WO2017212630A1 - 車両用空調装置及び車両用空調装置の目詰まり検知システム - Google Patents

車両用空調装置及び車両用空調装置の目詰まり検知システム Download PDF

Info

Publication number
WO2017212630A1
WO2017212630A1 PCT/JP2016/067341 JP2016067341W WO2017212630A1 WO 2017212630 A1 WO2017212630 A1 WO 2017212630A1 JP 2016067341 W JP2016067341 W JP 2016067341W WO 2017212630 A1 WO2017212630 A1 WO 2017212630A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
vehicle
air conditioner
physical quantity
vehicle air
Prior art date
Application number
PCT/JP2016/067341
Other languages
English (en)
French (fr)
Inventor
雄亮 田代
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2018522274A priority Critical patent/JP6639666B2/ja
Priority to CN201680086453.8A priority patent/CN109311489B/zh
Priority to PCT/JP2016/067341 priority patent/WO2017212630A1/ja
Priority to EP16904664.6A priority patent/EP3470292B1/en
Priority to US16/091,743 priority patent/US10996007B2/en
Publication of WO2017212630A1 publication Critical patent/WO2017212630A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00357Air-conditioning arrangements specially adapted for particular vehicles
    • B60H1/00371Air-conditioning arrangements specially adapted for particular vehicles for vehicles carrying large numbers of passengers, e.g. buses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F27/00Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00735Control systems or circuits characterised by their input, i.e. by the detection, measurement or calculation of particular conditions, e.g. signal treatment, dynamic models
    • B60H1/00764Control systems or circuits characterised by their input, i.e. by the detection, measurement or calculation of particular conditions, e.g. signal treatment, dynamic models the input being a vehicle driving condition, e.g. speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00978Control systems or circuits characterised by failure of detection or safety means; Diagnostic methods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3225Cooling devices using compression characterised by safety arrangements, e.g. compressor anti-seizure means or by signalling devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61DBODY DETAILS OR KINDS OF RAILWAY VEHICLES
    • B61D27/00Heating, cooling, ventilating, or air-conditioning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61DBODY DETAILS OR KINDS OF RAILWAY VEHICLES
    • B61D27/00Heating, cooling, ventilating, or air-conditioning
    • B61D27/0018Air-conditioning means, i.e. combining at least two of the following ways of treating or supplying air, namely heating, cooling or ventilating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00735Control systems or circuits characterised by their input, i.e. by the detection, measurement or calculation of particular conditions, e.g. signal treatment, dynamic models
    • B60H1/00785Control systems or circuits characterised by their input, i.e. by the detection, measurement or calculation of particular conditions, e.g. signal treatment, dynamic models by the detection of humidity or frost
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3236Cooling devices information from a variable is obtained
    • B60H2001/3239Cooling devices information from a variable is obtained related to flow
    • B60H2001/3241Cooling devices information from a variable is obtained related to flow of air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3236Cooling devices information from a variable is obtained
    • B60H2001/3255Cooling devices information from a variable is obtained related to temperature

Definitions

  • the present invention relates to a vehicle air conditioner mounted on a vehicle and a clogging detection system for the vehicle air conditioner.
  • Patent Document 1 describes an air conditioner including an outdoor heat exchanger. When the outdoor heat exchanger becomes clogged, the air resistance of the outdoor heat exchanger increases and heat exchange between the outdoor air and the outdoor heat exchanger cannot be performed sufficiently. In this air conditioner, when the temperature difference between the saturation temperature calculated from the discharge pressure of the compressor and the outside air temperature is less than a predetermined temperature, it is determined that the outdoor heat exchanger is clogged.
  • the vehicle air conditioner In the case of a vehicle air conditioner, the wind path resistance varies depending on the traveling state and position of the vehicle. For this reason, unlike the stationary air conditioner as in Patent Document 1, the vehicle air conditioner has a problem that it is difficult to accurately detect clogging of the heat exchanger.
  • the present invention has been made to solve the above-described problems, and provides a vehicle air conditioner and a vehicle air conditioner clogging detection system that can more accurately detect clogging of a heat exchanger. With the goal.
  • the vehicle air conditioner according to the present invention includes a refrigerant circuit having a heat exchanger, a blower that blows air to the heat exchanger, and a control unit that controls the refrigerant circuit and the blower, and is mounted on a vehicle.
  • the control unit acquires a physical quantity correlated with the clogging amount of the heat exchanger, and based on the physical quantity
  • the heat exchanger is configured to determine whether or not the heat exchanger is clogged.
  • a clogging detection system for a vehicle air conditioner includes a refrigerant circuit having a heat exchanger, a blower that blows air to the heat exchanger, and a control unit that controls the refrigerant circuit and the blower.
  • a vehicle air conditioner mounted on a vehicle and a ground system connected to the control unit via a communication network, the control unit satisfying a predetermined condition of a position or speed of the vehicle
  • the physical quantity correlated with the clogging amount of the heat exchanger is acquired, and the physical quantity information is transmitted to the ground system.
  • the ground system is configured to transmit the heat exchange based on the physical quantity. It is comprised so that the presence or absence of clogging of a vessel may be determined.
  • the present invention it is possible to limit the influence of fluctuations in the wind path resistance due to the position or speed of the vehicle, so that it is possible to more accurately detect clogging of the heat exchanger.
  • FIG. 1 is a schematic side view showing a schematic configuration of a railway vehicle 100 on which a vehicle air conditioner 1 according to Embodiment 1 of the present invention is mounted. It is a refrigerant circuit diagram which shows schematic structure of the vehicle air conditioner 1 which concerns on Embodiment 1 of this invention. It is a block diagram which shows schematic structure of the clogging detection system 2 of the vehicle air conditioner 1 which concerns on Embodiment 1 of this invention. It is a flowchart which shows the example of the flow of the clogging detection process performed with the terminal 30 in the vehicle air conditioner 1 which concerns on Embodiment 1 of this invention.
  • FIG. 1 is a schematic side view showing a schematic configuration of a railway vehicle 100 equipped with a vehicle air conditioner 1 according to the present embodiment.
  • the relative dimensional relationship and shape of each component may differ from the actual ones.
  • the vehicle air conditioner 1 is mounted on the roof of the railway vehicle 100.
  • a blower duct 102 is provided at the ceiling of the passenger compartment 101 in the railway vehicle 100.
  • the conditioned air blown out from the vehicle air conditioner 1 is blown into the passenger compartment 101 through the blower duct 102.
  • the air in the passenger compartment 101 is sucked into the vehicle air conditioner 1 through a return air duct (not shown).
  • the vehicle air conditioner 1 of this example is mounted on the roof of the railway vehicle 100, the vehicle air conditioner 1 may be mounted under the floor of the railway vehicle 100.
  • the railway vehicle 100 constitutes part or all of one train. That is, one train is composed of at least one railway vehicle 100.
  • One rail vehicle 100 is equipped with one or a plurality of vehicle air conditioners 1.
  • FIG. 2 is a refrigerant circuit diagram showing a schematic configuration of the vehicle air conditioner 1.
  • the vehicle air conditioner 1 has, for example, two refrigerant circuits 10a and 10b.
  • the vehicle air conditioner 1 also includes an outdoor room 20 and indoor rooms 21 a and 21 b provided on both sides in the longitudinal direction of the railway vehicle 100 across the outdoor room 20.
  • the refrigerant circuit 10a has a configuration in which a compressor 11a, a four-way valve 12a, an indoor heat exchanger 13a, a pressure reducing device 14a (for example, a linear electronic expansion valve), and an outdoor heat exchanger 15a are connected via a refrigerant pipe. Yes.
  • the compressor 11a, the indoor heat exchanger 13a, the pressure reducing device 14a, and the outdoor heat exchanger 15a are connected in an annular shape in this order.
  • the indoor heat exchanger 13a functions as a condenser
  • the outdoor heat exchanger 15a functions as an evaporator.
  • the refrigerant flow path is switched by the four-way valve 12a, and the compressor 11a, the outdoor heat exchanger 15a, the pressure reducing device 14a, and the indoor heat exchanger 13a are connected in an annular shape in this order.
  • the indoor heat exchanger 13a functions as an evaporator
  • the outdoor heat exchanger 15a functions as a condenser.
  • the compressor 11a, the four-way valve 12a, the pressure reducing device 14a, and the outdoor heat exchanger 15a are disposed in the outdoor chamber 20.
  • the indoor heat exchanger 13a is disposed in the indoor room 21a.
  • the refrigerant circuit 10b has a configuration in which a compressor 11b, a four-way valve 12b, an indoor heat exchanger 13b, a pressure reducing device 14b (for example, a linear electronic expansion valve), and an outdoor heat exchanger 15b are connected via a refrigerant pipe.
  • a compressor 11b, the four-way valve 12b, the pressure reducing device 14b, and the outdoor heat exchanger 15b are disposed in the outdoor chamber 20.
  • the indoor heat exchanger 13b is disposed in the indoor chamber 21b.
  • the indoor heat exchangers 13a and 13b and the outdoor heat exchangers 15a and 15b may have any form.
  • various fins such as a plate fin, a corrugated fin, and a wave fin can be adopted as the form of the fin.
  • an outdoor fan 16 for blowing outdoor air to the outdoor heat exchangers 15a and 15b is provided.
  • the indoor chamber 21a is provided with an indoor fan 17a that blows indoor air to the indoor heat exchanger 13a.
  • the room air that has passed through the indoor heat exchanger 13a and has exchanged heat with the refrigerant is supplied to, for example, the front of the vehicle in the vehicle interior 101.
  • the indoor chamber 21b is provided with an indoor fan 17b that blows indoor air to the indoor heat exchanger 13b.
  • the indoor air that has passed through the indoor heat exchanger 13b and exchanged heat with the refrigerant is supplied to, for example, the rear of the vehicle in the vehicle interior 101.
  • the vehicle air conditioner 1 has a terminal 30 as a control unit.
  • the terminal 30 includes a microcomputer having a CPU, a ROM, a RAM, an I / O port, and the like.
  • the terminal 30 controls the operation of the refrigerant circuits 10a and 10b including the compressors 11a and 11b, the outdoor fan 16, and the indoor fans 17a and 17b based on detection signals from various sensors.
  • the terminal 30 functions as a control unit of the vehicle air conditioner 1 and constitutes a part of a clogging detection system 2 described later.
  • the terminal 30 of this example is provided for every vehicle air conditioner 1, the terminal 30 may be provided for each refrigerant circuit 10a, 10b.
  • FIG. 3 is a block diagram showing a schematic configuration of the clogging detection system 2 of the vehicle air conditioner 1 according to the present embodiment.
  • the clogging detection system 2 includes at least one on-vehicle system 40 and a ground system 50 connected to the on-vehicle system 40 via the communication network 60.
  • the communication network 60 is a communication network using wireless communication such as a mobile phone, a wireless LAN, WiMAX (registered trademark), and millimeter waves.
  • the on-board system 40 is mounted on a single train composed of a plurality of railway vehicles 100. In general, one on-board system 40 is mounted on one train.
  • the on-board system 40 includes an on-board communication device 41 that communicates with the ground system 50 via the communication network 60, central devices 42 and 43 provided on the railcar 100 at both ends of the train, and the vehicle air conditioner 1 for example. And a plurality of terminals 30 provided for each.
  • the on-vehicle communication device 41, the central devices 42 and 43, and the plurality of terminals 30 function as a control unit that controls the plurality of vehicle air conditioners 1 mounted on the train.
  • the ground system 50 includes a ground communication device 51 that communicates with the onboard system 40 via the communication network 60, a database 52 that stores data received from the onboard system 40, and a control that controls the ground communication device 51 and the database 52. (Not shown).
  • the ground system 50 performs remote monitoring of each vehicle air conditioner 1 by transmitting / receiving data to / from at least one on-vehicle system 40 via the communication network 60.
  • FIG. 4 is a flowchart showing an example of the flow of clogging detection processing executed by the terminal 30 in the vehicle air conditioner 1 according to the present embodiment.
  • the clogging detection process shown in FIG. 4 is a process for detecting clogging of at least one of the indoor heat exchangers 13a and 13b and the outdoor heat exchangers 15a and 15b.
  • the vehicle air conditioner 1 unlike the stationary air conditioner, not only the outdoor heat exchangers 15a and 15b but also the indoor heat exchangers 13a and 13b can be targets for clogging detection.
  • the clogging detection process is repeatedly executed at predetermined time intervals.
  • the terminal 30 acquires position information or vehicle speed information of the train including the railway vehicle 100 from either the on-board communication device 41 or the central devices 42 and 43.
  • the train position information may be two-dimensional or three-dimensional position information using GPS, or may be information about a kilometer from the starting station.
  • step S2 the terminal 30 determines whether the position or speed of the train satisfies a predetermined condition based on the acquired position information or vehicle speed information.
  • the predetermined condition includes, for example, that the train speed is a specific speed greater than 0 km / h (that is, the train is traveling at a specific speed), and the train speed is 0 km / h ( That is, the train is stopped), the train is not in the tunnel, the train is not in the station, and the like.
  • the position of the train can be grasped based on the position information.
  • the speed of the train can be grasped based on the vehicle speed information or the position information acquired this time and the position information acquired last time. If it is determined in step S2 that the position or speed of the train satisfies the predetermined condition, the process proceeds to step S3. If it is determined that the position or speed of the train does not satisfy the predetermined condition, the process ends.
  • the reason why it is determined whether or not the predetermined condition is satisfied in step S2 is to acquire a physical quantity correlated with the clogging amount of the heat exchanger in the same condition as much as possible in step S4 described later.
  • the amount of clogging of the heat exchanger can be evaluated by the physical quantity. For example, by relatively comparing the physical quantity acquired by the vehicle air conditioner with the physical quantity acquired by another vehicle air conditioner, the amount of clogging of the heat exchanger of the vehicle air conditioner is relatively grasped. Can do.
  • the physical quantity that correlates with the amount of heat exchanger clogging varies depending on the train speed. Therefore, by acquiring the physical quantity when the train speed is a specific speed, the conditions for acquiring the physical quantity can be made closer to the same. However, the relationship between the physical quantity when the train is stopped (for example, the current flowing through the blower) and the physical quantity when the train is traveling at a predetermined speed, or how the physical quantity changes with respect to the train speed. If the relationship of whether to do is known beforehand, it is also possible to correct
  • the airway resistance of outdoor air varies especially when the train is inside the tunnel and when it is not.
  • the physical quantity correlated with the clogging amount of the heat exchanger varies between when the train is in the tunnel and when it is not. Therefore, by acquiring the physical quantity when the position of the train is not in the tunnel, the conditions for acquiring the physical quantity can be made closer to the same.
  • the position information of the tunnel is stored in advance in the ROM of the terminal 30. In addition, you may make it judge whether the position of a train is in a tunnel based on the detection signal of the illumination sensor provided in the vehicle air conditioner 1 or the rail vehicle 100.
  • Station location information is stored in advance in the ROM of the terminal 30. You may make it acquire a physical quantity when the position of a train is not in a tunnel or a station.
  • step S3 the terminal 30 operates at least a blower (for example, the outdoor blower 16 or the indoor blowers 17a and 17b) that blows air to the heat exchanger that is the target of clogging detection. That is, when the blower is stopped, the operation is started, and when the blower has already been operated, the operation is continued as it is.
  • the terminal 30 also operates the refrigerant circuits 10a and 10b as necessary.
  • step S4 the terminal 30 acquires a physical quantity correlated with the clogging quantity of the heat exchanger.
  • physical quantities correlated with the amount of clogging of the heat exchanger include, for example, the power supplied to the blower, the current flowing through the blower, the rotational speed of the blower, the condensation temperature or evaporation temperature of the refrigerant in the heat exchanger, and the heat exchange. There is a temperature difference with the temperature of the air blown into the chamber, a pressure in the passenger compartment, and the like. These physical quantities are acquired based on detection signals from various sensors.
  • the terminal 30 may calculate the air resistance of the air path of the heat exchanger based on the torque of the blower calculated using the current and the rotation speed, and quantify the clogging amount of the heat exchanger. Further, the terminal 30 may calculate the heat exchange performance of the heat exchanger based on the current and the temperature difference, and quantify the amount of clogging of the heat exchanger.
  • step S5 it is determined whether or not the heat exchanger is clogged based on the acquired physical quantity.
  • the terminal 30 uses the physical quantity acquired from the vehicle air conditioner mounted on another vehicle in the same train as the railway vehicle 100 as a reference physical quantity, compares the physical quantity acquired in step S4 with the reference physical quantity, Whether or not the heat exchanger is clogged is determined based on the comparison result.
  • the physical quantity in the vehicle air conditioner mounted in another vehicle can be acquired from, for example, any one of the terminal 30, the central devices 42 and 43, and the on-vehicle communication device 41 of the vehicle air conditioner.
  • the maintenance of the vehicle air conditioner 1 may be performed on different days for each vehicle.
  • the amount of clogging of the heat exchanger is minimized immediately after the maintenance of the vehicle air conditioner 1 is performed, and then gradually increases depending on the operating time of the vehicle air conditioner 1 and the travel distance of the railway vehicle 100 and the like. To go.
  • the physical quantity acquired from the vehicle air conditioner with the shortest time since the maintenance is performed among the plurality of vehicle air conditioners mounted on the train as the reference physical quantity.
  • the past physical quantity for example, physical quantity acquired for the first time after the maintenance of the said vehicle air conditioner 1 is implemented
  • the physical quantities to be compared with each other are acquired when the conditions regarding the position or speed of the train are as identical as possible.
  • the heat exchanger is clogged, In other cases, it is determined that the heat exchanger is not clogged.
  • step S6 If it is determined that the heat exchanger is clogged (Yes in step S6), the process proceeds to step S7. If it is determined that the heat exchanger is not clogged (No in step S6), the process proceeds to step S7. Proceed to S8.
  • step S7 the terminal 30 notifies that the heat exchanger is clogged.
  • the terminal 30 transmits information indicating that the heat exchanger of the vehicle air conditioner 1 is clogged to the central devices 42 and 43.
  • the central devices 42 and 43 display on the display units provided in the central devices 42 and 43 information indicating which of the vehicle air conditioners 1 is clogged.
  • the terminal 30 may transmit information indicating that the heat exchanger of the vehicle air conditioner 1 is clogged to the ground system 50 via the on-board communication device 41.
  • the ground system 50 may display on the display unit provided in the ground system 50 information indicating which train is clogged in which vehicle air conditioner 1 of which train.
  • step S8 the terminal 30 notifies that the heat exchanger is not clogged.
  • the terminal 30 transmits information indicating that the heat exchanger of the vehicle air conditioner 1 is not clogged to the central devices 42 and 43.
  • the central devices 42 and 43 display information indicating which of the vehicle air conditioners 1 is not clogged on the display unit provided in the central devices 42 and 43.
  • the terminal 30 may transmit information indicating that the heat exchanger of the vehicle air conditioner 1 is not clogged to the ground system 50 via the on-board communication device 41.
  • the ground system 50 may display on the display unit provided in the ground system 50 information indicating which train is not clogged in which vehicle air conditioner 1 of which train. .
  • the vehicle air conditioner 1 includes the refrigerant circuits 10a and 10b including the heat exchangers (for example, the outdoor heat exchangers 15a and 15b and the indoor heat exchangers 13a and 13b),
  • the railway vehicle 100 includes a blower that blows air to the heat exchanger (for example, the outdoor blower 16, the indoor blowers 17a and 17b), and a control unit (for example, the terminal 30) that controls the refrigerant circuits 10a and 10b and the blower. It is to be mounted on.
  • the control unit acquires a physical quantity correlated with the clogging amount of the heat exchanger, and determines whether the heat exchanger is clogged based on the physical quantity. It is configured as follows.
  • the presence or absence of clogging of the heat exchanger is determined based on the physical quantity acquired when the position or speed of the railway vehicle 100 satisfies a predetermined condition. For this reason, the influence of the fluctuation
  • the control unit compares the physical quantity with a physical quantity acquired from a vehicle air conditioner mounted on a vehicle different from the railway vehicle 100, and obtains a comparison result.
  • the heat exchanger may be configured to determine whether or not the heat exchanger is clogged.
  • the predetermined condition may be that the position of the railway vehicle 100 is not in a tunnel, or that the speed of the railway vehicle 100 is a specific speed.
  • the physical quantity includes the electric power supplied to the blower, the current flowing through the blower, the rotational speed of the blower, the condensation temperature or evaporation temperature of the refrigerant in the heat exchanger, and the heat exchanger. May include any of a temperature difference with the temperature of the air blown into the vehicle, a pressure in the passenger compartment, an air resistance of the heat exchanger, or a heat exchange performance of the heat exchanger.
  • FIG. A clogging detection system for a vehicle air conditioner according to Embodiment 2 of the present invention will be described.
  • detection of clogging of the heat exchanger is performed at the terminal 30 of each vehicle air conditioner 1, but in this embodiment, detection of clogging of the heat exchanger is performed on the ground system 50.
  • detection of clogging of the heat exchanger is performed on the ground system 50.
  • the schematic configuration of the clogging detection system 2 is the same as the configuration shown in FIG.
  • FIG. 5 is a flowchart showing an example of a flow of physical quantity acquisition processing executed by the terminal 30 in the clogging detection system 2 of the vehicle air conditioner 1 according to the present embodiment.
  • the physical quantity acquisition process is repeatedly executed at predetermined time intervals. Steps S11 to S14 in FIG. 5 are the same as steps S1 to S4 shown in FIG.
  • step S15 the terminal 30 transmits the acquired physical quantity information to the ground system 50 via the on-board communication device 41 and the communication network 60.
  • FIG. 6 is a flowchart showing an example of the flow of clogging detection processing executed by the ground system 50 in the clogging detection system 2 of the vehicle air conditioner 1 according to the present embodiment.
  • the clogging detection process is repeatedly executed at predetermined time intervals.
  • the ground system 50 receives physical quantity information from the on-board system 40 of a certain train.
  • the ground system 50 stores the received physical quantity information in the database 52.
  • the database 52 stores physical quantity information received from each of the plurality of on-vehicle systems 40.
  • step S22 the ground system 50, the physical quantity acquired from the on-board system 40 of the train, the physical quantity acquired from the on-board system of another train (for example, a train traveling before and after the train), and And the presence or absence of clogging of the heat exchanger is determined based on the comparison result.
  • the physical quantity of the vehicle air conditioner having the shortest time after the maintenance is performed be the reference physical quantity.
  • the physical quantities to be compared with each other are acquired when the conditions regarding the position or speed of the train are as identical as possible.
  • step S23 If it is determined that the heat exchanger is clogged (Yes in step S23), the process proceeds to step S24. If it is determined that the heat exchanger is not clogged (No in step S23), the process proceeds to step S24. Proceed to S25.
  • step S24 the ground system 50 notifies that the heat exchanger is clogged.
  • the ground system 50 displays on the display unit provided in the ground system 50 information indicating which clogging is occurring in which heat exchanger of which vehicle air conditioner 1 of which train.
  • the ground system 50 transmits information indicating which of the vehicle air conditioners 1 is clogged to the on-board system 40 of the train on which the vehicle air conditioner 1 is mounted. It may be.
  • information indicating which of the vehicular air conditioners 1 is clogged is displayed on the display unit provided in the central devices 42 and 43, for example. Is done.
  • the ground system 50 notifies that the heat exchanger is not clogged. For example, the ground system 50 displays on the display unit provided in the ground system 50 information indicating which clogging is not occurring in which heat exchanger of which vehicle air conditioner 1 of which train. In addition, the ground system 50 transmits information indicating which of the vehicle air conditioners 1 is not clogged to the on-board system 40 of the train on which the vehicle air conditioner 1 is mounted. You may do it. In this case, in the onboard system 40 that has received the information, for example, information indicating which of the vehicular air conditioners 1 is not clogged is displayed on the display unit provided in the central devices 42 and 43, for example. Is displayed.
  • the clogging detection system 2 of the vehicle air conditioner 1 has the heat exchanger (for example, the outdoor heat exchangers 15a and 15b and the indoor heat exchangers 13a and 13b).
  • the heat exchanger for example, the outdoor heat exchangers 15a and 15b and the indoor heat exchangers 13a and 13b.
  • Circuits 10a and 10b, a blower for blowing air to the heat exchanger for example, outdoor blower 16, indoor blowers 17a and 17b
  • the control unit is configured to acquire a physical quantity correlated with the clogging amount of the heat exchanger and transmit information on the physical quantity to the ground system 50 when the position or speed of the railway vehicle 100 satisfies a predetermined condition. Yes.
  • the ground system 50 is configured to determine whether the heat exchanger is clogged based on a physical quantity.
  • clogging of the heat exchanger can be detected more accurately. Therefore, since the maintenance of the vehicle air conditioner 1 can be performed at a more appropriate time, an increase in power consumption due to clogging of the heat exchanger and a failure of the blower due to an increase in load can be prevented. Moreover, the comfort in the passenger compartment can be improved by maintaining the heat exchange performance of the heat exchanger.
  • the ground system 50 has the above physical quantity and a physical quantity acquired from a vehicle air conditioner mounted on a train vehicle different from the railway vehicle 100. And may be configured to determine whether the heat exchanger is clogged based on the comparison result.
  • Vehicle air conditioner 2. Clogging detection system, 10a, 10b refrigerant circuit, 11a, 11b compressor, 12a, 12b four-way valve, 13a, 13b indoor heat exchanger, 14a, 14b decompression device, 15a, 15b outdoor heat exchange 16 outdoor fan, 17a, 17b indoor fan, 20 outdoor room, 21a, 21b indoor room, 30 terminal, 40 on-board system, 41 on-board communication device, 42, 43 central device, 50 ground system, 51 ground communication device , 52 database, 60 communication network, 100 railway vehicle, 101 vehicle compartment, 102 air duct.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

車両用空調装置は、熱交換器を有する冷媒回路と、熱交換器に空気を送風する送風機と、冷媒回路及び送風機を制御する制御部と、を備え、車両に搭載される。制御部は、車両の位置又は速度が所定条件を満たすときに、熱交換器の目詰まり量と相関のある物理量を取得し、物理量に基づいて熱交換器の目詰まりの有無を判定するように構成されている。

Description

車両用空調装置及び車両用空調装置の目詰まり検知システム
 本発明は、車両に搭載される車両用空調装置及び車両用空調装置の目詰まり検知システムに関するものである。
 特許文献1には、室外熱交換器を備えた空気調和機が記載されている。室外熱交換器に目詰まりが生じた場合、室外熱交換器の空気抵抗が大きくなり、外気と室外熱交換器との熱交換が十分にできなくなる。この空気調和機では、圧縮機の吐出圧力から算出した飽和温度と外気温度との温度差が所定温度未満である場合、室外熱交換器に目詰まりが生じていると判断される。
特開2012-26702号公報
 車両用空調装置の場合、車両の走行状態や位置などによって風路抵抗が変動する。このため、車両用空調装置では、特許文献1のような定置式の空調装置とは異なり、熱交換器の目詰まりを正確に検知するのが困難であるという問題があった。
 本発明は、上述のような課題を解決するためになされたものであり、熱交換器の目詰まりをより正確に検知できる車両用空調装置及び車両用空調装置の目詰まり検知システムを提供することを目的とする。
 本発明に係る車両用空調装置は、熱交換器を有する冷媒回路と、前記熱交換器に空気を送風する送風機と、前記冷媒回路及び前記送風機を制御する制御部と、を備え、車両に搭載される車両用空調装置であって、前記制御部は、前記車両の位置又は速度が所定条件を満たすときに、前記熱交換器の目詰まり量と相関のある物理量を取得し、前記物理量に基づいて前記熱交換器の目詰まりの有無を判定するように構成されているものである。
 本発明に係る車両用空調装置の目詰まり検知システムは、熱交換器を有する冷媒回路と、前記熱交換器に空気を送風する送風機と、前記冷媒回路及び前記送風機を制御する制御部と、を有し、車両に搭載される車両用空調装置と、通信ネットワークを介して前記制御部と接続される地上システムと、を備え、前記制御部は、前記車両の位置又は速度が所定条件を満たすときに、前記熱交換器の目詰まり量と相関のある物理量を取得し、前記物理量の情報を前記地上システムに送信するように構成されており、前記地上システムは、前記物理量に基づいて前記熱交換器の目詰まりの有無を判定するように構成されているものである。
 本発明によれば、車両の位置又は速度による風路抵抗の変動の影響を制限できるため、熱交換器の目詰まりをより正確に検知することができる。
本発明の実施の形態1に係る車両用空調装置1が搭載された鉄道車両100の概略構成を示す模式的な側面図である。 本発明の実施の形態1に係る車両用空調装置1の概略構成を示す冷媒回路図である。 本発明の実施の形態1に係る車両用空調装置1の目詰まり検知システム2の概略構成を示すブロック図である。 本発明の実施の形態1に係る車両用空調装置1において端末30で実行される目詰まり検知処理の流れの例を示すフローチャートである。 本発明の実施の形態2に係る車両用空調装置1の目詰まり検知システム2において端末30で実行される物理量取得処理の流れの例を示すフローチャートである。 本発明の実施の形態2に係る車両用空調装置1の目詰まり検知システム2において地上システム50で実行される目詰まり検知処理の流れの例を示すフローチャートである。
実施の形態1.
 本発明の実施の形態1に係る車両用空調装置及び車両用空調装置の目詰まり検知システムについて説明する。図1は、本実施の形態に係る車両用空調装置1が搭載された鉄道車両100の概略構成を示す模式的な側面図である。なお、図1を含む以下の図面では、各構成要素の相対的な寸法の関係や形状等が実際のものとは異なる場合がある。
 図1に示すように、車両用空調装置1は、鉄道車両100の屋根上に搭載されている。鉄道車両100内の車室101の天井部には、送風ダクト102が設けられている。車両用空調装置1から吹き出された空調空気は、送風ダクト102を介して車室101内に送風される。また、車室101内の空気は、不図示の還気ダクトを介して車両用空調装置1に吸い込まれる。なお、本例の車両用空調装置1は鉄道車両100の屋根上に搭載されているが、車両用空調装置1は鉄道車両100の床下に搭載されていてもよい。
 鉄道車両100は、1編成の列車の一部又は全てを構成している。すなわち、1編成の列車は、少なくとも1両の鉄道車両100によって構成される。1両の鉄道車両100には、1台又は複数台の車両用空調装置1が搭載されている。
 図2は、車両用空調装置1の概略構成を示す冷媒回路図である。図2に示すように、車両用空調装置1は、例えば2つの冷媒回路10a、10bを有している。また、車両用空調装置1は、室外室20と、室外室20を挟んで鉄道車両100の長手方向両側に設けられた室内室21a、21bと、を有している。
 冷媒回路10aは、圧縮機11a、四方弁12a、室内熱交換器13a、減圧装置14a(例えば、リニア電子膨張弁)及び室外熱交換器15aが冷媒配管を介して接続された構成を有している。暖房運転時には、圧縮機11a、室内熱交換器13a、減圧装置14a及び室外熱交換器15aがこの順に環状に接続される。これにより、室内熱交換器13aは凝縮器として機能し、室外熱交換器15aは蒸発器として機能する。冷房運転時には、四方弁12aによって冷媒流路が切り替えられ、圧縮機11a、室外熱交換器15a、減圧装置14a及び室内熱交換器13aがこの順に環状に接続される。これにより、室内熱交換器13aは蒸発器として機能し、室外熱交換器15aは凝縮器として機能する。圧縮機11a、四方弁12a、減圧装置14a及び室外熱交換器15aは、室外室20に配置されている。室内熱交換器13aは室内室21aに配置されている。
 同様に、冷媒回路10bは、圧縮機11b、四方弁12b、室内熱交換器13b、減圧装置14b(例えば、リニア電子膨張弁)及び室外熱交換器15bが冷媒配管を介して接続された構成を有している。圧縮機11b、四方弁12b、減圧装置14b及び室外熱交換器15bは、室外室20に配置されている。室内熱交換器13bは室内室21bに配置されている。
 室内熱交換器13a、13b及び室外熱交換器15a、15bは、どのような形態のものであってもよい。例えば、フィンの形態としては、プレートフィン、コルゲートフィン、ウェーブフィンなど、種々のフィンを採用できる。
 室外室20には、室外熱交換器15a、15bに室外空気を送風する室外送風機16が設けられている。室内室21aには、室内熱交換器13aに室内空気を送風する室内送風機17aが設けられている。室内熱交換器13aを通過して冷媒との熱交換が行われた室内空気は、車室101内のうち例えば車両前部に供給される。室内室21bには、室内熱交換器13bに室内空気を送風する室内送風機17bが設けられている。室内熱交換器13bを通過して冷媒との熱交換が行われた室内空気は、車室101内のうち例えば車両後部に供給される。
 車両用空調装置1は、制御部として端末30を有している。端末30は、CPU、ROM、RAM、I/Oポート等を備えたマイコンを備えている。端末30は、各種センサ類からの検出信号等に基づいて、圧縮機11a、11b、室外送風機16及び室内送風機17a、17bを含む冷媒回路10a、10b全体の動作を制御する。端末30は、車両用空調装置1の制御部として機能するとともに、後述する目詰まり検知システム2の一部を構成する。本例の端末30は車両用空調装置1毎に設けられているが、端末30は冷媒回路10a、10b毎に設けられていてもよい。
 図3は、本実施の形態に係る車両用空調装置1の目詰まり検知システム2の概略構成を示すブロック図である。図3に示すように、目詰まり検知システム2は、少なくとも1つの車上システム40と、通信ネットワーク60を介して車上システム40に接続される地上システム50と、を有している。通信ネットワーク60は、携帯電話、無線LAN、WiMAX(登録商標)、ミリ波などの無線通信を利用した通信ネットワークである。
 車上システム40は、複数の鉄道車両100で構成される1編成の列車に搭載されている。一般に、1編成の列車には1つの車上システム40が搭載されている。車上システム40は、通信ネットワーク60を介して地上システム50と通信する車上通信装置41と、列車の前後両端の鉄道車両100に設けられた中央装置42、43と、例えば車両用空調装置1毎に設けられた複数の端末30と、を有している。車上通信装置41、中央装置42、43、及び複数の端末30は、列車に搭載されている複数の車両用空調装置1を制御する制御部として機能する。
 地上システム50は、通信ネットワーク60を介して車上システム40と通信する地上通信装置51と、車上システム40から受信したデータを記憶するデータベース52と、地上通信装置51及びデータベース52を制御する制御部(図示せず)と、を有している。地上システム50では、通信ネットワーク60を介して少なくとも1つの車上システム40とデータの送受信を行うことにより、各車両用空調装置1の遠隔監視が行われる。
 図4は、本実施の形態に係る車両用空調装置1において端末30で実行される目詰まり検知処理の流れの例を示すフローチャートである。図4に示す目詰まり検知処理は、室内熱交換器13a、13b及び室外熱交換器15a、15bのうち少なくとも1つの熱交換器の目詰まりを検知する処理である。車両用空調装置1の場合、定置式の空調装置と異なり、室外熱交換器15a、15bだけでなく室内熱交換器13a、13bも目詰まり検知の対象になり得る。目詰まり検知処理は、所定の時間間隔で繰り返し実行される。
 まず、図4のステップS1では、端末30は、車上通信装置41及び中央装置42、43のいずれかから、鉄道車両100を含む列車の位置情報又は車速情報を取得する。列車の位置情報は、GPSを用いた2次元又は3次元の位置情報であってもよいし、起点駅からのキロ程の情報であってもよい。
 次に、ステップS2では、端末30は、取得した位置情報又は車速情報に基づき、列車の位置又は速度が所定条件を満たすか否かを判定する。所定条件には、例えば、列車の速度が0km/hよりも大きい特定の速度であること(すなわち、列車が特定の速度で走行中であること)、列車の速度が0km/hであること(すなわち、列車が停止中であること)、列車の位置がトンネル内でないこと、列車の位置が駅内でないこと、等がある。列車の位置は、位置情報に基づいて把握することができる。列車の速度は、車速情報、又は、今回取得した位置情報及び前回取得した位置情報に基づいて把握することができる。ステップS2において、列車の位置又は速度が所定条件を満たすと判定した場合にはステップS3に進み、列車の位置又は速度が所定条件を満たさないと判定した場合には処理を終了する。
 ここで、ステップS2で所定条件を満たすか否かを判定するのは、後述するステップS4において、熱交換器の目詰まり量と相関のある物理量を毎回できるだけ同一条件で取得するためである。物理量を取得する際の条件をできるだけ同一にすることにより、物理量によって熱交換器の目詰まり量を評価することができる。例えば、当該車両用空調装置で取得された物理量を別の車両用空調装置で取得された物理量と比較することにより、当該車両用空調装置の熱交換器の目詰まり量を相対的に把握することができる。
 熱交換器の目詰まり量と相関のある物理量は、列車の速度に応じて変動する。したがって、列車の速度が特定の速度であるときに物理量を取得することにより、物理量を取得する際の条件を同一に近づけることができる。ただし、列車が停止しているときの物理量(例えば、送風機に流れる電流)と列車が所定速度で走行しているときの物理量との関係、又は、列車の速度に対して物理量がどのように変化するかの関係が予め分かっていれば、取得した物理量を列車の速度に応じて補正することも可能である。
 また、列車がトンネル内にあるときとそれ以外のときとでは、特に室外空気の風路抵抗が変動する。このため、列車がトンネル内にあるときとそれ以外のときとでは、熱交換器の目詰まり量と相関のある物理量が変動する。したがって、列車の位置がトンネル内でないときに物理量を取得することにより、物理量を取得する際の条件を同一に近づけることができる。トンネルの位置情報は、予め端末30のROMに記憶されている。なお、列車の位置がトンネル内であるかどうかの判断は、車両用空調装置1又は鉄道車両100に設けられた照度センサの検出信号に基づいて行うようにしてもよい。
 さらに、列車が駅内にあるときとそれ以外のときとでは、特に室外空気の風路抵抗が変動する。このため、列車が駅内にあるときとそれ以外のときとでは、熱交換器の目詰まり量と相関のある物理量が変動する。したがって、列車の位置が駅内でないときに物理量を取得することにより、物理量を取得する際の条件を同一に近づけることができる。駅の位置情報は、予め端末30のROMに記憶されている。列車の位置がトンネル内でなく駅内でもないときに物理量を取得するようにしてもよい。
 ステップS3では、端末30は、少なくとも、目詰まり検知の対象である熱交換器に送風する送風機(例えば、室外送風機16又は室内送風機17a、17b)を動作させる。すなわち、当該送風機が停止している場合には運転を開始し、当該送風機が既に運転している場合にはそのまま運転を続行する。また、端末30は、必要に応じて冷媒回路10a、10bも動作させる。
 次に、ステップS4では、端末30は、熱交換器の目詰まり量と相関のある物理量を取得する。熱交換器の目詰まり量と相関のある物理量としては、例えば、送風機に供給される電力、送風機に流れる電流、送風機の回転数、熱交換器内の冷媒の凝縮温度又は蒸発温度と当該熱交換器に送風される空気の温度との温度差、車室内の圧力、等がある。これらの物理量は、各種センサからの検出信号に基づいて取得される。また、端末30は、上記電流及び上記回転数を用いて算出される送風機のトルクに基づき熱交換器の風路の空気抵抗を算出し、熱交換器の目詰まり量を定量化してもよい。さらに、端末30は、上記電流と上記温度差とに基づいて熱交換器の熱交換性能を算出し、熱交換器の目詰まり量を定量化してもよい。
 次に、ステップS5では、取得した物理量に基づいて、熱交換器の目詰まりの有無を判定する。例えば、端末30は、当該鉄道車両100と同一の列車で別の車両に搭載されている車両用空調装置から取得した物理量を基準物理量とし、ステップS4で取得した物理量と基準物理量とを比較し、比較結果に基づいて熱交換器の目詰まりの有無を判定する。別の車両に搭載されている車両用空調装置における物理量は、例えば、当該車両用空調装置の端末30、中央装置42、43、又は車上通信装置41のいずれかから取得することができる。
 車両用空調装置1のメンテナンスは、車両毎に異なる日に実施される場合がある。熱交換器の目詰まり量は、車両用空調装置1のメンテナンスが実施された直後に最小となり、その後、車両用空調装置1の稼働時間及び鉄道車両100の走行距離等に応じて徐々に増加していく。この点を考慮すると、列車に搭載されている複数の車両用空調装置のうち、メンテナンスが実施されてからの時間が最も短い車両用空調装置から取得した物理量を基準物理量とすることが望ましい。あるいは、同一の車両用空調装置1で取得された過去の物理量(例えば、当該車両用空調装置1のメンテナンスが実施されてから初めて取得された物理量)を基準物理量としてもよい。相互に比較する物理量は、列車の位置又は速度に関する条件ができるだけ同一であるときに取得されていることが望ましい。
 例えば、ステップS4で取得した物理量と基準物理量との差、又はステップS4で取得した物理量の基準物理量に対する比が閾値以上である場合には、熱交換器に目詰まりが生じていると判定され、それ以外の場合には熱交換器に目詰まりが生じていないと判定される。
 熱交換器に目詰まりが生じていると判定した場合(ステップS6のYes)にはステップS7に進み、熱交換器に目詰まりが生じていないと判定した場合(ステップS6のNo)にはステップS8に進む。
 ステップS7では、端末30は、熱交換器に目詰まりが生じていることを報知する。例えば、端末30は、車両用空調装置1の熱交換器に目詰まりが生じていることを表す情報を中央装置42、43に送信する。中央装置42、43は、当該中央装置42、43に設けられている表示部に、どの車両用空調装置1の熱交換器に目詰まりが生じているかを表す情報を表示する。また、端末30は、車両用空調装置1の熱交換器に目詰まりが生じていることを表す情報を、車上通信装置41を介して地上システム50に送信してもよい。地上システム50は、当該地上システム50に設けられている表示部に、どの列車のどの車両用空調装置1の熱交換器に目詰まりが生じているかを表す情報を表示するようにしてもよい。
 ステップS8では、端末30は、熱交換器に目詰まりが生じていないことを報知する。例えば、端末30は、車両用空調装置1の熱交換器に目詰まりが生じていないことを表す情報を中央装置42、43に送信する。中央装置42、43は、当該中央装置42、43に設けられている表示部に、どの車両用空調装置1の熱交換器に目詰まりが生じていないかを表す情報を表示する。また、端末30は、車両用空調装置1の熱交換器に目詰まりが生じていないことを表す情報を、車上通信装置41を介して地上システム50に送信してもよい。地上システム50は、当該地上システム50に設けられている表示部に、どの列車のどの車両用空調装置1の熱交換器に目詰まりが生じていないかを表す情報を表示するようにしてもよい。
 以上説明したように、本実施の形態に係る車両用空調装置1は、熱交換器(例えば、室外熱交換器15a、15b、室内熱交換器13a、13b)を有する冷媒回路10a、10bと、熱交換器に空気を送風する送風機(例えば、室外送風機16、室内送風機17a、17b)と、冷媒回路10a、10b及び送風機を制御する制御部(例えば、端末30)と、を備え、鉄道車両100に搭載されるものである。制御部は、鉄道車両100の位置又は速度が所定条件を満たすときに、熱交換器の目詰まり量と相関のある物理量を取得し、物理量に基づいて熱交換器の目詰まりの有無を判定するように構成されている。
 本実施の形態では、鉄道車両100の位置又は速度が所定条件を満たすときに取得された物理量に基づいて、熱交換器の目詰まりの有無が判定される。このため、鉄道車両100の位置又は速度による風路抵抗の変動の影響を制限でき、熱交換器の目詰まりをより正確に検知することができる。したがって、車両用空調装置1のメンテナンスをより適切な時期に行うことができるため、熱交換器の目詰まりによる消費電力の増加や負荷増大による送風機の故障を防ぐことができる。また、熱交換器の熱交換性能が維持されることにより、車室内の快適性を向上させることができる。
 本実施の形態に係る車両用空調装置1において、制御部は、上記物理量と、鉄道車両100とは別の車両に搭載される車両用空調装置から取得した物理量と、を比較し、比較結果に基づいて熱交換器の目詰まりの有無を判定するように構成されていてもよい。
 本実施の形態に係る車両用空調装置1において、上記所定条件は、鉄道車両100の位置がトンネル内でないこと、又は鉄道車両100の速度が特定の速度であること、であってもよい。
 本実施の形態に係る車両用空調装置1において、物理量は、送風機に供給される電力、送風機に流れる電流、送風機の回転数、熱交換器内の冷媒の凝縮温度若しくは蒸発温度と当該熱交換器に送風される空気の温度との温度差、車室内の圧力、熱交換器の空気抵抗、又は熱交換器の熱交換性能、のいずれかを含んでいてもよい。
実施の形態2.
 本発明の実施の形態2に係る車両用空調装置の目詰まり検知システムについて説明する。上記実施の形態1では、熱交換器の目詰まりの検知が各車両用空調装置1の端末30で行われているが、本実施の形態では、熱交換器の目詰まりの検知が地上システム50で行われる。目詰まり検知システム2の概略構成は、図3に示した構成と同様である。
 図5は、本実施の形態に係る車両用空調装置1の目詰まり検知システム2において端末30で実行される物理量取得処理の流れの例を示すフローチャートである。物理量取得処理は、所定の時間間隔で繰り返し実行される。図5のステップS11~ステップS14については、図4に示したステップS1~ステップS4と同様であるため説明を省略する。
 ステップS15では、端末30は、取得した物理量の情報を、車上通信装置41及び通信ネットワーク60を介して地上システム50に送信する。
 図6は、本実施の形態に係る車両用空調装置1の目詰まり検知システム2において地上システム50で実行される目詰まり検知処理の流れの例を示すフローチャートである。目詰まり検知処理は、所定の時間間隔で繰り返し実行される。図6のステップS21では、地上システム50は、ある列車の車上システム40から物理量の情報を受信する。地上システム50は、受信した物理量の情報をデータベース52に記憶する。データベース52には、複数の車上システム40からそれぞれ受信した物理量の情報が記憶される。
 次に、ステップS22では、地上システム50は、当該列車の車上システム40から取得した物理量と、別の列車(例えば、当該列車の前後を走行する列車)の車上システムから取得した物理量と、を比較し、比較結果に基づいて熱交換器の目詰まりの有無を判定する。このとき、当該別の列車に搭載されている複数の車両用空調装置のうち、メンテナンスが実施されてからの時間が最も短い車両用空調装置の物理量を基準物理量とするのが望ましい。また、相互に比較する物理量は、列車の位置又は速度に関する条件ができるだけ同一であるときに取得されていることが望ましい。
 熱交換器に目詰まりが生じていると判定した場合(ステップS23のYes)にはステップS24に進み、熱交換器に目詰まりが生じていないと判定した場合(ステップS23のNo)にはステップS25に進む。
 ステップS24では、地上システム50は、熱交換器に目詰まりが生じていることを報知する。例えば、地上システム50は、当該地上システム50に設けられている表示部に、どの列車のどの車両用空調装置1の熱交換器に目詰まりが生じているかを表す情報を表示する。また、地上システム50は、当該車両用空調装置1が搭載されている列車の車上システム40に、どの車両用空調装置1の熱交換器に目詰まりが生じているかを表す情報を送信するようにしてもよい。この場合、情報を受信した車上システム40では、例えば中央装置42、43に設けられている表示部に、どの車両用空調装置1の熱交換器に目詰まりが生じているかを表す情報が表示される。
 ステップS25では、地上システム50は、熱交換器に目詰まりが生じていないことを報知する。例えば、地上システム50は、当該地上システム50に設けられている表示部に、どの列車のどの車両用空調装置1の熱交換器に目詰まりが生じていないかを表す情報を表示する。また、地上システム50は、当該車両用空調装置1が搭載されている列車の車上システム40に、どの車両用空調装置1の熱交換器に目詰まりが生じていないかを表す情報を送信するようにしてもよい。この場合、情報を受信した車上システム40では、例えば中央装置42、43に設けられている表示部に、どの車両用空調装置1の熱交換器に目詰まりが生じていないかを表す情報が表示される。
 以上説明したように、本実施の形態に係る車両用空調装置1の目詰まり検知システム2は、熱交換器(例えば、室外熱交換器15a、15b、室内熱交換器13a、13b)を有する冷媒回路10a、10bと、熱交換器に空気を送風する送風機(例えば、室外送風機16、室内送風機17a、17b)と、冷媒回路10a、10b及び送風機を制御する制御部(例えば、車上通信装置41、中央装置42、43、端末30)と、を有し、鉄道車両100に搭載される車両用空調装置1と、通信ネットワーク60を介して制御部と接続される地上システム50と、を備えている。制御部は、鉄道車両100の位置又は速度が所定条件を満たすときに、熱交換器の目詰まり量と相関のある物理量を取得し、物理量の情報を地上システム50に送信するように構成されている。地上システム50は、物理量に基づいて熱交換器の目詰まりの有無を判定するように構成されている。
 本実施の形態によれば、実施の形態1と同様に、熱交換器の目詰まりをより正確に検知することができる。したがって、車両用空調装置1のメンテナンスをより適切な時期に行うことができるため、熱交換器の目詰まりによる消費電力の増加や負荷増大による送風機の故障を防ぐことができる。また、熱交換器の熱交換性能が維持されることにより、車室内の快適性を向上させることができる。
 本実施の形態に係る車両用空調装置1の目詰まり検知システム2において、地上システム50は、上記物理量と、鉄道車両100とは別の列車の車両に搭載される車両用空調装置から取得した物理量と、を比較し、比較結果に基づいて熱交換器の目詰まりの有無を判定するように構成されていてもよい。
 上記の各実施の形態は、互いに組み合わせて実施することが可能である。
 1 車両用空調装置、2 目詰まり検知システム、10a、10b 冷媒回路、11a、11b 圧縮機、12a、12b 四方弁、13a、13b 室内熱交換器、14a、14b 減圧装置、15a、15b 室外熱交換器、16 室外送風機、17a、17b 室内送風機、20 室外室、21a、21b 室内室、30 端末、40 車上システム、41 車上通信装置、42、43 中央装置、50 地上システム、51 地上通信装置、52 データベース、60 通信ネットワーク、100 鉄道車両、101 車室、102 送風ダクト。

Claims (7)

  1.  熱交換器を有する冷媒回路と、前記熱交換器に空気を送風する送風機と、前記冷媒回路及び前記送風機を制御する制御部と、を備え、車両に搭載される車両用空調装置であって、
     前記制御部は、
     前記車両の位置又は速度が所定条件を満たすときに、前記熱交換器の目詰まり量と相関のある物理量を取得し、
     前記物理量に基づいて前記熱交換器の目詰まりの有無を判定するように構成されている車両用空調装置。
  2.  前記制御部は、前記物理量と、前記車両とは別の車両に搭載される車両用空調装置から取得した前記物理量と、を比較し、比較結果に基づいて前記熱交換器の目詰まりの有無を判定するように構成されている請求項1に記載の車両用空調装置。
  3.  前記所定条件は、前記車両の位置がトンネル内でないことである請求項1又は請求項2に記載の車両用空調装置。
  4.  前記所定条件は、前記車両の速度が特定の速度であることである請求項1又は請求項2に記載の車両用空調装置。
  5.  前記物理量は、前記送風機に供給される電力、前記送風機に流れる電流、前記送風機の回転数、前記熱交換器内の冷媒の凝縮温度若しくは蒸発温度と前記熱交換器に送風される空気の温度との温度差、車室内の圧力、前記熱交換器の空気抵抗、又は前記熱交換器の熱交換性能、のいずれかを含む請求項1~請求項4のいずれか一項に記載の車両用空調装置。
  6.  熱交換器を有する冷媒回路と、前記熱交換器に空気を送風する送風機と、前記冷媒回路及び前記送風機を制御する制御部と、を有し、車両に搭載される車両用空調装置と、
     通信ネットワークを介して前記制御部と接続される地上システムと、
     を備え、
     前記制御部は、
     前記車両の位置又は速度が所定条件を満たすときに、前記熱交換器の目詰まり量と相関のある物理量を取得し、
     前記物理量の情報を前記地上システムに送信するように構成されており、
     前記地上システムは、前記物理量に基づいて前記熱交換器の目詰まりの有無を判定するように構成されている車両用空調装置の目詰まり検知システム。
  7.  前記地上システムは、前記物理量と、前記車両とは別の列車の車両に搭載される車両用空調装置から取得した前記物理量と、を比較し、比較結果に基づいて前記熱交換器の目詰まりの有無を判定するように構成されている請求項6に記載の車両用空調装置の目詰まり検知システム。
PCT/JP2016/067341 2016-06-10 2016-06-10 車両用空調装置及び車両用空調装置の目詰まり検知システム WO2017212630A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2018522274A JP6639666B2 (ja) 2016-06-10 2016-06-10 車両用空調装置及び車両用空調装置の目詰まり検知システム
CN201680086453.8A CN109311489B (zh) 2016-06-10 2016-06-10 车辆用空调装置及车辆用空调装置的堵塞检测系统
PCT/JP2016/067341 WO2017212630A1 (ja) 2016-06-10 2016-06-10 車両用空調装置及び車両用空調装置の目詰まり検知システム
EP16904664.6A EP3470292B1 (en) 2016-06-10 2016-06-10 Vehicle air-conditioning device
US16/091,743 US10996007B2 (en) 2016-06-10 2016-06-10 Vehicle air-conditioning apparatus and clogging detection system for vehicle air-conditioning apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/067341 WO2017212630A1 (ja) 2016-06-10 2016-06-10 車両用空調装置及び車両用空調装置の目詰まり検知システム

Publications (1)

Publication Number Publication Date
WO2017212630A1 true WO2017212630A1 (ja) 2017-12-14

Family

ID=60578542

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/067341 WO2017212630A1 (ja) 2016-06-10 2016-06-10 車両用空調装置及び車両用空調装置の目詰まり検知システム

Country Status (5)

Country Link
US (1) US10996007B2 (ja)
EP (1) EP3470292B1 (ja)
JP (1) JP6639666B2 (ja)
CN (1) CN109311489B (ja)
WO (1) WO2017212630A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020105454A1 (ja) * 2018-11-21 2020-05-28 株式会社デンソー 故障解析システム、故障解析装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10585480B1 (en) 2016-05-10 2020-03-10 Apple Inc. Electronic device with an input device having a haptic engine
US11054932B2 (en) 2017-09-06 2021-07-06 Apple Inc. Electronic device having a touch sensor, force sensor, and haptic actuator in an integrated module
US10966007B1 (en) 2018-09-25 2021-03-30 Apple Inc. Haptic output system
FR3107028B1 (fr) * 2020-02-07 2022-02-18 Alstom Transp Tech Système de refroidissement et procédé de détection d’encrassement associé
US11024135B1 (en) 2020-06-17 2021-06-01 Apple Inc. Portable electronic device having a haptic button assembly
CN112856735A (zh) * 2021-03-31 2021-05-28 安徽江淮汽车集团股份有限公司 空调系统的控制方法、装置、系统及存储介质
CN114750794B (zh) * 2022-04-28 2023-11-14 江苏鸣啸智能交通科技有限公司 一种列车空调机组健康管理系统
DE102023113093B3 (de) 2023-05-17 2024-05-23 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Verfahren zur Erkennung einer Vereisung eines Kondensators eines Kondensatorkühlmoduls

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH079995A (ja) * 1993-06-28 1995-01-13 Hitachi Ltd 車両用空調装置とその制御方法
JP2004291899A (ja) * 2003-03-28 2004-10-21 Mitsubishi Electric Corp 車両空調管理システム、及び車両空調制御装置
JP2005075306A (ja) * 2003-09-03 2005-03-24 Hitachi Ltd 車両用換気装置及び空調装置の運転方法
WO2009150724A1 (ja) * 2008-06-11 2009-12-17 三菱電機株式会社 車両用空調装置、車両空調管理システム及び車両空調管理方法
JP2012026702A (ja) 2010-07-28 2012-02-09 Fujitsu General Ltd 空気調和機
JP2013248977A (ja) * 2012-05-31 2013-12-12 Mitsubishi Electric Corp 車両用空調装置管理システム

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2513679A (en) * 1947-06-04 1950-07-04 Westinghouse Electric Corp Air conditioning system for passenger vehicles
US2718186A (en) * 1951-06-25 1955-09-20 A R Lintern Inc Fresh-air vehicle ventilating and heating system and units therefor
FR2795685B1 (fr) * 1999-06-30 2001-08-31 Valeo Climatisation Procede de detection de colmatage d'un filtre a air et systeme de ventilation mettant en oeuvre un tel procede
US6283849B1 (en) * 2000-10-05 2001-09-04 Specific Cruise Systems, Inc. Vehicle filtration control system
US20080053129A1 (en) * 2003-01-08 2008-03-06 Ise Corporation Vehicle Rooftop Engine Cooling System and Method
WO2011010369A1 (ja) 2009-07-22 2011-01-27 三菱電機株式会社 車両用空調制御方法
EP2719966B1 (en) * 2011-06-08 2019-05-08 Mitsubishi Electric Corporation Refrigeration air-conditioning device
US9120366B2 (en) * 2012-04-27 2015-09-01 Ford Global Technologies, Llc Monitoring air filter status in automotive HVAC system
JP2016106056A (ja) 2013-03-19 2016-06-16 株式会社ヴァレオジャパン 車両用空調装置
JP6012542B2 (ja) 2013-05-21 2016-10-25 三菱電機株式会社 車上システム、列車通信システムおよび列車通信方法
KR101497048B1 (ko) 2013-12-11 2015-02-27 서울메트로 철도차량 냉난방제어기용 시뮬레이션 시스템
JP6591066B2 (ja) * 2016-06-09 2019-10-16 三菱電機株式会社 鉄道車両用空気調和管理システム
WO2017212606A1 (ja) * 2016-06-09 2017-12-14 三菱電機株式会社 冷凍サイクル装置
WO2017212631A1 (ja) * 2016-06-10 2017-12-14 三菱電機株式会社 車両用空調装置及び車両用空調装置の異常検知システム
JP6556351B2 (ja) * 2016-06-10 2019-08-07 三菱電機株式会社 車両用空調装置及び列車通信システム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH079995A (ja) * 1993-06-28 1995-01-13 Hitachi Ltd 車両用空調装置とその制御方法
JP2004291899A (ja) * 2003-03-28 2004-10-21 Mitsubishi Electric Corp 車両空調管理システム、及び車両空調制御装置
JP2005075306A (ja) * 2003-09-03 2005-03-24 Hitachi Ltd 車両用換気装置及び空調装置の運転方法
WO2009150724A1 (ja) * 2008-06-11 2009-12-17 三菱電機株式会社 車両用空調装置、車両空調管理システム及び車両空調管理方法
JP2012026702A (ja) 2010-07-28 2012-02-09 Fujitsu General Ltd 空気調和機
JP2013248977A (ja) * 2012-05-31 2013-12-12 Mitsubishi Electric Corp 車両用空調装置管理システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3470292A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020105454A1 (ja) * 2018-11-21 2020-05-28 株式会社デンソー 故障解析システム、故障解析装置
JP2020082962A (ja) * 2018-11-21 2020-06-04 株式会社デンソー 故障解析システム、故障解析装置
JP7040420B2 (ja) 2018-11-21 2022-03-23 株式会社デンソー 故障解析システム、故障解析装置

Also Published As

Publication number Publication date
EP3470292B1 (en) 2021-08-25
EP3470292A1 (en) 2019-04-17
CN109311489B (zh) 2021-08-10
JP6639666B2 (ja) 2020-02-05
US20190137199A1 (en) 2019-05-09
JPWO2017212630A1 (ja) 2018-12-20
CN109311489A (zh) 2019-02-05
US10996007B2 (en) 2021-05-04
EP3470292A4 (en) 2019-06-19

Similar Documents

Publication Publication Date Title
WO2017212630A1 (ja) 車両用空調装置及び車両用空調装置の目詰まり検知システム
US10442272B2 (en) Method and system for defrosting a heat exchanger
CN109311488B (zh) 车辆用空调装置及列车通信系统
WO2011010369A1 (ja) 車両用空調制御方法
JP6567184B2 (ja) 車両用空調装置及び車両用空調装置の異常検知システム
KR101404785B1 (ko) 열차의 차량별 원격 공조 제어 시스템
JP5999966B2 (ja) 車両用空調システム
JP6147049B2 (ja) 鉄道車両用換気制御システム
WO2020105454A1 (ja) 故障解析システム、故障解析装置
JP6180094B2 (ja) 車上モニタ装置、地上設備、及び車両用空調システム
JP4460913B2 (ja) 空調装置
CN112533781A (zh) 空调系统、异常诊断装置
JP2019104294A (ja) 車両用空気調和装置及び車両用空気調和方法
JP7115410B2 (ja) 車両空調システム
KR100556118B1 (ko) 열차의 공조 제어장치 및 그 제어방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018522274

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16904664

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016904664

Country of ref document: EP

Effective date: 20190110