WO2017209039A1 - 多層グラフェン分散液、熱物性測定用黒化剤および粉末焼結用離型剤・潤滑剤 - Google Patents

多層グラフェン分散液、熱物性測定用黒化剤および粉末焼結用離型剤・潤滑剤 Download PDF

Info

Publication number
WO2017209039A1
WO2017209039A1 PCT/JP2017/019888 JP2017019888W WO2017209039A1 WO 2017209039 A1 WO2017209039 A1 WO 2017209039A1 JP 2017019888 W JP2017019888 W JP 2017019888W WO 2017209039 A1 WO2017209039 A1 WO 2017209039A1
Authority
WO
WIPO (PCT)
Prior art keywords
multilayer graphene
graphene dispersion
blackening
dispersion
agent
Prior art date
Application number
PCT/JP2017/019888
Other languages
English (en)
French (fr)
Inventor
捷凡 柳
Original Assignee
地方独立行政法人東京都立産業技術研究センター
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 地方独立行政法人東京都立産業技術研究センター filed Critical 地方独立行政法人東京都立産業技術研究センター
Priority to EP17806594.2A priority Critical patent/EP3466877B1/en
Priority to US16/074,846 priority patent/US11008218B2/en
Priority to CN201780020252.2A priority patent/CN108883941B/zh
Priority to JP2018520890A priority patent/JP6945203B2/ja
Publication of WO2017209039A1 publication Critical patent/WO2017209039A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/194After-treatment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/18Investigating or analyzing materials by the use of thermal means by investigating thermal conductivity
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2204/00Structure or properties of graphene
    • C01B2204/04Specific amount of layers or specific thickness
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2204/00Structure or properties of graphene
    • C01B2204/20Graphene characterized by its properties
    • C01B2204/24Thermal properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2204/00Structure or properties of graphene
    • C01B2204/20Graphene characterized by its properties
    • C01B2204/32Size or surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
    • C01P2004/84Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases one phase coated with the other

Definitions

  • the present invention relates to a multilayer graphene dispersion, a blackening agent for measuring thermophysical properties, and a release agent / lubricant for powder sintering.
  • Patent Document 1 a metal film is first spin-coated on the surface of a thermophysical property measurement sample as necessary, and a black film is formed thereon by spin coating using a liquid containing carbon black such as liquid black ink. It is disclosed that the measurement accuracy is improved by doing so.
  • an apparatus for spin coating is required, the operation is complicated, and surface treatment to a small test piece is difficult.
  • Patent Document 2 the reflected light of the laser beam irradiated on the sample surface is returned to the sample surface again by the hemispherical mirror that is placed opposite to both sides or one side of the flat measurement sample, and the absorption rate of the laser beam is increased.
  • a method of measuring the thermal diffusivity using a hemispherical mirror type laser flash method that increases the apparent emissivity on the back of the sample by multiple reflection of the heat radiation from the back of the sample and measures the thermal diffusivity without coating the sample with black paint Is disclosed.
  • This technique is a method that does not require a blackening treatment with a blackening agent on the surface of the test piece, but cannot be applied to a commercially available apparatus, and there is room for improvement in practicality.
  • Non-patent document 1 focuses on the blackening process, which is a major factor affecting the results of thermal diffusivity measurement, and evaluates the influence and makes clear the measurement accuracy. The result of investigating the influence on the measurement accuracy by individual differences of blackening treatment and the blackening treatment film thickness using graphite spray is described.
  • Patent Document 1 blackening treatment methods other than spray coating (Patent Document 1) and methods that do not require blackening treatment (Patent Document 2) have been proposed, none of them is a simple method.
  • the method of blackening both sides of the sample by spray coating using a commercially available aerosol type graphite mold release agent or lubricant as described above is simple, but the coating film is thin and uniform on the sample surface. Moreover, it is difficult to produce it instantaneously.
  • a new type of blackening agent is required for measuring the thermal conductivity of a sample having a high thermal conductivity such as copper or a thin sample having a thickness of several millimeters with high accuracy.
  • Patent Document 3 proposes a multilayer graphene dispersion containing multilayer graphene, a polymer having a hydrocarbon group having 12 to 30 carbon atoms and a nonionic group, and a ketone organic solvent.
  • Patent Document 4 discloses a graphene first solution in which graphene in an organic solvent is modified with an electron acceptor organic molecule that forms a charge transfer complex, and graphene in an organic solvent that is an electron donor organic that forms a charge transfer complex.
  • Patent Document 5 proposes a method for producing a graphene solution using an alkali metal salt.
  • Patent Document 6 proposes a method for producing a graphene sheet organic dispersion that is an aqueous dispersion.
  • Patent Document 8 proposes an aqueous lubricant composition in which graphene nanocarbon is dispersed in water.
  • Patent Document 9 proposes a lubricating oil composition in which graphene-based nanocarbon is dispersed in a lubricating oil.
  • the graphene-based nanocarbon-containing dispersion is used as a liquid lubricant for the purpose of reducing wear of various machine parts such as cutting, but the mold surface for powder sintering
  • the use as a release agent / lubricant for producing a release / lubricating coating film has not been studied.
  • Conventional graphene-based nanocarbon-containing dispersions do not instantly produce thin and uniform coatings on the mold surface, so powder release agents and lubricants for powder sintering, especially spark plasma sintering (Spark Plasma Sintering) Not suitable for use as a mold release agent or lubricant.
  • JP 2007-327851 A Japanese Patent Laid-Open No. 10-123075 Japanese Patent Laying-Open No. 2015-199623 JP 2011-63492 A Special table 2013-510787 gazette JP2015-59079A JP 2013-212948 A JP 2016-098279 A JP 2016-066942 A
  • the present invention has been made in view of the circumstances as described above, and an object of the present invention is to provide a multilayer graphene dispersion capable of instantaneously producing a thin and uniform coating film containing multilayer graphene on the sample surface.
  • Another object of the present invention is to provide a blackening agent for measuring thermophysical properties, which can instantly produce a thin and uniform coating film containing multilayer graphene on the sample surface and has an excellent blackening effect.
  • the present invention also provides a mold sintering agent and / or lubricant for powder sintering which can instantly produce a thin and uniform coating film containing multilayer graphene on the mold surface and has an excellent mold release and lubrication effect. Is an issue.
  • the present invention provides a multilayer graphene dispersion excellent in dispersion stability and redispersibility, a blackening agent for measuring thermophysical properties, a release agent for powder sintering and / or a lubricant. It is another issue.
  • the multilayer graphene dispersion of the present invention is characterized in that the multilayer graphene is dispersed in a liquid phase containing an organic solvent and a liquefied gas.
  • the multilayer graphene preferably has a carbon purity of 90% by mass or more and a thickness of 1 nm to 1 Onm.
  • the multilayer graphene preferably has an average particle size of 1 ⁇ m to 10 ⁇ m.
  • the organic solvent preferably contains a quick-drying solvent.
  • the multilayer graphene dispersion preferably contains an organic polymer that is a dispersant for the multilayer graphene.
  • the multilayer graphene preferably contains graphene oxide.
  • the blackening agent for measuring thermophysical properties of the present invention is a blackening agent for forming a blackening film on the surface of a sample for measuring thermophysical properties, and comprises the multilayer graphene dispersion. It is preferable that the blackening agent for measuring thermophysical properties is used by being jetted with a pressure of a gas phase containing the vapor of the liquefied gas.
  • the release agent / lubricant for powder sintering of the present invention is a release agent / lubricant for forming a separation layer between a sintering die and a sintered body in powder sintering, It consists of a graphene dispersion. It is preferable that the release agent / lubricant for powder sintering is used by being jetted with a pressure of a gas phase containing vapor of the liquefied gas.
  • the multilayer graphene dispersion encapsulant of the present invention includes an enclosing container in which the multi-layer graphene dispersion is encapsulated while maintaining a vapor pressure equilibrium between the liquid phase and the gas phase, and a valve body provided in the enclosing container And means for injecting the multilayer graphene dispersion from the sealed container by opening the valve body with the applied pressure of the gas phase.
  • This multilayer graphene dispersion encapsulant is preferably used for forming a blackened film on the surface of the thermophysical property measurement sample.
  • the multilayer graphene dispersion encapsulated body is preferably used for forming a separation layer between a sintering mold and a sintered body in powder sintering (for example, discharge plasma sintering).
  • a thin and uniform coating film containing multilayer graphene on a solid surface can be instantaneously produced.
  • a thin and uniform coating film containing multilayer graphene can be instantaneously produced on the surface of the sample, and the blackening effect is excellent.
  • the blackening treatment with the coating film containing multilayer graphene prepared with the blackening agent for thermophysical property measurement of the present invention the heat of a sample having high thermal conductivity such as copper or a thin metal sample having a thickness of about several mm or less is used. Conductivity can be measured accurately.
  • the surface of a sintering mold used in powder sintering (for example, a graphite mold (isotropic graphite) in discharge plasma sintering) is used.
  • a thin and uniform coating film containing multilayer graphene can be instantly produced, and it has excellent mold release and lubrication effects.
  • the sintered body can be more smoothly extruded from the sintering mold, or expensive.
  • the service life of the sintering mold can be extended by reducing the wear of the sintering mold.
  • the blackening agent for measuring thermophysical properties, and the release agent / lubricant for powder sintering, the dispersion stability and resuscitation can be further improved by adjusting the average particle size of the multilayer graphene. Excellent dispersibility.
  • FIG. 1 is a diagram illustrating a schematic configuration of Example 1.
  • A is a conceptual diagram showing the basic structure of Example 1
  • B is a photograph of the actual product produced in Example 1.
  • FIG. FIG. 3 is a diagram showing the measurement result of the particle size distribution of multilayer graphene particles used in Example 1.
  • 6 is a graph showing the measurement result of the particle size distribution of multilayer graphene particles used in Example 2.
  • FIG. 6 is a graph showing the measurement result of the particle size distribution of multilayer graphene particles used in Example 3. It is the figure which showed the measurement result of the particle size distribution of the multilayer graphene particle used for Example 4.
  • 6 is a graph showing the measurement result of the particle size distribution of multilayer graphene particles used in Example 5.
  • FIG. 1 is a diagram illustrating a schematic configuration of Example 1.
  • A is a conceptual diagram showing the basic structure of Example 1
  • B is a photograph of the actual product produced in Example 1.
  • FIG. FIG. 3 is a diagram showing the measurement result of the particle size distribution
  • FIG. 1 is based on the conventional product, and 2 is based on the blackening agent of Example 1.
  • 2 is a scanning electron micrograph of multilayer graphene particles used in Example 1.
  • FIG. 4 is a scanning electron micrograph of multilayer graphene particles used in Example 4.
  • FIG. 3 is a diagram showing measurement results of the multilayer graphene of Example 1 by XRD. It is the figure which showed the measurement result by XRD of the multilayer graphene of Example 4.
  • FIG. It is the figure which showed the result of the thermogravimetry (TG) of the multilayer graphene layer produced using the multilayer graphene dispersion liquid of Example 3.
  • TG thermogravimetry
  • the vertical axis represents the thermal diffusivity (mm 2 / s), and the horizontal axis represents the logarithm of graphite weight (mg). It is the figure which showed the temperature rise curve in the thermal-diffusion measurement of the polyimide film which carried out the black deposition process after carrying out gold vapor deposition on the surface.
  • 4 is a scanning electron micrograph of a coating film obtained using the multilayer graphene dispersion of Example 3.
  • the multilayer graphene dispersion of the present invention is characterized in that multilayer graphene is dispersed in a liquid phase containing an organic solvent and a liquefied gas.
  • One of the features of the present invention is that a multilayer graphene, an organic solvent, and a liquefied gas coexist in a sealed enclosure, and a liquid phase composed of the multilayer graphene dispersion and a gas phase containing a vapor of the liquefied gas are provided.
  • a multilayer graphene coating film can be instantaneously produced by spraying (spray coating) a multilayer graphene dispersion from the sealed container with a gas-phase pressure.
  • Graphene is a sheet in which carbon atoms form a hexagonal network in a honeycomb shape. Graphene has unique mechanical, thermal, electronic, and optical properties, such as flexible displays, transistors, optical sensors, RFID, solar cells, secondary batteries, fuel cells, supercapacitors, conductive inks, etc. Utilization in the industrial field is expected.
  • Multi-layer graphene Graphene is laminated into a plurality of layers, and is a flake material having a thickness of lnm to lOnm.
  • Graphene oxide Graphene with an oxygen functional group, which is a flake material of one to several layers of carbon atoms formed by exfoliating graphite by an oxidation reaction.
  • Graphite Graphene is laminated into multiple layers and is a flake material with a thickness exceeding lOnm. Graphite is roughly divided into two types: natural graphite and artificial graphite.
  • the production method of the multilayer graphene used in the present invention is not particularly limited, and commercially available multilayer graphene powder may be used.
  • the multilayer graphene used in the present invention preferably has a carbon purity of 90% by mass or more.
  • the multilayer graphene may contain carbon particles such as single-layer graphene, graphene oxide particles, carbon black particles, and graphite fine particles. If the purity of the carbon in the multilayer graphene is less than 90% by mass fraction, the dispersion stability may be deteriorated, resulting in problems such as a significant decrease in the blackening effect.
  • multilayer graphene powder mass-produced by a method of exfoliating natural graphite is inexpensive and easily available, and thus is preferably used in the present invention.
  • Most commercially available multilayer graphene has a thickness of 1 nm to 10 nm and a surface size of 1 ⁇ m to 20 ⁇ m.
  • Garmor “Graphene Oxide (edge-oxidized)” manufactured and sold by Inc. (Florida, USA) have different product names, but all of the multilayer graphene in this specification Belongs to a range.
  • a graphene having a functional group attached to the end thereof, that is, partially oxidized graphene can be used.
  • the method for producing partially graphene oxide is not particularly limited. For example, it can be manufactured by a known technique (Non-Patent Document 2).
  • graphene oxide that is interpreted based on technical common sense can be used.
  • Graphene oxide has various synthetic methods, and its performance and application differ depending on the degree of oxidation.
  • Graphene oxide generally has a structure in which a graphene sheet has a hydroxyl group, an epoxy group, and a carboxyl group, and exhibits dispersibility in a polar solvent.
  • Graphene oxide exhibits properties different from those of graphene.
  • the method for producing graphene oxide is not particularly limited. For example, it can be manufactured by a known technique (Patent Document 7).
  • the multilayer graphene used in the present invention has a thickness of 1 nm to 1 Onm, preferably 2 nm to 8 nm, and more preferably 3 nm to 7 nm. If the multilayer graphene is too thin, it becomes close to the properties of single-layer graphene and the transparency is increased, so that the blackening effect is reduced. On the other hand, if the multilayer graphene is too thick, it becomes close to the properties of graphite and the dispersion stability deteriorates.
  • the multilayer graphene used in the present invention preferably has an average particle size of 1 ⁇ m to 10 ⁇ m, more preferably 2 ⁇ m to 6 ⁇ m.
  • the average particle size of the multilayer graphene particles is the particle size at which the cumulative value of the frequency from the lower limit or upper limit in the particle size distribution curve measured using a laser diffraction / scattering type particle size distribution measuring device is 50%. It can be obtained as a certain median diameter. If the particle size of the multilayer graphene is too large, the dispersion stability of the multilayer graphene dispersion tends to deteriorate. If the particle size of the multi-layer graphene is too small, on the contrary, aggregation tends to occur.
  • the multilayer graphene used in the present invention is prepared by adjusting the two-dimensional size of commercially available multilayer graphene particles to an appropriate size by pulverization, or by selecting an appropriate size from among various commercially available multilayer graphene powders. It is desirable that the particle diameter be in the above range by selecting what it has.
  • a method for pulverizing the multilayer graphene powder to an appropriate size is not particularly limited, and known fine pulverization techniques and apparatuses can be applied. For example, a medium stirring type mill such as a commercially available ball mill, planetary ball mill, or bead mill, or a jet mill can be applied.
  • appropriate pulverization conditions can be determined based on particle size distribution measurement by laser diffraction / scattering method and crystal structure analysis by powder X-ray diffraction method.
  • the mass fraction of the multilayer graphene in the multilayer graphene dispersion of the present invention is preferably 0.20% to 2.00%, more preferably 0.5% to 1.50%. If the mass fraction of the multilayer graphene is too small, the blackening effect is reduced, and if the mass fraction of the multilayer graphene is too large, the graphene coating film tends to be non-uniform.
  • Dispersion stability means that multilayer graphene particles are stabilized without causing sedimentation or aggregation in a state where multilayer graphene particles, an organic solvent, and a liquefied gas coexist.
  • Redispersibility Redispersibility is the ability to easily return to the previous dispersion state by shaking the container in the presence of multilayer graphene particles, an organic solvent, and a liquefied gas, although sedimentation of the multilayer graphene particles is observed. That means.
  • stock solution I is prepared by dispersing multilayer graphene powder in an organic solvent.
  • the organic solvent used for preparing the stock solution I is not particularly limited as long as it can stably disperse the multilayer graphene particles.
  • monohydric alcohols having 1 to 4 carbon atoms such as methanol, ethanol, 2-propanol, 1-butanol, 1-methoxy-2-propanol, polyhydric alcohols, derivatives of polyhydric alcohols, Two or more types of ketones, esters, ethers, carbonates and the like can be combined as necessary to form an organic solvent.
  • an alcohol solvent mainly composed of alcohol because it is highly safe and easily available.
  • 2-Propanol is compatible with polar solvents such as alcohol because it has hydrogen bonding properties due to hydroxy groups. At the same time, it has a relatively large hydrophobic group (isopropyl group). It is preferable because it exhibits amphiphilic properties. Further, since it is possible to improve the dispersion stability of the multilayer graphene particles, a mixed solvent of a plurality of kinds of alcohols based on 2-propanol is preferably used.
  • the multilayer graphene dispersion of the present invention preferably contains an organic polymer that is a dispersant for multilayer graphene. Dispersion stability can be improved by blending an organic polymer as a dispersant.
  • the organic polymer of the dispersant is not particularly limited as long as it dissolves in the organic solvent used in the preparation of the stock solution I.
  • fibers such as ethyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, carboxymethyl cellulose sodium, etc. Examples thereof include elemental derivatives, (meth) acrylic acid copolymers, N-vinyl-2-pyrrolidone copolymers, and polyvinylpyrrolidone.
  • ethyl cellulose is preferable from the viewpoint of excellent dispersion effect.
  • Ethyl cellulose is soluble in many organic solvents including alcohol, and has an effect of suppressing aggregation between the multilayer graphene particles by being adsorbed on the surface of the multilayer graphene particles.
  • ethyl cellulose plays an important role in suppressing the aggregation of the multilayer graphene particles and forming a uniform coating film on the sample surface when the organic solvent is evaporated.
  • the mass fraction of ethylcellulose in the multilayer graphene dispersion of the present invention is preferably 0.10% to 1.00%, more preferably 0.3% to 1.00%. When the mass fraction of ethyl cellulose is too small, the dispersion stability of the multilayer graphene is lowered, and when the mass fraction of ethyl cellulose is too large, the redispersibility is lowered.
  • the method of dispersing the multilayer graphene in the organic solvent is not particularly limited, and for example, an ultrasonic homogenizer, a ball mill, a bead mill, a stirrer, or the like can be used.
  • An ultrasonic homogenizer is preferably used because it is easy to operate.
  • a stock solution II is prepared by blending the stock solution I and a quick-drying solvent.
  • a coating film containing multilayer graphene can be made thin, uniform and instantaneous.
  • the quick-drying solvent for example, an organic solvent having a boiling point of 30 to 80 ° C. at normal pressure can be used.
  • the fast-drying solvent is not particularly limited as long as the compatibility with the organic solvent for dispersing the multilayer graphene particles is good.
  • the fast-drying solvent has good compatibility with alcohol solvents, such as dichloromethane and cyclohexane. Examples include pentane and thinner. Among these, cyclopentane having relatively low toxicity is preferable.
  • the mass ratio of the alcoholic solvent to the quick-drying solvent in the stock solution II is preferably 20:80 to 40:60.
  • the mixing ratio of the alcohol solvent is too small, the dispersion stability of the multilayer graphene particles is lowered.
  • quick-drying will fall.
  • the stock solution II is filled in a sealed container. Thereafter, the liquefied gas is injected into the sealed container to produce the multilayer graphene dispersion of the present invention.
  • the liquefied gas used in the present invention is not particularly limited as long as it has a high critical temperature and can be easily liquefied by pressurizing around normal temperature.
  • liquefied petroleum gas (LPG) and dimethyl ether (DME) can be used.
  • Dimethyl ether is preferred because of its relatively high safety.
  • the blending mass fraction of DME in the liquid phase in which graphene is dispersed is preferably 60% to 90%, more preferably 70% to 80%, and even more preferably 73% to 75%. If the amount of DME is too small, the coating film containing multilayer graphene tends to be non-uniform. Moreover, when there are too many compounding quantities of DME, the coating film containing multilayer graphene tends to become non-uniform
  • the multilayer graphene dispersion of the present invention can be used in the same manner as conventional aerosol products. That is, the multilayer graphene dispersion of the present invention can be used as the following multilayer graphene dispersion enclosure.
  • This multilayer graphene dispersion encapsulated body is an encapsulated container in which the multilayer graphene dispersion of the present invention is encapsulated while maintaining the vapor pressure equilibrium in the liquid phase and the gas phase, and a valve body provided in the encapsulated container, And a means for injecting the multilayer graphene dispersion liquid from the sealed container by opening the valve body by gas-phase pressure.
  • This multilayer graphene dispersion inclusion body can be suitably used for forming a blackened film on the surface of the thermophysical property measurement sample. Further, this multilayer graphene dispersion encapsulated body can be suitably used for forming a separation layer between a sintering mold and a sintered body in powder sintering. It can be used more suitably for forming a separation layer between the mold (isotropic graphite) and the sintered body.
  • the enclosing container is not particularly limited as long as the multilayer graphene dispersion can be sealed.
  • a pressure-resistant container that forms a sealed space inside by attaching the lid with a valve body and the lid with the valve body A thing provided with a main part can be used.
  • a glass container etc. can be used for a pressure vessel main body, for example.
  • the sealed container for example, a container having an internal volume of 200 ml to l500 ml can be used.
  • the valve body is not particularly limited as long as it has a valve mechanism capable of sealing the multilayer graphene dispersion at the time of closing, and various kinds of valves can be used.
  • Means for injecting the multi-layer graphene dispersion from the sealed container by opening the valve body by gas-phase pressure is not particularly limited, for example, a mechanism for opening the valve body such as an injection button, Examples thereof include those composed of a pipe body such as a dip tube in which the lower end is immersed in the liquid phase in the pressure vessel and the upper end communicates with the valve body.
  • FIG. 1A shows an example of a multilayer graphene dispersion inclusion body.
  • reference numeral 1 is a transparent pressure-resistant glass container fitted with a lid with a valve body
  • reference numeral 2 is a dip tube
  • reference numeral 3 is a gas phase (dimethyl ether)
  • reference numeral 4 is multilayer graphene particles, ethyl cellulose (dispersing agent) and 2-propanol ( An organic solvent), cyclopentane (a fast-drying solvent among organic solvents), and dimethyl ether (liquefied gas).
  • a transparent pressure-resistant glass container 1 is provided with a valve-attached lid and a dip tube 2, and a multilayer graphene dispersion can be discharged and injected by pushing the lid.
  • the present invention can be used in the same manner as conventional aerosol products. That is, the present invention injects liquid phase II in which multilayer graphene is dispersed and a liquefied gas into a container having a valve body of 200 ml to l500 ml, and then opens the valve body by pressing an injection button, A coating film containing multilayer graphene can be produced by a method of releasing a liquid phase by vapor pressure, that is, a blackening treatment or a mold release / lubrication treatment of a mold surface for powder sintering can be performed.
  • the multilayer graphene dispersion of the present invention described above, a thin and uniform coating film containing multilayer graphene can be instantaneously produced on a solid surface, and the dispersion can be stabilized by adjusting the average particle size of the multilayer graphene. And excellent redispersibility. From this point, the multilayer graphene dispersion of the present invention can be used as a blackening agent for measuring thermophysical properties, and is expected to be applied to antistatic, heat absorption and the like, and effects of a lubricant and a release agent.
  • the blackening agent for thermophysical property measurement of the present invention is a blackening agent for forming a blackening film on the surface of the thermophysical property measurement sample, and comprises the multilayer graphene dispersion of the present invention.
  • the blackening agent for thermophysical property measurement of the present invention is preferably used by being jetted with a gas phase pressure including vapor of a liquefied gas contained in a multilayer graphene dispersion.
  • thermophysical property measurement of the present invention a thin and uniform coating film containing multilayer graphene can be instantaneously produced on the surface of the sample, and the blackening effect is excellent.
  • the dispersion stability and redispersibility are excellent by adjusting the average particle size of the multilayer graphene.
  • the blackening agent for measuring thermophysical properties of the present invention can be used, for example, for blackening both surfaces of a sample in a flash method capable of measuring thermal conductivity in a short time.
  • the heat of a sample having high thermal conductivity such as copper or a thin metal sample having a thickness of about several mm or less is used. Conductivity can be measured accurately.
  • the powder sintering mold release agent / lubricant of the present invention is a mold release agent / lubricant for forming a separation layer between a sintering mold and a sintered body in powder sintering. It consists of the multilayer graphene dispersion of the invention.
  • the release agent / lubricant for powder sintering of the present invention is preferably used by spraying with a gas-phase pressure including vapor of liquefied gas contained in the multilayer graphene dispersion.
  • a thin and uniform coating film containing multi-layer graphene can be instantaneously produced on the surface of a powder sintering die, and has an excellent release / lubricating effect. ing. In addition, the dispersion stability and redispersibility are excellent by adjusting the average particle size of the multilayer graphene.
  • the release agent / lubricant for powder sintering of the present invention is, for example, a thin and uniform coating film containing multilayer graphene on the contact surface with a graphite mold (isotropic graphite) used in spark plasma sintering, That is, it can be used to form a separation layer.
  • the surface treatment of a powder sintering mold with a coating film containing multilayer graphene prepared with the powder sintering mold release agent / lubricant of the present invention allows the sintered body to be extruded more smoothly from the mold, and is expensive
  • the service life of the mold can be extended by reducing wear of the mold.
  • a dispersant ethyl cellulose, deer grade 1, purity 1 Ocp, manufactured by Kanto Chemical Co., product number 14076-01
  • a dispersant ethyl cellulose, deer grade 1, purity 1 Ocp, manufactured by Kanto Chemical Co., product number 14076-01
  • the dispersant was completely dissolved and stirred until it became a transparent liquid.
  • 10 g of the graphene powder pulverized for 12 hours is added to the mixed solvent containing dispersant, and 15% at an output of 80% using an ultrasonic homogenizer (VCX-750, manufactured by Sonics & Materials, USA).
  • the graphene powder was dispersed by ultrasonic irradiation for minutes to prepare a stock solution I.
  • Example 2 A multilayer graphene dispersion was prepared under the same conditions as in Example 1 except that the time for pulverizing the multilayer graphene powder of Example 1 was 6 hours. As a result of measuring the particle diameter, the median diameter of the multilayer graphene powder pulverized in 6 hours was 7.0 ⁇ m (FIG. 3).
  • Example 3 As the multilayer graphene powder, graphene oxide (edge-oxidized) Garmor Inc. (Florida, USA) was used. Without pulverizing, the multilayer graphene powder was dispersed under exactly the same conditions as in Example 1 to produce a multilayer graphene dispersion. As a result of measuring the particle diameter of the multilayer graphene powder of this example, the median diameter was 3.5 ⁇ m (FIG. 4).
  • Example 4 Graphene Nanoplatelets (Grade M, manufactured by XG Sciences, USA) were used as the multilayer graphene powder. Without pulverization, the multilayer graphene powder was dispersed under the same conditions as in Example 1 to prepare a multilayer graphene dispersion. As a result of measuring the particle diameter of the multilayer graphene powder of this example, the median diameter was 13.l ⁇ m (FIG. 5). As a result of analysis by powder X-ray diffraction (XRD), it was found that the multilayer graphene powder of this example had the same crystal structure as the multilayer graphene powder of Example 1 (FIG. 11).
  • XRD powder X-ray diffraction
  • Example 5 A multilayer graphene dispersion was prepared under the same conditions as in Example 1 except that the time for pulverizing the multilayer graphene powder of Example 1 was 3 hours. As a result of measuring the particle diameter, the median diameter of the multilayer graphene powder pulverized in 3 hours was 10.8 ⁇ m (FIG. 6).
  • Example 6 In the dispersion treatment of the multilayer graphene powder of Example 1, 1 g of a dispersant (ethyl cellulose, deer grade 1, purity 1 Ocp, manufactured by Kanto Chemical Co., Ltd., product number 1407601) was added to 100 ml of the mixed solvent. Otherwise, a multilayer graphene dispersion was prepared under the same conditions as in Example 1.
  • a dispersant ethyl cellulose, deer grade 1, purity 1 Ocp, manufactured by Kanto Chemical Co., Ltd., product number 1407601
  • Example 7 In the dispersion treatment of the multilayer graphene powder of Example 1, 1 Og of a dispersant (ethyl cellulose, deer grade 1, purity 1 Ocp, manufactured by Kanto Chemical Co., product number 14076-01) was added to 100 ml of the mixed solvent. Other than that, a multilayer graphene dispersion was prepared under the same conditions as in Example 1.
  • a dispersant ethyl cellulose, deer grade 1, purity 1 Ocp, manufactured by Kanto Chemical Co., product number 14076-01
  • a multilayer graphene dispersion is jetted from a sealed vessel in which a liquid phase composed of the multilayer graphene dispersion of Example 3 and a gas phase containing a vapor of a liquefied gas are sealed on a sapphire substrate having a diameter of 6 mm. (Spray coating), a multilayer graphene layer having a mass of 0.340 mg was prepared and set in a measurement container made of Pt-Rh. The thermal stability of the multilayer graphene layer was measured by thermogravimetry (TG) from room temperature to 1000 ° C. in an inert gas atmosphere using a thermobalance (TG 209 F1 Libra (registered trademark)) (FIG. 12). ).
  • FIG. 7 is a photograph showing the appearance after blackening the surface of the vertical stainless steel plate. 1 is based on the conventional product, and 2 is based on the multilayer graphene dispersion of Example 1. As a conventional product, black lube (manufactured by Odek Corporation) was used.
  • the thermal diffusivity of a material is a material-specific property that characterizes unstable heat conduction. This value represents how fast the material reacts to temperature changes.
  • the thermal diffusivity was measured using a flash analyzer (LFA 467 HT HyperFlash, Netch Japan Co., Ltd.). Measurement conditions: Position: C, Spotsize / mm: 12.7, Filter /%: O, Sensor: MCT (HgCdTe), Lamp: LFA467 HyperFlash, Purge 2 MFC: HELIUM, Protective MFC: HELIUM
  • Example 3 For the blackening treatment, the multilayer graphene dispersion of Example 3 was used.
  • Graphit 33 (CRC Industries Europe, Belgium) widely used for blackening treatment in thermophysical property measurement was used as a conventional product.
  • the blackening treatment according to the present invention provides a value closer to the theoretical value of molybdenum compared to the conventional product.
  • NPA-2 Natural Tungsten Co., Ltd., diameter 10mm
  • NMIJ CRM 5807a Al 2 O 3 -TiCCeramics
  • the graphite weight and thermal diffusivity were measured (FIG. 13).
  • the same measurement was performed using Graphit 33 and black lube as conventional products (FIG. 13). From the measurement results shown in FIG.
  • the amount of graphene sprayed (spray coating) at a time is smaller than that of the conventional blackening agent, and the fine multilayer graphene is biased to the surface of the sample piece. It was suggested that not only the influence of the graphite layer on the thermal diffusivity can be minimized, but also thin plates and thin films can be easily evaluated.
  • Application example 4 After depositing gold on both sides of a polyimide film (Kapton (registered trademark), manufactured by Toray DuPont) having a thickness of 25 ⁇ m and a diameter of 10 mm using an ion coater (manufactured by Eiko Engineering), the multilayer graphene dispersion of Example 3 was used. After performing the blackening treatment, the thermal diffusivity was measured, and the average of the results of three measurements was 0.11 mm 2 / s (FIG. 14). From the measurement results shown in FIG.
  • a polyimide film Kerpton (registered trademark), manufactured by Toray DuPont) having a thickness of 25 ⁇ m and a diameter of 10 mm using an ion coater (manufactured by Eiko Engineering
  • the multilayer graphene dispersion according to the present invention is also effective for the evaluation of organic thin films.
  • the gap between the die inner wall and the punch is about 0.2 mm.
  • the gap between the die inner wall and the punch is 10 ⁇ m or less. It is necessary to fill.
  • a coating film is produced by spraying on the inner wall of the die and the outer peripheral surface of the punch, and the copper sintered body and alumina are made from the metal copper powder and alumina powder as raw materials. A sintered body was produced.

Abstract

本発明は、試料表面に多層グラフェンを含む薄くて均一な塗膜を瞬時に作製できる多層グラフェン分散液、黒化効果に優れた熱物性測定用黒化剤、および離型・潤滑効果に優れた粉末焼結用離型剤・潤滑剤を提供する。本発明の多層グラフェン分散液は、有機溶媒および液化ガスを含有する液相に多層グラフェンが分散されていることを特徴とする。本発明の熱物性測定用黒化剤は、熱物性測定用試料の表面に黒化膜を形成させるための黒化剤であって、前記多層グラフェン分散液からなる。また、本発明の粉末焼結用離型剤・潤滑剤は、粉末焼結において焼結用型と焼結体との間に分離層を形成させるための離型剤・潤滑剤であって、前記多層グラフェン分散液からなる。

Description

多層グラフェン分散液、熱物性測定用黒化剤および粉末焼結用離型剤・潤滑剤
 本発明は、多層グラフェン分散液、熱物性測定用黒化剤および粉末焼結用離型剤・潤滑剤に関する。
 従来、材料の熱伝導率を把握することが非常に重要とされており、熱伝導率を短時間で測定できるフラッシュ法が、生産現場をはじめとする、各研究機関や大学等において広く利用されている。
 このフラッシュ法では、透光性が高い試料や、表面が白色や鏡面で光を吸収し難い試料について、パルス加熱光の吸収性を高くするために試料の両面を黒化処理することが必要である。この黒化処理が熱物性測定において重要な作業であるが、黒化処理のための黒化剤が開発されておらず、市販のエアゾールタイプの黒鉛型の離型剤や潤滑剤が流用されているのが現状である。
 従来、黒化剤や熱物性測定の手法、また、粉末焼結の手法として以下の技術が開示されている。
 特許文献1には、熱物性測定用試料の表面に、最初に必要に応じて金属膜スピンコートし、その上に液体墨等のカーボンブラックを含む液体を用いたスピンコーティングにより黒化膜を形成することで、測定精度を向上させることが開示されている。しかし、スピンコーティングのための装置が必要で、作業が複雑であり、また小さい試験片への表面処理が難しい。
 特許文献2には、平板状の測定試料の両側または片側に対向設置した半球面鏡により、試料表面に照射されたレーザビームの反射光を再び試料表面に戻してレーザビームの吸収率を高め、および/または試料裏面からの熱放射を多重反射させて試料裏面の見掛けの放射率を高め、試料への黒色塗料のコートなしに熱拡散率を測定する半球面鏡式レーザフラッシュ方式による熱拡散率測定方法が開示されている。この技術は、試験片表面への黒化剤による黒化処理を必要としない方法であるが、市販の装置には適用できず実用性に改善の余地がある。
 非特許文献1には、熱拡散率測定の結果に影響を与える大きな要因である黒化処理に注目し、その影響を評価し測定精度を明確にすることを目的とした研究として、市販の汎用黒鉛スプレーを用いて、黒化処理の個人差および黒化処理膜厚による測定精度への影響を調べた結果が記載されている。
 スプレー塗布以外の黒化処理方法(特許文献1)や、黒化処理が必要ない方法(特許文献2)が提案されたが、いずれも簡便な方法とは言えない。前述したような市販のエアゾールタイプの黒鉛型の離型剤や潤滑剤を用いて、スプレー塗布により試料の両面を黒化処理する方法は簡便であるが、試料表面に塗膜を薄くて均一に且つ瞬時に作製することが困難である。また、銅のような熱伝導率が高い試料や、厚さが数mm程度の薄い試料の熱伝導率を高精度で測定するためにも、新しいタイプの黒化剤が求められている。
 グラフェンは次世代の材料として期待されているナノ炭素材料であり、従来の黒鉛微粒子、カーボンブラック等のカーボン粒子とは異なる特性を有し、産業界における応用開発が進められ、多数の応用技術が提案された。特に、その透明性および導電性を活かしてフレキシブルディスプレイ等への応用が注目されている。多層グラフェン分散液に関する技術としては、特許文献3~6の技術等が提案されている。特許文献3には、多層グラフェン、炭素数12~30の炭化水素基とノニオン性基を有する重合体、およびケトン系有機溶媒を含有する多層グラフェン分散液が提案されている。特許文献4には、有機溶剤中のグラフェンを、電荷移動錯体を構成する電子受容体有機分子で修飾したグラフェン第1溶液と、有機溶剤中のグラフェンを、電荷移動錯体を構成する電子供与体有機分子で修飾したグラフェン第2溶液とを基板に塗布する技術が提案されている。特許文献5には、アルカリ金属塩を用いるグラフェン溶液の製造方法が提案されている。特許文献6には、水系の分散液であるグラフェンシート有機分散体の製造方法が提案されている。
 しかし、これらの従来技術においては、グラフェンの黒化剤としての用途や、フラッシュ法による熱拡散係数の測定における黒化剤としての用途については検討されていない。
 また、市販のエアゾールタイプの黒鉛型の離型剤や潤滑剤は粉末焼結において金型の表面に離型・潤滑目的の塗膜の作成に広く使われているが、生産効率の向上および焼結体の寸法精度を向上させるためにより薄くて均一に短時間で塗膜を作製できるエアゾールタイプの離型剤や潤滑剤が求められている。特許文献8には、グラフェン系ナノカーボンを水に分散させた水系潤滑液組成物が提案されている。特許文献9には、グラフェン系ナノカーボンを潤滑油に分散させた潤滑油組成物が提案されている。これらの従来技術においては、グラフェン系ナノカーボン含有分散液は、切削加工等各種機械部品の摩耗低減の目的で液状潤滑剤として用いられることが提案されているが、粉末焼結用の金型表面に離型・潤滑塗膜を作成するための離型剤・潤滑剤としての用途については検討されていない。従来技術のグラフェン系ナノカーボン含有分散液は、金型表面に薄くて均一な塗膜を瞬時に作製できないため、粉末焼結用離型剤・潤滑剤、特に放電プラズマ焼結(Spark Plasma Sintering)用離型剤・潤滑剤としての用途に相応しくない。
特開2007-327851号公報 特開平10-123075号公報 特開2015-199623号公報 特開2011-63492号公報 特表2013-510787号公報 特開2015-59079号公報 特開2013-212948号公報 特開2016-098279号公報 特開2016-069482号公報
「熱拡散率測定における黒化処理の影響:東京都立産業技術研究センタ研究報告,第10号,2015年 J. H. Lee et al.: "Graphene in Edge-Carboxylated Graphite by Ball Milling and Analyses Using Finite Element Method" International Journal of Materials Science and Applications 2013; 2(6): 209-220
 本発明は、以上の通りの事情に鑑みてなされたものであり、試料表面に多層グラフェンを含む薄くて均一な塗膜を瞬時に作製できる多層グラフェン分散液を提供することを課題としている。
 また本発明は、試料表面に多層グラフェンを含有する薄くて均一な塗膜を瞬時に作製でき、黒化効果に優れた熱物性測定用黒化剤を提供することを課題としている。
 また本発明は、金型表面に多層グラフェンを含有する薄くて均一な塗膜を瞬時に作製でき、離型・潤滑効果に優れた粉末焼結用離型剤および/または潤滑剤を提供することを課題としている。
 また本発明は、上記に加えて、分散安定性および再分散性に優れた多層グラフェン分散液、熱物性測定用黒化剤および粉末焼結用離型剤および/または潤滑剤を提供することを別の課題としている。
 上記の課題を解決するために、本発明の多層グラフェン分散液は、有機溶媒および液化ガスを含有する液相に多層グラフェンが分散されていることを特徴とする。この多層グラフェン分散液において、前記多層グラフェンは、炭素純度90質量%以上、厚さ1nm~1Onmであることが好ましい。この多層グラフェン分散液において、前記多層グラフェンは、平均粒径が1μm~10μmであることが好ましい。この多層グラフェン分散液において、前記有機溶媒は、速乾性溶媒を含有することが好ましい。この多層グラフェン分散液において、前記多層グラフェンの分散剤である有機高分子を含有することが好ましい。この多層グラフェン分散液において、前記多層グラフェンは、酸化グラフェンを含むことが好ましい。
 本発明の熱物性測定用黒化剤は、熱物性測定用試料の表面に黒化膜を形成させるための黒化剤であって、前記多層グラフェン分散液からなる。この熱物性測定用黒化剤は、前記液化ガスの蒸気を含む気相の加圧力により噴射して使用されることが好ましい。
 本発明の粉末焼結用離型剤・潤滑剤は、粉末焼結において焼結用型と焼結体との間に分離層を形成させるための離型剤・潤滑剤であって、前記多層グラフェン分散液からなる。この粉末焼結用離型剤・潤滑剤は、前記液化ガスの蒸気を含む気相の加圧力により噴射して使用されることが好ましい。
 本発明の多層グラフェン分散液封入体は、前記多層グラフェン分散液が、前記液化ガスが液相と気相で蒸気圧平衡を保ちながら封入された封入容器と、前記封入容器に設けられた弁体と、前記弁体を開放することで、前記気相の加圧力により前記多層グラフェン分散液を前記封入容器から噴射させる手段とを備えている。この多層グラフェン分散液封入体は、熱物性測定用試料の表面に黒化膜を形成させるために使用されることが好ましい。また、この多層グラフェン分散液封入体は、粉末焼結(例えば、放電プラズマ焼結)において焼結用型と焼結体との間に分離層を形成させるために使用されることが好ましい。
 本発明の多層グラフェン分散液によれば、固体表面に多層グラフェンを含む薄くて均一な塗膜を瞬時に作製できる。
 また、本発明の熱物性測定用黒化剤によれば、試料表面に多層グラフェンを含有する薄くて均一な塗膜を瞬時に作製でき、黒化効果に優れている。本発明の熱物性測定用黒化剤で作製した多層グラフェンを含む塗膜による黒化処理によって、銅のような熱伝導率が高い試料や、厚さが数mm程度以下の薄い金属試料の熱伝導率を正確に測定することができる。
 また、本発明の粉末焼結用離型剤・潤滑剤によれば、粉末焼結において使用される焼結用型(例えば、放電プラズマ焼結における黒鉛製型(等方性黒鉛))表面に多層グラフェンを含有する薄くて均一な塗膜を瞬時に作製でき、離型・潤滑効果に優れている。前記焼結用型と粉末焼結体との接触面に多層グラフェンを含む薄くて均一な塗膜を形成させることにより、焼結用型から焼結体をよりスムーズに押し出させることや、高価な焼結用型の摩損を低減することで焼結用型の使用寿命を延ばすことができる。
 また本発明の多層グラフェン分散液、熱物性測定用黒化剤および粉末焼結用離型剤・潤滑剤によれば、多層グラフェンの平均粒径などを調整することで、さらに分散安定性および再分散性にも優れている。
実施例1の概略構成を説明する図である。Aは実施例1の基本構造を示す概念図、Bは実施例1において作製された実物の写真である。 実施例1に使用された多層グラフェン粒子の粒度分布の測定結果を示した図である。 実施例2に使用された多層グラフェン粒子の粒度分布の測定結果を示した図である。 実施例3に使用された多層グラフェン粒子の粒度分布の測定結果を示した図である。 実施例4に使用された多層グラフェン粒子の粒度分布の測定結果を示した図である。 実施例5に使用された多層グラフェン粒子の粒度分布の測定結果を示した図である。 垂直ステンレス板の表面に黒化処理した後の外観を示す写真である。1は従来品によるもの、2は実施例1の黒化剤によるものを示す。 実施例1に使用された多層グラフェン粒子の走査型電子顕微鏡写真である。 実施例4に使用された多層グラフェン粒子の走査型電子顕微鏡写真である。 実施例1の多層グラフェンのXRDによる測定結果を示した図である。 実施例4の多層グラフェンのXRDによる測定結果を示した図である。 実施例3の多層グラフェン分散液を用いて作製した多層グラフェン層の熱重量測定(TG)の結果を示した図である。 表面に黒化処理した厚みの異なるAl2O3-TiCCeramicsのグラファイト重量および熱拡散率の測定結果を示した図である。縦軸は熱拡散率(mm2/s)であり、横軸はグラファイト重量(mg)の対数表示である。 表面に金蒸着してから黒化処理したポリイミドフィルムの熱拡散測定における温度上昇曲線を示した図である。 実施例3の多層グラフェン分散液を用いて得られた塗膜の走査型電子顕微鏡写真である。
 以下に、本発明を詳細に説明する。
 本発明の多層グラフェン分散液は、有機溶媒および液化ガスを含有する液相に多層グラフェンが分散されていることを特徴とする。本発明の特徴の一つは、密閉された封入容器内に多層グラフェンと有機溶媒と液化ガスとを共存させ、この多層グラフェン分散液からなる液相と、液化ガスの蒸気を含む気相とを封入容器内に封入することで、気相の加圧力により封入容器から多層グラフェン分散液を噴射(スプレー塗布)することにより、瞬時に多層グラフェン塗膜を作製できることである。
 本発明の多層グラフェン分散液に使用される多層グラフェンについて説明する。なお、本明細書において「グラフェン」、「多層グラフェン」、「酸化グラフェン」、「グラファイト」の意味は、技術常識に基づいて解釈されるが、特に以下の内容を意図している。
グラフェン:グラフェンとは、炭素原子がハチの巣状に6角形のネットワークを形成したシートである。グラフェンは、独特な機械的、熱的、電子的、光学的性質を有し、フレキシブルディスプレイ、トランジスタ、光学センサ、RFID、太陽電池、二次電池、燃料電池、スーパーコンデンサ、導電インクなど、様々な産業分野での活用が期待される。
多層グラフェン:グラフェンが積層化され複数層とされたもので、厚さがlnm~lOnmの片状物質である。
酸化グラフェン:グラフェンに酸素官能基がついたもので、グラファイトを酸化反応により剥離した炭素原子1~数層の片状物質である。
グラファイト:グラフェンが積層化され複数層とされたもので、厚さがlOnmを超える片状物質である。グラファイトは、天然黒鉛と人造黒鉛の、大きく二種類に分けられる。
 本発明に使用される多層グラフェンは、その製造方法は特に限定されるものではなく、市販の多層グラフェン粉末を使用してもよい。本発明に使用される多層グラフェンは、炭素純度90質量%以上であることが好ましい。多層グラフェンの中に単層グラフェン、酸化グラフェン粒子、カーボンブラック粒子、黒鉛微粒子等のカーボン粒子が含まれていてもよい。多層グラフェン中の炭素の純度が質量分率で90%未満であると、分散安定性が悪くなり、黒化効果が著しく落ちる等の不具合が生じる場合がある。
 種々の多層グラフェンの中で、天然黒鉛を剥離する方法により大量生産された多層グラフェン粉末は安価で、容易に入手できるため本発明に好ましく使用される。市販の多層グラフェンは、その厚みはlnm~l0nmで、面の大きさがlμm~20μmのものが多い。例えば、グラフェンプラットフォーム株式会社(東京都)が製造販売している「グラフェンパウダー」、XG Sciences, Inc. (Michigan、U.S.A.)が製造販売している「グラフェン・ナノプレートレット」(Graphene Nanoplatelets)、Garmor Inc. (Florida、U.S.A.)が製造販売している「エッジ酸化グラフェンJ (Graphene Oxide (edge-oxidized))が挙げられる。これらは製品の名称がそれぞれ異なるが、いずれも本明細書の多層グラフェンの範囲に属する。
 また、グラフェンの端部に官能基が付けられているもの、すなわち、部分酸化グラフェンを用いることができる。部分酸化グラフェンの製造方法は特に限定されない。例えば、公知技術(非特許文献2)により製造可能である。
 また、前記部分酸化グラフェンのほかに、技術常識に基づいて解釈される酸化グラフェンを用いることができる。酸化グラフェンは様々な合成法があり、その酸化度によって性能や用途が異なる。酸化グラフェンは一般的にグラフェンシートに水酸基、エポキシ基、カルボキシル基を持った構造をとっており、極性溶媒に対する分散性を示す。また、酸化グラフェンは、グラフェンと異なる性質を示す。酸化グラフェンの製造方法は特に限定されない。例えば、公知技術(特許文献7)により製造可能である。
 本発明に使用される多層グラフェンは、厚さが1nm~1Onmであり、2nm~8nmが好ましく、3nm~7nmがより好ましい。多層グラフェンが薄過ぎると、単層グラフェンの性質に近くなり透明性が増すため、黒化効果が低下する。また、多層グラフェンが厚過ぎると、黒鉛の性質に近くなり分散安定性が悪くなる。
 本発明に使用される多層グラフェンは、平均粒径が1μm~10μmであることが好ましく、2μm~6μmがより好ましい。ここで多層グラフェン粒子の平均粒径は、レーザ回折/散乱式粒度分布測定装置を用いて測定した粒子径分布曲線における下限または上限からの頻度の累積値が50%になったところの粒子径であるメジアン径として求めることができる。多層グラフェンの粒径が大き過ぎると、多層グラフェン分散液の分散安定性が悪くなる傾向がある。多層グラフェンの粒径が小さ過ぎると、逆に凝集が起こりやすくなる傾向がある。
 本発明に使用される多層グラフェンは、市販の多層グラフェン粒子の二次元の大きさを粉砕加工によって適宜な大きさに調整すること、あるいは市販の種々の多層グラフェン粉末の中から適宜な大きさを有するものを選択することで、粒径を上記のような範囲とすることが望ましい。多層グラフェン粉末を適宜な大きさに粉砕加工する方法は、特に限定されるものではなく、公知の微粉砕技術および装置を適用することができる。例えば、通常市販されているボールミル、遊星ボールミル、ビーズミル等の媒体攪拌型ミルまたはジェットミルが適用できる。この際には、望ましい粒度範囲に粒度を調整すると同時に、過度に粉砕せず、あるいはグラフェンの結晶構造を壊してアモルファス化させないように適切な条件を定めることが望ましい。例えば、レーザ回折/散乱法による粒度分布測定および粉末X線回折法による結晶構造分析に基づいて適切な粉砕条件を定めることができる。
 本発明の多層グラフェン分散液における多層グラフェンの質量分率は、0.20%~2.00%が好ましく、0.5%~1.50%がより好ましい。多層グラフェンの質量分率が少な過ぎると、黒化効果が低下し、多層グラフェンの質量分率が多過ぎると、グラフェン塗膜が不均一になりやすい。
 次に、本発明の多層グラフェン分散液の好ましい製造手順を説明する。なお、以下の説明を含む本明細書における分散安定性および再分散性の意味は下記の通りである。
分散安定性:分散安定性とは、多層グラフェン粒子と有機溶媒と液化ガスとを共存させた状態において、多層グラフェン粒子が沈降や凝集を起こさずに安定することを指す。
再分散性:再分散性とは、多層グラフェン粒子と有機溶媒と液化ガスとを共存させた状態において、多層グラフェン粒子の沈降は見られるものの、容器を振る方法で容易に前の分散状態に戻せることをいう。
 まず、多層グラフェン粉末を有機溶媒に分散させることにより原液Iを調製する。
 原液Iの作製に使用される有機溶媒は、多層グラフェン粒子を安定に分散させものであれば特に限定されるものではない。具体的には、例えば、メタノール、エタノール、2-プロパノール、1-ブタノール、1-メトキシ-2-プロパノールなどの炭素数1~4の1価アルコールや多価アルコール類、多価アルコール類の誘導体、ケトン類、エステル類、エーテル類、カーボネート類などを必要に応じて2種以上組み合わせて有機溶媒とすることができる。
 安全性が高く入手しやすいことから、アルコールを主体とするアルコール系溶媒を使用することが好ましい。2-プロパノールは、ヒドロキシ基による水素結合性を持つことからアルコールなどの極性溶媒と相溶し、同時に、相対的に大きな疎水性基(イソプロピル基)を持つためにエーテルなどの非極性溶媒にも相溶する両親媒性を示すため、好適である。また、多層グラフェン粒子の分散安定性を向上させることが可能であるため、2-プロパノールをベースにした複数種のアルコールの混合溶媒が好ましく使用される。
 本発明の多層グラフェン分散液は、多層グラフェンの分散剤である有機高分子を含有することが好ましい。分散剤である有機高分子を配合することで、分散安定性を向上させることができる。分散剤の有機高分子は、原液Iの作製に使用される有機溶媒に溶解するものであれば特に限定されるものではなく、例えば、エチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、カルボキシメチルセルロースナトリウム等の繊維素誘導体、(メタ)アクリル酸系共重合体、N-ビニル-2-ピロリドン系共重合体、ポリビニルピロリドン等が挙げられる。
 これらの中でも、分散効果に優れる点からエチルセルロースが好ましい。エチルセルロースは、アルコールをはじめ多くの有機溶媒に可溶で、多層グラフェン粒子の表面に吸着して多層グラフェン粒子間の凝集を抑制する効果がある。また、エチルセルロースは、有機溶媒を蒸発させる際に、多層グラフェン粒子の凝集を抑え、試料表面に均一な塗膜を形成するために重要な役割を果たす。本発明の多層グラフェン分散液におけるエチルセルロースの質量分率は、0.10%~1.00%が好ましく、0.3%~1.00%がより好ましい。エチルセルロースの質量分率が少な過ぎると、多層グラフェンの分散安定性が低下し、エチルセルロースの質量分率が多過ぎると、再分散性が低下する。
 原液Iの作製において、有機溶媒に多層グラフェンを分散する方法は特に限定されるものではなく、例えば、超音波ホモジナイザ、ボールミル、ビーズミル、攪拌機等を使用できる。超音波ホモジナイザは、操作簡便であることから好ましく使用される。
 次に、前記原液Iと速乾性溶媒を配合することにより原液IIを調製する。
 有機溶媒の一部として速乾性溶媒を配合することで、多層グラフェンを含む塗膜を、薄くて均一に且つ瞬時に作製できる。ここで速乾性溶媒としては、例えば、常圧での沸点が30~80℃の有機溶媒を用いることができる。速乾性溶媒は、前記の多層グラフェン粒子を分散させるための有機溶媒との相溶性が良好であれば、特に限定されるものではなく、例えば、アルコール系溶媒との相溶性が良好なジクロロメタン、シクロペンタン、シンナー等が挙げられる。これらの中でも、比較的に有害性の低いシクロペンタンが好ましい。
 原液Iにアルコール系溶媒を使用した場合、原液IIにおけるアルコール系溶媒と速乾性溶媒との質量比(アルコール系溶媒:速乾性溶媒)は、20:80~40:60が好ましい。アルコール系溶媒の配合比が少な過ぎると、多層グラフェン粒子の分散安定性が低下する。有機溶媒の配合比が多過ぎると、速乾性が低下する。
 次に、前記原液IIを、封入容器内に充填させる。その後、封入容器内に液化ガスを注入することにより、本発明の多層グラフェン分散液が製造される。
 本発明に使用する液化ガスは、臨界温度が高いことと常温付近で加圧することにより簡単に液化されることが可能であれば、特に限定される必要がない。例えば、液化石油ガス(LPG)とジメチルエーテル(DME)が使用可能である。ジメチルエーテルは安全性が比較的高いため好ましい。これらの液化ガスを大気中に噴射させると容積が例えば200300倍の気相のガスになる。この急激な膨張が多層グラフェン粒子を細かく分散させる。従って、多層グラフェン粒子を均一に試験片の表面に吹き付けできるため、均一に黒化処理をすることができる。
 熱物性測定用黒化剤としてスプレー塗布により適切な黒化処理を行うために、また、粉末焼結用離型剤・潤滑剤としてスプレー塗布により適切な離型・潤滑処理を行うために、多層グラフェンを分散させる液相におけるDMEの配合質量分率は、60%~90%が好ましく、70%~80%がより好ましく、73%~75%がさらに好ましい。DMEの配合量が少な過ぎると、多層グラフェンを含む塗膜が不均一になりやすい。また、DMEの配合量が多過ぎると、同様に多層グラフェンを含む塗膜が不均一になりやすい。
 本発明の多層グラフェン分散液は、従来のエアゾール製品と同様な方式で使用することできる。すなわち本発明の多層グラフェン分散液は、次の多層グラフェン分散液封入体として使用することができる。この多層グラフェン分散液封入体は、本発明の多層グラフェン分散液が、液化ガスが液相と気相で蒸気圧平衡を保ちながら封入された封入容器と、封入容器に設けられた弁体と、弁体を開放することで、気相の加圧力により多層グラフェン分散液を封入容器から噴射させる手段とを備えている。この多層グラフェン分散液封入体は、熱物性測定用試料の表面に黒化膜を形成させるために好適に使用することができる。また、この多層グラフェン分散液封入体は、粉末焼結において焼結用型と焼結体との間に分離層を形成させるために好適に使用することができ、特に、放電プラズマ焼結において黒鉛製型(等方性黒鉛)と焼結体との間に分離層を形成させるためにより好適に使用することができる。
 封入容器は、多層グラフェン分散液を密閉できるものであれば特に限定されるものではないが、例えば、弁体付き蓋と、この弁体付き蓋を取り付けることによって内部に密閉空間を形成する耐圧容器本体とを備えたものを用いることができる。耐圧容器本体は、例えば、ガラス容器などを用いることができる。封入容器は、例えば、内容積が200ml~l500mlのものを使用することができる。
 弁体は、閉止時に多層グラフェン分散液を密閉できる弁機構を有するものであれば特に限定されず、各種のものを使用できる。
 弁体を開放することで、気相の加圧力により多層グラフェン分散液を封入容器から噴射させる手段は、特に限定されるものではないが、例えば、噴射ボタンなどの弁体を開放させる機構と、耐圧容器内の液相に下端を浸漬し上端を弁体に連通させた、ディップチューブなどの管体とから構成されるものなどが挙げられる。
 図1Aは、多層グラフェン分散液封入体の一例を示す。同図において符号1は弁体付き蓋を取り付けた透明耐圧ガラス容器、符号2はディップチューブ、符号3は気相(ジメチルエーテル)、符号4は多層グラフェン粒子とエチルセルロース(分散剤)と2-プロパノール(有機溶媒)とシクロペンタン(有機溶媒のうち速乾性溶媒)とジメチルエーテル(液化ガス)を含む液相である。透明な耐圧ガラス容器1は、弁体付き蓋およびディップチューブ2が取り付けられたもので、蓋を押すことにより多層グラフェン分散液を放出、噴射させることができる。
 本発明は、従来のエアゾール製品と同様な方式で使用することできる。すなわち、本発明は、200ml~l500mlの弁体を持つ容器内に多層グラフェンが分散された液相IIと液化ガスを注入させた後、噴射ボタンを押すことで弁体を開放させ、液化ガスの蒸気圧力により液相を放出させる方法で多層グラフェンを含む塗膜を作製すること、すなわち、黒化処理や粉末焼結用の金型表面の離型・潤滑処理などを行うことができる。
 以上に説明した本発明の多層グラフェン分散液によれば、固体表面に多層グラフェンを含む薄くて均一な塗膜を瞬時に作製でき、また多層グラフェンの平均粒径などを調整することで、分散安定性および再分散性にも優れている。この点から、本発明の多層グラフェン分散液は、熱物性測定用黒化剤に使用できる他、帯電防止、熱吸収等への応用や、潤滑剤、離型剤の効果が期待される。
 そして本発明の熱物性測定用黒化剤は、熱物性測定用試料の表面に黒化膜を形成させるための黒化剤であって、本発明の多層グラフェン分散液からなる。本発明の熱物性測定用黒化剤は、好ましくは、多層グラフェン分散液に含まれる液化ガスの蒸気を含む気相の加圧力により噴射して使用される。
 本発明の熱物性測定用黒化剤によれば、試料表面に多層グラフェンを含有する薄くて均一な塗膜を瞬時に作製でき、黒化効果に優れている。また多層グラフェンの平均粒径などを調整することで、分散安定性および再分散性にも優れている。本発明の熱物性測定用黒化剤は、例えば、熱伝導率を短時間で測定できるフラッシュ法において試料の両面を黒化処理するために用いることができる。本発明の熱物性測定用黒化剤で作製した多層グラフェンを含む塗膜による黒化処理によって、銅のような熱伝導率が高い試料や、厚さが数mm程度以下の薄い金属試料の熱伝導率を正確に測定することができる。
 そして本発明の粉末焼結用離型剤・潤滑剤は、粉末焼結において焼結用型と焼結体との間に分離層を形成させるための離型剤・潤滑剤であって、本発明の多層グラフェン分散液からなる。本発明の粉末焼結用離型剤・潤滑剤は、好ましくは、多層グラフェン分散液に含まれる液化ガスの蒸気を含む気相の加圧力により噴射して使用される。
 本発明の粉末焼結用離型剤・潤滑剤によれば、粉末焼結用の金型表面に多層グラフェンを含有する薄くて均一な塗膜を瞬時に作製でき、離型・潤滑効果に優れている。また多層グラフェンの平均粒径などを調整することで、分散安定性および再分散性にも優れている。本発明の粉末焼結用離型剤・潤滑剤は、例えば、放電プラズマ焼結において使用される黒鉛製型(等方性黒鉛)との接触面に多層グラフェンを含む薄くて均一な塗膜、すなわち分離層を形成させるために用いることができる。本発明の粉末焼結用離型剤・潤滑剤で作製した多層グラフェンを含む塗膜による粉末焼結用金型の表面処理によって、金型から焼結体をよりスムーズに押し出させることや、高価な金型の摩損を低減することで金型の使用寿命を延ばすことができる。
 以下に、実施例により本発明をさらに詳しく説明するが、本発明はこれらの実施例に何ら限定されるものではない。
1.測定方法
(1)粒径測定
 レーザ回折・散乱式粒度分布測定法により行われた(図2~図6)。使用装置は堀場製作所の粒度分布測定装置(LA-950V2型)、具体測定条件は以下の通りである。
  分散媒:2-プロパノール
  前分散処理:なし
  測定方式:バッチ式セルユニットを使用したバッチ式
  溶媒屈折率:1.378
  試料屈折率:1.920-0.000i
  粒子径基準:体積
  反複回数:15
(2)結晶構造解析
 PANalytical社製粉末X線回折装置(XPERT-PRO MPD)を用いて行った(図10、図11)。具体的な測定条件は以下の通りである。
  走査範囲[°2θ]:      10.000~70.000
  ターゲット          Cu
  X線出力設定          40mA, 45kV
  ステップサイズ[°2θ]    0.017
  スキャンステップ時間/s     3.8762
  スキャンの種類        連続
  試料幅/mm          10.00
  測定温度/℃         25
(3)モルフォロジー観察
 日本電子株式会社製走査型電子顕微鏡(JSM-6610LA)を用いて行った(図8、図9)。前処理として、粉末サンプルをカーボンテープ上に固定した後、金の蒸着を行った。測定の際の加速電圧は20kVであった。
2.多層グラフェン分散液の作製
<実施例1>
 多層グラフェン粉体(Graphene Nanoplatelets、Grade M、厚み5nm、米国XG Sciences社製)3gを、直径5mmのジルコニアボール45gと一緒に容積45mlのジルコニア容器に投入し、遊星ボールミル(P-7型、フリッチュ・ジャパン(株))を用いて、回転数800rpmで12時間粉砕処理し、同じ条件で粉砕処理した多層グラフェン粉体12gを得た。粒径を測定した結果、粉砕後の多層グラフェン粉体のメジアン径は4.2μmであった(図2)。粉砕処理した多層グラフェンの結晶構造は、粉末X線回折法(XRD)により分析した結果、多層グラフェンの結晶構造が粉砕により破壊されていないことが確認できた(図10)。また、走査型電子顕微鏡による観察の結果、12時間粉砕処理した多層グラフェン粒子は薄片形状で、2次元の大きさは数μm程度であることが分かった(図8)。
 表1に示した組成の混合溶媒100mlに分散剤(エチルセルロース、鹿1級、純度1Ocp、関東化学製、製品番号14076-01)5gを添加し、2週間をかけて前記混合溶媒に前記分散剤を含浸させた後に、前記分散剤を完全に溶解させ、透明な液状体になるまで攪拌を行った。次に、前記分散剤含有混合溶媒に、前記12時間粉砕処理したグラフェン粉末10gを投入し、超音波ホモジナイザ(VCX-750、米国ソニックス&マテリアル社製)を用いて、80%の出力で、15分間超音波照射によりグラフェン粉末を分散させ、原液Iを作製した。次に、4.5g原液Iを1OOmlのビーカーに入れた後、速乾性溶媒としてシクロペンタン10.5gを攪拌しながら添加し原液IIを調製した。次に、12.5gの前記原液IIを、内容量1OOmlの透明な耐圧ガラス容器に投入した後、前記耐圧ガラス容器に35.6gの液化ガスDMEを注入することにより、多層グラフェン分散液を得た(図1A、B)。なお、前記透明な耐圧ガラス容器は、弁体付き蓋およびディップチューブが取り付けられたもので、蓋を押すことにより多層グラフェン分散液を放出させることができる。この多層グラフェン分散液は、前記容器内の液相と、液相の構成成分の一つである液化ガスDMEからなる気相とが共存している。
Figure JPOXMLDOC01-appb-T000001
<実施例2>
 実施例1の多層グラフェン粉体の粉砕処理の時間は6時間で、それ以外はすべて実施例1と同じ条件で多層グラフェン分散液を作製した。粒径を測定した結果、6時間で粉砕処理した多層グラフェン粉体のメジアン径は7.0μmであった(図3)。
<実施例3>
 多層グラフェン粉体は、エッジ酸化グラフェン(Graphene Oxide (edge-oxidized)  Garmor Inc.(Florida、U.S.A.)製)を用いた。粉砕処理しないで、実施例1と全く同じ条件で多層グラフェン粉体の分散処理を行い、多層グラフェン分散液を作製した。本実施例の多層グラフェン粉体の粒径を測定した結果、そのメジアン径は3.5μmであった(図4)。
<実施例4>
 多層グラフェン粉体は、Graphene Nanoplatelets(Grade M、米国XG Sciences社製)を用いた。粉砕処理なしで、実施例1と全く同じ条件で多層グラフェン粉体の分散処理を行い、多層グラフェン分散液を作製した。本実施例の多層グラフェン粉体の粒径を測定した結果、そのメジアン径は、13.lμmであった(図5)。粉末X線回折法(XRD)により分析した結果、本実施例の多層グラフェン粉体は実施例1の多層グラフェン粉体と同じ結晶構造を持つことが分かった(図11)。また、走査型電子顕微鏡による観察の結果、本実施例の多層グラフェン粒子は薄片形状で、2次元の大きさは実施例1の粉砕処理した多層グラフェン粒子より大きいことが分かった(図11)。
<実施例5>
 実施例1の多層グラフェン粉体の粉砕処理の時間は3時間で、それ以外はすべて実施例1と同じ条件で多層グラフェン分散液を作製した。粒径を測定した結果、3時間で粉砕処理した多層グラフェン粉体のメジアン径は10.8μmであった(図6)。
<実施例6>
 実施例1の多層グラフェン粉体の分散処理において混合溶媒100mlに分散剤(エチルセルロース、鹿1級、純度1Ocp、関東化学製、製品番号1407601)1gを添加した。それ以外はすべて実施例1と同じ条件で多層グラフェン分散液を作製した。
<実施例7>
 実施例1の多層グラフェン粉体の分散処理において混合溶媒100mlに分散剤(エチルセルロース、鹿1級、純度1Ocp、関東化学製、製品番号14076-01)1Ogを添加した。それ以外は、すべて
実施例1と同じ条件で多層グラフェン分散液を作製した。
3.評価
[分散安定性と再分散性の評価]
 液化ガスが含まれている微粒子分散液の分散安定性と再分散性を評価できる既存装置および規格が存在しないため、経験に基づいて、以下の目視法により分散安定性と再分散性の評価を行った。
・分散安定性の評価
 12.5g原液IIを内容量1OOmlの弁を持つ透明耐圧ガラス容器内に充填した後、35.6gの液化ガスを注入する。次に、手振りにより容器を1分間で30回繰り返し上下を反転させ、十分に混合分散させた後、24時間で静置する。多層グラフェン粒子の沈降を目視により確認する。評価基準は、沈殿および液層の分離が全く生じない場合はA、少量生ずる場合はB、多量に生じる場合はCとして評価する。
・再分散性の評価
 分散安定性を評価した後、再度容器を1分間で30回繰り返し上下を反転させ、十分に混合分散させた後に、内容物である液相約30mlを残すように一部を放出させる。次に容器1ヶ月間を静置する。次に手振りにより容器を6秒間3回繰り返し上下反転させた後、直ちに容器を45°で傾斜させ、容器底部に残留する未分散凝集物の量を目視で確認する。評価基準は、未分散凝集物が全くない場合はA、少量ある場合はB、多量にある場合はCとして評価する。
Figure JPOXMLDOC01-appb-T000002
[熱安定性の評価]
 直径6mmのサファイア基板上に、実施例3の多層グラフェン分散液からなる液相と、液化ガスの蒸気を含む気相とを封入した封入容器から、気相の加圧力により多層グラフェン分散液を噴射(スプレー塗布)して、質量0.340mgの多層グラフェン層を作製し、Pt-Rh製の測定容器にセットした。この多層グラフェン層の熱安定性を、熱天秤(TG 209 F1 Libra(登録商標))を使用し、不活性ガス雰囲気中で室温から1000℃までの熱重量測定(TG)を行った(図12)。
 図12に示す測定結果について、200℃付近から330℃までの間に見られる-42.13%の重量減少は、多層グラフェン分散液中に含まれるエチルセルロース(分散剤)に由来する重量減少であると推定され、330℃から1000℃までの-15.33%の重量減少が、多層グラフェンの重量減少に相当すると推定された。また、測定後の測定容器中には、多層グラフェンが残っていたことから、本発明による多層グラフェン分散液は、高温測定においても比較的安定してフラッシュ法に適用できることが分かった。
[黒化剤への応用]
 図7は、垂直ステンレス板の表面に黒化処理した後の外観を示す写真である。1は従来品によるもの、2は実施例1の多層グラフェン分散液によるものである。従来品はブラックルブ(株式会社オーデック製)を用いた。
 次に、熱物性測定用黒化剤としての金属材料の熱拡散率(a、単位はmm2/s)測定への応用を、従来製品と比較して検証した。材料の熱拡散率は、不安定な熱伝導を特性づける材料固有の特性である。この値は、材料がどれほど速く温度変化に反応するかを表す。熱拡散率の測定はフラッシュアナライザー(LFA 467 HT HyperFlash、ネッチ・ジャパン(株))を用いて行った。測定条件:Position:C、Spotsize/mm:12.7、Filter/%:O、Sensor:MCT(HgCdTe)、Lamp:LFA467 HyperFlash、Purge 2 MFC:HELIUM、Protective MFC:HELIUM
 黒化処理には、実施例3の多層グラフェン分散液を用いた。また対比のために従来製品として、熱物性測定においての黒化処理に広く使用されているGraphit 33 (CRC Industries Europe, Belgium製)を用いた。
応用例1
 厚み1.218mm、直径25.200mmの銅試験片の両面に、実施例3の多層グラフェン分散液を用いて黒化処理を行った後、熱拡散率を測定し、三回測定した結果の平均値が116.506±0.118mm2/s(298.7K)であった。一方、従来品を用いて黒化処理を行った後、熱拡散率を測定し、三回測定した結果の平均値が115.231±0.053mm2/s(298.6K)であった。銅の熱拡散率の理論値は117mm2/s(300K)であるので、本発明による黒化処理で従来品と比べて銅の理論値に近い値が得られることが分かる。
応用例2
 厚み0.9800mm、直径25.200mmのモリブデン試験片の両面に、実施例3の多層グラフェン分散液を用いて黒化処理を行った後、熱拡散率を測定し、三回測定した結果の平均値が53.790±0.025mm2/s(298.7K)であった。一方、従来品を用いて黒化処理を行った後、熱拡散率を測定し、三回測定した結果の平均値が52.878±0.307mm2/s(298.2K)であった。モリブデンの熱拡散率の理論値は54.3mm2/s(300K)であるので、本発明による黒化処理で従来品と比べてモリブデンの理論値に近い値が得られることが分かる。
応用例3
 NMIJ CRM 5807a(Al2O3-TiCCeramics)と同じ基本的な構成(材質)を有するNPA-2(日本タングステン株式会社、直径10mm)を用い、厚み0.1mm、0.2mm、0.3mmの各試験片の両面に、実施例3の多層グラフェン分散液を用いて黒化処理を行った後、グラファイト重量および熱拡散率を測定した(図13)。また、対比のために従来製品としてGraphit 33およびブラックルブを用いて同様の測定を行った(図13)。図13に示した測定結果より、厚み0.1mmの試験片の場合、Graphit 33およびブラックルブを用いた従来の黒化処理では、一回の黒化処理(試験片表面へのスプレー塗布回数は片面1~2回)でのグラファイト量が0.1mgを超え、熱拡散率の実測値は文献値(9.51mm2/s)と20%以上の誤差が生じた。一方、実施例3の多層グラフェン分散液を用いて黒化処理を行った場合、一回の黒化処理(試験片表面へのスプレー塗布回数は片面2~3回)でのグラファイト量を0.03mg程度に抑えることができるため、熱拡散率への影響が最小限に抑えられ、CRM 5807aの推奨値と同等の値が得られることが分かった。なお、CRM 5807aと本応用例で用いたNPA-2の相関については、別途確認している。
 Graphit 33やブラックルブなどの従来の黒化処理剤を用いて薄板や薄膜の熱拡散率を評価する場合、グラファイト層による測定値への影響を最小限に抑えるため、「薄く」、「まばらに」、かつ「均一」に試料片を黒化処理する技術が測定者に求められ、汎用性が低いというデメリットがあった。一方、本発明による多層グラフェン分散液を用いる黒化処理では、一度に噴射(スプレー塗布)されるグラフェン量が従来の黒化処理剤より少量であり、微細な多層グラフェンが試料片の表面に偏りなく均一に塗布されるため、グラファイト層による熱拡散率への影響を最小限に抑えることができるだけでなく、薄板や薄膜を簡便に評価できることが示唆された。
応用例4
 厚み25μm、直径10mmのポリイミドフィルム(カプトン(登録商標)、東レ・デュポン社製)の両面に、イオンコーター(エイコーエンジニアリング社製)で金蒸着した後、実施例3の多層グラフェン分散液を用いて黒化処理を行った後、熱拡散率を測定し、三回測定した結果の平均値が0.11mm2/sであった(図14)。図14に示した測定結果より、製造元が提供するカタログに記載の特性値(密度、比熱、熱伝導率)から算出される熱拡散率、および厚みの異なる同等品の熱拡散率と同等の値が得られたことから、本発明による多層グラフェン分散液は、有機薄膜の評価にも有効であることが分かる。
[網状模様の形成]
 実施例3の多層グラフェン分散液を用いて、アルミ薄膜に向けて噴射し、得られた塗膜を電子顕微鏡で観察した(図15)。本発明による多層グラフェン分散液を用いて、図15に示すような模様を持つ塗膜が得られることが分かる。
[離型剤・潤滑剤としての応用]
 本発明の多層グラフェン分散液を用いて離型剤・潤滑剤としての使用を試みた。その結果、離型剤・潤滑剤としても優れていることが分かった。手作業により粉末原料を充填し、焼結後に手作業により焼結体を焼結型から押し出す粉末焼結(例えば、放電プラズマ焼結)においては、短い時間で薄くて均一な塗膜を形成させることが求められるため、以下の応用例5に示すように、本発明の多層グラフェン分散液は粉末焼結、特に、放電プラズマ焼結においての離型剤・潤滑剤として効果がよいことが本発明者の経験より確認された。
応用例5
 放電プラズマ焼結用グラファイト焼結型(カーボン焼結型)(株式会社エヌジェーエス、神奈川県横浜市)を用いて、実施例3の多層グラフェン分散液と、市販の黒鉛型離型剤の中によく使われているブラックルブ(株式会社オーデック、東京都品川区)との比較を行った。前記グラファイト焼結型は、一つのダイスと二つのパンチで構成される。このグラファイト焼結型には、ダイス内璧とパンチの間に薄い黒鉛シートを挟んで使う黒鉛シートタイプと、ダイス内璧とパンチの間に離型剤を塗布する離型剤タイプがある。黒鉛シートタイプは、ダイス内璧とパンチとの間の隙間は約0.2mmであり、離型剤タイプは、ダイス内璧とパンチとの間の隙間は10μm以下で、その隙間を離型剤で埋めることが必要である。本応用例では、離型剤タイプのグラファイト焼結型を用いて、ダイス内璧とパンチ外周面にスプレーにより塗膜を作製し、金属銅粉とアルミナ粉末を原料にして銅焼結体とアルミナ焼結体を作製した。比較実験を3回繰り返して行った結果、ブラックルブと比較して実施例3の多層グラフェン分散液を用いると、グラファイト焼結型から焼結体をよりスムーズに押し出せることが確認された。また、押し出された焼結体表面に付着した離型剤由来の黒色付着物の量が、ブラックルブと比較して実施例3の多層グラフェン分散液の方が少ないことが確認された。

Claims (13)

  1.  有機溶媒および液化ガスを含有する液相に多層グラフェンが分散されている多層グラフェン分散液。
  2.  前記多層グラフェンは、炭素純度90質量%以上、厚さ1nm~1Onmである請求項1に記載の多層グラフェン分散液。
  3.  前記多層グラフェンは、平均粒径が1μm~10μmである請求項1または2に記載の多層グラフェン分散液。
  4.  前記有機溶媒は、速乾性溶媒を含有する請求項1~3のいずれか一項に記載の多層グラフェン分散液。
  5.  前記多層グラフェンの分散剤である有機高分子を含有する請求項1~4のいずれか一項に記載の多層グラフェン分散液。
  6.  前記多層グラフェンは、酸化グラフェンを含む請求項1~5のいずれか一項に記載の多層グラフェン分散液。
  7.  熱物性測定用試料の表面に黒化膜を形成させるための黒化剤であって、請求項1~6のいずれか一項に記載の多層グラフェン分散液からなる熱物性測定用黒化剤。
  8.  前記液化ガスの蒸気を含む気相の加圧力により噴射して使用される請求項7に記載の熱物性測定用黒化剤。
  9.  粉末焼結において焼結用型と焼結体との間に分離層を形成させるための粉末焼結用離型剤・潤滑剤であって、請求項1~6のいずれか一項に記載の多層グラフェン分散液からなる粉末焼結用離型剤・潤滑剤。
  10.  前記液化ガスの蒸気を含む気相の加圧力により噴射して使用される請求項9に記載の粉末焼結用離型剤・潤滑剤。
  11.  請求項1~6のいずれか一項に記載の多層グラフェン分散液が、前記液化ガスが液相と気相で蒸気圧平衡を保ちながら封入された封入容器と、
     前記封入容器に設けられた弁体と、
     前記弁体を開放することで、前記気相の加圧力により前記多層グラフェン分散液を前記封入容器から噴射させる手段とを備える多層グラフェン分散液封入体。
  12.  熱物性測定用試料の表面に黒化膜を形成させるために使用される請求項11に記載の多層グラフェン分散液封入体。
  13.  粉末焼結において焼結用型と焼結体との間に分離層を形成させるために使用される請求項11に記載の多層グラフェン分散液封入体。
PCT/JP2017/019888 2016-05-31 2017-05-29 多層グラフェン分散液、熱物性測定用黒化剤および粉末焼結用離型剤・潤滑剤 WO2017209039A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP17806594.2A EP3466877B1 (en) 2016-05-31 2017-05-29 Multilayered graphene dispersion, blackening agent for thermophysical property measurement, and mold release agent/lubricant for powder sintering
US16/074,846 US11008218B2 (en) 2016-05-31 2017-05-29 Multilayered graphene dispersion, blackening agent for thermophysical property measurement, and mold release agent/lubricant for powder sintering
CN201780020252.2A CN108883941B (zh) 2016-05-31 2017-05-29 多层石墨烯分散液、热物性测定用黑化剂以及粉末烧结用脱模剂/润滑剂
JP2018520890A JP6945203B2 (ja) 2016-05-31 2017-05-29 多層グラフェン分散液、熱物性測定用黒化剤および粉末焼結用離型剤・潤滑剤

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016109516 2016-05-31
JP2016-109516 2016-05-31

Publications (1)

Publication Number Publication Date
WO2017209039A1 true WO2017209039A1 (ja) 2017-12-07

Family

ID=60477545

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/019888 WO2017209039A1 (ja) 2016-05-31 2017-05-29 多層グラフェン分散液、熱物性測定用黒化剤および粉末焼結用離型剤・潤滑剤

Country Status (5)

Country Link
US (1) US11008218B2 (ja)
EP (1) EP3466877B1 (ja)
JP (1) JP6945203B2 (ja)
CN (1) CN108883941B (ja)
WO (1) WO2017209039A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021095652A1 (ja) * 2019-11-15 2021-05-20 東レ株式会社 グラフェン分散液および正極ペースト

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110526727B (zh) * 2019-08-29 2022-01-04 航天材料及工艺研究所 一种陶瓷基复合材料结构及其制备方法
CN110551421A (zh) * 2019-10-12 2019-12-10 湖南工业大学 一种碳系导电油墨及其制备方法和应用
CN112461720A (zh) * 2020-11-30 2021-03-09 上海超碳石墨烯产业技术有限公司 一种氧化石墨烯溶液分散性快速评估方法
CN114482540B (zh) * 2021-12-28 2023-06-20 福建建工建材科技开发有限公司 一种用于uhpc清水饰面的复合脱模工艺

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02151682A (ja) * 1988-12-02 1990-06-11 Oriental Sangyo Kk エアゾル用組成物
JPH10123075A (ja) 1996-10-23 1998-05-15 Agency Of Ind Science & Technol 半球面鏡式レーザフラッシュ方式による熱拡散率測定方法
JP2000094450A (ja) * 1998-09-18 2000-04-04 Daihan:Kk 成形機
JP2007327851A (ja) 2006-06-07 2007-12-20 National Institute Of Advanced Industrial & Technology 熱物性測定用試料表面処理方法及び熱物性測定方法
JP2008037742A (ja) * 2004-05-13 2008-02-21 Hokkaido Technology Licence Office Co Ltd 微小カーボン分散物
JP2011063492A (ja) 2009-09-18 2011-03-31 Fuji Electric Holdings Co Ltd グラフェン薄膜の製造方法とグラフェン薄膜
JP2013510787A (ja) 2009-11-12 2013-03-28 バイエル・インテレクチュアル・プロパティ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング グラフェン溶液、グラフェンアルカリ金属塩およびグラフェン複合材料の製造方法
JP2013212948A (ja) 2012-04-02 2013-10-17 Okayama Univ 酸化薄片化黒鉛及びその製造方法
JP2014009104A (ja) * 2012-06-27 2014-01-20 Unitika Ltd グラフェン分散液とその製造方法
JP2015059079A (ja) 2013-09-20 2015-03-30 大阪瓦斯株式会社 グラフェンシート有機分散体の製造方法、並びにそれにより得られるグラフェンシート有機分散体及び放熱性グラフェンシート構造体
JP2015199623A (ja) 2014-04-07 2015-11-12 花王株式会社 多層グラフェン分散液
JP2016000843A (ja) * 2014-06-11 2016-01-07 片野染革株式会社 球状複合金属微粒子およびその製造方法
JP2016047777A (ja) * 2014-08-27 2016-04-07 国立大学法人大阪大学 グラフェン薄膜の製造方法、並びにグラフェン薄膜を備えた電子素子およびセンサ
JP2016048684A (ja) * 2014-08-27 2016-04-07 株式会社半導体エネルギー研究所 蓄電池用電極、及びその製造方法、蓄電池、電子機器、並びにグラフェン
JP2016069482A (ja) 2014-09-29 2016-05-09 国立大学法人 岡山大学 潤滑油組成物
JP2016098279A (ja) 2014-11-19 2016-05-30 国立大学法人 岡山大学 水系潤滑液組成物

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5385303A (en) * 1993-10-12 1995-01-31 The Procter & Gamble Company Adjustable aerosol spray package
JP4805820B2 (ja) 2004-05-13 2011-11-02 国立大学法人北海道大学 微小カーボン分散物
US9624379B2 (en) * 2010-08-05 2017-04-18 Hanwha Chemical Corporation High-efficiency heat-dissipating paint composition using a carbon material
TWI517774B (zh) * 2011-02-09 2016-01-11 創業發展聯盟技術有限公司 製造多層石墨烯被覆基板之方法
KR101707042B1 (ko) * 2013-06-19 2017-02-17 일진머티리얼즈 주식회사 도전성 방열(放熱)시트, 이를 포함하는 전기부품 및 전자제품
CN104559424A (zh) * 2014-12-26 2015-04-29 苏州格瑞丰纳米科技有限公司 高效石墨烯基散热涂料、其制备方法及应用
CN104560311A (zh) * 2015-01-22 2015-04-29 南通优尼科化工有限公司 一种脱模剂

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02151682A (ja) * 1988-12-02 1990-06-11 Oriental Sangyo Kk エアゾル用組成物
JPH10123075A (ja) 1996-10-23 1998-05-15 Agency Of Ind Science & Technol 半球面鏡式レーザフラッシュ方式による熱拡散率測定方法
JP2000094450A (ja) * 1998-09-18 2000-04-04 Daihan:Kk 成形機
JP2008037742A (ja) * 2004-05-13 2008-02-21 Hokkaido Technology Licence Office Co Ltd 微小カーボン分散物
JP2007327851A (ja) 2006-06-07 2007-12-20 National Institute Of Advanced Industrial & Technology 熱物性測定用試料表面処理方法及び熱物性測定方法
JP2011063492A (ja) 2009-09-18 2011-03-31 Fuji Electric Holdings Co Ltd グラフェン薄膜の製造方法とグラフェン薄膜
JP2013510787A (ja) 2009-11-12 2013-03-28 バイエル・インテレクチュアル・プロパティ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング グラフェン溶液、グラフェンアルカリ金属塩およびグラフェン複合材料の製造方法
JP2013212948A (ja) 2012-04-02 2013-10-17 Okayama Univ 酸化薄片化黒鉛及びその製造方法
JP2014009104A (ja) * 2012-06-27 2014-01-20 Unitika Ltd グラフェン分散液とその製造方法
JP2015059079A (ja) 2013-09-20 2015-03-30 大阪瓦斯株式会社 グラフェンシート有機分散体の製造方法、並びにそれにより得られるグラフェンシート有機分散体及び放熱性グラフェンシート構造体
JP2015199623A (ja) 2014-04-07 2015-11-12 花王株式会社 多層グラフェン分散液
JP2016000843A (ja) * 2014-06-11 2016-01-07 片野染革株式会社 球状複合金属微粒子およびその製造方法
JP2016047777A (ja) * 2014-08-27 2016-04-07 国立大学法人大阪大学 グラフェン薄膜の製造方法、並びにグラフェン薄膜を備えた電子素子およびセンサ
JP2016048684A (ja) * 2014-08-27 2016-04-07 株式会社半導体エネルギー研究所 蓄電池用電極、及びその製造方法、蓄電池、電子機器、並びにグラフェン
JP2016069482A (ja) 2014-09-29 2016-05-09 国立大学法人 岡山大学 潤滑油組成物
JP2016098279A (ja) 2014-11-19 2016-05-30 国立大学法人 岡山大学 水系潤滑液組成物

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Influence of Blackening Treatment on Thermal diffusivity measurement", TOKYO METROPOLITAN INDUSTRIAL TECHNOLOGY RESEARCH CENTER RESEARCH REPORT, 2015
J. H. LEE ET AL.: "Graphene in Edge-Carboxylated Graphite by Ball Milling and Analyses Using Finite Element Method", INTERNATIONAL JOURNAL OF MATERIALS SCIENCE AND APPLICATIONS, vol. 2, no. 6, 2013, pages 209 - 220
See also references of EP3466877A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021095652A1 (ja) * 2019-11-15 2021-05-20 東レ株式会社 グラフェン分散液および正極ペースト

Also Published As

Publication number Publication date
US11008218B2 (en) 2021-05-18
JPWO2017209039A1 (ja) 2019-04-04
CN108883941A (zh) 2018-11-23
JP6945203B2 (ja) 2021-10-06
EP3466877A1 (en) 2019-04-10
EP3466877A4 (en) 2020-01-22
EP3466877B1 (en) 2024-02-28
US20190039906A1 (en) 2019-02-07
CN108883941B (zh) 2022-04-08

Similar Documents

Publication Publication Date Title
WO2017209039A1 (ja) 多層グラフェン分散液、熱物性測定用黒化剤および粉末焼結用離型剤・潤滑剤
Sullivan et al. Electrophoretic deposition of binary energetic composites
Censabella et al. Laser ablation synthesis of mono-and bimetallic Pt and Pd nanoparticles and fabrication of Pt-Pd/Graphene nanocomposites
El Radaf et al. Influence of spray time on the optical and electrical properties of CoNi2S4 thin films
Patel et al. Enhanced hydrogen production by hydrolysis of NaBH4 using “Co-B nanoparticles supported on Carbon film” catalyst synthesized by pulsed laser deposition
Babrekar et al. Influence of filler size and morphology in controlling the thermal emissivity of aluminium/polymer composites for space applications
Jiang et al. Spray‐coated commercial PtFe membrane from mos2/laf3/pdms ink as solar absorber for efficient solar steam generation
Chandrappa et al. Generation of nanocrystalline NiO particles by solution combustion method and its Zn NiO composite coating for corrosion protection
Abu-Zied et al. An investigation of the thermal decomposition of nickel citrate as a precursor for NiNiO composite nanoparticles
Torres-Huerta et al. Preparation of ZnO: CeO2–x thin films by AP-MOCVD: Structural and optical properties
Watanabe et al. Synthesis of platinum-ruthenium alloy nanoparticles on carbon using supercritical fluid deposition
Mamur et al. Cost‐effective chemical solution synthesis of bismuth telluride nanostructure for thermoelectric applications
Fal et al. Electrical conductivity of titanium dioxide ethylene glycol-based nanofluids: Impact of nanoparticles phase and concentration
Politano et al. Micro-Raman investigation of Ag/graphene oxide/Au sandwich structure
Rueda et al. Micronization of magnesium acetate by the supercritical antisolvent process as a precursor for the production of magnesium oxide and magnesium hydride
Kim et al. Synthesis and film deposition of Ni nanoparticles for base metal electrode applications
Goswami et al. Investigation of the optical behavior of indium oxide thin films with the aid of spectroscopic ellipsometry technique
García-Valdivieso et al. Zinc oxide decorated multi-walled carbon nanotubes: their bolometric properties
Zhu et al. Si wire supported MnO2/Al/fluorocarbon 3D core/shell nanoenergetic arrays with long-term storage stability
Ji et al. A controllable fabrication of flat absorber dual-layer coating with electric shielding on 6061 aluminum alloy by PEO with nanoparticles additive
Zhang et al. Self-assembled HfO 2-Au nanocomposites with ultra-fine vertically aligned Au nanopillars
Bouhamed et al. Synthesis and characterization of Al2O3/Zno nanocomposite by pressureless sintering
Didier et al. Solar absorbers based on electrophoretically deposited carbon nanotubes using pyrocatechol violet as a charging agent
Bangale et al. Preparation, wetability and electrical properties of nanocrystalline ZnCr2O4 oxide by combustion route
Szekeres et al. Silicon nanoparticles in thermally annealed thin silicon monoxide films

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018520890

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17806594

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017806594

Country of ref document: EP

Effective date: 20190102