WO2017213258A1 - 接合体の製造方法および接合体 - Google Patents

接合体の製造方法および接合体 Download PDF

Info

Publication number
WO2017213258A1
WO2017213258A1 PCT/JP2017/021503 JP2017021503W WO2017213258A1 WO 2017213258 A1 WO2017213258 A1 WO 2017213258A1 JP 2017021503 W JP2017021503 W JP 2017021503W WO 2017213258 A1 WO2017213258 A1 WO 2017213258A1
Authority
WO
WIPO (PCT)
Prior art keywords
alloy
aluminum
plate
ceramic
joined body
Prior art date
Application number
PCT/JP2017/021503
Other languages
English (en)
French (fr)
Inventor
憲一郎 北
近藤 直樹
Original Assignee
国立研究開発法人産業技術総合研究所
憲一郎 北
近藤 直樹
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人産業技術総合研究所, 憲一郎 北, 近藤 直樹 filed Critical 国立研究開発法人産業技術総合研究所
Priority to JP2018521793A priority Critical patent/JP6851033B2/ja
Publication of WO2017213258A1 publication Critical patent/WO2017213258A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles

Definitions

  • the present invention relates to a method for manufacturing a joined body in which an aluminum member and a ceramic member are joined, and to such a joined body.
  • Patent Document 1 a new method for joining an aluminum member and a ceramic member has been proposed.
  • an aluminum member and a ceramic member can be joined by heating both in a state where a siloxane polymer is placed between the aluminum member and the ceramic member.
  • the present invention has been made in view of such a background, and an object of the present invention is to provide a method for manufacturing a joined body of an aluminum member and a ceramic member, which is relatively unlikely to be damaged even when subjected to thermal stress. And It is another object of the present invention to provide a joined body of an aluminum member and a ceramic member that is relatively unlikely to be damaged even when subjected to thermal stress.
  • a method for producing a joined body having an aluminum member and a ceramic member (A) preparing an aluminum member, a ceramic member containing aluminum and / or silicon, and a first alloy member containing aluminum, The first alloy member has first and second surfaces; A coefficient of thermal expansion of the first alloy member is smaller than the aluminum member and larger than the ceramic member; (B) A first bonding material is disposed on at least one of the bonded surface of the aluminum member and the first surface of the first alloy member, and the bonded surface of the ceramic member and the first alloy Installing a second bonding material on at least one of the second surfaces of the member, comprising:
  • the first and second bonding materials are each independently (I) an organosilicon polymer having a main chain having at least one of a Si—C—Si group and a Si—N—Si group, (Ii) an organosilicon polymer having a Si—O—Si group in the main chain; (Iii) carbon powder-containing silica sol, and (iv) an organosili
  • a method for producing a joined body having an aluminum member and a ceramic member (A) preparing an aluminum member, a ceramic member containing aluminum and / or silicon, a first alloy member containing aluminum, and a second alloy member containing aluminum, The first alloy member has first and second surfaces; The second alloy member has third and fourth surfaces; The thermal expansion coefficients of the first and second alloy members are respectively smaller than the aluminum member and larger than the ceramic member, A thermal expansion coefficient of the second alloy member is smaller than a thermal expansion coefficient of the first alloy member; (B) A first bonding material is installed on at least one of the bonded surface of the aluminum member and the first surface of the first alloy member, and the bonded surface of the ceramic member and the second alloy member A second bonding material is disposed on at least one of the fourth surfaces of the first alloy member, and a third bonding material is disposed on at least one of the second surface of the first alloy member and the third surface of the second alloy member.
  • the first, second, and third bonding materials are each independently (I) an organosilicon polymer having a main chain having at least one of a Si—C—Si group and a Si—N—Si group, (Ii) an organosilicon polymer having a Si—O—Si group in the main chain; (Iii) carbon powder-containing silica sol, and (iv) an organosilicon polymer having a Si—Si group in the main chain, Having at least one of: (C) The aluminum member, the first alloy member, the second alloy member, and the ceramic member are laminated in this order to form an assembly, The first alloy member is arranged so that the first surface side faces a surface to be bonded of the aluminum member, and the second alloy member has a fourth surface that is bonded to the ceramic member. A step arranged to face the surface; (D) heating the assembly at a temperature of 400 ° C. to 800 ° C. in an inert gas atmosphere or a vacuum atmosphere
  • a joined body including an aluminum member and a ceramic member containing aluminum and / or silicon, Furthermore, it has a first alloy member between the aluminum member and the ceramic member, The first alloy member has a first side and a second side, the first side being closer to the aluminum member than the second side;
  • the first alloy member includes aluminum, The thermal expansion coefficient of the first alloy member is smaller than the aluminum member, larger than the ceramic member, A first bonding layer is present on the first side of the first alloy member; A second bonding layer is present on the second side of the first alloy member;
  • the first and second bonding layers are respectively (I) an amorphous phase containing carbon and silicon, wherein the amount of carbon is 8% by weight or more and the amount of oxygen is less than 30% by weight, and / or (II) an aluminosilicate, A zygote is provided.
  • the present invention can provide a method of manufacturing a joined body of an aluminum member and a ceramic member that is relatively unlikely to be damaged even when subjected to thermal stress. Further, according to the present invention, it is possible to provide a joined body of an aluminum member and a ceramic member that is relatively unlikely to be damaged even when subjected to thermal stress.
  • oxide film alumina layer
  • Patent Document 1 a siloxane polymer is installed between the aluminum member and the ceramic member.
  • the inventors of the present application have further promoted research on a method of joining an aluminum member and a ceramic member.
  • the inventors have found a measure that can significantly improve the resistance against thermal stress of the joined body of the aluminum member and the ceramic member, and have reached the present invention.
  • a manufacturing method of a joined body having an aluminum member and a ceramic member (A) preparing an aluminum member, a ceramic member containing aluminum and / or silicon, and a first alloy member containing silicon and aluminum, The first alloy member has first and second surfaces; A coefficient of thermal expansion of the first alloy member is smaller than the aluminum member and larger than the ceramic member; (B) A first bonding material is disposed on at least one of the bonded surface of the aluminum member and the first surface of the first alloy member, and the bonded surface of the ceramic member and the first alloy Installing a second bonding material on at least one of the second surfaces of the member, comprising:
  • the first and second bonding materials are each independently (I) an organosilicon polymer having a main chain having at least one of a Si—C—Si group and a Si—N—Si group, (Ii) an organosilicon polymer having a Si—O—Si group in the main chain; (Iii) carbon powder-containing silica
  • an alloy member when manufacturing a joined body having an aluminum member and a ceramic member, an alloy member is interposed between the two.
  • This alloy member has a thermal expansion coefficient smaller than that of the aluminum member and larger than that of the ceramic member.
  • Such an alloy member can function as a stress relaxation layer when the bonded body is subjected to thermal stress.
  • the bonded body manufactured by the manufacturing method according to the embodiment of the present invention can significantly suppress damage to the bonded body even when subjected to thermal stress.
  • the alloy member includes silicon and aluminum. Therefore, this alloy member shows a behavior close to that of an aluminum member during the bonding process. For this reason, even if such an alloy member is simply disposed between the aluminum member and the ceramic member, even if heat treatment is performed, the presence of the oxide film as described above on the surface of the alloy member causes each member to It is difficult to obtain a bonded body with a good bonding.
  • a bonding material selected from a specific material group is installed on both sides of the alloy member during the bonding process.
  • the bonding material When heated in this state, as will be described later, the bonding material exhibits a function as an adhesive for bonding the aluminum member and the alloy member, and the alloy member and the ceramic member.
  • the aluminum member and the ceramic member can be appropriately bonded, and the thermal stress characteristics of the obtained bonded body can be improved.
  • the aluminum member and the alloy member may be collectively referred to as a “metal member”.
  • the bonding material includes at least one of the following materials (i) to (iv): (I) an organosilicon polymer having a main chain having at least one of a Si—C—Si group and a Si—N—Si group, (Ii) an organosilicon polymer having a Si—O—Si group in the main chain; (Iii) a carbon powder-containing silica sol, and (iv) an organosilicon polymer having a Si—Si group in the main chain.
  • the organosilicon polymer (i) contains carbon atoms. These carbon atoms play a role of reducing the oxide film formed on the surface of the metal member or making the oxide film unstable in a high temperature state. Therefore, when the bonding material containing (i) is used, the barrier property of the oxide film covering the surface of the metal member is lowered by the action of carbon atoms, and the metal member is activated, that is, is in a state of being easily reacted. it can.
  • the main chain has at least one of Si—C—Si group and Si—N—Si group. Therefore, the organosilicon polymer having a main chain as in (i) changes to a compound containing silicon and carbon when heated in an inert atmosphere.
  • the compound containing silicon and carbon can react with a so-called “active” metal member in which the barrier function of the oxide film is lowered in a high temperature environment.
  • a ceramic member containing aluminum and / or silicon is used as the ceramic member.
  • Such a ceramic member has an affinity for the compound containing silicon and carbon.
  • the carbon contained in the bonding material A part of the oxide film present on the surface of the metal member is reduced by the atoms. Alternatively, the oxide film present on the surface of the metal member is in an incomplete state. Thereby, the metal member is activated.
  • a reaction component generated when the bonding material is heated that is, the compound containing silicon and carbon as described above reacts with the activated metal member, and as a result, the bonding material changes into a bonding layer.
  • the obtained bonding layer contains a silicon carbide-based compound.
  • the silicon carbide-based compound includes, for example, SiC, SiOC, SiCN, SiOCN, AlSiC, AlSiOC, AlSiCN, and / or AlSiOCN. Silicon carbide-based compounds are often formed as an amorphous (glass) phase.
  • the ceramic member is firmly adhered to the bonding layer, and the aluminum member and the alloy member are also firmly adhered to the bonding layer. As a result, the aluminum member, the alloy member, and the ceramic member are bonded via the bonding layer.
  • the bonding material includes (ii) to (iv).
  • the bonding material contains (ii) or (iii)
  • Si silicon
  • O oxygen
  • an aluminosilicate compound is formed as a bonding layer between the aluminum member and the alloy member and between the alloy member and the ceramic member.
  • the general formula of the aluminosilicate compound is represented by Al x Si y O z , where 0 ⁇ x ⁇ 3, 0 ⁇ y ⁇ 51, and 0 ⁇ z ⁇ 104.
  • the aluminosilicate compound may be a mixture of alumina and silica.
  • the ceramic member used in the present application also has an affinity for a compound containing silicon and oxygen.
  • the bonding material includes (ii) or (iii)
  • the ceramic member is firmly adhered to the bonding layer due to the presence of the bonding layer. Therefore, also in this case, good bonding can be obtained among the three parts of the aluminum part, the alloy member, and the ceramic member.
  • the characteristics of the embodiment of the present invention have been described by taking as an example the case where the alloy member is made of a material containing both silicon and aluminum. However, this is merely an example, and the alloy member may be made of a material containing aluminum and not containing silicon.
  • FIG. 1 schematically shows a flow of a method for manufacturing a joined body including an aluminum member and a ceramic member (hereinafter referred to as “first manufacturing method”) according to an embodiment of the present invention.
  • the first manufacturing method is: (A) preparing an aluminum member, a ceramic member containing aluminum and / or silicon, and an alloy member containing silicon and aluminum (step S110); (B) A first bonding material is disposed on at least one of the bonded surface of the aluminum member and the first surface of the alloy member, and the bonded surface of the ceramic member and the second surface of the alloy member A step (step S120) of installing a second bonding material on at least one of (C) laminating the aluminum member, the alloy member, and the ceramic member in this order to form an assembly (step S130); (D) heating the assembly at a temperature of 400 ° C. to 800 ° C. in an inert gas atmosphere or a vacuum atmosphere (step S140); Have
  • Step S110 First, an aluminum member, a ceramic member, and an alloy member are prepared.
  • the shape of the aluminum member is not particularly limited, and the aluminum member may have a shape such as a block, a plate, a bar, a foil, or a disk.
  • aluminum member means a member substantially composed of an aluminum metal, a member containing 50 wt% or more aluminum metal by weight, a member substantially composed of an aluminum alloy, And a member containing an aluminum alloy having a weight ratio of 80 wt% or more.
  • the aluminum alloy may be, for example, an Al—Si alloy or the like, for example, sirmine containing about 12 wt% silicon.
  • the ceramic member is not particularly limited as long as it contains aluminum and / or silicon.
  • the ceramic member may include, for example, alumina, aluminum nitride, silicon nitride, mullite, and / or aluminosilicate.
  • the alumina includes high-purity alumina containing 90 wt% or more of alumina by weight.
  • the aluminum nitride include high-purity alumina nitride containing 90 wt% or more aluminum nitride by weight.
  • Examples of silicon nitride include high-purity silicon nitride containing 80% by weight or more of silicon nitride by weight.
  • ⁇ -alumina can be suitably used as the alumina.
  • the shape of the ceramic member is not particularly limited, and the ceramic member may have a shape such as a block, a plate, a rod, or a disk.
  • the alloy member is selected from alloy materials including silicon and aluminum.
  • the weight ratio of silicon may be 0.3 to 99%.
  • the weight ratio of aluminum may be in the range of 1% to 99%.
  • the coefficient of thermal expansion of the alloy member can be reduced by adding silicon to the alloy member. Further, when aluminum is melted and solidified during the joining process, silicon is solidified and expanded. Therefore, by adding aluminum and silicon to the alloy member, the volume change of the alloy member that may occur during the joining process can be mitigated.
  • the composition of the alloy member is not particularly limited as long as it has a smaller thermal expansion coefficient than the prepared aluminum member and a larger thermal expansion coefficient than the ceramic member.
  • the alloy member is, for example, an alloy containing aluminum (Al) as a main component and containing silicon (Si) (Al—Si alloy), an alloy containing Al as a main component and containing Si and magnesium (Mg) (Al—Si—Mg alloy), or An alloy containing Si as a main component and containing Al (Si—Al alloy) may also be used.
  • Al aluminum
  • Si silicon
  • Mg aluminum
  • Mg Al—Si—Mg alloy
  • An alloy containing Si as a main component and containing Al (Si—Al alloy) may also be used.
  • “mainly composed of element A” means that element A is contained in an amount of 50% by weight or more.
  • the weight ratio of Al may be in the range of 50% to 99%.
  • the weight ratio of Si may be in the range of 0.3% to 50%.
  • the weight ratio of Mg may be in the range of 0.1% to 5.0%.
  • the weight ratio of Si may be in the range of 50% to 99%.
  • the weight ratio of Al may be in the range of 1% to 50%.
  • the alloy member may be silmine.
  • the alloy member may contain Cu, Ni, Mn, Fe, and Zn as additional elements.
  • the weight ratio of Cu is 0 to 6.0 wt%
  • the weight ratio of Ni is 0 to 1.5 wt%
  • the weight ratio of Mn is 0 to 1.5 wt%
  • the weight ratio of Fe is 0 to 1
  • the weight ratio of Zn may be in the range of 0 to 1.5 wt%.
  • the alloy member may contain particles having a smaller thermal expansion coefficient than the alloy member.
  • Such particles may include at least one of metal particles, alloy particles, and ceramic particles.
  • Examples of the metal particles include silicon, molybdenum, and tungsten.
  • Examples of ceramic particles include alumina (Al 2 O 3 ), silicon nitride (Si 3 N 4 ), silicon carbide (SiC), and diamond.
  • the thermal expansion coefficient of the alloy member can be finely adjusted to a desired range.
  • the form of the alloy member is not particularly limited as long as it has two opposing surfaces (referred to as “first surface” and “second surface”, respectively).
  • the alloy member may be plate-shaped or block-shaped.
  • Step S120 Next, a first bonding material is placed on at least one of the bonded surface of the aluminum member and the first surface of the alloy member.
  • a second bonding material is disposed on at least one of the surface to be bonded of the ceramic member and the second surface of the alloy member.
  • the first bonding material and the second bonding material may be the same or different.
  • first and second bonding materials are selected from those containing carbon (C) and silicon (Si), respectively.
  • the bonding material may include at least one of the following (i) to (iv): (I) an organosilicon polymer having a main chain having at least one of a Si—C—Si group and a Si—N—Si group, (Ii) an organosilicon polymer having a Si—O—Si group in the main chain; (Iii) a carbon powder-containing silica sol, and (iv) an organosilicon polymer having a Si—Si group in the main chain.
  • Si—C—Si polymer An example of the chemical formula of the organosilicon polymer (i) having a Si—C—Si group in the main chain (hereinafter referred to as “Si—C—Si polymer”) is represented by the following formula (1): Shown in:
  • R 1 , R 2 , R 3 , and R 4 are each independently any one of H, CH 3 , C 2 H 3 , C 6 H 5 , and OMCH 3 (C m H 2m + 1 ) 2. . At least two of R 1 , R 2 , R 3 , and R 4 may be the same. Note that m represents an integer of 1 or more, and M represents one or more of Ti, Zr, and / or Cr.
  • Examples of the first organosilicon polymer having the chemical structure represented by the formula (1) include a polycarbosilane represented by the following formula (2), and a polytitanocarbo represented by the formula (3). Silane and the like are included.
  • Si—N—Si polymer An example of the chemical formula of the organosilicon polymer (i) described above having a Si—N—Si group in the main chain (hereinafter referred to as “Si—N—Si polymer”) is as follows: As shown in equation (4):
  • R 1 , R 2 , R 3 , and R 4 are each independently any one of H, CH 3 , C 2 H 3 , and C 6 H 5 . At least two of R 1 , R 2 , R 3 , and R 4 may be the same.
  • Si—N—Si-based polymer having the chemical structure represented by the formula (4) examples include polymethyldisilazane (PMDS) represented by the following formula (5) and the formula (6).
  • PMDS polymethyldisilazane
  • PDMMS Polydimethylmethylsilazane
  • Si—C—Si based polymer may have the following chemical structural formula.
  • R 1 , R 2 , R 3 , and R 4 are each independently any one of H, CH 3 , C 2 H 3 , and C 6 H 5 . At least two of R 1 , R 2 , R 3 , and R 4 may be the same.
  • the Si—C—Si based polymer represented by the formula (7) has a Si—N—Si group in a part of the main chain. Therefore, this polymer can also be referred to as a Si—C—Si based polymer.
  • organosilicon polymer (i) described above is not limited thereto, and examples thereof include polycarbosilazane, allyl hydride polycarbosilane, polysilmethylene, polysilazane, polyhydropolysilazane, and polyorgano Silazane and the like are included.
  • organosilicon polymer (ii) examples include siloxane polymers (hereinafter referred to as “Si—O—Si polymers”).
  • Si—O—Si-based polymers include siloxane-based polymers having linear Si—O—Si groups as the main chain, such as polymethylhydrosiloxane (PMHS) and polymethylphenylsiloxane (PMPhS). .
  • PMHS polymethylhydrosiloxane
  • PMhS polymethylphenylsiloxane
  • the Si—O—Si based polymer is, for example, a silsesquioxane based polymer having a three-dimensional structure having a Si—O—Si group as a main skeleton, such as polymethylsilsesquioxane (PMSQ) and polyphenylsiloxane (PPSQ) may also be used.
  • a silsesquioxane based polymer having a three-dimensional structure having a Si—O—Si group as a main skeleton such as polymethylsilsesquioxane (PMSQ) and polyphenylsiloxane (PPSQ) may also be used.
  • PMSQ polymethylsilsesquioxane
  • PPSQ polyphenylsiloxane
  • the following formula (8) shows a chemical structural formula of PMPhS.
  • the following formula (9) shows the chemical structural formula of PMSQ.
  • organosilicon polymer (iv) described above may have the following chemical structural formula.
  • R 1 and R 2 are each independently hydrogen, CH 3 , C 6 H 5 or the like.
  • N is an arbitrary integer between 10 and 1000.
  • the organosilicon polymer includes, but is not limited to, for example, polyhydrosilane, polymethylsilane, and polyphenylsilane.
  • bonding material may include two or all of the above (i) to (iv).
  • the installation method of such a bonding material is not particularly limited.
  • the bonding material may be installed on the bonding surface by, for example, a coating method.
  • a coating method examples include a dipping method, a spin coater method, and a spray method. Since it is desirable to apply the bonding material as evenly as possible, it is preferable to apply the bonding material by a dipping method with a lifting speed of 1 mm / second or less or a spin coater method with a rotation speed of 100 rpm or more.
  • the thickness of the finally obtained bonding layer changes depending on the thickness of the bonding material. Therefore, it is preferable to adjust the type and thickness of the bonding material according to the purpose.
  • the organosilicon polymers as shown in the above (i) and (ii) have a relatively high viscosity. For this reason, when applying these by a dipping method, it is preferable to dilute with a solvent and adjust viscosity appropriately. In this case, it is preferable to use an aromatic organic solvent such as benzene or toluene from the viewpoint of compatibility.
  • the solvent concentration may be in the range of 0.001 mol / L to 1 mol / L.
  • the thickness of the bonding material is preferably 0.1 ⁇ m (after solvent volatilization) or more.
  • the thickness of the bonding material is 1 mm (after solvent volatilization) or less.
  • the silicon content in the bonding material is preferably selected in the range of 10 wt% to 45 wt%.
  • Step S130 Next, an aluminum member, an alloy member, and a ceramic member are laminated in this order to constitute an assembly.
  • the alloy member is arranged so that the first surface side faces the bonded surface of the aluminum member and the second surface faces the bonded surface of the ceramic member.
  • the aluminum member, the alloy member, and the ceramic member may be stacked on each other in a substantially non-pressurized state (however, a load due to its own weight is applied). Alternatively, a certain amount of load may be applied between the aluminum member and the ceramic member.
  • Step S140 Next, the assembly is heat treated for the bonding process. Thereby, a joined body in which the aluminum member, the alloy member, and the ceramic member are joined to each other via the joining layer is manufactured.
  • the heat treatment is performed in an atmosphere substantially free of oxygen, for example, an inert gas atmosphere or a vacuum atmosphere.
  • an atmosphere substantially free of oxygen for example, an inert gas atmosphere or a vacuum atmosphere.
  • the inert gas atmosphere may be an atmosphere of argon, helium, and / or nitrogen, for example.
  • the degree of vacuum in the vacuum atmosphere is, for example, ⁇ 0.08 MPa or less when the atmospheric pressure is 0 MPa.
  • the temperature of the heat treatment is 400 ° C. or higher, preferably 450 ° C. or higher.
  • the temperature of heat processing is 800 degrees C or less, for example.
  • the heat treatment temperature is preferably in the range of 540 ° C. to 660 ° C.
  • 1st and 2nd joining material changes by heat-processing an assembly.
  • a first bonding layer is formed between the aluminum member and the alloy member
  • a second bonding layer is formed between the alloy member and the ceramic member.
  • first bonding material and / or the second bonding material may be melted during the heat treatment of the assembly.
  • first bonding layer becomes a layer solidified after the first bonding material is melted
  • second bonding layer becomes a layer solidified after the second bonding material is melted.
  • the composition of the first and second bonding layers (hereinafter simply referred to as “bonding layer”) varies depending on the type of bonding material.
  • a bonding layer containing a silicon carbide compound is obtained.
  • the silicon carbide compound may be in an amorphous phase.
  • the silicon carbide-based compound may include, for example, SiC, SiOC, SiCN, SiOCN, AlSiC, AlSiOC, AlSiCN, and / or AlSiOCN. Note that the silicon carbide-based compound contained in the bonding layer also varies depending on the type of bonding material used and the material of the ceramic member.
  • the bonding layer may contain a small amount of other substances such as carbon lump, metal silicon lump, and / or aluminosilicate.
  • the general formula of the aluminosilicate compound is represented by Al x Si y O z , where 0 ⁇ x ⁇ 3, 0 ⁇ y ⁇ 51, and 0 ⁇ z ⁇ 104.
  • the aluminosilicate compound may be a mixture of alumina and silica.
  • the bonding layer may contain a small amount of other substances such as a carbon block and a metal silicon block in addition to the aluminosilicate compound.
  • an alloy member having a thermal expansion coefficient between the aluminum member and the ceramic member is installed. Therefore, even if thermal stress is applied to the manufactured joined body, the alloy member functions as a stress relaxation layer, and damage to the joined body can be significantly suppressed.
  • the above-mentioned kind of bonding material is installed between the aluminum member and the alloy member and between the alloy member and the ceramic member during the bonding process. Due to the presence of these bonding materials, the aluminum member and the alloy member, and the alloy member and the ceramic member are appropriately bonded after the bonding process.
  • the aluminum member and the ceramic member can be appropriately bonded, and the heat stress characteristics of the obtained bonded body can be improved.
  • FIG. 2 schematically shows a flow of a method for manufacturing a joined body having an aluminum member and a ceramic member (hereinafter referred to as “second manufacturing method”) according to an embodiment of the present invention.
  • the second manufacturing method is: (A) preparing an aluminum member, a ceramic member containing aluminum and / or silicon, a first alloy member containing silicon and aluminum, and a second alloy member containing silicon and aluminum (step S210); (B) A first bonding material is installed on at least one of the bonded surface of the aluminum member and the first surface of the first alloy member, and the bonded surface of the ceramic member and the second alloy member A second bonding material is disposed on at least one of the fourth surfaces of the first alloy member, and a third bonding material is disposed on at least one of the second surface of the first alloy member and the third surface of the second alloy member.
  • step S220 Installing a bonding material, step (step S220); (C) Step of stacking the aluminum member, the first alloy member, the second alloy member, and the ceramic member in this order to form an assembly (step S230); (D) heating the assembly in an inert gas atmosphere or a vacuum atmosphere at a temperature of 400 ° C. to 800 ° C. (Step S240); Have
  • Step S210 First, an aluminum member, a ceramic member, and first and second alloy members are prepared.
  • step S110 of the first manufacturing method described above can be referred to. Therefore, detailed description is omitted here.
  • the second alloy member is selected from alloy materials including silicon and aluminum.
  • the weight ratio of silicon may be 0.3 to 99%.
  • the weight ratio of aluminum may be in the range of 1% to 99%.
  • the composition of the second alloy member is not particularly limited as long as it has a smaller thermal expansion coefficient than the first alloy member and a larger thermal expansion coefficient than the ceramic member.
  • the second alloy member is, for example, an alloy containing aluminum (Al) as a main component and containing silicon (Si) (Al—Si alloy), an alloy containing Al as a main component and containing Si and magnesium (Mg) (Al—Si—Mg alloy). Or an alloy containing Si as a main component and containing Al (Si—Al alloy) or the like.
  • the weight ratio of Al may be in the range of 50% to 99%.
  • the weight ratio of Si may be in the range of 0.3% to 50%.
  • the weight ratio of Mg may be in the range of 0.1% to 5.6%.
  • the weight ratio of Si may be in the range of 50% to 99%.
  • the weight ratio of Al may be in the range of 1% to 50%.
  • the second alloy member may contain Cu, Ni, Mn, Fe, and Zn as additional elements.
  • the weight ratio of Cu is 0 to 6.0 wt%
  • the weight ratio of Ni is 0 to 1.5 wt%
  • the weight ratio of Mn is 0 to 1.5 wt%
  • the weight ratio of Fe is 0 to 1
  • the weight ratio of Zn may be in the range of 0 to 1.5 wt%.
  • the form of the second alloy member is not particularly limited as long as it has two opposing surfaces (referred to as “third surface” and “fourth surface”, respectively).
  • the second alloy member may be plate-shaped or block-shaped.
  • Step S220 a first bonding material is placed on at least one of the surface to be bonded of the aluminum member and the first surface of the first alloy member.
  • the second bonding material is disposed on at least one of the surface to be bonded of the ceramic member and the fourth surface of the second alloy member.
  • a third bonding material is disposed on at least one of the second surface of the first alloy member and the third surface of the second alloy member.
  • first bonding material the second bonding material, and the third bonding material
  • at least two may be the same.
  • first bonding material, the second bonding material, and the third bonding material may all be the same.
  • the first to third bonding materials are selected from those containing carbon (C) and silicon (Si), respectively.
  • Each of the bonding materials may include at least one of the following (i) to (iv): (I) an organosilicon polymer having a main chain having at least one of a Si—C—Si group and a Si—N—Si group, (Ii) an organosilicon polymer having a Si—O—Si group in the main chain; (Iii) a carbon powder-containing silica sol, and (iv) an organosilicon polymer having a Si—Si group in the main chain.
  • the bonding material may include, for example, two or all three of (i) to (iv).
  • the details of (i) to (iv) are as described above, and will not be described further here.
  • the bonding material may be installed by, for example, a coating method as described above.
  • a coating method as described above.
  • the coating method include a dipping method, a spin coater method, and a spray method.
  • the thickness of the finally obtained bonding layer changes depending on the thickness of the bonding material. Therefore, it is preferable to adjust the type and thickness of the bonding material according to the purpose.
  • Step S230 Next, the aluminum member, the first alloy member, the second alloy member, and the ceramic member are laminated in this order to constitute an assembly.
  • the first alloy member is arranged such that the first surface side faces the surface to be joined of the aluminum member and the second surface faces the third surface of the second alloy member.
  • the second alloy member is arranged so that the fourth surface side faces the surface to be joined of the ceramic member.
  • the aluminum member, the first alloy member, the second alloy member, and the ceramic member may be stacked on each other in a substantially non-pressurized state (however, a load due to its own weight is applied). . Alternatively, a certain amount of load may be applied between the aluminum member and the ceramic member.
  • Step S240 Next, the assembly is heat treated for the bonding process. Thereby, a joined body is manufactured in which the aluminum member, the first alloy member, the second alloy member, and the ceramic member are joined to each other via the joining layer.
  • the heat treatment is performed in an atmosphere substantially free of oxygen, such as an inert gas atmosphere or a vacuum atmosphere.
  • the inert gas atmosphere may be an atmosphere of argon, helium, and / or nitrogen, for example.
  • the degree of vacuum in the vacuum atmosphere is, for example, ⁇ 0.08 MPa or less when the atmospheric pressure is 0 MPa.
  • the temperature of the heat treatment is 400 ° C. or higher, preferably 450 ° C. or higher. In addition, it is preferable that the temperature of heat processing is 800 degrees C or less, for example. The temperature of the heat treatment is more preferably in the range of 540 ° C. to 660 ° C.
  • first to third bonding materials change, a first bonding layer is formed between the aluminum member and the first alloy member, and the second alloy member and the ceramic member. In between, a second bonding layer is formed. A third bonding layer is formed between the first alloy member and the second alloy member.
  • the composition of the first to third bonding layers (hereinafter simply referred to as “bonding layer”) varies depending on the type of bonding material.
  • a bonding layer containing a silicon carbide compound is obtained.
  • the silicon carbide compound may be in an amorphous phase.
  • the bonding layer may contain a small amount of other substances such as a carbon block, a metal silicon block, and / or an aluminosilicate.
  • the general formula of the aluminosilicate compound is represented by Al x Si y O z , where 0 ⁇ x ⁇ 3, 0 ⁇ y ⁇ 51, and 0 ⁇ z ⁇ 104.
  • the aluminosilicate compound may be a mixture of alumina and silica.
  • the bonding layer may contain a small amount of other substances such as a carbon block and a metal silicon block in addition to the aluminosilicate compound.
  • the joined body manufactured by such a second manufacturing method includes the first and second alloy members between the aluminum member and the ceramic member, and the first alloy located closer to the aluminum member.
  • the member has a thermal expansion coefficient between the thermal expansion coefficient of the aluminum member and the thermal expansion coefficient of the second alloy member.
  • the second alloy member located closer to the ceramic member has a thermal expansion coefficient between the thermal expansion coefficient of the ceramic member and the thermal expansion coefficient of the first alloy member.
  • the joined body can further enhance the resistance to thermal stress as compared with the joined body manufactured by the first manufacturing method described above.
  • FIG. 2A schematically shows a flow of still another method for manufacturing a joined body including an aluminum member and a ceramic member (hereinafter referred to as “third manufacturing method”) according to an embodiment of the present invention.
  • the third manufacturing method is: (A) preparing an aluminum member, a ceramic member containing aluminum and / or silicon, and an alloy member containing aluminum (step S310); (B) A first bonding material is disposed on at least one of the bonded surface of the aluminum member and the first surface of the alloy member, and the bonded surface of the ceramic member and the second surface of the alloy member A step (step S320) of installing a second bonding material on at least one of (C) laminating the aluminum member, the alloy member, and the ceramic member in this order to form an assembly (step S330); (D) heating the assembly in an inert gas atmosphere or a vacuum atmosphere at a temperature of 400 ° C. to 800 ° C. (Step S340); Have
  • steps S310 to 340 are substantially equal to steps S110 to 140 in the first manufacturing method described above.
  • an alloy member an alloy member containing aluminum is used. This is different from the first manufacturing method.
  • the alloy member is selected from alloy materials including aluminum.
  • the weight ratio of aluminum may be in the range of 1% to 99%.
  • the alloy member is, for example, an Al—Zn alloy, an Al—Sn alloy, an Al—Mg—Sn alloy, an Al—Mg—Zn alloy, an Al—Si—Sn alloy, or an Al—Sn—Zn alloy. Also good.
  • composition of these alloy members is not particularly limited as long as it has a smaller thermal expansion coefficient than the prepared aluminum member and a larger thermal expansion coefficient than the ceramic member.
  • the alloy member may contain particles having a smaller coefficient of thermal expansion than the alloy member.
  • Such particles may include at least one of metal particles, alloy particles, and ceramic particles.
  • Examples of the metal particles include silicon, molybdenum, and tungsten.
  • Examples of ceramic particles include alumina (Al 2 O 3 ), silicon nitride (Si 3 N 4 ), silicon carbide (SiC), and diamond.
  • the form of the alloy member is not particularly limited as long as it has two opposing surfaces (referred to as “first surface” and “second surface”, respectively).
  • the alloy member may be plate-shaped or block-shaped.
  • the aluminum member and the ceramic member can be appropriately bonded, and the heat stress characteristic of the obtained bonded body can be improved.
  • two alloy members are arranged between an aluminum member and a ceramic member.
  • three or more alloy members may be disposed between the aluminum member and the ceramic member.
  • the alloy members are sequentially arranged from the aluminum member toward the ceramic member in descending order of thermal expansion coefficient.
  • an alloy material containing both silicon and aluminum is used as the first and second alloy members.
  • at least one of the first and second alloy members may be an alloy member used in the third manufacturing method. That is, at least one of the first and second alloy members is an Al—Zn alloy, an Al—Sn alloy, an Al—Mg—Sn alloy, an Al—Mg—Zn alloy, an Al—Si—Sn alloy, or Al. Any of —Sn—Zn alloys may be used.
  • FIG. 3 is a schematic cross-sectional view of a joined body (hereinafter referred to as “first joined body”) according to an embodiment of the present invention.
  • the first joined body 100 includes an aluminum member 110, an alloy member 120, and a ceramic member 130.
  • a first bonding layer 140 is installed between the aluminum member 110 and the alloy member 120, and a second bonding layer 150 is installed between the alloy member 120 and the ceramic member 130.
  • the aluminum member 110 includes a member substantially made of aluminum metal, a member containing 50% or more aluminum metal by weight, a member substantially made of aluminum alloy, and aluminum having a weight ratio of 50% or more.
  • An alloy member may be included.
  • the shape of the aluminum member 110 is not particularly limited, and the aluminum member 110 may have a shape such as a block, a plate, a bar, a foil, or a disk.
  • Alloy member 120 contains silicon and aluminum.
  • the weight ratio of silicon may be 0.3 to 99%.
  • the weight ratio of aluminum may be in the range of 1% to 99%.
  • the composition of the alloy member 120 is not particularly limited as long as it has a smaller thermal expansion coefficient than the aluminum member 110 and a larger thermal expansion coefficient than the ceramic member 130.
  • the alloy member 120 includes, for example, an alloy containing aluminum (Al) as a main component and containing silicon (Si) (Al—Si alloy), an alloy containing Al as a main component and containing Si and magnesium (Mg) (Al—Si—Mg alloy), Alternatively, an alloy containing Si as a main component and containing Al (Si—Al alloy) may be used.
  • the weight ratio of Al may be in the range of 50% to 99%.
  • the weight ratio of Si may be in the range of 0.3% to 50%.
  • the weight ratio of Mg may be in the range of 0.1% to 45%.
  • the weight ratio of Si may be in the range of 50% to 99%.
  • the weight ratio of Al may be in the range of 1% to 50%.
  • the alloy member 120 may be silmine.
  • the alloy member 120 may be made of an alloy containing aluminum.
  • the alloy member 120 is an Al—Zn alloy, an Al—Sn alloy, an Al—Mg—Sn alloy, an Al—Mg—Zn alloy, an Al—Si—Sn alloy, or an Al—Sn—Zn alloy. May be.
  • the Mg weight ratio may be in the range of 0.1-95%.
  • the weight ratio of Zn may be 0.1 to 99%.
  • the weight ratio of Sn may be 0.1 to 99%.
  • the alloy member 120 may contain Cu, Ni, Mn, Fe, and Zn as additional elements.
  • the weight ratio of Cu is 0 to 6.0 wt%
  • the weight ratio of Ni is 0 to 1.5 wt%
  • the weight ratio of Mn is 0 to 1.5 wt%
  • the weight ratio of Fe is 0 to 1
  • the weight ratio of Zn may be in the range of 0 to 1.5 wt%.
  • the form of the alloy member 120 is not particularly limited.
  • the alloy member 120 may have a plate shape or a block shape.
  • the alloy member 120 may be one that has once melted and then solidified.
  • the alloy member 120 may contain particles inside. Such particles may be at least one of metal particles, alloy particles, and ceramic particles.
  • Examples of the metal particles include silicon, molybdenum, and tungsten.
  • Examples of ceramic particles include alumina (Al 2 O 3 ), silicon nitride (Si 3 N 4 ), silicon carbide (SiC), and diamond.
  • the ceramic member 130 is made of a ceramic containing an aluminum component and / or a silicon component.
  • the ceramic member 130 includes at least one of alumina, aluminum nitride, silicon nitride, and aluminosilicate.
  • the crystal form of the ceramic member 130 is not particularly limited, but ⁇ -alumina can be suitably used as alumina.
  • the shape of the ceramic member 130 is not particularly limited, and the ceramic member 130 may have a shape such as a block, a plate, a rod, or a disk.
  • the first bonding layer 140 can have the following configuration.
  • the first bonding layer 140 may mainly include an amorphous phase containing carbon and silicon, that is, an amorphous phase of a silicon carbide-based compound.
  • the amorphous phase may include, for example, SiC, SiOC, SiCN, SiOCN, AlSiC, AlSiOC, AlSiCN, and / or AlSiOCN.
  • the first bonding layer 140 may further include a small amount of carbon lump, metal silicon lump, and / or aluminosilicate.
  • the aluminosilicate may be crystalline or amorphous.
  • the amount of carbon in the amorphous phase of the first bonding layer 140 is 8% by weight or more, and the amount of oxygen in the region is less than 30% by weight.
  • Layer containing an aluminosilicate compound The first bonding layer 140 may contain an aluminosilicate compound as a main component.
  • the general formula of the aluminosilicate compound is represented by Al x Si y O z , where 0 ⁇ x ⁇ 3, 0 ⁇ y ⁇ 51, and 0 ⁇ z ⁇ 104.
  • the aluminosilicate compound may be a mixture of alumina and silica.
  • the first bonding layer 140 may further include a small amount of carbon lump and / or metal silicon lump.
  • the second bonding layer 150 may be the same as or different from the first bonding layer 140.
  • the aluminum member 110 and the alloy member 120 can be suitably joined by the presence of the first joining layer 140.
  • the presence of the second bonding layer 150 allows the alloy member 120 and the ceramic member 130 to be suitably bonded.
  • the presence of the first alloy member 120 having a thermal expansion coefficient between the aluminum member 110 and the ceramic member 130 can significantly improve the heat stress characteristics.
  • FIG. 4 is a schematic cross-sectional view of another joined body (hereinafter referred to as “second joined body”) according to an embodiment of the present invention.
  • the second bonded body 200 includes an aluminum member 210, a first alloy member 220, a second alloy member 225, and a ceramic member 230 in this order.
  • a first bonding layer 240 is disposed between the aluminum member 210 and the first alloy member 220, and a second bonding layer 250 is disposed between the second alloy member 225 and the ceramic member 230. . Further, a third bonding layer 260 is disposed between the first alloy member 220 and the second alloy member 225.
  • the aluminum member 210 includes a member substantially made of aluminum metal, a member containing 50% or more aluminum metal by weight, a member substantially made of aluminum alloy, and 50 by weight.
  • An alloy member containing at least% aluminum may be used.
  • the shape of the aluminum member 210 is not particularly limited, and the aluminum member 210 may have a shape such as a block, a plate, a bar, a foil, or a disk.
  • the first alloy member 220 and the second alloy member 225 may contain silicon and aluminum.
  • the weight ratio of silicon may be 0.3 to 99%.
  • the weight ratio of aluminum may be in the range of 1% to 99%.
  • the composition of the first alloy member 220 is not particularly limited as long as it has a smaller thermal expansion coefficient than the aluminum member 210 and a larger thermal expansion coefficient than the second alloy member 225.
  • the first alloy member 220 includes, for example, an alloy containing aluminum (Al) as a main component and containing silicon (Si) (Al—Si alloy), and an alloy containing Al as a main component and containing Si and magnesium (Mg) (Al—Si—Mg). Alloy) or an alloy containing Si as a main component and containing Al (Si—Al alloy).
  • the weight ratio of Al may be in the range of 50% to 99%.
  • the weight ratio of Si may be in the range of 0.3% to 50%.
  • the weight ratio of Mg may be in the range of 0.1% to 45%.
  • the weight ratio of Si may be in the range of 50% to 99%.
  • the weight ratio of Al may be in the range of 1% to 50%.
  • the first alloy member 220 may be silmine.
  • the first alloy member 220 may contain Cu, Ni, Mn, Fe, and Zn as additional elements.
  • the weight ratio of Cu is 0 to 6.0 wt%
  • the weight ratio of Ni is 0 to 1.5 wt%
  • the weight ratio of Mn is 0 to 1.5 wt%
  • the weight ratio of Fe is 0 to 1
  • the weight ratio of Zn may be in the range of 0 to 1.5 wt%.
  • the first alloy member 220 may be an alloy containing aluminum.
  • the first alloy member 220 may be an Al—Zn alloy, an Al—Sn alloy, an Al—Mg—Sn alloy, an Al—Mg—Zn alloy, an Al—Si—Sn alloy, or an Al—Sn—Zn alloy. It may be.
  • the Mg weight ratio may be in the range of 0.1-95%.
  • the weight ratio of Zn may be 0.1 to 99%.
  • the weight ratio of Sn may be 0.1 to 99%.
  • the form of the first alloy member 220 is not particularly limited.
  • the first alloy member 220 may have a plate shape or a block shape.
  • the composition of the second alloy member 225 is not particularly limited as long as it has a smaller thermal expansion coefficient than that of the first alloy member 220 and a larger thermal expansion coefficient than that of the ceramic member 230.
  • the second alloy member 225 includes, for example, an alloy containing aluminum (Al) as a main component and containing silicon (Si) (Al—Si alloy), and an alloy containing Al as a main component and containing Si and magnesium (Mg) (Al—Si—Mg). Alloy) or an alloy containing Si as a main component and containing Al (Si—Al alloy).
  • the weight ratio of Al may be in the range of 50% to 99%.
  • the weight ratio of Si may be in the range of 0.3% to 50%.
  • the weight ratio of Mg may be in the range of 0.1% to 45%.
  • the weight ratio of Si may be in the range of 50% to 99%.
  • the weight ratio of Al may be in the range of 1% to 50%.
  • the second alloy member 225 may contain Cu, Ni, Mn, Fe, and Zn as additional elements.
  • the weight ratio of Cu is 0 to 6.0 wt%
  • the weight ratio of Ni is 0 to 1.5 wt%
  • the weight ratio of Mn is 0 to 1.5 wt%
  • the weight ratio of Fe is 0 to 1
  • the weight ratio of Zn may be in the range of 0 to 1.5 wt%.
  • the second alloy member 225 includes, for example, an Al—Zn alloy, an Al—Sn alloy, an Al—Mg—Sn alloy, an Al—Mg—Zn alloy, an Al—Si—Sn alloy, or an Al—Sn—Zn alloy. Either of them may be used.
  • the Mg weight ratio may be in the range of 0.1-95%.
  • the weight ratio of Zn may be 0.1 to 99%.
  • the weight ratio of Sn may be 0.1 to 99%.
  • first alloy member 220 and / or the second alloy member 225 may be one that has once melted and then solidified.
  • the ceramic member 230 is made of a ceramic containing an aluminum component and / or a silicon component.
  • the ceramic member 230 includes at least one of alumina, aluminum nitride, silicon nitride, and aluminosilicate.
  • the crystal form of the ceramic member 230 is not particularly limited, but ⁇ -alumina can be suitably used as the alumina.
  • the shape of the ceramic member 230 is not particularly limited, and the ceramic member 230 may have a shape such as a block, a plate, a rod, or a disk.
  • the first bonding layer 240 can have the following configuration.
  • the first bonding layer 240 may mainly include an amorphous phase containing carbon and silicon, that is, an amorphous phase of a silicon carbide-based compound.
  • the amorphous phase may include, for example, SiC, SiOC, SiCN, SiOCN, AlSiC, AlSiOC, AlSiCN, and / or AlSiOCN.
  • the first bonding layer 240 may further contain a small amount of carbon lump, metal silicon lump, and / or aluminosilicate.
  • the aluminosilicate may be crystalline or amorphous.
  • the amount of carbon in the amorphous phase of the first bonding layer 240 is 8% by weight or more, and the amount of oxygen in the region is less than 30% by weight.
  • Layer containing an aluminosilicate compound The first bonding layer 240 may contain an aluminosilicate compound as a main component.
  • the general formula of the aluminosilicate compound is represented by Al x Si y O z , where 0 ⁇ x ⁇ 3, 0 ⁇ y ⁇ 51, and 0 ⁇ z ⁇ 104.
  • the aluminosilicate compound may be a mixture of alumina and silica.
  • the first bonding layer 240 may contain a small amount of other substances such as a carbon block and / or a metal silicon block in addition to the aluminosilicate compound.
  • the second bonding layer 250 and the third bonding layer 260 may be the same as or different from the first bonding layer 240.
  • the second bonding layer 250 may be the same as or different from the first bonding layer 240.
  • the third bonding layer 260 may be the same as or different from the first bonding layer 240.
  • the third bonding layer 260 may be the same as or different from the second bonding layer 250.
  • the aluminum member 210 and the first alloy member 220 can be suitably joined by the presence of the first joining layer 240. Further, due to the presence of the second bonding layer 250, the second alloy member 225 and the ceramic member 230 can be suitably bonded. Furthermore, the presence of the third bonding layer 260 can favorably bond the first gold member 220 and the second alloy member 225.
  • the presence of the first alloy member 220 and the second alloy member 225 can significantly improve the heat stress characteristics.
  • Examples 1, 3, and 5 to 15 are examples, and examples 2 and 4 are comparative examples.
  • Example 1 A joined body of a ceramic member and an aluminum member was manufactured by the following method.
  • a silicon nitride plate (purity 90% or more, manufactured by JFC) having dimensions of 20 mm long ⁇ 20 mm wide ⁇ 0.32 mm thick was prepared.
  • the content was less than 1 wt%.
  • a commercially available aluminum plate (purity 99% or more, manufactured by 3S Corporation) having dimensions of 20 mm long ⁇ 20 mm wide ⁇ 5 mm thick was prepared.
  • a silmine (Al-12 wt% Si alloy) plate having a length of 20 mm, a width of 20 mm, and a thickness of 0.2 mm was prepared as an alloy member.
  • both surfaces of 20 mm ⁇ 20 mm are referred to as a first surface and a second surface, respectively.
  • coating solution A a commercially available polycarbosilane (NIPUSI Type-A, manufactured by Nippon Carbon Co., Ltd.) was diluted to 0.1 mol / L with a toluene solvent to prepare a coating solution (hereinafter referred to as “coating solution A”).
  • the above-described coating liquid A was applied to the bonded surface (one surface of 20 mm ⁇ 20 mm) of the silicon nitride plate by a spin coating method.
  • the spin coating conditions were a rotation speed of 3000 rps and a rotation time of 30 seconds.
  • the sillmine plate was immersed in the coating liquid A, and the coating liquid A was installed on the entire surface.
  • the silicon nitride plate was placed horizontally on the table so that the surfaces to be joined faced upward.
  • a sillmine plate was installed on the surface to be joined. The sillmine plate was installed so that the second surface faced the bonded surface of the silicon nitride plate.
  • an aluminum plate was installed on the silmine plate. Furthermore, an alumina plate (weight 70 g) having a length of 40 mm, a width of 40 mm, and a thickness of 11 mm was placed on the aluminum plate as a weight.
  • the obtained assembly was heat-treated at 600 ° C. for 1 hour in an argon atmosphere. During processing, it was observed that the sylmine plate was melting.
  • FIG. 5 shows the result of X-ray diffraction analysis in the portion of the bonding layer formed between the silmin plate and the ceramic member. In the analysis result, there is a continuous peak from 20 ° to 40 °, which indicates that the bonding layer has an amorphous phase.
  • the bonding layer contains a small amount of carbon lump and metal silicon lump in addition to the silicon carbide compound constituting the amorphous phase.
  • the silicon carbide-based compound contains AlSiC, AlSiOC, AlSiCN, and AlSiOCN in addition to SiC.
  • Heat resistance test Using the joined body according to Example 1, a heat resistance characteristic test was performed.
  • the heat resistance characteristic test was performed by repeatedly exposing the joined body to an environment of 150 ° C. and ⁇ 40 ° C. Specifically, the operation of holding the joined body in a 150 ° C. environment for 10 seconds and then holding it in a ⁇ 40 ° C. environment for 10 seconds was repeated 100 times.
  • Example 2 A joined body was produced in the same manner as in Example 1.
  • Example 2 no sillmine plate was installed between the silicon nitride plate and the aluminum plate. That is, heat treatment was performed in a state where a silicon nitride plate coated with the coating liquid A on the bonded surface and an aluminum plate were laminated. Application conditions, heat treatment conditions, and the like are the same as in Example 1.
  • Example 3 A joined body of a ceramic member and an aluminum member was manufactured by the following method.
  • an aluminum nitride plate (purity of 90% or more) having dimensions of 20 mm long ⁇ 20 mm wide ⁇ 0.6 mm thick was prepared as a ceramic member.
  • a commercially available aluminum plate (purity 99% or more, manufactured by 3S Corporation) having dimensions of 20 mm long ⁇ 20 mm wide ⁇ 5 mm thick was prepared.
  • a Si—Al alloy (Si-1 wt% Al alloy) plate having a length of 20 mm ⁇ width of 20 mm ⁇ thickness of 0.5 mm was prepared as an alloy member.
  • both surfaces of 20 mm ⁇ 20 mm are referred to as a first surface and a second surface, respectively.
  • the above-described coating liquid A was applied to the surface to be bonded (one surface of 20 mm ⁇ 20 mm) of the aluminum nitride plate by a spin coating method.
  • the spin coating conditions were a rotation speed of 1000 rps and a rotation time of 30 seconds.
  • the Si—Al alloy plate was dipped in the coating solution A, and the coating solution A was installed on the entire surface.
  • the aluminum nitride plate was placed horizontally on the table so that the surfaces to be joined faced upward.
  • a Si—Al alloy plate was installed on the surface to be joined.
  • the Si—Al alloy plate was installed so that the second surface faced the surface to be joined of the aluminum nitride plate.
  • an aluminum plate was placed on the Si—Al alloy plate. Furthermore, an alumina plate (weight 70 g) having a length of 40 mm, a width of 40 mm, and a thickness of 11 mm was placed on the aluminum plate as a weight.
  • the bonding layers formed between the aluminum plate and the Si—Al alloy plate and between the Si—Al alloy plate and the aluminum nitride plate were observed. As a result, no defects such as cracks or voids were observed in any of the bonding layers.
  • Example 4 A joined body was produced in the same manner as in Example 3.
  • Example 3 no Si—Al alloy plate was installed between the aluminum nitride plate and the aluminum plate. That is, heat treatment was performed in a state where the aluminum nitride plate coated with the coating liquid A on the bonded surface and the aluminum plate were laminated.
  • Application conditions, heat treatment conditions, and the like are the same as in Example 1.
  • Example 5 A joined body of a ceramic member and an aluminum member was manufactured by the following method.
  • a silicon nitride plate (purity of 80% or more) having dimensions of 20 mm long ⁇ 20 mm wide ⁇ 0.32 mm thick was prepared.
  • the content was 3 wt% or more.
  • a commercially available aluminum plate (purity 99% or more, manufactured by 3S Corporation) having dimensions of 20 mm long ⁇ 20 mm wide ⁇ 5 mm thick was prepared.
  • a silmine (Al-12 wt% Si alloy) plate having a length of 20 mm, a width of 20 mm, and a thickness of 0.2 mm was prepared as an alloy member.
  • both 20 mm ⁇ 20 mm surfaces of the sillmine plate are referred to as a first surface and a second surface, respectively.
  • coating solution B a commercially available polymethylphenylsiloxane (KF-54: manufactured by Shin-Etsu Chemical Co., Ltd.) was diluted to 0.1 mol / L with a toluene solvent to prepare a coating solution (hereinafter referred to as “coating solution B”).
  • coating solution B a coating solution
  • the aforementioned coating liquid B was applied to the bonded surface (one surface of 20 mm ⁇ 20 mm) of the silicon nitride plate by a spin coating method.
  • the spin coating conditions were a rotation speed of 3000 rps and a rotation time of 30 seconds.
  • the sillmine plate was dipped in the coating solution B, and the coating solution B was installed on the entire surface.
  • the silicon nitride plate was placed horizontally on the table so that the surfaces to be joined faced upward. Moreover, the sirmine board was installed in the to-be-joined surface. The sillmine plate was installed so that the second surface faced the bonded surface of the silicon nitride plate.
  • an aluminum plate was installed on the silmine plate. Furthermore, an alumina plate (weight: about 70 g) having a length of 40 mm, a width of 40 mm, and a thickness of 11 mm was placed on the aluminum plate as a weight.
  • the bonding layer formed between the aluminum plate and the sillmine plate and between the sillmine plate and the silicon nitride plate was observed. As a result, no defects such as cracks or voids were observed in any of the bonding layers.
  • the heat resistance characteristic test described above was performed using the joined body according to Example 5.
  • no abnormality such as peeling or damage was observed in any part, and the joined body according to Example 5 was in a healthy state.
  • Example 6 A joined body of a ceramic member and an aluminum member was manufactured by the following method.
  • a silicon nitride plate (purity of 90% or more) having dimensions of 20 mm long ⁇ 20 mm wide ⁇ 0.32 mm thick was prepared as a ceramic member.
  • the content was 3 wt% or more.
  • a commercially available aluminum plate (purity 99% or more, manufactured by 3S Corporation) having dimensions of 20 mm long ⁇ 20 mm wide ⁇ 5 mm thick was prepared.
  • a silmine (Al-12 wt% Si alloy) plate having a length of 20 mm, a width of 20 mm, and a thickness of 0.2 mm was prepared as an alloy member.
  • both 20 mm ⁇ 20 mm surfaces of the sillmine plate are referred to as a first surface and a second surface, respectively.
  • the aforementioned coating liquid B was applied to the bonded surface (one surface of 20 mm ⁇ 20 mm) of the silicon nitride plate by a spin coating method.
  • the spin coating conditions were a rotation speed of 3000 rps and a rotation time of 30 seconds.
  • the sillmine plate was dipped in the coating solution B, and the coating solution B was installed on the entire surface.
  • the silicon nitride plate was placed horizontally on the table so that the surfaces to be joined faced upward. Moreover, the sirmine board was installed in the to-be-joined surface. The sillmine plate was installed so that the second surface faced the bonded surface of the silicon nitride plate.
  • an aluminum plate was installed on the silmine plate. Further, an alumina plate (weight: about 35 g) having a length of 30 mm, a width of 30 mm, and a thickness of 10 mm was placed on the aluminum plate as a weight.
  • This heat treatment temperature is a temperature exceeding the melting point of the silmine plate.
  • the bonding layer formed between the aluminum plate and the sillmine plate and between the sillmine plate and the silicon nitride plate was observed. As a result, no defects such as cracks or voids were observed in any of the bonding layers.
  • the heat resistance characteristic test described above was performed using the joined body according to Example 6.
  • no abnormality such as peeling or damage was observed in any part, and the joined body according to Example 6 was in a healthy state.
  • Example 7 A joined body of a ceramic member and an aluminum member was manufactured by the following method.
  • a silicon nitride plate (purity of 90% or more) having dimensions of 20 mm long ⁇ 20 mm wide ⁇ 0.32 mm thick was prepared as a ceramic member.
  • the content was less than 1 wt%.
  • a commercially available aluminum plate (purity 99% or more, manufactured by 3S Corporation) having dimensions of 20 mm long ⁇ 20 mm wide ⁇ 5 mm thick was prepared.
  • a silmine (Al-12 wt% Si alloy) plate having a length of 20 mm, a width of 20 mm, and a thickness of 0.5 mm was prepared as an alloy member.
  • both 20 mm ⁇ 20 mm surfaces of the sillmine plate are referred to as a first surface and a second surface, respectively.
  • the above-described coating liquid A was applied to the bonded surface (one surface of 20 mm ⁇ 20 mm) of the silicon nitride plate by a spin coating method.
  • the spin coating conditions were a rotation speed of 3000 rps and a rotation time of 30 seconds.
  • the sillmine plate was immersed in the coating liquid A, and the coating liquid A was installed on the entire surface.
  • the silicon nitride plate was placed horizontally on the table so that the surfaces to be joined faced upward. Moreover, the sirmine board was installed in the to-be-joined surface. The Al—Si alloy plate was installed so that the second surface faced the surface to be bonded of the silicon nitride plate.
  • an aluminum plate was installed on the silmine plate. Furthermore, an alumina block (weight: about 70 g) having a length of 40 mm, a width of 40 mm, and a thickness of 11 mm was placed on the aluminum plate as a weight.
  • the bonding layer formed between the aluminum plate and the sillmine plate and between the sillmine plate and the silicon nitride plate was observed. As a result, no defects such as cracks or voids were observed in any of the bonding layers.
  • the heat resistance characteristic test described above was performed using the joined body according to Example 7.
  • no abnormality such as peeling or damage was observed in any part, and the joined body according to Example 7 was in a healthy state.
  • Example 8 A joined body of a ceramic member and an aluminum member was manufactured by the following method.
  • an alumina plate (purity 99% or more) having dimensions of 20 mm long ⁇ 20 mm wide ⁇ 1 mm thick was prepared as a ceramic member.
  • an aluminum member a commercially available aluminum plate (purity 99% or more, manufactured by 3S Corporation) having dimensions of 20 mm long ⁇ 20 mm wide ⁇ 5 mm thick was prepared. Furthermore, an Al—Si—Mg (0.3 wt% Si, 4.9 wt% Mg) plate having a length of 20 mm ⁇ width of 20 mm ⁇ thickness of 2 mm was prepared as an alloy member.
  • both 20 mm ⁇ 20 mm surfaces of the Al—Si—Mg plate are referred to as a first surface and a second surface, respectively.
  • the above-mentioned coating liquid A was applied to the surface to be joined (one surface of 20 mm ⁇ 20 mm) of the alumina plate by a spin coating method.
  • the spin coating conditions were a rotation speed of 500 rpm and a rotation time of 30 seconds.
  • the Al—Si—Mg alloy plate was dipped in the coating solution A, and the coating solution A was installed on the entire surface.
  • the alumina plate was placed horizontally on the table so that the surfaces to be joined faced upward.
  • an Al—Si—Mg alloy plate was installed on the surface to be joined.
  • the Al—Si alloy plate was placed so that the second surface faced the surface to be joined of the alumina plate.
  • an aluminum plate was placed on the Al—Si—Mg alloy plate. Furthermore, an alumina block (weight: about 70 g) having a length of 40 mm, a width of 40 mm, and a thickness of 11 mm was placed on the aluminum plate as a weight.
  • the bonding layers formed between the aluminum plate and the Al—Si—Mg plate and between the Al—Si—Mg plate and the alumina plate were observed. As a result, no defects such as cracks or voids were observed in any of the bonding layers.
  • the heat resistance characteristic test described above was performed using the joined body according to Example 8.
  • no abnormality such as peeling or damage was observed in any part, and the joined body according to Example 8 was in a healthy state.
  • a silicon nitride plate (purity of 90% or more) having dimensions of 20 mm long ⁇ 20 mm wide ⁇ 0.32 mm thick was prepared as a ceramic member.
  • the content was less than 1 wt%.
  • a commercially available aluminum plate (purity 99% or more, manufactured by 3S Corporation) having dimensions of 20 mm long ⁇ 20 mm wide ⁇ 5 mm thick was prepared.
  • a silmine (Al-12 wt% Si alloy) plate having a length of 20 mm, a width of 20 mm, and a thickness of 0.08 mm was prepared as an alloy member.
  • both 20 mm ⁇ 20 mm surfaces of the sillmine plate are referred to as a first surface and a second surface, respectively.
  • coating solution C a commercially available polysilane (SI-20-10, manufactured by Osaka Gas Chemical) was diluted to 0.1 mol / L with a toluene solvent to prepare a coating solution (hereinafter referred to as “coating solution C”).
  • the aforementioned coating liquid C was applied to the bonded surface (one surface of 20 mm ⁇ 20 mm) of the silicon nitride plate by a spin coating method.
  • the spin coating conditions were a rotation speed of 1000 rps and a rotation time of 30 seconds.
  • the sillmine plate was immersed in the coating liquid C, and the coating liquid C was installed on the entire surface.
  • the silicon nitride plate was placed horizontally on the table so that the surfaces to be joined faced upward. Moreover, the sirmine board was installed in the to-be-joined surface. The sillmine plate was installed so that the second surface faced the bonded surface of the silicon nitride plate.
  • an aluminum plate was installed on the silmine plate. Furthermore, an alumina block (weight: about 70 g) having a length of 40 mm, a width of 40 mm, and a thickness of 11 mm was placed on the aluminum plate as a weight.
  • the bonding layer formed between the aluminum plate and the sillmine plate and between the sillmine plate and the silicon nitride plate was observed. As a result, no defects such as cracks or voids were observed in any of the bonding layers.
  • the heat resistance characteristic test described above was performed using the joined body according to Example 9.
  • no abnormality such as peeling or damage was observed in any part, and the joined body according to Example 9 was in a healthy state.
  • Example 10 A joined body of a ceramic member and an aluminum member was manufactured by the following method.
  • a silicon nitride plate (purity of 90% or more) having dimensions of 20 mm long ⁇ 20 mm wide ⁇ 0.32 mm thick was prepared as a ceramic member.
  • the content was less than 1 wt%.
  • a commercially available aluminum plate (purity 99% or more, manufactured by 3S Corporation) having dimensions of 20 mm long ⁇ 20 mm wide ⁇ 5 mm thick was prepared.
  • a silmine (Al-12 wt% Si alloy) plate having a length of 20 mm, a width of 20 mm, and a thickness of 0.2 mm was prepared as an alloy member.
  • both 20 mm ⁇ 20 mm surfaces of the sillmine plate are referred to as a first surface and a second surface, respectively.
  • the above-described coating liquid A was applied to the bonded surface of the silicon nitride plate (one surface of 20 mm ⁇ 20 mm) by dipping. Thereafter, alumina powder (AS-40, manufactured by Showa Denko) was thinly sprayed on the surface of the coating solution.
  • the sillmine plate was immersed in the coating liquid A, and the coating liquid A was installed on the entire surface.
  • the silicon nitride plate was placed horizontally on the table so that the surfaces to be joined faced upward. Moreover, the sirmine board was installed in the to-be-joined surface. The sillmine plate was installed so that the second surface faced the bonded surface of the silicon nitride plate.
  • an aluminum plate was installed on the silmine plate. Furthermore, an alumina block (weight: about 70 g) having a length of 40 mm, a width of 40 mm, and a thickness of 11 mm was placed on the aluminum plate as a weight.
  • the bonding layer formed between the aluminum plate and the sillmine plate and between the sillmine plate and the silicon nitride plate was observed. As a result, no defects such as cracks or voids were observed in any of the bonding layers.
  • the heat resistance characteristic test described above was performed using the joined body according to Example 10.
  • no abnormality such as peeling or damage was observed in any part, and the joined body according to Example 10 was in a healthy state.
  • Example 11 A joined body of a ceramic member and an aluminum member was manufactured by the following method.
  • a silicon nitride plate (purity of 90% or more) having dimensions of 20 mm long ⁇ 20 mm wide ⁇ 0.32 mm thick was prepared as a ceramic member.
  • the content was less than 1 wt%.
  • a commercially available aluminum plate (purity 99% or more, manufactured by 3S Corporation) having dimensions of 20 mm long ⁇ 20 mm wide ⁇ 5 mm thick was prepared.
  • a silmine (Al-12 wt% Si alloy) plate having a length of 20 mm, a width of 20 mm, and a thickness of 0.2 mm was prepared as an alloy member.
  • both 20 mm ⁇ 20 mm surfaces of the sillmine plate are referred to as a first surface and a second surface, respectively.
  • the above-described coating liquid A was applied to the bonded surface of the silicon nitride plate (one surface of 20 mm ⁇ 20 mm) by dipping. Thereafter, silicon carbide powder (GC # 1000, manufactured by Fujimi Incorporated) was thinly sprayed on the surface of the coating liquid.
  • silicon carbide powder GC # 1000, manufactured by Fujimi Incorporated
  • the sillmine plate was immersed in the coating liquid A, and the coating liquid A was installed on the entire surface.
  • the silicon nitride plate was placed horizontally on the table so that the surfaces to be joined faced upward. Moreover, the sirmine board was installed in the to-be-joined surface. The sillmine plate was installed so that the second surface faced the bonded surface of the silicon nitride plate.
  • an aluminum plate was installed on the silmine plate. Furthermore, an alumina block (weight: about 70 g) having a length of 40 mm, a width of 40 mm, and a thickness of 11 mm was placed on the aluminum plate as a weight.
  • the bonding layer formed between the aluminum plate and the sillmine plate and between the sillmine plate and the silicon nitride plate was observed. As a result, no defects such as cracks or voids were observed in any of the bonding layers.
  • the heat resistance characteristic test described above was performed using the joined body according to Example 11.
  • no abnormality such as peeling or damage was observed in any part, and the joined body according to Example 11 was in a healthy state.
  • Example 12 A joined body of a ceramic member and an aluminum member was manufactured by the following method.
  • a silicon nitride plate (purity of 90% or more) having dimensions of 20 mm long ⁇ 20 mm wide ⁇ 0.32 mm thick was prepared as a ceramic member.
  • the content was less than 1 wt%.
  • a commercially available aluminum plate (purity 99% or more, manufactured by 3S Corporation) having dimensions of 20 mm long ⁇ 20 mm wide ⁇ 5 mm thick was prepared.
  • a silmine (Al-12 wt% Si alloy) plate having a length of 20 mm, a width of 20 mm, and a thickness of 0.2 mm was prepared as an alloy member.
  • both 20 mm ⁇ 20 mm surfaces of the sillmine plate are referred to as a first surface and a second surface, respectively.
  • the above-described coating liquid A was applied to the bonded surface of the silicon nitride plate (one surface of 20 mm ⁇ 20 mm) by dipping. Thereafter, a metal silicon powder prepared by crushing a silicon wafer (SI-500443, manufactured by Niraco) was thinly sprayed on the surface of the coating solution.
  • the sillmine plate was immersed in the coating liquid A, and the coating liquid A was installed on the entire surface.
  • the silicon nitride plate was placed horizontally on the table so that the surfaces to be joined faced upward. Moreover, the sirmine board was installed in the to-be-joined surface. The sillmine plate was installed so that the second surface faced the bonded surface of the silicon nitride plate.
  • an aluminum plate was installed on the silmine plate. Furthermore, an alumina block (weight: about 70 g) having a length of 40 mm, a width of 40 mm, and a thickness of 11 mm was placed on the aluminum plate as a weight.
  • the bonding layer formed between the aluminum plate and the sillmine plate and between the sillmine plate and the silicon nitride plate was observed. As a result, no defects such as cracks or voids were observed in any of the bonding layers.
  • the heat resistance characteristic test described above was performed using the joined body according to Example 12.
  • no abnormality such as peeling or damage was observed in any part, and the joined body according to Example 12 was in a healthy state.
  • Example 13 A joined body of a ceramic member and an aluminum member was manufactured by the following method.
  • a silicon nitride plate (purity of 90% or more) having dimensions of 20 mm long ⁇ 20 mm wide ⁇ 0.32 mm thick was prepared as a ceramic member.
  • the content was less than 1 wt%.
  • an aluminum member a commercially available aluminum plate (purity 99% or more, manufactured by 3S Corporation) having dimensions of 20 mm long ⁇ 20 mm wide ⁇ 5 mm thick was prepared. Further, an Al—Zn alloy sheet (RZ-203, manufactured by Shin Fuji Burner) rolled to 20 mm long ⁇ 20 mm wide ⁇ 0.2 mm thick was prepared as an alloy member.
  • both 20 mm ⁇ 20 mm surfaces of the Al—Zn alloy plate are referred to as a first surface and a second surface, respectively.
  • the above-described coating liquid A was applied to the bonded surface of the silicon nitride plate (one surface of 20 mm ⁇ 20 mm) by dipping. Thereafter, a metal silicon powder prepared by crushing a silicon wafer (SI-500443, manufactured by Niraco) was thinly sprayed on the surface of the coating solution.
  • the Al—Zn alloy plate was dipped in the coating solution A, and the coating solution A was installed on the entire surface.
  • the silicon nitride plate was placed horizontally on the table so that the surfaces to be joined faced upward.
  • an Al—Zn alloy plate was installed on the surface to be joined.
  • the Al—Zn alloy plate was placed so that the second surface faces the bonded surface of the silicon nitride plate.
  • an aluminum plate was placed on the Al—Zn alloy plate. Furthermore, an alumina block (weight: about 70 g) having a length of 40 mm, a width of 40 mm, and a thickness of 11 mm was placed on the aluminum plate as a weight.
  • the bonding layers formed between the aluminum plate and the Al—Zn alloy plate and between the Al—Zn alloy plate and the silicon nitride plate were observed. As a result, no defects such as cracks or voids were observed in any of the bonding layers.
  • the heat resistance characteristic test described above was performed using the joined body according to Example 13.
  • no abnormality such as peeling or damage was observed in any part, and the joined body according to Example 13 was in a healthy state.
  • Example 14 A joined body of a ceramic member and an aluminum member was manufactured by the following method.
  • a silicon nitride plate (purity of 90% or more) having dimensions of 20 mm long ⁇ 20 mm wide ⁇ 0.32 mm thick was prepared as a ceramic member.
  • the content was less than 1 wt%.
  • an aluminum member a commercially available aluminum plate (purity 99% or more, manufactured by 3S Corporation) having dimensions of 20 mm long ⁇ 20 mm wide ⁇ 5 mm thick was prepared.
  • an alloy member an Al—Sn alloy plate produced by a known method, which was rolled to a length of 20 mm ⁇ width of 20 mm ⁇ thickness of 0.2 mm, was prepared.
  • both the 20 mm ⁇ 20 mm surfaces of the Al—Sn alloy plate are referred to as a first surface and a second surface, respectively.
  • the above-described coating liquid A was applied to the bonded surface of the silicon nitride plate (one surface of 20 mm ⁇ 20 mm) by dipping. Thereafter, a metal silicon powder prepared by crushing a silicon wafer (SI-500443, manufactured by Niraco) was thinly sprayed on the surface of the coating solution.
  • the Al—Sn alloy plate was dipped in the coating solution A, and the coating solution A was installed on the entire surface.
  • the silicon nitride plate was placed horizontally on the table so that the surfaces to be joined faced upward. Also, an Al—Sn alloy plate was installed on the surface to be joined. The Al—Sn alloy plate was placed so that the second surface faces the surface to be bonded of the silicon nitride plate.
  • an aluminum plate was placed on the Al—Sn alloy plate. Furthermore, an alumina block (weight: about 70 g) having a length of 40 mm, a width of 40 mm, and a thickness of 11 mm was placed on the aluminum plate as a weight.
  • the bonding layers formed between the aluminum plate and the Al—Sn alloy plate and between the Al—Sn alloy plate and the silicon nitride plate were observed. As a result, no defects such as cracks or voids were observed in any of the bonding layers.
  • the heat resistance characteristic test described above was performed using the joined body according to Example 14.
  • no abnormality such as peeling or damage was observed in any part, and the joined body according to Example 14 was in a healthy state.
  • Example 15 A joined body of a ceramic member and an aluminum member was manufactured by the following method.
  • a silicon nitride plate (purity of 90% or more) having dimensions of 20 mm long ⁇ 20 mm wide ⁇ 0.32 mm thick was prepared as a ceramic member.
  • the content was less than 1 wt%.
  • an aluminum member a commercially available aluminum plate (purity 99% or more, manufactured by 3S Corporation) having dimensions of 20 mm long ⁇ 20 mm wide ⁇ 5 mm thick was prepared.
  • an alloy member an Al—Si—Sn alloy plate produced by a known method, rolled to 20 mm long ⁇ 20 mm wide ⁇ 0.2 mm thick, was prepared.
  • both 20 mm ⁇ 20 mm surfaces of the Al—Si—Sn alloy plate are referred to as a first surface and a second surface, respectively.
  • the above-described coating liquid A was applied to the bonded surface of the silicon nitride plate (one surface of 20 mm ⁇ 20 mm) by dipping. Thereafter, a metal silicon powder prepared by crushing a silicon wafer (SI-500443, manufactured by Niraco) was thinly sprayed on the surface of the coating solution.
  • the Al—Si—Sn alloy plate was dipped in the coating solution A, and the coating solution A was installed on the entire surface.
  • the silicon nitride plate was placed horizontally on the table so that the surfaces to be joined faced upward. Further, an Al—Si—Sn alloy plate was installed on the surface to be joined. The Al—Si—Sn alloy plate was placed so that the second surface faces the surface to be joined of the silicon nitride plate.
  • an aluminum plate was placed on the Al—Si—Sn alloy plate. Furthermore, an alumina block (weight: about 70 g) having a length of 40 mm, a width of 40 mm, and a thickness of 11 mm was placed on the aluminum plate as a weight.
  • the bonding layers formed between the aluminum plate and the Al—Si—Sn alloy plate and between the Al—Si—Sn alloy plate and the silicon nitride plate were observed. As a result, no defects such as cracks or voids were observed in any of the bonding layers.
  • the heat resistance characteristic test described above was performed using the joined body according to Example 15.
  • no abnormality such as peeling or damage was observed in any part, and the joined body according to Example 15 was in a healthy state.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Products (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

本接合体の製造方法は、(a)アルミニウム部材、セラミックス部材、ならびにケイ素およびアルミニウムを含む合金部材を準備するステップであって、前記合金部材の熱膨張係数は、前記アルミニウム部材よりも小さく、前記セラミックス部材よりも大きい、ステップと、(b)アルミニウム部材の被接合面および合金部材の第1の表面の少なくとも一方に、第1の接合材を設置するとともに、セラミックス部材の被接合面および合金部材の第2の表面の少なくとも一方に、第2の接合材を設置する、ステップと、(c)アルミニウム部材、合金部材、およびセラミックス部材を、この順に積層し、組立体を構成するステップと、(d)前記組立体を、不活性ガス雰囲気下または真空雰囲気下、400℃~800℃の温度で加熱するステップと、を有する。

Description

接合体の製造方法および接合体
 本発明は、アルミニウム部材とセラミックス部材とが接合された接合体の製造方法、およびそのような接合体に関する。
 セラミックス部材と金属部材とを接合する技術には、多くの需要がある。しかしながら、セラミックス部材と金属部材の組み合わせ如何では、接合が難しい場合があることが知られている。
 例えば、アルミナとアルミニウム部材を適正に接合させることが難しいことは、当業者には良く知られている。
 これは、アルミニウム部材の表面には、セラミックス部材との接合を妨害する酸化膜(アルミナ層)が存在するためであると考えられる。すなわち、接合過程において、アルミニウム部材の表面に存在する酸化膜によって、アルミニウム部材とセラミックス部材の間に良好な親和性、さらには良好な密着性が得られず、これにより両者の間で良好な接合状態を形成することができないものと考えられる。
 このような背景の下、最近、アルミニウム部材とセラミックス部材を接合する新たな方法が提案されている(特許文献1)。
特開2014-196233号公報
 特許文献1に記載の方法では、アルミニウム部材とセラミックス部材の間にシロキサン系ポリマーを設置した状態で、両者を加熱することにより、アルミニウム部材とセラミックス部材を接合することができる。
 しかしながら、元来、アルミニウム部材とセラミックス部材では、熱膨張係数の差が比較的大きいという問題がある。このため、前述の方法により、アルミニウム部材とセラミックス部材を接合することができたとしても、そのような接合体は、例えば使用中に、熱応力を受けた際に、破損する可能性がある。
 本発明は、このような背景に鑑みなされたものであり、本発明では、熱応力を受けても比較的破損が生じ難い、アルミニウム部材とセラミックス部材の接合体の製造方法を提供することを目的とする。また、本発明では、熱応力を受けても比較的破損が生じ難い、アルミニウム部材とセラミックス部材の接合体を提供することを目的とする。
 本発明では、アルミニウム部材とセラミックス部材とを有する接合体の製造方法であって、
 (a)アルミニウム部材、アルミニウムおよび/またはケイ素を含有するセラミックス部材、ならびにアルミニウムを含む第1の合金部材を準備するステップであって、
  前記第1の合金部材は、第1および第2の表面を有し、
  前記第1の合金部材の熱膨張係数は、前記アルミニウム部材よりも小さく、前記セラミックス部材よりも大きい、ステップと、
 (b)前記アルミニウム部材の被接合面および前記第1の合金部材の第1の表面の少なくとも一方に、第1の接合材を設置するとともに、前記セラミックス部材の被接合面および前記第1の合金部材の第2の表面の少なくとも一方に、第2の接合材を設置する、ステップであって、
  前記第1および第2の接合材は、それぞれ独立に、
(i)主鎖がSi-C-Si基およびSi-N-Si基の少なくとも一つを有する有機ケイ素系ポリマー、
(ii)主鎖がSi-O-Si基を有する有機ケイ素系ポリマー、
(iii)炭素粉末含有シリカゾル、ならびに
(iv)主鎖がSi-Si基を有する有機ケイ素系ポリマー、
 の少なくとも一つの化合物を有する、ステップと、
 (c)前記アルミニウム部材、前記第1の合金部材、および前記セラミックス部材を、この順に積層し、組立体を構成するステップであって、
  前記第1の合金部材は、前記第1の表面の側が前記アルミニウム部材の被接合面と対面し、前記第2の表面の側が前記セラミックス部材の被接合面と対面するように配置される、ステップと、
 (d)前記組立体を、不活性ガス雰囲気下または真空雰囲気下、400℃~800℃の温度で加熱するステップと、
 を有する製造方法が提供される。
 また、本発明では、アルミニウム部材とセラミックス部材とを有する接合体の製造方法であって、
 (a)アルミニウム部材、アルミニウムおよび/またはケイ素を含有するセラミックス部材、アルミニウムを含む第1の合金部材、ならびにアルミニウムを含む第2の合金部材を準備するステップであって、
  前記第1の合金部材は、第1および第2の表面を有し、
  前記第2の合金部材は、第3および第4の表面を有し、
  前記第1および第2の合金部材の熱膨張係数は、それぞれ、前記アルミニウム部材よりも小さく、前記セラミックス部材よりも大きく、
  前記第2の合金部材の熱膨張係数は、前記第1の合金部材の熱膨張係数よりも小さい、ステップと、
 (b)前記アルミニウム部材の被接合面および前記第1の合金部材の第1の表面の少なくとも一方に、第1の接合材を設置し、前記セラミックス部材の被接合面および前記第2の合金部材の第4の表面の少なくとも一方に、第2の接合材を設置し、前記第1の合金部材の第2の表面および前記第2の合金部材の第3の表面の少なくとも一方に、第3の接合材を設置する、ステップであって、
  前記第1、第2、および第3の接合材は、それぞれ独立に、
(i)主鎖がSi-C-Si基およびSi-N-Si基の少なくとも一つを有する有機ケイ素系ポリマー、
(ii)主鎖がSi-O-Si基を有する有機ケイ素系ポリマー、
(iii)炭素粉末含有シリカゾル、ならびに
(iv)主鎖がSi-Si基を有する有機ケイ素系ポリマー、
 の少なくとも一つを有する、ステップと、
 (c)前記アルミニウム部材、前記第1の合金部材、前記第2の合金部材、および前記セラミックス部材を、この順に積層し、組立体を構成するステップであって、
  前記第1の合金部材は、前記第1の表面の側が前記アルミニウム部材の被接合面と対面するように配置され、前記第2の合金部材は、前記第4の表面が前記セラミックス部材の被接合面と対面するように配置される、ステップと、
 (d)前記組立体を、不活性ガス雰囲気下または真空雰囲気下、400℃~800℃の温度で加熱するステップと、
 を有する製造方法が提供される。
 さらに、本発明では、アルミニウム部材と、アルミニウムおよび/またはケイ素を含有するセラミックス部材と、を含む接合体であって、
 さらに、前記アルミニウム部材と前記セラミックス部材との間に、第1の合金部材を有し、
 前記第1の合金部材は、第1の側および第2の側を有し、前記第1の側は、前記第2の側よりも前記アルミニウム部材に近く、
 前記第1の合金部材は、アルミニウムを含み、
 前記第1の合金部材の熱膨張係数は、前記アルミニウム部材よりも小さく、前記セラミックス部材よりも大きく、
 前記第1の合金部材の前記第1の側には、第1の接合層が存在し、
 前記第1の合金部材の前記第2の側には、第2の接合層が存在し、
 前記第1および第2の接合層は、それぞれ、
(I)炭素およびケイ素を含むアモルファス相であって、炭素量が8重量%以上であり、酸素量が30重量%未満である、アモルファス相、ならびに/または
(II)アルミノシリケート、
 を含む、接合体が提供される。
 本発明では、本発明では、熱応力を受けても比較的破損が生じ難い、アルミニウム部材とセラミックス部材の接合体の製造方法を提供することができる。また、本発明では、熱応力を受けても比較的破損が生じ難い、アルミニウム部材とセラミックス部材の接合体を提供することができる。
本発明の一実施例によるアルミニウム部材とセラミックス部材を含む接合体の製造方法のフローを概略的に示した図である。 本発明の一実施例によるアルミニウム部材とセラミックス部材を含む接合体の別の製造方法のフローを概略的に示した図である。 本発明の一実施例によるアルミニウム部材とセラミックス部材を含む接合体のさらに別の製造方法のフローを概略的に示した図である。 本発明の一実施例による接合体の概略的な構成を示した断面図である。 本発明の一実施例による別の接合体の概略的な構成を示した断面図である。 例1に係る接合体における、シルミン板とセラミックス部材の間の接合層のX線回折(XRD)分析の結果を示す図である。
 以下、本発明について詳しく説明する。
 前述のように、アルミニウム部材の表面には、セラミックス部材との接合を妨害する酸化膜(アルミナ層)が存在するため、セラミックス部材とアルミニウム部材を適正に接合させることは難しいという問題がある。
 この問題に関連して、本願発明者らは、これまでに、アルミニウム部材とセラミックス部材の間にシロキサン系ポリマーを設置した状態で、両者を加熱することにより、セラミックス部材とセラミックス部材とを接合できることを見出している(例えば特許文献1)。
 しかしながら、元来、アルミニウム部材とセラミックス部材とでは、熱膨張係数の差が比較的大きいという問題がある。このため、前述の方法により、アルミニウム部材とセラミックス部材とを接合することができたとしても、そのような接合体は、例えば使用中に、熱応力を受けた際に、破損する可能性がある。
 このような問題意識の下、本願発明者らは、アルミニウム部材とセラミックス部材の接合方法に関する研究をさらに推し進めてきた。その結果、アルミニウム部材とセラミックス部材の接合体の熱応力に対する耐性を有意に改善できる方策を見出し、本願発明に至った。
 すなわち、本発明の一実施形態では、アルミニウム部材とセラミックス部材とを有する接合体の製造方法であって、
 (a)アルミニウム部材、アルミニウムおよび/またはケイ素を含有するセラミックス部材、ならびにケイ素およびアルミニウムを含む第1の合金部材を準備するステップであって、
  前記第1の合金部材は、第1および第2の表面を有し、
  前記第1の合金部材の熱膨張係数は、前記アルミニウム部材よりも小さく、前記セラミックス部材よりも大きい、ステップと、
 (b)前記アルミニウム部材の被接合面および前記第1の合金部材の第1の表面の少なくとも一方に、第1の接合材を設置するとともに、前記セラミックス部材の被接合面および前記第1の合金部材の第2の表面の少なくとも一方に、第2の接合材を設置する、ステップであって、
  前記第1および第2の接合材は、それぞれ独立に、
(i)主鎖がSi-C-Si基およびSi-N-Si基の少なくとも一つを有する有機ケイ素系ポリマー、
(ii)主鎖がSi-O-Si基を有する有機ケイ素系ポリマー、
(iii)炭素粉末含有シリカゾル、ならびに
(iv)主鎖がSi-Si基を有する有機ケイ素系ポリマー、
 の少なくとも一つの化合物を有する、ステップと、
 (c)前記アルミニウム部材、前記第1の合金部材、および前記セラミックス部材を、この順に積層し、組立体を構成するステップであって、
  前記第1の合金部材は、前記第1の表面の側が前記アルミニウム部材の被接合面と対面し、前記第2の表面の側が前記セラミックス部材の被接合面と対面するように配置される、ステップと、
 (d)前記組立体を、不活性ガス雰囲気下または真空雰囲気下、400℃~800℃の温度で加熱するステップと、
 を有する製造方法が提供される。
 本発明の一実施形態では、アルミニウム部材とセラミックス部材とを有する接合体を製造する際に、両者の間に合金部材が介在される。この合金部材は、アルミニウム部材よりも小さな熱膨張係数であって、セラミックス部材よりも大きな熱膨張係数を有する。このような合金部材は、接合体が熱応力を受けた際に、応力緩和層として機能できる。
 従って、本発明の一実施形態による製造方法で製造された接合体は、熱応力を受けても、接合体の破損を有意に抑制することができる。
 ただし、本発明の一実施形態では、前記合金部材は、ケイ素およびアルミニウムを含む。従って、この合金部材は、接合処理の際に、アルミニウム部材に近い挙動を示す。このため、単に、アルミニウム部材とセラミックス部材との間に、そのような合金部材を配置しただけでは、熱処理を実施しても、合金部材の表面の前述のような酸化膜の存在により、各部材が良好に接合された接合体を得ることは難しい。
 これに対して、本発明の一実施形態では、接合処理の際に、合金部材の両側に、特定の材料群から選定された接合材が設置される。この状態で加熱すると、後述するように、接合材がアルミニウム部材と合金部材、および該合金部材とセラミックス部材とを接合する接着剤としての機能を発揮する。その結果、本発明の一実施形態による接合体の製造方法では、間に合金部材を介在させた状態で、アルミニウム部材とセラミックス部材とを、適正に接合することができる。
 このように、本発明の一実施形態では、アルミニウム部材とセラミックス部材とを、適正に接合することができる上、得られた接合体の耐熱応力特性を向上させることができる。
 なお、本願では、アルミニウム部材と合金部材とを合わせて、「金属部材」と称する場合がある。
 ここで、本発明の一実施形態では、接合材は、以下の材料(i)~(iv)の少なくとも一つを含む:
(i)主鎖がSi-C-Si基およびSi-N-Si基の少なくとも一つを有する有機ケイ素系ポリマー、
(ii)主鎖がSi-O-Si基を有する有機ケイ素系ポリマー、
(iii)炭素粉末含有シリカゾル、ならびに
(iv)主鎖がSi-Si基を有する有機ケイ素系ポリマー。
 このうち、(i)の有機ケイ素系ポリマーは、炭素原子を含む。この炭素原子は、高温状態において、金属部材の表面に形成されている酸化膜を還元したり、酸化膜を不安定な状態する役割を果たす。従って、(i)を含む接合材を使用した場合、炭素原子の働きにより、金属部材の表面を覆う酸化膜のバリア性を低下させ、金属部材を活性化、すなわち反応しやすい状態にさせることができる。
 また、(i)の有機ケイ素系ポリマーは、主鎖がSi-C-Si基およびSi-N-Si基の少なくとも一つを有する。従って、(i)のような主鎖を有する有機ケイ素系ポリマーは、不活性雰囲気下で加熱すると、ケイ素と炭素を含む化合物に変化する。このケイ素と炭素を含む化合物は、高温環境において、酸化膜のバリア機能が低下した、いわゆる「活性な」金属部材と反応することができる。
 また、本発明の一実施形態では、セラミックス部材として、アルミニウムおよび/またはケイ素を含有するセラミックス部材が使用される。そのようなセラミックス部材は、前述のケイ素と炭素を含む化合物に対して親和性を有する。
 従って、アルミニウム部材と合金部材の間、および合金部材とセラミックス部材との間に、前述のような接合材を介在させて、低酸素雰囲気下で熱処理を実施した場合、接合材中に含まれる炭素原子によって、金属部材の表面に存在する酸化膜の一部が還元される。あるいは、金属部材の表面に存在する酸化膜が不完全な状態となる。これにより、金属部材が活性化される。
 また、接合材を加熱した際に生じる反応成分、すなわち前述のようなケイ素と炭素を含む化合物は、活性化された金属部材と反応し、その結果、接合材が接合層に変化する。通常の場合、得られる接合層は、炭化ケイ素系化合物を含む。
 ここで、炭化ケイ素系化合物には、例えば、SiC、SiOC、SiCN、SiOCN、AlSiC、AlSiOC、AlSiCN、および/またはAlSiOCN等が含まれる。炭化ケイ素系化合物は、アモルファス(ガラス)相として形成される場合が多い。
 このような接合層の存在により、セラミック部材が接合層と強固に密着されるとともに、アルミニウム部材および合金部材も接合層と強固に密着される。その結果、アルミニウム部材、合金部材、およびセラミックス部材は、接合層を介して接合される。
 以上のような現象により、本発明による接合方法では、アルミニウム部分、合金部材、およびセラミックス部材の三者間で、良好な接合を得ることができる。
 一方、接合材が(ii)~(iv)を含む場合も、同様に考えられる。
 ただし、接合材が(ii)または(iii)を含む場合、接合材中に含まれるケイ素(Si)および酸素(O)により、接合材を不活性雰囲気下で加熱すると、ケイ素と酸素を含む化合物が生成される。そして、この化合物が金属部材と反応する結果、アルミニウム部材と合金部材の間、および合金部材とセラミックス部材との間に、接合層として、アルミノシリケート系化合物が形成される。
 アルミノシリケート系化合物は、一般式がAlSiで表され、ここで、0<x<3、0<y<51、0<z<104である。アルミノシリケート系化合物は、アルミナとシリカの混合物であっても良い。
 なお、本願で使用されるセラミックス部材は、ケイ素と酸素を含む化合物に対しても親和性を有する。
 このため、接合材が(ii)または(iii)を含む場合も、接合層の存在により、セラミックス部材は、接合層と強固に密着される。従って、この場合も、アルミニウム部分、合金部材、およびセラミックス部材の三者間で、良好な接合を得ることができる。
 なお、上記記載では、合金部材がケイ素とアルミニウムとをともに含有する材料で構成される場合を例に、本発明の一実施形態の特徴について説明した。しかしながら、これは単なる一例であって、合金部材は、アルミニウムを含み、ケイ素を含まない材料で構成されても良い。
 (本発明の一実施形態による接合体の製造方法)
 以下、図面を参照して、本発明の一実施形態について説明する。
 図1には、本発明の一実施形態による、アルミニウム部材とセラミックス部材を含む接合体の製造方法(以下、「第1の製造方法」と称する)のフローを模式的に示す。
 図1に示すように、第1の製造方法は、
 (a)アルミニウム部材、アルミニウムおよび/またはケイ素を含有するセラミックス部材、ならびにケイ素およびアルミニウムを含む合金部材を準備するステップ(ステップS110)と、
 (b)前記アルミニウム部材の被接合面および前記合金部材の第1の表面の少なくとも一方に、第1の接合材を設置するとともに、前記セラミックス部材の被接合面および前記合金部材の第2の表面の少なくとも一方に、第2の接合材を設置するステップ(ステップS120)と、
 (c)前記アルミニウム部材、前記合金部材、および前記セラミックス部材を、この順に積層し、組立体を構成するステップ(ステップS130)と、
 (d)前記組立体を、不活性ガス雰囲気下または真空雰囲気下、400℃~800℃の温度で加熱するステップ(ステップS140)と、
 を有する。
 以下、各ステップについて詳しく説明する。
 (ステップS110)
 まず、アルミニウム部材、セラミックス部材、および合金部材が準備される。
 アルミニウム部材の形状は特に限られず、アルミニウム部材は、ブロック、板、棒、箔、またはディスク等の形状を有しても良い。
 なお、本願において、「アルミニウム部材」という用語は、実質的にアルミニウム金属で構成された部材の他、重量比で50wt%以上のアルミニウム金属を含む部材、実質的にアルミニウム合金で構成された部材、および重量比で80wt%以上のアルミニウム合金を含む部材等が含まれる。
 アルミニウム合金は、例えばAl-Si合金等であっても良く、例えば、ケイ素を12wt%程度含むシルミンであっても良い。
 セラミックス部材は、アルミニウムおよび/またはケイ素を含む限り、特に限られない。セラミックス部材は、例えば、アルミナ、窒化アルミニウム、窒化ケイ素、ムライト、および/またはアルミノシリケートを含んでも良い。
 例えば、アルミナとしては、重量比で90wt%以上のアルミナを含む高純度アルミナが挙げられる。窒化アルミニウムとしては、重量比で90wt%以上の窒化アルミニウムを含む高純度窒化アルミナが挙げられる。窒化ケイ素としては、重量比で80wt%以上の窒化ケイ素を含む高純度窒化ケイ素が挙げられる。
 なお、セラミックスの結晶形態に特に制限はないが、アルミナとしては、α-アルミナを好適に使用できる。
 セラミックス部材の形状は特に限られず、セラミックス部材は、ブロック、板、棒、またはディスク等の形状を有しても良い。
 一方、合金部材は、ケイ素およびアルミニウムを含む合金材料から選定される。ケイ素の重量比は、0.3~99%であっても良い。また、アルミニウムの重量比は、1%~99%の範囲であっても良い。
 ケイ素は、熱膨張係数が小さいため、合金部材にケイ素を加えることにより、合金部材の熱膨張係数を低減することができる。また、接合工程中にアルミニウムが溶融後凝固する際に、ケイ素は凝固膨張する。従って、合金部材にアルミニウムおよびケイ素を加えることにより、接合工程中に生じ得る合金部材の体積変化を緩和することができる。
 合金部材の組成は、準備されたアルミニウム部材よりも小さな熱膨張係数を有し、かつセラミックス部材よりも大きな熱膨張係数を有する限り、特に限られない。
 合金部材は、例えば、アルミニウム(Al)を主体としてケイ素(Si)を含む合金(Al-Si合金)、Alを主体としてSiおよびマグネシウム(Mg)を含む合金(Al-Si-Mg合金)、またはSiを主体としてAlを含む合金(Si-Al合金)等であっても良い。ここで、「元素Aを主体とする」とは、元素Aを50重量%以上含むことを意味する。
 合金部材がAl-Si合金またはAl-Si-Mg合金の場合、Alの重量比は、50%~99%の範囲であっても良い。また、この場合、Siの重量比は、0.3%~50%の範囲であっても良い。また、Mgの重量比は、0.1%~5.0%の範囲であっても良い。
 一方、合金部材がSi-Al合金の場合、Siの重量比は、50%~99%の範囲であっても良い。また、この場合、Alの重量比は、1%~50%の範囲であっても良い。
 前述のアルミニウム部材がシルミン(Al-12%Si合金)ではない場合、合金部材は、シルミンであっても良い。
 さらに、合金部材は、追加元素として、Cu、Ni、Mn、Fe、Znを含んでも良い。Cuの重量比は0~6.0wt%の範囲、Niの重量比は0~1.5wt%の範囲、Mnの重量比は0~1.5wt%の範囲、Feの重量比は0~1.3wt%の範囲、Znの重量比は0~1.5wt%の範囲であっても良い。
 また、合金部材は、内部に該合金部材よりも熱膨張係数が小さい粒子を含有しても良い。
 そのような粒子は、金属粒子、合金粒子、およびセラミックス粒子の少なくとも一つを含んでも良い。
 金属粒子としては、例えば、ケイ素、モリブデン、およびタングステン等が挙げられる。また、セラミックス粒子としては、例えば、アルミナ(Al)、窒化ケイ素(Si)、炭化ケイ素(SiC)、およびダイヤモンド等が挙げられる。
 そのような粒子を含む合金部材を使用した場合、合金部材の熱膨張係数を所望の範囲にに微調整することが可能となる。
 合金部材の形態は、対向する2表面(それぞれ、「第1の表面」および「第2の表面」と称する)を有する形態である限り、特に限られない。例えば、合金部材は、板状であっても、ブロック状であっても良い。
 (ステップS120)
 次に、アルミニウム部材の被接合面と合金部材の第1の表面の少なくとも一方に、第1の接合材が設置される。また、セラミックス部材の被接合面と合金部材の第2の表面の少なくとも一方に、第2の接合材が設置される。
 第1の接合材と、第2の接合材は、同じものであっても、異なるものであっても良い。
 ここで、第1および第2の接合材(以下、単に「接合材」ともいう)は、それぞれ、炭素(C)およびケイ素(Si)を含むものから選定される。
 接合材は、以下の(i)~(iv)の少なくとも一つを含んでも良い:
(i)主鎖がSi-C-Si基およびSi-N-Si基の少なくとも一つを有する有機ケイ素系ポリマー、
(ii)主鎖がSi-O-Si基を有する有機ケイ素系ポリマー、
(iii)炭素粉末含有シリカゾル、ならびに
(iv)主鎖がSi-Si基を有する有機ケイ素系ポリマー。
 (i)の有機ケイ素系ポリマーのうち、主鎖がSi-C-Si基を有するもの(以下、「Si-C-Si系ポリマー」と称する)の化学式の一例を、以下の式(1)に示す:
Figure JPOXMLDOC01-appb-C000001
 
 ここで、pとqの和は500~5000の範囲である。また、R、R、R、およびRは、それぞれ、独立にH、CH、C、C、およびOMCH(C2m+1のいずれかである。R、R、R、およびRは、少なくとも2つが同一であっても良い。なお、mは1以上の整数を表し、MはTi、Zr、および/またはCrの1種類以上を表す。
 式(1)に示した化学構造を有する第1の有機ケイ素系ポリマーには、例えば、以下の式(2)で表されるポリカルボシラン、および式(3)で表されるポリチタノカルボシラン等が含まれる。
Figure JPOXMLDOC01-appb-C000002
 
 
Figure JPOXMLDOC01-appb-C000003
 
 
 また、前述の(i)の有機ケイ素系ポリマーのうち、主鎖がSi-N-Si基を有するもの(以下、「Si-N-Si系ポリマー」と称する)の化学式の一例を、以下の式(4)に示す:
Figure JPOXMLDOC01-appb-C000004
 
 
 ここで、pとqの和は1~5000の範囲である。また、R、R、R、およびRは、それぞれ、独立にH、CH、C、およびCのいずれかである。R、R、R、およびRは、少なくとも2つが同一であっても良い。
 式(4)に示した化学構造を有するSi-N-Si系ポリマーには、例えば、以下の式(5)で表されるポリメチルジシラザン(PMDS)、および式(6)で表されるポリジメチルメチルシラザン(PDMMS)等が含まれる。
Figure JPOXMLDOC01-appb-C000005
 
 
Figure JPOXMLDOC01-appb-C000006
 
 
 また、Si-C-Si系ポリマーは、以下の化学構造式を有しても良い。
Figure JPOXMLDOC01-appb-C000007
 
 
 式(7)において、pとqの和は1~5000の範囲である。また、R、R、R、およびRは、それぞれ、独立にH、CH、C、およびCのいずれかである。R、R、R、およびRは、少なくとも2つが同一であっても良い。
 ここで、式(7)に示したSi-C-Si系ポリマーは、主鎖の一部に、Si-N-Si基を有する。従って、このポリマーは、Si-C-Si系ポリマーと称することもできる。
 この他、前述の(i)の有機ケイ素系ポリマーには、これに限られるものではないが、例えば、ポリカルボシラザン、アリルハイドライドポリカルボシラン、ポリシルメチレン、ポリシラザン、ポリヒドロポリシラザン、およびポリオルガノシラザン等が含まれる。
 一方、(ii)の有機ケイ素系ポリマーとしては、シロキサン系ポリマー(以下、「Si-O-Si系ポリマー」と称する)が挙げられる。
 例えば、Si-O-Si系ポリマーには、主鎖として直鎖状のSi-O-Si基を有するシロキサン系ポリマー、例えばポリメチルヒドロシロキサン(PMHS)およびポリメチルフェニルシロキサン(PMPhS)が含まれる。
 あるいは、Si-O-Si系ポリマーは、例えば、Si-O-Si基を主骨格とする3次元構造を有するシルセスキオキサン系ポリマー、例えばポリメチルシルセスキオキサン(PMSQ)およびポリフェニルシロキサン(PPSQ)であっても良い。
 以下の式(8)には、PMPhSの化学構造式を示す。また、以下の式(9)には、PMSQの化学構造式を示す。
Figure JPOXMLDOC01-appb-C000008
 
 
Figure JPOXMLDOC01-appb-C000009
 
 一方、前述の(iv)の有機ケイ素系ポリマーは、以下の化学構造式を有しても良い。
Figure JPOXMLDOC01-appb-C000010
 
 ここで、RおよびRは、それぞれ独立に、水素、CH、またはCなどである。また、nは、10~1000の間の任意の整数である。
 (iv)の有機ケイ素系ポリマーには、これに限られるものではないが、例えば、ポリヒドロシラン、ポリメチルシラン、およびポリフェニルシラン等が含まれる。
 なお、接合材は、前述の(i)~(iv)のうちの2つ、あるいは全部を含んでも良い。
 このような接合材の設置方法は、特に限られない。
 接合材は、例えば、塗布法などにより、接合面に設置しても良い。塗布法としては、ディッピング法、スピンコーター法、スプレー法等の手法が挙げられる。接合材は、なるべく均等に塗布することが望ましいため、引き上げ速度が1mm/秒以下のディッピング法、または回転速度が100rpm以上のスピンコーター法による塗布が望ましい。
 なお、接合材の厚みによって、最終的に得られる接合層の厚さが変化する。従って、目的に応じて接合材の種類と厚みを調整することが好ましい。
 また、前述の(i)および(ii)に示したような有機ケイ素系ポリマーは、比較的粘性が高い。このため、これらをディッピング法により塗布する際は、溶媒で希釈し、粘性を適宜調整することが好ましい。この際には、相溶性の観点から、ベンゼンやトルエン等の芳香族系有機溶媒を使用することが好ましい。溶媒濃度は、0.001mol/L~1mol/Lの範囲であっても良い。
 アルミニウム部材および/またはセラミックス部材の被接合面に設置される接合材の量が少なすぎると、接合材が被接合面全体に均一に広がらず、アルミニウム部材の被接合面において、酸化層を十分に還元できないおそれがある。そのため、接合材の厚みは、0.1μm(溶媒揮発後)以上とすることが好ましい。一方、接合材が厚過ぎても、接合は可能である。しかしながら、接合材の厚みが厚すぎると、接合材部分のセラミックス化に伴う収縮により、セラミックス部材と接合層の界面に、クラックが生じやすくなる。このため、接合材の厚さは、1mm(溶媒揮発後)以下とすることが好ましい。
 また、接合材の設置量が過剰な場合、接合材中に含まれるケイ素がアルミニウム部材によって還元されるため、接合層とアルミニウム部材の界面付近に金属シリコンが析出しやすくなる。従って、接合材中のケイ素含有量は、10wt%~45wt%の範囲で選択することが好ましい。
 (ステップS130)
 次に、アルミニウム部材、合金部材、およびセラミックス部材が、この順に積層され、組立体が構成される。
 ここで、合金部材は、第1の表面の側がアルミニウム部材の被接合面と対面し、第2の表面がセラミックス部材の被接合面と対面するように配置される。
 組立体において、アルミニウム部材、合金部材、およびセラミックス部材は、実質的に無加圧状態で相互に積層されても良い(ただし、自重による荷重は印加される)。あるいは、アルミニウム部材とセラミックス部材の間に、ある程度の荷重を加えても良い。
 (ステップS140)
 次に、接合処理のため、組立体が熱処理される。これにより、アルミニウム部材、合金部材、およびセラミックス部材が、接合層を介して相互に接合された接合体が製造される。
 熱処理は、実質的に酸素が存在しない雰囲気、例えば不活性ガス雰囲気または真空雰囲気で実施される。熱処理を大気雰囲気のような酸素を含む環境下で実施した場合、アルミニウム部材等の表面の酸化物が十分に還元せず、アルミニウム部材と合金部材との間、および合金部材とセラミックス部材との間で、良好な接合を得ることが難しくなる。
 不活性ガス雰囲気は、例えば、アルゴン、ヘリウム、および/または窒素などの雰囲気であっても良い。真空雰囲気における真空度は、例えば、大気圧を0MPaとした場合、-0.08MPa以下である。
 熱処理の温度は、400℃以上であり、450℃以上であることが好ましい。なお、熱処理の温度は、例えば、800℃以下であることが好ましい。特に、熱処理の温度は、540℃~660℃の範囲であることが好ましい。
 組立体を熱処理することにより、第1および第2の接合材が変化する。その結果、アルミニウム部材と合金部材との間に、第1の接合層が形成され、合金部材とセラミックス部材との間に、第2の接合層が形成される。
 なお、組立体を熱処理中に、第1の接合材および/または第2の接合材は、溶融しても良い。この場合、第1の接合層は、第1の接合材が溶融した後凝固した層となり、第2の接合層は、第2の接合材が溶融した後凝固した層となる。
 前述のように、第1および第2の接合層(以下、単に「接合層」という)の組成は、接合材の種類によって変化する。
 例えば、接合材として、前述の(i)および(iv)を含むものを使用した場合、炭化ケイ素系化合物を含む接合層が得られる。炭化ケイ素系化合物は、アモルファス相であっても良い。
 前述のように、炭化ケイ素系化合物は、例えば、SiC、SiOC、SiCN、SiOCN、AlSiC、AlSiOC、AlSiCN、および/またはAlSiOCN等を含んでも良い。なお、接合層に含まれる炭化ケイ素系化合物は、使用される接合材の種類、およびセラミックス部材の材質等によっても変化する。
 接合層中には、炭化ケイ素系化合物の他に、少量の他の物質、例えば、炭素塊、金属シリコン塊、および/またはアルミノシリケート等が含まれる場合がある。
 一方、接合材として、前述の(ii)または(iii)を含むものを使用した場合、アルミノシリケート系化合物を含む接合層が得られる。
 前述のように、アルミノシリケート系化合物は、一般式がAlSiで表され、ここで、0<x<3、0<y<51、0<z<104である。アルミノシリケート系化合物は、アルミナとシリカの混合物であっても良い。
 この場合も、接合層中には、アルミノシリケート系化合物の他に、少量の他の物質、例えば、炭素塊、および金属シリコン塊等が含まれる場合がある。
 以上の工程により、アルミニウム部材、合金部材、およびセラミックス部材を有する接合体が製造される。
 第1の製造方法では、アルミニウム部材とセラミックス部材の間に、両者の間の熱膨張係数を有する合金部材が設置される。従って、製造された接合体に熱応力が加わっても、合金部材が応力緩和層として機能し、接合体の破損を有意に抑制することができる。
 また、第1の製造方法では、接合処理の際に、アルミニウム部材と合金部材、および合金部材とセラミックス部材の間に、前述の種類の接合材が設置される。これらの接合材の存在により、接合処理後には、アルミニウム部材と合金部材、および合金部材とセラミックス部材が適正に接合される。
 従って、第1の製造方法では、アルミニウム部材とセラミックス部材とを適正に接合することができる上、得られた接合体の耐熱応力特性を向上させることができる。
 (本発明の一実施形態による別の接合体の製造方法)
 次に、本発明の一実施形態による、別の接合体の製造方法について説明する。
 図2には、本発明の一実施形態による、アルミニウム部材およびセラミックス部材を有する接合体の製造方法(以下、「第2の製造方法」と称する)のフローを模式的に示す。
 図2に示すように、第2の製造方法は、
 (a)アルミニウム部材、アルミニウムおよび/またはケイ素を含有するセラミックス部材、ケイ素およびアルミニウムを含む第1の合金部材、ならびにケイ素およびアルミニウムを含む第2の合金部材を準備するステップ(ステップS210)と、
 (b)前記アルミニウム部材の被接合面および前記第1の合金部材の第1の表面の少なくとも一方に、第1の接合材を設置し、前記セラミックス部材の被接合面および前記第2の合金部材の第4の表面の少なくとも一方に、第2の接合材を設置し、前記第1の合金部材の第2の表面および前記第2の合金部材の第3の表面の少なくとも一方に、第3の接合材を設置する、ステップ(ステップS220)と、
 (c)前記アルミニウム部材、前記第1の合金部材、前記第2の合金部材、および前記セラミックス部材を、この順に積層し、組立体を構成するステップ(ステップS230)と、
 (d)前記組立体を、不活性ガス雰囲気下または真空雰囲気下、400℃~800℃の温度で加熱するステップ(ステップS240)と、
 を有する。
 以下、各ステップについて詳しく説明する。
 (ステップS210)
 まず、アルミニウム部材、セラミックス部材、ならびに第1および第2の合金部材が準備される。
 ここで、アルミニウム部材、セラミックス部材、および第1の合金部材については、前述の第1の製造方法のステップS110における、それぞれの記載が参照できる。そのため、ここでは、詳細な記載は省略する。
 一方、第2の合金部材は、ケイ素およびアルミニウムを含む合金材料から選定される。ケイ素の重量比は、0.3~99%であっても良い。また、アルミニウムの重量比は、1%~99%の範囲であっても良い。
 第2の合金部材の組成は、第1の合金部材よりも小さな熱膨張係数を有し、かつセラミックス部材よりも大きな熱膨張係数を有する限り、特に限られない。
 第2の合金部材は、例えば、アルミニウム(Al)を主体としてケイ素(Si)を含む合金(Al-Si合金)、Alを主体としてSiおよびマグネシウム(Mg)を含む合金(Al-Si-Mg合金)、またはSiを主体としてAlを含む合金(Si-Al合金)等であっても良い。
 第2の合金部材がAl-Si合金またはAl-Si-Mg合金の場合、Alの重量比は、50%~99%の範囲であっても良い。また、この場合、Siの重量比は、0.3%~50%の範囲であっても良い。また、Mgの重量比は、0.1%~5.6%の範囲であっても良い。
 一方、第2の合金部材がSi-Al合金の場合、Siの重量比は、50%~99%の範囲であっても良い。また、この場合、Alの重量比は、1%~50%の範囲であっても良い。
 さらに、第2の合金部材は、追加元素として、Cu、Ni、Mn、Fe、Znを含んでも良い。Cuの重量比は0~6.0wt%の範囲、Niの重量比は0~1.5wt%の範囲、Mnの重量比は0~1.5wt%の範囲、Feの重量比は0~1.3wt%の範囲、Znの重量比は0~1.5wt%の範囲であっても良い。
 第2の合金部材の形態は、対向する2表面(それぞれ、「第3の表面」および「第4の表面」と称する)を有する形態である限り、特に限られない。例えば、第2の合金部材は、板状であっても、ブロック状であっても良い。
 (ステップS220)
 次に、アルミニウム部材の被接合面と第1の合金部材の第1の表面の少なくとも一方に、第1の接合材が設置される。また、セラミックス部材の被接合面と第2の合金部材の第4の表面の少なくとも一方に、第2の接合材が設置される。さらに、第1の合金部材の第2の表面と第2の合金部材の第3の表面の少なくとも一方に、第3の接合材が設置される。
 第1の接合材、第2の接合材、および第3の接合材のうち、少なくとも2つは、同じものであっても良い。また、第1の接合材、第2の接合材、および第3の接合材の全てが、同じものであっても良い。
 第1~第3の接合材(以下、単に「接合材」ともいう)は、それぞれ、炭素(C)およびケイ素(Si)を含むものから選定される。
 接合材は、それぞれ、以下の(i)~(iv)の少なくとも一つを含んでも良い:
(i)主鎖がSi-C-Si基およびSi-N-Si基の少なくとも一つを有する有機ケイ素系ポリマー、
(ii)主鎖がSi-O-Si基を有する有機ケイ素系ポリマー、
(iii)炭素粉末含有シリカゾル、ならびに
(iv)主鎖がSi-Si基を有する有機ケイ素系ポリマー。
 接合材は、例えば、(i)~(iv)の2つ、または3つ全てを含んでも良い。なお、(i)~(iv)の詳細については、前述の通りであり、ここではこれ以上説明しない。
 接合材は、例えば、前述のように、塗布法などにより設置しても良い。塗布法としては、ディッピング法、スピンコーター法、スプレー法等の手法が挙げられる。
 なお、接合材の厚みによって、最終的に得られる接合層の厚さが変化する。従って、目的に応じて接合材の種類と厚みを調整することが好ましい。
 (ステップS230)
 次に、アルミニウム部材、第1の合金部材、第2の合金部材、およびセラミックス部材が、この順に積層され、組立体が構成される。
 ここで、第1の合金部材は、第1の表面の側がアルミニウム部材の被接合面と対面し、第2の表面が第2の合金部材の第3の表面と対面するように配置される。また、第2の合金部材は、第4の表面の側がセラミックス部材の被接合面と対面するように配置される。
 組立体において、アルミニウム部材、第1の合金部材、第2の合金部材、およびセラミックス部材は、実質的に無加圧状態で相互に積層されても良い(ただし、自重による荷重は印加される)。あるいは、アルミニウム部材とセラミックス部材の間に、ある程度の荷重を加えても良い。
 (ステップS240)
 次に、接合処理のため、組立体が熱処理される。これにより、アルミニウム部材、第1の合金部材、第2の合金部材、およびセラミックス部材が、接合層を介して相互に接合された接合体が製造される。
 前述のように、熱処理は、実質的に酸素が存在しない雰囲気、例えば不活性ガス雰囲気または真空雰囲気で実施される。
 不活性ガス雰囲気は、例えば、アルゴン、ヘリウム、および/または窒素などの雰囲気であっても良い。真空雰囲気における真空度は、例えば、大気圧を0MPaとした場合、-0.08MPa以下である。
 熱処理の温度は、400℃以上であり、450℃以上であることが好ましい。なお、熱処理の温度は、例えば、800℃以下であることが好ましい。熱処理の温度は、540℃~660℃の範囲であることがより好ましい。
 組立体を熱処理することにより、第1~第3の接合材が変化し、アルミニウム部材と第1の合金部材との間に、第1の接合層が形成され、第2の合金部材とセラミックス部材との間に、第2の接合層が形成される。また、第1の合金部材と第2の合金部材との間に、第3の接合層が形成される。
 前述のように、第1~第3の接合層(以下、単に「接合層」という)の組成は、接合材の種類によって変化する。
 例えば、接合材として、前述の(i)および(iv)を含むものを使用した場合、炭化ケイ素系化合物を含む接合層が得られる。炭化ケイ素系化合物は、アモルファス相であっても良い。また、接合層中には、炭化ケイ素系化合物の他に、少量の他の物質、例えば、炭素塊、金属シリコン塊、および/またはアルミノシリケート等が含まれる場合がある。
 一方、接合材として、前述の(ii)または(iii)を含むものを使用した場合、アルミノシリケート系化合物を含む接合層が得られる。
 前述のように、アルミノシリケート系化合物は、一般式がAlSiで表され、ここで、0<x<3、0<y<51、0<z<104である。アルミノシリケート系化合物は、アルミナとシリカの混合物であっても良い。
 この場合も、接合層中には、アルミノシリケート系化合物の他に、少量の他の物質、例えば、炭素塊、および金属シリコン塊等が含まれる場合がある。
 以上の工程により、アルミニウム部材、第1の合金部材、第2の合金部材、およびセラミックス部材をこの順に有する接合体が製造される。
 このような第2の製造方法で製造される接合体は、アルミニウム部材とセラミックス部材との間に、第1および第2の合金部材を有し、アルミニウム部材からより近い位置にある第1の合金部材は、熱膨張係数がアルミニウム部材の熱膨張係数と第2の合金部材の熱膨張係数の間にある。また、セラミックス部材からより近い位置にある第2の合金部材は、熱膨張係数がセラミック部材の熱膨張係数と第1の合金部材の熱膨張係数の間にある。
 このため、本接合体は、前述の第1の製造方法で製造される接合体に比べて、熱応力に対する耐性をよりいっそう高めることができる。
 (本発明の一実施形態による接合体のさらに別の製造方法)
 次に、図2Aを参照して、本発明の一実施形態による接合体のさらに別の製造方法について説明する。
 図2Aには、本発明の一実施形態による、アルミニウム部材とセラミックス部材を含む接合体のさらに別の製造方法(以下、「第3の製造方法」と称する)のフローを模式的に示す。
 図2Aに示すように、第3の製造方法は、
 (a)アルミニウム部材、アルミニウムおよび/またはケイ素を含有するセラミックス部材、ならびにアルミニウムを含む合金部材を準備するステップ(ステップS310)と、
 (b)前記アルミニウム部材の被接合面および前記合金部材の第1の表面の少なくとも一方に、第1の接合材を設置するとともに、前記セラミックス部材の被接合面および前記合金部材の第2の表面の少なくとも一方に、第2の接合材を設置するステップ(ステップS320)と、
 (c)前記アルミニウム部材、前記合金部材、および前記セラミックス部材を、この順に積層し、組立体を構成するステップ(ステップS330)と、
 (d)前記組立体を、不活性ガス雰囲気下または真空雰囲気下、400℃~800℃の温度で加熱するステップ(ステップS340)と、
 を有する。
 ここで、第3の製造方法において、各ステップS310~ステップ340は、前述の第1の製造方法におけるステップS110~ステップ140と実質的に等しい。ただし、この第3の製造方法では、合金部材として、アルミニウムを含む合金部材が使用される点で、
第1の製造方法とは異なっている。
 そこで、以下、第3の製造方法において使用される合金部材について、詳しく説明する。
 第3の製造方法において、合金部材は、アルミニウムを含む合金材料から選定される。アルミニウムの重量比は、1%~99%の範囲であっても良い。
 合金部材は、例えば、Al-Zn合金、Al-Sn合金、Al-Mg-Sn合金、Al-Mg-Zn合金、Al-Si-Sn合金、またはAl-Sn-Zn合金のいずれかであっても良い。
 これらの合金部材の組成は、準備されたアルミニウム部材よりも小さな熱膨張係数を有し、かつセラミックス部材よりも大きな熱膨張係数を有する限り、特に限られない。
 なお、前述のように、合金部材は、内部に該合金部材よりも熱膨張係数が小さい粒子を含有しても良い。
 そのような粒子は、金属粒子、合金粒子、およびセラミックス粒子の少なくとも一つを含んでも良い。
 金属粒子としては、例えば、ケイ素、モリブデン、およびタングステン等が挙げられる。また、セラミックス粒子としては、例えば、アルミナ(Al)、窒化ケイ素(Si)、炭化ケイ素(SiC)、およびダイヤモンド等が挙げられる。
 また、合金部材の形態は、対向する2表面(それぞれ、「第1の表面」および「第2の表面」と称する)を有する形態である限り、特に限られない。例えば、合金部材は、板状であっても、ブロック状であっても良い。
 第3の製造方法においても、アルミニウム部材とセラミックス部材とを適正に接合することができ、得られた接合体の耐熱応力特性を向上させることができる。
 以上、第1~第3の製造方法を例に、本発明の一実施例による接合体の製造方法について説明した。しかしながら、以上の説明は、単なる一例に過ぎず、前述の方法の一部を変更したり、他の工程と組み合わせたりしても良いことは当業者には明らかである。
 例えば、第2の製造方法では、アルミニウム部材とセラミックス部材との間に、2つの合金部材が配置される。しかしながら、別の態様として、アルミニウム部材とセラミックス部材との間に、3つ以上の合金部材が配置されても良い。この場合、合金部材は、アルミニウム部材からセラミックス部材に向かって、熱膨張係数が大きいものから順に配置される。
 また、第2の製造方法では、第1および第2の合金部材として、ケイ素とアルミニウムの両方を含む合金材料が使用される。しかしながら、第1および第2の合金部材のうちの少なくとも一方は、第3の製造方法において使用されるような合金部材であっても良い。すなわち、第1および第2の合金部材のうちの少なくとも一方は、Al-Zn合金、Al-Sn合金、Al-Mg-Sn合金、Al-Mg-Zn合金、Al-Si-Sn合金、またはAl-Sn-Zn合金のいずれかであっても良い。
 その他にも各種変更および組み合わせが可能であることは、当業者には明らかである。
 (本発明の一実施形態による接合体)
 次に、図3を参照して、本発明の一実施形態による接合体について説明する。
 図3には、本発明の一実施形態による接合体(以下、「第1の接合体」と称する)の概略的な断面図を示す。
 図3に示すように、第1の接合体100は、アルミニウム部材110と、合金部材120と、セラミックス部材130とを有する。アルミニウム部材110と合金部材120の間には、第1の接合層140が設置され、合金部材120とセラミックス部材130の間には、第2の接合層150が設置される。
 アルミニウム部材110は、実質的にアルミニウム金属で構成された部材、重量比で50%以上のアルミニウム金属を含む部材、実質的にアルミニウム合金で構成された部材、および重量比で50%以上のアルミニウムを含む合金部材であっても良い。
 アルミニウム部材110の形状は特に限られず、アルミニウム部材110は、ブロック、板、棒、箔、またはディスク等の形状を有しても良い。
 合金部材120は、ケイ素およびアルミニウムを含む。ケイ素の重量比は、0.3~99%であっても良い。また、アルミニウムの重量比は、1%~99%の範囲であっても良い。
 合金部材120の組成は、アルミニウム部材110よりも小さな熱膨張係数を有し、かつセラミックス部材130よりも大きな熱膨張係数を有する限り、特に限られない。
 合金部材120は、例えば、アルミニウム(Al)を主体としてケイ素(Si)を含む合金(Al-Si合金)、Alを主体としてSiおよびマグネシウム(Mg)を含む合金(Al-Si-Mg合金)、またはSiを主体としてAlを含む合金(Si-Al合金)等であっても良い。
 合金部材120がAl-Si合金またはAl-Si-Mg合金の場合、Alの重量比は、50%~99%の範囲であっても良い。また、この場合、Siの重量比は、0.3%~50%の範囲であっても良い。また、Mgの重量比は、0.1%~45%の範囲であっても良い。
 一方、合金部材120がSi-Al合金の場合、Siの重量比は、50%~99%の範囲であっても良い。また、この場合、Alの重量比は、1%~50%の範囲であっても良い。
 アルミニウム部材110がシルミン(Al-12%Si合金)ではない場合、合金部材120は、シルミンであっても良い。
 あるいは、合金部材120は、アルミニウムを含む合金で構成されても良い。例えば、合金部材120は、Al-Zn合金、Al-Sn合金、Al-Mg-Sn合金、Al-Mg-Zn合金、Al-Si-Sn合金、またはAl-Sn-Zn合金のいずれかであっても良い。これらの合金において、Mgの重量比は0.1~95%の範囲であっても良い。Znの重量比は0.1~99%であっても良い。Snの重量比は0.1~99%であっても良い。
 さらに、合金部材120は、追加元素として、Cu、Ni、Mn、Fe、Znを含んでも良い。Cuの重量比は0~6.0wt%の範囲、Niの重量比は0~1.5wt%の範囲、Mnの重量比は0~1.5wt%の範囲、Feの重量比は0~1.3wt%の範囲、Znの重量比は0~1.5wt%の範囲であっても良い。
 合金部材120の形態は、特に限られない。例えば、合金部材120は、板状であっても、ブロック状であっても良い。
 なお、合金部材120は、いったん溶解した後に凝固したものであっても良い。
 また、合金部材120は、内部に粒子を含有しても良い。そのような粒子は、金属粒子、合金粒子、およびセラミックス粒子の少なくとも一つであっても良い。
 金属粒子としては、例えば、ケイ素、モリブデン、およびタングステン等が挙げられる。また、セラミックス粒子としては、例えば、アルミナ(Al)、窒化ケイ素(Si)、炭化ケイ素(SiC)、およびダイヤモンド等が挙げられる。
 セラミックス部材130は、アルミニウム成分および/またはケイ素成分を含有するセラミックスで構成される。例えば、セラミックス部材130は、アルミナ、窒化アルミニウム、窒化ケイ素、およびアルミノシリケートの少なくとも1種を含む。
 また、セラミックス部材130の結晶形態に特に制限はないが、アルミナとしては、α-アルミナを好適に使用できる。
 セラミックス部材130の形状は特に限られず、セラミックス部材130は、ブロック、板、棒、またはディスク等の形状を有しても良い。
 一方、第1の接合層140は、以下の構成を取り得る。
(I)炭化ケイ素系化合物を含む層:
 第1の接合層140は、炭素およびケイ素を含むアモルファス相、すなわち炭化ケイ素系化合物のアモルファス相を主体として含んでも良い。アモルファス相は、例えば、SiC、SiOC、SiCN、SiOCN、AlSiC、AlSiOC、AlSiCN、および/またはAlSiOCN等を含んでも良い。
 第1の接合層140は、さらに、少量の炭素塊、金属シリコン塊、および/またはアルミノシリケート等を含んでも良い。アルミノシリケートは、結晶質であっても、非晶質であっても良い。
 第1の接合層140のアモルファス相中の炭素量は、8重量%以上であり、同領域における酸素量は、30重量%未満である。
(II)アルミノシリケート系化合物を含む層:
 第1の接合層140は、アルミノシリケート系化合物を主体として含んでも良い。アルミノシリケート系化合物は、一般式がAlSiで表され、ここで、0<x<3、0<y<51、0<z<104である。アルミノシリケート系化合物は、アルミナとシリカの混合物であっても良い。
 第1の接合層140は、さらに、少量の炭素塊および/または金属シリコン塊を含んでも良い。
 一方、第2の接合層150についても、第1の接合層140と同様のことが言える。ただし、第2の接合層150は、第1の接合層140と同じであっても、異なっていても良い。
 このような構成を有する第1の接合体100では、第1の接合層140の存在により、アルミニウム部材110と合金部材120とを好適に接合することができる。また、第2の接合層150の存在により、合金部材120とセラミックス部材130を好適に接合することができる。
 さらに、第1の接合体100では、アルミニウム部材110とセラミックス部材130の間の熱膨張係数を有する第1の合金部材120の存在により、耐熱応力特性を有意に高めることができる。
 このように本発明の一実施形態では、熱応力を受けても比較的破損が生じ難い接合体を提供することができる。
 (本発明の一実施形態による別の接合体)
 次に、図4を参照して、本発明の一実施形態による別の接合体について説明する。
 図4には、本発明の一実施形態による別の接合体(以下、「第2の接合体」と称する)の概略的な断面図を示す。
 図4に示すように、この第2の接合体200は、アルミニウム部材210、第1の合金部材220、第2の合金部材225、およびセラミックス部材230を、この順に有する。
 アルミニウム部材210と第1の合金部材220の間には、第1の接合層240が配置され、第2の合金部材225とセラミックス部材230の間には、第2の接合層250が配置される。さらに、第1の合金部材220と第2の合金部材225の間には、第3の接合層260が配置される。
 アルミニウム部材210は、前述のように、実質的にアルミニウム金属で構成された部材、重量比で50%以上のアルミニウム金属を含む部材、実質的にアルミニウム合金で構成された部材、および重量比で50%以上のアルミニウムを含む合金部材であっても良い。
 アルミニウム部材210の形状は特に限られず、アルミニウム部材210は、ブロック、板、棒、箔、またはディスク等の形状を有しても良い。
 第1の合金部材220および第2の合金部材225は、ケイ素およびアルミニウムを含んでも良い。ケイ素の重量比は、0.3~99%であっても良い。また、アルミニウムの重量比は、1%~99%の範囲であっても良い。
 第1の合金部材220の組成は、アルミニウム部材210よりも小さな熱膨張係数を有し、かつ第2の合金部材225よりも大きな熱膨張係数を有する限り、特に限られない。
 第1の合金部材220は、例えば、アルミニウム(Al)を主体としてケイ素(Si)を含む合金(Al-Si合金)、Alを主体としてSiおよびマグネシウム(Mg)を含む合金(Al-Si-Mg合金)、またはSiを主体としてAlを含む合金(Si-Al合金)等であっても良い。
 第1の合金部材220がAl-Si合金またはAl-Si-Mg合金の場合、Alの重量比は、50%~99%の範囲であっても良い。また、この場合、Siの重量比は、0.3%~50%の範囲であっても良い。また、Mgの重量比は、0.1%~45%の範囲であっても良い。
 一方、第1の合金部材220がSi-Al合金の場合、Siの重量比は、50%~99%の範囲であっても良い。また、この場合、Alの重量比は、1%~50%の範囲であっても良い。
 アルミニウム部材110がシルミン(Al-12%Si合金)ではない場合、第1の合金部材220は、シルミンであっても良い。
 さらに、第1の合金部材220は、追加元素として、Cu、Ni、Mn、Fe、Znを含んでも良い。Cuの重量比は0~6.0wt%の範囲、Niの重量比は0~1.5wt%の範囲、Mnの重量比は0~1.5wt%の範囲、Feの重量比は0~1.3wt%の範囲、Znの重量比は0~1.5wt%の範囲であっても良い。
 あるいは、第1の合金部材220は、アルミニウムを含む合金であっても良い。例えば、第1の合金部材220は、Al-Zn合金、Al-Sn合金、Al-Mg-Sn合金、Al-Mg-Zn合金、Al-Si-Sn合金、またはAl-Sn-Zn合金のいずれかであっても良い。これらの合金において、Mgの重量比は0.1~95%の範囲であっても良い。Znの重量比は0.1~99%であっても良いSnの重量比は0.1~99%であっても良い。
 第1の合金部材220の形態は、特に限られない。例えば、第1の合金部材220は、板状であっても、ブロック状であっても良い。
 一方、第2の合金部材225の組成は、第1の合金部材220よりも小さな熱膨張係数を有し、かつセラミックス部材230よりも大きな熱膨張係数を有する限り、特に限られない。
 第2の合金部材225は、例えば、アルミニウム(Al)を主体としてケイ素(Si)を含む合金(Al-Si合金)、Alを主体としてSiおよびマグネシウム(Mg)を含む合金(Al-Si-Mg合金)、またはSiを主体としてAlを含む合金(Si-Al合金)等であっても良い。
 第2の合金部材225がAl-Si合金またはAl-Si-Mg合金の場合、Alの重量比は、50%~99%の範囲であっても良い。また、この場合、Siの重量比は、0.3%~50%の範囲であっても良い。また、Mgの重量比は、0.1%~45%の範囲であっても良い。
 一方、第2の合金部材225がSi-Al合金の場合、Siの重量比は、50%~99%の範囲であっても良い。また、この場合、Alの重量比は、1%~50%の範囲であっても良い。
 さらに、第2の合金部材225は、追加元素として、Cu、Ni、Mn、Fe、Znを含んでも良い。Cuの重量比は0~6.0wt%の範囲、Niの重量比は0~1.5wt%の範囲、Mnの重量比は0~1.5wt%の範囲、Feの重量比は0~1.3wt%の範囲、Znの重量比は0~1.5wt%の範囲であっても良い。
 あるいは、第2の合金部材225は、例えば、Al-Zn合金、Al-Sn合金、Al-Mg-Sn合金、Al-Mg-Zn合金、Al-Si-Sn合金、またはAl-Sn-Zn合金のいずれかであっても良い。これらの合金において、Mgの重量比は0.1~95%の範囲であっても良い。Znの重量比は0.1~99%であっても良い。Snの重量比は0.1~99%であっても良い。
 なお、第1の合金部材220および/または第2の合金部材225は、いったん溶解した後に凝固したものであっても良い。
 セラミックス部材230は、アルミニウム成分および/またはケイ素成分を含有するセラミックスで構成される。例えば、セラミックス部材230は、アルミナ、窒化アルミニウム、窒化ケイ素、およびアルミノシリケートの少なくとも1種を含む。
 また、セラミックス部材230の結晶形態に特に制限はないが、アルミナとしては、α-アルミナを好適に使用できる。
 セラミックス部材230の形状は特に限られず、セラミックス部材230は、ブロック、板、棒、またはディスク等の形状を有しても良い。
 第1の接合層240は、以下の構成を取り得る。
(I)炭化ケイ素系化合物を含む層:
 第1の接合層240は、炭素およびケイ素を含むアモルファス相、すなわち炭化ケイ素系化合物のアモルファス相を主体として含んでも良い。アモルファス相は、例えば、SiC、SiOC、SiCN、SiOCN、AlSiC、AlSiOC、AlSiCN、および/またはAlSiOCN等を含んでも良い。
 第1の接合層240は、さらに、少量の炭素塊、金属シリコン塊、および/またはアルミノシリケート等を含んでも良い。アルミノシリケートは、結晶質であっても、非晶質であっても良い。
 第1の接合層240のアモルファス相中の炭素量は、8重量%以上であり、同領域における酸素量は、30重量%未満である。
(II)アルミノシリケート系化合物を含む層:
 第1の接合層240は、アルミノシリケート系化合物を主体として含んでも良い。
 前述のように、アルミノシリケート系化合物は、一般式がAlSiで表され、ここで、0<x<3、0<y<51、0<z<104である。アルミノシリケート系化合物は、アルミナとシリカの混合物であっても良い。
 第1の接合層240中には、アルミノシリケート系化合物の他に、少量の他の物質、例えば、炭素塊および/または金属シリコン塊等が含まれる場合がある。
 第2の接合層250および第3の接合層260についても、第1の接合層240と同様のことが言える。ただし、第2の接合層250は、第1の接合層240と同じであっても、異なっていても良い。同様に、第3の接合層260は、第1の接合層240と同じであっても、異なっていても良い。さらに、第3の接合層260は、第2の接合層250と同じであっても、異なっていても良い。
 このような構成を有する第2の接合体200では、第1の接合層240の存在により、アルミニウム部材210と第1の合金部材220とを好適に接合することができる。また、第2の接合層250の存在により、第2の合金部材225とセラミックス部材230を好適に接合することができる。さらに、第3の接合層260の存在により、第1の金部材220と第2の合金部材225とを好適に接合することができる。
 また、第2の接合体200では、第1の合金部材220および第2の合金部材225の存在により、耐熱応力特性を有意に高めることができる。
 以下、本発明の実施例について、詳しく説明する。ただし、本発明は、これらの実施例に限定されるものではない。
 以下の記載において、例1、例3、および例5~例15は、実施例であり、例2および例4は、比較例である。
 (例1)
 以下の方法により、セラミックス部材とアルミニウム部材の接合体を製作した。
 まず、セラミックス部材として、縦20mm×横20mm×厚さ0.32mmの寸法を有する窒化ケイ素板(純度90%以上、JFC製)を用意した。この窒化ケイ素板内のアルミニウム含有量をEDS法で測定した結果、含有量は1wt%未満であった。
 また、アルミニウム部材として、縦20mm×横20mm×厚さ5mmの寸法を有する市販のアルミニウム板(純度99%以上、スリーエス社製)を準備した。さらに、合金部材として、縦20mm×横20mm×厚さ0.2mmのシルミン(Al-12wt%Si合金)板を準備した。以下、20mm×20mmの両表面を、それぞれ、第1の表面および第2の表面と称する。
 次に、市販のポリカルボシラン(NIPUSI Type-A、日本カーボン社製)をトルエン溶媒により0.1mol/Lに希釈して、塗布液(以下、「塗布液A」と称する)を調製した。
 次に、スピンコーティング法により、窒化ケイ素板の被接合面(20mm×20mmの一つの面)に、前述の塗布液Aを塗布した。スピンコーティングの条件は、回転数3000rps、回転時間30秒とした。
 また、シルミン板を塗布液A中に浸漬して、全面に塗布液Aを設置した。
 次に、窒化ケイ素板を、被接合面が上向きとなるようにして、台上に水平に設置した。また、被接合面に、シルミン板を設置した。シルミン板は、第2の表面が窒化ケイ素板の被接合面に対面するように設置した。
 次に、シルミン板の上に、アルミニウム板を設置した。さらに、アルミニウム板の上に、重しとして、縦40mm×横40mm×厚さ11mmのアルミナ板(重量70g)を配置した。
 次に、得られた組立体を、アルゴン雰囲気下、600℃で1時間熱処理した。処理中に、シルミン板が溶融している様子が観察された。
 これにより、窒化ケイ素板、シルミン板、およびアルミニウム板が接合された接合体が得られた。以下、この接合体を、「例1に係る接合体」と称する。
 (評価)
 上記方法で製造された例1に係る接合体を用いて、以下の評価を行った。
 (接合状態の評価)
 走査型電子顕微鏡を用いて、アルミニウム板とシルミン板の間、およびシルミン板と窒化ケイ素板の間に形成された接合層を観察した。その結果、いずれの接合層においても、特にクラックやボイド等の欠陥は認められなかった。
 (接合層の評価)
 図5には、シルミン板とセラミックス部材の間に形成された接合層の部分におけるX線回折分析結果を示す。分析結果において、20゜~40゜にかけて連続的なピークが存在しており、このことから接合層は、アモルファス相を有することがわかる。
 また、接合層の詳細な分析の結果、接合層は、アモルファス相を構成する炭化ケイ素系化合物の他、少量の炭素塊および金属シリコン塊を含むことがわかった。特に、炭化ケイ素系化合物は、SiCの他、AlSiC、AlSiOC、AlSiCN、およびAlSiOCNを含むことがわかった。
 また、接合層のアモルファス相の領域でのEDX分析の結果、該領域における炭素量は、8重量%以上であり、酸素量は、30重量%未満であることがわかった。
 (耐熱特性試験)
 例1に係る接合体を用いて、耐熱特性試験を実施した。
 耐熱特性試験は、接合体を、150℃と-40℃の環境下に繰り返し晒すことにより実施した。具体的には、接合体を150℃の環境下に10秒間保持し、その後-40℃の環境に10秒間保持する操作を100回繰り返した。
 試験後に、例1に係る接合体の状態を観察した。その結果、剥離や破損は認められず、例1に係る接合体は、健全な状態であった。
 (例2)
 例1と同様の方法により、接合体を製造した。
 ただし、この例2では、窒化ケイ素板とアルミニウム板の間に、シルミン板を設置しなかった。すなわち、被接合面に塗布液Aを塗布した窒化ケイ素板と、アルミニウム板とを積層させた状態で、熱処理を行った。塗布条件および熱処理条件等は、例1の場合と同様である。
 これにより、例2に係る接合体が得られた。
 例2に係る接合体を用いて、前述の耐熱特性試験を実施した。試験後に接合体を観察したところ、窒化ケイ素板とアルミニウム板の間に、剥離が認められた。
 (例3)
 以下の方法により、セラミックス部材とアルミニウム部材の接合体を製作した。
 まず、セラミックス部材として、縦20mm×横20mm×厚さ0.6mmの寸法を有する窒化アルミニウム板(純度90%以上)を用意した。
 また、アルミニウム部材として、縦20mm×横20mm×厚さ5mmの寸法を有する市販のアルミニウム板(純度99%以上、スリーエス社製)を準備した。さらに、合金部材として、縦20mm×横20mm×厚さ0.5mmのSi-Al合金(Si-1wt%Al合金)板を準備した。以下、20mm×20mmの両表面を、それぞれ、第1の表面および第2の表面と称する。
 次に、スピンコーティング法により、窒化アルミニウム板の被接合面(20mm×20mmの一つの面)に、前述の塗布液Aを塗布した。スピンコーティングの条件は、回転数1000rps、回転時間30秒とした。
 また、Si-Al合金板を塗布液A中に浸漬して、全面に塗布液Aを設置した。
 次に、窒化アルミニウム板を、被接合面が上向きとなるようにして、台上に水平に設置した。また、被接合面に、Si-Al合金板を設置した。Si-Al合金板は、第2の表面が窒化アルミニウム板の被接合面に対面するように設置した。
 次に、Si-Al合金板の上に、アルミニウム板を設置した。さらに、アルミニウム板の上に、重しとして、縦40mm×横40mm×厚さ11mmのアルミナ板(重量70g)を配置した。
 次に、得られた組立体を、アルゴン雰囲気下、600℃で1時間熱処理した。これにより、窒化アルミニウム板、Si-Al合金板、およびアルミニウム板が接合された接合体が得られた。以下、この接合体を、「例3に係る接合体」と称する。
 走査型電子顕微鏡を用いて、アルミニウム板とSi-Al合金板の間、およびSi-Al合金板と窒化アルミニウム板の間に形成された接合層を観察した。その結果、いずれの接合層においても、特にクラックやボイド等の欠陥は認められなかった。
 また、例3に係る接合体を用いて、前述の耐熱特性試験を実施した。試験後に接合体を観察したところ、何れの箇所にも剥離や損傷等の異常は認められず、例3に係る接合体は、健全な状態であった。
 (例4)
 例3と同様の方法により、接合体を製造した。
 ただし、この例3では、窒化アルミニウム板とアルミニウム板の間に、Si-Al合金板を設置しなかった。すなわち、被接合面に塗布液Aを塗布した窒化アルミニウム板と、アルミニウム板とを積層させた状態で、熱処理を行った。塗布条件および熱処理条件等は、例1の場合と同様である。
 これにより、例4に係る接合体が得られた。
 例4に係る接合体を用いて、前述の耐熱特性試験を実施した。試験後に接合体を観察したところ、窒化アルミニウム板とアルミニウム板の間に、剥離が認められた。
 (例5)
 以下の方法により、セラミックス部材とアルミニウム部材の接合体を製作した。
 まず、セラミックス部材として、縦20mm×横20mm×厚さ0.32mmの寸法を有する窒化ケイ素板(純度80%以上)を用意した。この窒化ケイ素板内のアルミニウム含有量をEDS法で測定した結果、含有量は3wt%以上であった。
 また、アルミニウム部材として、縦20mm×横20mm×厚さ5mmの寸法を有する市販のアルミニウム板(純度99%以上、スリーエス社製)を準備した。さらに、合金部材として、縦20mm×横20mm×厚さ0.2mmのシルミン(Al-12wt%Si合金)板を準備した。以下、シルミン板の20mm×20mmの両表面を、それぞれ、第1の表面および第2の表面と称する。
 次に、市販のポリメチルフェニルシロキサン(KF-54:信越化学工業(株)社製)をトルエン溶媒により0.1mol/Lに希釈して、塗布液(以下、「塗布液B」と称する)を調製した。
 次に、スピンコーティング法により、窒化ケイ素板の被接合面(20mm×20mmの一つの面)に、前述の塗布液Bを塗布した。スピンコーティングの条件は、回転数3000rps、回転時間30秒とした。
 また、シルミン板を塗布液B中に浸漬して、全面に塗布液Bを設置した。
 次に、窒化ケイ素板を、被接合面が上向きとなるようにして、台上に水平に設置した。また、被接合面に、シルミン板を設置した。シルミン板は、第2の表面が窒化ケイ素板の被接合面に対面するように設置した。
 次に、シルミン板の上に、アルミニウム板を設置した。さらに、アルミニウム板の上に、重しとして、縦40mm×横40mm×厚さ11mmのアルミナ板(重量約70g)を配置した。
 次に、得られた組立体を、アルゴン雰囲気下、500℃で8時間熱処理した。これにより、窒化ケイ素板、シルミン板、およびアルミニウム板が接合された接合体が得られた。以下、この接合体を、「例5に係る接合体」と称する。
 走査型電子顕微鏡を用いて、アルミニウム板とシルミン板の間、およびシルミン板と窒化ケイ素板の間に形成された接合層を観察した。その結果、いずれの接合層においても、特にクラックやボイド等の欠陥は認められなかった。
 また、例5に係る接合体を用いて、前述の耐熱特性試験を実施した。試験後に接合体を観察したところ、何れの箇所にも剥離や損傷等の異常は認められず、例5に係る接合体は、健全な状態であった。
 (例6)
 以下の方法により、セラミックス部材とアルミニウム部材の接合体を製作した。
 まず、セラミックス部材として、縦20mm×横20mm×厚さ0.32mmの寸法を有する窒化ケイ素板(純度90%以上)を用意した。この窒化ケイ素板内のアルミニウム含有量をEDS法で測定した結果、含有量は3wt%以上であった。
 また、アルミニウム部材として、縦20mm×横20mm×厚さ5mmの寸法を有する市販のアルミニウム板(純度99%以上、スリーエス社製)を準備した。さらに、合金部材として、縦20mm×横20mm×厚さ0.2mmのシルミン(Al-12wt%Si合金)板を準備した。以下、シルミン板の20mm×20mmの両表面を、それぞれ、第1の表面および第2の表面と称する。
 次に、スピンコーティング法により、窒化ケイ素板の被接合面(20mm×20mmの一つの面)に、前述の塗布液Bを塗布した。スピンコーティングの条件は、回転数3000rps、回転時間30秒とした。
 また、シルミン板を塗布液B中に浸漬して、全面に塗布液Bを設置した。
 次に、窒化ケイ素板を、被接合面が上向きとなるようにして、台上に水平に設置した。また、被接合面に、シルミン板を設置した。シルミン板は、第2の表面が窒化ケイ素板の被接合面に対面するように設置した。
 次に、シルミン板の上に、アルミニウム板を設置した。さらに、アルミニウム板の上に、重しとして、縦30mm×横30mm×厚さ10mmのアルミナ板(重量約35g)を配置した。
 次に、得られた組立体を、アルゴン雰囲気下、620℃で1時間熱処理した。なお、この熱処理温度は、シルミン板の融点を超える温度である。
 熱処理後に、窒化ケイ素板、シルミン板、およびアルミニウム板が接合された接合体が得られた。以下、この接合体を、「例6に係る接合体」と称する。
 走査型電子顕微鏡を用いて、アルミニウム板とシルミン板の間、およびシルミン板と窒化ケイ素板の間に形成された接合層を観察した。その結果、いずれの接合層においても、特にクラックやボイド等の欠陥は認められなかった。
 また、例6に係る接合体を用いて、前述の耐熱特性試験を実施した。試験後に接合体を観察したところ、何れの箇所にも剥離や損傷等の異常は認められず、例6に係る接合体は、健全な状態であった。
 (例7)
 以下の方法により、セラミックス部材とアルミニウム部材の接合体を製作した。
 まず、セラミックス部材として、縦20mm×横20mm×厚さ0.32mmの寸法を有する窒化ケイ素板(純度90%以上)を用意した。この窒化ケイ素板内のアルミニウム含有量をEDS法で測定した結果、含有量は1wt%未満であった。
 また、アルミニウム部材として、縦20mm×横20mm×厚さ5mmの寸法を有する市販のアルミニウム板(純度99%以上、スリーエス社製)を準備した。さらに、合金部材として、縦20mm×横20mm×厚さ0.5mmのシルミン(Al-12wt%Si合金)板を準備した。以下、シルミン板の20mm×20mmの両表面を、それぞれ、第1の表面および第2の表面と称する。
 次に、スピンコーティング法により、窒化ケイ素板の被接合面(20mm×20mmの一つの面)に、前述の塗布液Aを塗布した。スピンコーティングの条件は、回転数3000rps、回転時間30秒とした。
 また、シルミン板を塗布液A中に浸漬して、全面に塗布液Aを設置した。
 次に、窒化ケイ素板を、被接合面が上向きとなるようにして、台上に水平に設置した。また、被接合面に、シルミン板を設置した。Al-Si合金板は、第2の表面が窒化ケイ素板の被接合面に対面するように設置した。
 次に、シルミン板の上に、アルミニウム板を設置した。さらに、アルミニウム板の上に、重しとして、縦40mm×横40mm×厚さ11mmのアルミナブロック(重量約70g)を配置した。
 次に、得られた組立体を、アルゴン雰囲気下、550℃で8時間熱処理した。これにより、窒化ケイ素板、シルミン板、およびアルミニウム板が接合された接合体が得られた。以下、この接合体を、「例7に係る接合体」と称する。
 走査型電子顕微鏡を用いて、アルミニウム板とシルミン板の間、およびシルミン板と窒化ケイ素板の間に形成された接合層を観察した。その結果、いずれの接合層においても、特にクラックやボイド等の欠陥は認められなかった。
 また、例7に係る接合体を用いて、前述の耐熱特性試験を実施した。試験後に接合体を観察したところ、何れの箇所にも剥離や損傷等の異常は認められず、例7に係る接合体は、健全な状態であった。
 (例8)
 以下の方法により、セラミックス部材とアルミニウム部材の接合体を製作した。
 まず、セラミックス部材として、縦20mm×横20mm×厚さ1mmの寸法を有するアルミナ板(純度99%以上)を用意した。
 また、アルミニウム部材として、縦20mm×横20mm×厚さ5mmの寸法を有する市販のアルミニウム板(純度99%以上、スリーエス社製)を準備した。さらに、合金部材として、縦20mm×横20mm×厚さ2mmのAl-Si-Mg(0.3wt%Si、4.9wt%Mg)板を準備した。以下、Al-Si-Mg板の20mm×20mmの両表面を、それぞれ、第1の表面および第2の表面と称する。
 次に、スピンコーティング法により、アルミナ板の被接合面(20mm×20mmの一つの面)に、前述の塗布液Aを塗布した。スピンコーティングの条件は、回転数500rpm、回転時間30秒とした。
 また、Al-Si-Mg合金板を塗布液A中に浸漬して、全面に塗布液Aを設置した。
 次に、アルミナ板を、被接合面が上向きとなるようにして、台上に水平に設置した。また、被接合面に、Al-Si-Mg合金板を設置した。Al-Si合金板は、第2の表面がアルミナ板の被接合面に対面するように設置した。
 次に、Al-Si-Mg合金板の上に、アルミニウム板を設置した。さらに、アルミニウム板の上に、重しとして、縦40mm×横40mm×厚さ11mmのアルミナブロック(重量約70g)を配置した。
 次に、得られた組立体を、アルゴン雰囲気下、600℃で8時間熱処理した。これにより、アルミナ板、Al-Si-Mg板、およびアルミニウム板が接合された接合体が得られた。以下、この接合体を、「例8に係る接合体」と称する。
 走査型電子顕微鏡を用いて、アルミニウム板とAl-Si-Mg板の間、およびAl-Si-Mg板とアルミナ板の間に形成された接合層を観察した。その結果、いずれの接合層においても、特にクラックやボイド等の欠陥は認められなかった。
 また、例8に係る接合体を用いて、前述の耐熱特性試験を実施した。試験後に接合体を観察したところ、何れの箇所にも剥離や損傷等の異常は認められず、例8に係る接合体は、健全な状態であった。
 (例9)
v以下の方法により、セラミックス部材とアルミニウム部材の接合体を製作した。
 まず、セラミックス部材として、縦20mm×横20mm×厚さ0.32mmの寸法を有する窒化ケイ素板(純度90%以上)を用意した。この窒化ケイ素板内のアルミニウム含有量をEDS法で測定した結果、含有量は1wt%未満であった。
 また、アルミニウム部材として、縦20mm×横20mm×厚さ5mmの寸法を有する市販のアルミニウム板(純度99%以上、スリーエス社製)を準備した。さらに、合金部材として、縦20mm×横20mm×厚さ0.08mmのシルミン(Al-12wt%Si合金)板を準備した。以下、シルミン板の20mm×20mmの両表面を、それぞれ、第1の表面および第2の表面と称する。
 次に、市販のポリシラン(SI-20-10、大阪ガスケミカル製)をトルエン溶媒により0.1mol/Lに希釈して、塗布液(以下、「塗布液C」と称する)を調製した。
 次に、スピンコーティング法により、窒化ケイ素板の被接合面(20mm×20mmの一つの面)に、前述の塗布液Cを塗布した。スピンコーティングの条件は、回転数1000rps、回転時間30秒とした。
 また、シルミン板を塗布液C中に浸漬して、全面に塗布液Cを設置した。
 次に、窒化ケイ素板を、被接合面が上向きとなるようにして、台上に水平に設置した。また、被接合面に、シルミン板を設置した。シルミン板は、第2の表面が窒化ケイ素板の被接合面に対面するように設置した。
 次に、シルミン板の上に、アルミニウム板を設置した。さらに、アルミニウム板の上に、重しとして、縦40mm×横40mm×厚さ11mmのアルミナブロック(重量約70g)を配置した。
 次に、得られた組立体を、アルゴン雰囲気下、350℃で4時間熱処理した。これにより、窒化ケイ素板、シルミン板、およびアルミニウム板が接合された接合体が得られた。以下、この接合体を、「例9に係る接合体」と称する。
 走査型電子顕微鏡を用いて、アルミニウム板とシルミン板の間、およびシルミン板と窒化ケイ素板の間に形成された接合層を観察した。その結果、いずれの接合層においても、特にクラックやボイド等の欠陥は認められなかった。
 また、例9に係る接合体を用いて、前述の耐熱特性試験を実施した。試験後に接合体を観察したところ、何れの箇所にも剥離や損傷等の異常は認められず、例9に係る接合体は、健全な状態であった。
 (例10)
 以下の方法により、セラミックス部材とアルミニウム部材の接合体を製作した。
 まず、セラミックス部材として、縦20mm×横20mm×厚さ0.32mmの寸法を有する窒化ケイ素板(純度90%以上)を用意した。この窒化ケイ素板内のアルミニウム含有量をEDS法で測定した結果、含有量は1wt%未満であった。
 また、アルミニウム部材として、縦20mm×横20mm×厚さ5mmの寸法を有する市販のアルミニウム板(純度99%以上、スリーエス社製)を準備した。さらに、合金部材として、縦20mm×横20mm×厚さ0.2mmのシルミン(Al-12wt%Si合金)板を準備した。以下、シルミン板の20mm×20mmの両表面を、それぞれ、第1の表面および第2の表面と称する。
 次に、ディッピング法により、窒化ケイ素板の被接合面(20mm×20mmの一つの面)に、前述の塗布液Aを塗布した。その後、塗布液面表面にアルミナ粉末(AS-40、昭和電工製)を薄く散布した。
 また、シルミン板を塗布液A中に浸漬して、全面に塗布液Aを設置した。
 次に、窒化ケイ素板を、被接合面が上向きとなるようにして、台上に水平に設置した。また、被接合面に、シルミン板を設置した。シルミン板は、第2の表面が窒化ケイ素板の被接合面に対面するように設置した。
 次に、シルミン板の上に、アルミニウム板を設置した。さらに、アルミニウム板の上に、重しとして、縦40mm×横40mm×厚さ11mmのアルミナブロック(重量約70g)を配置した。
 次に、得られた組立体を、アルゴン雰囲気下、620℃で1時間熱処理した。これにより、窒化ケイ素板、シルミン板、およびアルミニウム板が接合された接合体が得られた。以下、この接合体を、「例10に係る接合体」と称する。
 走査型電子顕微鏡を用いて、アルミニウム板とシルミン板の間、およびシルミン板と窒化ケイ素板の間に形成された接合層を観察した。その結果、いずれの接合層においても、特にクラックやボイド等の欠陥は認められなかった。
 また、例10に係る接合体を用いて、前述の耐熱特性試験を実施した。試験後に接合体を観察したところ、何れの箇所にも剥離や損傷等の異常は認められず、例10に係る接合体は、健全な状態であった。
 (例11)
 以下の方法により、セラミックス部材とアルミニウム部材の接合体を製作した。
 まず、セラミックス部材として、縦20mm×横20mm×厚さ0.32mmの寸法を有する窒化ケイ素板(純度90%以上)を用意した。この窒化ケイ素板内のアルミニウム含有量をEDS法で測定した結果、含有量は1wt%未満であった。
 また、アルミニウム部材として、縦20mm×横20mm×厚さ5mmの寸法を有する市販のアルミニウム板(純度99%以上、スリーエス社製)を準備した。さらに、合金部材として、縦20mm×横20mm×厚さ0.2mmのシルミン(Al-12wt%Si合金)板を準備した。以下、シルミン板の20mm×20mmの両表面を、それぞれ、第1の表面および第2の表面と称する。
 次に、ディッピング法により、窒化ケイ素板の被接合面(20mm×20mmの一つの面)に、前述の塗布液Aを塗布した。その後、塗布液面表面に炭化ケイ素粉末(GC#1000、フジミインコーポレイテッド製)を薄く散布した。
 また、シルミン板を塗布液A中に浸漬して、全面に塗布液Aを設置した。
 次に、窒化ケイ素板を、被接合面が上向きとなるようにして、台上に水平に設置した。また、被接合面に、シルミン板を設置した。シルミン板は、第2の表面が窒化ケイ素板の被接合面に対面するように設置した。
 次に、シルミン板の上に、アルミニウム板を設置した。さらに、アルミニウム板の上に、重しとして、縦40mm×横40mm×厚さ11mmのアルミナブロック(重量約70g)を配置した。
 次に、得られた組立体を、アルゴン雰囲気下、620℃で4時間熱処理した。これにより、窒化ケイ素板、シルミン板、およびアルミニウム板が接合された接合体が得られた。以下、この接合体を、「例11に係る接合体」と称する。
 走査型電子顕微鏡を用いて、アルミニウム板とシルミン板の間、およびシルミン板と窒化ケイ素板の間に形成された接合層を観察した。その結果、いずれの接合層においても、特にクラックやボイド等の欠陥は認められなかった。
 また、例11に係る接合体を用いて、前述の耐熱特性試験を実施した。試験後に接合体を観察したところ、何れの箇所にも剥離や損傷等の異常は認められず、例11に係る接合体は、健全な状態であった。
 (例12)
 以下の方法により、セラミックス部材とアルミニウム部材の接合体を製作した。
 まず、セラミックス部材として、縦20mm×横20mm×厚さ0.32mmの寸法を有する窒化ケイ素板(純度90%以上)を用意した。この窒化ケイ素板内のアルミニウム含有量をEDS法で測定した結果、含有量は1wt%未満であった。
 また、アルミニウム部材として、縦20mm×横20mm×厚さ5mmの寸法を有する市販のアルミニウム板(純度99%以上、スリーエス社製)を準備した。さらに、合金部材として、縦20mm×横20mm×厚さ0.2mmのシルミン(Al-12wt%Si合金)板を準備した。以下、シルミン板の20mm×20mmの両表面を、それぞれ、第1の表面および第2の表面と称する。
 次に、ディッピング法により、窒化ケイ素板の被接合面(20mm×20mmの一つの面)に、前述の塗布液Aを塗布した。その後、塗布液面表面に、シリコンウエハー(SI-500443、ニラコ製)を砕いて作製した金属ケイ素粉末を薄く散布した。
 また、シルミン板を塗布液A中に浸漬して、全面に塗布液Aを設置した。
 次に、窒化ケイ素板を、被接合面が上向きとなるようにして、台上に水平に設置した。また、被接合面に、シルミン板を設置した。シルミン板は、第2の表面が窒化ケイ素板の被接合面に対面するように設置した。
 次に、シルミン板の上に、アルミニウム板を設置した。さらに、アルミニウム板の上に、重しとして、縦40mm×横40mm×厚さ11mmのアルミナブロック(重量約70g)を配置した。
 次に、得られた組立体を、アルゴン雰囲気下、620℃で4時間熱処理した。これにより、窒化ケイ素板、シルミン板、およびアルミニウム板が接合された接合体が得られた。以下、この接合体を、「例12に係る接合体」と称する。
 走査型電子顕微鏡を用いて、アルミニウム板とシルミン板の間、およびシルミン板と窒化ケイ素板の間に形成された接合層を観察した。その結果、いずれの接合層においても、特にクラックやボイド等の欠陥は認められなかった。
 また、例12に係る接合体を用いて、前述の耐熱特性試験を実施した。試験後に接合体を観察したところ、何れの箇所にも剥離や損傷等の異常は認められず、例12に係る接合体は、健全な状態であった。
 (例13)
 以下の方法により、セラミックス部材とアルミニウム部材の接合体を製作した。
 まず、セラミックス部材として、縦20mm×横20mm×厚さ0.32mmの寸法を有する窒化ケイ素板(純度90%以上)を用意した。この窒化ケイ素板内のアルミニウム含有量をEDS法で測定した結果、含有量は1wt%未満であった。
 また、アルミニウム部材として、縦20mm×横20mm×厚さ5mmの寸法を有する市販のアルミニウム板(純度99%以上、スリーエス社製)を準備した。さらに、合金部材として、縦20mm×横20mm×厚さ0.2mmに圧延したAl-Zn合金板(RZ-203、新富士バーナー製)を準備した。以下、Al-Zn合金板の20mm×20mmの両表面を、それぞれ、第1の表面および第2の表面と称する。
 次に、ディッピング法により、窒化ケイ素板の被接合面(20mm×20mmの一つの面)に、前述の塗布液Aを塗布した。その後、塗布液面表面に、シリコンウエハー(SI-500443、ニラコ製)を砕いて作製した金属ケイ素粉末を薄く散布した。
 また、Al-Zn合金板を塗布液A中に浸漬して、全面に塗布液Aを設置した。
 次に、窒化ケイ素板を、被接合面が上向きとなるようにして、台上に水平に設置した。また、被接合面に、Al-Zn合金板を設置した。Al-Zn合金板は、第2の表面が窒化ケイ素板の被接合面に対面するように設置した。
 次に、Al-Zn合金板の上に、アルミニウム板を設置した。さらに、アルミニウム板の上に、重しとして、縦40mm×横40mm×厚さ11mmのアルミナブロック(重量約70g)を配置した。
 次に、得られた組立体を、アルゴン雰囲気下、550℃で1時間熱処理した。これにより、窒化ケイ素板、Al-Zn合金板、およびアルミニウム板が接合された接合体が得られた。以下、この接合体を、「例13に係る接合体」と称する。
 走査型電子顕微鏡を用いて、アルミニウム板とAl-Zn合金板の間、およびAl-Zn合金板と窒化ケイ素板の間に形成された接合層を観察した。その結果、いずれの接合層においても、特にクラックやボイド等の欠陥は認められなかった。
 また、例13に係る接合体を用いて、前述の耐熱特性試験を実施した。試験後に接合体を観察したところ、何れの箇所にも剥離や損傷等の異常は認められず、例13に係る接合体は、健全な状態であった。
 (例14)
 以下の方法により、セラミックス部材とアルミニウム部材の接合体を製作した。
 まず、セラミックス部材として、縦20mm×横20mm×厚さ0.32mmの寸法を有する窒化ケイ素板(純度90%以上)を用意した。この窒化ケイ素板内のアルミニウム含有量をEDS法で測定した結果、含有量は1wt%未満であった。
 また、アルミニウム部材として、縦20mm×横20mm×厚さ5mmの寸法を有する市販のアルミニウム板(純度99%以上、スリーエス社製)を準備した。さらに、合金部材として、縦20mm×横20mm×厚さ0.2mmに圧延した、公知の方法で作製されたAl-Sn合金板を準備した。以下、Al-Sn合金板の20mm×20mmの両表面を、それぞれ、第1の表面および第2の表面と称する。
 次に、ディッピング法により、窒化ケイ素板の被接合面(20mm×20mmの一つの面)に、前述の塗布液Aを塗布した。その後、塗布液面表面に、シリコンウエハー(SI-500443,ニラコ製)を砕いて作製した金属ケイ素粉末を薄く散布した。
 また、Al-Sn合金板を塗布液A中に浸漬して、全面に塗布液Aを設置した。
 次に、窒化ケイ素板を、被接合面が上向きとなるようにして、台上に水平に設置した。また、被接合面に、Al-Sn合金板を設置した。Al-Sn合金板は、第2の表面が窒化ケイ素板の被接合面に対面するように設置した。
 次に、Al-Sn合金板の上に、アルミニウム板を設置した。さらに、アルミニウム板の上に、重しとして、縦40mm×横40mm×厚さ11mmのアルミナブロック(重量約70g)を配置した。
 次に、得られた組立体を、アルゴン雰囲気下、620℃で4時間熱処理した。これにより、窒化ケイ素板、Al-Sn合金板、およびアルミニウム板が接合された接合体が得られた。以下、この接合体を、「例14に係る接合体」と称する。
 走査型電子顕微鏡を用いて、アルミニウム板とAl-Sn合金板の間、およびAl-Sn合金板と窒化ケイ素板の間に形成された接合層を観察した。その結果、いずれの接合層においても、特にクラックやボイド等の欠陥は認められなかった。
 また、例14に係る接合体を用いて、前述の耐熱特性試験を実施した。試験後に接合体を観察したところ、何れの箇所にも剥離や損傷等の異常は認められず、例14に係る接合体は、健全な状態であった。
 (例15)
 以下の方法により、セラミックス部材とアルミニウム部材の接合体を製作した。
 まず、セラミックス部材として、縦20mm×横20mm×厚さ0.32mmの寸法を有する窒化ケイ素板(純度90%以上)を用意した。この窒化ケイ素板内のアルミニウム含有量をEDS法で測定した結果、含有量は1wt%未満であった。
 また、アルミニウム部材として、縦20mm×横20mm×厚さ5mmの寸法を有する市販のアルミニウム板(純度99%以上、スリーエス社製)を準備した。さらに、合金部材として、縦20mm×横20mm×厚さ0.2mmに圧延した、公知の方法で作製されたAl-Si-Sn合金板を準備した。以下、Al-Si-Sn合金板の20mm×20mmの両表面を、それぞれ、第1の表面および第2の表面と称する。
 次に、ディッピング法により、窒化ケイ素板の被接合面(20mm×20mmの一つの面)に、前述の塗布液Aを塗布した。その後、塗布液面表面に、シリコンウエハー(SI-500443、ニラコ製)を砕いて作製した金属ケイ素粉末を薄く散布した。
 また、Al-Si-Sn合金板を塗布液A中に浸漬して、全面に塗布液Aを設置した。
 次に、窒化ケイ素板を、被接合面が上向きとなるようにして、台上に水平に設置した。また、被接合面に、Al-Si-Sn合金板を設置した。Al-Si-Sn合金板は、第2の表面が窒化ケイ素板の被接合面に対面するように設置した。
 次に、Al-Si-Sn合金板の上に、アルミニウム板を設置した。さらに、アルミニウム板の上に、重しとして、縦40mm×横40mm×厚さ11mmのアルミナブロック(重量約70g)を配置した。
 次に、得られた組立体を、アルゴン雰囲気下、620℃で4時間熱処理した。これにより、窒化ケイ素板、Al-Si-Sn合金板、およびアルミニウム板が接合された接合体が得られた。以下、この接合体を、「例15に係る接合体」と称する。
 走査型電子顕微鏡を用いて、アルミニウム板とAl-Si-Sn合金板の間、およびAl-Si-Sn合金板と窒化ケイ素板の間に形成された接合層を観察した。その結果、いずれの接合層においても、特にクラックやボイド等の欠陥は認められなかった。
 また、例15に係る接合体を用いて、前述の耐熱特性試験を実施した。試験後に接合体を観察したところ、何れの箇所にも剥離や損傷等の異常は認められず、例15に係る接合体は、健全な状態であった。
 本願は2016年6月9日に出願した日本国特許出願2016-115124号に基づく優先権を主張するものであり、同日本国出願の全内容を本願に参照により援用する。
 100  第1の接合体
 110  アルミニウム部材
 120  合金部材
 130  セラミックス部材
 140  第1の接合層
 150  第2の接合層
 200  第2の接合体
 210  アルミニウム部材
 220  第1の合金部材
 225  第2の合金部材
 230  セラミックス部材
 240  第1の接合層
 250  第2の接合層
 260  第3の接合層

Claims (17)

  1.  アルミニウム部材とセラミックス部材と、それらの間の1個または2個の合金部材とを有する接合体の製造方法であって、
     準備ステップと、設置ステップと、組立ステップと、加熱ステップとを備え、
     前記合金部材が1個の場合、
     前記準備ステップが、
    (a)(1)前記アルミニウム部材、(2)アルミニウムおよび/またはケイ素を含有する前記セラミックス部材、ならびに(3)第1および第2の表面を有し、アルミニウムを含む第1の合金部材を準備する、準備ステップであり、
     前記設置ステップが、
    (b)前記アルミニウム部材の被接合面および前記第1の合金部材の第1の表面の少なくとも一方に、第1の接合材を設置するとともに、前記セラミックス部材の被接合面および前記第1の合金部材の第2の表面の少なくとも一方に、第2の接合材を設置する、設置ステップであり、
     前記組立ステップが、
    (c)前記アルミニウム部材、前記第1の合金部材、および前記セラミックス部材を、前記第1の合金部材の前記第1の表面が前記アルミニウム部材の被接合面と対面し、前記第2の表面が前記セラミックス部材の被接合面と対面するように積層し、組立体を構成する、組立ステップであり、
     前記合金部材が2個の場合、
     前記準備ステップが、
    (a)(1)前記アルミニウム部材、(2)アルミニウムおよび/またはケイ素を含有する前記セラミックス部材、(3)第1および第2の表面を有し、アルミニウムを含む第1の合金部材、ならびに(4)第3および第4の表面を有し、アルミニウムを含む第2の合金部材を準備する、準備ステップであり、
     前記設置ステップが、
    (b)前記アルミニウム部材の被接合面および前記第1の合金部材の第1の表面の少なくとも一方に、第1の接合材を設置し、前記セラミックス部材の被接合面および前記第2の合金部材の第4の表面の少なくとも一方に、第2の接合材を設置し、前記第1の合金部材の第2の表面および前記第2の合金部材の第3の表面の少なくとも一方に、第3の接合材を設置する、設置ステップであり、
     前記組立ステップが、
    (c)前記アルミニウム部材、前記第1の合金部材、前記第2の合金部材、および前記セラミックス部材を、前記第1の合金部材の前記第1の表面が前記アルミニウム部材の被接合面と対面し、前記第1の合金部材の前記第2の表面と前記第2の合金部材の前記第3の表面が対面し、前記第2の合金部材の前記第4の表面が前記セラミックス部材の被接合面と対面するように積層し、組立体を構成する、組立ステップであり、
     前記合金部材の数によらず、前記加熱ステップが、
     (d)前記組立体を、不活性ガス雰囲気下または真空雰囲気下、400℃~800℃の温度で加熱する、加熱ステップであり、
      前記第1および第2の合金部材の熱膨張係数は、それぞれ、前記アルミニウム部材の熱膨張係数よりも小さく、前記セラミックス部材の熱膨張係数よりも大きく、
      前記第2の合金部材の熱膨張係数は、前記第1の合金部材の熱膨張係数よりも小さく、
      前記第1、第2、および第3の接合材は、それぞれ独立に、
    (i)主鎖がSi-C-Si基およびSi-N-Si基の少なくとも一つを有する有機ケイ素系ポリマー、
    (ii)主鎖がSi-O-Si基を有する有機ケイ素系ポリマー、
    (iii)炭素粉末含有シリカゾル、ならびに
    (iv)主鎖がSi-Si基を有する有機ケイ素系ポリマー、
     の少なくとも一つを有する、接合体の製造方法。
  2.  前記第1および/または第2の合金部材は、Alを主体としてSiを含む合金、Alを主体としてSiおよびMgを含む合金、またはSiを主体としてAlを含む合金である、請求項1に記載の製造方法。
  3.  前記第1および/または第2の合金部材は、Al-Zn合金、Al-Sn合金、Al-Mg-Sn合金、Al-Mg-Zn合金、Al-Si-Sn合金、またはAl-Sn-Zn合金のいずれかである、請求項1に記載の製造方法。
  4.  前記第1の合金部材は、内部に該第1の合金部材よりも熱膨張係数が小さい粒子を含む、請求項1に記載の製造方法。
  5.  前記粒子は、金属粒子、合金粒子、およびセラミックス粒子の少なくとも一つを含む、請求項4に記載の製造方法。
  6.  前記(i)の有機ケイ素系ポリマーは、ポリカルボシラン、ポリカルボシラザン、アリルハイドライドポリカルボシラン、ポリチタノカルボシラン、ポリシルメチレン、ポリシラザン、ポリヒドロポリシラザン、およびポリオルガノシラザンからなる群から選定される少なくとも一つを含む、請求項1に記載の製造方法。
  7.  前記(ii)の有機ケイ素系ポリマーは、ポリメチルヒドロシロキサン(PMHS)、ポリメチルフェニルシロキサン(PMPhS)、ポリメチルシルセスキオキサン(PMSQ)、およびポリフェニルシロキサン(PPSQ)からなる群から選定される少なくとも一つを含む、請求項1に記載の製造方法。
  8.  前記(iv)の有機ケイ素系ポリマーは、ポリヒドロシラン、ポリメチルシラン、およびポリフェニルシランからなる群から選定される少なくとも一つを含む、請求項1に記載の製造方法。
  9.  前記セラミックス部材は、アルミナ、窒化アルミニウム、窒化ケイ素、ムライトおよびアルミノシリケートからなる群から選定された、少なくとも一つの材料を含む、請求項1に記載の製造方法。
  10.  アルミニウム部材と、アルミニウムおよび/またはケイ素を含有するセラミックス部材と、を含む接合体であって、
     前記アルミニウム部材と前記セラミックス部材との間に、第1の接合層、第1の合金部材、第2の接合層がこの順に存在し、
     前記第1の合金部材は、アルミニウムを含み、
     前記第1の合金部材の熱膨張係数は、前記アルミニウム部材の熱膨張係数よりも小さく、前記セラミックス部材の熱膨張係数よりも大きく、
     前記第1および第2の接合層は、それぞれ、
    (I)炭素およびケイ素を含み、炭素量が8質量%以上であり、酸素量が30質量%未満である、アモルファス相、および/または
    (II)アルミノシリケート、
     を含む、接合体。
  11.  さらに、前記第2の接合層と前記セラミックス部材の間に、第2の合金部材及び第3の接合層をこの順に有し、
     前記第2の合金部材は、アルミニウムを含み、
     前記第2の合金部材の熱膨張係数は、前記第1の合金部材の熱膨張係数よりも小さく、前記セラミックス部材の熱膨張係数よりも大きく、
     前記第3の接合層は、
    (I)炭素およびケイ素を含み、炭素量が8質量%以上であり、酸素量が30質量%未満である、アモルファス相、および/または
    (II)アルミノシリケート、
     を含む、請求項10に記載の接合体。
  12.  前記第1および/または第2の合金部材は、Alを主体としてSiを含む合金、Alを主体としてSiおよびMgを含む合金、またはSiを主体としてAlを含む合金である、請求項10に記載の接合体。
  13.  前記第1および/または第2の合金部材は、Al-Zn合金、Al-Sn合金、Al-Mg-Sn合金、Al-Mg-Zn合金、Al-Si-Sn合金、またはAl-Sn-Zn合金のいずれかである、請求項10に記載の接合体。
  14.  前記第1の合金部材は、内部に該第1の合金部材よりも熱膨張係数が小さい粒子を含む、請求項10に記載の接合体。
  15.  前記第2の合金部材は、内部に該第2の合金部材よりも熱膨張係数が小さい粒子を含む、請求項11に記載の接合体。
  16.  前記粒子は、金属粒子、合金粒子、およびセラミックス粒子の少なくとも一つを含む、請求項14または15に記載の接合体。
  17.  前記アルミニウムおよび/またはケイ素を含有するセラミックス部材は、アルミナ、窒化アルミニウム、窒化ケイ素、ムライトおよびアルミノシリケートからなる群から選定された、少なくとも一つの材料を含む、請求項10に記載の接合体。
PCT/JP2017/021503 2016-06-09 2017-06-09 接合体の製造方法および接合体 WO2017213258A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018521793A JP6851033B2 (ja) 2016-06-09 2017-06-09 接合体の製造方法および接合体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-115124 2016-06-09
JP2016115124 2016-06-09

Publications (1)

Publication Number Publication Date
WO2017213258A1 true WO2017213258A1 (ja) 2017-12-14

Family

ID=60578678

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/021503 WO2017213258A1 (ja) 2016-06-09 2017-06-09 接合体の製造方法および接合体

Country Status (2)

Country Link
JP (1) JP6851033B2 (ja)
WO (1) WO2017213258A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109175660A (zh) * 2018-11-19 2019-01-11 哈尔滨工业大学 一种铝合金扩散焊接装置及铝合金扩散焊接方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6277187A (ja) * 1985-09-30 1987-04-09 Nippon Kokan Kk <Nkk> 固相接合方法
JPS62171969A (ja) * 1986-01-27 1987-07-28 株式会社東芝 セラミツクスと金属の接合方法
JPH04342480A (ja) * 1991-05-20 1992-11-27 Isuzu Ceramics Kenkyusho:Kk 金属とセラミックスの複合体およびその製造方法
JPH06256067A (ja) * 1993-03-03 1994-09-13 Toshiba Ceramics Co Ltd セラミック接合用コンパウンド
JPH0753278A (ja) * 1993-08-09 1995-02-28 Toshiba Ceramics Co Ltd セラミックス−金属接合体
JPH0940476A (ja) * 1995-05-22 1997-02-10 Ngk Spark Plug Co Ltd アルミニウム合金部材とセラミックス部材との接合体
JP2000323619A (ja) * 1999-05-07 2000-11-24 Sumitomo Electric Ind Ltd セラミックを用いた半導体装置用部材及びその製造方法
JP2010095666A (ja) * 2008-10-18 2010-04-30 Taiyo Yuden Co Ltd 接合方法及びこの方法を利用して製造された電子装置
JP2010534183A (ja) * 2007-07-25 2010-11-04 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 接合方法並びに少なくとも2つの接合パートナーからなる複合体
JP2016052979A (ja) * 2014-09-04 2016-04-14 国立研究開発法人産業技術総合研究所 セラミックス部材とアルミニウム部材とを接合する方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6277187A (ja) * 1985-09-30 1987-04-09 Nippon Kokan Kk <Nkk> 固相接合方法
JPS62171969A (ja) * 1986-01-27 1987-07-28 株式会社東芝 セラミツクスと金属の接合方法
JPH04342480A (ja) * 1991-05-20 1992-11-27 Isuzu Ceramics Kenkyusho:Kk 金属とセラミックスの複合体およびその製造方法
JPH06256067A (ja) * 1993-03-03 1994-09-13 Toshiba Ceramics Co Ltd セラミック接合用コンパウンド
JPH0753278A (ja) * 1993-08-09 1995-02-28 Toshiba Ceramics Co Ltd セラミックス−金属接合体
JPH0940476A (ja) * 1995-05-22 1997-02-10 Ngk Spark Plug Co Ltd アルミニウム合金部材とセラミックス部材との接合体
JP2000323619A (ja) * 1999-05-07 2000-11-24 Sumitomo Electric Ind Ltd セラミックを用いた半導体装置用部材及びその製造方法
JP2010534183A (ja) * 2007-07-25 2010-11-04 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 接合方法並びに少なくとも2つの接合パートナーからなる複合体
JP2010095666A (ja) * 2008-10-18 2010-04-30 Taiyo Yuden Co Ltd 接合方法及びこの方法を利用して製造された電子装置
JP2016052979A (ja) * 2014-09-04 2016-04-14 国立研究開発法人産業技術総合研究所 セラミックス部材とアルミニウム部材とを接合する方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109175660A (zh) * 2018-11-19 2019-01-11 哈尔滨工业大学 一种铝合金扩散焊接装置及铝合金扩散焊接方法

Also Published As

Publication number Publication date
JP6851033B2 (ja) 2021-03-31
JPWO2017213258A1 (ja) 2019-03-07

Similar Documents

Publication Publication Date Title
JP4877880B2 (ja) 優先的に酸素と反応する層を含むセラミック材
JP3866002B2 (ja) シリコンを含有する基板とイットリウムを含有するバリア層とを有する物品及びその製造方法
JP4936261B2 (ja) 炭化ホウ素含有セラミックス接合体及び該接合体の製造方法
JP2009504547A (ja) 金属セラミック基板
KR100270149B1 (ko) 질화 규소 회로 기판 및 그 제조 방법
KR20120027205A (ko) 금속/세라믹 기판
JP6562323B2 (ja) セラミックス部材とアルミニウム部材とを接合する方法、および接合体
WO2017213258A1 (ja) 接合体の製造方法および接合体
JP3495051B2 (ja) セラミックス−金属接合体
JP2966375B2 (ja) 積層セラミックス及びその製造方法
JP6406753B2 (ja) セラミックス部材とアルミニウム部材とを接合する方法
JP6558666B2 (ja) 接合体の製造方法および接合体
JP3994253B2 (ja) セラミックス複合材料
JP2012082095A (ja) 複数のセラミックス部材を相互に接合する方法
CN107074671B (zh) 耐环境性被膜
CN117280442A (zh) 生产多层结构的方法
JP6808801B2 (ja) Cu/セラミック基板
JPH08319582A (ja) 金属表面の絶縁性セラミックス膜及びその形成方法
TW201037797A (en) Ceramic substrate and method for fabricating the same
JP4110246B2 (ja) 希土類シリケート高温水蒸気腐食防止用皮膜及びその製造方法
JP6541123B2 (ja) 混合粒子、混合粒子を含むスラリー、および接合体
JP2984654B1 (ja) 溶射セラミックス層を有するセラミックス積層体の製造方法
JPH11139883A (ja) 積層セラミックスの製造方法
JP4178235B2 (ja) 希土類チタネート高温耐腐食層を有する窒化ケイ素セラミックス
JP5714249B2 (ja) 金属−セラミックス複合材料

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018521793

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17810430

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17810430

Country of ref document: EP

Kind code of ref document: A1