WO2017209232A1 - ポリスチレン系樹脂組成物およびその製造方法 - Google Patents
ポリスチレン系樹脂組成物およびその製造方法 Download PDFInfo
- Publication number
- WO2017209232A1 WO2017209232A1 PCT/JP2017/020412 JP2017020412W WO2017209232A1 WO 2017209232 A1 WO2017209232 A1 WO 2017209232A1 JP 2017020412 W JP2017020412 W JP 2017020412W WO 2017209232 A1 WO2017209232 A1 WO 2017209232A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- ethylene
- copolymer
- mass
- vinyl compound
- aromatic
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/20—Compounding polymers with additives, e.g. colouring
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L25/00—Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
- C08L25/02—Homopolymers or copolymers of hydrocarbons
- C08L25/04—Homopolymers or copolymers of styrene
- C08L25/06—Polystyrene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/04—Homopolymers or copolymers of ethene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/04—Homopolymers or copolymers of ethene
- C08L23/08—Copolymers of ethene
- C08L23/0807—Copolymers of ethene with unsaturated hydrocarbons only containing more than three carbon atoms
- C08L23/0838—Copolymers of ethene with aromatic monomers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/16—Elastomeric ethene-propene or ethene-propene-diene copolymers, e.g. EPR and EPDM rubbers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L25/00—Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
- C08L25/02—Homopolymers or copolymers of hydrocarbons
- C08L25/04—Homopolymers or copolymers of styrene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L51/00—Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
- C08L51/06—Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond
Definitions
- the present invention relates to a polystyrene resin composition having characteristics excellent in rigidity, impact resistance and fluidity (injection molding processability). More specifically, the present invention relates to a polystyrene resin composition mainly comprising a polystyrene resin, an ethylene- ⁇ -olefin copolymer as an elastomer component, and a specific cross copolymer component, and a method for producing the same.
- Polystyrene resins have good moldability and are widely used as various home appliances, automotive interior materials, and sundries, but there is always a challenge to improve the balance between rigidity (elastic modulus) and impact resistance for each resin. It is. Therefore, a diene elastomer component is added (Patent Document 1) or grafted (Patent Document 2), and is widely used as high impact polystyrene, ABS resin, or SBS-added polystyrene resin. When higher thermal stability and durability are required, a saturated styrene-diene elastomer, that is, a hydrogenated styrene-diene block copolymer (so-called SEBS, SEPS) may be added. End up.
- SEBS hydrogenated styrene-diene block copolymer
- butadiene and isoprene which are raw materials for styrene-diene block copolymers, are at a high price. While the demand for solution-polymerized SBR for tires has increased with the progress of motorization in East Asia, the source of these diene is naphtha crackers. It tends to shrink. In the United States, cracker raw materials have shifted from naphtha to ethane derived from shale gas. If the shale gas supply is started on a global scale, the ethylene supply may shift to ethane crackers.
- propylene can be industrially produced by metathesis from ethylene and butene (synthesized by dimerization of ethylene).
- butene synthetic polymer
- a process for producing butadiene by synthesizing 1-butene by dimerization of ethylene and subsequent dehydrogenation reaction has been proposed, but the dehydrogenation process is difficult, and it becomes considerably expensive compared to butadiene from naphtha crackers. .
- isoprene is limited in its supply company and is more expensive than butadiene.
- the polybutadiene chain and polyisoprene chain contain a main chain double bond, which is insufficient in durability and heat resistance as it is, so that it is necessary to hydrogenate, but this process also causes an increase in cost. Even if hydrogenation is performed, it is difficult to completely hydrogenate double bonds.
- an impact-resistant polystyrene resin material using a non-diene (butadiene, isoprene) type fully saturated block copolymer is a non-diene (butadiene, isoprene) type fully saturated block copolymer.
- a cross-copolymer which is a branched copolymer having a soft segment made of an ethylene-styrene-divinylbenzene copolymer and a hard segment made of polystyrene, and a technique relating to its production method and application are disclosed (patents).
- References 3, 4 describe a resin composition comprising a styrenic resin and a cross-copolymer, such a resin composition has an impact at low temperatures because the glass transition temperature of the soft segment of the cross-copolymer is relatively high. There was a difficulty that the strength would decrease.
- a compatibilizing material of a resin composition of a polystyrene resin and an ethylene elastomer having excellent thermal stability, low temperature characteristics, durability and economy, and there is no description regarding an optimum structure.
- the present invention is a polystyrene resin composition
- a polystyrene resin composition comprising (A) a polystyrene resin, (B) an ethylene elastomer, and (C) a cross copolymer, and a method for producing the same.
- the present invention provides a polystyrene resin composition that is saturated, has good weather resistance, and has a good balance between impact resistance (elongation) and rigidity, as compared to conventionally used polystyrene resin compositions. Objective.
- the present invention provides (A) 95 to 60 parts by mass of a polystyrene resin, (B) 5 to 40 parts by mass of an ethylene elastomer, and (C) a total of 100 parts by mass of (A) and (B).
- a polystyrene resin composition containing 1 to 20 parts by mass of a cross-copolymer and a method for producing the same are provided. Since it is a saturated type, it has good weather resistance and a good balance between impact resistance (elongation) and rigidity.
- the polystyrene-based resin composition of the present invention is a saturated type, has good weather resistance and an excellent balance between impact resistance (elongation) and rigidity, and is useful as various molded products, particularly injection molded products.
- the present invention provides (A) 95 to 60 parts by mass of a polystyrene resin, (B) 5 to 40 parts by mass of an ethylene elastomer, and (C) a total of 100 parts by mass of (A) and (B).
- a polystyrene resin composition containing 1 to 20 parts by mass of a cross-copolymer and a method for producing the same are provided.
- the polystyrene-based resin (A) is a polymer mainly composed of styrene. Specifically, the content of units derived from styrene monomers is 30% by mass or more, preferably 50% by mass with respect to the entire resin. It is a resin having a bending elastic modulus according to JIS K-7171 of 1000 MPa or more. Preferable examples include high-polystyrene, high-impact polystyrene (HIPS) blended or grafted with diene rubber, ABS resin, AS resin, MS resin, and a concept including a resin composition composed of a single resin or a plurality of resins. .
- HIPS high-impact polystyrene
- the ethylene-based elastomer (B) is an elastomer mainly composed of ethylene, specifically, an elastomer containing 50% by mass or more of ethylene, such as an ethylene- ⁇ olefin copolymer and an ethylene-acrylic acid copolymer. And ethylene-methacrylic acid copolymer, ionomer, ethylene-acrylic acid ester copolymer, ethylene-methacrylic acid ester copolymer, ethylene-vinyl acetate copolymer, and ethylene-cyclic olefin copolymer.
- a preferred ethylene elastomer is an ethylene- ⁇ -olefin copolymer comprising ethylene and an ⁇ -olefin having 3 to 10 carbon atoms, and the ⁇ -olefin content is in the range of 10 to 50% by mass.
- the ethylene- ⁇ -olefin copolymer preferably has a MFR of 0.2 to 20 g / 10 min at 190 ° C. and a load of 21.2 N.
- the ethylene- ⁇ -olefin copolymer preferably has a density in the range of 0.850 to 0.900 g / cm 3 .
- the cross copolymer (C) is obtained by a production method comprising a coordination polymerization step followed by a polymerization step comprising an anionic polymerization step.
- a coordination polymerization step a single site coordination polymerization catalyst is used as an ethylene monomer.
- the content of the aromatic vinyl compound unit in the ethylene-aromatic vinyl compound-aromatic polyene copolymer obtained in the coordination polymerization step is 5 mol% to 40 mol%, and the aromatic polyene unit content is 0.01 mol. % To 0.2 mol%, and the balance is the ethylene unit content.
- the ethylene-aromatic vinyl compound-aromatic polyene copolymer obtained in the coordination polymerization step preferably has a weight average molecular weight of 50,000 to 300,000 and a molecular weight distribution (Mw / Mn) of 1.8 to 6 Is 1.8 or more and 3 or less.
- the content of the ethylene-aromatic vinyl compound-aromatic polyene copolymer contained in the cross copolymer is in the range of 30% by mass to 90% by mass.
- the cross-copolymer obtained by this production method is a copolymer having an ethylene-aromatic vinyl compound-aromatic polyene copolymer chain and an aromatic vinyl compound polymer chain, and an ethylene-aromatic vinyl compound-aromatic An aromatic polyene copolymer chain and an aromatic vinyl compound polymer chain are bonded via an aromatic polyene unit.
- the fact that the ethylene-aromatic vinyl compound-aromatic polyene copolymer chain and the aromatic vinyl compound polymer chain are bonded via the aromatic polyene unit can be proved by the following observable phenomenon.
- the vinyl group hydrogen (proton) peak intensities of both divinylbenzene units are compared using an appropriate internal standard peak (appropriate peak derived from an ethylene-styrene-divinylbenzene copolymer).
- the vinyl group hydrogen (proton) peak intensity (area) of the divinylbenzene unit of the cross copolymer is 50 compared with the same peak intensity (area) of the divinylbenzene unit of the ethylene-styrene-divinylbenzene copolymer. %, Preferably less than 20%.
- the divinylbenzene unit is copolymerized simultaneously with the polymerization of the styrene monomer, and the ethylene-styrene-divinylbenzene copolymer chain and the polystyrene chain are bonded via the divinylbenzene unit.
- the hydrogen (proton) peak intensity of the vinyl group of the divinylbenzene unit is greatly reduced.
- the hydrogen (proton) peak of the vinyl group of the divinylbenzene unit substantially disappears in the cross-copolymer after anionic polymerization.
- the ethylene-aromatic vinyl compound-aromatic polyene copolymer chain and the aromatic vinyl compound polymer chain are bonded via an aromatic polyene unit (for example, ethylene (The fact that the styrene-divinylbenzene copolymer chain and the polystyrene chain are bonded via a divinylbenzene unit) can be proved by the following observable phenomenon. That is, even after the Soxhlet extraction is carried out a sufficient number of times using an appropriate solvent, the contained ethylene-styrene-divinylbenzene copolymer chain cannot be separated from the polystyrene chain.
- an aromatic polyene unit for example, ethylene (The fact that the styrene-divinylbenzene copolymer chain and the polystyrene chain are bonded via a divinylbenzene unit) can be proved by the following observable phenomenon. That is, even after the Soxhlet extraction is carried out a sufficient number of
- the ethylene-styrene-divinylbenzene copolymer and polystyrene of the same composition as the ethylene-styrene-divinylbenzene copolymer chain contained in this cross copolymer are subjected to Soxhlet extraction with boiling acetone, so that the acetone insoluble part As an ethylene-styrene-divinylbenzene copolymer and as an acetone soluble part into polystyrene.
- the ethylene-aromatic vinyl compound-aromatic polyene copolymer chain and the aromatic vinyl compound polymer chain are bonded via an aromatic polyene unit, and the following (1) to It is a copolymer that satisfies all the conditions of (3).
- the content of the aromatic vinyl compound unit in the ethylene-aromatic vinyl compound-aromatic polyene copolymer is 5 mol% or more and less than 40 mol%, and the aromatic polyene unit content is 0.01 mol% or more and 0.2 mol%.
- the balance is the ethylene unit content.
- the weight average molecular weight of the ethylene-aromatic vinyl compound-aromatic polyene copolymer is 50,000 to 300,000 and the molecular weight distribution (Mw / Mn) is 1.8 to 6, preferably 1.8 to 3 It is.
- the content of the ethylene-aromatic vinyl compound-aromatic polyene copolymer contained in the cross copolymer is in the range of 30% by mass to 90% by mass.
- examples of the aromatic vinyl compound monomer include styrene and various substituted styrenes such as p-methylstyrene, m-methylstyrene, o-methylstyrene, ot-butylstyrene, mt-butylstyrene, and pt.
- styrene, p-methylstyrene, p-chlorostyrene, particularly preferably styrene is used.
- the aromatic polyene is not particularly limited, and any conventionally known aromatic polyene can be used. From the viewpoint of promoting the polymerization reaction and various physical properties of the polymer to be obtained, it is 10 or more and 30. It is an aromatic polyene having the following carbon number and having a plurality of double bonds (vinyl group) and one or more aromatic groups and capable of coordination polymerization, and one of the double bonds (vinyl group) is coordinated. It is preferable that the double bond left in the polymerized state used for the polymerization is an aromatic polyene capable of anionic polymerization or radical polymerization.
- divinylbenzene any one or a mixture of two or more of orthodivinylbenzene, paradivinylbenzene and metadivinylbenzene is suitably used.
- (C) is less than 1 part by mass with respect to 100 parts by mass in total of (A) and (B)
- the impact resistance and elongation of the polystyrene-based resin composition are reduced.
- the low temperature characteristics are also reduced.
- a general method for producing a cross-copolymer is as described in Table No. WO00 / 037517 and pamphlet of International Publication No. WO2007 / 139116.
- the content of the aromatic vinyl compound unit in the ethylene-aromatic vinyl compound-aromatic polyene copolymer obtained in the coordination polymerization step of the present invention is 5 mol% or more and 40 mol% or less.
- a high deformation resistance index can be given while maintaining an initial level of tensile elastic modulus of the same level. Furthermore, it can show a high yield strength while maintaining a high initial tensile modulus as compared with the case of using a hydrogenated styrene-diene block copolymer (SEBS, SEPS) instead of (C), and A high deformation index can be provided while maintaining a high initial tensile modulus.
- the deformation resistance index is the product of yield point elongation (%) and yield point strength (MPa) of the molded resin composition. When this deformation resistance index is high, it can be said that the material is more difficult to deform.
- the content of the aromatic vinyl compound unit of the ethylene-aromatic vinyl compound-aromatic polyene copolymer obtained in the coordination polymerization step is 5 mol% or more and 40 mol% or less, preferably 5 mol%. More than 25 mol%.
- the polystyrene-based resin composition of the present application can exhibit high yield strength and high strength at break while maintaining a high initial tensile elastic modulus. Moreover, it is possible to satisfy both a high deformation resistance index and a high impact absorption index while maintaining a high initial tensile elastic modulus.
- the deformation resistance index is the product of the yield point elongation (%) and the yield point strength (MPa) of the resin composition molding, and the impact absorption index is the elongation at break (%) of the resin composition molding. ) And the strength at break (MPa).
- this deformation resistance index is high, it can be said that the material is more difficult to deform.
- the impact resistance index is high, it can be said that the material absorbs more impact and is not easily broken.
- the aromatic polyene unit content of the ethylene-aromatic vinyl compound-aromatic polyene copolymer is 0.01 mol% or more and 0.2 mol% or less, and the balance is the ethylene unit content.
- the aromatic polyene unit content of 0.01 mol% or more and 0.2 mol% or less is to ensure good mechanical properties, molding processability, and compatibility with the polystyrene resin of the cross-copolymer itself. Is important.
- the ethylene-aromatic vinyl compound-aromatic polyene copolymer obtained in the coordination polymerization step of the present invention has a weight average molecular weight of 50,000 to 300,000, preferably 100,000 to 250,000, and a molecular weight distribution (Mw / Mn) is 1.8 or more and 6 or less, preferably 1.8 or more and 3 or less. If the weight average molecular weight is lower or the molecular weight distribution is larger, the mechanical properties of the resin composition are lowered or stickiness occurs. Further, when the weight average molecular weight is larger and the molecular weight distribution is smaller, the molding processability of the resin composition itself may be lowered.
- the mass ratio of the ethylene-aromatic vinyl compound-aromatic polyene copolymer obtained in the coordination polymerization step with respect to the cross-copolymer finally obtained through the cross-linking step is 30% by mass to 90% by mass, preferably It is 50 mass% or more and 90 mass% or less. If it is lower than this range, the compatibility with (A) polypropylene-based resin and (B) ethylene-based elastomer will decrease, and if it is higher than this range, impact resistance (elongation) will decrease.
- the molecular weight of the cross-chain aromatic vinyl compound polymer chain can be appropriately changed according to the purpose and is not particularly limited, but the weight average molecular weight (Mw) is 18,000 to 60,000, preferably 1 10,000 to 150,000, particularly preferably 20,000 to 100,000, and the molecular weight distribution (Mw / Mn) is generally 1.0 to 6.0. Since it is difficult to directly determine the molecular weight of the cross chain, in this specification, it is assumed that the molecular weight is the same as that of the aromatic vinyl compound homopolymer that has not been cross-copolymerized. It is specified using the molecular weight of the aromatic vinyl compound homopolymer obtained by separation.
- the polystyrene resin composition of the present invention is a polystyrene resin composition having a good balance between rigidity and impact resistance (elongation).
- the main resin component contained is saturated in the main chain, has high chemical stability, is excellent in weather resistance, and is excellent in chemical resistance and solvent resistance.
- An inorganic filler (D) can be added to the resin composition of the present invention as necessary for the purpose of improving physical properties, particularly imparting rigidity and reducing costs.
- Preferred examples thereof include calcium carbonate, talc, clay, calcium silicate, magnesium carbonate, magnesium hydroxide, mica, barium sulfate, titanium oxide, aluminum hydroxide, silica, carbon black, wood flour, wood pulp, glass fiber, Well-known graphite, carbon fiber, etc. can be illustrated.
- the amount added is preferably up to 200 parts by mass with respect to 100 parts by mass of the resin composition in view of physical properties.
- the resin composition of the present invention if necessary, known plasticizers, lubricants such as oil, flame retardants, foaming agents, crosslinking agents, crosslinking aids, silane coupling agents, antiblocking agents, ultraviolet absorbers, Antioxidants and stabilizers can be added at a known blending ratio.
- plasticizers such as oil, flame retardants, foaming agents, crosslinking agents, crosslinking aids, silane coupling agents, antiblocking agents, ultraviolet absorbers, Antioxidants and stabilizers can be added at a known blending ratio.
- ⁇ Raw resin> The raw material resins used in Examples and Comparative Examples are as follows. As (A), polystyrene (G200C, manufactured by Toyo Styrene Co., Ltd.), high impact polystyrene (HIPS E640N, manufactured by Toyo Styrene Co., Ltd.), and ABS resin (GR2000, manufactured by Denka Co., Ltd.) were used. (B) As a specific ethylene elastomer, Engage 8003 (Dow Chemical Co., density 0.885 g / cm 3 ), which is an ethylene-octene copolymer, was used. The MFR at an octene content of 26% by mass, 190 ° C. and a load of 21.2 N was 1.0 g / 10 min. It is.
- cross copolymers 1 to 6 were used as specific cross copolymers. These cross-copolymers were produced by the production methods of Examples or Comparative Examples described in WO00 / 37517 or WO2007 / 139116, the entire contents of which are incorporated herein by reference. The following compositions are also described in these publications. It was calculated by the method. These cross copolymers include an ethylene-styrene-divinylbenzene copolymer chain obtained by anionic polymerization in the presence of an ethylene-styrene-divinylbenzene copolymer obtained by coordination polymerization and a styrene monomer. It is a copolymer having a polystyrene chain.
- the styrene content, divinylbenzene content, weight average molecular weight (Mw), molecular weight distribution (Mw / Mn) of the ethylene-styrene-divinylbenzene copolymer used, the cross-copolymer The content of the ethylene-styrene-divinylbenzene copolymer, the molecular weight (Mw) of the polystyrene chain, and the molecular weight distribution (Mw / Mn) are shown.
- the vinyl group hydrogen (proton) peak of the divinylbenzene unit was substantially eliminated. That is, the vinyl group hydrogen (proton) peak intensity (area) of the divinylbenzene unit is compared with the vinyl group hydrogen (proton) peak intensity (area) of the divinylbenzene unit of the starting ethylene-styrene-divinylbenzene copolymer. Apparently, it was 20% or less.
- SEBS hydrogenated styrene-diene block copolymer
- SEPS hydrogenated styrene-diene block copolymer
- Sample sheet preparation Samples for physical property evaluation were prepared using a mirror mold (STAVAX material) and various thicknesses (1.0 mm) formed by the hot press method (temperature 250 ° C., time 5 minutes, pressure 50 kg / cm 2 ). ) Sheet was used.
- Tables 1 and 3 show the composition, and Tables 2 and 4 show the test results.
- (A) polystyrene (G200C, manufactured by Toyo Styrene Co., Ltd.) was used.
- Comparative Example 1 (A) 80 parts by mass, (B) 20 parts by mass, and (C) was not used.
- Comparative Example 2 is an example in which (A) 80 parts by mass, (B) 20 parts by mass total 100 parts by mass, and (C), 5 parts by mass of the same ethylene-based elastomer as (B) was added. That is, this is an example in which (B) is increased to a total of 25 parts by mass.
- Comparative Examples 3 and 4 are cases where 5 parts by mass of the above-mentioned commercially available SEBS and SEPS are used as (C) with respect to 100 parts by mass of (A) 80 parts by mass and (B) 20 parts by mass, respectively.
- Examples 1 to 6 are cases in which 5 parts by mass of each of the cross-copolymers 1 to 6 was used as (C) for a total of 100 parts by mass of (A) 80 parts by mass and (B) 20 parts by mass.
- Examples 7 to 9 are cases in which (A), (B), and (C) were changed as shown in Table 1.
- FIG. 1 shows the relationship between the initial tensile elastic modulus and yield strength of each of Examples 1 to 6 and Comparative Example
- FIG. 2 shows the relationship between each of Examples 1 to 6 and Comparative Example of the initial tensile elastic modulus and deformation resistance index.
- the polystyrene-based resin composition using the specific cross-copolymer specified by the present application as (C) is high in initial tensile strength as compared with the case where (C) is not added (Comparative Example 1). It exhibits an elastic modulus and exhibits high yield point elongation and high yield point strength (FIG. 1). In other words, it shows a high deformation resistance index (FIG. 2).
- the content of the aromatic vinyl compound unit of the ethylene-aromatic vinyl compound-aromatic polyene copolymer obtained in the coordination polymerization step which is a more preferable example of the present application, satisfies the condition that it is 5 mol% or more and 25 mol% or less.
- the polystyrene-based resin compositions of Examples 1 to 4 using the cross-copolymer exhibit high initial tensile modulus, high yield point elongation and yield point strength, and higher elongation at break (FIG. 3). In other words, it has a feature that it shows both a high deformation resistance index (FIG. 2) and a high impact absorption index (FIG. 4).
- cross-copolymer of the present invention when used as (C), it is related to rigidity (initial tensile elastic modulus), deformation and shock absorption compared to the case where SEBS and SEPS of the comparative example are used at the same blending ratio. It is an example which shows that the balance of physical properties is excellent.
- Examples 7 to 9 show the results when the ratio of (A), (B), and (C) cross-copolymer was changed as shown in Table 1. As shown in the table, the physical properties of the polystyrene-based resin composition can be widely changed for various purposes.
- the blending, blending ratio and results are shown in Table 3 and Table 4.
- High impact polystyrene it can be seen that this example shows a high yield strength and a high elongation at break while showing a relatively high initial tensile modulus as compared with the comparative example.
- ABS resin a relatively high initial tensile elastic modulus is maintained and higher yield strength and elongation at break are exhibited as compared with the case of using SEBS and SEPS of Comparative Examples.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
より高い熱安定性や耐久性が求められる場合、飽和型のスチレン-ジエン系エラストマー、すなわち水素添加したスチレン-ジエン系ブロック共重合体(いわゆるSEBS、SEPS)を添加する場合もあるが、コストアップとなってしまう。そこで安価で経済性に優れるエチレン系エラストマーの添加が考えられるが、これらはスチレン系樹脂との相溶性が低く、上記SEBSやSEPSを第三成分(相溶化材)として添加する必要がある。
本明細書において、XX~OOと記載した場合、特に断りがない限り、XX以上OO以下、あるいはXX以下OO以上を意味する。
(2)配位重合工程で得られるエチレン-芳香族ビニル化合物-芳香族ポリエン共重合体の重量平均分子量が5万以上30万以下、分子量分布(Mw/Mn)が1.8以上6以下好ましくは1.8以上3以下である。
(3)クロス共重合体中に含まれるエチレン-芳香族ビニル化合物-芳香族ポリエン共重合体の含量が30質量%以上90質量%以下の範囲にある。
別な観点から、本クロス共重合体において、エチレン-芳香族ビニル化合物-芳香族ポリエン共重合体鎖と芳香族ビニル化合物重合体鎖が芳香族ポリエンユニットを介して結合している(一例としてエチレン-スチレン-ジビニルベンゼン共重合体鎖とポリスチレン鎖がジビニルベンゼンユニットを介して結合している)ことは、以下の観察可能な現象で証明できる。すなわち本クロス共重合体に対し、適当な溶媒を用いソックスレー抽出を十分な回数行った後においても、含まれるエチレン-スチレン-ジビニルベンゼン共重合体鎖とポリスチレン鎖を分別することができない。通常、本クロス共重合体に含まれるエチレン-スチレン-ジビニルベンゼン共重合体鎖と同一組成のエチレン-スチレン-ジビニルベンゼン共重合体とポリスチレンは、沸騰アセトンによるソックスレー抽出を行うことで、アセトン不溶部としてエチレン-スチレン-ジビニルベンゼン共重合体に、アセトン可溶部としてポリスチレンに分別できる。しかし、本クロス共重合体に同様のソックスレー抽出を行った場合、アセトン可溶部としてクロス共重合体に含まれる比較的少量のポリスチレンホモポリマーが得られるが、大部分の量を占めるアセトン不溶部には、NMR測定を行うことでエチレン-スチレン-ジビニルベンゼン共重合体鎖とポリスチレン鎖が共に含まれていることが示され、これらはソックスレー抽出で分別することができないことがわかる。
これについてもその詳細は公知文献「ジビニルベンゼンユニットを含有するオレフィン系共重合体を用いた分岐型共重合体の合成」、荒井亨、長谷川勝、日本ゴム協会誌、p382、vol.82(2009)に記載されている。
以上から本発明に用いられるクロス共重合体を規定する表現としては、(C)のクロス共重合体は、エチレン-芳香族ビニル化合物-芳香族ポリエン共重合体鎖と芳香族ビニル化合物重合体鎖を有する共重合体であり、エチレン-芳香族ビニル化合物-芳香族ポリエン共重合体鎖と芳香族ビニル化合物重合体鎖が芳香族ポリエンユニットを介して結合しており、さらに以下の(1)~(3)の条件をすべて満たす共重合体である。
(1)エチレン-芳香族ビニル化合物-芳香族ポリエン共重合体の芳香族ビニル化合物ユニットの含量が5モル%以上40モル%未満、芳香族ポリエンユニット含量0.01モル%以上0.2モル%以下、残部がエチレンユニット含量である。
(2)エチレン-芳香族ビニル化合物-芳香族ポリエン共重合体の重量平均分子量が5万以上30万以下、分子量分布(Mw/Mn)が1.8以上6以下好ましくは1.8以上3以下である。
(3)クロス共重合体中に含まれるエチレン-芳香族ビニル化合物-芳香族ポリエン共重合体の含量が30質量%以上90質量%以下の範囲にある。
(A)と(B)の合計100質量部に対し、(C)が1質量部未満では、ポリスチレン系樹脂組成物の耐衝撃性や伸びが低下してしまい、20質量部を超過すると剛性が低下してしまい、低温特性(低温での力学物性や耐衝撃性)も低下してしまう。
ここで、耐変形指数とは本樹脂組成物成型体の降伏点伸び(%)と降伏点強度(MPa)の積である。本耐変形指数が高い場合はより変形しにくい材料であるといえる。
ここで、耐変形指数とは本樹脂組成物成型体の降伏点伸び(%)と降伏点強度(MPa)の積であり、衝撃吸収指数とは本樹脂組成物成型体の断点伸び(%)と破断点強度(MPa)の積である。本耐変形指数が高い場合はより変形しにくい材料であるといえる。本耐衝撃指数が高い場合はより衝撃を吸収し破断しにくい材料であるといえる。
また、本発明の配位重合工程で得られるエチレン-芳香族ビニル化合物-芳香族ポリエン共重合体の重量平均分子量が5万以上30万以下、好ましくは10万以上25万以下、分子量分布(Mw/Mn)が1.8以上6以下好ましくは1.8以上3以下である。
重量平均分子量がより低かったり、また分子量分布がより大きいと樹脂組成物の力学物性が低下したりべたつきが生じてしまう。また、重量平均分子量がより大きく、また分子量分布がより小さい場合には、樹脂組成物自体の成型加工性が低下してしまう恐れがある。
クロス鎖の芳香族ビニル化合物重合体鎖の分子量は、目的に合わせて適宜変更可能であり特に限定されないが、重量平均分子量(Mw)は、1.8万以上6万以下であり、好ましくは1万以上15万以下、特に好ましくは2万以上10万以下、分子量分布(Mw/Mn)は、一般的には1.0以上6.0以下である。クロス鎖の分子量は直接求めることが困難であるために、本明細書では、クロス共重合化されなかった芳香族ビニル化合物ホモポリマーの分子量と同一であるとして、溶媒分別等公知の適切な方法で分離して得た芳香族ビニル化合物ホモポリマ-の分子量を用いて規定している。
以上に示されるように、本発明のポリスチレン系樹脂組成物は、剛性と耐衝撃性(伸び)のバランスの良好なポリスチレン系樹脂組成物である。また含まれる主要樹脂成分は主鎖が飽和型であり、化学的安定性が高く、耐候性に優れる特徴があり、耐薬品、耐溶剤性にも優れる特徴がある。
その好適な例としては炭酸カルシウム、タルク、クレ-、珪酸カルシウム、炭酸マグネシウム、水酸化マグネシウム、マイカ、硫酸バリウム、酸化チタン、水酸化アルミニウム、シリカ、カーボンブラック、木粉、木材パルプ、ガラス繊維、公知の黒鉛、炭素繊維等が例示できる。その添加量は、物性を考慮すると好ましくは樹脂組成物100質量部に対して最大200質量部までである。また本発明の樹脂組成物には必要に応じて、公知の可塑剤、オイル等の滑剤、難燃剤、発泡剤、架橋剤、架橋助剤、シランカップリング剤、ブロッキング防止剤、紫外線吸収剤、酸化防止剤、安定剤を、公知の配合割合で添加することができる。以上、本発明の実施形態について述べたが、これらは本発明の例示であり上記以外の様々な構成を採用することもできる。
実施例、比較例に用いた原料樹脂は以下の通りである。
(A)としてはポリスチレン(G200C、東洋スチレン社製)、ハイインパクトポリスチレン(HIPS E640N、東洋スチレン株式会社製)、ABS樹脂(GR2000、デンカ社製)を使用した。
(B)特定のエチレン系エラストマーとしては、エチレン-オクテン共重合体であるエンゲージ8003(ダウケミカル社製、密度0.885g/cm3)を用いた。オクテン含量26質量%、190℃、荷重21.2NでのMFRは1.0g/10min.である。
以下、クロス共重合体を規定するために、用いられるエチレン-スチレン-ジビニルベンゼン共重合体のスチレン含量、ジビニルベンゼン含量、重量平均分子量(Mw)、分子量分布(Mw/Mn)、クロス共重合体中のエチレン-スチレン-ジビニルベンゼン共重合体の含量、ポリスチレン鎖の分子量(Mw)、分子量分布(Mw/Mn)を示す。またクロス共重合体に含まれるポリスチレン鎖の質量%は以下の式で示される。
(ポリスチレン鎖の質量%)=100-(エチレン-スチレン-ジビニルベンゼン共重合体の質量%)
エチレン-スチレン-ジビニルベンゼン共重合体のスチレン含量13モル%、
ジビニルベンゼン含量0.04モル%、
Mw(重量平均分子量)=78000、Mw/Mn=2.2、
エチレン-スチレン-ジビニルベンゼン共重合体の含量85質量%、
ポリスチレン鎖のMw=30000、Mw/Mn=1.2
・クロス共重合体2:
エチレン-スチレン-ジビニルベンゼン共重合体のスチレン含量17モル%、
ジビニルベンゼン含量0.04モル%、
Mw=101000、Mw/Mn=2.2
エチレン-スチレン-ジビニルベンゼン共重合体の含量80質量%、
ポリスチレン鎖のMw=30000、Mw/Mn=1.2
・クロス共重合体3:
エチレン-スチレン-ジビニルベンゼン共重合体のスチレン含量24モル%、
ジビニルベンゼン含量0.04モル%、
Mw=120000、Mw/Mn=2.2
エチレン-スチレン-ジビニルベンゼン共重合体の含量70質量%、
ポリスチレン鎖のMw=35000、Mw/Mn=1.2
・クロス共重合体4:
エチレン-スチレン-ジビニルベンゼン共重合体のスチレン含量8モル%、
ジビニルベンゼン含量0.04モル%、
Mw=95000、Mw/Mn=2.2
エチレン-スチレン-ジビニルベンゼン共重合体の含量70質量%、
ポリスチレン鎖のMw=35000、Mw/Mn=1.2
・クロス共重合体5:
エチレン-スチレン-ジビニルベンゼン共重合体のスチレン含量28モル%、
ジビニルベンゼン含量0.04モル%、
Mw=118000、Mw/Mn=2.2
エチレン-スチレン-ジビニルベンゼン共重合体の含量70質量%、
ポリスチレン鎖のMw=35000、Mw/Mn=1.2
・クロス共重合体6:
エチレン-スチレン-ジビニルベンゼン共重合体のスチレン含量34モル%、
ジビニルベンゼン含量0.06モル%、
Mw=128000、Mw/Mn=2.3
エチレン-スチレン-ジビニルベンゼン共重合体の含量70質量%、
ポリスチレン鎖のMw=38000、Mw/Mn=1.3
1H-NMR測定を、文献「ジビニルベンゼンユニットを含有するオレフィン系共重合体を用いた分岐型共重合体の合成」、荒井亨、長谷川勝、日本ゴム協会誌、p382、vol.82(2009)および、WO00/37517、WO2007/139116号公報に従い実施した。クロス共重合体1~6ではいずれも、そのジビニルベンゼンユニットのビニル基水素(プロトン)ピークは実質的に消失していた。すなわちそのジビニルベンゼンユニットのビニル基水素(プロトン)ピーク強度(面積)は、原料のエチレン-スチレン-ジビニルベンゼン共重合体のジビニルベンゼンユニットのビニル基水素(プロトン)ピーク強度(面積)と比較して明らかに20%以下であった。
物性評価用の試料は鏡面金型(STAVAX材)を用いて、加熱プレス法(温度250℃、時間5分間、圧力50kg/cm2)により成形した各種厚さ(1.0mm)のシ-トを用いた。
JIS K-6251に準拠し、シートを2号1/2号型テストピース形状にカットし、島津製作所AGS-100D型引張試験機を用い、引張速度500mm/minにて測定した。初期引張弾性率、降伏点伸び、降伏点強度、破断点伸び、破断点強度、MFRを測定し、同一サンプルで計5回測定しその平均値を求めた。
ここで、
耐変形指数=降伏点伸び(%)× 降伏点強度(MPa)
耐変形指数が高い場合より変形しにくい材料であるといえる。
衝撃吸収指数=破断点伸び(%)× 破断点強度(MPa)と定義する。
耐衝撃指数が高い場合、より衝撃を吸収し破断しにくい材料であるといえる。
MFRはJIS K-7210に従い、測定した。
(A)としてはポリスチレン(G200C、東洋スチレン社製)を使用した。比較例1は、(A)80質量部、(B)20質量部のみで(C)を使用しなかった場合である。
比較例2は(A)80質量部、(B)20質量部の合計100質量部、そして(C)として(B)と同じエチレン系エラストマーを5質量部添加した例である。すなわち(B)を増量して計25質量部とした例である。
比較例3、4は(A)80質量部、(B)20質量部の合計100質量に対し、(C)としてそれぞれ上記市販SEBS、SEPSを5質量部使用した場合である。
実施例1~6は(A)80質量部、(B)20質量部の合計100質量に対し、(C)としてそれぞれクロス共重合体1~6を5質量部使用した場合である。
実施例7~9は(A)、(B)、(C)を表1に記載のように変更した場合である。
図1に各実施例1~6、比較例の初期引張弾性率と降伏点強度の関係を、図2に各実施例1~6、比較例の初期引張弾性率と耐変形指数の関係を、図3に各実施例1~6、比較例の初期引張弾性率と破断点伸びの関係を、図4に各実施例1~6、比較例の初期引張弾性率と衝撃吸収指数の関係を示す。
各実施例の、(C)として本願が規定する特定のクロス共重合体を使用したポリスチレン系樹脂組成物は、(C)を添加しない場合(比較例1)と比較していずれも高い初期引張弾性率を示し、かつ高い降伏点伸びおよび高い降伏点強度(図1)を示す。言い換えると高い耐変形指数(図2)を示す。さらに本願のより好ましい例である、配位重合工程で得られるエチレン-芳香族ビニル化合物-芳香族ポリエン共重合体の芳香族ビニル化合物ユニットの含量が5モル%以上25モル%以下という条件を満たすクロス共重合体を使用した実施例1~4のポリスチレン系樹脂組成物は、高い初期引張弾性率、高い降伏点伸びおよび降伏点強度、さらに高い破断点伸び(図3)を示す。言い換えると高い耐変形指数(図2)および高い衝撃吸収指数(図4)を共に示すという特徴を有する。
各実施例のMFR(200℃、荷重98N)値は各比較例と比べ実質的に大きな変化は認められなかった。
以上、(C)として本発明のクロス共重合体を使用した場合、比較例のSEBSやSEPSを同一配合比で使用した場合と比較し、剛性(初期引張弾性率)と変形や衝撃吸収に関わる物性のバランスが優れていることを示す例示である。
Claims (4)
- (A)95~60質量部のポリスチレン系樹脂と、
(B)5~40質量部のエチレン系エラストマーと、
(C)前記(A)と前記(B)の合計100質量部に対して1~20質量部のクロス共重合体
を含むポリスチレン系樹脂組成物であって、
前記(C)は、エチレン-芳香族ビニル化合物-芳香族ポリエン共重合体鎖と芳香族ビニル化合物重合体鎖を有するクロス共重合体であり、エチレン-芳香族ビニル化合物-芳香族ポリエン共重合体鎖と芳香族ビニル化合物重合体鎖が芳香族ポリエンユニットを介して結合しており、さらに以下の(1)~(3)の条件をすべて満たす。
(1)エチレン-芳香族ビニル化合物-芳香族ポリエン共重合体の芳香族ビニル化合物ユニット含量が5モル%以上40モル%以下、芳香族ポリエンユニット含量が0.01モル%以上0.2モル%以下、残部がエチレンユニット含量である。
(2)エチレン-芳香族ビニル化合物-芳香族ポリエン共重合体の重量平均分子量が5万以上30万以下、分子量分布(Mw/Mn)が1.8以上6以下であり、好ましくは1.8以上3以下である。
(3)(C)中に含まれるエチレン-芳香族ビニル化合物-芳香族ポリエン共重合体の含量が30質量%以上90質量%以下の範囲にある。 - 前記(C)クロス共重合体中の、エチレン-芳香族ビニル化合物-芳香族ポリエン共重合体の芳香族ビニル化合物ユニットの含量が5モル%以上25モル%以下である請求項1に記載のポリスチレン系樹脂組成物。
- (A)95~60質量部のポリスチレン系樹脂と、
(B)5~40質量部のエチレン系エラストマーと、
(C)前記(A)と前記(B)の合計100質量部に対して1~20質量部のクロス共重合体
を配合、混合、造粒して得られるポリスチレン系樹脂組成物の製造方法であって、
前記(C)が、エチレン-芳香族ビニル化合物-芳香族ポリエン共重合体鎖と芳香族ビニル化合物重合体鎖を有するクロス共重合体であり、エチレン-芳香族ビニル化合物-芳香族ポリエン共重合体鎖と芳香族ビニル化合物重合体鎖が芳香族ポリエンユニットを介して結合しており、さらに以下の(1)~(3)の条件をすべて満たす。
(1)エチレン-芳香族ビニル化合物-芳香族ポリエン共重合体の芳香族ビニル化合物ユニット含量が5モル%以上40モル%以下、芳香族ポリエンユニット含量が0.01モル%以上0.2モル%以下、残部がエチレンユニット含量である。
(2)エチレン-芳香族ビニル化合物-芳香族ポリエン共重合体の重量平均分子量が5万以上30万以下、分子量分布(Mw/Mn)が1.8以上6以下であり、好ましくは1.8以上3以下である。
(3)(C)中に含まれるエチレン-芳香族ビニル化合物-芳香族ポリエン共重合体の含量が30質量%以上90質量%以下の範囲にある。 - 前記(C)の、配位重合工程で得られるエチレン-芳香族ビニル化合物-芳香族ポリエン共重合体の芳香族ビニル化合物ユニット含量が5モル%以上25モル%以下である請求項3に記載のポリスチレン系樹脂組成物の製造方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018520988A JPWO2017209232A1 (ja) | 2016-06-01 | 2017-06-01 | ポリスチレン系樹脂組成物およびその製造方法 |
KR1020187037746A KR20190015364A (ko) | 2016-06-01 | 2017-06-01 | 폴리스티렌계 수지 조성물 및 그 제조 방법 |
CN201780033097.8A CN109196043A (zh) | 2016-06-01 | 2017-06-01 | 聚苯乙烯系树脂组合物及其制造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-110357 | 2016-06-01 | ||
JP2016110357 | 2016-06-01 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017209232A1 true WO2017209232A1 (ja) | 2017-12-07 |
Family
ID=60478662
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/020412 WO2017209232A1 (ja) | 2016-06-01 | 2017-06-01 | ポリスチレン系樹脂組成物およびその製造方法 |
Country Status (4)
Country | Link |
---|---|
JP (1) | JPWO2017209232A1 (ja) |
KR (1) | KR20190015364A (ja) |
CN (1) | CN109196043A (ja) |
WO (1) | WO2017209232A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018225744A1 (ja) * | 2017-06-05 | 2018-12-13 | デンカ株式会社 | 熱可塑性エラストマー組成物 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002272834A (ja) * | 2001-03-15 | 2002-09-24 | Denki Kagaku Kogyo Kk | 医療用成形体 |
JP2002322224A (ja) * | 2001-02-21 | 2002-11-08 | Denki Kagaku Kogyo Kk | クロス共重合化オレフィン−芳香族ビニル化合物−ジエン共重合体 |
JP2009185208A (ja) * | 2008-02-07 | 2009-08-20 | Denki Kagaku Kogyo Kk | オレフィン−芳香族ビニル化合物系クロス共重合体を含む樹脂組成物を用いた電線被覆材 |
JP2011207936A (ja) * | 2010-03-29 | 2011-10-20 | Denki Kagaku Kogyo Kk | 表皮材用シ−ト |
WO2015072466A1 (ja) * | 2013-11-12 | 2015-05-21 | 電気化学工業株式会社 | 熱可塑性エラストマー樹脂組成物 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002265722A (ja) * | 2001-03-12 | 2002-09-18 | Denki Kagaku Kogyo Kk | 制振材 |
CN101454365A (zh) * | 2006-05-29 | 2009-06-10 | 电气化学工业株式会社 | 交叉共聚物的制造方法、得到的交叉共聚物及其用途 |
CN106133016B (zh) * | 2014-04-03 | 2019-06-14 | 电化株式会社 | 交联共聚物和树脂组合物 |
-
2017
- 2017-06-01 WO PCT/JP2017/020412 patent/WO2017209232A1/ja active Application Filing
- 2017-06-01 KR KR1020187037746A patent/KR20190015364A/ko unknown
- 2017-06-01 CN CN201780033097.8A patent/CN109196043A/zh active Pending
- 2017-06-01 JP JP2018520988A patent/JPWO2017209232A1/ja active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002322224A (ja) * | 2001-02-21 | 2002-11-08 | Denki Kagaku Kogyo Kk | クロス共重合化オレフィン−芳香族ビニル化合物−ジエン共重合体 |
JP2002272834A (ja) * | 2001-03-15 | 2002-09-24 | Denki Kagaku Kogyo Kk | 医療用成形体 |
JP2009185208A (ja) * | 2008-02-07 | 2009-08-20 | Denki Kagaku Kogyo Kk | オレフィン−芳香族ビニル化合物系クロス共重合体を含む樹脂組成物を用いた電線被覆材 |
JP2011207936A (ja) * | 2010-03-29 | 2011-10-20 | Denki Kagaku Kogyo Kk | 表皮材用シ−ト |
WO2015072466A1 (ja) * | 2013-11-12 | 2015-05-21 | 電気化学工業株式会社 | 熱可塑性エラストマー樹脂組成物 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018225744A1 (ja) * | 2017-06-05 | 2018-12-13 | デンカ株式会社 | 熱可塑性エラストマー組成物 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2017209232A1 (ja) | 2019-03-28 |
CN109196043A (zh) | 2019-01-11 |
KR20190015364A (ko) | 2019-02-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10125207B2 (en) | Cross-copolymer, and resin composition | |
JP6435022B2 (ja) | 水添ブロック共重合体およびそれを含む組成物 | |
JP7064909B2 (ja) | 熱可塑性樹脂組成物及び成形品 | |
JP2638165B2 (ja) | 水添ジエン系共重合体樹脂組成物、およびその製造方法 | |
JP6556627B2 (ja) | 熱可塑性エラストマー樹脂組成物 | |
WO2016136534A1 (ja) | ポリプロピレン系樹脂組成物およびそれを用いた成形体 | |
JP2022506453A (ja) | 二組成ブロックコポリマー | |
WO2022163787A1 (ja) | 樹脂組成物及び成形体 | |
WO2017209232A1 (ja) | ポリスチレン系樹脂組成物およびその製造方法 | |
JP2018027994A (ja) | 熱可塑性樹脂組成物、それを用いたフィラー含有樹脂組成物及び成形体。 | |
JPH07118491A (ja) | 耐油性樹脂組成物 | |
JPH05132606A (ja) | 熱可塑性重合体組成物 | |
US20220185937A1 (en) | Hydrogenated Block Copolymer | |
JP5055609B2 (ja) | 熱可塑性エラストマー組成物を用いた弾性バンド | |
JP2000219781A (ja) | ポリオレフィン系樹脂組成物 | |
WO2022163786A1 (ja) | 樹脂組成物及び成形体 | |
JP3460304B2 (ja) | 軟質ポリプロピレン系樹脂組成物 | |
JP3967485B2 (ja) | ポリオレフィン系樹脂組成物 | |
JP4048595B2 (ja) | ポリプロピレン系樹脂表皮材 | |
WO2022191280A1 (ja) | 樹脂組成物及び成形体 | |
US20210017318A1 (en) | Hydrogenated Block Copolymer, Hydrogenated Block Copolymer Composition, and Molded Article | |
JPH032240A (ja) | 熱可塑性エラストマー組成物 | |
JP2000327849A (ja) | 熱可塑性樹脂組成物 | |
JPH07316356A (ja) | 軟質ポリプロピレン系樹脂組成物 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2018520988 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17806782 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20187037746 Country of ref document: KR Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17806782 Country of ref document: EP Kind code of ref document: A1 |