WO2017204260A1 - テンプレート及びテンプレートブランクス、並びにインプリント用テンプレート基板の製造方法、インプリント用テンプレートの製造方法、及び、テンプレート - Google Patents
テンプレート及びテンプレートブランクス、並びにインプリント用テンプレート基板の製造方法、インプリント用テンプレートの製造方法、及び、テンプレート Download PDFInfo
- Publication number
- WO2017204260A1 WO2017204260A1 PCT/JP2017/019415 JP2017019415W WO2017204260A1 WO 2017204260 A1 WO2017204260 A1 WO 2017204260A1 JP 2017019415 W JP2017019415 W JP 2017019415W WO 2017204260 A1 WO2017204260 A1 WO 2017204260A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- step structure
- template
- resin
- light shielding
- resin layer
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 137
- 239000011347 resin Substances 0.000 claims abstract description 584
- 229920005989 resin Polymers 0.000 claims abstract description 584
- 238000012546 transfer Methods 0.000 claims abstract description 155
- 238000001459 lithography Methods 0.000 claims abstract description 7
- 239000000463 material Substances 0.000 claims description 274
- 239000000758 substrate Substances 0.000 claims description 181
- 238000004519 manufacturing process Methods 0.000 claims description 154
- 230000001105 regulatory effect Effects 0.000 claims description 96
- 238000005530 etching Methods 0.000 claims description 80
- 238000001312 dry etching Methods 0.000 claims description 36
- 238000002360 preparation method Methods 0.000 claims description 31
- 230000002093 peripheral effect Effects 0.000 claims description 19
- 238000003825 pressing Methods 0.000 claims description 14
- 238000002834 transmittance Methods 0.000 claims description 11
- 230000001678 irradiating effect Effects 0.000 claims description 3
- 239000010408 film Substances 0.000 description 215
- 238000010586 diagram Methods 0.000 description 27
- 239000011651 chromium Substances 0.000 description 26
- 230000015572 biosynthetic process Effects 0.000 description 23
- 239000007789 gas Substances 0.000 description 14
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 13
- 229910052804 chromium Inorganic materials 0.000 description 13
- 230000007547 defect Effects 0.000 description 12
- 230000000694 effects Effects 0.000 description 12
- 230000003287 optical effect Effects 0.000 description 11
- 238000001039 wet etching Methods 0.000 description 11
- 238000001127 nanoimprint lithography Methods 0.000 description 10
- 239000010409 thin film Substances 0.000 description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 7
- 239000007769 metal material Substances 0.000 description 6
- 239000010936 titanium Substances 0.000 description 6
- 239000010453 quartz Substances 0.000 description 5
- XMPZTFVPEKAKFH-UHFFFAOYSA-P ceric ammonium nitrate Chemical compound [NH4+].[NH4+].[Ce+4].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O XMPZTFVPEKAKFH-UHFFFAOYSA-P 0.000 description 4
- VLTRZXGMWDSKGL-UHFFFAOYSA-N perchloric acid Chemical compound OCl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-N 0.000 description 4
- 239000012780 transparent material Substances 0.000 description 4
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 3
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 3
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 3
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 238000005452 bending Methods 0.000 description 3
- 239000000460 chlorine Substances 0.000 description 3
- 229910052801 chlorine Inorganic materials 0.000 description 3
- 230000002950 deficient Effects 0.000 description 3
- 229910001882 dioxygen Inorganic materials 0.000 description 3
- 229910052731 fluorine Inorganic materials 0.000 description 3
- 239000011737 fluorine Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 229910052750 molybdenum Inorganic materials 0.000 description 3
- 239000011733 molybdenum Substances 0.000 description 3
- 150000004767 nitrides Chemical class 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- VSZWPYCFIRKVQL-UHFFFAOYSA-N selanylidenegallium;selenium Chemical compound [Se].[Se]=[Ga].[Se]=[Ga] VSZWPYCFIRKVQL-UHFFFAOYSA-N 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 238000004544 sputter deposition Methods 0.000 description 3
- 229910052715 tantalum Inorganic materials 0.000 description 3
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 3
- 229910052719 titanium Inorganic materials 0.000 description 3
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 3
- 229910052721 tungsten Inorganic materials 0.000 description 3
- 239000010937 tungsten Substances 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 description 2
- 239000012141 concentrate Substances 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 238000000609 electron-beam lithography Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- ORUIBWPALBXDOA-UHFFFAOYSA-L magnesium fluoride Chemical compound [F-].[F-].[Mg+2] ORUIBWPALBXDOA-UHFFFAOYSA-L 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 229920002120 photoresistant polymer Polymers 0.000 description 2
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 2
- 239000004926 polymethyl methacrylate Substances 0.000 description 2
- 238000004380 ashing Methods 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 230000007261 regionalization Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/027—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C33/00—Moulds or cores; Details thereof or accessories therefor
- B29C33/38—Moulds or cores; Details thereof or accessories therefor characterised by the material or the manufacturing process
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C33/00—Moulds or cores; Details thereof or accessories therefor
- B29C33/38—Moulds or cores; Details thereof or accessories therefor characterised by the material or the manufacturing process
- B29C33/3842—Manufacturing moulds, e.g. shaping the mould surface by machining
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C33/00—Moulds or cores; Details thereof or accessories therefor
- B29C33/42—Moulds or cores; Details thereof or accessories therefor characterised by the shape of the moulding surface, e.g. ribs or grooves
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C59/00—Surface shaping of articles, e.g. embossing; Apparatus therefor
- B29C59/002—Component parts, details or accessories; Auxiliary operations
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C59/00—Surface shaping of articles, e.g. embossing; Apparatus therefor
- B29C59/02—Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F1/00—Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
- G03F1/66—Containers specially adapted for masks, mask blanks or pellicles; Preparation thereof
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/0002—Lithographic processes using patterning methods other than those involving the exposure to radiation, e.g. by stamping
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/027—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
- H01L21/0271—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/3105—After-treatment
- H01L21/311—Etching the insulating layers by chemical or physical means
- H01L21/31144—Etching the insulating layers by chemical or physical means using masks
Definitions
- the present invention relates to a template used for nanoimprint lithography for transferring a fine transfer pattern onto a resin formed on a transfer substrate, and a template blank used for manufacturing the template.
- the present invention also relates to a template used in nanoimprint lithography for transferring a fine transfer pattern to a resin formed on a substrate to be transferred, and in particular, has a first step structure on a main surface of a base, Method for manufacturing imprint template substrate having second step structure on first step structure, and having light shielding film on upper surface of first step structure, and method for manufacturing imprint template And a template used in these manufacturing methods.
- Nanoimprint lithography is known as a technique for transferring and forming fine patterns in semiconductor device manufacturing and the like.
- an imprint template also referred to as a mold, stamper, or mold
- a resin formed on a substrate to be transferred such as a semiconductor wafer.
- the resin is cured after being contacted, and the uneven shape of the transfer pattern of the template (more specifically, the uneven inverted shape) is transferred to the resin.
- a technique of this nanoimprint lithography there are a thermal imprint method in which a resin is cured by heating and a photoimprint method in which the resin is cured by exposure.
- an optical imprint method that is not affected by expansion or contraction due to heating is mainly used (for example, Patent Documents 1 and 2).
- a transfer pattern region In the template used for the nanoimprint lithography as described above, only a predetermined region (referred to as a transfer pattern region) in which a concavo-convex shape transfer pattern is formed is in contact with the resin formed on the substrate to be transferred.
- a mesa-shaped step structure is provided on the main surface of the base, and a transfer pattern is formed on the top surface of the mesa-shaped step structure (for example, Patent Document 3).
- the upper surface of the mesa-shaped step structure is a transfer pattern region.
- the step of the mesa-shaped step structure as described above is determined by the mechanical accuracy of the imprint apparatus to be used, but is typically 30 ⁇ m. It takes a degree.
- Patent Document 5 it is usually difficult to provide a light shielding member uniformly on the side surface of a mesa-shaped step structure as shown in FIGS. 9A, 7B, and 7D of Patent Document 5. . Also in Patent Document 5, the details of the manufacturing method for obtaining the form as shown in FIGS. 9A, 7B, and 7D are not described.
- the upper surface of the mesa-shaped step structure and the main of the base When there is a step of about 30 ⁇ m between the surface and the exposure light leaking from the point where the mesa-shaped step structure and the main surface of the base are in contact spreads and irradiates the resin according to the step distance, There is a problem that the resin at an unintended location is cured.
- the formation of a mesa-shaped step structure having a step of about 30 ⁇ m takes time in dry etching, so it is usually formed by wet etching.
- the mesa-shaped step structure and the main surface of the base are in contact with each other.
- the cross-sectional shape is unlikely to be a right angle and has a rounded shape. And in this rounded part (the part where the mesa-shaped step structure and the main surface of the base are in contact), it becomes difficult to form a light shielding member with the same film thickness as other parts. Light leaks easily.
- the present invention has been made in view of the above circumstances, and leakage of exposure light during imprinting (not intended) while maintaining the required height of the transfer pattern region (distance from the main surface of the base).
- the main object is to provide a template used in the manufacturing method.
- the present invention is a template used in imprint lithography for transferring a transfer pattern having a concavo-convex structure to a resin on a substrate to be transferred, and has a first step structure on the main surface of the base, The second step structure is provided on the first step structure, the transfer pattern is provided on the upper surface of the second step structure, and the second step structure is formed on the upper surface of the first step structure.
- a template characterized in that an outer region of a step structure is covered with a light shielding film.
- the present invention is a template used in imprint lithography for transferring a concavo-convex structure transfer pattern onto a resin on a substrate to be transferred, and has a first step structure on the main surface of the base, A second step structure is provided on the first step structure, and a first concavo-convex structure constituting the transfer pattern is formed on an upper surface of the second step structure. A region on the upper surface of the first step structure and outside the second step structure is covered with a light-shielding film, and on the light-shielding film and the second step structure.
- a template characterized in that a high-contrast film composed of a material film different from the material constituting the base is formed on the bottom surface of the concave portion of the concavo-convex structure.
- the vertical distance from the main surface of the base to the upper surface of the light shielding film on the first step structure is H1
- the second step structure of the second step structure is formed from the main surface of the base.
- the vertical distance from the main surface of the base to the upper surface of the light shielding film on the first step structure is H1
- the second step structure of the second step structure is formed from the main surface of the base.
- the vertical distance to the upper surface is H3
- the horizontal distance from the outer edge of the main surface of the base to the outer edge of the upper surface of the first step structure is D1
- the second distance from the outer edge of the main surface of the base is the second.
- the surface opposite to the main surface of the base portion has a hollow portion including the second step structure in plan view.
- the recess includes the first step structure in plan view.
- the light shielding film preferably has a transmittance of 10% or less at a wavelength of 365 nm.
- the present invention also provides a template blank for manufacturing a template used for imprint lithography in which a transfer pattern having a concavo-convex structure is transferred to a resin on a substrate to be transferred.
- the second step structure is formed on the first step structure, and a region outside the second step structure on the upper surface of the first step structure is shielded from light.
- Template blanks are provided, characterized in that they are covered with a film.
- the vertical distance from the main surface of the base to the upper surface of the light shielding film on the first step structure is H1
- the second step structure of the second step structure is formed from the main surface of the base.
- the vertical distance from the main surface of the base to the upper surface of the light shielding film on the first step structure is H1
- the second step structure of the second step structure is formed from the main surface of the base.
- the vertical distance to the upper surface is H4
- the horizontal distance from the outer edge of the main surface of the base to the outer edge of the upper surface of the first step structure is D1
- the second from the outer edge of the main surface of the base to the second When the horizontal distance to the outer edge of the top surface of the step structure is D2, H1 ⁇ H4 ⁇ (D1 / D2) It is preferable that
- the surface opposite to the main surface of the base portion has a hollow portion including the second step structure in plan view.
- the recess includes the first step structure in plan view.
- the light shielding film preferably has a transmittance of 10% or less at a wavelength of 365 nm.
- the present invention also includes a first step structure on the main surface of the base, a second step structure on the first step structure, and an upper surface of the first step structure.
- a multistage template substrate with a light shielding material layer having a light shielding material layer having a light shielding material layer on the upper surface of the structure is prepared, and a light shielding material layer formed on the upper surface of the first step structure.
- a light-shielding film forming step for removing the light-shielding material layer formed on the upper surface of the second step structure while leaving the light-shielding material layer, and the resin layer forming step is in contact with the resin.
- the template for regulating the resin thickness is applied to the first resin dropped on the light shielding material layer formed on the upper surface of the first step structure using the template for regulating the resin thickness having a recess on the side.
- the upper surface of the outer peripheral portion of the concave portion is pressed, and the lower surface of the concave portion of the template for regulating the resin thickness is pressed against the second resin dropped on the light shielding material layer formed on the upper surface of the second step structure.
- the depth of the bets of the recess may be smaller than the height from the upper surface of the first stepped structure to the upper surface of the second stepped structure, to provide a method for manufacturing a template substrate for imprinting.
- the said resin layer formation process WHEREIN The said 1st resin and the said 2nd resin are irradiated by ultraviolet irradiation in the state which pressed the said resin thickness prescription
- the multistage template substrate preparation step with the light shielding material layer includes a multistage template substrate preparation step of preparing the multistage template substrate having the first step structure and the second step structure, and the first step. It is preferable to sequentially include a light shielding material layer forming step of forming a light shielding material layer on the upper surface of the first step structure and on the upper surface of the second step structure.
- the multi-stage template substrate preparation step includes a one-step template substrate preparation step of preparing a one-step template substrate having a one-step step structure on the main surface of the base, and the one-step template.
- a multi-step process for forming the upper second step structure is sequentially provided.
- the present invention also includes a first step structure on the main surface of the base, a second step structure on the first step structure, and an upper surface of the first step structure.
- a method for producing an imprint template having a light-shielding film on the upper surface of the second step structure and a transfer pattern having a concavo-convex structure on the upper surface of the second step structure the method including the first step structure and the second step structure With a light shielding material layer having a concavo-convex structure transfer pattern on the upper surface of the second step structure, and having a light shielding material layer on the upper surface of the first step structure and on the upper surface of the second step structure.
- a light-shielding film forming step for removing the light-shielding material layer formed on the upper surface of the first, and the first and second resin layer forming steps include a first portion having a recess on the main surface side in contact with the resin.
- the first and second resin thickness regulation is applied to the first resin dropped on the light shielding material layer formed on the upper surface of the first step structure using the second and second resin thickness regulation templates.
- a thickness defining step is included, and the depth of the concave portion of the first and second resin thickness defining templates is smaller than the height from the top surface of the first step structure to the top surface of the second step structure.
- the present invention also includes a first step structure on the main surface of the base, a second step structure on the first step structure, and an upper surface of the first step structure.
- a method for producing an imprint template having a light-shielding film on the upper surface of the second step structure and a transfer pattern having a concavo-convex structure on the upper surface of the second step structure comprising: the first step structure;
- the upper surface of the second step structure has a first uneven structure body that constitutes the transfer pattern and a second uneven structure body that constitutes an alignment mark.
- a multi-stage template preparation step with a light shielding material layer having a light shielding material layer having a light shielding material layer on the upper surface and the upper surface of the second step structure is formed, and formed on the upper surface of the first step structure.
- a first resin layer is formed on the light shielding material layer, and the second step Forming a second resin layer having a thickness smaller than that of the first resin layer on the light-shielding material layer formed on the upper surface of the structure; The second resin layer is removed while leaving the first resin layer, and the light shielding material layer is etched using the remaining first resin layer as a mask.
- the upper surface of the first step structure is removed by removing the light shielding material layer formed on the upper surface of the second step structure while leaving the light shielding material layer formed on the upper surface of the first step structure.
- High contrast that forms a high-contrast layer on the top surface of the part and the bottom surface of the recess Forming a third resin layer on the layer forming step and the high contrast layer formed on the light shielding film, and forming the third resin layer on the top surface of the convex portion and the bottom surface of the concave portion of the first concavo-convex structure;
- a fourth resin layer having a thickness smaller than that of the third resin layer is formed on the high contrast layer, and is formed on the upper surface of the convex portion and the bottom surface of the concave portion of the second concavo-convex structure.
- the fourth resin layer is removed while leaving the fifth resin layer, the fourth resin layer removing step, and the remaining third resin layer and fifth resin layer are used as a mask.
- Etching the contrast layer to form a recess on the light shielding film and on the second concavo-convex structure On the top surface of the convex portion of the first concavo-convex structure and the bottom surface of the concave portion, and on the top surface of the convex portion of the second concavo-convex structure body, leaving the high contrast layer formed on the bottom surface of A high-contrast film forming step for removing the formed high-contrast layer in order, and the first and second resin layer-forming steps include a first and a second having a recess on the main surface side in contact with the resin.
- the first and second resin thickness regulating templates are applied to the first resin dropped on the light shielding material layer formed on the upper surface of the first step structure using the resin thickness regulating template.
- the upper surface of the outer peripheral portion of the concave portion is pressed against the second resin dropped on the light shielding material layer formed on the upper surface of the second step structure. Pressing the bottom of the recess of the template, the first and second Including a fat thickness defining step, wherein the depth of the concave portion of the first and second resin thickness defining templates is higher than the height from the upper surface of the first step structure to the upper surface of the second step structure.
- the third to fifth resin layer forming steps are small, and the third to fifth resin thickness defining steps have a recess on the main surface side in contact with the resin and a recess formed on the bottom surface side of the recess.
- the upper surface of the outer periphery of the concave portion of the third to fifth resin thickness regulating templates is pushed onto the third resin dropped on the high contrast layer formed on the light shielding film.
- the third to fifth resin thicknesses are configured such that the bottom surfaces of the recesses of the third to fifth resin thickness regulating templates are pressed against the fifth resin, and the bottom surfaces of the depressions are pressed against the fifth resin.
- the imprint template manufacturing method is characterized by being smaller than the height to the upper surface of the high contrast layer formed on the bottom surface of the concave portion of the concave-convex structure.
- the first and second resin layer forming steps press the first and second resin thickness defining steps and the first and second resin thickness defining templates.
- the multi-stage template preparation step with a light shielding material layer includes the first step structure and the second step structure, and the transfer pattern is provided on the upper surface of the second step structure.
- the multi-step template preparation step prepares a one-step template having a one-step step structure on the main surface of the base and the transfer pattern on the top surface of the step structure.
- the multi-stage template preparation step with a light shielding material layer includes the first step structure and the second step structure, and the transfer pattern is provided on the upper surface of the second step structure.
- the multi-stage template preparation step prepares a one-step template substrate having a one-step step structure on the main surface of the base, and the step structure of the one-step template substrate. Forming an etching mask in a region to be the transfer pattern on the upper surface of the substrate, and etching the step structure using the etching mask.
- the present invention provides a template characterized by having a recess on the main surface side that comes into contact with the resin.
- the present invention provides a template characterized in that it has a recess on the main surface side in contact with the resin, and has a recess formed on the bottom surface side of the recess.
- the said invention has the mark for alignment in the said main surface side,
- the said mark for alignment is the hollow formed in the outer side of the said recessed part in the said main surface side,
- the bottom face of the said recessed part It is preferable that the depth of the depression formed on the side and the depth of the depression formed on the outside of the recess are the same.
- the bottom face size of the said recessed part is 10 mm x 10 mm or more and 70 mm x 70 mm or less.
- the depth of the recess is 0.3 ⁇ m or more and 10 ⁇ m or less.
- the depth of the said recessed part is from the upper surface of the 1st step structure of the said imprint template substrate to the upper surface of a 2nd step structure. It is preferable that the height is smaller than the height.
- the bottom surface of the concave portion has a size including the upper surface of the second step structure of the imprint template substrate.
- region enclosed by the outer edge of the upper surface of the outer peripheral part of the said recessed part has the same shape and the same area as the area
- substrate it is preferable to have a size that encloses a region surrounded by the outer edge of the upper surface of the first step structure of the imprint template substrate.
- the depth of the said recessed part is high from the upper surface of the 1st step structure of the said imprint template to the upper surface of the 2nd step structure. It is preferable that it is smaller than this.
- the bottom surface of the recess has a size that includes the top surface of the second step structure of the imprint template.
- the region surrounded by the outer edge of the upper surface of the outer peripheral portion of the recess have the same shape and the same area as the region surrounded by the outer edge of the upper surface of the first step structure of the imprint template?
- the influence of leakage of exposure light (irradiation to unintended areas) during imprinting is maintained while maintaining the required height (distance from the main surface of the base) of the transfer pattern area. Can be suppressed.
- the above templates can be easily manufactured by using the template blanks according to the present invention.
- the first step structure is provided on the main surface of the base
- the second step structure is provided on the first step structure
- An imprint template substrate having a light-shielding film on the upper surface of the first step structure can be manufactured without generating a defective portion or a thin film portion in the light-shielding film.
- the first step structure is provided on the main surface of the base, and the second step structure is provided on the first step structure.
- An imprint template having a light-shielding film on the upper surface of the first step structure, an imprint template having a concavo-convex structure transfer surface on the upper surface of the second step structure, and a defective portion or a thin film portion are generated in the light-shielding film. It can be manufactured without.
- the imprint template manufactured by the method for manufacturing an imprint template according to the present invention, is maintained while maintaining the required height of the transfer pattern region (distance from the main surface of the base). It is possible to suppress the influence of leakage of exposure light at the time (irradiation to an unintended region).
- the imprint template substrate manufactured by the method for manufacturing an imprint template substrate according to the present invention the above imprint template can be easily manufactured.
- the figure explaining the structural example of the template which concerns on 1st Embodiment The figure explaining the usage example of the template which concerns on 1st Embodiment
- FIG. 17 is a schematic process diagram illustrating an example of a method for manufacturing a template substrate according to the present invention.
- regulation based on this invention The figure explaining the effect of the template for resin thickness regulation concerning the present invention
- the flowchart which shows an example of the manufacturing method of the multistage template board
- FIG. 23 is a schematic process diagram showing an example of a method for producing a multistage template substrate with a light shielding material layer according to the present invention, following FIG.
- the flowchart which shows an example of the manufacturing method of the multistage template with the light shielding material layer which concerns on a 1st embodiment.
- Schematic process drawing which shows an example of the manufacturing method of the multistage template with the light shielding material layer which concerns on a 1st embodiment 26 is a schematic process diagram showing an example of a method for producing a multistage template with a light shielding material layer according to the first embodiment, following FIG.
- the flowchart which shows the other example of the manufacturing method of the multistage template with the light shielding material layer which concerns on a 2nd embodiment.
- Schematic process drawing which shows the other example of the manufacturing method of the multistage template with the light shielding material layer which concerns on a 2nd embodiment.
- Schematic process drawing showing another example of the manufacturing method of the multistage template with the light shielding material layer according to the second embodiment, following FIG.
- the flowchart which shows an example of the manufacturing method of the template which concerns on 2nd Embodiment.
- Schematic process drawing which shows an example of the manufacturing method of the template which concerns on 2nd Embodiment
- Schematic process drawing showing an example of a template manufacturing method according to the second embodiment, following FIG.
- the flowchart which shows the other example of the manufacturing method of the template which concerns on 2nd Embodiment.
- Schematic process drawing which shows the other example of the manufacturing method of the template which concerns on 2nd Embodiment.
- FIG. 35 is a schematic process diagram showing another example of the template manufacturing method according to the second embodiment
- FIG. 36 is a schematic process diagram showing another example of the template manufacturing method according to the second embodiment
- FIG. 37 is a schematic process diagram showing another example of the template manufacturing method according to the second embodiment, following FIG.
- the figure explaining other examples of the template for resin thickness regulation concerning the present invention The figure explaining the effect of the template for resin thickness regulation concerning the present invention
- the template according to the present invention is broadly divided into a first embodiment and a second embodiment.
- the first embodiment and the second embodiment will be described.
- FIG. 1 is a diagram illustrating a configuration example of a template according to the first embodiment.
- the template 1 has a first step structure 21 on the main surface 11 of the base 10 and a second step structure 22 on the first step structure 21.
- the transfer pattern 23 is provided on the upper surface of the second step structure 22, and the region outside the second step structure 22 on the upper surface of the first step structure 21 is covered with the light shielding film 31.
- the upper surface of the second step structure 22 is a transfer pattern region.
- the template 1 Since the template 1 has the above-described configuration, the template 1 maintains the required height of the transfer pattern region (distance from the main surface 11 of the base portion 10) while leaking exposure light during imprinting (not intended). It becomes possible to suppress the influence of irradiation on the area.
- the height (H2) of the step of the first step structure 21 and the step of the second step structure 22 is set to about 30 ⁇ m, so that the template 1 can be transferred to the transfer pattern region. Can be maintained at the required height (distance from the main surface 11 of the base 10).
- the template 1 has the light shielding film 31 on the upper surface of the first step structure 21, a form in which a light shielding member is provided only on the main surface 11 of the base portion 10 as in the past (for example, a patent)
- the light-shielding film 31 is present at a distance closer to the upper surface of the second step structure 22 that is the transfer pattern region in the vertical direction (Z direction in the drawing). Become. Therefore, it is possible to suppress the influence of exposure light leakage (irradiation to an unintended region) during imprinting. This effect will be described in detail with reference to FIGS. Before that, first, an imprint example using the template 1 will be described with reference to FIG.
- FIG. 2 is a diagram for explaining an example of using a template according to the first embodiment.
- the photocurable resin 60 is used. It is necessary to prevent the non-transfer area 62 from being exposed to exposure light (for example, ultraviolet light having a wavelength of 365 nm). This is to prevent the photocurable resin 60 in the non-transfer area 62 from being unintentionally cured.
- exposure light for example, ultraviolet light having a wavelength of 365 nm
- the imprint apparatus on which the template 1 is mounted has a light-shielding plate having a frame shape in a plan view in which an exposure area is an opening for the purpose of suppressing exposure light to an unintended area.
- a light-shielding plate having a frame shape in a plan view in which an exposure area is an opening for the purpose of suppressing exposure light to an unintended area.
- the region irradiated with the exposure light is defined as an irradiation region 90 corresponding to the opening of the light shielding plate 70.
- the exposure light 83 outside the irradiation region 90 is blocked by the light shielding plate 70 and is not irradiated to the photocurable resin 60.
- the light shielding plate 70 alone is far from the photocurable resin 60 on the substrate 50 to be transferred (for example, the template 1 is interposed in the middle). It is difficult to prevent exposure light from being applied to the non-transfer area 62 of the conductive resin 60. Therefore, the irradiation region 90 defined by the light shielding plate 70 including the shape accuracy and position accuracy of the light shielding plate 70 is usually designed to be larger than the transfer region 61 of the photocurable resin 60. That is, as shown in FIG. 2, the irradiation region 90 includes an irradiation region 92 that is originally unnecessary in addition to the irradiation region 91 having a size corresponding to the transfer region 61 of the photocurable resin 60.
- the exposure light 82 in the irradiation region 92 is blocked by the light shielding film 31 formed on the upper surface of the first step structure 21.
- the exposure light 81 in the irradiation area 91 having a size corresponding to the transfer area 61 is irradiated onto the photocurable resin 60 on the transfer substrate 50.
- the upper surface of the first step structure 21 As described above, in the template 1 mounted on the imprint apparatus including the light shielding plate 70 that regulates the exposure light irradiation area 90, as shown in FIGS. 1 and 2, the upper surface of the first step structure 21.
- the light shielding film 31 formed on the upper surface of the first step structure 21 is at least a place where the second step structure 22 and the upper surface of the first step structure 21 are in contact (that is, The bottom edge of the second step structure 22 may be formed so as to cover the outer edge of the upper surface of the first step structure 21 in a region corresponding to the irradiation region 90 shown in FIG.
- the light-shielding film 31 formed on the upper surface of the first step structure 21 is located where the second step structure 22 and the upper surface of the first step structure 21 are in contact (that is, If the shape is formed so as to cover the entire area from the bottom outer edge of the second step structure 22 to the outer edge of the upper surface of the first step structure 21, the shape accuracy of the light shielding plate 70 shown in FIG. Even if the positional accuracy is low, it is possible to more reliably prevent the photocurable resin 60 in the non-transfer area 62 from being unintentionally cured.
- FIG. 3 is a figure explaining the effect of the template which concerns on 1st Embodiment
- (a) is a schematic sectional drawing of the template which concerns on 1st Embodiment
- (b) is (a).
- FIGS. 12A and 12B are diagrams for explaining defects of the conventional template.
- FIG. 12A is a schematic cross-sectional view of the conventional template
- FIG. 12B shows the leakage state of the exposure light L2 in the region R102 shown in FIG.
- a schematic enlarged view to be described is shown respectively.
- the step structure 121 is provided on the main surface 111 of the base 110
- the transfer pattern 122 is provided on the upper surface of the step structure 121
- the step structure of the main surface 111 of the base 110 is formed.
- the upper surface (transfer pattern region) of the step structure 121 and the main surface 111 of the base 110 are separated by a distance H101.
- the distance H101 is determined by the mechanical accuracy of the imprint apparatus to be used, but is typically about 30 ⁇ m.
- the exposure light L2 leaking from the portion where the step structure 121 and the main surface 111 of the base 110 are in contact spreads as diffracted light according to the distance H101, and the upper surface of the step structure 121 At the height position of (transfer pattern area), there is a problem that the resin in the area corresponding to A2 is cured.
- the step structure 121 that requires about 30 ⁇ m for the step (generally corresponding to H101) is usually formed by wet etching because it takes time to manufacture by dry etching. Therefore, the cross-sectional shape of the portion where the step structure 121 and the main surface 111 of the base 110 are in contact with each other is not likely to be a right angle, and tends to be rounded as shown in FIG. And in this rounded portion (where the step structure 121 and the main surface 111 of the base 110 are in contact), it becomes difficult to form the light shielding film 131 with the same film thickness as other portions, Exposure light tends to leak. For example, in the example shown in FIG. 12B, it is difficult to form the light shielding film 131 in the region corresponding to A3 with the same film thickness as other portions.
- the photocurable resin 60 in the non-transfer area 62 is intended by this exposure light L3.
- the refractive index at a wavelength of 365 nm of synthetic quartz that is suitably used as a template material is about 1.47. If the refractive index of air is 1.0, the exposure light L3 having an incident angle ⁇ of 43 degrees or more is all. The light is reflected and does not exit from the side surface of the step structure 121.
- the first step structure 21 is provided on the main surface 11 of the base 10
- the second step structure 22 is provided on the first step structure 21
- the first step structure 21 is provided.
- the transfer pattern 23 is provided on the upper surface of the second step structure 22, and the region outside the second step structure 22 on the upper surface of the first step structure 21 is covered with the light shielding film 31.
- the upper surface of the second step structure 22 (more precisely, the bottom surface of the recess of the transfer pattern 23) and the upper surface of the first step structure 21 (more precisely, The upper surface of the light shielding film 31 is separated by a distance (H2 ⁇ H1).
- the height of about 30 ⁇ m which is required depending on the mechanical accuracy of the imprint apparatus to be used, is the sum of the steps of the first step structure 21 and the step of the second step structure 22. Height (H2) is responsible.
- the exposure light L1 leaked from the portion where the second step structure 22 and the upper surface of the first step structure 21 contact each other is diffracted light according to the distance (H2-H1).
- the distance (H2 ⁇ H1) can be made smaller than the distance H101 (about 30 ⁇ m) shown in FIG. 12B, the spread can be suppressed to be small.
- an area (corresponding to A1 shown in FIG. 3B) in which the resin may be cured at the height position of the upper surface (transfer pattern area) of the second step structure 22 is also shown in FIG. ) Can be made smaller than the area corresponding to A2.
- the second step structure 22 having a step of approximately (H2-H1) can be sufficiently formed in terms of time if the step is several ⁇ m or less, for example, by dry etching. Then, by forming by dry etching, the cross-sectional shape of the portion where the second step structure 22 and the upper surface of the first step structure 21 are in contact is shown in FIG. 12B, as shown in FIG. It can be formed at a right angle rather than a rounded shape. Therefore, it is easy to form the light-shielding film 31 with the same film thickness as the other portions even at the location where the second step structure 22 and the upper surface of the first step structure 21 are in contact with each other. It becomes easy to suppress leakage.
- the first step structure 21 in which the step is approximately H1 may be formed by wet etching as in the past.
- the cross-sectional shape of the portion where the first step structure 21 and the main surface 11 of the base 10 are in contact with each other is likely to be rounded as in the example shown in FIG.
- the light shielding film 31 formed on the upper surface of the second step structure 22 is responsible for shielding the exposure light, the effect of the light shielding film 31 is not impaired by this rounded shape.
- the distance (H2 ⁇ H1) is applicable as long as it is smaller than the height (typically about 30 ⁇ m) required by the mechanical accuracy of the imprint apparatus to be used.
- the smaller the value the more effective.
- the above-described distance (H2 The value of ⁇ H1) can be in the range of 1 ⁇ m to 5 ⁇ m.
- FIG. 4 is a diagram for explaining the positional relationship between the step structures of the template according to the first embodiment, and corresponds to an enlarged view of a main part of R1 indicated by a broken-line circle in FIG.
- the outer edge E ⁇ b> 2 of the light shielding film 31 on the first step structure 21 is the outer edge E ⁇ b> 1 of the main surface 11 of the base 10 and the upper surface of the second step structure 22. It exists inside (the template 1 side) from the broken line connecting the outer edge E3. Therefore, during imprinting as shown in FIG. 2, the template 1 is (more accurately) applied to the transferred substrate 50 (more precisely, to the photocurable resin 60 formed on the transferred substrate 50). Even if the upper surface of the second step structure 22 of the template 1 is not horizontally opposed and touches with an inclination, the outer edge E2 (and the upper surface of the first step structure 21 is further above). This is because the light shielding film 31 can be prevented from coming into contact with the substrate to be transferred 50 (more precisely, to the photocurable resin 60 formed on the substrate to be transferred 50).
- the template 1 as shown in FIG. 1, it has the hollow part 40 which includes the 2nd step structure 22 in planar view in the surface (back surface 12) on the opposite side to the main surface 11 of the base 10. Is preferred. This is because the steps such as mold release are facilitated. More specifically, by reducing the thickness of the template 1 in the region where the transfer pattern 23 is formed (transfer pattern region) and making it easy to bend, the transfer pattern region of the template 1 is placed on the substrate to be transferred side when releasing. This is because it can be partially released from the outer edge portion of the transfer region 61 of the photocurable resin 60 formed on the transfer substrate 50 in a convex manner.
- the recess 40 preferably includes the first step structure 21 in plan view as shown in FIG. This is because it is possible to prevent a problem that the light shielding film 31 formed on the upper surface of the first step structure 21 is peeled off during the bending.
- the inside of the recess 40 is easily deformed during the above-described curve because the thickness of the template 1 is thin, whereas the outside of the recess 40 is thick because the template 1 is thick. It will be difficult to deform at the time of the above curve. Therefore, when the first step structure 21 is not included in the depression 40 in plan view, in other words, in the plan view, the first step structure 21 has not only the inside of the depression 40 but the depression 40. When it exists also outside, the first step structure 21 has a boundary between a region that is easily deformed (that is, the inside of the recessed portion 40) and a region that is difficult to deform (that is, the outside of the recessed portion 40). become.
- the recess 40 includes the first step structure 21 in plan view. To do.
- the main material constituting the template 1 that is, the material constituting the base 10, the first step structure 21, the second step structure 22, and the transfer pattern 23 can be used for the optical imprint method.
- the exposure light during imprinting can be transmitted.
- ultraviolet light having a wavelength of 200 nm to 400 nm (particularly, 300 nm to 380 nm) is used as the exposure light.
- the material examples include transparent materials such as quartz glass, heat-resistant glass, calcium fluoride (CaF 2 ), magnesium fluoride (MgF 2 ), and acrylic glass, and laminated structures of these transparent materials.
- synthetic quartz is suitable because of its high rigidity, low thermal expansion coefficient, and good transmittance in the range of 300 nm to 380 nm, which is a commonly used wavelength.
- the main material constituting the base and the main material constituting the step structure having the transfer pattern are the same material.
- the first step structure 21 is used.
- the second step structure 22 having the transfer pattern 23 is made of the same material as the base 10.
- Examples of the material constituting the light shielding film 31 include a material containing at least one metal material and its oxide, nitride, oxynitride and the like.
- Specific examples of the metal material include chromium (Cr), molybdenum (Mo), tantalum (Ta), tungsten (W), zirconium (Zr), titanium (Ti), and the like.
- the light shielding film 31 preferably has a transmittance of 10% or less at a wavelength of 365 nm.
- the thickness of the light shielding film 31 may be 15 nm or more.
- the transfer pattern of the imprint template according to the first embodiment may be a line and space pattern or a pillar shape.
- the line width is about 30 nm and the height is about 60 nm.
- the diameter is about 50 nm and the height is about 60 nm.
- the vertical width and the horizontal width of the first step structure 21 or the second step structure 22 when the template 1 is viewed in plan are not particularly limited as long as the width satisfies the above-described conditions.
- the width in the vertical direction and the width in the horizontal direction may be the same or different.
- FIG. 5 is a diagram illustrating a configuration example of a template according to the second embodiment.
- the template 1 has a first step structure 21 on the main surface 11 of the base 10 and a second step structure 22 on the first step structure 21.
- the transfer pattern 23 is provided on the upper surface of the second step structure 22, and the region outside the second step structure 22 on the upper surface of the first step structure 21 is covered with the light shielding film 31. .
- the template 1 has a first concavo-convex structure 22a constituting the transfer pattern 23 and a second concavo-convex structure 22b constituting an alignment mark on the upper surface of the second step structure 22.
- a high contrast film 32 made of a material film different from the material constituting the base 10 is formed on the light shielding film 31 and on the bottom surface of the concave portion of the second concavo-convex structure 22b.
- the high contrast film 32 is formed below the concave portion of the second concavo-convex structure 22b.
- the upper surface of the second concavo-convex structure 22b is a transfer pattern region.
- the template 1 Since the template 1 has the above-described configuration, the template 1 is in the same manner as the template 1 shown in FIG. 1 while maintaining the required height of the transfer pattern region (distance from the main surface 11 of the base portion 10). It is possible to suppress the influence of exposure light leakage (irradiation to unintended areas) during printing.
- the high contrast film 32 is formed on the bottom surface of the concave portion of the second concavo-convex structure body 22b constituting the alignment mark, and the top surface of the first step structure 21 is formed.
- the light shielding film 31 and the high contrast film 32 are sequentially laminated.
- the light shielding property of the laminated structure in which the light shielding film 31 and the high contrast film 32 are sequentially laminated is higher than the light shielding property of only the light shielding film 31 shown in FIG.
- the exposure light 82 in the irradiation region 92 can be blocked more effectively than the template 1 shown in FIG.
- the high contrast film 32 formed on the light shielding film 31 is formed between the upper surface of the light shielding film 31 and the bottom surface of the concave portion of the transfer pattern 23 in the template 1 shown in FIG. 1.
- the vertical distance from the main surface 11 of the base 10 to the upper surface of the high contrast film 32 formed on the light shielding film 31 is H11, and from the main surface 11 of the base 10.
- both the purpose of suppressing the influence of leakage of exposure light during imprinting and the purpose of preventing the photocurable resin from adhering to the light-shielding film 31 during imprinting are in the range of 1 ⁇ m to 5 ⁇ m. be able to.
- the vertical distance from the main surface 11 of the base 10 to the top surface of the second step structure 22 is H13
- the vertical distance from the outer surface of the main surface 11 of the base 10 to the first step is H11.
- H11 ⁇ It is preferable that the relationship is H13 ⁇ (D11 / D12).
- the second step structure 22 is provided on the surface (back surface 12) opposite to the main surface 11 of the base 10 in plan view. It is preferable to have the hollow part 40 to include.
- the recess 40 preferably includes the first step structure 21 in plan view for the same reason as the template 1 shown in FIG.
- FIG. 6 is a diagram illustrating an example of a main part of a template according to the second embodiment.
- the template 1 shown in FIG. 5 as shown in FIG.
- the distance from the top surface of the convex portion of the first concavo-convex structure body 22a to the bottom surface of the concave portion is D13
- the convex portion of the second concavo-convex structure body 22b is
- D14 it is preferable that the relationship of D13 ⁇ D14 is satisfied.
- the imprint template which concerns on this invention resin as an etching mask which remains on the high contrast film
- the thickness of the layer (the fifth resin layer 55 formed on the bottom surface of the concave portion of the second concavo-convex structure body 22b shown in FIG. 38 (j)) can be increased, and the second thickness can be increased during etching. This is because the problem that the high contrast film 32 on the bottom surface of the concave portion of the concavo-convex structure 22b disappears can be more reliably prevented.
- the above-described form can be obtained by the method described in Japanese Patent Application No. 2014-193694, for example. That is, in the method for manufacturing an imprint template according to the present invention to be described later, after forming a hard mask pattern to be an etching mask when forming the first concavo-convex structure 22a and the second concavo-convex structure 22b, the first In a state where the hard mask pattern region for forming the concavo-convex structure 22a is covered with a resin layer, the second concavo-convex structure 22b is half-etched, and then the resin layer is removed to obtain the first concavo-convex structure.
- the body 22a and the second concavo-convex structure 22 can be obtained by etching.
- the main material constituting the template 1 shown in FIG. 5, that is, the material constituting the base 10, the first step structure 21, and the second step structure 22 is the same as that of the template 1 shown in FIG. The description in is omitted. Further, since the material constituting the first concavo-convex structure 22a and the second concavo-convex structure 22b in the template 1 shown in FIG. 5 is the same as the material constituting the transfer pattern 23 in the template 1 shown in FIG. The description here is omitted.
- any material having a light shielding property can be used.
- the same material as the light shielding film 31 in the template 1 shown in FIG. 1 can be used.
- the light shielding film 31 preferably has a transmittance of 10% or less at a wavelength of 365 nm.
- the thickness of the light shielding film 31 may be 15 nm or more. In particular, it is preferably in the range of 35 nm to 1000 nm, particularly in the range of 55 nm to 1000 nm. This is because when the thickness of the light shielding film 31 is larger than these lower limits, the transmittance at a wavelength of 365 nm is 1% or less and the transmittance at a wavelength of 365 nm is 0.1% or less. This is because peeling of the film can be avoided when the film thickness is thinner than these upper limits.
- any material that has a refractive index different from that of the material that constitutes the base 10 with respect to the alignment light and has a light shielding property can be used.
- the same material as the light shielding film 31 in the template 1 shown in FIG. 1 can be used.
- the film thickness of the high contrast film 32 is not particularly limited as long as it is a film thickness that can satisfy the requirements of the contrast of the alignment mark and the light shielding property at the time of alignment.
- the film thickness of the high-contrast film 32 cannot be changed greatly due to the structure of the first uneven structure body 22a and the second uneven structure body 22b and due to manufacturing restrictions. Can be changed greatly.
- On the first step structure 21 formed by overlapping the light shielding film 31 and the high contrast film 32 it is preferable to adjust the film thickness of the light shielding film 31 so as to obtain a film thickness that satisfies the light shielding requirement.
- the transfer pattern of the imprint template according to the second embodiment is the same as the transfer pattern of the imprint template according to the first embodiment, and a description thereof will be omitted here.
- FIG. 7 is a diagram for explaining a configuration example of a template blank according to the present invention.
- the template blank 2 has a first step structure 21 on the main surface 11 of the base portion 10, and a second step structure 22 on the first step structure 21.
- the region outside the second step structure 22 on the upper surface of the first step structure 21 is covered with the light shielding film 31.
- the template blanks 2 are template blanks for manufacturing the template 1.
- the template blanks 2 is formed by forming a concavo-convex structure transfer pattern 23 on the upper surface of the second step structure 22 of the template blanks 2 as shown in FIG.
- the template 1 can be manufactured.
- the template 1 can suppress the influence of exposure light leakage (irradiation to an unintended region) during imprinting while maintaining the required height of the transfer pattern region. It becomes possible.
- the distance H4 in the vertical direction from the main surface 11 of the base 10 to the upper surface of the second step structure 22 is the distance H2 in the template 1 shown in FIG. Is equivalent to the height of the convex part.
- the distance H2 is about 30 ⁇ m
- the height of the convex portion of the transfer pattern 23 is about 60 nm (about 1/500 of 30 ⁇ m), so the distance H4 shown in FIG. 7 is shown in FIG.
- the distance H2 can be treated as substantially the same value.
- the value of the distance (H4-H1) in the template blanks 2 shown in FIG. 7 is required depending on the mechanical accuracy of the imprint apparatus to be used, as in the case of the distance (H2-H1) in the template 1 shown in FIG. Although it is applicable if it is smaller than the height (typically about 30 ⁇ m), as described above, for the purpose of suppressing the influence of leakage of exposure light during imprinting of the template 1, The smaller the value, the more effective.
- the vertical distance from the main surface 11 of the base 10 to the upper surface of the light shielding film 31 on the first step structure 21 is H1
- the base 10 When the vertical distance from the main surface 11 to the upper surface of the second step structure 22 is H4, it is preferable that the relationship of H1 ⁇ H4 is satisfied.
- the distance (H4-H1) can be in the range of 1 ⁇ m to 5 ⁇ m.
- FIG. 8 is a diagram for explaining the positional relationship of each step structure of the template blank according to the present invention, and corresponds to an enlarged view of a main part of R3 indicated by a broken-line circle in FIG.
- the outer edge E2 of the light shielding film 31 on the first step structure 21 is the outer edge E1 of the main surface 11 of the base 10 and the upper surface of the second step structure 22. Is present on the inner side (template blanks 2 side) than the broken line connecting the outer edges E3. Therefore, as shown in FIG. 2, when imprinting the template 1, the template 1 is applied to the transfer substrate 50 (more precisely, to the photocurable resin 60 formed on the transfer substrate 50).
- the upper surface of the second step structure 22 of the template 1 does not face horizontally but touches with an inclination, the outer edge E2 (and the first step structure) This is because the light shielding film 31 on the substrate 21 can be prevented from coming into contact with the substrate to be transferred 50 (more precisely, the photocurable resin 60 formed on the substrate to be transferred 50).
- the template blanks 2 As shown in FIG. 7, it has the hollow part 40 which includes the 2nd step structure 22 in planar view in the surface (back surface 12) on the opposite side to the main surface 11 of the base 10. It is preferable. This is because steps such as mold release of the template 1 are facilitated. More specifically, with such a configuration, the thickness of the template blank 2 in the region where the second step structure 22 is formed can be reduced. As a result, the transfer pattern 23 is formed in the template 1. It is possible to reduce the thickness of the region (transfer pattern region) to be easily bent, and when releasing the mold, the transfer pattern region of the template 1 is bent in a convex shape toward the substrate to be transferred. This is because it can be partially released from the outer edge portion of the transfer region 61 of the photocurable resin 60 formed on the transfer substrate 50 sequentially.
- the recess 40 preferably includes the first step structure 21 in a plan view. This is because it is possible to prevent a problem that the light shielding film 31 formed on the upper surface of the first step structure 21 is peeled off during the bending.
- the inside of the recess 40 is a region that is easily deformed when the template 1 is curved because the thickness of the template blanks 2 is thin, whereas the outside of the recess 40 is the template blanks. Since the thickness 2 is thick, it becomes a region that is not easily deformed when the template 1 is curved. Therefore, when the first step structure 21 is not included in the depression 40 in plan view, in other words, in the plan view, the first step structure 21 has not only the inside of the depression 40 but the depression 40.
- the first step structure 21 When it exists also outside, the first step structure 21 has a boundary between a region that is easily deformed (that is, the inside of the recessed portion 40) and a region that is difficult to deform (that is, the outside of the recessed portion 40). become.
- the recess 40 includes the first step structure 21 in plan view. To do.
- the same material as that constituting the template 1 described above can be used as the material constituting the template blank 2.
- FIG. 9 is a flowchart showing an example of a method for manufacturing template blanks according to the present invention.
- 10 and 11 are schematic process diagrams showing an example of a method for producing template blanks according to the present invention.
- the template according to the present invention can be manufactured by forming the transfer pattern 23 on the upper surface of the second step structure 22 by using the template blanks according to the present invention by the same method as before. Therefore, description of the template manufacturing method according to the present invention using the drawings is omitted.
- the first template blank 200 having the mesa-shaped step structure 201 on the main surface 11 of the base 10 is prepared (S1, FIG. 9).
- This first template blank 200 does not have the first step structure 21, the second step structure 22, and the light shielding film 31 like the template blank 2, and is, for example, a conventional optical imprint.
- the same template blanks used in the method can be used.
- the first template blanks 200 are made of synthetic quartz, for example.
- a distance H201 from the main surface 11 of the base 10 to the upper surface of the step structure 201 is about the same as the distance H4 of the template blank 2 shown in FIG. 7, and is typically about 30 ⁇ m.
- a first etching mask 210 is formed on the upper surface of the step structure 201 (S2 in FIG. 9, FIG. 10B).
- the first etching mask 210 can be formed by performing sputtering film formation using chromium (Cr) and then pattern-processing the mask shape.
- the first step structure 21 and the second step structure 22 are formed by dry etching using the first etching mask 210 as a mask (S3 in FIG. 9, FIG. 10C).
- a fluorine-based gas can be used as the etching gas.
- the distance H202 (corresponding to the etching depth) shown in FIG. 10C is about several ⁇ m (range of 1 ⁇ m to 5 ⁇ m).
- the first etching mask 210 is removed (FIG. 11D), and then the light shielding material layer 220 to be the light shielding film 31 later is formed on the main surface 11 of the base 10 and the upper surface of the first step structure 21. 9 is formed on the upper surface of the second step structure 22, and a second etching mask 230 is formed in a region outside the second step structure 22 on the upper surface of the first step structure 21 (see FIG. 9). S4, S5, FIG. 11 (e)).
- the light shielding material layer 220 can be formed by performing sputtering film formation using chromium (Cr) so that the film thickness is 15 nm or more.
- the 2nd etching mask 230 comprised from resin can be formed by dripping resin to the area
- the light shielding material layer 220 exposed from the second etching mask 230 is removed, and then the second etching mask 230 is removed, and the first step structure 21 is formed on the main surface 11 of the base 10. And has a second step structure 22 on the first step structure 21, and a region on the upper surface of the first step structure 21 outside the second step structure 22 is a light shielding film 31.
- the template blanks 2 that are covered are obtained (S6 in FIG. 9, FIG. 11 (f)).
- imprint template substrate and imprint template First, an imprint template substrate and an imprint template manufactured by the manufacturing method according to the present invention will be described. In order to avoid complication, the imprint template substrate and the imprint template are also simply referred to as a template substrate and a template as appropriate.
- FIG. 13 is a diagram for explaining an example of a template substrate according to the present invention.
- FIG. 14 is a diagram illustrating an example of a template according to the present invention.
- the template substrate 4 has a first step structure 21 on the main surface 11 of the base portion 10, and a second step structure 22 on the first step structure 21.
- the region outside the second step structure 22 on the upper surface (dew stand, terrace) of the first step structure 21 is covered with a light shielding film 31.
- the template substrate 4 is a template substrate for manufacturing the template 1 having the light shielding film 31 as shown in FIG. 14.
- a transfer pattern having a concavo-convex structure is formed on the upper surface of the second step structure 22 of the template substrate 4.
- the template 1 as shown in FIG. 14 can be manufactured.
- the upper surface of the second step structure 22 is a transfer pattern region.
- the template 1 it is possible to suppress the influence of exposure light leakage (irradiation to unintended areas) during imprinting while maintaining the required height of the transfer pattern area.
- the template 1 shown in FIG. 14 by manufacturing the height of the step of the first step structure 21 and the step of the second step structure 22 to the required height (for example, 30 ⁇ m), The template 1 can maintain the height of the transfer pattern region (distance from the main surface 11 of the base portion 10) at a required height (for example, 30 ⁇ m).
- the template 1 has the light shielding film 31 on the upper surface of the first step structure 21, a form in which a light shielding member is provided only on the main surface 11 of the base portion 10 as in the past (for example, a patent)
- the light-shielding film 31 is present at a distance closer to the upper surface of the second step structure 22 that is the transfer pattern region in the vertical direction (Z direction in the drawing). Become. Therefore, it is possible to suppress the influence of exposure light leakage (irradiation to an unintended region) during imprinting.
- the value of the step (H1) of the second step structure 22 can be in the range of 1 ⁇ m to 5 ⁇ m.
- Such a step of several ⁇ m or less can be sufficiently formed in terms of time by dry etching.
- the cross-sectional shape of the portion where the second step structure 22 and the upper surface of the first step structure 21 are in contact with each other can be formed at a right angle as compared with the case of forming by wet etching. Become. Therefore, it is easy to form the light-shielding film 31 with the same film thickness as the other portions even at the location where the second step structure 22 and the upper surface of the first step structure 21 are in contact with each other. It becomes easy to suppress leakage.
- FIG. 15 is a flowchart showing an example of a method for manufacturing an imprint template substrate according to the present invention.
- FIG. 16 is a flowchart showing an example of the resin layer forming step according to the present invention.
- 17 and 18 are schematic process diagrams showing an example of a method for manufacturing an imprint template substrate according to the present invention.
- the method for manufacturing an imprint template substrate according to the present invention has a first step structure on the main surface of the base, a second step structure on the first step structure, and a first step structure. 15.
- the first resin layer is formed on the light shielding material layer formed on the upper surface of the first light shielding layer, and the thickness is thinner than the first resin layer on the light shielding material layer formed on the upper surface of the second step structure.
- a light shielding film forming step (S40) for sequentially removing the light shielding material layer formed on the upper surface of the second step structure while leaving the light shielding material layer formed on the upper surface of the first step structure. I have.
- the upper surface of the outer peripheral portion of the concave portion of the template for regulating the resin thickness is pressed against the first resin dropped on the material layer, and dropped on the light shielding material layer formed on the upper surface of the second step structure.
- a resin thickness defining step (S21 in FIG. 16) for pressing the bottom surface of the concave portion of the resin thickness defining template against the second resin, and the depth of the concave portion of the resin thickness defining template is The height from the upper surface of the step structure to the upper surface of the second step structure is smaller.
- Step structure 21 and the second step structure 22 are provided, and the upper surface (dew stand, terrace) of the first step structure 21 is provided.
- step difference structure 22 is prepared (S10 of FIG. 15, FIG. 17 (a)).
- the height of the first step structure 21 and the second step structure 22 is the same as that of the template substrate having a one-step structure used in the conventional optical imprint method.
- the height is the same as or similar to the step, and is typically about 30 ⁇ m.
- the multistage template substrate 300 with a light shielding material layer can be manufactured from a template substrate having a single step structure used in a conventional optical imprint method, for example, as shown in FIGS. Details will be described later in the method of manufacturing a multi-stage template substrate with a light shielding material layer.
- the first resin 51 a is dropped on the light shielding material layer 170 formed on the upper surface of the first step structure 21, and the upper surface of the second step structure 22.
- the second resin 52a is dropped on the light shielding material layer 170 formed thereon, and then, as shown in FIG. 17 (c), a template 400 for regulating the resin thickness is pressed to reduce the thickness of each resin. (S21 in FIG. 16), in this state, the first resin 51a and the second resin 52a are cured (S22 in FIG. 16). Thereafter, the template 400 for regulating the resin thickness is released, and FIG. As shown to (d), the 1st resin layer 51 and the 2nd resin layer 52 with which each film thickness was prescribed
- the thickness of the second resin layer 52 is made thinner than the thickness of the first resin layer 51 by using the resin thickness regulating template 400 having a predetermined form. Can be formed.
- the first resin layer 51 can be a resin layer having a uniform thickness as shown in FIG.
- the height difference of the film thickness of the first resin layer 51 can be set to 50 nm or less.
- the second resin layer 52 is removed by dry etching (etchback) using an etching gas 75 while leaving the first resin layer 51.
- etching gas 75 oxygen gas can be used as the etching gas 75.
- the light shielding material layer 170 exposed from the first resin layer 51 is etched to form a light shielding material formed on the upper surface of the first step structure 21.
- the light shielding material layer 170 formed on the upper surface of the second step structure 22 is removed while leaving the layer 170.
- the light shielding material layer 170 formed on the upper surface of the first step structure 21 left in this step becomes the light shielding film 31 of the template substrate 4.
- etching when a material containing chromium (Cr) is used for the light shielding material layer 170, either dry etching or wet etching can be used for this etching.
- dry etching dry etching using a mixed gas of oxygen and chlorine is possible.
- wet etching wet etching using an aqueous solution containing ceric ammonium nitrate and perchloric acid is possible.
- the first step structure 21 is provided on the main surface 11 of the base portion 10, and the first step structure is formed.
- the template substrate 4 having the second step structure 22 on the upper surface 21 and having the light shielding film 31 on the upper surface (dew stand, terrace) of the first step structure 21 can be obtained.
- a technique such as ashing using oxygen gas can be used to remove the remaining first resin layer 51.
- the second resin 52a is not dropped on the light shielding material layer 170 formed on the upper surface of the second step structure 22 (that is, the second step).
- the light shielding material layer 170 formed on the upper surface of the second step structure 22 is to be removed by etching without forming a resin layer on the light shielding material layer 170 formed on the upper surface of the structure 22).
- the unnecessary first resin 51a cannot be used, and the unnecessary light shielding material layer 170 remains on the upper surface of the second step structure 22 of the template substrate 4 shown in FIG. there were.
- the resin layer formed by simply dropping the first resin 51a on the light shielding material layer 170 formed on the upper surface of the first step structure 21 is Due to the density distribution of the dropped first resin 51a, a defective portion (portion where no resin is present) and a thin film portion (portion where the resin is thin) are provided. Then, when dry etching (etchback) shown in FIG. 18 (e) is performed, such defects and thin film portions further increase. Therefore, if the light shielding material layer 170 is etched in a subsequent process, a defect portion or a thin film portion is also generated in the light shielding material layer 170 formed on the upper surface of the first step structure 21 that becomes the light shielding film 31. There was a problem.
- the first resin 51a is formed by using a resin thickness regulating template 400 having a predetermined form.
- the film thickness of the second resin layer 52 including droplets and the like when dripped can be formed to be thinner than the film thickness of the first resin layer 51.
- both the 1st resin layer 51 and the 2nd resin layer 52 can be made into a resin layer with uniform film thickness.
- the second resin layer 52 can be removed by the etch back method while leaving the first resin layer 51.
- the light shielding material layer 170 exposed from the first resin layer 51 in the subsequent process is formed on the upper surface of the second step structure 22 as shown in FIG.
- the layer 170 can be removed without leaving.
- the first resin layer 51 can be a resin layer having a uniform film thickness without a defect portion
- the light shielding material layer 170 formed on the upper surface of the first step structure 21 to be the light shielding film 31 is also provided. In other words, it can be a film having no defect or thin film.
- the first resin 51a and the second resin 52a are made of a material that is cured by heat or light, and are preferably ultraviolet curable resins used in the field of nanoimprint lithography.
- the step of curing the first resin 51a and the second resin 52a includes the steps shown in FIG. As shown in (c), a method of irradiating ultraviolet rays 65 can be used.
- first resin 51a and the second resin 52a are left in the second resin layer removal step (S30 in FIG. 15, FIG. 18 (e)) described later while leaving the first resin layer 51 by dry etching.
- the second resin layer 52 may be made of different materials. However, from the viewpoint of ease of handling, it is preferable that they are composed of the same material.
- FIG. 19 is a diagram illustrating an example of a resin thickness defining template according to the present invention.
- FIG. 19A shows a schematic bottom view of the template 400 for regulating the resin thickness
- FIG. 19B shows a cross-sectional view along AA in FIG. 19A.
- the resin thickness regulating template 400 shown in FIG. 19 has a recess 402 on the main surface side (lower side in FIG. 19B) in contact with the resin, and the periphery of the recess 402 is a planar view frame. It is surrounded by a convex portion 403. That is, in the template 400 for regulating the resin thickness, the upper surface of the outer peripheral portion of the concave portion 402 corresponds to the upper surface of the convex portion 403 having a frame shape in plan view. More specifically, the recess 402 of the resin thickness regulating template 400 includes the upper surface of the second step structure 22 of the multistage template substrate 300 with the light shielding material layer in a plan view, and the multistage template substrate with the light shielding material layer.
- the depth of the concave portion 402 of the template 400 for regulating the resin thickness has a size enclosed in a region surrounded by the outer edge of the upper surface of the first step structure 21 of 300.
- the multistage template substrate with a light shielding material layer The height from the upper surface of the first step structure 21 of 300 to the upper surface of the second step structure 22 is smaller.
- FIG. 20 is a diagram for explaining the function and effect of the resin thickness regulating template according to the present invention.
- FIG. 20 corresponds to an enlarged view of a main part in FIG.
- a multistage template substrate with a light shielding material layer is provided.
- the thickness of the second resin layer 52 to be formed is T2
- the design is such that H2 ⁇ H1, so that T2 ⁇ T1.
- the depth H2 of the recess 402 can be in the range of 0.3 ⁇ m to 10 ⁇ m.
- the thickness of the second resin layer 52 is made smaller than the thickness of the first resin layer 51. Can be formed.
- the first resin layer 51 can be a resin layer having a uniform thickness as shown in FIG.
- the first step structure 21 that can be removed without leaving the light shielding material layer 170 on the upper surface of the second step structure 22 and becomes the light shielding film 31.
- a film having no defect or thin film can be formed.
- the bottom surface of the recess 402 of the template 400 for regulating the resin thickness is the upper surface of the second step structure 22 of the multi-stage template substrate 300 with a light shielding material layer (the upper surface of the second step structure 22 of the imprint template substrate 4). It is preferable that it has a size including the same.
- the width of the bottom surface of the recess 402 of the resin thickness regulating template 400 shown in FIG. 19B is L21, and the second step structure 22 of the imprint template substrate 4 shown in FIG.
- the width of the upper surface is L11, it is preferable that L21> L11.
- the bottom size of the recess 402 can be in the range of 10 mm ⁇ 10 mm or more and 70 mm ⁇ 70 mm or less.
- the region surrounded by the outer edge of the upper surface of the outer peripheral portion of the recess 402 of the resin thickness regulating template 400 is the upper surface of the first step structure 21 of the multi-stage template substrate 300 with the light shielding material layer (the first template substrate for imprint).
- the width of the region surrounded by the outer edge of the upper surface of the convex portion 403 of the resin thickness regulating template 400 shown in FIG. 19B is L22, and the imprint template substrate 4 shown in FIG.
- L22 it is preferable that L22 ⁇ L12.
- the first resin layer 51 is formed until reaching the outer edge of the upper surface of the first step structure 21 of the multi-stage template substrate 300 with the light shielding material layer (same as the upper surface of the first step structure 21 of the imprint template substrate 4). It is because it can be set as the resin layer with a uniform film thickness without a defect
- the resin thickness regulating template 400 preferably has a region 404 having the same depth as the concave portion 402 on the outer peripheral side of the convex portion 403.
- the bottom surface of the concave portion 402 of the template 400 for regulating the resin thickness and the second template substrate 300 with the light shielding material layer it is usually difficult to directly measure the height position of the recess 402 in order to bring the upper surface of the step structure 22 into uniform contact. This is because measurement light or the like is blocked by the convex portion 403 or the multi-stage template substrate 300 with the light blocking material layer.
- the resin thickness regulating template 400 has the region 404 as described above, when the resin thickness regulating template 400 is pressed against, the measurement light or the like is projected to the convex portion 403 or the light shielding material.
- the height position of the region 404 can be measured without being blocked by the multistage template substrate 300 with layers. And the height position of the recessed part 402 can be grasped
- the template 400 for regulating the resin thickness preferably has an alignment mark on the main surface side. As shown in FIG. 17C, when the template 400 for regulating the resin thickness is pressed, the relative position with the multi-stage template substrate 300 with the light shielding material layer can be adjusted, and the pressing can be performed with high positional accuracy. is there.
- FIG. 21 is a diagram for explaining another example of the resin thickness defining template according to the present invention.
- a resin thickness regulating template 410 shown in FIG. 21A has a recess 415 including a recess 412 in a plan view on the surface opposite to the main surface.
- the thickness of the region provided with the recess 412 of the template 410 for regulating the resin thickness can be made easy to bend, and it is possible to further eliminate the mixing of bubbles during pressing.
- the resin thickness regulating template according to the present invention has a configuration in which the periphery of the concave portion 402 is surrounded by a convex portion 403 having a frame shape in a plan view, like the resin thickness regulating template 400 shown in FIG.
- the outer edge of the upper surface of the outer peripheral portion of the recess 422 may reach the outer edge of the resin thickness regulating template.
- the film thickness of the second resin layer 52 is made smaller than the film thickness of the first resin layer 51 in the same manner as the template 400 for regulating the resin thickness shown in FIG. It is because it can form.
- the first resin layer 51 can be a resin layer having a uniform thickness.
- a concave portion including the concave portion 422 in a plan view is provided on the surface opposite to the main surface side, like a template 410 for regulating the resin thickness shown in FIG. You may do it.
- the thickness of the region where the concave portion 422 of the resin thickness regulating template 420 is provided can be made easy to bend, and air bubbles can be further prevented from being mixed when pressed. This is because, when releasing, it is possible to release partly sequentially from the outer edge of the recess 422.
- FIG. 22 is a flowchart showing an example of a method for manufacturing a multistage template substrate with a light shielding material layer according to the present invention.
- 23 and 24 are schematic process diagrams showing an example of a method for manufacturing a multistage template substrate with a light shielding material layer according to the present invention.
- substrate with a light-shielding material layer which concerns on this invention prepares the 1 step
- the first step structure of the lower stage and the second step structure of the upper stage are formed, a multi-step process (S13 in FIG.
- the one-step template substrate 150 having the one-step structure 151 on the main surface 11 of the base 10 is prepared (see FIG. 23 (a)).
- the material constituting the first-stage template substrate 150 can be used for the optical imprinting method and can transmit exposure light during imprinting.
- ultraviolet light having a wavelength of 200 nm to 400 nm (particularly, 300 nm to 380 nm) is used as the exposure light.
- the material examples include transparent materials such as quartz glass, heat-resistant glass, calcium fluoride (CaF 2 ), magnesium fluoride (MgF 2 ), and acrylic glass, and laminated structures of these transparent materials.
- transparent materials such as quartz glass, heat-resistant glass, calcium fluoride (CaF 2 ), magnesium fluoride (MgF 2 ), and acrylic glass, and laminated structures of these transparent materials.
- synthetic quartz is suitable because of its high rigidity, low thermal expansion coefficient, and good transmittance in the range of 300 nm to 380 nm, which is a commonly used wavelength.
- the height H101 of the step structure 151 is the same as or similar to the step of the template substrate having the one-step structure used in the conventional optical imprint method. Specifically, it is about 30 ⁇ m.
- the back surface 12 side of the base portion 10 of the one-step template substrate 150 has a recess 40.
- an etching mask 160 is formed in a region to be a transfer pattern region on the upper surface of the step structure 151 of the one-step template substrate 150 (FIG. 23B).
- region to be a transfer pattern region refers to the imprint template 1 (FIG. 14) that is finally manufactured through the multi-stage template substrate 300 with a light shielding material layer manufactured from the one-step template substrate 150. ) In which the transfer pattern 23 is formed.
- the upper surface of the second step structure 22 corresponds to a transfer pattern region.
- any material can be used as long as it acts as an etching mask when the material constituting the first-stage template substrate 150 is dry-etched in the next multi-stage process.
- a material containing one or more metal materials and oxides, nitrides, oxynitrides thereof, and the like can be given.
- the metal material include chromium (Cr), molybdenum (Mo), tantalum (Ta), tungsten (W), zirconium (Zr), titanium (Ti), and the like.
- a chromium (Cr) film having a thickness of 30 nm to 200 nm is formed by sputtering film formation, a photoresist is applied, and after patterning, the chromium (Cr) film exposed from the photoresist is etched.
- the etching mask 160 can be formed.
- dry etching using a mixed gas of oxygen and chlorine can be used.
- the step structure 151 is etched using the etching mask 160 as a mask to form a lower first step structure 21 and an upper second step structure 22 (FIG. 23C), and then etching is performed.
- the mask 160 is removed (FIG. 24D).
- the value of the step (H102) of the second step structure 22 shown in FIG. 23C is the same as the value of the step (H1) of the second step structure 22 of the template substrate 4 shown in FIG.
- the range can be 5 ⁇ m or less.
- Such a step of several ⁇ m or less can be sufficiently formed in terms of time by dry etching.
- dry etching the cross-sectional shape of the portion where the second step structure 22 and the upper surface of the first step structure 21 are in contact with each other can be formed at a right angle as compared with the case of forming by wet etching. .
- the material constituting the first-stage template substrate 150 is generally synthetic quartz, and dry etching using a fluorine-based gas can be suitably used for the etching.
- the etching mask 160 can be removed by dry etching using a mixed gas of oxygen and chlorine. Alternatively, it may be removed by wet etching using an aqueous solution containing ceric ammonium nitrate and perchloric acid.
- a light shielding material layer 170 is formed on the upper surface of the first step structure 21 and on the upper surface of the second step structure 22 to obtain a multistage template substrate 300 with a light shielding material layer (FIG. 24E). )).
- the light shielding material layer 170 is also formed on the main surface 11 of the base 10.
- the imprint template substrate according to the present invention is also provided. In this manufacturing method, the light shielding material layer 170 on the main surface 11 is usually removed in the steps shown in FIGS. 18 (e) to (f).
- Examples of the material constituting the light shielding material layer 170 include, for example, a material containing one or more metal materials and oxides, nitrides, oxynitrides and the like thereof.
- Specific examples of the metal material include chromium (Cr), molybdenum (Mo), tantalum (Ta), tungsten (W), zirconium (Zr), titanium (Ti), and the like.
- the light shielding material layer 170 preferably has a transmittance of 10% or less at a wavelength of 365 nm.
- the thickness of the light shielding material layer 170 may be 15 nm or more.
- sputter film formation which has a proven record in the manufacture of photomasks and the like can be preferably cited.
- the method for manufacturing an imprint template according to the present invention is broadly divided into a first embodiment and a second embodiment.
- first embodiment and the second embodiment will be described.
- the first step structure 21 is provided on the main surface of the base 10
- the second step structure 22 is provided on the first step structure 21, and the first step structure 21 is provided.
- a template substrate 4 manufactured by the method for manufacturing an imprint template substrate is prepared, and the upper surface of the second step structure 22 is subjected to the same steps as those of the conventional method for manufacturing an imprint template.
- a method of forming a transfer pattern 23 having a concavo-convex structure As shown in FIG. 14, the first step structure 21 is provided on the main surface of the base 10, the second step structure 22 is provided on the first step structure 21, and the first step structure 21 is provided.
- the conventional imprint template manufacturing method includes a method of forming a resist pattern of the transfer pattern 23 using an electron beam lithography technique or a method of forming a resin pattern of the transfer pattern 23 using an imprint technique. Is included.
- the first step structure 21 is provided on the main surface of the base 10 as shown in FIG. 14, the second step structure 22 is provided on the first step structure 21, and the first step structure is shown.
- the template 1 having the light shielding film 31 on the upper surface of the structure 21 and the transfer pattern 23 having the concavo-convex structure on the upper surface of the second step structure 22 is manufactured.
- the multistage template 700 with a light shielding material layer has, for example, a structure similar to that of a conventional template, that is, has a one-step step structure on the main surface of the base portion, and a concavo-convex structure on the upper surface of the step structure.
- Embodiment ).
- the manufacturing method of the multistage template with a light shielding material layer according to the second embodiment is roughly divided into a first embodiment and a second embodiment.
- the first embodiment and the second embodiment will be described.
- FIG. 25 is a flowchart showing an example of a method for manufacturing a multistage template with a light shielding material layer according to a first embodiment.
- 26 and 27 are schematic process diagrams showing an example of a method for producing a multistage template with a light shielding material layer according to the first embodiment.
- step template preparation For example, in order to manufacture the multistage template 700 with a light shielding material layer by the manufacturing method of the present embodiment, first, the first step structure 501 is provided on the main surface 11 of the base 10, and the upper surface of the step structure 501 is provided. A one-step template 500 having a concavo-convex structure transfer pattern 23 is prepared (S111 in FIG. 25, FIG. 26A).
- the one-step template 500 is made of the same material as the conventional imprint template.
- the one-step template 500 has a configuration similar to that of a conventional imprint template.
- the height H501 of the step structure 501 is one step used in the conventional optical imprint method.
- the height is the same as or similar to the level difference of the template having the structure, and is typically about 30 ⁇ m.
- a recess 40 is provided on the back surface 12 side of the base 10 of the one-step template 500.
- the upper surface of the step structure 501 of the one-step template 500 has an area larger than the upper surface of the second step structure 22 of the template 1 finally obtained. This is because, as will be described later, the outer peripheral portion of the upper surface of the step structure 501 of the one-step template 500 is etched to form the upper surface of the first step structure 21. That is, the upper surface of the step structure 501 of the one-step template 500 is wider than the transfer pattern region of the template 1 (equal to the upper surface of the second step structure 22 of the template 1), and the transfer pattern formed on the one-step template 500. 23 is formed in a region which becomes a transfer pattern region in the template 1.
- an etching mask 160 is formed in a region to be a transfer pattern region on the upper surface of the step structure 501 of the one-step template 500 (S112 in FIG. 25, FIG. 26B).
- step structure 501 is etched using the etching mask 160 to form the lower first step structure 21 and the upper second step structure 22, and then the etching mask 160 is removed (see FIG. 25). S113, FIG. 26 (c), FIG. 27 (d)).
- the value of the step (H502) of the second step structure 22 shown in FIG. 26C is the same as the value of the step (H1) of the second step structure 22 of the template 1 shown in FIG. 14, and is 1 ⁇ m or more and 5 ⁇ m.
- the following ranges can be adopted.
- Such a step of several ⁇ m or less can be sufficiently formed in terms of time by dry etching.
- dry etching the cross-sectional shape of the portion where the second step structure 22 and the upper surface of the first step structure 21 are in contact with each other can be formed at a right angle as compared with the case of forming by wet etching. .
- a light shielding material layer 170 is formed on the upper surface of the first step structure 21 and on the upper surface of the second step structure 22 to obtain a multistage template 700 with a light shielding material layer (S114 in FIG. 25, FIG. 27 (e)).
- the light shielding material layer 170 is also formed on the main surface 11 of the base 10, but this is for the imprinting according to the present invention thereafter.
- the light shielding material layer 170 on the main surface 11 is usually removed.
- FIG. 28 is a flowchart showing another example of a method for manufacturing a multistage template with a light shielding material layer according to a second embodiment.
- 29 and 30 are schematic process diagrams showing another example of the method for manufacturing the multistage template with the light shielding material layer according to the second embodiment.
- the one-step template substrate 150 having the one-step step structure 151 on the main surface 11 of the base 10 is prepared. (S211 in FIG. 28, FIG. 29A).
- the material constituting the first-stage template substrate 150 shown in FIG. 29A is the same as that of the first-stage template substrate 150 shown in FIG. 23, the description thereof is omitted here.
- the height H201 of the step structure 151 is the same as the height H101 of the step structure 151 of the one-step template substrate 150 shown in FIG. Is omitted.
- the back surface 12 side of the base portion 10 of the one-step template substrate 150 shown in FIG. 29A has a recess 40 as in the case of the one-step template substrate 150 shown in FIG.
- an etching mask 160 is formed in a region that becomes the first concavo-convex structure constituting the transfer pattern and the second concavo-convex structure constituting the alignment mark on the upper surface of the step structure 151 of the one-step template substrate 150 ( S212 of FIG. 28, FIG. 29B).
- region to be the first concavo-convex structure constituting the transfer pattern and the second concavo-convex structure constituting the alignment mark refers to a multi-stage with a light shielding material layer manufactured from the one-step template substrate 150.
- the first concavo-convex structure 22a and the second concavo-convex structure 22b are formed in the imprint template 1 (FIG. 38 (l)) finally manufactured through the template 700 (FIG. 30 (f)). Area.
- the material constituting the etching mask 160 is the same as that of the etching mask 160 shown in FIG. 23B, description thereof is omitted here.
- the method for forming the etching mask 160 is the same as the method for forming the etching mask 160 shown in FIG.
- the step structure 151 is etched using the etching mask 160 as a mask to form a lower first step structure 21 and an upper second step structure 22, and then the etching mask 160 is removed (FIG. 28, S213, FIG. 29 (c), FIG. 30 (d)).
- the value of the step (H202) of the second step structure 22 shown in FIG. 29C is the same as the value of the step (H1) of the second step structure 22 of the template 1 shown in FIG. 14, and is 1 ⁇ m or more and 5 ⁇ m.
- the following ranges can be adopted.
- Such a step of several ⁇ m or less can be sufficiently formed in terms of time by dry etching.
- dry etching the cross-sectional shape of the portion where the second step structure 22 and the upper surface of the first step structure 21 are in contact with each other can be formed at a right angle as compared with the case of forming by wet etching. .
- dry etching using a fluorine-based gas can be suitably used for the etching, as in the case of etching the one-step step structure 151 of the one-step template substrate 150 shown in FIG. .
- the method for removing the etching mask 160 is the same as the method for removing the etching mask 160 shown in FIG.
- the first concavo-convex structure 22a constituting the transfer pattern 23 and the second concavo-convex structure 22b constituting the alignment mark are formed on the upper surface of the second step structure 22 to obtain the multi-step template 600. (S214 in FIG. 28, FIG. 30 (e)).
- the same first concavo-convex structure 22a and the desired concavo-convex structure 22a and A method of forming the desired second concavo-convex structure 22b can be mentioned.
- the above-described conventional method for producing an imprint template includes a method of forming a resist pattern of the first concavo-convex structure 22a and the second concavo-convex structure 22b using an electron beam lithography technique or the like, and an imprint technique.
- the method of forming the resin pattern of the 1st uneven structure 22a and the 2nd uneven structure 22b using is included.
- a light shielding material layer 170 is formed on the main surface 11 of the base 10, the upper surface of the first step structure 21, and the upper surface of the second step structure 22, and the multistage template 700 with the light shielding material layer is formed. (S215 in FIG. 28, FIG. 30 (f)).
- the light shielding material layer 170 is also formed on the main surface 11 of the base 10, but this is for the imprinting according to the present invention.
- the light shielding material layer 170 on the main surface 11 is usually removed.
- the material constituting the light shielding material layer 170 is the same as the material constituting the light shielding film 31 in the template 1 shown in FIG. 5, description thereof is omitted here.
- the thickness of the light shielding material layer 170 is the same as the thickness of the light shielding film 31 in the template 1 shown in FIG.
- the manufacturing method of the multistage template with light shielding material layer according to the second embodiment is as shown in FIGS. Either the first embodiment or the second embodiment as shown in FIGS. 28, 29, 30 may be used, but the second embodiment is preferred over the first embodiment.
- the second step structure 22 is processed finer than the multi-stage process. This is because the formation of the concavo-convex structure on the upper surface reduces the risk of damage and destruction of the concavo-convex structure.
- FIG. 31 is a flowchart showing an example of a template manufacturing method according to the second embodiment.
- 32 and 33 are schematic process diagrams showing an example of a template manufacturing method according to the second embodiment.
- Step of multistage template with light shielding material layer For example, in order to manufacture the template 1 by this manufacturing method, first, the first step structure 21 and the second step structure 22 are provided, and the uneven pattern transfer pattern 23 is formed on the upper surface of the second step structure 22. And a multistage template 700 with a light shielding material layer having a light shielding material layer 170 on the upper surface of the first step structure 21 and the upper surface of the second step structure 22 is prepared (S100 in FIG. 31, FIG. 32 ( a)).
- the total height of the first step structure 21 and the second step structure 22 is the level of the template substrate having a one-step structure used in the conventional optical imprint method.
- the height is the same as or about the same as the height, and is typically about 30 ⁇ m.
- the multistage template 700 with a light shielding material layer can be manufactured, for example, by the manufacturing method (FIGS. 25 to 27) of the multistage template with a light shielding material layer of the first embodiment.
- the first resin 51 a is dropped on the light shielding material layer 170 formed on the upper surface of the first step structure 21, and the upper surface of the second step structure 22.
- the second resin 52a is dropped on the light shielding material layer 170 formed on the substrate, and then, as shown in FIG. 32 (c), a template 400 for regulating the resin thickness is pressed to reduce the thickness of each resin.
- the first resin 51a and the second resin 52a are cured, and then the resin thickness defining template 400 is released, and as shown in FIG.
- the defined first resin layer 51 and second resin layer 52 are obtained (S200 in FIG. 31).
- the second resin layer 52 can be formed so as to be thinner than the first resin layer 51.
- the first resin layer 51 can be a resin layer having a uniform film thickness.
- the second resin layer 52 is removed by dry etching (etchback) using an etching gas 75 while leaving the first resin layer 51.
- etchback dry etching
- the second resin layer 51 is left while the first resin layer 51 is left by the etch back method. Layer 52 can be removed.
- the light shielding material layer 170 exposed from the first resin layer 51 is etched to form the light shielding film 31 on the upper surface of the first step structure 21.
- the light shielding material layer 170 formed on the upper surface of the second step structure 22 is removed while leaving the light shielding material layer 170 formed thereon.
- the first step structure 21 is provided on the main surface 11 of the base portion 10, and the first step structure is formed.
- a template having a second step structure 22 on 21, a transfer pattern 23 having an uneven structure on the upper surface of the second step structure 22, and a light shielding film 31 on the upper surface of the first step structure 21. 1 can be obtained.
- FIG. 34 is a flowchart showing another example of a template manufacturing method according to the second embodiment.
- 35, 36, 37, and 38 are schematic process diagrams illustrating another example of the template manufacturing method according to the second embodiment.
- Step structure 21 and the second step structure 22 are provided, and the transfer pattern 23 is formed on the upper surface of the second step structure 22. 1 having a concavo-convex structure 22a and a second concavo-convex structure 22b constituting an alignment mark, and a light shielding material layer on the upper surface of the first step structure 21 and on the upper surface of the second step structure 22.
- a multistage template 700 with a light shielding material layer having 170 is prepared (S100 in FIG. 34, FIG. 35 (a)).
- the total height of the first step structure 21 and the second step structure 22 is the level of the template substrate having a one-step structure used in the conventional optical imprint method.
- the height is the same as or about the same as the height, and is typically about 30 ⁇ m.
- the multistage template 700 with a light shielding material layer can be manufactured, for example, by the manufacturing method (FIGS. 28 to 30) of the multistage template with a light shielding material layer of the second embodiment.
- the second resin layer 52 is formed to be thinner than the first resin layer 51.
- the first and second resin thickness prescribing templates 430 for example, as in the form of the resin thickness prescribing template 400, the first template of the multistage template 700 with a light shielding material layer 700 is used.
- the height from the upper surface of the step structure 21 to the upper surface of the second step structure 22 (the same as the height from the upper surface of the first step structure 21 of the imprint template 1 to be described later to the upper surface of the second step structure 22) ), The depth of the concave portion 432 on the main surface side in contact with the resin is smaller.
- the first resin layer 51 is made of a resin having a uniform film thickness as in the case of using the resin thickness regulating template 400 as described above. It can be a layer.
- the second resin layer 52 is removed by dry etching (etchback) using an etching gas 75 while leaving the first resin layer 51 (FIG. 34). S300).
- etchback dry etching
- the second resin layer 51 is left while the first resin layer 51 is left by the etch back method. Layer 52 can be removed.
- the light shielding material layer 170 exposed from the first resin layer 51 is etched to form the light shielding film 31 on the upper surface of the first step structure 21.
- the light shielding material layer 170 formed on the main surface 11 of the base portion 10 and the upper surface of the second step structure 22 is removed while leaving the light shielding material layer 170 formed thereon.
- the remaining first resin layer 51 is removed, so that the first step structure 21 is provided on the main surface 11 of the base 10 as shown in FIG. 21 has a second step structure 22 on the upper surface of the second step structure 22, and a first concavo-convex structure body 22 a constituting the transfer pattern 23 and a second concavo-convex structure body 22 b constituting the alignment mark.
- the template 1 having the light shielding film 31 on the upper surface of the first step structure 21 can be obtained (S400 in FIG. 34).
- the material constituting the high contrast layer 330 is the same as the material constituting the high contrast film 32 in the template 1 shown in FIG.
- the film thickness of the high contrast layer 330 is the same as the film thickness constituting the high contrast film 32 in the template 1 shown in FIG.
- the third resin 53a is dropped on the high contrast layer 330 formed on the light shielding film 31, and the high contrast formed on the top surface of the convex portion and the bottom surface of the concave portion of the first concavo-convex structure 22a.
- the fourth resin 54a is dropped on the layer 330
- the fifth resin 55a is dropped on the high contrast layer 330 formed on the top surface of the convex portion and the bottom surface of the concave portion of the second concavo-convex structure 22b. . (FIG. 37 (h)).
- the third to fifth resin thickness regulating templates 440 are pressed against each other, and the third resin 53a, the fourth resin 54a, and the fifth resin 55a are cured in this state (FIG. 37 (i)). )). Thereafter, the third to fifth resin thickness regulating templates 440 are released (FIG. 38J). Thereby, the third resin layer 53 is formed on the high contrast layer 330 formed on the light shielding film 31, and the high surface formed on the top surface of the convex portion and the bottom surface of the concave portion of the first concavo-convex structure 22a.
- a fourth resin layer 54 having a thickness smaller than that of the third resin layer 53 is formed on the contrast layer 330, and is formed on the top surface of the convex portion and the bottom surface of the concave portion of the second concavo-convex structure 22b.
- a fifth resin layer 55 thicker than the fourth resin layer 54 is formed on the contrast layer 330 (S600 in FIG. 34, FIG. 38 (j)).
- the “fourth resin layer having a smaller film thickness than the third resin layer” means that the film thickness of the third resin layer 53 is T53, as shown in FIG.
- the film thickness of the fourth resin layer 54 formed on the bottom surface of the concave portion of the one concavo-convex structure 22a is T54, it means the fourth resin layer 54 where T54 ⁇ T53.
- the “fifth resin layer having a thickness greater than that of the fourth resin layer” means that the fourth resin layer formed on the bottom surface of the concave portion of the first concavo-convex structure 22a as shown in FIG.
- the fifth resin satisfies T54 ⁇ T55.
- the third to third portions having the recesses 442 on the main surface side in contact with the resin and the recesses 442a formed on the bottom surface side of the recesses 442 are provided.
- the upper surface of the outer peripheral portion of the concave portion 442 of the third to fifth resin thickness regulating templates 440 is pressed against the third resin 53a, and the fourth resin 54a
- the bottom surface of the recess 442 of the third to fifth resin thickness regulating templates 440 is pressed against the fifth resin 55a
- the bottom surface of the recess 442a is pressed against the fifth resin 55a.
- the film thickness of the 3rd resin layer 53, the 4th resin layer 54, and the 5th resin layer 55 can be prescribed
- the 3rd resin layer 53, the 4th resin layer 54, and the 5th resin layer 55 can be made into a resin layer with uniform film thickness.
- the third resin 53a, the fourth resin 54a, and the fifth resin 55a are made of a material that is cured by heat or light, and are preferably ultraviolet curable resins used in the field of nanoimprint lithography.
- the third resin 53a, the fourth resin 54a, and the fifth resin 55a are ultraviolet curable resins
- the third resin 53a, the fourth resin 54a, and the fifth resin 55a are In the step of curing, as shown in FIG. 37 (i), a method of irradiating ultraviolet rays 65 can be used.
- the third resin 53a, the fourth resin 54a, and the fifth resin 55a are formed by dry etching in a fourth resin layer removing step (S700 in FIG. 34, FIG. 38 (k)) described later.
- the upper side of the third resin layer 53 and the fifth resin layer 55 and the fourth resin layer 54 can be removed while leaving the lower side of the resin layer 53 and the fifth resin layer 55.
- it may be composed of different materials. However, from the viewpoint of ease of handling, it is preferable that they are composed of the same material.
- the third resin layer 53 and the fifth resin layer 55 are left while leaving the lower side of the third resin layer 53 and the fifth resin layer 55 by dry etching (etchback) using the etching gas 75.
- the upper side and the fourth resin layer 54 are removed (S700 in FIG. 34, FIG. 38 (k)).
- the film thickness T54 of the fourth resin layer 54 is smaller than the film thickness T53 of the third resin layer 53 and the film thickness T55 of the fifth resin layer 55.
- the fourth resin layer 54 can be removed while leaving the lower side of the third resin layer 53 and the fifth resin layer 55.
- oxygen gas can be used as the etching gas 75.
- the high contrast layer 330 is etched using the remaining lower side of the third resin layer 53 and the fifth resin layer 55 as a mask, and the bottom surface of the concave portion of the second concavo-convex structure 22b is formed on the light shielding film 31.
- the main surface 11 of the base 10 the upper surface of the convex portion and the bottom surface of the concave portion of the first concavo-convex structure 22 a, and the convex portion of the second concavo-convex structure 22 b, while leaving the high contrast layer 330 formed thereon.
- the high contrast layer 330 formed on the upper surface is removed, and the remaining third resin layer 53 and fifth resin layer 55 are removed (S800 in FIG. 34, FIG. 38 (l)).
- the upper surface of the second step structure 22 has the first concavo-convex structure 22a constituting the transfer pattern 23 and the second concavo-convex structure 22b constituting the alignment mark.
- the template 1 in which the high contrast film 32 is formed on the top and the bottom surface of the concave portion of the second concavo-convex structure 22b can be obtained (FIG. 38 (l)).
- the imprint template 1 having the high contrast film 32 shown in FIG. 38 (l) is the same as the template 1 shown in FIG.
- FIG. 39 is a view for explaining another example of a resin thickness regulating template according to the present invention.
- FIG. 39 (a) shows a schematic bottom view of the third to fifth resin thickness regulating templates 440
- FIG. 39 (b) shows a cross-sectional view along line AA in FIG. 39 (a).
- the third to fifth resin thickness regulating templates 440 shown in FIG. 39 are the same as the third to fifth resin thickness regulating templates 440 shown in FIG.
- the third to fifth resin thickness regulating templates 440 shown in FIG. 39 have a concave portion 442 on the main surface side (lower side in FIG. 39B) in contact with the resin. Has a recess 442a formed on the bottom side.
- the third to fifth resin thickness regulating templates 440 are configured such that the outer edge of the upper surface of the outer peripheral portion of the recess 442 reaches the outer edge of the third to fifth resin thickness regulating templates 440.
- the recesses 442 of the third to fifth resin thickness defining templates 440 are, as seen in a plan view, the second step of the template 1 in which the high contrast layer 330 is formed, as shown in FIG.
- the structure 22 has a size included in the region surrounded by the outer edge of the upper surface of the first step structure 21 of the template 1 in which the upper surface of the structure 22 is included and the high contrast layer 330 is formed.
- FIG. 40 is a diagram for explaining the function and effect of the resin thickness regulating template according to the present invention.
- FIG. 40 corresponds to an enlarged view of a main part in FIG.
- each of the third resin layer 53, the fourth resin layer 54, and the fifth resin layer 55 is pressed against the third to fifth resin thickness defining templates 440.
- the height from the upper surface of the high contrast layer 330 formed on the light shielding film 31 to the upper surface of the high contrast layer 330 formed on the bottom surface of the concave portion of the first concavo-convex structure 22a is H53.
- the depth of the portion other than the recess 442a in the recess 442 is H54
- the thickness of the third resin layer 53 to be formed is T53
- the thickness of the fourth resin layer 54 to be formed the recess of the first uneven structure 22a).
- T54 ⁇ T53 is established by designing so that H54 ⁇ H53.
- the thickness of the fifth resin layer 55 is designed and formed so that H55 ⁇ H54.
- the film thickness T54 of the fourth resin layer 54 is changed to that of the third resin layer 53.
- the film thickness T55 of the fifth resin layer 55 which can be formed to be thinner than the film thickness T53, can be formed to be thicker than the film thickness T54 of the fourth resin layer 54.
- the third resin layer 53, the fourth resin layer 54, and the fifth resin layer 55 are made to be uniform resin layers. be able to. As a result, as shown in FIG.
- the third resin layer 53 and the fifth resin layer 55 are removed while leaving the lower sides of the third resin layer 53 and the fifth resin layer 55 by dry etching.
- the lower side of the remaining third resin layer 53 and fifth resin layer 55 is used as a mask to form a high contrast layer.
- Etching 330 can leave the lower side of the high contrast layer 330 formed on the light shielding film 31 and on the bottom surface of the concave portion of the second concavo-convex structure 22b.
- the high contrast film 32 that is the high contrast layer 330 left on the light shielding film 31 and the high contrast film 32 that is the high contrast layer 330 left on the bottom surface of the concave portion of the second uneven structure body 22b It can be set as a film
- the depth H54 of the portion other than the recess 442a in the recess 442 can be in the range of 0.3 ⁇ m or more and 10 ⁇ m or less.
- the depth of the recesses 442a formed on the bottom surface side of the recesses 442 is H55
- the depths of the recesses of the first uneven structure body 22a and the second uneven structure body 22b are H60.
- the high contrast film 32 (high contrast layer 330) can be removed from the first concavo-convex structure 22a without residue.
- H55 is in the range of H60 ⁇ 1.0 to H60 ⁇ 2.0.
- the bottom surface of the concave portion 442 of the third to fifth resin thickness regulating templates 440 includes the upper surface of the second step structure 22 of the template 1 on which the high contrast layer 330 shown in FIG. 37 (i) is formed. It is preferable to have a size to
- the width of the bottom surface of the concave portion 442 of the third to fifth resin thickness regulating templates 440 shown in FIG. 39B is L21, and the high contrast layer 330 shown in FIG.
- the width of the upper surface of the second step structure 22 of the formed template 1 is L11, it is preferable that L21> L11.
- the bottom size of the recess 442 can be in the range of 10 mm ⁇ 10 mm or more and 70 mm ⁇ 70 mm or less.
- the region surrounded by the outer edge of the upper surface of the outer periphery of the recess 442 of the third to fifth resin thickness regulating templates 440 is the first of the template 1 having the high contrast layer 330 shown in FIG.
- the region having the same shape and the same area as the region surrounded by the outer edge of the upper surface of the step structure 21 or the region surrounded by the outer edge of the upper surface of the first step structure 21 of the template 1 in which the high contrast layer 330 is formed is included. It is preferable to have a size to
- the width of the region surrounded by the outer edge of the upper surface of the concave portion 442 of the third to fifth resin thickness regulating templates 440 shown in FIG. 39B is L22, and FIG.
- the width of the region surrounded by the outer edge of the upper surface of the first step structure 21 of the template 1 on which the high contrast layer 330 shown in i) is formed is L12, it is preferable that L22 ⁇ L12.
- the third resin layer 53 can be a resin layer having a uniform thickness without a defect portion until reaching the outer edge of the upper surface of the first step structure 21 of the template 1 on which the high contrast layer 330 is formed. .
- first and second resin thickness regulating templates 430 shown in FIG. 35C have alignment marks 435 on the main surface side. Therefore, as shown in FIG. 35 (c), when the first and second resin thickness regulating templates 430 are pressed against each other, a multistage template with a light shielding material layer on which corresponding alignment marks (not shown) are formed.
- the relative position with respect to 700 can be adjusted, and pressing can be performed with high positional accuracy.
- the alignment mark 435 shown in FIG. 35C is a recess 435 a formed outside the recess 432 on the main surface side of the first and second resin thickness regulating templates 430.
- the recesses 432 and the recesses 435a formed outside the recesses 432 are formed in separate steps. Specifically, after processing one of the recess 432 and the recess 435a, alignment is performed by alignment drawing, and the other processing is performed.
- the recess 435a formed outside the recess 432 is a recess having a depth enough to read the mark (for example, 20 nm to 300 nm).
- the third to fifth resin thickness regulating templates 440 shown in FIG. 39 also have alignment marks 435 on the main surface side. Therefore, as shown in FIG. 37 (i), when the third to fifth resin thickness regulating templates 440 are pressed against each other, the relative position with respect to the template 1 on which the corresponding alignment mark (not shown) is formed. And can be pressed with high positional accuracy.
- the alignment mark 435 shown in FIG. 39 is a depression 435a formed outside the recess 442 on the main surface side of the third to fifth resin thickness regulating templates 440, and is formed on the bottom surface side of the recess 442.
- the depth H55 of the recess 442a and the depth H56 of the recess 435a of the alignment mark 435 are the same. For this reason, the recess 442a formed on the bottom surface side of the recess 442 and the recess 435a of the alignment mark 435 can be formed in the same process.
- the resin thickness defining template according to the present invention has an alignment mark on the main surface side like the third to fifth resin thickness defining templates 440 shown in FIG.
- the mark is a recess formed outside the recess on the main surface side, and the depth of the recess formed on the bottom surface side of the recess is the same as the depth of the recess formed outside the recess. It is preferable that This is because the recess formed on the bottom surface side of the recess and the recess of the alignment mark can be formed in the same process.
- the template substrate manufacturing method, the template manufacturing method, and the template according to the present invention have been described above, but the present invention is not limited to the above embodiment.
- the above-described embodiment is an exemplification, and the technical idea described in the claims of the present invention has substantially the same configuration and exhibits the same function and effect regardless of the case. It is included in the technical scope of the invention.
- the present invention is not limited to the above embodiment.
- the above-described embodiment is an exemplification, and the present invention has substantially the same configuration as the technical idea described in the claims of the present invention, and any device that exhibits the same function and effect is the present invention. It is included in the technical scope of the invention.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Shaping Of Tube Ends By Bending Or Straightening (AREA)
- Moulds For Moulding Plastics Or The Like (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
Abstract
必要とされる転写パターン領域の高さを維持しつつ、インプリント時の露光光の漏れの影響を抑制するために、凹凸構造の転写パターン(23)を被転写基板の上の樹脂に転写するインプリントリソグラフィに用いられるテンプレート(1)及びテンプレートブランクスにおいて、基部(10)の主面の上に、第1の段差構造(21)を形成し、前記第1の段差構造(21)の上に第2の段差構造(22)を形成し、前記第1の段差構造(21)の上面の、前記第2の段差構造(22)の外側の領域を、遮光膜(21)で覆う構成とした。
Description
本発明は、微細な転写パターンを被転写基板上に形成された樹脂に転写するナノインプリントリソグラフィに用いられるテンプレート、及び、該テンプレートの製造に用いられるテンプレートブランクスに関するものである。また、本発明は、微細な転写パターンを被転写基板上に形成された樹脂に転写するナノインプリントリソグラフィに用いられるテンプレートに関し、特に、基部の主面の上に第1の段差構造を有し、前記第1の段差構造の上に第2の段差構造を有し、前記第1の段差構造の上面の上に遮光膜を有するインプリント用テンプレート基板の製造方法、並びに、インプリント用テンプレートの製造方法、及び、これらの製造方法に用いられるテンプレートに関するものである。
半導体用デバイス製造等において、微細なパターンを転写形成する技術として、ナノインプリントリソグラフィが知られている。
上記のナノインプリントリソグラフィは、表面に微細な凹凸形状の転写パターンを形成したインプリント用のテンプレート(モールド、スタンパ、金型とも呼ばれる)を、半導体ウェハなどの被転写基板の上に形成された樹脂に接触させた後に前記樹脂を硬化させて、前記樹脂に前記テンプレートの転写パターンの凹凸形状(より詳しくは、凹凸反転形状)を転写させる技術である。
このナノインプリントリソグラフィの手法として、加熱により樹脂を硬化させる熱インプリント法と、露光により樹脂を硬化させる光インプリント法がある。高い位置合わせ精度が要求される用途には、加熱による膨張や収縮の影響を受けない光インプリント法が、主に用いられる(例えば、特許文献1、2)。
上記のナノインプリントリソグラフィは、表面に微細な凹凸形状の転写パターンを形成したインプリント用のテンプレート(モールド、スタンパ、金型とも呼ばれる)を、半導体ウェハなどの被転写基板の上に形成された樹脂に接触させた後に前記樹脂を硬化させて、前記樹脂に前記テンプレートの転写パターンの凹凸形状(より詳しくは、凹凸反転形状)を転写させる技術である。
このナノインプリントリソグラフィの手法として、加熱により樹脂を硬化させる熱インプリント法と、露光により樹脂を硬化させる光インプリント法がある。高い位置合わせ精度が要求される用途には、加熱による膨張や収縮の影響を受けない光インプリント法が、主に用いられる(例えば、特許文献1、2)。
上述のようなナノインプリントリソグラフィに用いられるテンプレートにおいては、凹凸形状の転写パターンを形成した所定の領域(転写パターン領域と呼ぶ)のみが、被転写基板の上に形成された樹脂に接触するように、基部の主面の上にメサ状の段差構造を設け、このメサ状の段差構造の上面に転写パターンを形成することが行われている(例えば、特許文献3)。なお、このような構成のテンプレートにおいては、メサ状の段差構造の上面が転写パターン領域になる。
上記のようなメサ状の段差構造の段差(基部の主面から段差構造の上面までの高さ)は、使用するインプリント装置の機械的精度等により定まるものであるが、典型的には30μm程度を要する。
上記のようなメサ状の段差構造の段差(基部の主面から段差構造の上面までの高さ)は、使用するインプリント装置の機械的精度等により定まるものであるが、典型的には30μm程度を要する。
また、ナノインプリントリソグラフィにおいては、転写パターンの数が増すにつれ、テンプレートと樹脂との密着面積が増加するため、離型に際しては、両者間の摩擦力に対抗する力が必要になる。特に、半導体用途の転写パターンは、そのサイズが小さく、パターン密度が高いことから、離型には大きな力が必要になる。
そこで、テンプレートの裏面側(転写パターンが形成されている面とは反対側)に窪み部を形成することによって、転写パターンが形成されている所定の領域(転写パターン領域を含む領域)のテンプレートの厚みを薄くして湾曲容易とし、離型に際しては、テンプレートの転写パターン領域を被転写基板側に向かって凸状に湾曲させて、転写領域の外縁部から、順次、部分的に離型していく手法が提案されている(例えば、特許文献4)。
そこで、テンプレートの裏面側(転写パターンが形成されている面とは反対側)に窪み部を形成することによって、転写パターンが形成されている所定の領域(転写パターン領域を含む領域)のテンプレートの厚みを薄くして湾曲容易とし、離型に際しては、テンプレートの転写パターン領域を被転写基板側に向かって凸状に湾曲させて、転写領域の外縁部から、順次、部分的に離型していく手法が提案されている(例えば、特許文献4)。
上記の光インプリント法においては、インプリントに際し、非転写領域の樹脂を、意図せずに硬化させてしまうことを抑制するために、テンプレートの非パターン部(転写パターン領域とは異なる部位)に遮光部材を設けることが提案されている(例えば、特許文献5)。
しかしながら、例えば、特許文献5の図9(A)、7(B)、7(D)に示すような、メサ状の段差構造の側面に均一に遮光部材を設けることは、通常、困難である。特許文献5にも、上記の図9(A)、7(B)、7(D)に示すような形態を得る製造方法の詳細は、記載されていない。
また、特許文献5の図9(C)に示すような、基部の主面の上にのみ遮光部材を設けた形態では、例えば、上記のように、メサ状の段差構造の上面と基部の主面との間に30μm程度の段差がある場合、メサ状の段差構造と基部の主面が接する箇所から漏れた露光光がその段差の距離に応じて広がって樹脂に照射されるため、やはり、意図しない箇所の樹脂が硬化してしまうという不具合がある。
特に、段差が30μm程度のメサ状の段差構造の形成には、ドライエッチングでは時間がかかるため、通常、ウェットエッチングにより形成され、それゆえ、メサ状の段差構造と基部の主面が接する箇所の断面形状は直角にはなり難く、丸みをおびた形状になる。そして、この丸みをおびた形状の箇所(メサ状の段差構造と基部の主面が接する箇所)では、他の箇所と同様の膜厚で遮光部材を形成することは困難になり、より、露光光が漏れやすくなる。
特に、段差が30μm程度のメサ状の段差構造の形成には、ドライエッチングでは時間がかかるため、通常、ウェットエッチングにより形成され、それゆえ、メサ状の段差構造と基部の主面が接する箇所の断面形状は直角にはなり難く、丸みをおびた形状になる。そして、この丸みをおびた形状の箇所(メサ状の段差構造と基部の主面が接する箇所)では、他の箇所と同様の膜厚で遮光部材を形成することは困難になり、より、露光光が漏れやすくなる。
本発明は、上記実情に鑑みてなされたものであり、必要とされる転写パターン領域の高さ(基部の主面からの距離)を維持しつつ、インプリント時の露光光の漏れ(意図しない領域への照射)の影響を抑制することが可能な、テンプレート及びテンプレートブランクス、並びにインプリント用テンプレートを製造するためのインプリント用テンプレート基板の製造方法、インプリント用テンプレートの製造方法、及び、これらの製造方法に用いるテンプレートを提供することを、主たる目的とする。
すなわち、本発明は、凹凸構造の転写パターンを被転写基板の上の樹脂に転写するインプリントリソグラフィに用いられるテンプレートであって、基部の主面の上に、第1の段差構造を有し、上記第1の段差構造の上に第2の段差構造を有し、上記第2の段差構造の上面に上記転写パターンを有しており、上記第1の段差構造の上面の、上記第2の段差構造の外側の領域が、遮光膜で覆われていることを特徴とする、テンプレートを提供する。
また、本発明は、凹凸構造の転写パターンを被転写基板の上の樹脂に転写するインプリントリソグラフィに用いられるテンプレートであって、基部の主面の上に、第1の段差構造を有し、上記第1の段差構造の上に第2の段差構造を有し、上記第2の段差構造の上面に、上記転写パターンを構成する第1の凹凸構造体と、アライメントマークを構成する第2の凹凸構造体と、を有し、上記第1の段差構造の上面の、上記第2の段差構造の外側の領域が、遮光膜で覆われており、上記遮光膜の上、及び上記第2の凹凸構造体の凹部の底面の上に、上記基部を構成する材料と異なる材料膜から構成される高コントラスト膜が形成されていることを特徴とする、テンプレートを提供する。
また、上記発明においては、上記基部の主面から上記第1の段差構造の上の上記遮光膜の上面までの垂直方向の距離をH1とし、上記基部の主面から上記第2の段差構造の上面の上記転写パターンの凹部の底面までの垂直方向の距離をH2とした場合に、
H1<H2
の関係となることが好ましい。
H1<H2
の関係となることが好ましい。
また、上記発明においては、上記基部の主面から上記第1の段差構造の上の上記遮光膜の上面までの垂直方向の距離をH1とし、上記基部の主面から上記第2の段差構造の上面までの垂直方向の距離をH3とし、上記基部の主面の外縁から上記第1の段差構造の上面の外縁までの水平方向の距離をD1とし、上記基部の主面の外縁から上記第2の段差構造の上面の外縁までの水平方向の距離をD2とした場合に、
H1≦H3×(D1/D2)
の関係となることが好ましい。
H1≦H3×(D1/D2)
の関係となることが好ましい。
また、上記発明においては、上記基部の主面とは反対側の面に、平面視において上記第2の段差構造を包含する窪み部を有することが好ましい。
また、上記発明においては、上記窪み部が、平面視において上記第1の段差構造を包含することが好ましい。
また、上記発明においては、上記遮光膜が、波長365nmにおける透過率が10%以下であることが好ましい。
また、本発明は、凹凸構造の転写パターンを被転写基板の上の樹脂に転写するインプリントリソグラフィに用いられるテンプレートを製造するためのテンプレートブランクスであって、基部の主面の上に、第1の段差構造を有し、上記第1の段差構造の上に第2の段差構造を有しており、上記第1の段差構造の上面の、上記第2の段差構造の外側の領域が、遮光膜で覆われていることを特徴とする、テンプレートブランクスを提供する。
また、上記発明においては、上記基部の主面から上記第1の段差構造の上の上記遮光膜の上面までの垂直方向の距離をH1とし、上記基部の主面から上記第2の段差構造の上面までの垂直方向の距離をH4とした場合に、
H1<H4
の関係となることが好ましい。
H1<H4
の関係となることが好ましい。
また、上記発明においては、上記基部の主面から上記第1の段差構造の上の上記遮光膜の上面までの垂直方向の距離をH1とし、上記基部の主面から上記第2の段差構造の上面までの垂直方向の距離をH4とし、上記基部の主面の外縁から上記第1の段差構造の上面の外縁までの水平方向の距離をD1とし、上記基部の主面の外縁から上記第2の段差構造の上面の外縁までの水平方向の距離をD2とした場合に、
H1≦H4×(D1/D2)
の関係となることが好ましい。
H1≦H4×(D1/D2)
の関係となることが好ましい。
また、上記発明においては、上記基部の主面とは反対側の面に、平面視において上記第2の段差構造を包含する窪み部を有することが好ましい。
また、上記発明においては、上記窪み部が、平面視において上記第1の段差構造を包含することが好ましい。
また、上記発明においては、上記遮光膜が、波長365nmにおける透過率が10%以下であることが好ましい。
また、本発明は、基部の主面の上に第1の段差構造を有し、上記第1の段差構造の上に第2の段差構造を有し、上記第1の段差構造の上面の上に遮光膜を有するインプリント用テンプレート基板の製造方法であって、上記第1の段差構造と上記第2の段差構造を有し、上記第1の段差構造の上面の上及び上記第2の段差構造の上面の上に遮光材層を有する遮光材層付き多段テンプレート基板を準備する、遮光材層付き多段テンプレート基板準備工程と、上記第1の段差構造の上面の上に形成した遮光材層の上に第1の樹脂層を形成し、上記第2の段差構造の上面の上に形成した遮光材層の上に上記第1の樹脂層よりも厚みが薄い第2の樹脂層を形成する、樹脂層形成工程と、ドライエッチングにより上記第1の樹脂層を残しつつ、上記第2の樹脂層を除去する、第2の樹脂層除去工程と、残存した上記第1の樹脂層をマスクに用いて上記遮光材層をエッチングして、上記第1の段差構造の上面の上に形成した遮光材層を残しながら、上記第2の段差構造の上面の上に形成した遮光材層を除去する、遮光膜形成工程と、を順に備え、上記樹脂層形成工程が、樹脂と接触する主面側に凹部を有する樹脂厚規定用のテンプレートを用いて、上記第1の段差構造の上面の上に形成した遮光材層の上に滴下した第1の樹脂に上記樹脂厚規定用のテンプレートの該凹部の外周部の上面を押し当て、上記第2の段差構造の上面の上に形成した遮光材層の上に滴下した第2の樹脂に上記樹脂厚規定用のテンプレートの凹部の底面を押し当てる、樹脂厚規定工程を含み、上記樹脂厚規定用のテンプレートの上記凹部の深さが、上記第1の段差構造の上面から上記第2の段差構造の上面までの高さよりも小さいことを特徴とする、インプリント用テンプレート基板の製造方法を提供する。
また、上記発明においては、上記樹脂層形成工程が、上記樹脂厚規定工程と、上記樹脂厚規定用のテンプレートを押し当てた状態で紫外線照射により、上記第1の樹脂及び上記第2の樹脂を硬化させて、上記第1の樹脂層及び上記第2の樹脂層を形成する、樹脂硬化工程と、を含むことが好ましい。
また、上記発明においては、上記遮光材層付き多段テンプレート基板準備工程が、上記第1の段差構造と上記第2の段差構造を有する多段テンプレート基板を準備する、多段テンプレート基板準備工程と、上記第1の段差構造の上面の上、及び、上記第2の段差構造の上面の上に遮光材層を形成する、遮光材層形成工程と、を順に備えることが好ましい。
また、上記発明においては、上記多段テンプレート基板準備工程が、上記基部の主面の上に1段の段差構造を有する1段テンプレート基板を準備する、1段テンプレート基板準備工程と、上記1段テンプレート基板の上記段差構造の上面の転写パターン領域となる領域に、エッチングマスクを形成する、エッチングマスク形成工程と、上記エッチングマスクを用いて上記段差構造をエッチングして、下段の第1の段差構造と上段の第2の段差構造を形成する、多段化工程と、を順に備えることが好ましい。
また、本発明は、基部の主面の上に第1の段差構造を有し、上記第1の段差構造の上に第2の段差構造を有し、上記第1の段差構造の上面の上に遮光膜を有し、上記第2の段差構造の上面に凹凸構造の転写パターンを有するインプリント用テンプレートの製造方法であって、上記第1の段差構造と上記第2の段差構造を有し、上記第2の段差構造の上面に凹凸構造の転写パターンを有し、上記第1の段差構造の上面の上及び上記第2の段差構造の上面の上に遮光材層を有する遮光材層付き多段テンプレートを準備する、遮光材層付き多段テンプレート準備工程と、上記第1の段差構造の上面の上に形成した遮光材層の上に第1の樹脂層を形成し、上記第2の段差構造の上面の上に形成した遮光材層の上に上記第1の樹脂層よりも厚みが薄い第2の樹脂層を形成する、第1および第2の樹脂層形成工程と、ドライエッチングにより上記第1の樹脂層を残しながら、上記第2の樹脂層を除去する、第2の樹脂層除去工程と、残存した上記第1の樹脂層をマスクに用いて上記遮光材層をエッチングして、上記第1の段差構造の上面の上に形成した遮光材層を残しながら、上記第2の段差構造の上面の上に形成した遮光材層を除去する、遮光膜形成工程と、を順に備え、上記第1および第2の樹脂層形成工程が、樹脂と接触する主面側に凹部を有する第1および第2の樹脂厚規定用のテンプレートを用いて、上記第1の段差構造の上面の上に形成した遮光材層の上に滴下した第1の樹脂に上記第1および第2の樹脂厚規定用のテンプレートの該凹部の外周部の上面を押し当て、上記第2の段差構造の上面の上に形成した遮光材層の上に滴下した第2の樹脂に上記第1および第2の樹脂厚規定用のテンプレートの凹部の底面を押し当てる、第1および第2の樹脂厚規定工程を含み、上記第1および第2の樹脂厚規定用のテンプレートの上記凹部の深さが、上記第1の段差構造の上面から上記第2の段差構造の上面までの高さよりも小さいことを特徴とする、インプリント用テンプレートの製造方法を提供する。
また、本発明は、基部の主面の上に第1の段差構造を有し、上記第1の段差構造の上に第2の段差構造を有し、上記第1の段差構造の上面の上に遮光膜を有し、上記第2の段差構造の上面に凹凸構造の転写パターンを有するインプリント用テンプレートの製造方法であって、上記第1の段差構造と上記第2の段差構造を有し、上記第2の段差構造の上面に、上記転写パターンを構成する第1の凹凸構造体と、アライメントマークを構成する第2の凹凸構造体とを有し、上記第1の段差構造の上面の上及び上記第2の段差構造の上面の上に遮光材層を有する遮光材層付き多段テンプレートを準備する、遮光材層付き多段テンプレート準備工程と、上記第1の段差構造の上面の上に形成した遮光材層の上に第1の樹脂層を形成し、上記第2の段差構造の上面の上に形成した遮光材層の上に上記第1の樹脂層よりも厚みが薄い第2の樹脂層を形成する、第1および第2の樹脂層形成工程と、ドライエッチングにより上記第1の樹脂層を残しながら、上記第2の樹脂層を除去する、第2の樹脂層除去工程と、残存した上記第1の樹脂層をマスクに用いて上記遮光材層をエッチングして、上記第1の段差構造の上面の上に形成した遮光材層を残しながら、上記第2の段差構造の上面の上に形成した遮光材層を除去することにより、上記第1の段差構造の上面の上に遮光膜を形成する、遮光膜形成工程と、上記遮光膜の上、上記第1の凹凸構造体の凸部の上面及び凹部の底面の上、並びに上記第2の凹凸構造体の凸部の上面及び凹部の底面の上に、高コントラスト層を形成する、高コントラスト層形成工程と、上記遮光膜の上に形成した上記高コントラスト層の上に第3の樹脂層を形成し、上記第1の凹凸構造体の凸部の上面及び凹部の底面の上に形成した上記高コントラスト層の上に上記第3の樹脂層よりも膜厚が薄い第4の樹脂層を形成し、上記第2の凹凸構造体の凸部の上面及び凹部の底面の上に形成した上記高コントラスト層の上に上記第4の樹脂層よりも膜厚が厚い第5の樹脂層を形成する、第3~第5の樹脂層形成工程と、ドライエッチングにより上記第3の樹脂層及び上記第5の樹脂層を残しながら、上記第4の樹脂層を除去する、第4の樹脂層除去工程と、残存した上記第3の樹脂層及び上記第5の樹脂層をマスクに用いて上記高コントラスト層をエッチングして、上記遮光膜の上、及び上記第2の凹凸構造体の凹部の底面の上に形成した上記高コントラスト層を残しながら、上記第1の凹凸構造体の凸部の上面及び凹部の底面の上、並びに上記第2の凹凸構造体の凸部の上面の上に形成した上記高コントラスト層を除去する、高コントラスト膜形成工程と、を順に備え、上記第1および第2の樹脂層形成工程が、樹脂と接触する主面側に凹部を有する第1および第2の樹脂厚規定用のテンプレートを用いて、上記第1の段差構造の上面の上に形成した遮光材層の上に滴下した第1の樹脂に上記第1および第2の樹脂厚規定用のテンプレートの該凹部の外周部の上面を押し当て、上記第2の段差構造の上面の上に形成した遮光材層の上に滴下した第2の樹脂に上記第1および第2の樹脂厚規定用のテンプレートの凹部の底面を押し当てる、第1および第2の樹脂厚規定工程を含み、上記第1および第2の樹脂厚規定用のテンプレートの上記凹部の深さが、上記第1の段差構造の上面から上記第2の段差構造の上面までの高さよりも小さく、上記第3~第5の樹脂層形成工程が、樹脂と接触する主面側に凹部を有し、上記凹部の底面側に形成された窪みを有する第3~第5の樹脂厚規定用のテンプレートを用いて、上記遮光膜の上に形成した上記高コントラスト層の上に滴下した第3の樹脂に上記第3~第5の樹脂厚規定用のテンプレートの凹部の外周部の上面を押し当て、上記第1の凹凸構造体の凸部の上面及び凹部の底面の上に形成した上記高コントラスト層の上に滴下した第4の樹脂、並びに上記第2の凹凸構造体の凸部の上面及び凹部の底面の上に形成した上記高コントラスト層の上に滴下した第5の樹脂に、上記第3~第5の樹脂厚規定用のテンプレートの凹部の底面を押し当て、上記第5の樹脂に上記窪みの底面を押し当てる、第3~第5の樹脂厚規定工程を含み、上記第3~第5の樹脂厚規定用のテンプレートの上記凹部における上記窪み以外の部分の深さが、上記遮光膜の上に形成した上記高コントラスト層の上面から上記第1の凹凸構造体の凹部の底面の上に形成した上記高コントラスト層の上面までの高さよりも小さいことを特徴とする、インプリント用テンプレートの製造方法を提供する。
また、上記発明においては、上記第1および第2の樹脂層形成工程が、上記第1および第2の樹脂厚規定工程と、上記第1および第2の樹脂厚規定用のテンプレートを押し当てた状態で紫外線照射により、上記第1の樹脂及び上記第2の樹脂を硬化させて、上記第1の樹脂層及び上記第2の樹脂層を形成する、第1および第2の樹脂硬化工程と、を含むことが好ましい。
また、上記発明においては、上記遮光材層付き多段テンプレート準備工程が、上記第1の段差構造と上記第2の段差構造を有し、上記第2の段差構造の上面に上記転写パターンを有する多段テンプレートを準備する、多段テンプレート準備工程と、上記第1の段差構造の上面の上、及び、上記第2の段差構造の上面の上に遮光材層を形成する、遮光材層形成工程と、を順に備えることが好ましい。
また、上記発明においては、上記多段テンプレート準備工程が、上記基部の主面の上に1段の段差構造を有し、上記段差構造の上面に上記転写パターンを有する1段テンプレートを準備する、1段テンプレート準備工程と、上記1段テンプレートの上記段差構造の上面の上記転写パターンが形成された領域に、エッチングマスクを形成する、エッチングマスク形成工程と、上記エッチングマスクを用いて上記段差構造をエッチングして、下段の第1の段差構造と上段の第2の段差構造を形成する、多段化工程と、を順に備えることが好ましい。
また、上記発明においては、上記遮光材層付き多段テンプレート準備工程が、上記第1の段差構造と上記第2の段差構造を有し、上記第2の段差構造の上面に上記転写パターンを有する多段テンプレートを準備する、多段テンプレート準備工程と、上記第1の段差構造の上面の上、及び、上記第2の段差構造の上面の上に遮光材層を形成する、遮光材層形成工程と、を順に備え、上記多段テンプレート準備工程が、上記基部の主面の上に1段の段差構造を有する1段テンプレート基板を準備する、1段テンプレート基板準備工程と、上記1段テンプレート基板の上記段差構造の上面の上記転写パターンとなる領域に、エッチングマスクを形成する、エッチングマスク形成工程と、上記エッチングマスクを用いて上記段差構造をエッチングして、下段の第1の段差構造と上段の第2の段差構造を形成する、多段化工程と、上記第2の段差構造の上面に上記転写パターンを形成する、転写パターン形成工程と、を順に備えることが好ましい。
また、本発明は、樹脂と接触する主面側に凹部を有することを特徴とする、テンプレートを提供する。
また、本発明は、樹脂と接触する主面側に凹部を有し、上記凹部の底面側に形成された窪みを有することを特徴とする、テンプレートを提供する。
また、上記発明においては、上記主面側に位置合わせ用のマークを有することが好ましい。
また、上記発明においては、上記主面側に位置合わせ用のマークを有し、上記位置合わせ用のマークが、上記主面側において上記凹部の外側に形成された窪みであり、上記凹部の底面側に形成された窪みの深さおよび上記凹部の外側に形成された窪みの深さが同じであることが好ましい。
また、上記発明においては、上記凹部の底面サイズが、10mm×10mm以上であって70mm×70mm以下であることが好ましい。
また、上記発明においては、上記凹部の深さが、0.3μm以上10μm以下であることが好ましい。
また、上記発明においては、上記インプリント用テンプレート基板の製造方法に用いられ、上記凹部の深さが、上記インプリント用テンプレート基板の第1の段差構造の上面から第2の段差構造の上面までの高さよりも小さいことが好ましい。
また、上記発明においては、上記凹部の底面が、上記インプリント用テンプレート基板の第2の段差構造の上面を内包する大きさを有していることが好ましい。
また、上記発明においては、上記凹部の外周部の上面の外縁で囲まれる領域が、上記インプリント用テンプレート基板の第1の段差構造の上面の外縁で囲まれる領域と同じ形状で同じ面積を有するか、または、上記インプリント用テンプレート基板の第1の段差構造の上面の外縁で囲まれる領域を内包する大きさを有していることが好ましい。
また、上記発明においては、上記インプリント用テンプレートの製造方法に用いられ、上記凹部の深さが、上記インプリント用テンプレートの第1の段差構造の上面から第2の段差構造の上面までの高さよりも小さいことが好ましい。
また、上記発明においては、上記凹部の底面が、上記インプリント用テンプレートの第2の段差構造の上面を内包する大きさを有していることが好ましい。
さらに、上記発明においては、上記凹部の外周部の上面の外縁で囲まれる領域が、上記インプリント用テンプレートの第1の段差構造の上面の外縁で囲まれる領域と同じ形状で同じ面積を有するか、または、上記インプリント用テンプレートの第1の段差構造の上面の外縁で囲まれる領域を内包する大きさを有していることが好ましい。
本発明に係るテンプレートにおいては、必要とされる転写パターン領域の高さ(基部の主面からの距離)を維持しつつ、インプリント時の露光光の漏れ(意図しない領域への照射)の影響を抑制することが可能となる。
また、本発明に係るテンプレートブランクスを用いることで、上記のようなテンプレー
トを容易に製造することができる。
また、本発明に係るテンプレートブランクスを用いることで、上記のようなテンプレー
トを容易に製造することができる。
本発明のインプリント用テンプレート基板の製造方法によれば、基部の主面の上に第1の段差構造を有し、前記第1の段差構造の上に第2の段差構造を有し、前記第1の段差構造の上面の上に遮光膜を有するインプリント用テンプレート基板を、前記遮光膜に欠損部や薄膜部を生じることなく製造することができる。
また、本発明のインプリント用テンプレートの製造方法によれば、基部の主面の上に第1の段差構造を有し、前記第1の段差構造の上に第2の段差構造を有し、前記第1の段差構造の上面の上に遮光膜を有し、前記第2の段差構造の上面に凹凸構造の転写パターンを有するインプリント用テンプレートを、前記遮光膜に欠損部や薄膜部を生じることなく製造することができる。
そして、本発明に係るインプリント用テンプレートの製造方法により製造されたインプリント用テンプレートにおいては、必要とされる転写パターン領域の高さ(基部の主面からの距離)を維持しつつ、インプリント時の露光光の漏れ(意図しない領域への照射)の影響を抑制することが可能となる。
また、本発明に係るインプリント用テンプレート基板の製造方法により製造されたインプリント用テンプレート基板を用いることで、上記のようなインプリント用テンプレートを容易に製造することができる。
以下、本発明に係るテンプレート及びテンプレートブランクス、並びに本発明に係るインプリント用テンプレート基板の製造方法、インプリント用テンプレートの製造方法、及び、テンプレートについて、図面を用いて詳しく説明する。
I.テンプレート及びテンプレートブランクス
本発明に係るテンプレート及びテンプレートブランクスについて、図面を用いて詳しく説明する。
本発明に係るテンプレート及びテンプレートブランクスについて、図面を用いて詳しく説明する。
<テンプレート>
まず、本発明に係るテンプレートについて説明する。
本発明に係るテンプレートは、第1の実施形態と第2の実施形態とに大別される。以下、第1の実施形態及び第2の実施形態について説明する。
まず、本発明に係るテンプレートについて説明する。
本発明に係るテンプレートは、第1の実施形態と第2の実施形態とに大別される。以下、第1の実施形態及び第2の実施形態について説明する。
A.第1の実施形態
まず、第1の実施形態に係るテンプレートについて説明する。図1は、第1の実施形態に係るテンプレートの構成例を説明する図である。
例えば、図1に示すように、テンプレート1は、基部10の主面11の上に、第1の段差構造21を有し、第1の段差構造21の上に第2の段差構造22を有し、第2の段差構造22の上面に転写パターン23を有しており、第1の段差構造21の上面の、第2の段差構造22の外側の領域が、遮光膜31で覆われている。
なお、テンプレート1においては、第2の段差構造22の上面が、転写パターン領域になる。
まず、第1の実施形態に係るテンプレートについて説明する。図1は、第1の実施形態に係るテンプレートの構成例を説明する図である。
例えば、図1に示すように、テンプレート1は、基部10の主面11の上に、第1の段差構造21を有し、第1の段差構造21の上に第2の段差構造22を有し、第2の段差構造22の上面に転写パターン23を有しており、第1の段差構造21の上面の、第2の段差構造22の外側の領域が、遮光膜31で覆われている。
なお、テンプレート1においては、第2の段差構造22の上面が、転写パターン領域になる。
上記のような構成を有するため、テンプレート1は、必要とされる転写パターン領域の高さ(基部10の主面11からの距離)を維持しつつ、インプリント時の露光光の漏れ(意図しない領域への照射)の影響を抑制することが可能となる。
例えば、図1に示すテンプレート1における、第1の段差構造21の段差と第2の段差構造22の段差を合わせた高さ(H2)を30μm程度にすることで、テンプレート1は、転写パターン領域の高さ(基部10の主面11からの距離)を必要とされる高さに維持することができる。
また、テンプレート1は、第1の段差構造21の上面に遮光膜31を有しているため、従来のように、基部10の主面11の上にのみ遮光部材を設けた形態(例えば、特許文献5の図7(C))に比べて、遮光膜31が、転写パターン領域である第2の段差構造22の上面と、垂直方向(図中のZ方向)において近い距離に存在することになる。それゆえ、インプリント時の露光光の漏れ(意図しない領域への照射)の影響を抑制することが可能となる。
この作用効果については、図3、図12を用いて、詳しく説明する。その前に、まず、テンプレート1を用いたインプリント例について、図2を用いて説明する。
この作用効果については、図3、図12を用いて、詳しく説明する。その前に、まず、テンプレート1を用いたインプリント例について、図2を用いて説明する。
図2は、第1の実施形態に係るテンプレートの使用例を説明する図である。
例えば、図2に示すように、テンプレート1を用いて、光インプリント法により被転写基板50の上に形成された光硬化性樹脂60の転写領域61にパターン転写する場合、光硬化性樹脂60の非転写領域62には露光光(例えば、波長365nmの紫外光)が照射されないようにする必要がある。非転写領域62の光硬化性樹脂60を意図せずに硬化させてしまうことを防ぐためである。
例えば、図2に示すように、テンプレート1を用いて、光インプリント法により被転写基板50の上に形成された光硬化性樹脂60の転写領域61にパターン転写する場合、光硬化性樹脂60の非転写領域62には露光光(例えば、波長365nmの紫外光)が照射されないようにする必要がある。非転写領域62の光硬化性樹脂60を意図せずに硬化させてしまうことを防ぐためである。
ここで、通常、テンプレート1を搭載するインプリント装置には、露光光が意図しない領域に照射されることを抑制する目的で、露光領域が開口部になっている平面視枠状の遮光板が設けられている。
例えば、図2に示す例においては、遮光板70が設けられていることにより、露光光が照射される領域は、遮光板70の開口部に応じた照射領域90に規定されている。換言すれば、照射領域90よりも外側の露光光83は、遮光板70によって遮られ、光硬化性樹脂60に照射されない。
例えば、図2に示す例においては、遮光板70が設けられていることにより、露光光が照射される領域は、遮光板70の開口部に応じた照射領域90に規定されている。換言すれば、照射領域90よりも外側の露光光83は、遮光板70によって遮られ、光硬化性樹脂60に照射されない。
ただし、この遮光板70だけでは、被転写基板50の上の光硬化性樹脂60から距離が離れている(例えば、途中にテンプレート1が介在する)こともあって、高い位置精度で、光硬化性樹脂60の非転写領域62に露光光が照射されないようにすることは困難である。
それゆえ、遮光板70の形状精度や位置精度も含め、遮光板70で規定される照射領域90は、通常、光硬化性樹脂60の転写領域61よりも大きくなるように設計されている。すなわち、図2に示すように、照射領域90は、光硬化性樹脂60の転写領域61に応じた大きさの照射領域91に加えて、本来不要な照射領域92も含む。
それゆえ、遮光板70の形状精度や位置精度も含め、遮光板70で規定される照射領域90は、通常、光硬化性樹脂60の転写領域61よりも大きくなるように設計されている。すなわち、図2に示すように、照射領域90は、光硬化性樹脂60の転写領域61に応じた大きさの照射領域91に加えて、本来不要な照射領域92も含む。
そこで、テンプレート1においては、図2に示すように、上記の照射領域92の露光光82を、第1の段差構造21の上面の上に形成した遮光膜31で遮るようにする。これにより、被転写基板50の上の光硬化性樹脂60には、原則、転写領域61に応じた大きさの照射領域91の露光光81のみが照射されることになる。
なお、上記のように、露光光の照射領域90を規制する遮光板70を備えるインプリント装置に搭載されるテンプレート1においては、図1、2に示すように、第1の段差構造21の上面に形成される遮光膜31は、第2の段差構造22と第1の段差構造21の上面が接する箇所(即ち、第2の段差構造22の底部外縁)から、第1の段差構造21の上面の外縁までの領域全てを覆うように形成されている必要は無く、露光光82を遮るために必要な領域に形成されていればよい。
より具体的には、テンプレート1において、第1の段差構造21の上面に形成される遮光膜31は、少なくとも、第2の段差構造22と第1の段差構造21の上面が接する箇所(即ち、第2の段差構造22の底部外縁)から、図2に示す照射領域90に相当する領域の第1の段差構造21の上面の外縁までを覆うように形成されていればよい。
ただし、図1に示すテンプレート1のように、第1の段差構造21の上面に形成される遮光膜31が、第2の段差構造22と第1の段差構造21の上面が接する箇所(即ち、第2の段差構造22の底部外縁)から、第1の段差構造21の上面の外縁までの領域全てを覆うように形成されている形態であれば、図2に示す遮光板70の形状精度や位置精度が低くても、非転写領域62の光硬化性樹脂60を意図せずに硬化させてしまうことを、より確実に防ぐことができる。
次に、上記のインプリント時の露光光の漏れの影響について、図3、図12を用いて、より詳しく説明する。
ここで、図3は、第1の実施形態に係るテンプレートの作用効果を説明する図であって、(a)は第1の実施形態に係るテンプレートの概略断面図、(b)は(a)に示す領域R2における露光光L1の漏れ状態を説明する概略拡大図を、それぞれ示す。また、図12は、従来のテンプレートの不具合を説明する図であって、(a)は従来のテンプレートの概略断面図、(b)は(a)に示す領域R102における露光光L2の漏れ状態を説明する概略拡大図を、それぞれ示す。
ここで、図3は、第1の実施形態に係るテンプレートの作用効果を説明する図であって、(a)は第1の実施形態に係るテンプレートの概略断面図、(b)は(a)に示す領域R2における露光光L1の漏れ状態を説明する概略拡大図を、それぞれ示す。また、図12は、従来のテンプレートの不具合を説明する図であって、(a)は従来のテンプレートの概略断面図、(b)は(a)に示す領域R102における露光光L2の漏れ状態を説明する概略拡大図を、それぞれ示す。
まず、図12を用いて、従来のテンプレートにおける、インプリント時の露光光の漏れの影響について説明する。
図12(a)に示すように、基部110の主面111の上に段差構造121を有し、この段差構造121の上面に転写パターン122を有し、基部110の主面111の、段差構造121の外側の領域が、遮光膜131で覆われている形態を有する、従来のテンプレート101においては、段差構造121の上面(転写パターン領域)と基部110の主面111(より正確には、遮光膜131の上面)の間は、距離H101だけ離れている。
この距離H101は、使用するインプリント装置の機械的精度等により定まるものであるが、典型的には30μm程度である。
図12(a)に示すように、基部110の主面111の上に段差構造121を有し、この段差構造121の上面に転写パターン122を有し、基部110の主面111の、段差構造121の外側の領域が、遮光膜131で覆われている形態を有する、従来のテンプレート101においては、段差構造121の上面(転写パターン領域)と基部110の主面111(より正確には、遮光膜131の上面)の間は、距離H101だけ離れている。
この距離H101は、使用するインプリント装置の機械的精度等により定まるものであるが、典型的には30μm程度である。
それゆえ、図12(b)に示すように、段差構造121と基部110の主面111が接する箇所から漏れた露光光L2は、距離H101に応じて回折光として広がって、段差構造121の上面(転写パターン領域)の高さ位置においては、A2に相当する領域の樹脂を硬化させてしまうという不具合がある。
さらに、段差(概ねH101に相当)に30μm程度を要する段差構造121は、ドライエッチングで製造するには時間がかかるため、通常、ウェットエッチングにより形成される。
それゆえ、段差構造121と基部110の主面111が接する箇所の断面形状は直角にはなり難く、図12(b)に示すように、丸みをおびた形状になりやすい。
そして、この丸みをおびた形状の箇所(段差構造121と基部110の主面111が接する箇所)では、他の箇所と同様の膜厚で遮光膜131を形成することは困難になり、より、露光光が漏れやすくなる。例えば、図12(b)に示す例においては、A3に相当する領域には、他の箇所と同様の膜厚で遮光膜131を形成することは困難である。
それゆえ、段差構造121と基部110の主面111が接する箇所の断面形状は直角にはなり難く、図12(b)に示すように、丸みをおびた形状になりやすい。
そして、この丸みをおびた形状の箇所(段差構造121と基部110の主面111が接する箇所)では、他の箇所と同様の膜厚で遮光膜131を形成することは困難になり、より、露光光が漏れやすくなる。例えば、図12(b)に示す例においては、A3に相当する領域には、他の箇所と同様の膜厚で遮光膜131を形成することは困難である。
なお、図12(b)に示すように、段差構造121の側面に向かう露光光L3については、原則、全反射されるため、この露光光L3によって非転写領域62の光硬化性樹脂60が意図せずに硬化されるという不具合は、原則生じないものと考えることができる。
例えば、テンプレートの材料として好適に用いられる合成石英の波長365nmにおける屈折率は1.47程度であり、空気の屈折率を1.0とすると、入射角θが43度以上の露光光L3は全反射することになり、段差構造121の側面から出射しない。
例えば、テンプレートの材料として好適に用いられる合成石英の波長365nmにおける屈折率は1.47程度であり、空気の屈折率を1.0とすると、入射角θが43度以上の露光光L3は全反射することになり、段差構造121の側面から出射しない。
次に、図3を用いて、第1の実施形態のテンプレートにおける、インプリント時の露光光の漏れの影響について説明する。
図3(a)に示すように、基部10の主面11の上に、第1の段差構造21を有し、第1の段差構造21の上に第2の段差構造22を有し、第2の段差構造22の上面に転写パターン23を有しており、第1の段差構造21の上面の、第2の段差構造22の外側の領域が、遮光膜31で覆われている形態を有する、第1の実施形態に係るテンプレート1においては、第2の段差構造22の上面(より正確には、転写パターン23の凹部の底面)と第1の段差構造21の上面(より正確には、遮光膜31の上面)の間は、距離(H2-H1)だけ離れている。
なお、テンプレート1においては、使用するインプリント装置の機械的精度等により必要とされる、30μm程度の高さは、第1の段差構造21の段差と第2の段差構造22の段差を合わせた高さ(H2)が担っている。
図3(a)に示すように、基部10の主面11の上に、第1の段差構造21を有し、第1の段差構造21の上に第2の段差構造22を有し、第2の段差構造22の上面に転写パターン23を有しており、第1の段差構造21の上面の、第2の段差構造22の外側の領域が、遮光膜31で覆われている形態を有する、第1の実施形態に係るテンプレート1においては、第2の段差構造22の上面(より正確には、転写パターン23の凹部の底面)と第1の段差構造21の上面(より正確には、遮光膜31の上面)の間は、距離(H2-H1)だけ離れている。
なお、テンプレート1においては、使用するインプリント装置の機械的精度等により必要とされる、30μm程度の高さは、第1の段差構造21の段差と第2の段差構造22の段差を合わせた高さ(H2)が担っている。
それゆえ、図3(b)に示すように、第2の段差構造22と第1の段差構造21の上面が接する箇所から漏れた露光光L1は、距離(H2-H1)に応じて回折光として広がるものの、距離(H2-H1)は、図12(b)に示す距離H101(30μm程度)より小さくできるため、その広がりも小さく抑制できる。
このため、第2の段差構造22の上面(転写パターン領域)の高さ位置において、樹脂が硬化してしまうおそれが生じる領域(図3(b)に示すA1に相当)も、図12(b)に示すA2に相当する領域よりも小さくできる。
このため、第2の段差構造22の上面(転写パターン領域)の高さ位置において、樹脂が硬化してしまうおそれが生じる領域(図3(b)に示すA1に相当)も、図12(b)に示すA2に相当する領域よりも小さくできる。
さらに、段差が概ね(H2-H1)となる第2の段差構造22は、例えば、その段差が数μm以下であれば、ドライエッチングで形成することが、時間的にも十分可能である。
そして、ドライエッチングで形成することにより、第2の段差構造22と第1の段差構造21の上面が接する箇所の断面形状は、図3(b)に示すように、図12(b)に示す丸みをおびた形状よりも、直角に形成することが可能になる。
それゆえ、第2の段差構造22と第1の段差構造21の上面が接する箇所においても、他の箇所と同様の膜厚で遮光膜31を形成することが容易になり、より、露光光L1の漏れを抑制しやすくなる。
そして、ドライエッチングで形成することにより、第2の段差構造22と第1の段差構造21の上面が接する箇所の断面形状は、図3(b)に示すように、図12(b)に示す丸みをおびた形状よりも、直角に形成することが可能になる。
それゆえ、第2の段差構造22と第1の段差構造21の上面が接する箇所においても、他の箇所と同様の膜厚で遮光膜31を形成することが容易になり、より、露光光L1の漏れを抑制しやすくなる。
なお、段差が概ねH1となる第1の段差構造21は、従来通り、ウェットエッチングにより形成すればよい。
この場合、第1の段差構造21と基部10の主面11が接する箇所の断面形状は、図12(b)に示す例と同様に、丸みをおびた形状になりやすいが、第1の実施形態においては、露光光の遮光は、第2の段差構造22の上面に形成した遮光膜31が担うため、この丸みをおびた形状によって、遮光膜31の効果が損なわれることはない。
この場合、第1の段差構造21と基部10の主面11が接する箇所の断面形状は、図12(b)に示す例と同様に、丸みをおびた形状になりやすいが、第1の実施形態においては、露光光の遮光は、第2の段差構造22の上面に形成した遮光膜31が担うため、この丸みをおびた形状によって、遮光膜31の効果が損なわれることはない。
上記の距離(H2-H1)の値は、使用するインプリント装置の機械的精度等により必要とされる高さ(典型的には、30μm程度)よりも小さいものであれば適用可能であるが、上記のように、インプリント時の露光光の漏れ(意図しない領域への照射)の影響を抑制する目的においては、その値が小さいほど効果的である。
一方、インプリントに際し、被転写基板50の上に形成された光硬化性樹脂60が遮光膜31に付着することを防止する目的においては、図2に示すように、遮光膜31の上面(図2においては下向きの方向)と、転写パターン23の凹部の底面(図2においては光硬化性樹脂60の上面位置に同じ)の間には、隙間(空間)があった方が良い。
換言すれば、図1に示すように、基部10の主面11から第1の段差構造21の上の遮光膜31の上面までの垂直方向の距離をH1とし、基部10の主面11から第2の段差構造22の上面の転写パターン23の凹部の底面までの垂直方向の距離をH2とした場合に、H1<H2の関係となることが好ましい。
換言すれば、図1に示すように、基部10の主面11から第1の段差構造21の上の遮光膜31の上面までの垂直方向の距離をH1とし、基部10の主面11から第2の段差構造22の上面の転写パターン23の凹部の底面までの垂直方向の距離をH2とした場合に、H1<H2の関係となることが好ましい。
インプリント時の露光光の漏れの影響を抑制する目的と、インプリント時に光硬化性樹脂が遮光膜31に付着することを防止する目的の、両方を満たす範囲として、例えば、上記の距離(H2-H1)の値は、1μm以上5μm以下の範囲とすることができる。
また、テンプレート1においては、図4に示すように、基部10の主面11から第1の段差構造21の上の遮光膜31の上面までの垂直方向の距離をH1とし、基部10の主面11から第2の段差構造22の上面までの垂直方向の距離をH3とし、基部10の主面11の外縁から第1の段差構造21の上面の外縁までの水平方向の距離をD1とし、基部10の主面11の外縁から第2の段差構造22の上面の外縁までの水平方向の距離をD2とした場合に、H1≦H3×(D1/D2)の関係となることが好ましい。
なお、図4は、第1の実施形態に係るテンプレートの各段差構造の位置関係を説明する図であり、図1において破線の円で示すR1の要部拡大図に相当する。
なお、図4は、第1の実施形態に係るテンプレートの各段差構造の位置関係を説明する図であり、図1において破線の円で示すR1の要部拡大図に相当する。
このような関係を満たす場合、図4に示すように、第1の段差構造21の上の遮光膜31の外縁E2は、基部10の主面11の外縁E1と第2の段差構造22の上面の外縁E3を結ぶ破線よりも内側(テンプレート1側)に存在することになる。
それゆえ、図2に示すようなインプリントに際し、被転写基板50に対し(より正確には、被転写基板50の上に形成された光硬化性樹脂60に対し)、テンプレート1が(より正確には、テンプレート1の第2の段差構造22の上面が)、水平に対向せずに、傾斜を有して接したとしても、外縁E2が(さらには、第1の段差構造21の上の遮光膜31が)、被転写基板50に(より正確には、被転写基板50の上に形成された光硬化性樹脂60に)接触することを防止できるからである。
それゆえ、図2に示すようなインプリントに際し、被転写基板50に対し(より正確には、被転写基板50の上に形成された光硬化性樹脂60に対し)、テンプレート1が(より正確には、テンプレート1の第2の段差構造22の上面が)、水平に対向せずに、傾斜を有して接したとしても、外縁E2が(さらには、第1の段差構造21の上の遮光膜31が)、被転写基板50に(より正確には、被転写基板50の上に形成された光硬化性樹脂60に)接触することを防止できるからである。
また、テンプレート1においては、図1に示すように、基部10の主面11とは反対側の面(裏面12)に、平面視において第2の段差構造22を包含する窪み部40を有することが好ましい。離型等の工程が容易になるからである。
より詳しくは、転写パターン23が形成されている領域(転写パターン領域)のテンプレート1の厚みを薄くして湾曲容易とすることで、離型に際し、テンプレート1の転写パターン領域を被転写基板側に向かって凸状に湾曲させて、被転写基板50の上に形成された光硬化性樹脂60の転写領域61の外縁部から、順次、部分的に離型していくことができるからである。
より詳しくは、転写パターン23が形成されている領域(転写パターン領域)のテンプレート1の厚みを薄くして湾曲容易とすることで、離型に際し、テンプレート1の転写パターン領域を被転写基板側に向かって凸状に湾曲させて、被転写基板50の上に形成された光硬化性樹脂60の転写領域61の外縁部から、順次、部分的に離型していくことができるからである。
さらに、窪み部40は、図1に示すように、平面視において第1の段差構造21を包含することが好ましい。上記の湾曲に際し、第1の段差構造21の上面に形成した遮光膜31が剥がれたりする不具合を防止できるからである。
上記について、より詳しく説明すると、窪み部40の内側は、テンプレート1の厚みが薄いため、上記の湾曲に際して変形しやすいのに対し、窪み部40の外側は、テンプレート1の厚みが厚いことから、上記の湾曲に際して変形しにくいことになる。
それゆえ、平面視において、第1の段差構造21が窪み部40に包含されない場合、換言すれば、平面視において、第1の段差構造21が、窪み部40の内側のみならず窪み部40の外側にも存在する場合、第1の段差構造21は、変形しやすい領域(すなわち、窪み部40の内側)と、変形しにくい領域(すなわち、窪み部40の外側)との境界を、有することになる。
そして、その境界では、上記の湾曲に際して応力が集中するため、インプリントを繰り返すうちに、第1の段差構造21の上面に形成した遮光膜31が剥がれたりして、欠陥の元となるおそれがある。
それゆえ、このような境界が第1の段差構造21に形成されないようにするために、図1に示すように、窪み部40が平面視において第1の段差構造21を包含するような形態にする。
それゆえ、平面視において、第1の段差構造21が窪み部40に包含されない場合、換言すれば、平面視において、第1の段差構造21が、窪み部40の内側のみならず窪み部40の外側にも存在する場合、第1の段差構造21は、変形しやすい領域(すなわち、窪み部40の内側)と、変形しにくい領域(すなわち、窪み部40の外側)との境界を、有することになる。
そして、その境界では、上記の湾曲に際して応力が集中するため、インプリントを繰り返すうちに、第1の段差構造21の上面に形成した遮光膜31が剥がれたりして、欠陥の元となるおそれがある。
それゆえ、このような境界が第1の段差構造21に形成されないようにするために、図1に示すように、窪み部40が平面視において第1の段差構造21を包含するような形態にする。
次に、テンプレート1を構成する材料について、説明する。
テンプレート1を構成する主たる材料、すなわち、基部10、第1の段差構造21、第2の段差構造22、および転写パターン23を構成ずる材料は、光インプリント法に用いることが可能なものであって、インプリント時における露光光を透過できるものである。
この露光光には、一般に、波長200nm~400nmの範囲(特に300nm~380nmの範囲)の紫外光が用いられる。
テンプレート1を構成する主たる材料、すなわち、基部10、第1の段差構造21、第2の段差構造22、および転写パターン23を構成ずる材料は、光インプリント法に用いることが可能なものであって、インプリント時における露光光を透過できるものである。
この露光光には、一般に、波長200nm~400nmの範囲(特に300nm~380nmの範囲)の紫外光が用いられる。
上記材料としては、例えば、石英ガラス、耐熱ガラス、フッ化カルシウム(CaF2)、フッ化マグネシウム(MgF2)、及びアクリルガラス等の透明材料や、これら透明材料の積層構造物を挙げることができる。特に、合成石英は、剛性が高く、熱膨張係数が低く、かつ一般に使用される波長である300nm~380nmの範囲での透過率が良いため、適している。
なお、通常、ナノインプリントリソグラフィに用いられるテンプレートにおいては、基部を構成する主たる材料と、転写パターンを有する段差構造を構成する主たる材料は、同一材料であり、テンプレート1においても、第1の段差構造21、及び、転写パターン23を有する第2の段差構造22は、基部10と同じ材料から構成されている。
なお、通常、ナノインプリントリソグラフィに用いられるテンプレートにおいては、基部を構成する主たる材料と、転写パターンを有する段差構造を構成する主たる材料は、同一材料であり、テンプレート1においても、第1の段差構造21、及び、転写パターン23を有する第2の段差構造22は、基部10と同じ材料から構成されている。
遮光膜31を構成する材料としては、例えば、金属材料及びその酸化物、窒化物、酸窒化物等を1種以上含むものを挙げることができる。上記の金属材料の具体例としては、例えば、クロム(Cr)、モリブデン(Mo)、タンタル(Ta)、タングステン(W)、ジルコニウム(Zr)、チタン(Ti)等を挙げることができる。
ここで、露光光の照射を防止するため、遮光膜31は、波長365nmでの透過率が10%以下であることが好ましい。
例えば、遮光膜31を構成する材料としてクロム(Cr)を用いる場合、この遮光膜31の膜厚は、15nm以上あればよい。
例えば、遮光膜31を構成する材料としてクロム(Cr)を用いる場合、この遮光膜31の膜厚は、15nm以上あればよい。
なお、第1の実施形態に係るインプリント用テンプレートの転写パターンは、ラインアンドスペースパターンであってもよく、また、ピラー形状であってもよい。一例として、その大きさは、ラインアンドスペースパターンの場合、ライン幅が30nm程度であり、その高さは60nm程度である。また、ピラー形状の場合、直径が50nm程度であり、その高さは60nm程度である。
なお、テンプレート1を平面視した場合の第1の段差構造21または第2の段差構造22の縦方向の幅および横方向の幅は、上述した条件を満たす幅であれば特に限定されるものではなく、縦方向の幅および横方向の幅が同一でもよいし、異なっていてもよい。
B.第2の実施形態
次に、第2の実施形態に係るテンプレートについて説明する。図5は、第2の実施形態に係るテンプレートの構成例を説明する図である。
次に、第2の実施形態に係るテンプレートについて説明する。図5は、第2の実施形態に係るテンプレートの構成例を説明する図である。
例えば、図5に示すように、テンプレート1は、基部10の主面11の上に、第1の段差構造21を有し、第1の段差構造21の上に第2の段差構造22を有し、第2の段差構造22の上面に転写パターン23を有しており、第1の段差構造21の上面の、第2の段差構造22の外側の領域が、遮光膜31で覆われている。
テンプレート1は、第2の段差構造22の上面に、転写パターン23を構成する第1の凹凸構造体22aと、アライメントマークを構成する第2の凹凸構造体22bと、を有する。遮光膜31の上、及び第2の凹凸構造体22bの凹部の底面の上に、基部10を構成する材料と異なる材料膜から構成される高コントラスト膜32が形成されている。
なお、高コントラスト膜32は、第2の凹凸構造体22bの凹部の下側に形成されている。また、テンプレート1においては、第2の凹凸構造体22bの上面が、転写パターン領域になる。
なお、高コントラスト膜32は、第2の凹凸構造体22bの凹部の下側に形成されている。また、テンプレート1においては、第2の凹凸構造体22bの上面が、転写パターン領域になる。
上記のような構成を有するため、テンプレート1は、図1に示すテンプレート1と同様に、必要とされる転写パターン領域の高さ(基部10の主面11からの距離)を維持しつつ、インプリント時の露光光の漏れ(意図しない領域への照射)の影響を抑制することが可能となる。
また、上記のような構成では、アライメントマークを構成する第2の凹凸構造体22bの凹部の底面の上に、上記の高コントラスト膜32が形成されており、第1の段差構造21の上面の、第2の段差構造22の外側の領域は、上記の遮光膜31と高コントラスト膜32が順次積層されている。このため、図5に示すテンプレート1においては、位置合わせ時のアライメントマークのコントラスト向上と、インプリント時における意図しない領域への光照射防止の、両方の要求を満たすことが可能となる。また、遮光膜31と高コントラスト膜32が順次積層された積層構造の遮光性が、図1に示す遮光膜31のみの遮光性と比較して高くなるので、例えば、図2に示す本来不要な照射領域92の露光光82を、図1に示すテンプレート1よりも効果的に遮ることができる。
一方、図5に示すテンプレート1においては、図1に示すテンプレート1における遮光膜31の上面と転写パターン23の凹部の底面の間と同様に、遮光膜31の上に形成された高コントラスト膜32の上面と転写パターン23の凹部の底面の間には、隙間(空間)があった方が良い。
換言すれば、図5に示すように、基部10の主面11から遮光膜31の上に形成された高コントラスト膜32の上面までの垂直方向の距離をH11とし、基部10の主面11から第2の段差構造22の上面の転写パターン23の凹部の底面までの垂直方向の距離をH12とした場合に、H11<H12の関係となることが好ましい。
換言すれば、図5に示すように、基部10の主面11から遮光膜31の上に形成された高コントラスト膜32の上面までの垂直方向の距離をH11とし、基部10の主面11から第2の段差構造22の上面の転写パターン23の凹部の底面までの垂直方向の距離をH12とした場合に、H11<H12の関係となることが好ましい。
また、図5に示すテンプレート1においては、インプリント時の露光光の漏れの影響を抑制する目的と、インプリント時に光硬化性樹脂が遮光膜31に付着することを防止する目的の、両方を満たす範囲として、例えば、転写パターン23の凹部の底面と遮光膜31の上に形成された高コントラスト膜32の上面の間の距離(H12-H11)の値は、1μm以上5μm以下の範囲とすることができる。
また、図5に示すテンプレート1においては、図1に示すテンプレート1におけるH11およびH13との関係と同様の理由から、基部10の主面11から遮光膜31の上に形成された高コントラスト膜32の上面までの垂直方向の距離をH11とし、基部10の主面11から第2の段差構造22の上面までの垂直方向の距離をH13とし、基部10の主面11の外縁から第1の段差構造21の上面の外縁までの水平方向の距離をD11とし、基部10の主面11の外縁から第2の段差構造22の上面の外縁までの水平方向の距離をD12とした場合に、H11≦H13×(D11/D12)の関係となることが好ましい。
また、図5に示すテンプレート1においては、図1に示すテンプレート1同様の理由から、基部10の主面11とは反対側の面(裏面12)に、平面視において第2の段差構造22を包含する窪み部40を有することが好ましい。
さらに、窪み部40は、図1に示すテンプレート1同様の理由から、平面視において第1の段差構造21を包含することが好ましい。
次に、転写パターン23を構成する第1の凹凸構造体22aと、アライメントマークを構成する第2の凹凸構造体22bと、の深さの関係について説明する。
図6は、第2の実施形態に係るテンプレートの要部の一例を説明する図である。
図5に示すテンプレート1においては、図6に示すように、第1の凹凸構造体22aの凸部の上面から凹部の底面までの距離をD13とし、第2の凹凸構造体22bの凸部の上面から凹部の底面の上の高コントラスト膜32の上面までの距離をD14とした場合に、D13≦D14の関係を満たすものであることが好ましい。
このような構成であれば、本発明に係るインプリント用テンプレートを製造する際に、第2の凹凸構造体22bの凹部の底面の上の高コントラスト膜32の上に残存するエッチングマスクとしての樹脂層(図38(j)に示す第2の凹凸構造体22bの凹部の底面の上に形成した第5の樹脂層55)の膜厚をより厚くすることが可能になり、エッチングに際して第2の凹凸構造体22bの凹部の底面の上の高コントラスト膜32が消失してしまう不具合を、より確実に防止できるからである。
図6は、第2の実施形態に係るテンプレートの要部の一例を説明する図である。
図5に示すテンプレート1においては、図6に示すように、第1の凹凸構造体22aの凸部の上面から凹部の底面までの距離をD13とし、第2の凹凸構造体22bの凸部の上面から凹部の底面の上の高コントラスト膜32の上面までの距離をD14とした場合に、D13≦D14の関係を満たすものであることが好ましい。
このような構成であれば、本発明に係るインプリント用テンプレートを製造する際に、第2の凹凸構造体22bの凹部の底面の上の高コントラスト膜32の上に残存するエッチングマスクとしての樹脂層(図38(j)に示す第2の凹凸構造体22bの凹部の底面の上に形成した第5の樹脂層55)の膜厚をより厚くすることが可能になり、エッチングに際して第2の凹凸構造体22bの凹部の底面の上の高コントラスト膜32が消失してしまう不具合を、より確実に防止できるからである。
上記のような形態は、例えば、特願2014-193694号に記載した方法により得ることができる。
すなわち、後述する本発明に係るインプリント用テンプレートの製造方法において、第1の凹凸構造体22aと第2の凹凸構造体22bを形成する際のエッチングマスクとなるハードマスクパターンを形成後、第1の凹凸構造体22aを形成するためのハードマスクパターン領域を樹脂層で覆った状態で、第2の凹凸構造体22bをハーフエッチングし、その後、上記樹脂層を除去して、第1の凹凸構造体22a及び第2の凹凸構造体22をエッチング形成することにより、得ることができる。
すなわち、後述する本発明に係るインプリント用テンプレートの製造方法において、第1の凹凸構造体22aと第2の凹凸構造体22bを形成する際のエッチングマスクとなるハードマスクパターンを形成後、第1の凹凸構造体22aを形成するためのハードマスクパターン領域を樹脂層で覆った状態で、第2の凹凸構造体22bをハーフエッチングし、その後、上記樹脂層を除去して、第1の凹凸構造体22a及び第2の凹凸構造体22をエッチング形成することにより、得ることができる。
次に、図5に示すテンプレート1を構成する材料や各膜の膜厚について、説明する。
図5に示すテンプレート1を構成する主たる材料、すなわち、基部10、第1の段差構造21、および第2の段差構造22を構成ずる材料は、図1に示すテンプレート1と同様であるため、ここでの説明を省略する。また、図5に示すテンプレート1における第1の凹凸構造体22aおよび第2の凹凸構造体22bを構成する材料は、図1に示すテンプレート1における転写パターン23を構成ずる材料と同様であるため、ここでの説明を省略する。
図5に示すテンプレート1を構成する主たる材料、すなわち、基部10、第1の段差構造21、および第2の段差構造22を構成ずる材料は、図1に示すテンプレート1と同様であるため、ここでの説明を省略する。また、図5に示すテンプレート1における第1の凹凸構造体22aおよび第2の凹凸構造体22bを構成する材料は、図1に示すテンプレート1における転写パターン23を構成ずる材料と同様であるため、ここでの説明を省略する。
遮光膜31を構成する材料としては、基部10を構成する材料と異なり、遮光性を有する物であれば用いることができる。例えば、図1に示すテンプレート1における遮光膜31と同様の材料を用いることができる。
ここで、露光光の照射を防止するため、遮光膜31は、波長365nmでの透過率が10%以下であることが好ましい。
例えば、遮光膜31を構成する材料にクロム(Cr)を用いる場合、遮光膜31の膜厚は15nm以上あればよい。中でも35nm~1000nmの範囲内、特に55nm~1000nmの範囲内であることが好ましい。遮光膜31の膜厚がこれらの下限よりも厚いことにより、それぞれ、波長365nmでの透過率が1%以下、波長365nmでの透過率が0.1%以下となるからであり、遮光膜31の膜厚がこれらの上限よりも薄いことにより、膜はがれを回避することができるからである。
例えば、遮光膜31を構成する材料にクロム(Cr)を用いる場合、遮光膜31の膜厚は15nm以上あればよい。中でも35nm~1000nmの範囲内、特に55nm~1000nmの範囲内であることが好ましい。遮光膜31の膜厚がこれらの下限よりも厚いことにより、それぞれ、波長365nmでの透過率が1%以下、波長365nmでの透過率が0.1%以下となるからであり、遮光膜31の膜厚がこれらの上限よりも薄いことにより、膜はがれを回避することができるからである。
高コントラスト膜32を構成する材料としては、アライメント光に対して、基部10を構成する材料とは屈折率が異なり、遮光性を有する物であれば用いることができる。例えば、図1に示すテンプレート1における遮光膜31と同様の材料を用いることができる。
高コントラスト膜32の膜厚は、位置合わせ時のアライメントマークのコントラストの要求及び遮光性の要求を満たすことが可能となる膜厚であれば特に限定されるものではないが、後述する高コントラスト膜を有するインプリント用テンプレートの製造方法において、出来るだけ厚い高コントラスト膜32を形成することにより、出来るだけ厚いものとすることが好ましい。それにより、アライメントマークのコントラストが向上するからである。
高コントラスト膜32の膜厚は、第1の凹凸構造体22aおよび第2の凹凸構造体22bの構造上、また作製上の制限により、大きく変化させることができないが、遮光膜31の膜厚は、大きく変化させることができる。遮光膜31と高コントラスト膜32が重ねて形成される第1の段差構造21上では、遮光の要求を満たす膜厚が得られるよう、遮光膜31の膜厚を調整するのが好ましい。
なお、第2の実施形態に係るインプリント用テンプレートの転写パターンは、第1の実施形態に係るインプリント用テンプレートの転写パターンと同様であるため、ここでの説明を省略する。
<テンプレートブランクス>
次に、本発明に係るテンプレートブランクスについて説明する。図7は、本発明に係るテンプレートブランクスの構成例を説明する図である。
例えば、図7に示すように、テンプレートブランクス2は、基部10の主面11の上に、第1の段差構造21を有し、第1の段差構造21の上に第2の段差構造22を有しており、第1の段差構造21の上面の、第2の段差構造22の外側の領域が、遮光膜31で覆われている。
次に、本発明に係るテンプレートブランクスについて説明する。図7は、本発明に係るテンプレートブランクスの構成例を説明する図である。
例えば、図7に示すように、テンプレートブランクス2は、基部10の主面11の上に、第1の段差構造21を有し、第1の段差構造21の上に第2の段差構造22を有しており、第1の段差構造21の上面の、第2の段差構造22の外側の領域が、遮光膜31で覆われている。
テンプレートブランクス2は、テンプレート1を製造するためのテンプレートブランクスであって、例えば、テンプレートブランクス2の第2の段差構造22の上面に凹凸構造の転写パターン23を形成することで、図1に示すような、テンプレート1を製造することができる。
そして、上記のように、テンプレート1においては、必要とされる転写パターン領域の高さを維持しつつ、インプリント時の露光光の漏れ(意図しない領域への照射)の影響を抑制することが可能となる。
そして、上記のように、テンプレート1においては、必要とされる転写パターン領域の高さを維持しつつ、インプリント時の露光光の漏れ(意図しない領域への照射)の影響を抑制することが可能となる。
ここで、図7に示すテンプレートブランクス2における、基部10の主面11から第2の段差構造22の上面までの垂直方向の距離H4は、図1に示すテンプレート1における、距離H2に転写パターン23の凸部の高さを加えたものに相当する。
ただし、距離H2が30μm程度であるのに対し、転写パターン23の凸部の高さは60nm程度(30μmの1/500程度)であることから、図7に示す距離H4は、図1に示す距離H2と、概ね同じ値として扱うことができる。
ただし、距離H2が30μm程度であるのに対し、転写パターン23の凸部の高さは60nm程度(30μmの1/500程度)であることから、図7に示す距離H4は、図1に示す距離H2と、概ね同じ値として扱うことができる。
図7に示すテンプレートブランクス2における距離(H4-H1)の値は、図1に示すテンプレート1における距離(H2-H1)と同様に、使用するインプリント装置の機械的精度等により必要とされる高さ(典型的には、30μm程度)よりも小さいものであれば適用可能であるが、上記のように、テンプレート1のインプリント時の露光光の漏れの影響を抑制する目的においては、その値が小さいほど効果的である。
一方、上述のように、インプリントに際し、被転写基板50の上に形成された光硬化性樹脂60が、テンプレート1の遮光膜31に付着することを防止する目的においては、図2に示すように、遮光膜31の上面(図2においては下向きの方向)と、転写パターン23の凹部の底面(図2においては光硬化性樹脂60の上面位置に同じ)の間には、隙間(空間)があった方が良い。
それゆえ、テンプレートブランクス2においても、図7に示すように、基部10の主面11から第1の段差構造21の上の遮光膜31の上面までの垂直方向の距離をH1とし、基部10の主面11から第2の段差構造22の上面までの垂直方向の距離をH4とした場合に、H1<H4の関係となることが好ましい。
それゆえ、テンプレートブランクス2においても、図7に示すように、基部10の主面11から第1の段差構造21の上の遮光膜31の上面までの垂直方向の距離をH1とし、基部10の主面11から第2の段差構造22の上面までの垂直方向の距離をH4とした場合に、H1<H4の関係となることが好ましい。
テンプレート1のインプリント時の露光光の漏れの影響を抑制する目的と、インプリント時に光硬化性樹脂がテンプレート1の遮光膜31に付着することを防止する目的の、両方を満たす範囲として、例えば、上記の距離(H4-H1)の値は、1μm以上5μm以下の範囲とすることができる。
また、テンプレートブランクス2においても、図8に示すように、基部10の主面11から第1の段差構造21の上の遮光膜31の上面までの垂直方向の距離をH1とし、基部10の主面11から第2の段差構造22の上面までの垂直方向の距離をH4とし、基部10の主面11の外縁から第1の段差構造21の上面の外縁までの水平方向の距離をD1とし、基部10の主面11の外縁から第2の段差構造22の上面の外縁までの水平方向の距離をD2とした場合に、H1≦H4×(D1/D2)の関係となることが好ましい。
なお、図8は、本発明に係るテンプレートブランクスの各段差構造の位置関係を説明する図であり、図7において破線の円で示すR3の要部拡大図に相当する。
なお、図8は、本発明に係るテンプレートブランクスの各段差構造の位置関係を説明する図であり、図7において破線の円で示すR3の要部拡大図に相当する。
このような関係を満たす場合、図8に示すように、第1の段差構造21の上の遮光膜31の外縁E2は、基部10の主面11の外縁E1と第2の段差構造22の上面の外縁E3を結ぶ破線よりも内側(テンプレートブランクス2側)に存在することになる。
それゆえ、図2に示すように、テンプレート1のインプリントに際し、被転写基板50に対し(より正確には、被転写基板50の上に形成された光硬化性樹脂60に対し)、テンプレート1が(より正確には、テンプレート1の第2の段差構造22の上面が)、水平に対向せずに、傾斜を有して接したとしても、外縁E2が(さらには、第1の段差構造21の上の遮光膜31が)、被転写基板50に(より正確には、被転写基板50の上に形成された光硬化性樹脂60に)接触することを防止できるからである。
それゆえ、図2に示すように、テンプレート1のインプリントに際し、被転写基板50に対し(より正確には、被転写基板50の上に形成された光硬化性樹脂60に対し)、テンプレート1が(より正確には、テンプレート1の第2の段差構造22の上面が)、水平に対向せずに、傾斜を有して接したとしても、外縁E2が(さらには、第1の段差構造21の上の遮光膜31が)、被転写基板50に(より正確には、被転写基板50の上に形成された光硬化性樹脂60に)接触することを防止できるからである。
また、テンプレートブランクス2においても、図7に示すように、基部10の主面11とは反対側の面(裏面12)に、平面視において第2の段差構造22を包含する窪み部40を有することが好ましい。テンプレート1の離型等の工程が容易になるからである。
より詳しくは、このような構成であれば、第2の段差構造22が形成されている領域のテンプレートブランクス2の厚みを薄くすることができ、その結果、テンプレート1においては、転写パターン23が形成されている領域(転写パターン領域)の厚みを薄くして湾曲容易とすることが可能となり、離型に際し、テンプレート1の転写パターン領域を被転写基板側に向かって凸状に湾曲させて、被転写基板50の上に形成された光硬化性樹脂60の転写領域61の外縁部から、順次、部分的に離型していくことができるからである。
より詳しくは、このような構成であれば、第2の段差構造22が形成されている領域のテンプレートブランクス2の厚みを薄くすることができ、その結果、テンプレート1においては、転写パターン23が形成されている領域(転写パターン領域)の厚みを薄くして湾曲容易とすることが可能となり、離型に際し、テンプレート1の転写パターン領域を被転写基板側に向かって凸状に湾曲させて、被転写基板50の上に形成された光硬化性樹脂60の転写領域61の外縁部から、順次、部分的に離型していくことができるからである。
さらに、窪み部40は、図7に示すように、平面視において第1の段差構造21を包含することが好ましい。上記の湾曲に際し、第1の段差構造21の上面に形成した遮光膜31が剥がれたりする不具合を防止できるからである。
上記について、より詳しく説明すると、窪み部40の内側は、テンプレートブランクス2の厚みが薄いため、上記のテンプレート1の湾曲に際して変形しやすい領域となるのに対し、窪み部40の外側は、テンプレートブランクス2の厚みが厚いことから、上記のテンプレート1の湾曲に際して変形しにくい領域となる。
それゆえ、平面視において、第1の段差構造21が窪み部40に包含されない場合、換言すれば、平面視において、第1の段差構造21が、窪み部40の内側のみならず窪み部40の外側にも存在する場合、第1の段差構造21は、変形しやすい領域(すなわち、窪み部40の内側)と、変形しにくい領域(すなわち、窪み部40の外側)との境界を、有することになる。
そして、その境界では、上記のテンプレート1の湾曲に際して応力が集中するため、インプリントを繰り返すうちに、第1の段差構造21の上面に形成した遮光膜31が剥がれたりして、欠陥の元となるおそれがある。
それゆえ、このような境界が第1の段差構造21に形成されないようにするために、図7に示すように、窪み部40が平面視において第1の段差構造21を包含するような形態にする。
それゆえ、平面視において、第1の段差構造21が窪み部40に包含されない場合、換言すれば、平面視において、第1の段差構造21が、窪み部40の内側のみならず窪み部40の外側にも存在する場合、第1の段差構造21は、変形しやすい領域(すなわち、窪み部40の内側)と、変形しにくい領域(すなわち、窪み部40の外側)との境界を、有することになる。
そして、その境界では、上記のテンプレート1の湾曲に際して応力が集中するため、インプリントを繰り返すうちに、第1の段差構造21の上面に形成した遮光膜31が剥がれたりして、欠陥の元となるおそれがある。
それゆえ、このような境界が第1の段差構造21に形成されないようにするために、図7に示すように、窪み部40が平面視において第1の段差構造21を包含するような形態にする。
テンプレートブランクス2を構成する材料については、上述したテンプレート1を構成する材料と同じものを用いることができる。
<テンプレートブランクスの製造方法>
次に、本発明に係るテンプレートブランクスの製造方法について説明する。
図9は、本発明に係るテンプレートブランクスの製造方法の一例を示すフローチャートである。また、図10、11は、本発明に係るテンプレートブランクスの製造方法の一例を示す概略工程図である。
なお、本発明に係るテンプレートは、本発明に係るテンプレートブランクスを用いて、従来と同様の方法により第2の段差構造22の上面に転写パターン23を形成することで製造できる。それゆえ、本発明に係るテンプレートの製造方法について、図面を用いた説明は省略する。
次に、本発明に係るテンプレートブランクスの製造方法について説明する。
図9は、本発明に係るテンプレートブランクスの製造方法の一例を示すフローチャートである。また、図10、11は、本発明に係るテンプレートブランクスの製造方法の一例を示す概略工程図である。
なお、本発明に係るテンプレートは、本発明に係るテンプレートブランクスを用いて、従来と同様の方法により第2の段差構造22の上面に転写パターン23を形成することで製造できる。それゆえ、本発明に係るテンプレートの製造方法について、図面を用いた説明は省略する。
例えば、本製造方法により、テンプレートブランクス2を製造するには、まず、基部10の主面11の上にメサ状の段差構造201を有する第1のテンプレートブランクス200を準備する(図9のS1、図10(a))。
この第1のテンプレートブランクス200は、テンプレートブランクス2のような第1の段差構造21、第2の段差構造22、及び、遮光膜31を有していないものであり、例えば、従来の光インプリント法に用いられるテンプレートブランクスと同じものを用いることができる。
この第1のテンプレートブランクス200は、例えば、合成石英から構成されている。
基部10の主面11から段差構造201の上面までの距離H201は、図7に示すテンプレートブランクス2の距離H4と同程度であり、典型的には30μm程度である。
また、基部10の裏面12側には、窪み部40を有していることが好ましい。
この第1のテンプレートブランクス200は、例えば、合成石英から構成されている。
基部10の主面11から段差構造201の上面までの距離H201は、図7に示すテンプレートブランクス2の距離H4と同程度であり、典型的には30μm程度である。
また、基部10の裏面12側には、窪み部40を有していることが好ましい。
次に、段差構造201の上面に、第1のエッチングマスク210を形成する(図9のS2、図10(b))。
例えば、クロム(Cr)を用いてスパッタ成膜を施し、その後マスク形状にパターン加工することで、第1のエッチングマスク210を形成することができる。
例えば、クロム(Cr)を用いてスパッタ成膜を施し、その後マスク形状にパターン加工することで、第1のエッチングマスク210を形成することができる。
次に、第1のエッチングマスク210をマスクに用いたドライエッチングにより、第1の段差構造21、及び、第2の段差構造22を形成する(図9のS3、図10(c))。エッチングガスには、例えば、フッ素系のガスを用いることができる。
ここで、図10(c)に示す距離H202(エッチング深さに相当)は、数μm程度(1μm以上5μm以下の範囲)である。
ここで、図10(c)に示す距離H202(エッチング深さに相当)は、数μm程度(1μm以上5μm以下の範囲)である。
次に、第1のエッチングマスク210を除去し(図11(d))、続いて、後に遮光膜31となる遮光材層220を、基部10の主面11、第1の段差構造21の上面、第2の段差構造22の上面に形成し、さらに、第1の段差構造21の上面の、第2の段差構造22の外側の領域に、第2のエッチングマスク230を形成する(図9のS4、S5、図11(e))。
例えば、クロム(Cr)を用いて、膜厚が15nm以上となるようにスパッタ成膜を施すことで、遮光材層220を形成することができる。
また、第1の段差構造21の上面の、第2の段差構造22の外側の領域に、樹脂を滴下することで、樹脂から構成される第2のエッチングマスク230を形成することができる。
例えば、クロム(Cr)を用いて、膜厚が15nm以上となるようにスパッタ成膜を施すことで、遮光材層220を形成することができる。
また、第1の段差構造21の上面の、第2の段差構造22の外側の領域に、樹脂を滴下することで、樹脂から構成される第2のエッチングマスク230を形成することができる。
次に、第2のエッチングマスク230から露出する遮光材層220を除去し、その後、第2のエッチングマスク230を除去して、基部10の主面11の上に、第1の段差構造21を有し、第1の段差構造21の上に第2の段差構造22を有しており、第1の段差構造21の上面の、第2の段差構造22の外側の領域が、遮光膜31で覆われている、テンプレートブランクス2を得る(図9のS6、図11(f))。
以上、本発明に係るテンプレート及びテンプレートブランクスについて説明したが、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と、実質的に同一の構成を有し、同様な作用効果を奏するものは、いかなる場合であっても本発明の技術的範囲に包含される。
II.インプリント用テンプレート基板の製造方法、インプリント用テンプレートの製造方法、及び、テンプレート
本発明に係るインプリント用テンプレート基板の製造方法、インプリント用テンプレートの製造方法、及び、テンプレートについて、図面を用いて詳しく説明する。
本発明に係るインプリント用テンプレート基板の製造方法、インプリント用テンプレートの製造方法、及び、テンプレートについて、図面を用いて詳しく説明する。
<インプリント用テンプレート基板、及び、インプリント用テンプレート>
まず、本発明に係る製造方法により製造するインプリント用テンプレート基板、及び、インプリント用テンプレートについて説明する。
なお、煩雑となるのを避けるため、上記のインプリント用テンプレート基板、及び、インプリント用テンプレートについては、適宜、単に、テンプレート基板、及び、テンプレートとも呼ぶ。
まず、本発明に係る製造方法により製造するインプリント用テンプレート基板、及び、インプリント用テンプレートについて説明する。
なお、煩雑となるのを避けるため、上記のインプリント用テンプレート基板、及び、インプリント用テンプレートについては、適宜、単に、テンプレート基板、及び、テンプレートとも呼ぶ。
図13は、本発明に係るテンプレート基板の一例を説明する図である。また、図14は、本発明に係るテンプレートの一例を説明する図である。
例えば、図13に示すように、テンプレート基板4は、基部10の主面11の上に、第1の段差構造21を有し、第1の段差構造21の上に第2の段差構造22を有しており、第1の段差構造21の上面(露台、テラス)の、第2の段差構造22の外側の領域が、遮光膜31で覆われている。
例えば、図13に示すように、テンプレート基板4は、基部10の主面11の上に、第1の段差構造21を有し、第1の段差構造21の上に第2の段差構造22を有しており、第1の段差構造21の上面(露台、テラス)の、第2の段差構造22の外側の領域が、遮光膜31で覆われている。
テンプレート基板4は、図14に示すような遮光膜31を有するテンプレート1を製造するためのテンプレート基板であって、例えば、テンプレート基板4の第2の段差構造22の上面に凹凸構造の転写パターンを形成することで、図14に示すようなテンプレート1を製造することができる。なお、図14に示すテンプレート1においては、第2の段差構造22の上面が、転写パターン領域になる。
そして、テンプレート1においては、必要とされる転写パターン領域の高さを維持しつつ、インプリント時の露光光の漏れ(意図しない領域への照射)の影響を抑制することが可能となる。
例えば、図14に示すテンプレート1における、第1の段差構造21の段差と第2の段差構造22の段差を合わせた高さを、必要とされる高さ(例えば30μm)に製造することで、テンプレート1は、転写パターン領域の高さ(基部10の主面11からの距離)を必要とされる高さ(例えば30μm)に維持することができる。
また、テンプレート1は、第1の段差構造21の上面に遮光膜31を有しているため、従来のように、基部10の主面11の上にのみ遮光部材を設けた形態(例えば、特許文献5の図7(C))に比べて、遮光膜31が、転写パターン領域である第2の段差構造22の上面と、垂直方向(図中のZ方向)において近い距離に存在することになる。それゆえ、インプリント時の露光光の漏れ(意図しない領域への照射)の影響を抑制することが可能となる。
例えば、第2の段差構造22の段差(H1)の値は、1μm以上5μm以下の範囲とすることができる。このような数μm以下の段差であればドライエッチングで形成することが、時間的にも十分可能である。
そして、ドライエッチングで形成することにより、第2の段差構造22と第1の段差構造21の上面が接する箇所の断面形状は、ウェットエッチングで形成する場合よりも、直角に形成することが可能になる。
それゆえ、第2の段差構造22と第1の段差構造21の上面が接する箇所においても、他の箇所と同様の膜厚で遮光膜31を形成することが容易になり、より、露光光L1の漏れを抑制しやすくなる。
そして、ドライエッチングで形成することにより、第2の段差構造22と第1の段差構造21の上面が接する箇所の断面形状は、ウェットエッチングで形成する場合よりも、直角に形成することが可能になる。
それゆえ、第2の段差構造22と第1の段差構造21の上面が接する箇所においても、他の箇所と同様の膜厚で遮光膜31を形成することが容易になり、より、露光光L1の漏れを抑制しやすくなる。
<インプリント用テンプレート基板の製造方法>
次に、本発明に係るインプリント用テンプレート基板の製造方法について説明する。
図15は、本発明に係るインプリント用テンプレート基板の製造方法の一例を示すフローチャートである。また、図16は、本発明に係る樹脂層形成工程の一例を示すフローチャートである。また、図17、18は、本発明に係るインプリント用テンプレート基板の製造方法の一例を示す概略工程図である。
次に、本発明に係るインプリント用テンプレート基板の製造方法について説明する。
図15は、本発明に係るインプリント用テンプレート基板の製造方法の一例を示すフローチャートである。また、図16は、本発明に係る樹脂層形成工程の一例を示すフローチャートである。また、図17、18は、本発明に係るインプリント用テンプレート基板の製造方法の一例を示す概略工程図である。
本発明に係るインプリント用テンプレート基板の製造方法は、基部の主面の上に第1の段差構造を有し、第1の段差構造の上に第2の段差構造を有し、第1の段差構造の上面の上に遮光膜を有するインプリント用テンプレート基板の製造方法であって、図15に示すように、第1の段差構造と第2の段差構造を有し、第1の段差構造の上面の上及び第2の段差構造の上面の上に遮光材層を有する遮光材層付き多段テンプレート基板を準備する、遮光材層付き多段テンプレート基板準備工程(S10)と、第1の段差構造の上面の上に形成した遮光材層の上に第1の樹脂層を形成し、第2の段差構造の上面の上に形成した遮光材層の上に第1の樹脂層よりも厚みが薄い第2の樹脂層を形成する、樹脂層形成工程(S20)と、ドライエッチングにより第1の樹脂層を残しながら、第2の樹脂層を除去する、第2の樹脂層除去工程(S30)と、残存した第1の樹脂層をマスクに用いて遮光材層をエッチングして、第1の段差構造の上面の上に形成した遮光材層を残しながら、第2の段差構造の上面の上に形成した遮光材層を除去する、遮光膜形成工程(S40)と、を順に備えている。
そして、樹脂層形成工程(S20)は、樹脂と接触する主面側に平面視矩形状の凹部を有する樹脂厚規定用のテンプレートを用いて、第1の段差構造の上面の上に形成した遮光材層の上に滴下した第1の樹脂に樹脂厚規定用のテンプレートの該凹部の外周部の上面を押し当て、第2の段差構造の上面の上に形成した遮光材層の上に滴下した第2の樹脂に樹脂厚規定用のテンプレートの凹部の底面を押し当てる、樹脂厚規定工程(図16のS21)を含んでおり、樹脂厚規定用のテンプレートの凹部の深さが、第1の段差構造の上面から前記第2の段差構造の上面までの高さよりも小さいことを特徴とするものである。
以下、各工程に沿って、順次説明する。
以下、各工程に沿って、順次説明する。
(遮光材層付き多段テンプレート基板準備)
例えば、本製造方法により、テンプレート基板4を製造するには、まず、第1の段差構造21と第2の段差構造22を有し、第1の段差構造21の上面(露台、テラス)の上及び第2の段差構造22の上面の上に遮光材層170を有する遮光材層付き多段テンプレート基板300を準備する(図15のS10、図17(a))。
例えば、本製造方法により、テンプレート基板4を製造するには、まず、第1の段差構造21と第2の段差構造22を有し、第1の段差構造21の上面(露台、テラス)の上及び第2の段差構造22の上面の上に遮光材層170を有する遮光材層付き多段テンプレート基板300を準備する(図15のS10、図17(a))。
遮光材層付き多段テンプレート基板300において、第1の段差構造21と第2の段差構造22を合わせた高さは、従来の光インプリント法に用いられる、1段の段差構造を有するテンプレート基板の段差と同じ、または同程度の高さであり、典型的には30μm程度である。また、基部10の裏面12側には、窪み部40を有していることが好ましい。
この遮光材層付き多段テンプレート基板300は、例えば、図22~24に示すように、従来の光インプリント法に用いられる、1段の段差構造を有するテンプレート基板から製造することができる。詳しくは後述する、遮光材層付き多段テンプレート基板の製造方法において説明する。
(樹脂層形成)
次に、図17(b)に示すように、第1の段差構造21の上面の上に形成した遮光材層170の上に第1の樹脂51aを滴下し、第2の段差構造22の上面の上に形成した遮光材層170の上に第2の樹脂52aを滴下し、次いで、図17(c)に示すように、樹脂厚規定用のテンプレート400を押し当てて、各樹脂の厚みを規定し(図16のS21)、この状態で第1の樹脂51a及び第2の樹脂52aを硬化させ(図16のS22)、その後、樹脂厚規定用のテンプレート400を離形して、図18(d)に示すように、それぞれ膜厚が規定された、第1の樹脂層51及び第2の樹脂層52を得る(図15のS20)。
次に、図17(b)に示すように、第1の段差構造21の上面の上に形成した遮光材層170の上に第1の樹脂51aを滴下し、第2の段差構造22の上面の上に形成した遮光材層170の上に第2の樹脂52aを滴下し、次いで、図17(c)に示すように、樹脂厚規定用のテンプレート400を押し当てて、各樹脂の厚みを規定し(図16のS21)、この状態で第1の樹脂51a及び第2の樹脂52aを硬化させ(図16のS22)、その後、樹脂厚規定用のテンプレート400を離形して、図18(d)に示すように、それぞれ膜厚が規定された、第1の樹脂層51及び第2の樹脂層52を得る(図15のS20)。
ここで、本製造方法においては、所定の形態を有する樹脂厚規定用のテンプレート400を用いることで、第2の樹脂層52の膜厚を、第1の樹脂層51の膜厚よりも薄くなるように形成することができる。
また、樹脂厚規定用のテンプレート400を用いることで、図18(d)に示すように、第1の樹脂層51を膜厚均一な樹脂層とすることができる。例えば、第1の樹脂層51の膜厚の高低差を50nm以下とすることができる。
また、樹脂厚規定用のテンプレート400を用いることで、図18(d)に示すように、第1の樹脂層51を膜厚均一な樹脂層とすることができる。例えば、第1の樹脂層51の膜厚の高低差を50nm以下とすることができる。
(第2の樹脂層除去)
次に、図18(e)に示すように、エッチングガス75を用いたドライエッチング(エッチバック)により、第1の樹脂層51を残しつつ、第2の樹脂層52を除去する。
上記のように、第2の樹脂層52の膜厚は、第1の樹脂層51の膜厚よりも薄いため、エッチバックの手法により、第1の樹脂層51を残しつつ、第2の樹脂層52を除去することができる。
エッチングガス75には、例えば、酸素ガスを用いることができる。
次に、図18(e)に示すように、エッチングガス75を用いたドライエッチング(エッチバック)により、第1の樹脂層51を残しつつ、第2の樹脂層52を除去する。
上記のように、第2の樹脂層52の膜厚は、第1の樹脂層51の膜厚よりも薄いため、エッチバックの手法により、第1の樹脂層51を残しつつ、第2の樹脂層52を除去することができる。
エッチングガス75には、例えば、酸素ガスを用いることができる。
(遮光膜形成)
次に、残存した第1の樹脂層51をマスクに用いて、第1の樹脂層51から露出する遮光材層170をエッチングして、第1の段差構造21の上面の上に形成した遮光材層170を残しながら、第2の段差構造22の上面の上に形成した遮光材層170を除去する。この工程で残される、第1の段差構造21の上面の上に形成した遮光材層170が、テンプレート基板4の遮光膜31となる、
次に、残存した第1の樹脂層51をマスクに用いて、第1の樹脂層51から露出する遮光材層170をエッチングして、第1の段差構造21の上面の上に形成した遮光材層170を残しながら、第2の段差構造22の上面の上に形成した遮光材層170を除去する。この工程で残される、第1の段差構造21の上面の上に形成した遮光材層170が、テンプレート基板4の遮光膜31となる、
例えば、遮光材層170にクロム(Cr)を含む材料を用いた場合、このエッチングには、ドライエッチング、ウェットエッチングのどちらでも用いることができる。例えばドライエッチングの場合には、酸素と塩素の混合ガスを用いたドライエッチングが可能である。また、ウェットエッチングの場合には、硝酸第2セリウムアンモニウムと過塩素酸を含む水溶液を用いたウェットエッチングが可能である。
その後、残存する第1の樹脂層51を除去することにより、図18(f)に示すように、基部10の主面11の上に第1の段差構造21を有し、第1の段差構造21の上に第2の段差構造22を有し、第1の段差構造21の上面(露台、テラス)の上に遮光膜31を有するテンプレート基板4を得ることができる。
残存する第1の樹脂層51の除去には、例えば、酸素ガスを用いたアッシング等の手法を用いることができる。
残存する第1の樹脂層51の除去には、例えば、酸素ガスを用いたアッシング等の手法を用いることができる。
(従来の問題点1)
ここで、図17(b)に示す工程で、第2の段差構造22の上面の上に形成した遮光材層170の上に第2の樹脂52aを滴下せずに(すなわち、第2の段差構造22の上面の上に形成した遮光材層170の上に樹脂層を形成せずに)、第2の段差構造22の上面の上に形成した遮光材層170をエッチング除去しようとする場合には、第1の樹脂51aを滴下した際の飛沫等により、第2の段差構造22の上面の上に形成した遮光材層170の上に、第1の樹脂51aが付着してしまうことを回避できず、この不要な第1の樹脂51aのために、図18(f)に示すテンプレート基板4の第2の段差構造22の上面にも不要な遮光材層170が残存してしまうという問題があった。
ここで、図17(b)に示す工程で、第2の段差構造22の上面の上に形成した遮光材層170の上に第2の樹脂52aを滴下せずに(すなわち、第2の段差構造22の上面の上に形成した遮光材層170の上に樹脂層を形成せずに)、第2の段差構造22の上面の上に形成した遮光材層170をエッチング除去しようとする場合には、第1の樹脂51aを滴下した際の飛沫等により、第2の段差構造22の上面の上に形成した遮光材層170の上に、第1の樹脂51aが付着してしまうことを回避できず、この不要な第1の樹脂51aのために、図18(f)に示すテンプレート基板4の第2の段差構造22の上面にも不要な遮光材層170が残存してしまうという問題があった。
(従来の問題点2)
また、図17(b)に示すように、第1の段差構造21の上面の上に形成した遮光材層170の上に第1の樹脂51aを滴下しただけでは、形成される樹脂層は、この滴下された第1の樹脂51aの密度分布により欠損部(樹脂が無い部分)や薄膜部(樹脂が薄い部分)を有することになる。そして、図18(e)に示すドライエッチング(エッチバック)を施すと、このような欠損部や薄膜部はさらに増加する。
それゆえ、その後の工程で遮光材層170をエッチングすると、遮光膜31となる、第1の段差構造21の上面の上に形成した遮光材層170にも、欠損部や薄膜部を生じてしまうという問題があった。
また、図17(b)に示すように、第1の段差構造21の上面の上に形成した遮光材層170の上に第1の樹脂51aを滴下しただけでは、形成される樹脂層は、この滴下された第1の樹脂51aの密度分布により欠損部(樹脂が無い部分)や薄膜部(樹脂が薄い部分)を有することになる。そして、図18(e)に示すドライエッチング(エッチバック)を施すと、このような欠損部や薄膜部はさらに増加する。
それゆえ、その後の工程で遮光材層170をエッチングすると、遮光膜31となる、第1の段差構造21の上面の上に形成した遮光材層170にも、欠損部や薄膜部を生じてしまうという問題があった。
(本発明に係る製造方法の効果)
一方、本発明に係るインプリント用テンプレート基板の製造方法においては、図17(c)に示すように、所定の形態を有する樹脂厚規定用のテンプレート400を用いることで、第1の樹脂51aを滴下した際の飛沫等を含む第2の樹脂層52の膜厚を、第1の樹脂層51の膜厚よりも薄くなるように形成することができる。また、第1の樹脂層51及び第2の樹脂層52の双方を膜厚均一な樹脂層とすることができる。
そして、図18(e)に示すように、エッチバックの手法により、第1の樹脂層51を残しつつ、第2の樹脂層52を除去することができる。
一方、本発明に係るインプリント用テンプレート基板の製造方法においては、図17(c)に示すように、所定の形態を有する樹脂厚規定用のテンプレート400を用いることで、第1の樹脂51aを滴下した際の飛沫等を含む第2の樹脂層52の膜厚を、第1の樹脂層51の膜厚よりも薄くなるように形成することができる。また、第1の樹脂層51及び第2の樹脂層52の双方を膜厚均一な樹脂層とすることができる。
そして、図18(e)に示すように、エッチバックの手法により、第1の樹脂層51を残しつつ、第2の樹脂層52を除去することができる。
それゆえ、その後の工程で、第1の樹脂層51から露出する遮光材層170をエッチングすることで、図18(f)に示すように、第2の段差構造22の上面においては、遮光材層170を残すことなく除去できる。
また、第1の樹脂層51を欠損部の無い膜厚均一な樹脂層とすることができることから、遮光膜31となる、第1の段差構造21の上面の上に形成した遮光材層170も、欠損部や薄膜部のない膜とすることができる。
また、第1の樹脂層51を欠損部の無い膜厚均一な樹脂層とすることができることから、遮光膜31となる、第1の段差構造21の上面の上に形成した遮光材層170も、欠損部や薄膜部のない膜とすることができる。
(樹脂)
第1の樹脂51a、第2の樹脂52aは、熱や光によって硬化する材料から構成され、好ましくは、ナノインプリントリソグラフィの分野で用いられる紫外線硬化性の樹脂である。
第1の樹脂51a、第2の樹脂52aが、紫外線硬化性の樹脂である場合、上記の第1の樹脂51a及び第2の樹脂52aを硬化させる工程(図16のS22)には、図17(c)に示すように、紫外線65を照射する手法を用いることができる。
第1の樹脂51a、第2の樹脂52aは、熱や光によって硬化する材料から構成され、好ましくは、ナノインプリントリソグラフィの分野で用いられる紫外線硬化性の樹脂である。
第1の樹脂51a、第2の樹脂52aが、紫外線硬化性の樹脂である場合、上記の第1の樹脂51a及び第2の樹脂52aを硬化させる工程(図16のS22)には、図17(c)に示すように、紫外線65を照射する手法を用いることができる。
なお、第1の樹脂51a、第2の樹脂52aは、後述する第2の樹脂層除去工程(図15のS30、図18(e))で、ドライエッチングにより第1の樹脂層51を残しながら、第2の樹脂層52を除去することができるものであれば、異なる材料から構成されるものであっても良い。但し、扱いやすさからは、同じ材料から構成されるものであることが好ましい。
(樹脂厚規定用のテンプレート)
図19は、本発明に係る樹脂厚規定用のテンプレートの一例を説明する図である。ここで、図19(a)は、樹脂厚規定用のテンプレート400の概略底面図を示し、図19(b)は、図19(a)におけるA-A断面図を示す。
図19は、本発明に係る樹脂厚規定用のテンプレートの一例を説明する図である。ここで、図19(a)は、樹脂厚規定用のテンプレート400の概略底面図を示し、図19(b)は、図19(a)におけるA-A断面図を示す。
例えば、図19に示す樹脂厚規定用のテンプレート400は、樹脂と接触する主面側(図19(b)において下側)に、凹部402を有しており、凹部402の周囲が平面視枠状の凸部403で囲まれている。すなわち、樹脂厚規定用のテンプレート400において、凹部402の外周部の上面は、平面視枠状の凸部403の上面に該当する。
より詳しくは、樹脂厚規定用のテンプレート400の凹部402は、平面視において、遮光材層付き多段テンプレート基板300の第2の段差構造22の上面を内包し、かつ、遮光材層付き多段テンプレート基板300の第1の段差構造21の上面の外縁で囲まれる領域に内包される大きさを有しており、樹脂厚規定用のテンプレート400の凹部402の深さは、遮光材層付き多段テンプレート基板300の第1の段差構造21の上面から第2の段差構造22の上面までの高さよりも小さくなっている。
より詳しくは、樹脂厚規定用のテンプレート400の凹部402は、平面視において、遮光材層付き多段テンプレート基板300の第2の段差構造22の上面を内包し、かつ、遮光材層付き多段テンプレート基板300の第1の段差構造21の上面の外縁で囲まれる領域に内包される大きさを有しており、樹脂厚規定用のテンプレート400の凹部402の深さは、遮光材層付き多段テンプレート基板300の第1の段差構造21の上面から第2の段差構造22の上面までの高さよりも小さくなっている。
図20は、本発明に係る樹脂厚規定用のテンプレートの作用効果を説明する図である。この図20は、図17(c)における要部拡大図に相当する。
例えば、図20に示すように、樹脂厚規定用のテンプレート400を押し当てて、第1の樹脂層51及び第2の樹脂層52の各膜厚を規定するに際し、遮光材層付き多段テンプレート基板300の第1の段差構造21の上面から第2の段差構造22の上面までの高さ(インプリント用テンプレート基板4の第1の段差構造21の上面から第2の段差構造22の上面までの高さと同じ)をH1、凹部402の深さ(図19に示す樹脂厚規定用のテンプレート400においては凸部403の高さと同じ)をH2、形成する第1の樹脂層51の膜厚をT1、形成する第2の樹脂層52の膜厚をT2とした場合、H2<H1となるように設計することで、T2<T1となる。
例えば、凹部402の深さH2は、0.3μm以上10μm以下の範囲とすることができる。
それゆえ、図17(c)に示す工程に、この樹脂厚規定用のテンプレート400を用いれば、第2の樹脂層52の膜厚を、第1の樹脂層51の膜厚よりも薄くなるように形成することができる。また、樹脂厚規定用のテンプレート400を用いることで、図18(d)に示すように、第1の樹脂層51を膜厚均一な樹脂層とすることができる。
その結果、図18(f)に示すように、第2の段差構造22の上面においては、遮光材層170を残すことなく除去でき、かつ、遮光膜31となる、第1の段差構造21の上面の上に形成した遮光材層170においては、欠損部や薄膜部のない膜とすることができる。
その結果、図18(f)に示すように、第2の段差構造22の上面においては、遮光材層170を残すことなく除去でき、かつ、遮光膜31となる、第1の段差構造21の上面の上に形成した遮光材層170においては、欠損部や薄膜部のない膜とすることができる。
ここで、樹脂厚規定用のテンプレート400の凹部402の底面は、遮光材層付き多段テンプレート基板300の第2の段差構造22の上面(インプリント用テンプレート基板4の第2の段差構造22の上面と同じ)を内包する大きさを有していることが好ましい。
より具体的に言えば、図19(b)に示す樹脂厚規定用のテンプレート400の凹部402の底面の幅をL21とし、図13に示すインプリント用テンプレート基板4の第2の段差構造22の上面の幅をL11とした場合に、L21>L11であることが好ましい。
樹脂厚規定用のテンプレート400を押し当てる工程や、樹脂厚規定用のテンプレート400を遮光材層付き多段テンプレート基板300から離型する工程が、より容易になるからである。
例えば、凹部402の底面サイズは、10mm×10mm以上であって70mm×70mm以下の範囲とすることができる。
また、樹脂厚規定用のテンプレート400の凹部402の外周部の上面の外縁で囲まれる領域は、遮光材層付き多段テンプレート基板300の第1の段差構造21の上面(インプリント用テンプレート基板の第1の段差構造21の上面に同じ)の外縁で囲まれる領域と同じ形状で同じ面積を有するか、または、遮光材層付き多段テンプレート基板300の第1の段差構造21の上面(インプリント用テンプレート基板の第1の段差構造21の上面に同じ)の外縁で囲まれる領域を内包する大きさを有していることが好ましい。
より具体的に言えば、図19(b)に示す樹脂厚規定用のテンプレート400の凸部403の上面の外縁で囲まれる領域の幅をL22とし、図13に示すインプリント用テンプレート基板4の第1の段差構造21の上面の外縁で囲まれる領域の幅をL12とした場合に、L22≧L12であることが好ましい。
遮光材層付き多段テンプレート基板300の第1の段差構造21の上面(インプリント用テンプレート基板4の第1の段差構造21の上面に同じ)の外縁に至るまで、第1の樹脂層51を、欠損部の無い膜厚均一な樹脂層とすることができるからである。
また、樹脂厚規定用のテンプレート400は、凸部403の外周側に凹部402と深さが等しい領域404を有することが好ましい。
例えば、図17(c)に示すように、樹脂厚規定用のテンプレート400を押し当てる際に、樹脂厚規定用のテンプレート400の凹部402の底面と、遮光材層付き多段テンプレート基板300の第2の段差構造22の上面とを均一に接触させるために、凹部402の高さ位置を直接計測することは、通常困難である。
計測用の光等が、凸部403や遮光材層付き多段テンプレート基板300で遮られてしまうからである。
計測用の光等が、凸部403や遮光材層付き多段テンプレート基板300で遮られてしまうからである。
一方、樹脂厚規定用のテンプレート400が、上記のような領域404を有していれば、樹脂厚規定用のテンプレート400を押し当てる際に、計測用の光等が、凸部403や遮光材層付き多段テンプレート基板300に遮られてしまうことなく、領域404の高さ位置を計測することができる。そして、この計測結果から、凹部402の高さ位置を把握できる。
また、樹脂厚規定用のテンプレート400は、主面側に位置合わせ用のマークを有することが好ましい。
図17(c)に示すように、樹脂厚規定用のテンプレート400を押し当てる際に、遮光材層付き多段テンプレート基板300との相対位置を合わせることができ、位置精度良く押し当てができるからである。
図17(c)に示すように、樹脂厚規定用のテンプレート400を押し当てる際に、遮光材層付き多段テンプレート基板300との相対位置を合わせることができ、位置精度良く押し当てができるからである。
図21は、本発明に係る樹脂厚規定用のテンプレートの他の例を説明する図である。
例えば、図21(a)に示す樹脂厚規定用のテンプレート410は、主面側とは反対側の面に、平面視において凹部412を包含する窪み部415を有している。
このような形態であれば、樹脂厚規定用のテンプレート410の凹部412が設けられている領域の厚みを薄くして湾曲容易とし、押し当てに際しては、気泡を混入させてしまうことをより排除でき、離型に際しては、凹部412の外縁部から、順次、部分的に離型していくことが可能になる。
例えば、図21(a)に示す樹脂厚規定用のテンプレート410は、主面側とは反対側の面に、平面視において凹部412を包含する窪み部415を有している。
このような形態であれば、樹脂厚規定用のテンプレート410の凹部412が設けられている領域の厚みを薄くして湾曲容易とし、押し当てに際しては、気泡を混入させてしまうことをより排除でき、離型に際しては、凹部412の外縁部から、順次、部分的に離型していくことが可能になる。
また、本発明に係る樹脂厚規定用のテンプレートは、図19に示す樹脂厚規定用のテンプレート400のように、凹部402の周囲が平面視枠状の凸部403で囲まれている形態の他に、図21(b)に示す樹脂厚規定用のテンプレート420のように、凹部422の外周部の上面の外縁が樹脂厚規定用のテンプレートの外縁にまで至る形態であっても良い。
このような形態であっても、図19に示す樹脂厚規定用のテンプレート400と同様に、第2の樹脂層52の膜厚を、第1の樹脂層51の膜厚よりも薄くなるように形成することができるからである。また、第1の樹脂層51を膜厚均一な樹脂層とすることもできる。
さらに、このような形態に加え、図21(a)に示す樹脂厚規定用のテンプレート410のように、主面側とは反対側の面に、平面視において凹部422を包含する窪み部を有していても良い。
このような形態であれば、樹脂厚規定用のテンプレート420の凹部422が設けられている領域の厚みを薄くして湾曲容易とし、押し当てに際しては、気泡を混入させてしまうことをより排除でき、離型に際しては、凹部422の外縁部から、順次、部分的に離型していくことが可能になるからである。
このような形態であれば、樹脂厚規定用のテンプレート420の凹部422が設けられている領域の厚みを薄くして湾曲容易とし、押し当てに際しては、気泡を混入させてしまうことをより排除でき、離型に際しては、凹部422の外縁部から、順次、部分的に離型していくことが可能になるからである。
<遮光材層付き多段テンプレート基板の製造方法>
次に、本発明に係る遮光材層付き多段テンプレート基板の製造方法について説明する。
図22は、本発明に係る遮光材層付き多段テンプレート基板の製造方法の一例を示すフローチャートである。また、図23、24は、本発明に係る遮光材層付き多段テンプレート基板の製造方法の一例を示す概略工程図である。
次に、本発明に係る遮光材層付き多段テンプレート基板の製造方法について説明する。
図22は、本発明に係る遮光材層付き多段テンプレート基板の製造方法の一例を示すフローチャートである。また、図23、24は、本発明に係る遮光材層付き多段テンプレート基板の製造方法の一例を示す概略工程図である。
本発明に係る遮光材層付き多段テンプレート基板の製造方法は、基部の主面の上に1段の段差構造を有する1段テンプレート基板を準備する、1段テンプレート基板準備工程(図22のS11)と、1段テンプレート基板の段差構造の上面の転写パターン領域となる領域に、エッチングマスクを形成する、エッチングマスク形成工程(図22のS12)と、このエッチングマスクを用いて段差構造をエッチングして、下段の第1の段差構造と上段の第2の段差構造を形成する、多段化工程(図22のS13)と、第1の段差構造の上面の上、及び、第2の段差構造の上面の上に遮光材層を形成する、遮光材層形成工程(図22のS14)と、を順に備えるものである。
以下、各工程に沿って、順次説明する。
以下、各工程に沿って、順次説明する。
(1段テンプレート基板準備)
例えば、本製造方法により、遮光材層付き多段テンプレート基板300を製造するには、まず、基部10の主面11の上に1段の段差構造151を有する1段テンプレート基板150を準備する(図23(a))。
例えば、本製造方法により、遮光材層付き多段テンプレート基板300を製造するには、まず、基部10の主面11の上に1段の段差構造151を有する1段テンプレート基板150を準備する(図23(a))。
1段テンプレート基板150を構成する材料は、光インプリント法に用いることが可能なものであって、インプリント時における露光光を透過できるものである。
この露光光には、一般に、波長200nm~400nmの範囲(特に300nm~380nmの範囲)の紫外光が用いられる。
この露光光には、一般に、波長200nm~400nmの範囲(特に300nm~380nmの範囲)の紫外光が用いられる。
上記材料としては、例えば、石英ガラス、耐熱ガラス、フッ化カルシウム(CaF2)、フッ化マグネシウム(MgF2)、及びアクリルガラス等の透明材料や、これら透明材料の積層構造物を挙げることができる。特に、合成石英は、剛性が高く、熱膨張係数が低く、かつ一般に使用される波長である300nm~380nmの範囲での透過率が良いため、適している。
1段テンプレート基板150において、段差構造151の高さH101は、従来の光インプリント法に用いられる、1段の段差構造を有するテンプレート基板の段差と同じ、または同程度の高さであり、典型的には30μm程度である。
また、1段テンプレート基板150の基部10の裏面12側には、窪み部40を有していることが好ましい。
(エッチングマスク形成)
次に、1段テンプレート基板150の段差構造151の上面の転写パターン領域となる領域に、エッチングマスク160を形成する(図23(b))。
次に、1段テンプレート基板150の段差構造151の上面の転写パターン領域となる領域に、エッチングマスク160を形成する(図23(b))。
なお、上記の「転写パターン領域となる領域」とは、この1段テンプレート基板150から製造される遮光材層付き多段テンプレート基板300を経て、最終的に製造されるインプリント用テンプレート1(図14)において、転写パターン23が形成される領域である。図14に示すテンプレート1においては、第2の段差構造22の上面が、転写パターン領域に相当する。
エッチングマスク160を構成する材料としては、次の多段化工程において、1段テンプレート基板150を構成する材料をドライエッチングするに際し、エッチングマスクとして作用するものであれば用いることができる。
例えば、金属材料及びその酸化物、窒化物、酸窒化物等を1種以上含むものを挙げることができる。上記の金属材料の具体例としては、例えば、クロム(Cr)、モリブデン(Mo)、タンタル(Ta)、タングステン(W)、ジルコニウム(Zr)、チタン(Ti)等を挙げることができる。
例えば、金属材料及びその酸化物、窒化物、酸窒化物等を1種以上含むものを挙げることができる。上記の金属材料の具体例としては、例えば、クロム(Cr)、モリブデン(Mo)、タンタル(Ta)、タングステン(W)、ジルコニウム(Zr)、チタン(Ti)等を挙げることができる。
例えば、スパッタ成膜により、膜厚30nm以上200nm以下のクロム(Cr)膜を成膜し、フォトレジストを塗布し、パターニング後、フォトレジストから露出するクロム(Cr)膜をエッチングすることで、所望のエッチングマスク160を形成することができる。クロム(Cr)膜のエッチングには、例えば、酸素と塩素の混合ガスによるドライエッチングを用いることができる。
(多段化)
次に、エッチングマスク160をマスクに用いて段差構造151をエッチングして、下段の第1の段差構造21と上段の第2の段差構造22を形成し(図23(c))、その後、エッチングマスク160を除去する(図24(d))。
次に、エッチングマスク160をマスクに用いて段差構造151をエッチングして、下段の第1の段差構造21と上段の第2の段差構造22を形成し(図23(c))、その後、エッチングマスク160を除去する(図24(d))。
図23(c)に示す第2の段差構造22の段差(H102)の値は、図13に示すテンプレート基板4の第2の段差構造22の段差(H1)の値と同じであり、1μm以上5μm以下の範囲とすることができる。このような数μm以下の段差であればドライエッチングで形成することが、時間的にも十分可能である。
そして、ドライエッチングを用いることにより、第2の段差構造22と第1の段差構造21の上面が接する箇所の断面形状は、ウェットエッチングで形成する場合よりも、直角に形成することが可能になる。
そして、ドライエッチングを用いることにより、第2の段差構造22と第1の段差構造21の上面が接する箇所の断面形状は、ウェットエッチングで形成する場合よりも、直角に形成することが可能になる。
ここで、1段テンプレート基板150を構成する材料は、一般に合成石英であり、上記エッチングには、フッ素系ガスを用いたドライエッチングを好適に用いることができる。
また、エッチングマスク160の除去には、例えば、クロム(Cr)を含む材料を用いた場合、酸素と塩素の混合ガスを用いたドライエッチングにより除去が可能である。
また、硝酸第2セリウムアンモニウムと過塩素酸を含む水溶液を用いたウェットエッチングにより除去しても良い。
また、硝酸第2セリウムアンモニウムと過塩素酸を含む水溶液を用いたウェットエッチングにより除去しても良い。
(遮光材層形成)
次に、第1の段差構造21の上面の上、及び、第2の段差構造22の上面の上に遮光材層170を形成し、遮光材層付き多段テンプレート基板300を得る(図24(e))。
なお、図24(e)に示す遮光材層付き多段テンプレート基板300においては、基部10の主面11の上にも遮光材層170が形成されているが、本発明に係るインプリント用テンプレート基板の製造方法において、通常、上記の図18(e)~(f)の工程で、この主面11の上の遮光材層170は除去される。
次に、第1の段差構造21の上面の上、及び、第2の段差構造22の上面の上に遮光材層170を形成し、遮光材層付き多段テンプレート基板300を得る(図24(e))。
なお、図24(e)に示す遮光材層付き多段テンプレート基板300においては、基部10の主面11の上にも遮光材層170が形成されているが、本発明に係るインプリント用テンプレート基板の製造方法において、通常、上記の図18(e)~(f)の工程で、この主面11の上の遮光材層170は除去される。
遮光材層170を構成する材料としては、例えば、金属材料及びその酸化物、窒化物、酸窒化物等を1種以上含むものを挙げることができる。上記の金属材料の具体例としては、例えば、クロム(Cr)、モリブデン(Mo)、タンタル(Ta)、タングステン(W)、ジルコニウム(Zr)、チタン(Ti)等を挙げることができる。
ここで、露光光の照射を防止するため、遮光材層170は、波長365nmでの透過率が10%以下であることが好ましい。
例えば、遮光材層170を構成する材料としてクロム(Cr)を用いる場合、この遮光材層170の膜厚は、15nm以上あればよい。
例えば、遮光材層170を構成する材料としてクロム(Cr)を用いる場合、この遮光材層170の膜厚は、15nm以上あればよい。
遮光材層170を形成する方法としては、フォトマスク等の製造で実績のあるスパッタ成膜を、好適に挙げることができる。
<インプリント用テンプレートの製造方法>
次に、本発明に係るインプリント用テンプレートの製造方法について説明する。
次に、本発明に係るインプリント用テンプレートの製造方法について説明する。
本発明に係るインプリント用テンプレートの製造方法は、第1の実施形態と第2の実施形態とに、大別される。以下、第1の実施形態及び第2の実施形態について説明する。
A.第1の実施形態
まず、本発明に係るインプリント用テンプレートの製造方法の第1の実施形態について説明する。
図14に示すような、基部10の主面の上に第1の段差構造21を有し、第1の段差構造21の上に第2の段差構造22を有し、第1の段差構造21の上面の上に遮光膜31を有し、第2の段差構造22の上面に凹凸構造の転写パターン23を有するテンプレート1を製造する方法として、図13に示すような、上記の本発明に係るインプリント用テンプレート基板の製造方法により製造したテンプレート基板4を準備し、その第2の段差構造22の上面に対して、従来のインプリント用テンプレートの製造方法と同様の工程を施すことにより、所望の凹凸構造の転写パターン23を形成する方法が挙げられる。
まず、本発明に係るインプリント用テンプレートの製造方法の第1の実施形態について説明する。
図14に示すような、基部10の主面の上に第1の段差構造21を有し、第1の段差構造21の上に第2の段差構造22を有し、第1の段差構造21の上面の上に遮光膜31を有し、第2の段差構造22の上面に凹凸構造の転写パターン23を有するテンプレート1を製造する方法として、図13に示すような、上記の本発明に係るインプリント用テンプレート基板の製造方法により製造したテンプレート基板4を準備し、その第2の段差構造22の上面に対して、従来のインプリント用テンプレートの製造方法と同様の工程を施すことにより、所望の凹凸構造の転写パターン23を形成する方法が挙げられる。
上記の従来のインプリント用テンプレートの製造方法には、電子線リソグラフィ技術等を用いて転写パターン23のレジストパターンを形成する方法や、インプリント技術を用いて転写パターン23の樹脂パターンを形成する方法が含まれる。
B.第2の実施形態
次に、本発明に係るインプリント用テンプレートの製造方法の第2の実施形態について説明する。
次に、本発明に係るインプリント用テンプレートの製造方法の第2の実施形態について説明する。
本製造方法においては、既に凹凸構造の転写パターンが形成されている遮光材層付き多段テンプレート700を準備し、上記の本発明に係るインプリント用テンプレート基板の製造方法と同様の工程を施すことにより、例えば、図14に示すような基部10の主面の上に第1の段差構造21を有し、第1の段差構造21の上に第2の段差構造22を有し、第1の段差構造21の上面の上に遮光膜31を有し、第2の段差構造22の上面に凹凸構造の転写パターン23を有するテンプレート1を製造する。
上記の遮光材層付き多段テンプレート700は、例えば、従来のテンプレートと同様の構成を有するもの、すなわち、基部の主面の上に1段の段差構造を有し、その段差構造の上面に凹凸構造の転写パターン23を有する1段テンプレート500を準備し、上記の本発明に係る遮光材層付き多段テンプレート基板の製造方法と同様の工程を施すことにより、製造することができる(後述する第1の実施態様)。
以下、まず、第2の実施形態に係る遮光材層付き多段テンプレートを製造する方法について説明し、次いで、遮光材層付き多段テンプレートから本発明に係るインプリント用テンプレートを製造する方法(第2の実施形態に係るインプリント用テンプレートを製造する方法)について説明する。また、これに続けて、遮光材層付き多段テンプレートから本発明に係る高コントラスト膜を有するインプリント用テンプレートを製造する方法(第2の実施形態に係るインプリント用テンプレートを製造する方法)について説明する。
なお、煩雑となるのを避けるため、上記の本発明に係るインプリント用テンプレート基板の製造方法において詳細説明した事項と重複する事項については、適宜説明を省略する。
なお、煩雑となるのを避けるため、上記の本発明に係るインプリント用テンプレート基板の製造方法において詳細説明した事項と重複する事項については、適宜説明を省略する。
<遮光材層付き多段テンプレートの製造方法>
第2の実施形態に係る遮光材層付き多段テンプレートの製造方法は、第1の実施態様と第2の実施態様とに、大別される。以下、第1の実施態様及び第2の実施態様について説明する。
第2の実施形態に係る遮光材層付き多段テンプレートの製造方法は、第1の実施態様と第2の実施態様とに、大別される。以下、第1の実施態様及び第2の実施態様について説明する。
a.第1の実施態様
図25は、第1の実施態様に係る遮光材層付き多段テンプレートの製造方法の一例を示すフローチャートである。また、図26、27は、第1の実施態様に係る遮光材層付き多段テンプレートの製造方法の一例を示す概略工程図である。
図25は、第1の実施態様に係る遮光材層付き多段テンプレートの製造方法の一例を示すフローチャートである。また、図26、27は、第1の実施態様に係る遮光材層付き多段テンプレートの製造方法の一例を示す概略工程図である。
(1段テンプレート準備)
例えば、本実施形態の製造方法により、遮光材層付き多段テンプレート700を製造するには、まず、基部10の主面11の上に1段の段差構造501を有し、段差構造501の上面に凹凸構造の転写パターン23を有する1段テンプレート500を準備する(図25のS111、図26(a))。
例えば、本実施形態の製造方法により、遮光材層付き多段テンプレート700を製造するには、まず、基部10の主面11の上に1段の段差構造501を有し、段差構造501の上面に凹凸構造の転写パターン23を有する1段テンプレート500を準備する(図25のS111、図26(a))。
この1段テンプレート500は、従来のインプリント用テンプレートと同じ材料から構成される。
また、この1段テンプレート500は、従来のインプリント用テンプレートと同様の構成を有しており、例えば、段差構造501の高さH501は、従来の光インプリント法に用いられる、1段の段差構造を有するテンプレートの段差と同じ、または同程度の高さであり、典型的には30μm程度である。
また、1段テンプレート500の基部10の裏面12側には、窪み部40を有していることが好ましい。
ただし、1段テンプレート500の段差構造501の上面は、最終的に得られるテンプレート1の第2の段差構造22の上面よりも大きい面積を有する。
後述するように、1段テンプレート500の段差構造501の上面の外周部は、エッチングされて第1の段差構造21の上面を形成することになるからである。
すなわち、1段テンプレート500の段差構造501の上面は、テンプレート1の転写パターン領域(テンプレート1の第2の段差構造22の上面に等しい)よりも広く、1段テンプレート500に形成されている転写パターン23は、テンプレート1において転写パターン領域となる領域に形成されている。
後述するように、1段テンプレート500の段差構造501の上面の外周部は、エッチングされて第1の段差構造21の上面を形成することになるからである。
すなわち、1段テンプレート500の段差構造501の上面は、テンプレート1の転写パターン領域(テンプレート1の第2の段差構造22の上面に等しい)よりも広く、1段テンプレート500に形成されている転写パターン23は、テンプレート1において転写パターン領域となる領域に形成されている。
(エッチングマスク形成)
次に、1段テンプレート500の段差構造501の上面の転写パターン領域となる領域に、エッチングマスク160を形成する(図25のS112、図26(b))。
次に、1段テンプレート500の段差構造501の上面の転写パターン領域となる領域に、エッチングマスク160を形成する(図25のS112、図26(b))。
(多段化)
次に、エッチングマスク160を用いて段差構造501をエッチングして、下段の第1の段差構造21と上段の第2の段差構造22を形成し、その後、エッチングマスク160を除去する(図25のS113、図26(c)、図27(d))。
次に、エッチングマスク160を用いて段差構造501をエッチングして、下段の第1の段差構造21と上段の第2の段差構造22を形成し、その後、エッチングマスク160を除去する(図25のS113、図26(c)、図27(d))。
図26(c)に示す第2の段差構造22の段差(H502)の値は、図14に示すテンプレート1の第2の段差構造22の段差(H1)の値と同じであり、1μm以上5μm以下の範囲とすることができる。このような数μm以下の段差であればドライエッチングで形成することが、時間的にも十分可能である。
そして、ドライエッチングを用いることにより、第2の段差構造22と第1の段差構造21の上面が接する箇所の断面形状は、ウェットエッチングで形成する場合よりも、直角に形成することが可能になる。
そして、ドライエッチングを用いることにより、第2の段差構造22と第1の段差構造21の上面が接する箇所の断面形状は、ウェットエッチングで形成する場合よりも、直角に形成することが可能になる。
(遮光材層形成)
次に、第1の段差構造21の上面の上、及び、第2の段差構造22の上面の上に遮光材層170を形成し、遮光材層付き多段テンプレート700を得る(図25のS114、図27(e))。
なお、図27(e)に示す遮光材層付き多段テンプレート700においては、基部10の主面11の上にも遮光材層170が形成されているが、この後の本発明に係るインプリント用テンプレートの製造方法において、通常、この主面11の上の遮光材層170は除去される。
次に、第1の段差構造21の上面の上、及び、第2の段差構造22の上面の上に遮光材層170を形成し、遮光材層付き多段テンプレート700を得る(図25のS114、図27(e))。
なお、図27(e)に示す遮光材層付き多段テンプレート700においては、基部10の主面11の上にも遮光材層170が形成されているが、この後の本発明に係るインプリント用テンプレートの製造方法において、通常、この主面11の上の遮光材層170は除去される。
b.第2の実施態様
図28は、第2の実施態様に係る遮光材層付き多段テンプレートの製造方法の他の例を示すフローチャートである。また、図29、30は、第2の実施態様に係る遮光材層付き多段テンプレートの製造方法の他の例を示す概略工程図である。
図28は、第2の実施態様に係る遮光材層付き多段テンプレートの製造方法の他の例を示すフローチャートである。また、図29、30は、第2の実施態様に係る遮光材層付き多段テンプレートの製造方法の他の例を示す概略工程図である。
(1段テンプレート基板準備)
例えば、本実施形態の製造方法により、遮光材層付き多段テンプレート700を製造するには、まず、基部10の主面11の上に1段の段差構造151を有する1段テンプレート基板150を準備する(図28のS211、図29(a))。
例えば、本実施形態の製造方法により、遮光材層付き多段テンプレート700を製造するには、まず、基部10の主面11の上に1段の段差構造151を有する1段テンプレート基板150を準備する(図28のS211、図29(a))。
図29(a)に示す1段テンプレート基板150を構成する材料は、図23に示す1段テンプレート基板150と同様であるため、ここでの説明を省略する。
図29(a)に示す1段テンプレート基板150において、段差構造151の高さH201は、図23に示す1段テンプレート基板150の段差構造151の高さH101と同様であるため、ここでの説明を省略する。
また、図29(a)に示す1段テンプレート基板150の基部10の裏面12側には、図23に示す1段テンプレート基板150と同様に、窪み部40を有していることが好ましい。
(エッチングマスク形成)
次に、1段テンプレート基板150の段差構造151の上面における転写パターンを構成する第1の凹凸構造体およびアライメントマークを構成する第2の凹凸構造体となる領域に、エッチングマスク160を形成する(図28のS212、図29(b))。
次に、1段テンプレート基板150の段差構造151の上面における転写パターンを構成する第1の凹凸構造体およびアライメントマークを構成する第2の凹凸構造体となる領域に、エッチングマスク160を形成する(図28のS212、図29(b))。
なお、上記の「転写パターンを構成する第1の凹凸構造体およびアライメントマークを構成する第2の凹凸構造体となる領域」とは、この1段テンプレート基板150から製造される遮光材層付き多段テンプレート700(図30(f))を経て、最終的に製造されるインプリント用テンプレート1(図38(l))において、第1の凹凸構造体22aおよび第2の凹凸構造体22bが形成される領域である。
エッチングマスク160を構成する材料は、図23(b)に示すエッチングマスク160と同様であるため、ここでの説明を省略する。
エッチングマスク160を形成する方法は、図23(b)に示すエッチングマスク160を形成する方法と同様であるため、ここでの説明を省略する。
(多段化)
次に、エッチングマスク160をマスクに用いて段差構造151をエッチングして、下段の第1の段差構造21と上段の第2の段差構造22を形成し、その後、エッチングマスク160を除去する(図28のS213、図29(c)、図30(d))。
次に、エッチングマスク160をマスクに用いて段差構造151をエッチングして、下段の第1の段差構造21と上段の第2の段差構造22を形成し、その後、エッチングマスク160を除去する(図28のS213、図29(c)、図30(d))。
図29(c)に示す第2の段差構造22の段差(H202)の値は、図14に示すテンプレート1の第2の段差構造22の段差(H1)の値と同じであり、1μm以上5μm以下の範囲とすることができる。このような数μm以下の段差であればドライエッチングで形成することが、時間的にも十分可能である。
そして、ドライエッチングを用いることにより、第2の段差構造22と第1の段差構造21の上面が接する箇所の断面形状は、ウェットエッチングで形成する場合よりも、直角に形成することが可能になる。
そして、ドライエッチングを用いることにより、第2の段差構造22と第1の段差構造21の上面が接する箇所の断面形状は、ウェットエッチングで形成する場合よりも、直角に形成することが可能になる。
ここで、上記エッチングには、図23(b)に示す1段テンプレート基板150の1段の段差構造151をエッチングする場合と同様に、フッ素系ガスを用いたドライエッチングを好適に用いることができる。
また、エッチングマスク160を除去する方法は、図23(c)に示すエッチングマスク160の除去の方法と同様であるため、ここでの説明を省略する。
(転写パターン形成)
次に、第2の段差構造22の上面に対して、転写パターン23を構成する第1の凹凸構造体22aおよびアライメントマークを構成する第2の凹凸構造体22bを形成し、多段テンプレート600を得る(図28のS214、図30(e))。
次に、第2の段差構造22の上面に対して、転写パターン23を構成する第1の凹凸構造体22aおよびアライメントマークを構成する第2の凹凸構造体22bを形成し、多段テンプレート600を得る(図28のS214、図30(e))。
第1の凹凸構造体22aおよび第2の凹凸構造体22bを形成する方法としては、従来のインプリント用テンプレートの製造方法と同様の工程を施すことにより、所望の第1の凹凸構造体22aおよび所望の第2の凹凸構造体22bを形成する方法が挙げられる。
上記の従来のインプリント用テンプレートの製造方法には、電子線リソグラフィ技術等を用いて第1の凹凸構造体22aおよび第2の凹凸構造体22bのレジストパターンを形成する方法や、インプリント技術を用いて第1の凹凸構造体22aおよび第2の凹凸構造体22bの樹脂パターンを形成する方法が含まれる。
(遮光材層形成)
次に、基部10の主面11の上、第1の段差構造21の上面の上、及び第2の段差構造22の上面の上に遮光材層170を形成し、遮光材層付き多段テンプレート700を得る(図28のS215、図30(f))。
なお、図30(f)に示す遮光材層付き多段テンプレート700においては、基部10の主面11の上にも遮光材層170が形成されているが、この後の本発明に係るインプリント用テンプレートの製造方法において、通常、この主面11の上の遮光材層170は除去される。
次に、基部10の主面11の上、第1の段差構造21の上面の上、及び第2の段差構造22の上面の上に遮光材層170を形成し、遮光材層付き多段テンプレート700を得る(図28のS215、図30(f))。
なお、図30(f)に示す遮光材層付き多段テンプレート700においては、基部10の主面11の上にも遮光材層170が形成されているが、この後の本発明に係るインプリント用テンプレートの製造方法において、通常、この主面11の上の遮光材層170は除去される。
遮光材層170を構成する材料としては、図5に示すテンプレート1における遮光膜31を構成する材料と同様であるため、ここでの説明を省略する。遮光材層170の膜厚は、図5に示すテンプレート1における遮光膜31を構成する膜厚と同様であるため、ここでの説明を省略する。
c.第2の実施形態に係る遮光材層付き多段テンプレートの製造方法
上述した通り、第2の実施形態に係る遮光材層付き多段テンプレートの製造方法としては、図25、26、27に示されるような第1の実施態様および図28、29、30に示されるような第2の実施態様のどちらでもよいが、第1の実施態様よりも第2の実施態様が好ましい。第1の実施態様とは異なり、第2の実施態様においては、上記多段化の工程後の上記転写パターン形成の工程において、上記多段化よりも微細な加工である、第2の段差構造22の上面への凹凸構造体の形成を行っているため、凹凸構造体の損傷、破壊のリスクが低減するからである。
上述した通り、第2の実施形態に係る遮光材層付き多段テンプレートの製造方法としては、図25、26、27に示されるような第1の実施態様および図28、29、30に示されるような第2の実施態様のどちらでもよいが、第1の実施態様よりも第2の実施態様が好ましい。第1の実施態様とは異なり、第2の実施態様においては、上記多段化の工程後の上記転写パターン形成の工程において、上記多段化よりも微細な加工である、第2の段差構造22の上面への凹凸構造体の形成を行っているため、凹凸構造体の損傷、破壊のリスクが低減するからである。
<インプリント用テンプレートの製造方法>
次に、上記で得られた遮光材層付き多段テンプレート700から本発明に係るインプリント用テンプレート1を製造する方法(第2の実施形態に係るインプリント用テンプレートを製造する方法)について説明する。
次に、上記で得られた遮光材層付き多段テンプレート700から本発明に係るインプリント用テンプレート1を製造する方法(第2の実施形態に係るインプリント用テンプレートを製造する方法)について説明する。
図31は、第2の実施形態に係るテンプレートの製造方法の一例を示すフローチャートである。また、図32、33は、第2の実施形態に係るテンプレートの製造方法の一例を示す概略工程図である。
(遮光材層付き多段テンプレート準備)
例えば、本製造方法により、テンプレート1を製造するには、まず、第1の段差構造21と第2の段差構造22を有し、第2の段差構造22の上面に凹凸構造の転写パターン23を有し、第1の段差構造21の上面の上及び第2の段差構造22の上面の上に遮光材層170を有する遮光材層付き多段テンプレート700を準備する(図31のS100、図32(a))。
例えば、本製造方法により、テンプレート1を製造するには、まず、第1の段差構造21と第2の段差構造22を有し、第2の段差構造22の上面に凹凸構造の転写パターン23を有し、第1の段差構造21の上面の上及び第2の段差構造22の上面の上に遮光材層170を有する遮光材層付き多段テンプレート700を準備する(図31のS100、図32(a))。
遮光材層付き多段テンプレート700において、第1の段差構造21と第2の段差構造22を合わせた高さは、従来の光インプリント法に用いられる、1段の段差構造を有するテンプレート基板の段差と同じ、または同程度の高さであり、典型的には30μm程度である。また、基部10の裏面12側には、窪み部40を有していることが好ましい。
この遮光材層付き多段テンプレート700は、例えば、上記第1の実施態様の遮光材層付き多段テンプレートの製造方法(図25~27)により、製造することができる。
(樹脂層形成)
次に、図32(b)に示すように、第1の段差構造21の上面の上に形成した遮光材層170の上に第1の樹脂51aを滴下し、第2の段差構造22の上面の上に形成した遮光材層170の上に第2の樹脂52aを滴下し、次いで、図32(c)に示すように、樹脂厚規定用のテンプレート400を押し当てて、各樹脂の厚みを規定し、この状態で第1の樹脂51a及び第2の樹脂52aを硬化させ、その後、樹脂厚規定用のテンプレート400を離形して、図33(d)に示すように、それぞれ膜厚が規定された、第1の樹脂層51及び第2の樹脂層52を得る(図31のS200)。
次に、図32(b)に示すように、第1の段差構造21の上面の上に形成した遮光材層170の上に第1の樹脂51aを滴下し、第2の段差構造22の上面の上に形成した遮光材層170の上に第2の樹脂52aを滴下し、次いで、図32(c)に示すように、樹脂厚規定用のテンプレート400を押し当てて、各樹脂の厚みを規定し、この状態で第1の樹脂51a及び第2の樹脂52aを硬化させ、その後、樹脂厚規定用のテンプレート400を離形して、図33(d)に示すように、それぞれ膜厚が規定された、第1の樹脂層51及び第2の樹脂層52を得る(図31のS200)。
所定の形態を有する樹脂厚規定用のテンプレート400を用いることで、第2の樹脂層52の膜厚を、第1の樹脂層51の膜厚よりも薄くなるように形成することができる。
また、樹脂厚規定用のテンプレート400を用いることで、第1の樹脂層51を膜厚均一な樹脂層とすることができる。
また、樹脂厚規定用のテンプレート400を用いることで、第1の樹脂層51を膜厚均一な樹脂層とすることができる。
(第2の樹脂層除去)
次に、図33(e)に示すように、エッチングガス75を用いたドライエッチング(エッチバック)により、第1の樹脂層51を残しつつ、第2の樹脂層52を除去する。
上記のように、第2の樹脂層52の膜厚は、第1の樹脂層51の膜厚よりも薄いため、エッチバックの手法により、第1の樹脂層51を残つつ、第2の樹脂層52を除去することができる。
次に、図33(e)に示すように、エッチングガス75を用いたドライエッチング(エッチバック)により、第1の樹脂層51を残しつつ、第2の樹脂層52を除去する。
上記のように、第2の樹脂層52の膜厚は、第1の樹脂層51の膜厚よりも薄いため、エッチバックの手法により、第1の樹脂層51を残つつ、第2の樹脂層52を除去することができる。
(遮光膜形成)
次に、残存した第1の樹脂層51をマスクに用いて、第1の樹脂層51から露出する遮光材層170をエッチングして、遮光膜31となる、第1の段差構造21の上面の上に形成した遮光材層170を残しながら、第2の段差構造22の上面の上に形成した遮光材層170を除去する。
次に、残存した第1の樹脂層51をマスクに用いて、第1の樹脂層51から露出する遮光材層170をエッチングして、遮光膜31となる、第1の段差構造21の上面の上に形成した遮光材層170を残しながら、第2の段差構造22の上面の上に形成した遮光材層170を除去する。
その後、残存する第1の樹脂層51を除去することにより、図33(f)に示すように、基部10の主面11の上に第1の段差構造21を有し、第1の段差構造21の上に第2の段差構造22を有し、第2の段差構造22の上面に凹凸構造の転写パターン23を有し、第1の段差構造21の上面の上に遮光膜31を有するテンプレート1を得ることができる。
<高コントラスト膜を有するインプリント用テンプレートの製造方法>
次に、上記で得られた遮光材層付き多段テンプレート700から本発明に係る高コントラスト膜を有するインプリント用テンプレート1を製造する方法(第2の実施形態に係るインプリント用テンプレートを製造する方法)について説明する。
次に、上記で得られた遮光材層付き多段テンプレート700から本発明に係る高コントラスト膜を有するインプリント用テンプレート1を製造する方法(第2の実施形態に係るインプリント用テンプレートを製造する方法)について説明する。
図34は、第2の実施形態に係るテンプレートの製造方法の他の例を示すフローチャートである。また、図35、36、37、38は、第2の実施形態に係るテンプレートの製造方法の他の例を示す概略工程図である。
(遮光材層付き多段テンプレート準備)
例えば、本製造方法により、テンプレート1を製造するには、まず、第1の段差構造21と第2の段差構造22を有し、第2の段差構造22上面に、転写パターン23を構成する第1の凹凸構造体22aと、アライメントマークを構成する第2の凹凸構造体22bとを有し、第1の段差構造21の上面の上及び第2の段差構造22の上面の上に遮光材層170を有する遮光材層付き多段テンプレート700を準備する(図34のS100、図35(a))。
例えば、本製造方法により、テンプレート1を製造するには、まず、第1の段差構造21と第2の段差構造22を有し、第2の段差構造22上面に、転写パターン23を構成する第1の凹凸構造体22aと、アライメントマークを構成する第2の凹凸構造体22bとを有し、第1の段差構造21の上面の上及び第2の段差構造22の上面の上に遮光材層170を有する遮光材層付き多段テンプレート700を準備する(図34のS100、図35(a))。
遮光材層付き多段テンプレート700において、第1の段差構造21と第2の段差構造22を合わせた高さは、従来の光インプリント法に用いられる、1段の段差構造を有するテンプレート基板の段差と同じ、または同程度の高さであり、典型的には30μm程度である。また、基部10の裏面12側には、窪み部40を有していることが好ましい。
この遮光材層付き多段テンプレート700は、例えば、上記第2の実施態様の遮光材層付き多段テンプレートの製造方法(図28~30)により、製造することができる。
(第1および第2の樹脂層形成)
次に、図35(b)に示すように、第1の段差構造21の上面の上に形成した遮光材層170の上に第1の樹脂51aを滴下し、第2の段差構造22の上面の上に形成した遮光材層170の上に第2の樹脂52aを滴下し、次いで、図35(c)に示すように、第1および第2の樹脂厚規定用のテンプレート430を押し当てて、各樹脂の厚みを規定し、この状態で第1の樹脂51a及び第2の樹脂52aを硬化させ、その後、第1および第2の樹脂厚規定用のテンプレート430を離形して、図36(d)に示すように、それぞれ膜厚が規定された、第1の樹脂層51及び第2の樹脂層52を得る(図34のS200)。
次に、図35(b)に示すように、第1の段差構造21の上面の上に形成した遮光材層170の上に第1の樹脂51aを滴下し、第2の段差構造22の上面の上に形成した遮光材層170の上に第2の樹脂52aを滴下し、次いで、図35(c)に示すように、第1および第2の樹脂厚規定用のテンプレート430を押し当てて、各樹脂の厚みを規定し、この状態で第1の樹脂51a及び第2の樹脂52aを硬化させ、その後、第1および第2の樹脂厚規定用のテンプレート430を離形して、図36(d)に示すように、それぞれ膜厚が規定された、第1の樹脂層51及び第2の樹脂層52を得る(図34のS200)。
所定の形態を有する第1および第2の樹脂厚規定用のテンプレート430を用いることで、第2の樹脂層52の膜厚を、第1の樹脂層51の膜厚よりも薄くなるように形成することができる。具体的に、このような第1および第2の樹脂厚規定用のテンプレート430の形態としては、例えば、樹脂厚規定用のテンプレート400の形態と同様に、遮光材層付き多段テンプレート700の第1の段差構造21の上面から第2の段差構造22の上面までの高さ(後述するインプリント用テンプレート1の第1の段差構造21の上面から第2の段差構造22の上面までの高さと同じ)よりも、樹脂と接触する主面側の凹部432の深さが小さい形態が挙げられる。
また、第1および第2の樹脂厚規定用のテンプレート430を用いることで、上述したように樹脂厚規定用のテンプレート400を用いる場合と同様に、第1の樹脂層51を膜厚均一な樹脂層とすることができる。
また、第1および第2の樹脂厚規定用のテンプレート430を用いることで、上述したように樹脂厚規定用のテンプレート400を用いる場合と同様に、第1の樹脂層51を膜厚均一な樹脂層とすることができる。
(第2の樹脂層除去)
次に、図36(e)に示すように、エッチングガス75を用いたドライエッチング(エッチバック)により、第1の樹脂層51を残しつつ、第2の樹脂層52を除去する(図34のS300)。
上記のように、第2の樹脂層52の膜厚は、第1の樹脂層51の膜厚よりも薄いため、エッチバックの手法により、第1の樹脂層51を残しつつ、第2の樹脂層52を除去することができる。
次に、図36(e)に示すように、エッチングガス75を用いたドライエッチング(エッチバック)により、第1の樹脂層51を残しつつ、第2の樹脂層52を除去する(図34のS300)。
上記のように、第2の樹脂層52の膜厚は、第1の樹脂層51の膜厚よりも薄いため、エッチバックの手法により、第1の樹脂層51を残しつつ、第2の樹脂層52を除去することができる。
(遮光膜形成)
次に、残存した第1の樹脂層51をマスクに用いて、第1の樹脂層51から露出する遮光材層170をエッチングして、遮光膜31となる、第1の段差構造21の上面の上に形成した遮光材層170を残しながら、基部10の主面11の上、及び第2の段差構造22の上面の上に形成した遮光材層170を除去する。
次に、残存した第1の樹脂層51をマスクに用いて、第1の樹脂層51から露出する遮光材層170をエッチングして、遮光膜31となる、第1の段差構造21の上面の上に形成した遮光材層170を残しながら、基部10の主面11の上、及び第2の段差構造22の上面の上に形成した遮光材層170を除去する。
その後、残存する第1の樹脂層51を除去することにより、図36(f)に示すように、基部10の主面11の上に第1の段差構造21を有し、第1の段差構造21の上に第2の段差構造22を有し、第2の段差構造22上面に、転写パターン23を構成する第1の凹凸構造体22aと、アライメントマークを構成する第2の凹凸構造体22bとを有し、第1の段差構造21の上面の上に遮光膜31を有するテンプレート1を得ることができる(図34のS400)。
(高コントラスト層形成)
次に、第1の段差構造21の上面の上に遮光膜31を有するテンプレート1において、基部10の主面11の上、遮光膜31の上、第1の凹凸構造体22aの凸部の上面及び凹部の底面、並びに第2の凹凸構造体22bの凸部の上面及び凹部の底面の上に、高コントラスト層330を形成する(図34のS500、図37(g))。
次に、第1の段差構造21の上面の上に遮光膜31を有するテンプレート1において、基部10の主面11の上、遮光膜31の上、第1の凹凸構造体22aの凸部の上面及び凹部の底面、並びに第2の凹凸構造体22bの凸部の上面及び凹部の底面の上に、高コントラスト層330を形成する(図34のS500、図37(g))。
高コントラスト層330を構成する材料としては、図5に示すテンプレート1における高コントラスト膜32を構成する材料と同様であるため、ここでの説明を省略する。高コントラスト層330の膜厚は、図5に示すテンプレート1における高コントラスト膜32を構成する膜厚と同様であるため、ここでの説明を省略する。
(第3~第5の樹脂層形成)
次に、遮光膜31の上に形成した高コントラスト層330の上に第3の樹脂53aを滴下し、第1の凹凸構造体22aの凸部の上面及び凹部の底面の上に形成した高コントラスト層330の上に第4の樹脂54aを滴下し、第2の凹凸構造体22bの凸部の上面及び凹部の底面の上に形成した高コントラスト層330の上に第5の樹脂55aを滴下する。(図37(h))。
次に、遮光膜31の上に形成した高コントラスト層330の上に第3の樹脂53aを滴下し、第1の凹凸構造体22aの凸部の上面及び凹部の底面の上に形成した高コントラスト層330の上に第4の樹脂54aを滴下し、第2の凹凸構造体22bの凸部の上面及び凹部の底面の上に形成した高コントラスト層330の上に第5の樹脂55aを滴下する。(図37(h))。
次に、第3~第5の樹脂厚規定用のテンプレート440を押し当てて、この状態で第3の樹脂53a、第4の樹脂54a、及び第5の樹脂55aを硬化させる(図37(i))。その後、第3~第5の樹脂厚規定用のテンプレート440を離形する(図38(j))。これにより、遮光膜31の上に形成した高コントラスト層330の上に第3の樹脂層53を形成し、第1の凹凸構造体22aの凸部の上面及び凹部の底面の上に形成した高コントラスト層330の上に第3の樹脂層53よりも膜厚が薄い第4の樹脂層54を形成し、第2の凹凸構造体22bの凸部の上面及び凹部の底面の上に形成した高コントラスト層330の上に第4の樹脂層54よりも膜厚が厚い第5の樹脂層55を形成する(図34のS600、図38(j))。
ここで、本発明において、「第3の樹脂層よりも膜厚が薄い第4の樹脂層」とは、後述する図40に示すように、第3の樹脂層53の膜厚をT53、第1の凹凸構造体22aの凹部の底面の上に形成した第4の樹脂層54の膜厚をT54とした場合、T54<T53となる第4の樹脂層54を意味する。また、「第4の樹脂層よりも膜厚が厚い第5の樹脂層」とは、後述する図40に示すように、第1の凹凸構造体22aの凹部の底面の上に形成した第4の樹脂層54の膜厚をT54、第2の凹凸構造体22bの凹部の底面の上に形成した第5の樹脂層55の膜厚をT55とした場合、T54<T55となる第5の樹脂層55を意味する。
これらの樹脂層を形成する時には、図37(i)に示すように、樹脂と接触する主面側に凹部442を有し、凹部442の底面側に形成された窪み442aを有する第3~第5の樹脂厚規定用のテンプレート440を用いて、第3の樹脂53aに第3~第5の樹脂厚規定用のテンプレート440の凹部442の外周部の上面を押し当て、第4の樹脂54a、及び第5の樹脂55aに、第3~第5の樹脂厚規定用のテンプレート440の凹部442の底面を押し当て、第5の樹脂55aに窪み442aの底面を押し当てる。これにより、第3の樹脂層53、第4の樹脂層54、及び第5の樹脂層55の膜厚を上記のように規定することができる。また、第3の樹脂層53、第4の樹脂層54、及び第5の樹脂層55を膜厚均一な樹脂層とすることができる。
第3の樹脂53a、第4の樹脂54a、及び第5の樹脂55aは、熱や光によって硬化する材料から構成され、好ましくは、ナノインプリントリソグラフィの分野で用いられる紫外線硬化性の樹脂である。
第3の樹脂53a、第4の樹脂54a、及び第5の樹脂55aが、紫外線硬化性の樹脂である場合、上記の第3の樹脂53a、第4の樹脂54a、及び第5の樹脂55aを硬化させる工程には、図37(i)に示すように、紫外線65を照射する手法を用いることができる。
第3の樹脂53a、第4の樹脂54a、及び第5の樹脂55aが、紫外線硬化性の樹脂である場合、上記の第3の樹脂53a、第4の樹脂54a、及び第5の樹脂55aを硬化させる工程には、図37(i)に示すように、紫外線65を照射する手法を用いることができる。
なお、第3の樹脂53a、第4の樹脂54a、及び第5の樹脂55aは、後述する第4の樹脂層除去工程(図34のS700、図38(k))で、ドライエッチングにより第3の樹脂層53及び第5の樹脂層55の下側を残しながら、第3の樹脂層53及び第5の樹脂層55の上側、並びに第4の樹脂層54を除去することができるものであれば、異なる材料から構成されるものであっても良い。但し、扱いやすさからは、同じ材料から構成されるものであることが好ましい。
(第4の樹脂層除去)
次に、エッチングガス75を用いたドライエッチング(エッチバック)により第3の樹脂層53及び第5の樹脂層55の下側を残しながら、第3の樹脂層53及び第5の樹脂層55の上側、並びに第4の樹脂層54を除去する(図34のS700、図38(k))。
上記のように、第4の樹脂層54の膜厚T54は、第3の樹脂層53の膜厚T53及び第5の樹脂層55の膜厚T55よりも薄いため、エッチバックの手法により、第3の樹脂層53及び第5の樹脂層55の下側を残しつつ、第4の樹脂層54を除去することができる。
エッチングガス75には、例えば、酸素ガスを用いることができる。
次に、エッチングガス75を用いたドライエッチング(エッチバック)により第3の樹脂層53及び第5の樹脂層55の下側を残しながら、第3の樹脂層53及び第5の樹脂層55の上側、並びに第4の樹脂層54を除去する(図34のS700、図38(k))。
上記のように、第4の樹脂層54の膜厚T54は、第3の樹脂層53の膜厚T53及び第5の樹脂層55の膜厚T55よりも薄いため、エッチバックの手法により、第3の樹脂層53及び第5の樹脂層55の下側を残しつつ、第4の樹脂層54を除去することができる。
エッチングガス75には、例えば、酸素ガスを用いることができる。
(高コントラスト膜形成)
残存した第3の樹脂層53及び第5の樹脂層55の下側をマスクに用いて高コントラスト層330をエッチングして、遮光膜31の上、及び第2の凹凸構造体22bの凹部の底面の上に形成した高コントラスト層330を残しながら、基部10の主面11の上、第1の凹凸構造体22aの凸部の上面及び凹部の底面、並びに第2の凹凸構造体22bの凸部の上面の上に形成した高コントラスト層330を除去して、残存した第3の樹脂層53及び第5の樹脂層55を除去する(図34のS800、図38(l))。
残存した第3の樹脂層53及び第5の樹脂層55の下側をマスクに用いて高コントラスト層330をエッチングして、遮光膜31の上、及び第2の凹凸構造体22bの凹部の底面の上に形成した高コントラスト層330を残しながら、基部10の主面11の上、第1の凹凸構造体22aの凸部の上面及び凹部の底面、並びに第2の凹凸構造体22bの凸部の上面の上に形成した高コントラスト層330を除去して、残存した第3の樹脂層53及び第5の樹脂層55を除去する(図34のS800、図38(l))。
これにより、第2の段差構造22の上面に、転写パターン23を構成する第1の凹凸構造体22aと、アライメントマークを構成する第2の凹凸構造体22bと、を有し、遮光膜31の上、及び第2の凹凸構造体22bの凹部の底面の上に、高コントラスト膜32が形成されているテンプレート1を得ることができる(図38(l))。なお、図38(l)に示す高コントラスト膜32を有するインプリント用テンプレート1は、図5に示すテンプレート1と同じものである。
(樹脂厚規定用のテンプレート)
図39は、本発明に係る樹脂厚規定用のテンプレートの他の例を説明する図である。ここで、図39(a)は、第3~第5の樹脂厚規定用のテンプレート440の概略底面図を示し、図39(b)は、図39(a)におけるA-A断面図を示す。なお、図39に示す第3~第5の樹脂厚規定用のテンプレート440は、図37(i)に示す第3~第5の樹脂厚規定用のテンプレート440と同じものである。
図39は、本発明に係る樹脂厚規定用のテンプレートの他の例を説明する図である。ここで、図39(a)は、第3~第5の樹脂厚規定用のテンプレート440の概略底面図を示し、図39(b)は、図39(a)におけるA-A断面図を示す。なお、図39に示す第3~第5の樹脂厚規定用のテンプレート440は、図37(i)に示す第3~第5の樹脂厚規定用のテンプレート440と同じものである。
例えば、図39に示す第3~第5の樹脂厚規定用のテンプレート440は、樹脂と接触する主面側(図39(b)において下側)に、凹部442を有しており、凹部442の底面側に形成された窪み442aを有する。第3~第5の樹脂厚規定用のテンプレート440の形態は、凹部442の外周部の上面の外縁が第3~第5の樹脂厚規定用のテンプレート440の外縁にまで至る形態である。
より詳しくは、第3~第5の樹脂厚規定用のテンプレート440の凹部442は、平面視において、図37(i)に示すように、高コントラスト層330を形成したテンプレート1の第2の段差構造22の上面を内包し、かつ、高コントラスト層330を形成したテンプレート1の第1の段差構造21の上面の外縁で囲まれる領域に内包される大きさを有している。
より詳しくは、第3~第5の樹脂厚規定用のテンプレート440の凹部442は、平面視において、図37(i)に示すように、高コントラスト層330を形成したテンプレート1の第2の段差構造22の上面を内包し、かつ、高コントラスト層330を形成したテンプレート1の第1の段差構造21の上面の外縁で囲まれる領域に内包される大きさを有している。
図40は、本発明に係る樹脂厚規定用のテンプレートの作用効果を説明する図である。この図40は、図37(i)における要部拡大図に相当する。
例えば、図40に示すように、第3~第5の樹脂厚規定用のテンプレート440を押し当てて、第3の樹脂層53、第4の樹脂層54、及び第5の樹脂層55の各膜厚を規定するに際し、遮光膜31の上に形成した高コントラスト層330の上面から第1の凹凸構造体22aの凹部の底面の上に形成した高コントラスト層330の上面までの高さをH53、凹部442における窪み442a以外の部分の深さをH54、形成する第3の樹脂層53の膜厚をT53、形成する第4の樹脂層54の膜厚(第1の凹凸構造体22aの凹部の底面の上に形成した第4の樹脂層54の膜厚)をT54とした場合、H54<H53となるように設計することで、T54<T53となる。また、図40に示すように、凹部442の底面側に形成された窪み442aの深さをH55とした場合、H55<H54となるように設計し、形成する第5の樹脂層55の膜厚(第2の凹凸構造体22bの凹部の底面の上に形成した第4の樹脂層54の膜厚)をT55とした場合、T54<T55となる。
それゆえ、図37(i)に示す工程に、この第3~第5の樹脂厚規定用のテンプレート440を用いれば、第4の樹脂層54の膜厚T54を、第3の樹脂層53の膜厚T53よりも薄くなるように形成することができる、第5の樹脂層55の膜厚T55を、第4の樹脂層54の膜厚T54よりも厚くなるように形成することができる。また、第3~第5の樹脂厚規定用のテンプレート440を用いることで、第3の樹脂層53、第4の樹脂層54、及び第5の樹脂層55を膜厚均一な樹脂層とすることができる。
その結果、図38(k)に示すように、ドライエッチングにより第3の樹脂層53及び第5の樹脂層55の下側を残しながら、第3の樹脂層53及び第5の樹脂層55の上側、並びに第4の樹脂層54を除去した後に、図38(l)に示すように、残存した第3の樹脂層53及び第5の樹脂層55の下側をマスクに用いて高コントラスト層330をエッチングすることにより、遮光膜31の上、及び第2の凹凸構造体22bの凹部の底面の上に形成した高コントラスト層330の下側を残すことができる。また、遮光膜31の上に残した高コントラスト層330である高コントラスト膜32、及び第2の凹凸構造体22bの凹部の底面の上に残した高コントラスト層330である高コントラスト膜32を、欠損部や薄膜部のない膜とすることができる。
その結果、図38(k)に示すように、ドライエッチングにより第3の樹脂層53及び第5の樹脂層55の下側を残しながら、第3の樹脂層53及び第5の樹脂層55の上側、並びに第4の樹脂層54を除去した後に、図38(l)に示すように、残存した第3の樹脂層53及び第5の樹脂層55の下側をマスクに用いて高コントラスト層330をエッチングすることにより、遮光膜31の上、及び第2の凹凸構造体22bの凹部の底面の上に形成した高コントラスト層330の下側を残すことができる。また、遮光膜31の上に残した高コントラスト層330である高コントラスト膜32、及び第2の凹凸構造体22bの凹部の底面の上に残した高コントラスト層330である高コントラスト膜32を、欠損部や薄膜部のない膜とすることができる。
例えば、凹部442における窪み442a以外の部分の深さH54は、0.3μm以上10μm以下の範囲とすることができる。また、図40に示すように、凹部442の底面側に形成された窪み442aの深さをH55として、第1の凹凸構造体22aおよび第2の凹凸構造体22bの凹部の深さをH60とした場合、H55≧H60とする。これにより、第1の凹凸構造体22aの上から、残渣なく高コントラスト膜32(高コントラスト層330)を除去することができる。具体的には、例えば、H55は、H60×1.0~H60×2.0の範囲内とする。
ここで、第3~第5の樹脂厚規定用のテンプレート440の凹部442の底面は、図37(i)に示す高コントラスト層330を形成したテンプレート1の第2の段差構造22の上面を内包する大きさを有していることが好ましい。
より具体的に言えば、図39(b)に示す第3~第5の樹脂厚規定用のテンプレート440の凹部442の底面の幅をL21とし、図37(i)に示す高コントラスト層330を形成したテンプレート1の第2の段差構造22の上面の幅をL11とした場合に、L21>L11であることが好ましい。
第3~第5の樹脂厚規定用のテンプレート440を押し当てる工程や、第3~第5の樹脂厚規定用のテンプレート440を高コントラスト層330を形成したテンプレート1から離型する工程が、より容易になるからである。
例えば、凹部442の底面サイズは、10mm×10mm以上であって70mm×70mm以下の範囲とすることができる。
また、第3~第5の樹脂厚規定用のテンプレート440の凹部442の外周部の上面の外縁で囲まれる領域は、図37(i)に示す高コントラスト層330を形成したテンプレート1の第1の段差構造21の上面の外縁で囲まれる領域と同じ形状で同じ面積を有するか、または、高コントラスト層330を形成したテンプレート1の第1の段差構造21の上面の外縁で囲まれる領域を内包する大きさを有していることが好ましい。
より具体的に言えば、図39(b)に示す第3~第5の樹脂厚規定用のテンプレート440の凹部442の外周部の上面の外縁で囲まれる領域の幅をL22とし、図37(i)に示す高コントラスト層330を形成したテンプレート1の第1の段差構造21の上面の外縁で囲まれる領域の幅をL12とした場合に、L22≧L12であることが好ましい。
高コントラスト層330を形成したテンプレート1の第1の段差構造21の上面の外縁に至るまで、第3の樹脂層53を、欠損部の無い膜厚均一な樹脂層とすることができるからである。
また、図35(c)に示す第1および第2の樹脂厚規定用のテンプレート430は、主面側に位置合わせ用のマーク435を有する。このため、図35(c)に示すように、第1および第2の樹脂厚規定用のテンプレート430を押し当てる際に、対応するアライメントマーク(図示せず)を形成した遮光材層付き多段テンプレート700との相対位置を合わせることができ、位置精度良く押し当てができる。
なお、図35(c)に示す位置合わせ用のマーク435は、第1および第2の樹脂厚規定用のテンプレート430の主面側において凹部432の外側に形成された窪み435aである。第1および第2の樹脂厚規定用のテンプレート430において、凹部432および凹部432の外側に形成された窪み435aは別々の工程で形成される。具体的には、凹部432および窪み435aの一方の加工を実施した後に、アライメント描画により位置合わせを行い、他方の加工を実施する。また、凹部432の外側に形成された窪み435aは、マークが読み取れる程度の深さ(例えば20nm~300nm)をもつ窪みとなる。
さらに、図39に示す第3~第5の樹脂厚規定用のテンプレート440も、主面側に位置合わせ用のマーク435を有する。このため、図37(i)に示すように、第3~第5の樹脂厚規定用のテンプレート440を押し当てる際に、対応するアライメントマーク(図示せず)を形成したテンプレート1との相対位置を合わせることができ、位置精度良く押し当てができる。
図39に示す位置合わせ用のマーク435は、第3~第5の樹脂厚規定用のテンプレート440の主面側において凹部442の外側に形成された窪み435aであり、凹部442の底面側に形成された窪み442aの深さH55および位置合わせ用のマーク435の窪み435aの深さH56が同一である。このため、凹部442の底面側に形成された窪み442aと位置合わせ用のマーク435の窪み435aとを同じ工程で形成することができる。
本発明に係る樹脂厚規定用のテンプレートは、図39に示す第3~第5の樹脂厚規定用のテンプレート440のように、主面側に位置合わせ用のマークを有し、上記位置合わせ用のマークが、上記主面側において上記凹部の外側に形成された窪みであり、上記凹部の底面側に形成された窪みの深さおよび上記凹部の外側に形成された上記窪みの深さが同じであることが好ましい。上記凹部の底面側に形成された窪みと上記位置合わせ用のマークの窪みとを同じ工程で形成することができるからである。
以上、本発明に係るテンプレート基板の製造方法、テンプレートの製造方法、及び、テンプレートについて説明したが、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と、実質的に同一の構成を有し、同様な作用効果を奏するものは、いかなる場合であっても本発明の技術的範囲に包含される。
なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。
1 テンプレート
2 テンプレートブランクス
10 基部
11 主面
12 裏面
21 第1の段差構造
22 第2の段差構造
22a 第1の凹凸構造体
22b 第2の凹凸構造体
23 転写パターン
31 遮光膜
32 高コントラスト膜32
40 窪み部
50 被転写基板
60 光硬化性樹脂
61 転写領域
62 非転写領域
70 遮光板
81、82、83 露光光
90、91、92 照射領域
101 テンプレート
110 基部
111 主面
121 段差構造
122 転写パターン
131 遮光膜
200 第1のテンプレートブランクス
201 段差構造
210 第1のエッチングマスク
220 遮光材層
230 第2のエッチングマスク
4 テンプレート基板
51a 第1の樹脂
52a 第2の樹脂
53a 第3の樹脂
54a 第4の樹脂
55a 第5の樹脂
51 第1の樹脂層
52 第2の樹脂層
53 第3の樹脂層
54 第4の樹脂層
55 第5の樹脂層
65 紫外線
75 エッチングガス
150 1段テンプレート基板
151 段差構造
160 エッチングマスク
170 遮光材層
250 多段テンプレート基板
300 遮光材層付き多段テンプレート基板
330 高コントラスト層
400、410、420 樹脂厚規定用のテンプレート
401、411、421 基部
402、412、422 凹部
403、413 凸部
404、414 領域
415 窪み部
423 凹部の外周部
430 第1および第2の樹脂厚規定用のテンプレート
432 第1および第2の樹脂厚規定用のテンプレートの凹部
440 第3~第5の樹脂厚規定用のテンプレート
442 第3~第5の樹脂厚規定用のテンプレートの凹部
442a 第3~第5の樹脂厚規定用のテンプレートの凹部における窪み
435 位置合わせ用のマーク
500 1段テンプレート
501 段差構造
600 多段テンプレート
700 遮光材層付き多段テンプレート
2 テンプレートブランクス
10 基部
11 主面
12 裏面
21 第1の段差構造
22 第2の段差構造
22a 第1の凹凸構造体
22b 第2の凹凸構造体
23 転写パターン
31 遮光膜
32 高コントラスト膜32
40 窪み部
50 被転写基板
60 光硬化性樹脂
61 転写領域
62 非転写領域
70 遮光板
81、82、83 露光光
90、91、92 照射領域
101 テンプレート
110 基部
111 主面
121 段差構造
122 転写パターン
131 遮光膜
200 第1のテンプレートブランクス
201 段差構造
210 第1のエッチングマスク
220 遮光材層
230 第2のエッチングマスク
4 テンプレート基板
51a 第1の樹脂
52a 第2の樹脂
53a 第3の樹脂
54a 第4の樹脂
55a 第5の樹脂
51 第1の樹脂層
52 第2の樹脂層
53 第3の樹脂層
54 第4の樹脂層
55 第5の樹脂層
65 紫外線
75 エッチングガス
150 1段テンプレート基板
151 段差構造
160 エッチングマスク
170 遮光材層
250 多段テンプレート基板
300 遮光材層付き多段テンプレート基板
330 高コントラスト層
400、410、420 樹脂厚規定用のテンプレート
401、411、421 基部
402、412、422 凹部
403、413 凸部
404、414 領域
415 窪み部
423 凹部の外周部
430 第1および第2の樹脂厚規定用のテンプレート
432 第1および第2の樹脂厚規定用のテンプレートの凹部
440 第3~第5の樹脂厚規定用のテンプレート
442 第3~第5の樹脂厚規定用のテンプレートの凹部
442a 第3~第5の樹脂厚規定用のテンプレートの凹部における窪み
435 位置合わせ用のマーク
500 1段テンプレート
501 段差構造
600 多段テンプレート
700 遮光材層付き多段テンプレート
Claims (35)
- 凹凸構造の転写パターンを被転写基板の上の樹脂に転写するインプリントリソグラフィに用いられるテンプレートであって、
基部の主面の上に、
第1の段差構造を有し、
前記第1の段差構造の上に第2の段差構造を有し、
前記第2の段差構造の上面に前記転写パターンを有しており、
前記第1の段差構造の上面の、前記第2の段差構造の外側の領域が、遮光膜で覆われていることを特徴とする、テンプレート。 - 凹凸構造の転写パターンを被転写基板の上の樹脂に転写するインプリントリソグラフィに用いられるテンプレートであって、
基部の主面の上に、
第1の段差構造を有し、
前記第1の段差構造の上に第2の段差構造を有し、
前記第2の段差構造の上面に、前記転写パターンを構成する第1の凹凸構造体と、アライメントマークを構成する第2の凹凸構造体と、を有し、
前記第1の段差構造の上面の、前記第2の段差構造の外側の領域が、遮光膜で覆われており、
前記遮光膜の上、及び前記第2の凹凸構造体の凹部の底面の上に、前記基部を構成する材料と異なる材料膜から構成される高コントラスト膜が形成されていることを特徴とする、テンプレート。 - 前記基部の主面から前記第1の段差構造の上の前記遮光膜の上面までの垂直方向の距離をH1とし、
前記基部の主面から前記第2の段差構造の上面の前記転写パターンの凹部の底面までの垂直方向の距離をH2とした場合に、
H1<H2
の関係となることを特徴とする、請求の範囲第1項または第2項に記載のテンプレート。 - 前記基部の主面から前記第1の段差構造の上の前記遮光膜の上面までの垂直方向の距離をH1とし、
前記基部の主面から前記第2の段差構造の上面までの垂直方向の距離をH3とし、
前記基部の主面の外縁から前記第1の段差構造の上面の外縁までの水平方向の距離をD1とし、
前記基部の主面の外縁から前記第2の段差構造の上面の外縁までの水平方向の距離をD2とした場合に、
H1≦H3×(D1/D2)
の関係となることを特徴とする、請求の範囲第1項から第3項までのいずれかに記載のテンプレート。 - 前記基部の主面とは反対側の面に、平面視において前記第2の段差構造を包含する窪み部を有することを特徴とする、請求の範囲第1項から第4項までのいずれかに記載のテンプレート。
- 前記窪み部が、平面視において前記第1の段差構造を包含することを特徴とする、請求の範囲第5項に記載のテンプレート。
- 前記遮光膜が、波長365nmにおける透過率が10%以下であることを特徴とする、請求の範囲第1項から第6項までのいずれかに記載のテンプレート。
- 凹凸構造の転写パターンを被転写基板の上の樹脂に転写するインプリントリソグラフィに用いられるテンプレートを製造するためのテンプレートブランクスであって、
基部の主面の上に、
第1の段差構造を有し、
前記第1の段差構造の上に第2の段差構造を有しており、
前記第1の段差構造の上面の、前記第2の段差構造の外側の領域が、遮光膜で覆われていることを特徴とする、テンプレートブランクス。 - 前記基部の主面から前記第1の段差構造の上の前記遮光膜の上面までの垂直方向の距離をH1とし、
前記基部の主面から前記第2の段差構造の上面までの垂直方向の距離をH4とした場合に、
H1<H4
の関係となることを特徴とする、請求の範囲第8項に記載のテンプレートブランクス。 - 前記基部の主面から前記第1の段差構造の上の前記遮光膜の上面までの垂直方向の距離をH1とし、
前記基部の主面から前記第2の段差構造の上面までの垂直方向の距離をH4とし、
前記基部の主面の外縁から前記第1の段差構造の上面の外縁までの水平方向の距離をD1とし、
前記基部の主面の外縁から前記第2の段差構造の上面の外縁までの水平方向の距離をD2とした場合に、
H1≦H4×(D1/D2)
の関係となることを特徴とする、請求の範囲第8項または第9項に記載のテンプレートブランクス。 - 前記基部の主面とは反対側の面に、平面視において前記第2の段差構造を包含する窪み部を有することを特徴とする、請求の範囲第8項から第10項までのいずれかに記載のテンプレートブランクス。
- 前記窪み部が、平面視において前記第1の段差構造を包含することを特徴とする、請求の範囲第11項に記載のテンプレートブランクス。
- 前記遮光膜が、波長365nmにおける透過率が10%以下であることを特徴とする、請求の範囲第8項から第12項までのいずれかに記載のテンプレートブランクス。
- 基部の主面の上に第1の段差構造を有し、前記第1の段差構造の上に第2の段差構造を有し、前記第1の段差構造の上面の上に遮光膜を有するインプリント用テンプレート基板の製造方法であって、
前記第1の段差構造と前記第2の段差構造を有し、前記第1の段差構造の上面の上及び前記第2の段差構造の上面の上に遮光材層を有する遮光材層付き多段テンプレート基板を準備する、遮光材層付き多段テンプレート基板準備工程と、
前記第1の段差構造の上面の上に形成した遮光材層の上に第1の樹脂層を形成し、前記第2の段差構造の上面の上に形成した遮光材層の上に前記第1の樹脂層よりも厚みが薄い第2の樹脂層を形成する、樹脂層形成工程と、
ドライエッチングにより前記第1の樹脂層を残しつつ、前記第2の樹脂層を除去する、第2の樹脂層除去工程と、
残存した前記第1の樹脂層をマスクに用いて前記遮光材層をエッチングして、前記第1の段差構造の上面の上に形成した遮光材層を残しながら、前記第2の段差構造の上面の上に形成した遮光材層を除去する、遮光膜形成工程と、
を順に備え、
前記樹脂層形成工程が、
樹脂と接触する主面側に凹部を有する樹脂厚規定用のテンプレートを用いて、前記第1の段差構造の上面の上に形成した遮光材層の上に滴下した第1の樹脂に前記樹脂厚規定用のテンプレートの該凹部の外周部の上面を押し当て、前記第2の段差構造の上面の上に形成した遮光材層の上に滴下した第2の樹脂に前記樹脂厚規定用のテンプレートの凹部の底面を押し当てる、樹脂厚規定工程を含み、
前記樹脂厚規定用のテンプレートの前記凹部の深さが、前記第1の段差構造の上面から前記第2の段差構造の上面までの高さよりも小さいことを特徴とする、インプリント用テンプレート基板の製造方法。 - 前記樹脂層形成工程が、
前記樹脂厚規定工程と、
前記樹脂厚規定用のテンプレートを押し当てた状態で紫外線照射により、前記第1の樹脂及び前記第2の樹脂を硬化させて、前記第1の樹脂層及び前記第2の樹脂層を形成する、樹脂硬化工程と、
を含むことを特徴とする、請求の範囲第14項に記載のインプリント用テンプレート基板の製造方法。 - 前記遮光材層付き多段テンプレート基板準備工程が、
前記第1の段差構造と前記第2の段差構造を有する多段テンプレート基板を準備する、多段テンプレート基板準備工程と、
前記第1の段差構造の上面の上、及び、前記第2の段差構造の上面の上に遮光材層を形成する、遮光材層形成工程と、
を順に備えることを特徴とする、請求の範囲第14項または第15項に記載のインプリント用テンプレート基板の製造方法。 - 前記多段テンプレート基板準備工程が、
前記基部の主面の上に1段の段差構造を有する1段テンプレート基板を準備する、1段テンプレート基板準備工程と、
前記1段テンプレート基板の前記段差構造の上面の転写パターン領域となる領域に、エッチングマスクを形成する、エッチングマスク形成工程と、
前記エッチングマスクを用いて前記段差構造をエッチングして、下段の第1の段差構造と上段の第2の段差構造を形成する、多段化工程と、
を順に備えることを特徴とする、請求の範囲第16項に記載のインプリント用テンプレート基板の製造方法。 - 基部の主面の上に第1の段差構造を有し、前記第1の段差構造の上に第2の段差構造を有し、前記第1の段差構造の上面の上に遮光膜を有し、前記第2の段差構造の上面に凹凸構造の転写パターンを有するインプリント用テンプレートの製造方法であって、
前記第1の段差構造と前記第2の段差構造を有し、前記第2の段差構造の上面に凹凸構造の転写パターンを有し、前記第1の段差構造の上面の上及び前記第2の段差構造の上面の上に遮光材層を有する遮光材層付き多段テンプレートを準備する、遮光材層付き多段テンプレート準備工程と、
前記第1の段差構造の上面の上に形成した遮光材層の上に第1の樹脂層を形成し、前記第2の段差構造の上面の上に形成した遮光材層の上に前記第1の樹脂層よりも厚みが薄い第2の樹脂層を形成する、第1および第2の樹脂層形成工程と、
ドライエッチングにより前記第1の樹脂層を残しながら、前記第2の樹脂層を除去する、第2の樹脂層除去工程と、
残存した前記第1の樹脂層をマスクに用いて前記遮光材層をエッチングして、前記第1の段差構造の上面の上に形成した遮光材層を残しながら、前記第2の段差構造の上面の上に形成した遮光材層を除去する、遮光膜形成工程と、
を順に備え、
前記第1および第2の樹脂層形成工程が、
樹脂と接触する主面側に凹部を有する第1および第2の樹脂厚規定用のテンプレートを用いて、前記第1の段差構造の上面の上に形成した遮光材層の上に滴下した第1の樹脂に前記第1および第2の樹脂厚規定用のテンプレートの該凹部の外周部の上面を押し当て、前記第2の段差構造の上面の上に形成した遮光材層の上に滴下した第2の樹脂に前記第1および第2の樹脂厚規定用のテンプレートの凹部の底面を押し当てる、第1および第2の樹脂厚規定工程を含み、
前記第1および第2の樹脂厚規定用のテンプレートの前記凹部の深さが、前記第1の段差構造の上面から前記第2の段差構造の上面までの高さよりも小さいことを特徴とする、インプリント用テンプレートの製造方法。 - 基部の主面の上に第1の段差構造を有し、前記第1の段差構造の上に第2の段差構造を有し、前記第1の段差構造の上面の上に遮光膜を有し、前記第2の段差構造の上面に凹凸構造の転写パターンを有するインプリント用テンプレートの製造方法であって、
前記第1の段差構造と前記第2の段差構造を有し、前記第2の段差構造の上面に、前記転写パターンを構成する第1の凹凸構造体と、アライメントマークを構成する第2の凹凸構造体とを有し、前記第1の段差構造の上面の上及び前記第2の段差構造の上面の上に遮光材層を有する遮光材層付き多段テンプレートを準備する、遮光材層付き多段テンプレート準備工程と、
前記第1の段差構造の上面の上に形成した遮光材層の上に第1の樹脂層を形成し、前記第2の段差構造の上面の上に形成した遮光材層の上に前記第1の樹脂層よりも厚みが薄い第2の樹脂層を形成する、第1および第2の樹脂層形成工程と、
ドライエッチングにより前記第1の樹脂層を残しながら、前記第2の樹脂層を除去する、第2の樹脂層除去工程と、
残存した前記第1の樹脂層をマスクに用いて前記遮光材層をエッチングして、前記第1の段差構造の上面の上に形成した遮光材層を残しながら、前記第2の段差構造の上面の上に形成した遮光材層を除去することにより、前記第1の段差構造の上面の上に遮光膜を形成する、遮光膜形成工程と、
前記遮光膜の上、前記第1の凹凸構造体の凸部の上面及び凹部の底面の上、並びに前記第2の凹凸構造体の凸部の上面及び凹部の底面の上に、高コントラスト層を形成する、高コントラスト層形成工程と、
前記遮光膜の上に形成した前記高コントラスト層の上に第3の樹脂層を形成し、前記第1の凹凸構造体の凸部の上面及び凹部の底面の上に形成した前記高コントラスト層の上に前記第3の樹脂層よりも膜厚が薄い第4の樹脂層を形成し、前記第2の凹凸構造体の凸部の上面及び凹部の底面の上に形成した前記高コントラスト層の上に前記第4の樹脂層よりも膜厚が厚い第5の樹脂層を形成する、第3~第5の樹脂層形成工程と、
ドライエッチングにより前記第3の樹脂層及び前記第5の樹脂層を残しながら、前記第4の樹脂層を除去する、第4の樹脂層除去工程と、
残存した前記第3の樹脂層及び前記第5の樹脂層をマスクに用いて前記高コントラスト層をエッチングして、前記遮光膜の上、及び前記第2の凹凸構造体の凹部の底面の上に形成した前記高コントラスト層を残しながら、前記第1の凹凸構造体の凸部の上面及び凹部の底面の上、並びに前記第2の凹凸構造体の凸部の上面の上に形成した前記高コントラスト層を除去する、高コントラスト膜形成工程と、
を順に備え、
前記第1および第2の樹脂層形成工程が、
樹脂と接触する主面側に凹部を有する第1および第2の樹脂厚規定用のテンプレートを用いて、前記第1の段差構造の上面の上に形成した遮光材層の上に滴下した第1の樹脂に前記第1および第2の樹脂厚規定用のテンプレートの該凹部の外周部の上面を押し当て、前記第2の段差構造の上面の上に形成した遮光材層の上に滴下した第2の樹脂に前記第1および第2の樹脂厚規定用のテンプレートの凹部の底面を押し当てる、第1および第2の樹脂厚規定工程を含み、
前記第1および第2の樹脂厚規定用のテンプレートの前記凹部の深さが、前記第1の段差構造の上面から前記第2の段差構造の上面までの高さよりも小さく、
前記第3~第5の樹脂層形成工程が、
樹脂と接触する主面側に凹部を有し、前記凹部の底面側に形成された窪みを有する第3~第5の樹脂厚規定用のテンプレートを用いて、前記遮光膜の上に形成した前記高コントラスト層の上に滴下した第3の樹脂に前記第3~第5の樹脂厚規定用のテンプレートの凹部の外周部の上面を押し当て、前記第1の凹凸構造体の凸部の上面及び凹部の底面の上に形成した前記高コントラスト層の上に滴下した第4の樹脂、並びに前記第2の凹凸構造体の凸部の上面及び凹部の底面の上に形成した前記高コントラスト層の上に滴下した第5の樹脂に、前記第3~第5の樹脂厚規定用のテンプレートの凹部の底面を押し当て、前記第5の樹脂に前記窪みの底面を押し当てる、第3~第5の樹脂厚規定工程を含み、
前記第3~第5の樹脂厚規定用のテンプレートの前記凹部における前記窪み以外の部分の深さが、前記遮光膜の上に形成した前記高コントラスト層の上面から前記第1の凹凸構造体の凹部の底面の上に形成した前記高コントラスト層の上面までの高さよりも小さいことを特徴とする、インプリント用テンプレートの製造方法。 - 前記第1および第2の樹脂層形成工程が、
前記第1および第2の樹脂厚規定工程と、
前記第1および第2の樹脂厚規定用のテンプレートを押し当てた状態で紫外線照射により、前記第1の樹脂及び前記第2の樹脂を硬化させて、前記第1の樹脂層及び前記第2の樹脂層を形成する、第1および第2の樹脂硬化工程と、
を含むことを特徴とする、請求の範囲第18項または第19項に記載のインプリント用テンプレートの製造方法。 - 前記遮光材層付き多段テンプレート準備工程が、
前記第1の段差構造と前記第2の段差構造を有し、前記第2の段差構造の上面に前記転写パターンを有する多段テンプレートを準備する、多段テンプレート準備工程と、
前記第1の段差構造の上面の上、及び、前記第2の段差構造の上面の上に遮光材層を形成する、遮光材層形成工程と、
を順に備えることを特徴とする、請求の範囲第18項から第20項までのいずれかに記載のインプリント用テンプレートの製造方法。 - 前記多段テンプレート準備工程が、
前記基部の主面の上に1段の段差構造を有し、前記段差構造の上面に前記転写パターンを有する1段テンプレートを準備する、1段テンプレート準備工程と、
前記1段テンプレートの前記段差構造の上面の前記転写パターンが形成された領域に、エッチングマスクを形成する、エッチングマスク形成工程と、
前記エッチングマスクを用いて前記段差構造をエッチングして、下段の第1の段差構造と上段の第2の段差構造を形成する、多段化工程と、
を順に備えることを特徴とする、請求の範囲第21項に記載のインプリント用テンプレートの製造方法。 - 前記遮光材層付き多段テンプレート準備工程が、
前記第1の段差構造と前記第2の段差構造を有し、前記第2の段差構造の上面に前記転写パターンを有する多段テンプレートを準備する、多段テンプレート準備工程と、
前記第1の段差構造の上面の上、及び、前記第2の段差構造の上面の上に遮光材層を形成する、遮光材層形成工程と、
を順に備え、
前記多段テンプレート準備工程が、
前記基部の主面の上に1段の段差構造を有する1段テンプレート基板を準備する、1段テンプレート基板準備工程と、
前記1段テンプレート基板の前記段差構造の上面の前記転写パターンとなる領域に、エッチングマスクを形成する、エッチングマスク形成工程と、
前記エッチングマスクを用いて前記段差構造をエッチングして、下段の第1の段差構造と上段の第2の段差構造を形成する、多段化工程と、
前記第2の段差構造の上面に前記転写パターンを形成する、転写パターン形成工程と、
を順に備えることを特徴とする、請求の範囲第19項に記載のインプリント用テンプレートの製造方法。 - 樹脂と接触する主面側に凹部を有することを特徴とする、テンプレート。
- 樹脂と接触する主面側に凹部を有し、前記凹部の底面側に形成された窪みを有することを特徴とする、テンプレート。
- 前記主面側に位置合わせ用のマークを有することを特徴とする、請求の範囲第24項または第25項に記載のテンプレート。
- 前記主面側に位置合わせ用のマークを有し、
前記位置合わせ用のマークが、前記主面側において前記凹部の外側に形成された窪みであり、
前記凹部の底面側に形成された窪みの深さおよび前記凹部の外側に形成された窪みの深さが同じであることを特徴とする、請求の範囲第25項に記載のテンプレート。 - 前記凹部の底面サイズが、10mm×10mm以上であって70mm×70mm以下であることを特徴とする、請求の範囲第24項から第27項までのいずれかに記載のテンプレート。
- 前記凹部の深さが、0.3μm以上10μm以下であることを特徴とする、請求の範囲第24項から第28項までのいずれかに記載のテンプレート。
- 請求の範囲第14項から第17項までのいずれかに記載のインプリント用テンプレート基板の製造方法に用いられ、
前記凹部の深さが、
前記インプリント用テンプレート基板の第1の段差構造の上面から第2の段差構造の上面までの高さよりも小さいことを特徴とする、請求の範囲第24項から第29項までのいずれかに記載のテンプレート。 - 前記凹部の底面が、
前記インプリント用テンプレート基板の第2の段差構造の上面を内包する大きさを有していることを特徴とする、請求の範囲第30項に記載のテンプレート。 - 前記凹部の外周部の上面の外縁で囲まれる領域が、
前記インプリント用テンプレート基板の第1の段差構造の上面の外縁で囲まれる領域と同じ形状で同じ面積を有するか、または、前記インプリント用テンプレート基板の第1の段差構造の上面の外縁で囲まれる領域を内包する大きさを有していることを特徴とする、請求の範囲第30項または第31項に記載のテンプレート。 - 請求の範囲第18項に記載のインプリント用テンプレートの製造方法に用いられ、
前記凹部の深さが、
前記インプリント用テンプレートの第1の段差構造の上面から第2の段差構造の上面までの高さよりも小さいことを特徴とする、請求の範囲第24項から第29項までのいずれかに記載のテンプレート。 - 前記凹部の底面が、
前記インプリント用テンプレートの第2の段差構造の上面を内包する大きさを有していることを特徴とする、請求の範囲第33項に記載のテンプレート。 - 前記凹部の外周部の上面の外縁で囲まれる領域が、
前記インプリント用テンプレートの第1の段差構造の上面の外縁で囲まれる領域と同じ形状で同じ面積を有するか、または、前記インプリント用テンプレートの第1の段差構造の上面の外縁で囲まれる領域を内包する大きさを有していることを特徴とする、請求の範囲第33項または第34項に記載のテンプレート。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201780031739.0A CN109155237B (zh) | 2016-05-25 | 2017-05-24 | 模板和模板坯 |
KR1020187033811A KR102336560B1 (ko) | 2016-05-25 | 2017-05-24 | 템플릿 및 템플릿 블랭크, 그리고 임프린트용 템플릿 기판의 제조 방법, 임프린트용 템플릿의 제조 방법 및 템플릿 |
CN202410162351.6A CN117976523A (zh) | 2016-05-25 | 2017-05-24 | 压印用模板基板的制造方法、压印用模板的制造方法、以及模板 |
US16/304,264 US11340526B2 (en) | 2016-05-25 | 2017-05-24 | Production method of template, template blank, and template substrate for imprinting, production method of template for imprinting, and template |
US17/722,608 US20220236642A1 (en) | 2016-05-25 | 2022-04-18 | Production method of template, template blank, and template substrate for imprinting, production method of template for imprinting, and template |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016104729 | 2016-05-25 | ||
JP2016-104729 | 2016-05-25 | ||
JP2016-184903 | 2016-09-21 | ||
JP2016184903 | 2016-09-21 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/304,264 A-371-Of-International US11340526B2 (en) | 2016-05-25 | 2017-05-24 | Production method of template, template blank, and template substrate for imprinting, production method of template for imprinting, and template |
US17/722,608 Division US20220236642A1 (en) | 2016-05-25 | 2022-04-18 | Production method of template, template blank, and template substrate for imprinting, production method of template for imprinting, and template |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017204260A1 true WO2017204260A1 (ja) | 2017-11-30 |
Family
ID=60411349
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/019415 WO2017204260A1 (ja) | 2016-05-25 | 2017-05-24 | テンプレート及びテンプレートブランクス、並びにインプリント用テンプレート基板の製造方法、インプリント用テンプレートの製造方法、及び、テンプレート |
Country Status (6)
Country | Link |
---|---|
US (2) | US11340526B2 (ja) |
JP (1) | JP7056013B2 (ja) |
KR (1) | KR102336560B1 (ja) |
CN (2) | CN117976523A (ja) |
TW (1) | TWI633584B (ja) |
WO (1) | WO2017204260A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019160926A (ja) * | 2018-03-09 | 2019-09-19 | 東芝メモリ株式会社 | レプリカテンプレートの製造方法、半導体装置の製造方法、及びマスタテンプレート |
WO2022031404A1 (en) * | 2020-08-03 | 2022-02-10 | Applied Materials, Inc. | Apparatus and method for making seamless soft stamps |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7022615B2 (ja) * | 2018-02-26 | 2022-02-18 | キヤノン株式会社 | インプリント方法、インプリント装置、モールドの製造方法、および、物品の製造方法 |
JP7384153B2 (ja) * | 2018-04-09 | 2023-11-21 | 大日本印刷株式会社 | ナノインプリント用テンプレート及びその製造方法、並びに、2段メサブランクス及びその製造方法 |
CN115503159A (zh) * | 2018-05-30 | 2022-12-23 | 富士胶片株式会社 | 图案原盘、模具的制造方法及基体的制造方法 |
JP7139751B2 (ja) * | 2018-07-24 | 2022-09-21 | 大日本印刷株式会社 | インプリントモールドの製造方法 |
JP7395303B2 (ja) * | 2019-09-30 | 2023-12-11 | キヤノン株式会社 | インプリント用モールド、インプリント方法および物品の製造方法 |
JP7346268B2 (ja) * | 2019-12-05 | 2023-09-19 | キヤノン株式会社 | インプリント用のテンプレート、テンプレートを用いたインプリント方法 |
CN111061124A (zh) * | 2019-12-23 | 2020-04-24 | 杭州欧光芯科技有限公司 | 带切割道的紫外固化纳米压印模具及方法 |
JP2021150461A (ja) | 2020-03-18 | 2021-09-27 | キオクシア株式会社 | テンプレート、パターン形成方法、及び半導体装置の製造方法 |
CN112305859B (zh) * | 2020-11-17 | 2022-07-12 | 国家纳米科学中心 | 一种纳米压印模板及其制备方法和应用 |
US20230167017A1 (en) * | 2021-12-01 | 2023-06-01 | Canon Kabushiki Kaisha | Superstrate and a method of using the same |
US12085852B2 (en) * | 2021-12-27 | 2024-09-10 | Canon Kabushiki Kaisha | Template, method of forming a template, apparatus and method of manufacturing an article |
WO2023190168A1 (ja) * | 2022-03-31 | 2023-10-05 | 大日本印刷株式会社 | 硬化膜形成方法、インプリントモールド用基板の製造方法、インプリントモールドの製造方法、凹凸構造体の製造方法、パターン形成方法、ハードマスク形成方法、絶縁膜形成方法及び半導体装置の製造方法 |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007103915A (ja) * | 2005-09-06 | 2007-04-19 | Canon Inc | モールド、インプリント方法、及びチップの製造方法 |
JP2009023113A (ja) * | 2007-07-17 | 2009-02-05 | Dainippon Printing Co Ltd | インプリントモールド |
JP2010258259A (ja) * | 2009-04-27 | 2010-11-11 | Dainippon Printing Co Ltd | ナノインプリント転写用基板およびナノインプリント転写方法 |
JP2013016734A (ja) * | 2011-07-06 | 2013-01-24 | Sumitomo Electric Ind Ltd | ナノインプリント用モールドを作製する方法 |
JP2013168604A (ja) * | 2012-02-17 | 2013-08-29 | Fujifilm Corp | ナノインプリント用モールドの製造方法 |
JP2014011254A (ja) * | 2012-06-28 | 2014-01-20 | Dainippon Printing Co Ltd | 位置合わせマーク、該マークを備えたテンプレート、および、該テンプレートの製造方法 |
JP2014172316A (ja) * | 2013-03-11 | 2014-09-22 | Dainippon Printing Co Ltd | テンプレートの製造方法 |
JP2014195088A (ja) * | 2014-04-25 | 2014-10-09 | Dainippon Printing Co Ltd | ナノインプリントによるパターン形成装置 |
JP2015170828A (ja) * | 2014-03-11 | 2015-09-28 | 富士フイルム株式会社 | プラズマエッチング方法およびパターン化基板の製造方法 |
JP2016072415A (ja) * | 2014-09-30 | 2016-05-09 | Hoya株式会社 | 基板の製造方法、マスクブランクの製造方法及びインプリントモールドの製造方法 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6482742B1 (en) | 2000-07-18 | 2002-11-19 | Stephen Y. Chou | Fluid pressure imprint lithography |
JP2002093748A (ja) | 2000-09-19 | 2002-03-29 | Nippon Telegr & Teleph Corp <Ntt> | インプリント装置及びインプリント方法 |
US6852454B2 (en) * | 2002-06-18 | 2005-02-08 | Freescale Semiconductor, Inc. | Multi-tiered lithographic template and method of formation and use |
US20080160129A1 (en) | 2006-05-11 | 2008-07-03 | Molecular Imprints, Inc. | Template Having a Varying Thickness to Facilitate Expelling a Gas Positioned Between a Substrate and the Template |
US7396475B2 (en) | 2003-04-25 | 2008-07-08 | Molecular Imprints, Inc. | Method of forming stepped structures employing imprint lithography |
US8011916B2 (en) | 2005-09-06 | 2011-09-06 | Canon Kabushiki Kaisha | Mold, imprint apparatus, and process for producing structure |
JP2010171109A (ja) * | 2009-01-21 | 2010-08-05 | Toppan Printing Co Ltd | インプリント用金型の原版及びインプリント用金型原版の製造方法 |
JP5451450B2 (ja) * | 2010-02-24 | 2014-03-26 | キヤノン株式会社 | インプリント装置及びそのテンプレート並びに物品の製造方法 |
JP2012204429A (ja) * | 2011-03-24 | 2012-10-22 | Toshiba Corp | インプリント用テンプレート、その製造方法及びパターン形成方法 |
EP3012097A3 (en) * | 2012-06-13 | 2016-06-22 | Asahi Kasei E-materials Corporation | Function transfer product, functional layer transfer method, packed product, and function transfer film roll |
JP5983218B2 (ja) | 2012-09-11 | 2016-08-31 | 大日本印刷株式会社 | ナノインプリントリソグラフィ用テンプレートの製造方法 |
JP6446943B2 (ja) | 2014-09-24 | 2019-01-09 | 大日本印刷株式会社 | インプリント用テンプレート及びインプリント方法 |
-
2017
- 2017-05-24 US US16/304,264 patent/US11340526B2/en active Active
- 2017-05-24 CN CN202410162351.6A patent/CN117976523A/zh active Pending
- 2017-05-24 CN CN201780031739.0A patent/CN109155237B/zh active Active
- 2017-05-24 JP JP2017102652A patent/JP7056013B2/ja active Active
- 2017-05-24 KR KR1020187033811A patent/KR102336560B1/ko active IP Right Grant
- 2017-05-24 WO PCT/JP2017/019415 patent/WO2017204260A1/ja active Application Filing
- 2017-05-25 TW TW106117357A patent/TWI633584B/zh active
-
2022
- 2022-04-18 US US17/722,608 patent/US20220236642A1/en active Pending
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007103915A (ja) * | 2005-09-06 | 2007-04-19 | Canon Inc | モールド、インプリント方法、及びチップの製造方法 |
JP2009023113A (ja) * | 2007-07-17 | 2009-02-05 | Dainippon Printing Co Ltd | インプリントモールド |
JP2010258259A (ja) * | 2009-04-27 | 2010-11-11 | Dainippon Printing Co Ltd | ナノインプリント転写用基板およびナノインプリント転写方法 |
JP2013016734A (ja) * | 2011-07-06 | 2013-01-24 | Sumitomo Electric Ind Ltd | ナノインプリント用モールドを作製する方法 |
JP2013168604A (ja) * | 2012-02-17 | 2013-08-29 | Fujifilm Corp | ナノインプリント用モールドの製造方法 |
JP2014011254A (ja) * | 2012-06-28 | 2014-01-20 | Dainippon Printing Co Ltd | 位置合わせマーク、該マークを備えたテンプレート、および、該テンプレートの製造方法 |
JP2014172316A (ja) * | 2013-03-11 | 2014-09-22 | Dainippon Printing Co Ltd | テンプレートの製造方法 |
JP2015170828A (ja) * | 2014-03-11 | 2015-09-28 | 富士フイルム株式会社 | プラズマエッチング方法およびパターン化基板の製造方法 |
JP2014195088A (ja) * | 2014-04-25 | 2014-10-09 | Dainippon Printing Co Ltd | ナノインプリントによるパターン形成装置 |
JP2016072415A (ja) * | 2014-09-30 | 2016-05-09 | Hoya株式会社 | 基板の製造方法、マスクブランクの製造方法及びインプリントモールドの製造方法 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019160926A (ja) * | 2018-03-09 | 2019-09-19 | 東芝メモリ株式会社 | レプリカテンプレートの製造方法、半導体装置の製造方法、及びマスタテンプレート |
JP7027200B2 (ja) | 2018-03-09 | 2022-03-01 | キオクシア株式会社 | レプリカテンプレートの製造方法、及び半導体装置の製造方法 |
WO2022031404A1 (en) * | 2020-08-03 | 2022-02-10 | Applied Materials, Inc. | Apparatus and method for making seamless soft stamps |
Also Published As
Publication number | Publication date |
---|---|
TWI633584B (zh) | 2018-08-21 |
JP7056013B2 (ja) | 2022-04-19 |
US20220236642A1 (en) | 2022-07-28 |
US20190086798A1 (en) | 2019-03-21 |
TW201743368A (zh) | 2017-12-16 |
KR102336560B1 (ko) | 2021-12-08 |
CN109155237B (zh) | 2024-02-23 |
US11340526B2 (en) | 2022-05-24 |
CN117976523A (zh) | 2024-05-03 |
JP2018056545A (ja) | 2018-04-05 |
CN109155237A (zh) | 2019-01-04 |
KR20190013764A (ko) | 2019-02-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017204260A1 (ja) | テンプレート及びテンプレートブランクス、並びにインプリント用テンプレート基板の製造方法、インプリント用テンプレートの製造方法、及び、テンプレート | |
JP6965557B2 (ja) | インプリント用テンプレート及びインプリント用テンプレートの製造方法 | |
JP4281773B2 (ja) | 微細成形モールド及び微細成形モールドの再生方法 | |
US9377682B2 (en) | Template substrate, method for manufacturing same, and template | |
US20120009791A1 (en) | Pattern formation method | |
US20080107972A1 (en) | Halftone mask and method for making pattern substrate using the halftone mask | |
US20100308513A1 (en) | Template and pattern forming method | |
CN109388018B (zh) | 光掩模的修正方法、光掩模的制造方法、光掩模和显示装置的制造方法 | |
JP7139751B2 (ja) | インプリントモールドの製造方法 | |
KR101118409B1 (ko) | 식별 마크를 갖는 템플릿 및 그 제조 방법 | |
JP7500588B2 (ja) | インプリントモールドの製造方法、インプリントモールド、モールドブランク、及び光学素子の製造方法 | |
JP6950224B2 (ja) | インプリントモールド及びインプリントモールドの製造方法 | |
JP7124585B2 (ja) | レプリカモールドの製造方法 | |
JP2006305800A (ja) | 成形用型、及び樹脂成形体の製造方法 | |
JP6996333B2 (ja) | ブランクス基材、インプリントモールド、インプリントモールドの製造方法及びインプリント方法 | |
JP2006126243A (ja) | 露光マスク並びにマイクロレンズアレイおよびその作製方法 | |
JP6631271B2 (ja) | インプリントモールドの製造方法 | |
JP7302347B2 (ja) | インプリントモールド用基板及びインプリントモールド、並びにそれらの製造方法 | |
JP6417728B2 (ja) | テンプレートの製造方法 | |
CN113721419B (zh) | 光掩模的修正方法 | |
JP2023131721A (ja) | インプリントモールド用基板、インプリントモールド用ブランク、インプリントモールド、インプリントモールドの製造方法、電子部品の製造方法、および光学部品の製造方法 | |
JP6206632B2 (ja) | ナノインプリント用ブランクスおよびナノインプリント用テンプレートの製造方法 | |
JP5187524B2 (ja) | フォトマスク基板の作製方法 | |
US20220082933A1 (en) | Original plate and method of manufacturing the same | |
JP6638493B2 (ja) | 多段構造体を有するテンプレートの製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17802846 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17802846 Country of ref document: EP Kind code of ref document: A1 |