WO2020105454A1 - 故障解析システム、故障解析装置 - Google Patents
故障解析システム、故障解析装置Info
- Publication number
- WO2020105454A1 WO2020105454A1 PCT/JP2019/043683 JP2019043683W WO2020105454A1 WO 2020105454 A1 WO2020105454 A1 WO 2020105454A1 JP 2019043683 W JP2019043683 W JP 2019043683W WO 2020105454 A1 WO2020105454 A1 WO 2020105454A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- temperature
- vehicle
- pressure
- determination unit
- failure
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60H—ARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
- B60H1/00—Heating, cooling or ventilating [HVAC] devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60H—ARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
- B60H1/00—Heating, cooling or ventilating [HVAC] devices
- B60H1/32—Cooling devices
Definitions
- the present disclosure relates to a failure analysis system and a failure analysis device.
- an air conditioning service support device makes a failure determination based on the operation data (for example, refer to Patent Document 1).
- the air conditioning service support device obtains a regression prediction value by using a part of the actual measurement value data of the operation data, and compares the regression prediction value with a predetermined actual measurement value data of the operation data to determine a failure and a failure.
- Part / fault event can be identified. Room temperature, outside air temperature, inverter frequency, indoor fan speed, and outdoor fan speed are used as the measured value data.
- the air conditioning service support device of Patent Document 1 described above can perform a failure determination or the like by comparing the regression prediction value with predetermined measured value data of the operation data.
- Patent Document 1 does not describe that the failure event is specified based on the meteorological data acquired from the meteorological server that collects the meteorological data.
- the present disclosure has an object to provide a failure analysis system and a failure analysis device that are capable of identifying a failure event based on the weather data at the current vehicle position acquired from a weather server.
- a failure analysis system includes a refrigeration cycle device mounted on a vehicle, An operation data acquisition unit that acquires operation data indicating the operation state of the refrigeration cycle apparatus, A current position acquisition unit that acquires current position data indicating the current position of the vehicle, From a weather server that collects weather data, a weather data acquisition unit that acquires weather data of the current position of the vehicle based on the current position data, And a failure specifying unit that specifies a failure event of the refrigeration cycle apparatus based on the operation data and the meteorological data.
- FIG. 1 is a side view of an automobile equipped with a vehicle air conditioner that constitutes the failure analysis system of the first embodiment. It is a top view of the vehicle in which the vehicle air conditioner which comprises the failure analysis system of 1st Embodiment is mounted.
- FIG. 3 is a partially enlarged view showing a plurality of air flow paths in the outdoor heat exchanger of the vehicle air conditioner of the first embodiment. It is a schematic diagram which shows the arrangement
- FIG. 1 shows the overall configuration of the failure analysis system 1 of the first embodiment.
- the failure analysis system 1 of the present embodiment is a system for analyzing a failure event of the vehicle-mounted air conditioner 3 mounted on the automobile 2.
- the failure analysis system 1 includes a communication ECU 10, an ACECU 20, a failure analysis server 30, a weather server 40, and a management server 50.
- the communication ECU 10 is mounted on the automobile 2 and wirelessly communicates with the base station 4 via the antenna 11.
- the vehicle 2 for example, a bus of public transportation is used.
- the communication ECU 10, the GPS receiver 12, and the ACECU 20 of this embodiment are mounted on the automobile 2.
- the communication ECU 10 acquires air-conditioning data such as the inside air temperature, the outside air temperature, and the refrigerant pressure from the ACECU 20 and the current position data from the GPS receiver 12, and acquires the acquired data via the antenna 11 and the base station 4 into a failure analysis server. Send to 30.
- the GPS receiver 12 calculates the current position of the automobile 2 based on the signals transmitted from each of the plurality of artificial satellites, and transmits the current position data indicating the calculated current position to the communication ECU 10.
- ACECU 20 is composed of a microcomputer and a memory, and controls the compressor 74 of the vehicle-mounted air conditioner. The detailed description of the AC ECU 20 and the vehicle-mounted air conditioner 3 will be described later.
- Memory is a non-transitional tangible storage medium.
- the failure analysis server 30 acquires meteorological data from the meteorological server 40, acquires air conditioning data from the ACECU 20, and further identifies a failure event of an outside air blowing system based on the acquired meteorological data, air conditioning data, and the like. Execute the process.
- the vehicle exterior air blow system of the present embodiment is a system that includes the vehicle exterior air blower and the vehicle exterior heat exchanger in the vehicle-mounted air conditioner.
- the meteorological server 40 repeatedly collects meteorological data for each area and forms a database including the meteorological data for each area.
- the weather server 40 searches the database for weather data for each area in accordance with a request from the failure analysis server 30, and transmits the searched weather data for each area to the failure analysis server 30.
- meteorological data of this embodiment data indicating the outside air temperature of each region (that is, the outside air temperature of the current position of the automobile 2) is used.
- the management server 50 is a server of a management company that carries out maintenance and maintenance of the automobile 2 (that is, the bus).
- the base station 4, the failure analysis server 30, the weather server 40, and the management server 50 of this embodiment are connected to a communication line 5 such as the Internet.
- the vehicle-mounted air conditioner 3 of this embodiment is arranged above the roof 2a of the automobile 2.
- the vehicle-mounted air conditioner 3 includes an outdoor heat exchanger 70, outdoor blowers 70a, 70b, 70c, indoor heat exchangers 71, 72, indoor blowers 71a, 71b, 71c, 72a, 72b, 72c, and a filter 73.
- the outdoor heat exchanger 70 exchanges heat between the high-pressure refrigerant discharged from the compressor 74, which will be described later, and the outdoor air blown from the outdoor blowers 70a, 70b, 70c as indicated by the arrow Sa in FIG.
- the refrigerant is cooled by the air outside the vehicle compartment.
- the outdoor blowers 70a, 70b, 70c of the present embodiment are arranged on the side of the Tenryo improvement with respect to the outdoor heat exchanger 70.
- the outdoor heat exchanger 70 includes a distribution tank, a collecting tank, a plurality of tubes 70d, and heat exchange fins 70e.
- the distribution tank distributes the high pressure refrigerant from the compressor 74 to the plurality of tubes 70d.
- Each of the plurality of tubes 70d allows the high-pressure refrigerant to flow toward the collecting tank.
- the collecting tank collects the high-pressure refrigerant flowing through the plurality of tubes 70d, and causes the collected high-pressure refrigerant to flow toward the pressure reducing valve 75 described later.
- a plurality of tubes 70d are arranged at intervals as shown in FIG.
- the heat exchange fins 70e are arranged between two adjacent tubes 70d among the plurality of tubes 70d.
- the heat exchange fins 70e are formed in a wavy shape and form a plurality of air flow paths 70f between the two tubes 70d.
- the high pressure refrigerant is cooled by heat exchange between the high pressure refrigerant flowing through the plurality of tubes 70d and the vehicle outside air flowing through the plurality of air passages 70f.
- the heat exchange fins 70e promote heat exchange between the high-pressure refrigerant and the air outside the vehicle compartment.
- the indoor heat exchanger 71 cools the vehicle interior air with the low pressure refrigerant by exchanging heat between the vehicle interior air blown from the indoor blowers 71a, 71b, 71c and the low pressure refrigerant passing through the pressure reducing valve 75.
- the indoor heat exchanger 72 cools the vehicle interior air with the low pressure refrigerant by exchanging heat between the vehicle interior air blown from the indoor blowers 72a, 72b, 72c and the low pressure refrigerant passing through the pressure reducing valve 75.
- the indoor heat exchanger 72 of the present embodiment constitutes an indoor air conditioning unit that is housed in an indoor air conditioning case and cools the air flow blown from the indoor blowers 72a, 72b, 72c and blows it out into the vehicle interior.
- the indoor heat exchangers 71, 72 of this embodiment are arranged in parallel (or in series) with respect to the flow of the low-pressure refrigerant.
- the filter 73 plays a role of purifying the air flow that flows into the indoor heat exchangers 71 and 72.
- the outdoor heat exchanger 70, the indoor heat exchangers 71 and 72, the compressor 74, and the pressure reducing valve 75 are connected by a refrigerant pipe to configure the refrigeration cycle device 6 that circulates the refrigerant.
- the compressor 74 includes a compression mechanism that draws in the refrigerant, compresses it, and discharges it.
- the compressor 74 of the present embodiment for example, an engine-driven compressor that drives the compression mechanism by the driving force of the running engine to suck in the refrigerant, compress it, and discharge it is used.
- an electromagnetic clutch is arranged between the traveling engine and the engine-driven compressor.
- the electromagnetic clutch connects the running engine and the engine-driven compressor and transmits the driving force of the running engine to the engine-driven compressor, the driving force of the running engine and the engine-driven compressor. Switch between the open state and the open state.
- the electromagnetic clutch is controlled by the ACECU 20 to alternately perform the connected state and the separated state. As a result, the amount of high pressure refrigerant discharged from the compressor 74 is adjusted.
- the pressure reducing valve 75 is a valve that adjusts an opening degree (hereinafter, referred to as a throttle opening degree) of a refrigerant passage through which the refrigerant flows between the refrigerant outlet of the outdoor heat exchanger 70 and the refrigerant inlets of the indoor heat exchangers 71 and 72. It is the body.
- a mechanical expansion valve is used whose throttle opening is automatically controlled so that the degree of heating of the refrigerant flowing from the refrigerant outlets of the indoor heat exchangers 71, 72 becomes a predetermined value. ..
- the refrigeration cycle device 6 is provided with an inside air temperature sensor 76a, an outside air temperature sensor 76b, a high pressure sensor 76c, a low pressure sensor 76d, and a temperature setting device (that is, a temperature setting unit) 76e.
- the inside air temperature sensor 76a is a temperature sensor that detects the air temperature in the vehicle interior (that is, the vehicle interior temperature).
- the outside air temperature sensor 76b is a temperature sensor that detects the temperature of air outside the vehicle compartment.
- the outside air temperature sensor 76b is arranged near the outdoor heat exchanger 70. More specifically, the outdoor air temperature sensor 76b is arranged upstream of the outdoor heat exchanger 70 in the air flow direction of the vehicle exterior air.
- the outside air temperature sensor 76b of this embodiment is arranged at a position where heat from the high-pressure refrigerant in the outdoor heat exchanger 70 is transmitted. Therefore, the outside air temperature sensor 76b also serves to detect the temperature of the high-pressure refrigerant inside the outdoor heat exchanger 70 in addition to the temperature of the outside air flowing into the outdoor heat exchanger 70.
- the high-pressure sensor 76c is a pressure sensor that detects the pressure of the high-pressure refrigerant between the refrigerant outlet of the compressor 74 and the refrigerant inlet of the pressure reducing valve 75.
- the high pressure sensor 76c of the present embodiment detects the pressure of the high pressure refrigerant between the refrigerant outlet of the compressor 74 and the refrigerant inlet of the outdoor heat exchanger 70.
- the low-pressure sensor 76d is a pressure sensor that detects the pressure of the low-pressure refrigerant between the refrigerant outlet of the pressure reducing valve 75 and the refrigerant inlet of the compressor 74.
- the low pressure sensor 76d of the present embodiment detects the pressure of the low pressure refrigerant between the refrigerant outlets of the indoor heat exchangers 71 and 72 and the refrigerant inlet of the compressor 74.
- the temperature setting device 76e is a device that sets the set temperature Set, which is the target temperature of the air temperature in the vehicle compartment, by the operation of the user (that is, the operator).
- the ACECU 20 is an electronic control unit including a memory and a microcomputer. Memory is a non-transitional tangible storage medium.
- the ACECU 20 calculates the target outlet temperature TAO based on the detected temperature of the outside air temperature sensor 76b, the detected temperature of the inside air temperature sensor 76a, and the set temperature Set.
- the target outlet temperature TAO is a target outlet temperature that needs to be drawn from the indoor air conditioning unit in order to bring the temperature inside the vehicle compartment close to the set temperature Set.
- the ACECU 20 controls the electromagnetic clutch in order to bring the temperature of the air blown from the indoor air conditioning unit into the passenger compartment close to the target outlet temperature TAO, and connects or disconnects between the running engine and the engine-driven compressor. Carry out air conditioning control processing.
- the refrigerant from the compressor 74 circulates in the order of the outdoor heat exchanger 70, the pressure reducing valve 75, the indoor heat exchangers 71 and 72, and the compressor 74 as the AC ECU 20 performs the air conditioning control process. Along with this, the indoor temperature becomes close to the set temperature Set. That is, the compressor 74, the outdoor heat exchanger 70, the pressure reducing valve 75, and the indoor heat exchangers 71 and 72 operate so that the indoor temperature approaches the set temperature Set.
- the ACECU 20 of the present embodiment collects and collects air conditioning data such as the current position data of the vehicle, the temperature detected by the inside air temperature sensor 76a, and the pressure detected by the high pressure sensor 76c. It plays a role of transmitting the air conditioning data to the failure analysis server 30.
- the failure analysis server 30 executes failure analysis notification processing according to the flowchart of FIG.
- the ACECU 20 executes the air conditioning data return process according to the flowchart of FIG.
- the weather server 40 executes the weather data return process according to the flowchart of FIG.
- the failure analysis server 30 repeatedly executes failure analysis notification processing.
- the failure analysis server 30 transmits a request signal requesting the air conditioning data and the current position data to the ACECU 20 (step S100).
- the transmitted request signal is transmitted to the base station 4 via the communication line 5.
- the transmitted request signal is transmitted from the base station 4 by wireless communication.
- the GPS receiver 12 repeatedly calculates the current position data indicating the current position of the vehicle. Further, the ACECU 20 repeatedly collects the detected temperature of the inside air temperature sensor 76a, the detected temperature of the outside air temperature sensor 76b, the detected pressure of the high pressure sensor 76c, and the set temperature Set.
- the communication ECU 10 acquires the current position data indicating the current position of the vehicle from the GPS receiver 12 (step 200 in FIG. 9).
- the communication ECU 10 acquires the detected temperature of the inside air temperature sensor 76a, the detected temperature of the outside air temperature sensor 76b, the detected pressure of the high pressure sensor 76c, and the set temperature Set via the ACECU 20.
- the communication ECU 10 transmits the air-conditioning data including the detected temperature of the inside air temperature sensor 76a, the detected pressure of the high pressure sensor 76c, and the set temperature Set and the current position data from the antenna 11 to the base station 4 (step S210 in FIG. 9).
- the air conditioning data is operation data indicating the operation state of the refrigeration cycle device.
- the detected temperature of the outside air temperature sensor 76b included in the air conditioning data the detected temperature of the outside air temperature sensor 76b detected at a plurality of different timings (that is, the operation data ) Is used.
- the base station 4 transmits the air conditioning data and the current position data to the failure analysis server 30 via the communication line 5.
- the failure analysis server 30 determines whether or not the air conditioning data and the current position data from the communication ECU 10 have been received (step S110 in FIG. 8). After that, when the air conditioning data and the current position data from the communication ECU 10 are not received, the failure analysis server 30 determines NO in step S110 and repeats the determination of step S110.
- the failure analysis server 30 determines YES in step S110 as the current position acquisition unit.
- the failure analysis server 30 transmits a request signal for requesting weather data of the current position of the automobile 2 to the weather server 40 based on the current position data from the communication ECU 10.
- the outside temperature data indicating the outside temperature at the current position of the automobile 2 is adopted.
- data indicating the outside air temperature at the current position detected at a plurality of timings is used for the determination processing in step S160 described later.
- the weather server 40 determines whether or not the request signal from the failure analysis server 30 has been received (step S300). Then, if the weather server 40 does not receive the request signal from the failure analysis server 30, it determines NO in step S300 and repeats the determination of step S300.
- step S300 the weather data of the current position of the vehicle is searched in the database (step S310).
- the weather server 40 transmits the weather data as a search result in this database to the failure analysis server 30 (step S320 in FIG. 10).
- the transmitted weather data is sent to the failure analysis server 30 via the communication line 5.
- the failure analysis server 30 acquires the meteorological data, the temperature detected by the inside air temperature sensor 76a, the pressure detected by the outside air temperature sensor 76b, the high pressure sensor 76c, and the set temperature Set.
- the failure analysis server 30 analyzes the failure event of the refrigeration cycle device 6 based on the meteorological data, the temperature detected by the inside air temperature sensor 76a, the pressure detected by the high pressure sensor 76c, and the set temperature Set.
- the failure analysis server 30 is an absolute value (that is, a temperature difference) of a difference obtained by subtracting a temperature detected by the inside air temperature sensor 76a (hereinafter, also referred to as an indoor temperature) from the set temperature Set
- a temperature difference obtained by subtracting a temperature detected by the inside air temperature sensor 76a (hereinafter, also referred to as an indoor temperature) from the set temperature Set
- set temperature Set set temperature Set-indoor temperature
- the failure analysis server 30 determines whether or not the calculated
- the failure analysis server 30 determines NO in step S140. Along with this, the failure analysis server 30 identifies that the refrigeration cycle apparatus 6 is performing normal operation (step S141).
- the failure analysis server 30 determines YES in step S140 when
- the failure analysis server 30 determines whether the pressure detected by the high pressure sensor 76c is higher than a threshold value (that is, a second threshold value) B (step S151). At this time, when the pressure detected by the high pressure sensor 76c is less than the threshold value B, the failure analysis server 30 determines NO in step S151.
- a threshold value that is, a second threshold value
- the failure analysis server 30 returns to step S100 on the assumption that there is a cause of failure in the refrigeration cycle device 6 other than the outdoor scenery system.
- the failure analysis server 30 determines YES in step S151.
- the failure analysis server 30 identifies that the failure event is one of the following (a), (b), and (c) (step S153).
- the failure analysis server 30 determines which of the above (a), (b) and (c) the failure event corresponds based on the meteorological data and the temperature detected by the outside air temperature sensor 76b (step S154, S160).
- the temperature detected by the outside air temperature sensor 76b is referred to as a sensor acquisition value.
- the failure event corresponds to either (a) or (b)
- the heat exchange between the high-pressure refrigerant and the air outside the vehicle is blocked in the outdoor heat exchanger 70.
- the temperature of the high-pressure refrigerant in the outdoor heat exchanger 70 becomes high, so that heat is transferred from the high-pressure refrigerant in the outdoor heat exchanger 70 to the outside air temperature sensor 76b.
- the temperature detected by the outside air temperature sensor 76b rises.
- the failure analysis server 30 obtains “sensor acquisition value-weather data” (see FIG. 11), which is the difference obtained by subtracting the weather data from the sensor acquisition value. It is determined whether or not the obtained “sensor acquisition value-weather data” (that is, the outside air temperature difference) is equal to or more than the threshold value D (step S154). At this time, the failure analysis server 30 determines NO in step S154 when “sensor acquisition value-weather data” is less than the threshold value (that is, the third threshold value) D.
- the failure analysis server 30 identifies “(c) the refrigeration cycle device 6 is in an overfilled state of the refrigerant” as the failure event (step S155).
- the failure analysis server 30 transmits to the management server 50 via the communication line 5 that the amount of the refrigerant filled in the refrigeration cycle device 6 should be reduced as a recommended action (step S170).
- the failure analysis server 30 determines YES in step S154.
- the failure event corresponds to any one of the following (a) and (b).
- the temperature of the high-pressure refrigerant in the outdoor heat exchanger 70 is slightly increased because the heat exchange between the high-pressure refrigerant and the air outside the vehicle compartment occurs in the outdoor heat exchanger 70. Gradually increases with the passage of time. Therefore, as indicated by the graph C1 in FIG. 12, the difference C gradually increases with the passage of time.
- the sensor acquisition value at timing T among the sensor acquisition values at different timings will be referred to as a sensor acquisition value S (T), and the timing (T + t The sensor acquisition value of) is set as the sensor acquisition value S (T + t).
- the meteorological data at timing T is referred to as meteorological data K (T).
- meteorological data at a timing (T + t) is referred to as meteorological data K (T + t).
- Timing (T + t) is the timing when a predetermined period t has elapsed from timing T.
- ⁇ sensor acquisition value S (T) -weather data K (T) ⁇ C (T)
- ⁇ sensor acquisition value S (T + t) -weather data K (T + t) ⁇ C (T + t).
- the failure analysis server 30 uses the sensor acquisition value S (T), the sensor acquisition value S (T + t), the meteorological data K (T), the meteorological data K (T + t), and the predetermined value cf to determine the next failure event ( It is determined whether any one of (a) and (b) is applicable.
- the failure analysis server 30 identifies that the outdoor heat exchanger 70 is in a clogged state as a failure event (step S161).
- the failure analysis server 30 transmits to the management server 50 through the communication line 5 as a recommended action that the plurality of air flow paths 70f of the outdoor heat exchanger 70 are cleaned to eliminate the clogging (step S170). ..
- the failure analysis server 30 determines that the difference C sharply increases with the passage of time when C (T) ⁇ C (T + t) and C (T + t) ⁇ C (T)> predetermined value cf are satisfied.
- step S160 YES is determined.
- the failure analysis server 30 specifies that the outdoor blowers 70a, 70b, 70c are stopped due to a failure as a failure event (step S162). Along with this, the failure analysis server 30 transmits to the management server 50 through the communication line 5 as a recommended action to eliminate the failure of the outdoor blowers 70a, 70b, 70c (or replace the outdoor blowers 70a, 70b, 70c). (Step S170).
- the failure analysis server 30 is a failure analysis device that identifies a failure event occurring in the refrigeration cycle device 6 mounted on the vehicle.
- the failure analysis server 30 acquires from the weather server 40 weather data indicating the outside air temperature at the current position of the vehicle based on the current position data, and identifies a failure event according to the sensor acquisition value and the weather data.
- the weather server 40 acquires the air-conditioning data indicating the detected value (that is, the sensor acquisition value) of the outside air temperature sensor 76b and the current position data indicating the current position of the vehicle, and also acquires the weather data for each area.
- an abnormality signal from the outdoor air blower is indispensable for identifying a failure event / site, but many vehicles that are sold do not output the abnormality signal.
- the failure analysis server 30 may specify the failure event by using the actual measurement data of the outside air temperature at the current position of the vehicle instead of the weather data acquired from the weather server 40.
- the failure analysis server 30 identifies the failure event according to the detected value of the outside air temperature sensor 76b (that is, the sensor acquired value) and the weather data indicating the outside air temperature at the current position of the vehicle. To do.
- the failure analysis server 30 identifies “the refrigeration cycle device 6 is overfilled” as a failure event.
- the failure analysis server 30 determines that the difference C gradually increases with the passage of time when the change amount dC of “sensor acquisition value-meteorological data” is less than the predetermined value cf, and the outdoor heat exchanger 70 is clogged.
- the state of being specified is identified as a failure event.
- the failure analysis server 30 determines that the difference C has sharply increased with the passage of time, and the outdoor blowers 70a, 70b, and 70c have a failure.
- the stop event is specified as a failure event.
- failure analysis system 1 and the failure analysis server 30 that realize the identification of the failure event based on the weather data at the current position of the vehicle.
- the failure analysis server 30 sends a countermeasure to be taken in response to the specified failure event to the management server 50 through the communication line 5 as a recommended action in association with the specified failure event.
- the failure analysis server 30 acquires the outside air temperature at the current position of the automobile 2 as meteorological data, not actual measurement data, and analyzes the failure. Therefore, it is not necessary to add an outside air temperature sensor for measuring the outside air temperature at the current position of the automobile 2 as actual measurement data. As a result, the number of parts can be reduced and the cost can be reduced as compared with the case where the outside air temperature sensor is added.
- the outside air temperature sensor 76b is used to detect the temperature of the high-pressure refrigerant inside the outdoor heat exchanger 70. Therefore, the number of parts can be reduced and the cost can be reduced as compared with the case where a refrigerant temperature sensor for detecting the temperature of the high-pressure refrigerant in the outdoor heat exchanger 70 is added.
- the failure analysis server 30A is composed of an electronic control device mounted in the automobile 2. Therefore, the failure analysis server 30A communicates with the weather server 40 and the management server 50 via the communication ECU 10 and the communication line 5.
- the failure analysis notification process in the failure analysis server 30A is the same as the failure analysis notification process in the failure analysis server 30 of the first embodiment, and therefore the description thereof is omitted. As described above, similarly to the first embodiment, it is possible to provide the failure analysis system 1 and the failure analysis server 30A that realize the identification of the failure event based on the meteorological data at the current position of the vehicle.
- the failure analysis system 1 may be configured using a vehicle already on the market.
- compressor 74 the example in which the engine-driven compressor in which the compression mechanism is driven by the traveling engine is used is described. However, instead of this, an electric compressor in which a compression mechanism is driven by an electric motor may be used as the compressor 74.
- the amount of refrigerant discharged from the compressor 74 is adjusted by the AC ECU 20 controlling the rotation speed of the electric motor.
- valve body whose throttle opening is controlled by an electric actuator may be used as the pressure reducing valve 75.
- the electric actuator is controlled by the ACECU 20 and the throttle opening is controlled.
- the failure analysis server 30 uses the temperatures detected by various sensors such as the inside air temperature sensor 76a, the outside air temperature sensor 76b, the high pressure sensor 76c, and the low pressure sensor 76d to detect a failure event.
- the analyzed example was explained.
- the failure analysis server 30 may analyze a failure event using the operation mode of the vehicle-mounted air conditioner 3 and the temperatures detected by various sensors.
- the failure analysis server 30 determines whether the “sensor acquisition value-weather data” has risen sharply or gradually with the passage of time. In doing so, you may implement as follows.
- the failure analysis server 30 calculates difference data at a plurality of timings based on the air conditioning data acquired from the communication ECU 10.
- the failure analysis server 30 statistically calculates difference data at a plurality of different timings to determine whether the “sensor acquisition value-weather data” has risen sharply or gradually over time. To do.
- the position information of the base station with which the communication ECU 10 mounted on the vehicle 2 wirelessly communicates may be the current position of the vehicle 2.
- the current position of the automobile 2 may be obtained between the communication ECU 10 and the plurality of base stations according to wireless communication.
- failure analysis server 30 has described the example in which the failure analysis of the refrigeration cycle device 6 is performed using the outside temperature as the weather condition. Instead of this, failure analysis of the refrigeration cycle apparatus 6 may be performed using weather conditions other than the outside temperature (for example, humidity, atmospheric pressure, and solar radiation amount).
- the failure analysis server 30 has described the example in which the failure analysis is performed on the outdoor ventilation system. Instead of this, the failure analysis may be performed on the equipment other than the outdoor air blowing system (for example, the compressor 74) of the refrigeration cycle apparatus 6. (10) In the first and second embodiments, the failure analysis server 30 has described the example in which the recommended action corresponding to the failure event is transmitted to the management server 50. However, instead of this, the failure analysis server 30 transmits the recommended action corresponding to the failure event to a device other than the management server 50 (for example, a mobile terminal of the driver of the bus, a server of a company operating the bus, or the like). May be.
- a device other than the management server 50 for example, a mobile terminal of the driver of the bus, a server of a company operating the bus, or the like. May be.
- the failure analysis server 30 determines whether or not the temperature detected by the inside air temperature sensor 76a, the pressure detected by the high pressure sensor 76c, the set temperature Set, and the current position data are received in step S110. However, instead of this, it may be determined for each data whether or not the data is received.
- the data indicates any one of the detected temperature of the inside air temperature sensor 76a, the detected pressure of the high pressure sensor 76c, the set temperature Set, and the current position data.
- the positional relationship, etc. when referring to the shape of the components and the like, the positional relationship, etc., the shape thereof, unless otherwise explicitly stated and in principle limited to the specific shape, the positional relationship, etc., It is not limited to the positional relationship or the like.
- the sensor when it is described that the external environment information of the vehicle (for example, the humidity outside the vehicle) is acquired from the sensor, the sensor is abolished and the external environment information is acquired from the server or the cloud outside the vehicle. It is also possible to receive. Alternatively, it is also possible to eliminate the sensor, acquire the related information related to the external environment information from the server or the cloud outside the vehicle, and estimate the external environment information from the acquired related information.
- Steps S100 and S110 constitute a vehicle data acquisition unit and an operation data acquisition unit.
- Steps S120 and S130 form a meteorological data acquisition unit.
- Step S154, step S155, step S160, step S161, and step S162 constitute a failure identifying unit.
- Step S170 corresponds to the failure notification unit.
- the inside air temperature determination unit corresponds to step S140
- the high pressure determination unit corresponds to step S151
- the outside air temperature determination unit corresponds to step S154.
- the difference determination unit corresponds to step S160. (Summary) / *
- the failure analysis device detects a failure event occurring in the refrigeration cycle device mounted on the vehicle. Identify.
- the failure analysis device includes a vehicle data acquisition unit that acquires operation data indicating the operation state of the refrigeration cycle device and current position data indicating the current position of the vehicle.
- the failure analysis device includes a weather data acquisition unit that acquires weather data of the current position of the vehicle based on the current position data from a weather server that collects weather data indicating weather conditions.
- the failure analysis device includes a failure identification unit that identifies a failure event based on the operation data acquired by the vehicle data acquisition unit and the meteorological data acquired by the meteorological data acquisition unit.
- the failure analysis device includes a failure notification unit that notifies the countermeasure to be taken in response to the failure event identified by the failure identification unit.
- the refrigeration cycle device includes a compressor that compresses and discharges the refrigerant, and a blower that blows air outside the vehicle compartment.
- the refrigeration cycle device includes a vehicle exterior heat exchanger that cools the high pressure refrigerant by exchanging heat between the high pressure refrigerant discharged from the compressor and the vehicle exterior air blown by the blower, and the refrigerant from the vehicle exterior heat exchanger. And a pressure reducing valve for reducing the pressure.
- the refrigeration cycle device is equipped with an indoor heat exchanger that cools the vehicle interior air by exchanging heat between the refrigerant decompressed by the pressure reducing valve and the vehicle interior air.
- the failure identification unit identifies failure events related to the outside-air blowing system including the blower and the outside-cabin heat exchanger.
- the refrigeration cycle device includes an outside air temperature sensor that detects the temperature of the air outside the vehicle compartment that flows to the outside heat exchanger of the vehicle interior.
- the outside air temperature sensor is located at a position where heat is transferred from the refrigerant inside the vehicle exterior heat exchanger.
- the vehicle data acquisition unit acquires the temperature detected by the outside air temperature sensor as operation data indicating the refrigerant temperature inside the vehicle exterior heat exchanger.
- the weather data acquisition unit acquires the outside temperature at the current position of the vehicle as weather data.
- the outside air temperature sensor is arranged upstream of the vehicle exterior heat exchanger in the flow direction of the vehicle exterior air.
- the outside air temperature sensor can accurately detect the outside air temperature.
- the failure analysis device includes an inside temperature determination unit, a high pressure determination unit, and an outside temperature determination unit.
- the refrigeration cycle device includes an inside air temperature sensor that detects the temperature inside the vehicle compartment, a pressure sensor that detects the pressure of the high-pressure refrigerant discharged from the compressor, and a temperature setting unit in which the set temperature is set by the operator. ..
- the compressor, exterior heat exchanger, pressure reducing valve, and interior heat exchanger operate to bring the temperature of the air inside the vehicle closer to the set temperature.
- the vehicle data acquisition unit acquires the pressure detected by the pressure sensor, the temperature detected by the inside air temperature sensor, and the set temperature set by the operator in the temperature setting unit.
- the inside temperature determination unit determines whether or not the absolute value of the temperature difference obtained by subtracting the temperature of the vehicle interior air from the set temperature is larger than the first threshold value.
- the high pressure determination unit determines whether the pressure of the high pressure refrigerant is higher than the second threshold value.
- the outside air temperature determination unit determines whether or not the outside air temperature difference is higher than the third threshold value.
- the inside air temperature determination unit determines, and when the pressure of the high pressure refrigerant is higher than the second threshold value, the high pressure determination unit determines that the outside air temperature difference is less than the third threshold value.
- the failure identification unit identifies, as a failure event, that the refrigerant amount filled in the refrigeration cycle device is in the overfilled state.
- the failure analysis device includes an inside temperature determination unit, a high pressure determination unit, an outside temperature determination unit, and a difference determination unit.
- the refrigeration cycle device includes an inside air temperature sensor that detects the temperature inside the vehicle compartment, a pressure sensor that detects the pressure of the high-pressure refrigerant discharged from the compressor, and a temperature setting unit in which the set temperature is set by the operator. ..
- the compressor, exterior heat exchanger, pressure reducing valve, and interior heat exchanger operate to bring the temperature of the air inside the vehicle closer to the set temperature.
- the vehicle data acquisition unit acquires the pressure detected by the pressure sensor, the temperature detected by the inside air temperature sensor, and the set temperature set by the operator in the temperature setting unit.
- the inside air temperature determination unit determines whether or not the absolute value of the temperature difference obtained by subtracting the temperature of the vehicle interior air from the set temperature is larger than the first threshold value (A).
- the high pressure determination unit determines whether the pressure of the high pressure refrigerant is higher than the second threshold value.
- the outside air temperature determination unit determines whether or not the outside air temperature difference is higher than the third threshold value.
- the difference determination unit determines whether or not the outside air temperature difference is gradually increasing with the passage of time.
- the exterior heat exchanger has a plurality of air passages through which the outside air flows, and heat is exchanged between the outside air and the high-pressure refrigerant that pass through the plurality of air passages.
- the inside air temperature determination unit determines that the absolute value of the temperature difference is greater than the first threshold value, the high pressure determination unit determines that the pressure of the high pressure refrigerant is higher than the second threshold value, and the outside air temperature difference is greater than the third threshold value.
- the outside temperature determination unit determines that the temperature is high, and the difference determination unit determines that the outside temperature difference gradually increases with time.
- the failure identifying unit identifies, as a failure event, that the heat exchange between the outside air and the high-pressure refrigerant is obstructed when the plurality of air flow paths in the vehicle exterior heat exchanger are clogged with foreign matter. To do.
- the failure analysis device includes an inside temperature determination unit, a high pressure determination unit, an outside temperature determination unit, and a difference determination unit.
- the refrigeration cycle device includes an inside air temperature sensor that detects the temperature inside the vehicle compartment, a pressure sensor that detects the pressure of the high-pressure refrigerant discharged from the compressor, and a temperature setting unit in which the set temperature is set by the operator. ..
- the compressor, exterior heat exchanger, pressure reducing valve, and interior heat exchanger operate to bring the temperature of the air inside the vehicle closer to the set temperature.
- the vehicle data acquisition unit acquires the pressure detected by the pressure sensor, the temperature detected by the inside air temperature sensor, and the set temperature set by the operator in the temperature setting unit.
- the inside temperature determination unit determines whether or not the absolute value of the temperature difference obtained by subtracting the temperature of the vehicle interior air from the set temperature is larger than the first threshold value.
- the high pressure determination unit determines whether the pressure of the high pressure refrigerant is higher than the second threshold value.
- the outside air temperature determination unit determines whether or not the outside air temperature difference is higher than the third threshold value.
- the difference determination unit determines whether or not the difference in outside air temperature is rapidly increasing with the passage of time.
- the inside air temperature determination unit determines that the absolute value of the temperature difference is greater than the first threshold value, the high pressure determination unit determines that the pressure of the high pressure refrigerant is higher than the second threshold value, and the outside air temperature difference is greater than the third threshold value.
- the failure identification unit notifies that the blower is stopped due to a failure. Identify as a failure event.
- the operation data acquisition unit, the meteorological data acquisition unit, and the failure identification unit are configured by an electronic control device mounted on the vehicle.
- the failure analysis system includes a refrigeration cycle device mounted on a vehicle, an operation data acquisition unit that acquires operation data indicating an operation state of the refrigeration cycle device, and a current position indicating a current position of the vehicle.
- the present position acquisition part which acquires position data is provided.
- the failure analysis system includes a meteorological data acquisition unit that acquires meteorological data of the current position of the vehicle based on the current position data from a meteorological server that collects meteorological data indicating a weather condition.
- the failure analysis system includes a failure identification unit that identifies a failure event of the refrigeration cycle device based on operation data and weather data.
Landscapes
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Air-Conditioning For Vehicles (AREA)
Abstract
車両に搭載されている冷凍サイクル装置(6)に生じる故障事象を特定する故障解析装置は、前記冷凍サイクル装置の作動状態を示す作動データ、および前記車両の現在位置を示す現在位置データを取得する車両データ取得部(S100、S110)と、気象状態を示す気象データを収集する気象サーバ(40)から、前記現在位置データに基づく前記車両の現在位置の前記気象データを取得する気象データ取得部(S120、S130)と、前記車両データ取得部によって取得された前記作動データ、および前記気象データ取得部によって取得された前記気象データに基づいて、前記故障事象を特定する故障特定部(S154、S155、S160、S161、S162)と、を備える。
Description
本出願は、2018年11月21日に出願された日本特許出願番号2018-218618号に基づくもので、ここにその記載内容が参照により組み入れられる。
本開示は、故障解析システム、および故障解析装置に関するものである。
従来、空調サービス支援装置では、空気調和機の運転データを受信した場合に、運転データに基づいて故障判定を行うものある(例えば、特許文献1参照)。空調サービス支援装置は、運転データの一部の実測値データを用いて回帰予測値を求め、この回帰予測値と運転データの所定の実測値データとを比較することにより、故障判定、ならびに、故障部位/故障事象の特定を行うことができる。実測値データとしては、室温、外気温度、インバータの周波数、室内ファン速度、室外ファン速度が用いられる。
上記特許文献1の空調サービス支援装置は、回帰予測値と運転データの所定の実測値データとを比較することにより、故障判定等を行うことができる。
しかし、上記特許文献1には、気象データを収集する気象サーバから取得した気象データに基づいて、故障事象の特定を実現することについて記載されていない。
本開示は、気象サーバから取得した車両の現在位置における気象データに基づいて、故障事象の特定を実現するようにした故障解析システム、および故障解析装置を提供することを目的とする。
本開示の1つの観点によれば、車両に搭載されている冷凍サイクル装置に生じる故障事象を特定する故障解析装置は、
冷凍サイクル装置の作動状態を示す作動データ、および車両の現在位置を示す現在位置データを取得する車両データ取得部と、
気象状態を示す気象データを収集する気象サーバから、現在位置データに基づく車両の現在位置の気象データを取得する気象データ取得部と、
車両データ取得部によって取得された作動データ、および気象データ取得部によって取得された気象データに基づいて、故障事象を特定する故障特定部と、を備える。
冷凍サイクル装置の作動状態を示す作動データ、および車両の現在位置を示す現在位置データを取得する車両データ取得部と、
気象状態を示す気象データを収集する気象サーバから、現在位置データに基づく車両の現在位置の気象データを取得する気象データ取得部と、
車両データ取得部によって取得された作動データ、および気象データ取得部によって取得された気象データに基づいて、故障事象を特定する故障特定部と、を備える。
これにより、気象サーバから取得した車両の現在位置における気象データに基づいて、故障事象の特定を実現するようにした故障解析装置を提供することができる。
本開示の別の観点によれば、故障解析システムは、車両に搭載されている冷凍サイクル装置と、
冷凍サイクル装置の作動状態を示す作動データを取得する作動データ取得部と、
車両の現在位置を示す現在位置データを取得する現在位置取得部と、
気象データを収集する気象サーバから、現在位置データに基づく車両の現在位置の気象データを取得する気象データ取得部と、
作動データ、および気象データに基づいて、冷凍サイクル装置の故障事象を特定する故障特定部と、を備える。
冷凍サイクル装置の作動状態を示す作動データを取得する作動データ取得部と、
車両の現在位置を示す現在位置データを取得する現在位置取得部と、
気象データを収集する気象サーバから、現在位置データに基づく車両の現在位置の気象データを取得する気象データ取得部と、
作動データ、および気象データに基づいて、冷凍サイクル装置の故障事象を特定する故障特定部と、を備える。
これにより、気象サーバから取得した自動車の現在位置における気象データに基づいて、故障事象の特定を実現するようにした故障解析システムを提供することができる。
なお、各構成要素等に付された括弧付きの参照符号は、その構成要素等と後述する実施形態に記載の具体的な構成要素等との対応関係の一例を示すものである。
以下、本開示の実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、説明の簡略化を図るべく、図中、同一符号を付してある。
(第1実施形態)
図1に本第1実施形態の故障解析システム1の全体構成を示す。本実施形態の故障解析システム1は、自動車2に搭載される車載空調装置3の故障事象を解析するためのシステムである。
図1に本第1実施形態の故障解析システム1の全体構成を示す。本実施形態の故障解析システム1は、自動車2に搭載される車載空調装置3の故障事象を解析するためのシステムである。
具体的には、故障解析システム1は、通信ECU10、ACECU20、故障解析サーバ30、気象サーバ40、および管理サーバ50を備える。通信ECU10は、自動車2に搭載されて、アンテナ11を介して基地局4との間で無線通信する。自動車2としては、例えば、公共交通機関のバスが用いられる。
本実施形態の通信ECU10、GPS受信機12、およびACECU20は、自動車2に搭載されている。
通信ECU10は、ACECU20からの内気温度、外気温度、冷媒圧力等の空調データやGPS受信機12からの現在位置データを取得してこれら取得したデータをアンテナ11、基地局4を介して故障解析サーバ30に送信する。
GPS受信機12は、複数の人工衛星からそれぞれ送信される信号に基づいて、自動車2の現在位置を算出し、この算出した現在位置を示す現在位置データを通信ECU10に送信する。
ACECU20は、マイクロコンピュータやメモリによって構成されて、車載空調装置の圧縮機74を制御する。なお、ACECU20および車載空調装置3等の詳細の説明については、後述する。メモリは、非遷移的実体的記憶媒体である。
故障解析サーバ30は、気象サーバ40から気象データを取得し、かつACECU20からの空調データを取得し、さらにこれら取得した気象データや空調データ等に基づいて車外送風系の故障事象を特定する故障特定処理を実行する。
本実施形態の車外送風系は、車載空調装置のうち車室外送風機および車室外熱交換器を含むシステムである。
気象サーバ40は、地域毎の気象データを繰り返し収集して地域毎の気象データを含むデータベースを構成する。気象サーバ40は、このデータベースにおいて故障解析サーバ30からの要求に合わせて地域毎の気象データを検索し、この検索した地域毎の気象データを故障解析サーバ30に送信する。
本実施形態の気象データとしては、地域毎の外気温(すなわち、自動車2の現在位置の外気温)を示すデータが用いられる。
管理サーバ50は、自動車2(すなわち、バス)の保守、整備等を実施する管理会社のサーバである。
本実施形態の基地局4、故障解析サーバ30、気象サーバ40、管理サーバ50は、インターネット等の通信回線5に接続されている。
以下、本実施形態の車載空調装置3について図2、図3、図4、図5を参照して説明する。
本実施形態の車載空調装置3は、自動車2の屋根2aの上側に配置されている。車載空調装置3は、室外熱交換器70、室外送風機70a、70b、70c、室内熱交換器71、72、室内送風機71a、71b、71c、72a、72b、72c、フィルタ73を備える。
室外熱交換器70は、後述する圧縮機74から吐出される高圧冷媒と室外送風機70a、70b、70cから図5中の矢印Saの如く送風される車室外空気との間で熱交換して高圧冷媒を車室外空気によて冷却する。
本実施形態の室外送風機70a、70b、70cは、室外熱交換器70に対して天地方向上側に配置されている。
具体的には、室外熱交換器70は、分配タンク、集合タンク、複数のチューブ70d、熱交換フィン70eを備える。
分配タンクは、圧縮機74からの高圧冷媒を複数のチューブ70dに分配する。複数のチューブ70dは、それぞれ、高圧冷媒を集合タンクに向けて流通させる。集合タンクは、複数のチューブ70dを流通した高圧冷媒を集合させて、この集合させた高圧冷媒を後述する減圧弁75に向けて流す。
複数のチューブ70dは、図4に示すように、それぞれ、間隔を開けて並べられている。熱交換フィン70eは、複数のチューブ70dのうち隣り合う2つのチューブ70dの間に配置されている。熱交換フィン70eは、波状に形成されて、上記2つのチューブ70dの間に複数の空気流路70fを形成する。
このように構成される室外熱交換器70では、複数のチューブ70dを流れる高圧冷媒と複数の空気流路70fに流れる車室外空気との熱交換により高圧冷媒を冷却する。熱交換フィン70eは、高圧冷媒と車室外空気との間の熱交換を促進させる。
室内熱交換器71は、室内送風機71a、71b、71cから送風される車室内空気と、減圧弁75を通過した低圧冷媒との間で熱交換させて車室内空気を低圧冷媒によって冷却する。
室内熱交換器72は、室内送風機72a、72b、72cから送風される車室内空気と、減圧弁75を通過した低圧冷媒との間で熱交換させて車室内空気を低圧冷媒によって冷却する。
本実施形態の室内熱交換器72は、室内空調ケース内に収納されて室内送風機72a、72b、72cから送風される空気流を冷却して車室内に吹き出す室内空調ユニットを構成する。
本実施形態の室内熱交換器71、72は、低圧冷媒の流れに対して並列(或いは、直列)に配置されている。フィルタ73は、室内熱交換器71、72に流入される空気流を浄化する役割を果たす。
室外熱交換器70、室内熱交換器71、72、圧縮機74、および減圧弁75は、図6に示すように、冷媒配管で接続されて、冷媒を循環させる冷凍サイクル装置6を構成する。圧縮機74は、冷媒を吸入して圧縮して吐出する圧縮機構を備える。
本実施形態の圧縮機74としては、例えば、走行用エンジンの駆動力によって圧縮機構を駆動して冷媒を吸入して圧縮して吐出するエンジン駆動型圧縮機が用いられている。この場合、走行用エンジンおよびエンジン駆動型圧縮機の間には、電磁クラッチが配置されている。
電磁クラッチは、走行用エンジンおよびエンジン駆動型圧縮機の間を接続して走行用エンジンの駆動力をエンジン駆動型圧縮機に伝達する接続状態と、走行用エンジンの駆動力とエンジン駆動型圧縮機との間を開放する開放状態とを切り替える。
ここで、電磁クラッチは、ACECU20によって制御されて、接続状態と離間状態とを交互に実施する。このことにより、圧縮機74から吐出される高圧冷媒量が調整されることになる。
減圧弁75は、室外熱交換器70冷媒出口と室内熱交換器71、72の冷媒入口との間において、冷媒を流通させる冷媒流路の開度(以下、絞り開度という)を調整する弁体である。本実施形態の減圧弁75としては、室内熱交換器71、72の冷媒出口から流れる冷媒の加熱度が所定値になるように絞り開度が自動的に制御される機械式膨張弁が用いられる。
冷凍サイクル装置6には、内気温センサ76a、外気温センサ76b、高圧センサ76c、低圧センサ76d、温度設定器(すなわち、温度設定部)76eが設けられている。
内気温センサ76aは、車室内の空気温度(すなわち、車室内温度)を検出する温度センサである。外気温センサ76bは、車室外の空気温度を検出する温度センサである。外気温センサ76bは、室外熱交換器70付近に配置されている。より具体的には、外気温センサ76bは、室外熱交換器70に対して車室外空気の空気流れ方向の上流側に配置されている。
本実施形態の外気温センサ76bは、室外熱交換器70内の高圧冷媒からの熱が伝わる位置に配置されている。このため、外気温センサ76bは、室外熱交換器70に流入される外気の温度以外に、室外熱交換器70内の高圧冷媒の温度を検出する役割をも果たすことになる。
高圧センサ76cは、圧縮機74の冷媒出口と減圧弁75の冷媒入口との間の高圧冷媒の圧力を検出する圧力センサである。本実施形態の高圧センサ76cは、圧縮機74の冷媒出口と室外熱交換器70の冷媒入口との間の高圧冷媒の圧力を検出する。
低圧センサ76dは、減圧弁75の冷媒出口と圧縮機74の冷媒入口との間の低圧冷媒の圧力を検出する圧力センサである。本実施形態の低圧センサ76dは、室内熱交換器71、72の冷媒出口と圧縮機74の冷媒入口との間の低圧冷媒の圧力を検出する。
温度設定器76eは、車室内の空気温度の目標温度である設定温度Setを使用者(すなわち、操作者)の操作によって設定される機器である。
次に、本実施形態の冷凍サイクル装置6の電気的構成について図7を参照して説明する。
ACECU20は、メモリやマイクロコンピュータによって構成されている電子制御装置である。メモリは、非遷移的実体的記憶媒体である。ACECU20は、外気温センサ76bの検出温度、内気温センサ76aの検出温度、および設定温度Setに基づいて目標吹き出し温度TAOを算出する。目標吹き出し温度TAOは、車室内の温度を設定温度Setに近づけるために、室内空調ユニットから引き出すことが必要となる目標吹き出し温度である。
ACECU20は、室内空調ユニットから車室内に吹き出される空気温度を目標吹き出し温度TAOに近づけるために電磁クラッチを制御して、走行用エンジンおよびエンジン駆動型圧縮機の間を接続、或いは開放する周知の空調制御処理を実施する。
ACECU20が空調制御処理を実施するに伴って、圧縮機74からの冷媒が室外熱交換器70、減圧弁75、室内熱交換器71、72、圧縮機74の順に循環する。これに伴い、室内温度が設定温度Setに近くことになる。つまり、圧縮機74、室外熱交換器70、減圧弁75、および室内熱交換器71、72は、室内温度を設定温度Setに近づけるように作動することになる。
本実施形態のACECU20は、故障解析サーバ30からの要求に対応して、自動車の現在位置データ、内気温センサ76aの検出温度、高圧センサ76cの検出圧力等の空調データを収集してこの収集した空調データを故障解析サーバ30に送信する役割を果たす。
次に、本実施形態の故障解析システム1の制御処理について図8、図9、図10を参照して説明する。
故障解析サーバ30は、図8のフローチャートにしたがって、故障解析通知処理について実行する。ACECU20は、図9のフローチャートにしたがって、空調データ返信処理について実行する。気象サーバ40は、図10のフローチャートにしたがって、気象データ返信処理について実行する。
まず、故障解析サーバ30は、故障解析通知処理を繰り返し実行する。故障解析サーバ30は、ACECU20に対して空調データおよび現在位置データを要求する要求信号を送信する(ステップS100)。
この送信された要求信号は、通信回線5を介して基地局4に送信される。この送信された要求信号は、基地局4から無線通信によって送信される。
ここで、GPS受信機12は、自動車の現在位置を示す現在位置データを繰り返し算出する。さらに、ACECU20は、内気温センサ76aの検出温度、外気温センサ76bの検出温度、高圧センサ76cの検出圧力、および設定温度Setを繰り返し収集する。
一方、通信ECU10は、アンテナ11を介して要求信号を受信すると、通信ECU10は、自動車の現在位置を示す現在位置データをGPS受信機12から取得する(図9中ステップ200)。
これに加えて、通信ECU10は、ACECU20を介して、内気温センサ76aの検出温度、外気温センサ76bの検出温度、高圧センサ76cの検出圧力、設定温度Setを取得する。
そして、通信ECU10は、内気温センサ76aの検出温度、高圧センサ76cの検出圧力、設定温度Setを含む空調データと現在位置データとをアンテナ11から基地局4に送信する(図9中ステップS210)。空調データは、冷凍サイクル装置の作動状態を示す作動データである。
この際に、空調データに含まれる外気温センサ76bの検出温度としては、後述するステップS160の判定処理のために、異なる複数のタイミングで検出される外気温センサ76bの検出温度(すなわち、作動データ)が用いられる。
このように送信された空調データおよび現在位置データが基地局4に受信されると、基地局4は、空調データおよび現在位置データを通信回線5を介して故障解析サーバ30に送信する。
故障解析サーバ30は、通信ECU10からの空調データおよび現在位置データを受信したか否かを判定する(図8中ステップS110)。その後、故障解析サーバ30は、通信ECU10からの空調データおよび現在位置データを受信しないとき、ステップS110においてNOと判定してステップS110の判定を繰り返すことになる。
その後、故障解析サーバ30は、通信ECU10からの空調データおよび現在位置データを受信すると、現在位置取得部として、ステップS110においてYESと判定する。
これに伴い、故障解析サーバ30は、通信ECU10からの現在位置データに基づいて、自動車2の現在位置の気象データを要求するための要求信号を気象サーバ40に送信する。
本実施形態の気象データとしては、自動車2の現在位置の外気温を示す外気温データが採用されている。気象データとしては、後述するステップS160の判定処理のために、複数のタイミングで検出される現在位置の外気温を示すデータが用いられる。
次に、気象サーバ40は、故障解析サーバ30からの要求信号を受信したか否かを判定する(ステップS300)。そして、気象サーバ40は、故障解析サーバ30からの要求信号を受信しないと、ステップS300において、NOと判定してステップS300の判定を繰り返すことになる。
その後、気象サーバ40は、故障解析サーバ30からの要求信号を受信すると、ステップS300において、YESと判定すると、データベースにおいて自動車の現在位置の気象データを検索する(ステップS310)。
次に、気象サーバ40は、このデータベースにおける検索結果としての気象データを故障解析サーバ30に送信する(図10中ステップS320)。この送信された気象データは、通信回線5を介して故障解析サーバ30に送られる。
このように故障解析サーバ30は、気象データ、内気温センサ76aの検出温度、外気温センサ76b、高圧センサ76cの検出圧力、設定温度Setを取得することになる。
その後、故障解析サーバ30は、気象データ、内気温センサ76aの検出温度、高圧センサ76cの検出圧力、設定温度Setに基づいて、冷凍サイクル装置6の故障事象を解析する。
まず、故障解析サーバ30は、設定温度Setから内気温センサ76aの検出温度(以下、室内温度ともいう)を引いた差分の絶対値(すなわち、温度差)である|(設定温度Set-室内温度)|を求める。
さらに、故障解析サーバ30は、この求めた|(設定温度Set-室内温度)|が閾値A(すなわち、第1閾値)以上であるか否かを判定する(ステップS140)。
ここで、故障解析サーバ30は、|(設定温度Set-室内温度)|が閾値A未満であるときには、ステップS140でNOと判定する。これに伴い、故障解析サーバ30は、冷凍サイクル装置6が正常運転を実施していると特定する(ステップS141)。
一方、故障解析サーバ30は、|(設定温度Set-室内温度)|が閾値A以上であるときには、ステップS140でYESと判定する。これに伴い、故障解析サーバ30は、冷凍サイクル装置6による車室内の温度調節が不良であることを特定する(ステップS150)。
次に、故障解析サーバ30は、高圧センサ76cの検出圧力が閾値(すなわち、第2閾値)Bよりも高いか否かを判定する(ステップS151)。このとき、故障解析サーバ30は、高圧センサ76cの検出圧力が閾値B未満であるときには、ステップS151において、NOと判定する。
この際に、故障解析サーバ30は、冷凍サイクル装置6のうち室外送風景系以外の機器に故障の要因があることを検討するべきとして、ステップS100に戻る。
一方、故障解析サーバ30は、高圧センサ76cの検出圧力が閾値B以上であるときには、ステップS151において、YESと判定する。
この際には、故障解析サーバ30は、故障事象が次の(a)(b)(c)のいずれか1つであることを特定する(ステップS153)。
(a)室外送風機(図8中コンデンサファンと記す)70a、70b、70cが故障により停止して、室外熱交換器70において高圧冷媒と車室外空気(すなわち、車外空気)との間の熱交換が阻害されている状態である。
(b)室外熱交換器(図8中コンデンサ)70の複数の空気流路70fが異物によって塞がれる目詰まり状態となり、高圧冷媒と車室外空気との間の熱交換が阻害されている状態である。
(c)冷凍サイクル装置6は、必要以上の冷媒量の冷媒が充填されて過充填状態になっている。
次に、故障解析サーバ30は、気象データ、および外気温センサ76bの検出温度に基づいて、故障事象が上記(a)(b)(c)のうちいずれに該当するかを決める(ステップS154、S160)。以下、説明の便宜上、外気温センサ76bの検出温度をセンサ取得値という。
ここで、故障事象が(a)(b)のうちいずれに該当するときには、室外熱交換器70において、高圧冷媒と車室外空気との間の熱交換が阻害されている。このため、室外熱交換器70内の高圧冷媒の温度が高い状態となるため、室外熱交換器70内の高圧冷媒から外気温センサ76bに熱が伝わる。これにより、外気温センサ76bの検出温度が上昇する。
そこで、故障解析サーバ30は、センサ取得値から気象データを引いた差分である「センサ取得値-気象データ」(図11参照)を求める。この求めた「センサ取得値-気象データ」(すなわち、外気温差異)が閾値D以上であるか否かを判定する(ステップS154)。このとき、故障解析サーバ30は、「センサ取得値-気象データ」が閾値(すなわち、第3閾値)D未満であるときには、ステップS154において、NOと判定する。
この場合、故障解析サーバ30は、故障事象として「(c)冷凍サイクル装置6が冷媒の過充填状態になっている旨」を特定する(ステップS155)。
これに伴い、故障解析サーバ30は、冷凍サイクル装置6に充填されている冷媒量を減らすべきである旨を推奨アクションとして通信回線5を通して管理サーバ50に送信する(ステップS170)。
このことにより、冷媒の過充填の場合における推奨アクションを管理会社に通知することができる。
一方、故障解析サーバ30は、「センサ取得値-気象データ」が閾値D以上であるときには、ステップS154において、YESと判定する。この場合、故障事象が次の(a)(b)のいずれか1つに該当することになる。
ここで、室外送風機70a、70b、70cが故障により停止して室外熱交換器70内の高圧冷媒の温度が時間の経過に伴って急激に上昇する。このため、図12中グラフC1の如く、「センサ取得値-気象データ」(=差分C)が時間の経過に伴って急激に上昇する。
一方、室外熱交換器70が目詰まり状態になると、室外熱交換器70において高圧冷媒と車室外空気との間の熱交換が若干生じているため、室外熱交換器70内の高圧冷媒の温度が時間の経過に伴って徐々に上昇する。このため、図12中グラフC1の如く、差分Cが時間の経過に伴って徐々に上昇する。
ここで、以下、説明の便宜上、異なる複数のタイミングのセンサ取得値のうち、タイミングTのセンサ取得値をセンサ取得値S(T)とし、異なる複数のタイミングのセンサ取得値のうち、タイミング(T+t)のセンサ取得値をセンサ取得値S(T+t)とする。
異なる複数のタイミングの気象データのうち、タイミングTの気象データを気象データK(T)とする。異なる複数のタイミングの気象データのうち、タイミング(T+t)の気象データを気象データK(T+t)とする。タイミング(T+t)は、タイミングTから所定期間t経過したタイミングである。
異なる複数のタイミングの気象データのうち、タイミングTの気象データを気象データK(T)とする。異なる複数のタイミングの気象データのうち、タイミング(T+t)の気象データを気象データK(T+t)とする。タイミング(T+t)は、タイミングTから所定期間t経過したタイミングである。
ここで、{センサ取得値S(T)-気象データK(T)}=C(T)とし、{センサ取得値S(T+t)-気象データK(T+t)}=C(T+t)とする。
故障解析サーバ30は、センサ取得値S(T)、センサ取得値S(T+t)、気象データK(T)、気象データK(T+t)、および所定値cfを用いて、故障事象が次の(a)(b)のいずれか1つに該当するかを判定する。
ここで、故障解析サーバ30は、C(T)<C(T+t)、かつC(T+t)-C(T)≦所定値cfが成立すると、差分C(=センサ取得値-気象データ)が時間経過に伴って徐々に上昇したとして、ステップS160において、YESと判定する。
この際、故障解析サーバ30は、室外熱交換器70が目詰まり状態になっていることを故障事象として特定する(ステップS161)。
これに伴い、故障解析サーバ30は、室外熱交換器70の複数の空気流路70fを清掃して目詰まりを解消する旨を推奨アクションとして通信回線5を通して管理サーバ50に送信する(ステップS170)。
一方、故障解析サーバ30は、C(T)<C(T+t)、かつC(T+t)-C(T)>所定値cfが成立すると、差分Cが時間の経過に伴って急激に上昇したとして、ステップS160において、YESと判定する。
このことにより、室外熱交換器70が目詰まり状態になっている場合における推奨アクションを管理会社に通知することができる。
この際、故障解析サーバ30は、室外送風機70a、70b、70cが故障により停止したことを故障事象として特定する(ステップS162)。これに伴い、故障解析サーバ30は、室外送風機70a、70b、70cの故障を解消(或いは、室外送風機70a、70b、70cを交換)する旨を推奨アクションとして通信回線5を通して管理サーバ50に送信する(ステップS170)。
このことにより、室外送風機70a、70b、70cが故障した場合における推奨アクションを管理会社に通知することができる。
以上説明した本実施形態によれば、故障解析サーバ30は、自動車に搭載されている冷凍サイクル装置6に生じている故障事象を特定する故障解析装置である。
故障解析サーバ30は、気象サーバ40から、現在位置データに基づく自動車の現在位置の外気温を示す気象データを取得し、センサ取得値および気象データに応じて故障事象を特定する。
気象サーバ40は、外気温センサ76bの検出値(すなわち、センサ取得値)を示す空調データ、および自動車の現在位置を示す現在位置データを取得し、かつ地域毎の気象データを取得する。
気象サーバ40は、外気温センサ76bの検出値(すなわち、センサ取得値)を示す空調データ、および自動車の現在位置を示す現在位置データを取得し、かつ地域毎の気象データを取得する。
ここで、上記特許文献1に記載の空調サービス支援装置では、故障判定等を行うためには、それ相応の実測値データ、すなわちセンシングデータが必要となり、車載装置側へのセンサの追加が求められ、車載装置のイニシャルコストとのトレードオフが避けられない。
また、故障支援に対するニーズは、新車よりも既に市場に出回っている既販車の方が大きく、設定済の製品である車載装置へ後付で新規センサを追加すること自体が困難となる場合も少なくない。
バス用空調装置で重要な室外送風系の異常一つとっても、故障事象/部位特定へは、室外送風機からの異常信号などが欠かせないが、既販車では当該異常信号が出力されない仕様も多い。
また、目視でのフィルタ目詰まり状態診断も実態としては行われているが、メンテナンス負荷の増大にも繋がっている。タイマカウントによる自動清掃ガイダンス技術もあるが、必ずしも目詰まり実態に合うものではない。
例えば、本実施形態において、故障解析サーバ30は、気象サーバ40から取得した気象データに代えて、自動車の現在位置の外気温の実測データを用いて故障事象を特定することも考えられる。
しかし、この場合、外気温の実測データを取得するために、室外熱交換器70内の高圧冷媒からの熱が伝わらない位置に新たな外気温センサを配置することが必要になる。このため、新たな外気温センサの追加に伴って、コストの増大を招くことになる。
これに対して、本実施形態では、故障解析サーバ30は、外気温センサ76bの検出値(すなわち、センサ取得値)、および自動車の現在位置の外気温を示す気象データに応じて故障事象を特定する。
具体的には、故障解析サーバ30は、「センサ取得値-気象データ」が閾値D未満であるときには、故障事象として「冷凍サイクル装置6が過充填状態になっている旨」を特定する。
故障解析サーバ30は、「センサ取得値-気象データ」の変化量dCが所定値cf未満であるときには、差分Cが時間の経過に伴って徐々に上昇したとして、室外熱交換器70が目詰まり状態になっていることを故障事象として特定する。
故障解析サーバ30は、「センサ取得値-気象データ」変化量dCが所定値cf以上であるときには、差分Cが時間の経過に伴って急激上昇したとして、室外送風機70a、70b、70cが故障により停止したことを故障事象として特定する。
以上により、自動車の現在位置における気象データに基づいて、故障事象の特定を実現するようにした故障解析システム1、および故障解析サーバ30を提供することができる。
本実施形態では、故障解析サーバ30は、故障事象の特定に伴って、この特定した故障事象に対応して実施すべき対応策を推奨アクションとして通信回線5を通して管理サーバ50に送信する。
このことにより、故障事象に対応する推奨アクションを管理会社に通知することができる。
本実施形態では、故障解析サーバ30は、自動車2の現在位置の外気温を実測データではなく、気象データとして取得して故障解析する。このため、自動車2の現在位置の外気温を実測データとして測定するための外気温センサを追加することが必要なくなる。これにより、外気温センサを追加する場合に比べて、部品点数を少なくして、コストの低減を図ることができる。
本実施形態では、室外熱交換器70内の高圧冷媒の温度を検出するために外気温センサ76bを用いる。このため、室外熱交換器70内の高圧冷媒の温度を検出するための冷媒温度センサを追加する場合に比べて、部品点数を少なくして、コストの低減を図ることができる。
(第2実施形態)
上記第1実施形態では、故障解析サーバ30を自動車2の外側に設置した例について説明したが、これに代えて、故障解析サーバ30に代わる故障解析サーバ30Aを自動車2内に配置する本第2実施形態について図13を参照して説明する。
上記第1実施形態では、故障解析サーバ30を自動車2の外側に設置した例について説明したが、これに代えて、故障解析サーバ30に代わる故障解析サーバ30Aを自動車2内に配置する本第2実施形態について図13を参照して説明する。
故障解析サーバ30Aは、自動車2内に搭載される電子制御装置によって構成されている。このため、故障解析サーバ30Aは、通信ECU10および通信回線5を介して、気象サーバ40や管理サーバ50との間で通信することになる。
故障解析サーバ30Aにおける故障解析通知処理は、上記第1実施形態の故障解析サーバ30の故障解析通知処理と同様であるため、その説明を省略する。以上により、上記第1実施形態と同様に、車両の現在位置における気象データに基づいて、故障事象の特定を実現するようにした故障解析システム1、および故障解析サーバ30Aを提供することができる。
(他の実施形態)
(1)上記第1、第2の実施形態では、自動車2としてバスを用いて故障解析システム1を構成した例について説明したが、これに代えて、自動車2としてバス以外の自動車を用いて故障解析システム1を構成してもよい。
(1)上記第1、第2の実施形態では、自動車2としてバスを用いて故障解析システム1を構成した例について説明したが、これに代えて、自動車2としてバス以外の自動車を用いて故障解析システム1を構成してもよい。
(2)本開示の実施にあたり、上記第1、第2の実施形態において、既に市場に出回っている既販車を用いて故障解析システム1を構成してもよい。
(3)上記第1、第2の実施形態では、圧縮機74としては、走行用エンジンによって圧縮機構を駆動するエンジン駆動型圧縮機を用いた例について説明した。しかし、これに代えて、圧縮機74としては、圧縮機構を電動モータによって駆動する電動型圧縮機を用いてもよい。
この場合、ACECU20が電動モータの回転数を制御することにより、圧縮機74から吐出される冷媒量が調整されることになる。
(4)上記第1、第2の実施形態では、室内熱交換器71、72の冷媒出口から流れる冷媒の加熱度が所定値になるように絞り開度が自動的に制御される機械式膨張弁が用いられる例について説明した。
しかし、これに代えて、減圧弁75としては、減圧弁75としては、絞り開度を電動アクチュエータによって制御する弁体を用いてもよい。電動アクチュエータはACECU20によって制御されて絞り開度が制御されることになる。
(5)上記第1、第2の実施形態では、故障解析サーバ30は、内気温センサ76a、外気温センサ76b、高圧センサ76c、低圧センサ76d等の各種センサの検出温度を用いて故障事象を解析した例について説明した。
しかし、これに加えて、故障解析サーバ30は、車載空調装置3の作動モードと各種センサの検出温度とを用いて、故障事象を解析してもよい。
(6)上記第1、第2の実施形態では、故障解析サーバ30は、「センサ取得値-気象データ」が時間の経過に伴って急激に上昇したか、或いは徐々に上昇したかを判定するにあたり、次の通りに実施してもよい。
「センサ取得値-気象データ」を差分データとしたとき、故障解析サーバ30は、複数のタイミングにおける差分データを、通信ECU10から取得した空調データに基づいて算出する。
故障解析サーバ30は、異なる複数のタイミングの差分データを統計的に演算して、「センサ取得値-気象データ」が時間の経過に伴って急激に上昇したか、或いは徐々に上昇したかを判定する。
これにより、故障事象の解析にあたり、天候などのばらつきその他の外乱(例えば、吹き出しグリルのグリル開度など)の影響を軽減することができる。
(7)上記第1、第2の実施形態では、自動車2に搭載されているGPS受信機12を用いて自動車2の現在位置を求める例について説明した。しかし、これに代えて、自動車2に搭載されている通信ECU10が無線通信する基地局の位置情報を自動車2の現在位置としてもよい。
或いは、通信ECU10が複数の基地局と無線通信する場合には、通信ECU10および複数の基地局の間に無線通信に応じて自動車2の現在位置を求めるようにしてもよい。
(8)上記第1、第2の実施形態では、故障解析サーバ30は、気象状態としての外気温を用いて冷凍サイクル装置6の故障解析を実施した例について説明した。これに代えて、外気温以外の気象状態(例えば、湿度、大気圧、日射量)を用いて冷凍サイクル装置6の故障解析を実施してもよい。
(9)上記第1、第2の実施形態では、故障解析サーバ30は、室外送風系に関して故障解析を実施した例について説明した。これに代えて、冷凍サイクル装置6のうち室外送風系以外の機器(例えば、圧縮機74)に関して故障解析を実施してもよい。
(10)上記第1、第2の実施形態では、故障解析サーバ30は、故障事象に対応する推奨アクションを管理サーバ50に送信した例について説明した。しかし、これに代えて、故障解析サーバ30は、故障事象に対応する推奨アクションを管理サーバ50以外の装置(例えば、バスの運転者の携帯端末、バスを運行する会社のサーバなど)に送信してもよい。
(11)故障解析サーバ30は、内気温センサ76aの検出温度、高圧センサ76cの検出圧力、設定温度Set、および現在位置データをステップS110で受信しかた否かを判定した。
しかし、これに代えて、データ毎にデータを受信したか否かを判定してもよい。ここで、データとは、内気温センサ76aの検出温度、高圧センサ76cの検出圧力、設定温度Set、および現在位置データのうちいずれかを示す。
(10)上記第1、第2の実施形態では、故障解析サーバ30は、故障事象に対応する推奨アクションを管理サーバ50に送信した例について説明した。しかし、これに代えて、故障解析サーバ30は、故障事象に対応する推奨アクションを管理サーバ50以外の装置(例えば、バスの運転者の携帯端末、バスを運行する会社のサーバなど)に送信してもよい。
(11)故障解析サーバ30は、内気温センサ76aの検出温度、高圧センサ76cの検出圧力、設定温度Set、および現在位置データをステップS110で受信しかた否かを判定した。
しかし、これに代えて、データ毎にデータを受信したか否かを判定してもよい。ここで、データとは、内気温センサ76aの検出温度、高圧センサ76cの検出圧力、設定温度Set、および現在位置データのうちいずれかを示す。
(12)なお、本開示は上記した実施形態に限定されるものではなく、適宜変更が可能である。また、上記各実施形態は、互いに無関係なものではなく、組み合わせが明らかに不可な場合を除き、適宜組み合わせが可能である。また、上記各実施形態において、実施形態を構成する要素は、特に必須であると明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。また、上記各実施形態において、実施形態の構成要素の個数、数値、量、範囲等の数値が言及されている場合、特に必須であると明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではない。また、上記各実施形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に特定の形状、位置関係等に限定される場合等を除き、その形状、位置関係等に限定されるものではない。また、上記各実施形態において、センサから車両の外部環境情報(例えば車外の湿度)を取得することが記載されている場合、そのセンサを廃し、車両の外部のサーバまたはクラウドからその外部環境情報を受信することも可能である。あるいは、そのセンサを廃し、車両の外部のサーバまたはクラウドからその外部環境情報に関連する関連情報を取得し、取得した関連情報からその外部環境情報を推定することも可能である。
次に、上記第1、第2実施形態の構成要素と用語との対応関係について説明する。
ステップS100およびステップS110が車両データ取得部、作動データ取得部を構成する。ステップS120およびステップS130が気象データ取得部を構成する。ステップS154、ステップS155、ステップS160、ステップS161、ステップS162が故障特定部を構成する。
ステップS170が故障通知部に対応している。内気温判定部がステップS140に対応し、高圧判定部がステップS151に対応し、外気温判定部がステップS154に対応する。差異判定部がステップS160に対応する。
(まとめ)/*
上記第1、第2実施形態、および他の実施形態の一部または全部に記載された第1の観点によれば、故障解析装置は、車両に搭載されている冷凍サイクル装置に生じる故障事象を特定する。
(まとめ)/*
上記第1、第2実施形態、および他の実施形態の一部または全部に記載された第1の観点によれば、故障解析装置は、車両に搭載されている冷凍サイクル装置に生じる故障事象を特定する。
故障解析装置は、冷凍サイクル装置の作動状態を示す作動データ、および車両の現在位置を示す現在位置データを取得する車両データ取得部を備える。
故障解析装置は、気象状態を示す気象データを収集する気象サーバから、現在位置データに基づく車両の現在位置の気象データを取得する気象データ取得部を備える。
故障解析装置は、車両データ取得部によって取得された作動データ、および気象データ取得部によって取得された気象データに基づいて、故障事象を特定する故障特定部を備える。
第2の観点によれば、故障解析装置は、故障特定部によって特定される故障事象に対応して実施すべき対応策を通知する故障通知部を備える。
これにより、例えば、車両の整備会社等に対応策を通知することができる。
第3の観点によれば、冷凍サイクル装置は、冷媒を圧縮して吐出する圧縮機と、車室外空気を送風する送風機とを備える。
冷凍サイクル装置は、圧縮機から吐出される高圧冷媒と送風機によって送風される車室外空気との間で熱交換して高圧冷媒を冷却する車室外熱交換器と、車室外熱交換器からの冷媒を減圧する減圧弁とを備える。
冷凍サイクル装置は、減圧弁により減圧された冷媒と車室内空気との間で熱交換して車室内空気を冷却する室内熱交換器を備える。
故障特定部は、送風機および車室外熱交換器を含む車外送風系に関する故障事象を特定する。
第4の観点によれば、冷凍サイクル装置は、車室外熱交換器に流れる車室外空気の温度を検出する外気温センサを備える。
外気温センサは、車室外熱交換器内の冷媒から熱が伝わる位置に配置されている。車両データ取得部は、外気温センサの検出温度を車室外熱交換器内の冷媒温度を示す作動データとして取得する。気象データ取得部は、車両の現在位置の外気温を気象データとして取得する。
第5の観点によれば、外気温センサは、車室外熱交換器に対して車室外空気の流れ方向の上流側に配置されている。
これにより、外気温センサによって外気温を正確に検出することができる。
これにより、外気温センサによって外気温を正確に検出することができる。
第6の観点によれば、故障解析装置は、内気温判定部、高圧判定部、および外気温判定部を備える。
冷凍サイクル装置は、車両の車室内温度を検出する内気温センサと、圧縮機から吐出される高圧冷媒の圧力を検出する圧力センサと、設定温度が操作者によって設定される温度設定部とを備える。
車室内空気の温度を設定温度に近づけるように圧縮機、車室外熱交換器、減圧弁、および室内熱交換器が作動する。
車両データ取得部は、圧力センサの検出圧力、内気温センサの検出温度、および操作者が温度設定部に設定した設定温度を取得する。
内気温判定部は、設定温度から車室内空気の温度を引いた温度差の絶対値が第1閾値よりも大きいか否かを判定する。
高圧判定部は、高圧冷媒の圧力が第2閾値よりも高いか否かを判定する。
外気温センサの検出温度から気象データを引いた温度差を外気温差異とした場合において、外気温判定部は、外気温差異が第3閾値よりも高いか否かを判定する。
温度差の絶対値が第1閾値よりも大きいと内気温判定部が判定し、高圧冷媒の圧力が第2閾値よりも高いと高圧判定部が判定し、かつ外気温差異が第3閾値未満であると外気温判定部が判定したとき、故障特定部は、冷凍サイクル装置に充填される冷媒量が過充填状態である旨を故障事象として特定する。
これにより、冷凍サイクル装置に充填される冷媒量が過充填状態である旨を故障事象として特定することができる。
第7の観点によれば、故障解析装置は、内気温判定部、高圧判定部、外気温判定部、および差異判定部を備える。
冷凍サイクル装置は、車両の車室内温度を検出する内気温センサと、圧縮機から吐出される高圧冷媒の圧力を検出する圧力センサと、設定温度が操作者によって設定される温度設定部とを備える。
車室内空気の温度を設定温度に近づけるように圧縮機、車室外熱交換器、減圧弁、および室内熱交換器が作動する。
車両データ取得部は、圧力センサの検出圧力、内気温センサの検出温度、および操作者が温度設定部に設定した設定温度を取得する。
内気温判定部は、設定温度から車室内空気の温度を引いた温度差の絶対値が第1閾値(A)よりも大きいか否かを判定する。
高圧判定部は、高圧冷媒の圧力が第2閾値よりも高いか否かを判定する。
外気温センサの検出温度から気象データを引いた温度差を外気温差異とした場合において、外気温判定部は、外気温差異が第3閾値よりも高いか否かを判定する。
差異判定部は、時間経過に伴って外気温差異が徐々に上昇しているか否かを判定する。
車室外熱交換器は、車外空気が流通する複数の空気流路を有し、複数の空気流路内を流通する車外空気と高圧冷媒との間で熱交換する。
温度差の絶対値が第1閾値よりも大きいと内気温判定部が判定し、高圧冷媒の圧力が第2閾値よりも高いと高圧判定部が判定し、かつ外気温差異が第3閾値よりも高いと外気温判定部が判定し、さらに時間経過に伴って外気温差異が徐々に上昇していると差異判定部が判定する。このとき、故障特定部は、車室外熱交換器の複数の空気流路が異物によって詰まった目詰まり状態で車外空気と高圧冷媒との間の熱交換が阻害されている旨を故障事象として特定する。
これにより、車室外熱交換器の複数の空気流路が異物によって詰まった目詰まり状態で車外空気と高圧冷媒との間の熱交換が阻害されている旨を故障事象として特定することができる。
第8の観点によれば、故障解析装置は、内気温判定部、高圧判定部、外気温判定部、および差異判定部を備える。
冷凍サイクル装置は、車両の車室内温度を検出する内気温センサと、圧縮機から吐出される高圧冷媒の圧力を検出する圧力センサと、設定温度が操作者によって設定される温度設定部とを備える。
車室内空気の温度を設定温度に近づけるように圧縮機、車室外熱交換器、減圧弁、および室内熱交換器が作動する。
車両データ取得部は、圧力センサの検出圧力、内気温センサの検出温度、および操作者が温度設定部に設定した設定温度を取得する。
内気温判定部は、設定温度から車室内空気の温度を引いた温度差の絶対値が第1閾値よりも大きいか否かを判定する。
高圧判定部は、高圧冷媒の圧力が第2閾値よりも高いか否かを判定する。
外気温センサの検出温度から気象データを引いた温度差を外気温差異とした場合において、外気温判定部は、外気温差異が第3閾値よりも高いか否かを判定する。
差異判定部は、時間経過に伴って外気温差異が急激に上昇しているか否かを判定する。
温度差の絶対値が第1閾値よりも大きいと内気温判定部が判定し、高圧冷媒の圧力が第2閾値よりも高いと高圧判定部が判定し、かつ外気温差異が第3閾値よりも高いと外気温判定部が判定し、さらに時間経過に伴って外気温差異が急激に上昇していると差異判定部が判定したとき、故障特定部は、送風機が故障により停止されている旨を故障事象として特定する。
これにより、送風機が故障により停止されている旨を故障事象として特定することができる。
第9の観点によれば、作動データ取得部、気象データ取得部、および故障特定部は、車両に搭載される電子制御装置によって構成されている。
第10の観点によれば、故障解析システムは、車両に搭載されている冷凍サイクル装置と、冷凍サイクル装置の作動状態を示す作動データを取得する作動データ取得部と、車両の現在位置を示す現在位置データを取得する現在位置取得部とを備える。
故障解析システムは、気象状態を示す気象データを収集する気象サーバから、現在位置データに基づく車両の現在位置の気象データを取得する気象データ取得部を備える。
故障解析システムは、作動データ、および気象データに基づいて、冷凍サイクル装置の故障事象を特定する故障特定部を備える。
Claims (10)
- 車両に搭載されている冷凍サイクル装置(6)に生じる故障事象を特定する故障解析装置であって、
前記冷凍サイクル装置の作動状態を示す作動データ、および前記車両の現在位置を示す現在位置データを取得する車両データ取得部(S100、S110)と、
気象状態を示す気象データを収集する気象サーバ(40)から、前記現在位置データに基づく前記車両の現在位置の前記気象データを取得する気象データ取得部(S120、S130)と、
前記車両データ取得部によって取得された前記作動データ、および前記気象データ取得部によって取得された前記気象データに基づいて、前記故障事象を特定する故障特定部(S154、S155、S160、S161、S162)と、
を備える故障解析装置。 - 前記故障特定部によって特定される前記故障事象に対応して実施すべき対応策を通知する故障通知部(S170)を備える請求項1に記載の故障解析装置。
- 前記冷凍サイクル装置は、冷媒を圧縮して吐出する圧縮機(74)と、車室外空気を送風する送風機(70a、70b、70c)と、前記圧縮機から吐出される高圧冷媒と前記送風機によって送風される車室外空気との間で熱交換して前記高圧冷媒を冷却する車室外熱交換器(70)と、前記車室外熱交換器からの冷媒を減圧する減圧弁(75)と、前記減圧弁により減圧された冷媒と車室内空気との間で熱交換して前記車室内空気を冷却する室内熱交換器(71、72)と、を備え、
前記故障特定部は、前記送風機および前記車室外熱交換器を含む車外送風系に関する前記故障事象を特定する請求項1または2に記載の故障解析装置。 - 前記冷凍サイクル装置は、前記車室外熱交換器に流れる前記車室外空気の温度を検出する外気温センサ(76b)を備え、
前記外気温センサは、前記車室外熱交換器内の冷媒から熱が伝わる位置に配置されており、
前記車両データ取得部は、前記外気温センサの検出温度を前記車室外熱交換器内の冷媒温度を示す前記作動データとして取得し、
前記気象データ取得部は、前記車両の現在位置の外気温を前記気象データとして取得する請求項3に記載の故障解析装置。 - 前記外気温センサは、前記車室外熱交換器に対して前記車室外空気の流れ方向の上流側に配置されている請求項4に記載の故障解析装置。
- 内気温判定部(S140)、高圧判定部(S151)、および外気温判定部(S154)を備え、
前記冷凍サイクル装置は、前記車両の車室内温度を検出する内気温センサ(76a)と、前記圧縮機から吐出される前記高圧冷媒の圧力を検出する圧力センサ(76c)と、設定温度が操作者によって設定される温度設定部(76e)と、を備え、
前記車室内空気の温度を前記設定温度に近づけるように前記圧縮機、前記車室外熱交換器、前記減圧弁、および前記室内熱交換器が作動し、
前記車両データ取得部は、前記圧力センサの検出圧力、前記内気温センサの検出温度、および前記操作者が前記温度設定部に設定した前記設定温度を取得し、
前記内気温判定部は、前記設定温度から前記車室内空気の温度を引いた温度差の絶対値が第1閾値(A)よりも大きいか否かを判定し、
前記高圧判定部は、前記高圧冷媒の圧力が第2閾値よりも高いか否かを判定し、
前記外気温センサの検出温度から前記気象データを引いた前記温度差を外気温差異とした場合において、前記外気温判定部は、前記外気温差異が第3閾値よりも高いか否かを判定し、
前記温度差の絶対値が前記第1閾値よりも大きいと前記内気温判定部が判定し、前記高圧冷媒の圧力が前記第2閾値よりも高いと前記高圧判定部が判定し、かつ前記外気温差異が第3閾値未満であると前記外気温判定部が判定したとき、前記故障特定部は、前記冷凍サイクル装置に充填される冷媒量が過充填状態である旨を前記故障事象として特定する請求項4または5に記載の故障解析装置。 - 内気温判定部(S140)、高圧判定部(S151)、外気温判定部(S154)、および差異判定部(S160)を備え、
前記冷凍サイクル装置は、前記車両の車室内温度を検出する内気温センサ(76a)と、前記圧縮機から吐出される前記高圧冷媒の圧力を検出する圧力センサ(76c)と、設定温度が操作者によって設定される温度設定部(76e)と、を備え、
前記車室内空気の温度を前記設定温度に近づけるように前記圧縮機、前記車室外熱交換器、前記減圧弁、および前記室内熱交換器が作動し、
前記車両データ取得部は、前記圧力センサの検出圧力、前記内気温センサの検出温度、および前記操作者が前記温度設定部に設定した前記設定温度を取得し、
前記内気温判定部は、前記設定温度から前記車室内空気の温度を引いた温度差の絶対値が第1閾値(A)よりも大きいか否かを判定し、
前記高圧判定部は、前記高圧冷媒の圧力が第2閾値よりも高いか否かを判定し、
前記外気温センサの検出温度から前記気象データを引いた前記温度差を外気温差異とした場合において、前記外気温判定部は、前記外気温差異が第3閾値よりも高いか否かを判定し、
前記差異判定部は、時間経過に伴って前記外気温差異が徐々に上昇しているか否かを判定し、
前記車室外熱交換器は、車外空気が流通する複数の空気流路(70f)を有し、複数の空気流路内を流通する前記車外空気と前記高圧冷媒との間で熱交換し、
前記温度差の絶対値が前記第1閾値よりも大きいと前記内気温判定部が判定し、前記高圧冷媒の圧力が前記第2閾値よりも高いと前記高圧判定部が判定し、かつ前記外気温差異が第3閾値よりも高いと前記外気温判定部が判定し、さらに前記時間経過に伴って前記外気温差異が徐々に上昇していると前記差異判定部が判定したとき、前記故障特定部は、前記車室外熱交換器の前記複数の空気流路が異物によって詰まった目詰まり状態で前記車外空気と前記高圧冷媒との間の熱交換が阻害されている旨を前記故障事象として特定する請求項4または5に記載の故障解析装置。 - 内気温判定部(S140)、高圧判定部(S151)、外気温判定部(S154)、および差異判定部(S160)を備え、
前記冷凍サイクル装置は、前記車両の車室内温度を検出する内気温センサ(76a)と、前記圧縮機から吐出される前記高圧冷媒の圧力を検出する圧力センサ(76c)と、設定温度が操作者によって設定される温度設定部(76e)と、を備え、
前記車室内空気の温度を前記設定温度に近づけるように前記圧縮機、前記車室外熱交換器、前記減圧弁、および前記室内熱交換器が作動し、
前記車両データ取得部は、前記圧力センサの検出圧力、前記内気温センサの検出温度、および前記操作者が前記温度設定部に設定した前記設定温度を取得し、
前記内気温判定部は、前記設定温度から前記車室内空気の温度を引いた温度差の絶対値が第1閾値(A)よりも大きいか否かを判定し、
前記高圧判定部は、前記高圧冷媒の圧力が第2閾値よりも高いか否かを判定し、
前記外気温センサの検出温度から前記気象データを引いた温度差を外気温差異とした場合において、前記外気温判定部は、前記外気温差異が第3閾値よりも高いか否かを判定し、
前記差異判定部は、時間経過に伴って前記外気温差異が急激に上昇しているか否かを判定し、
前記温度差の絶対値が前記第1閾値よりも大きいと前記内気温判定部が判定し、前記高圧冷媒の圧力が前記第2閾値よりも高いと前記高圧判定部が判定し、かつ前記外気温差異が第3閾値よりも高いと前記外気温判定部が判定し、さらに前記時間経過に伴って前記外気温差異が急激に上昇していると前記差異判定部が判定したとき、前記故障特定部は、前記送風機が故障により停止されている旨を前記故障事象として特定する請求項4または5に記載の故障解析装置。 - 前記車両データ取得部、前記気象データ取得部、および前記故障特定部は、前記車両に搭載される電子制御装置によって構成されている請求項1ないし8のいずれか1つに記載の故障解析装置。
- 車両に搭載されている冷凍サイクル装置(6)と、
前記冷凍サイクル装置の作動状態を示す作動データを取得する作動データ取得部(S100、S110)と、
前記車両の現在位置を示す現在位置データを取得する現在位置取得部(S100、S110)と、
気象状態を示す気象データを収集する気象サーバ(40)から、前記現在位置データに基づく前記車両の現在位置の前記気象データを取得する気象データ取得部(S120、S130)と、
前記作動データ、および前記気象データに基づいて、前記冷凍サイクル装置の故障事象を特定する故障特定部(S154、S155、S160、S161、S162)と、
を備える故障解析システム。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201980076324.4A CN113056382A (zh) | 2018-11-21 | 2019-11-07 | 故障解析系统、故障解析装置 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018218618A JP7040420B2 (ja) | 2018-11-21 | 2018-11-21 | 故障解析システム、故障解析装置 |
JP2018-218618 | 2018-11-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020105454A1 true WO2020105454A1 (ja) | 2020-05-28 |
Family
ID=70773175
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/043683 WO2020105454A1 (ja) | 2018-11-21 | 2019-11-07 | 故障解析システム、故障解析装置 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP7040420B2 (ja) |
CN (1) | CN113056382A (ja) |
WO (1) | WO2020105454A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115111703A (zh) * | 2022-06-23 | 2022-09-27 | 博锐尚格科技股份有限公司 | 用于水冷空调脏堵检测的方法、终端及存储介质 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116872685B (zh) * | 2023-09-05 | 2023-11-21 | 徐州徐工挖掘机械有限公司 | 车辆空调系统远程诊断方法、系统、平台和存储介质 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005233535A (ja) * | 2004-02-20 | 2005-09-02 | Denso Corp | 空調装置 |
JP2008121916A (ja) * | 2006-11-08 | 2008-05-29 | Denso Corp | 車両用空調システム |
JP2012040924A (ja) * | 2010-08-18 | 2012-03-01 | Toyota Motor Corp | 車両 |
WO2017212630A1 (ja) * | 2016-06-10 | 2017-12-14 | 三菱電機株式会社 | 車両用空調装置及び車両用空調装置の目詰まり検知システム |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015054642A (ja) | 2013-09-13 | 2015-03-23 | 株式会社デンソー | 車両情報出力装置 |
JP2017226397A (ja) | 2016-06-24 | 2017-12-28 | トヨタ自動車株式会社 | 空調制御システム及び情報処理装置 |
-
2018
- 2018-11-21 JP JP2018218618A patent/JP7040420B2/ja active Active
-
2019
- 2019-11-07 WO PCT/JP2019/043683 patent/WO2020105454A1/ja active Application Filing
- 2019-11-07 CN CN201980076324.4A patent/CN113056382A/zh active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005233535A (ja) * | 2004-02-20 | 2005-09-02 | Denso Corp | 空調装置 |
JP2008121916A (ja) * | 2006-11-08 | 2008-05-29 | Denso Corp | 車両用空調システム |
JP2012040924A (ja) * | 2010-08-18 | 2012-03-01 | Toyota Motor Corp | 車両 |
WO2017212630A1 (ja) * | 2016-06-10 | 2017-12-14 | 三菱電機株式会社 | 車両用空調装置及び車両用空調装置の目詰まり検知システム |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115111703A (zh) * | 2022-06-23 | 2022-09-27 | 博锐尚格科技股份有限公司 | 用于水冷空调脏堵检测的方法、终端及存储介质 |
CN115111703B (zh) * | 2022-06-23 | 2023-10-27 | 博锐尚格科技股份有限公司 | 用于水冷空调脏堵检测的方法、终端及存储介质 |
Also Published As
Publication number | Publication date |
---|---|
JP7040420B2 (ja) | 2022-03-23 |
CN113056382A (zh) | 2021-06-29 |
JP2020082962A (ja) | 2020-06-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6639666B2 (ja) | 車両用空調装置及び車両用空調装置の目詰まり検知システム | |
US20220147949A1 (en) | Systems and methods for automated diagnostics of hvac systems | |
US20180043816A1 (en) | Performance and position monitoring of a mobile hvac&r unit | |
CN109311488B (zh) | 车辆用空调装置及列车通信系统 | |
JP6645377B2 (ja) | 空調制御装置、空調制御方法 | |
EP1800920B1 (en) | Air-conditioning system for a vehicle | |
WO2020105454A1 (ja) | 故障解析システム、故障解析装置 | |
JPWO2009150724A1 (ja) | 車両用空調装置、車両空調管理システム及び車両空調管理方法 | |
AU2018423601B2 (en) | Failure diagnosis system | |
JP6567184B2 (ja) | 車両用空調装置及び車両用空調装置の異常検知システム | |
JP5999966B2 (ja) | 車両用空調システム | |
JP6180094B2 (ja) | 車上モニタ装置、地上設備、及び車両用空調システム | |
JP2009007006A (ja) | 車両空調管理システム | |
JP2004291899A (ja) | 車両空調管理システム、及び車両空調制御装置 | |
US11524551B2 (en) | Abnormality diagnosis device for blower system | |
KR20200017635A (ko) | 냉난방 공조 시스템 및 이의 고장 판별방법 | |
KR20190129588A (ko) | 차량용 공조장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19887420 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19887420 Country of ref document: EP Kind code of ref document: A1 |