrictive MEMS magnetic gradiometer |
JP7396858B2 (ja) * | 2019-11-01 | 2023-12-12 | 日本電波工業株式会社 | 圧電デバイス及びその製造方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008067345A (ja) * | 2006-08-09 | 2008-03-21 | Epson Toyocom Corp | Atカット水晶振動片及びその製造方法 |
JP2014011650A (ja) * | 2012-06-29 | 2014-01-20 | Kyocera Crystal Device Corp | 水晶振動素子 |
JP2015186239A (ja) * | 2014-03-26 | 2015-10-22 | エスアイアイ・クリスタルテクノロジー株式会社 | 圧電振動片、圧電振動子、および圧電振動片の製造方法 |
JP2016034107A (ja) * | 2014-07-31 | 2016-03-10 | 京セラクリスタルデバイス株式会社 | 水晶振動片、水晶振動素子及び水晶振動片の製造方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8347469B2 (en) * | 2007-03-26 | 2013-01-08 | Citizen Holdings Co., Ltd. | Crystal oscillator piece and method for manufacturing the same |
JP5632627B2 (ja) | 2010-03-15 | 2014-11-26 | エスアイアイ・クリスタルテクノロジー株式会社 | 水晶振動片 |
US9762206B2 (en) * | 2014-02-07 | 2017-09-12 | Samsung Electro-Mechanics Co., Ltd. | AT-cut quartz crystal vibrator with a long side along the X-axis direction |
JP5908630B2 (ja) * | 2015-03-17 | 2016-04-26 | エスアイアイ・クリスタルテクノロジー株式会社 | 圧電振動片、圧電振動子、および圧電振動片の製造方法 |
JP7062999B2 (ja) * | 2018-02-20 | 2022-05-09 | セイコーエプソン株式会社 | 振動素子、振動子、発振器、電子機器、および移動体 |
-
2017
- 2017-06-19 WO PCT/JP2017/022517 patent/WO2017221887A1/ja active Application Filing
- 2017-06-19 CN CN201780038034.1A patent/CN109314502B/zh active Active
- 2017-06-19 JP JP2018513396A patent/JP6384702B2/ja active Active
-
2018
- 2018-12-14 US US16/220,651 patent/US11342900B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008067345A (ja) * | 2006-08-09 | 2008-03-21 | Epson Toyocom Corp | Atカット水晶振動片及びその製造方法 |
JP2014011650A (ja) * | 2012-06-29 | 2014-01-20 | Kyocera Crystal Device Corp | 水晶振動素子 |
JP2015186239A (ja) * | 2014-03-26 | 2015-10-22 | エスアイアイ・クリスタルテクノロジー株式会社 | 圧電振動片、圧電振動子、および圧電振動片の製造方法 |
JP2016034107A (ja) * | 2014-07-31 | 2016-03-10 | 京セラクリスタルデバイス株式会社 | 水晶振動片、水晶振動素子及び水晶振動片の製造方法 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019145978A (ja) * | 2018-02-20 | 2019-08-29 | セイコーエプソン株式会社 | 振動素子、振動子、発振器、電子機器、および移動体 |
JP7062999B2 (ja) | 2018-02-20 | 2022-05-09 | セイコーエプソン株式会社 | 振動素子、振動子、発振器、電子機器、および移動体 |
Also Published As
Publication number | Publication date |
---|---|
US20190123714A1 (en) | 2019-04-25 |
CN109314502A (zh) | 2019-02-05 |
CN109314502B (zh) | 2022-06-17 |
US11342900B2 (en) | 2022-05-24 |
JPWO2017221887A1 (ja) | 2018-06-21 |
JP6384702B2 (ja) | 2018-09-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6384702B2 (ja) | 水晶振動素子、水晶振動子、及び水晶振動素子の製造方法 | |
US10205434B2 (en) | Piezoelectric resonator unit and method of manufacturing the same | |
JP2012217140A (ja) | 音叉型圧電振動片及び圧電デバイス | |
JP2009130564A (ja) | 水晶振動片、水晶振動子、及び水晶発振器 | |
JP2018042121A (ja) | 水晶振動素子及びその製造方法並びに水晶振動子及びその製造方法 | |
JP5772082B2 (ja) | 圧電振動素子、圧電振動子、圧電発振器及び電子デバイス | |
JP5772081B2 (ja) | 圧電振動素子、圧電振動子、圧電発振器及び電子デバイス | |
JP6569874B2 (ja) | 水晶振動子及びその製造方法 | |
WO2017068809A1 (ja) | 圧電振動子 | |
JP5988125B1 (ja) | 水晶振動子及び水晶振動デバイス | |
US10938368B2 (en) | Piezoelectric-resonator-mounting substrate, and piezoelectric resonator unit and method of manufacturing the piezoelectric resonator unit | |
JP7517135B2 (ja) | 圧電振動デバイス | |
JP7543899B2 (ja) | 圧電振動デバイス | |
JP2015173366A (ja) | 圧電振動片及び圧電デバイス | |
JP7196726B2 (ja) | 水晶ウエハ | |
JP5877746B2 (ja) | 圧電振動片およびその製造方法 | |
JP2015019127A (ja) | 水晶振動片及び水晶デバイス | |
JP7227571B2 (ja) | 振動素子、振動子及び振動素子の製造方法 | |
JP6555500B2 (ja) | 圧電振動素子及び圧電振動子 | |
WO2020195144A1 (ja) | 水晶振動デバイス | |
JP6971875B2 (ja) | 水晶素子および水晶デバイス | |
JP2018006902A (ja) | 水晶フィルタ板、および水晶フィルタ | |
WO2020067157A1 (ja) | 水晶振動素子および水晶振動子 | |
WO2016181882A1 (ja) | 水晶振動素子及び水晶振動子 | |
JP2015207854A (ja) | 圧電デバイス |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2018513396 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17815355 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17815355 Country of ref document: EP Kind code of ref document: A1 |