WO2017203968A1 - シリコン単結晶の製造方法及び装置 - Google Patents

シリコン単結晶の製造方法及び装置 Download PDF

Info

Publication number
WO2017203968A1
WO2017203968A1 PCT/JP2017/017517 JP2017017517W WO2017203968A1 WO 2017203968 A1 WO2017203968 A1 WO 2017203968A1 JP 2017017517 W JP2017017517 W JP 2017017517W WO 2017203968 A1 WO2017203968 A1 WO 2017203968A1
Authority
WO
WIPO (PCT)
Prior art keywords
single crystal
silicon single
silicon
quartz crucible
melt
Prior art date
Application number
PCT/JP2017/017517
Other languages
English (en)
French (fr)
Inventor
渉 杉村
竜介 横山
三照 林
Original Assignee
株式会社Sumco
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Sumco filed Critical 株式会社Sumco
Priority to KR1020187030613A priority Critical patent/KR102157388B1/ko
Priority to CN201780032194.5A priority patent/CN109196144B/zh
Priority to US16/303,923 priority patent/US10858753B2/en
Priority to MYPI2018703955A priority patent/MY189529A/en
Priority to DE112017002662.8T priority patent/DE112017002662B4/de
Publication of WO2017203968A1 publication Critical patent/WO2017203968A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/20Controlling or regulating
    • C30B15/206Controlling or regulating the thermal history of growing the ingot
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/30Mechanisms for rotating or moving either the melt or the crystal
    • C30B15/305Stirring of the melt
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/20Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/30Mechanisms for rotating or moving either the melt or the crystal
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B30/00Production of single crystals or homogeneous polycrystalline material with defined structure characterised by the action of electric or magnetic fields, wave energy or other specific physical conditions
    • C30B30/04Production of single crystals or homogeneous polycrystalline material with defined structure characterised by the action of electric or magnetic fields, wave energy or other specific physical conditions using magnetic fields

Definitions

  • the present invention relates to a method and apparatus for producing a silicon single crystal by the Czochralski method (hereinafter referred to as “CZ method”), and in particular, MCZ (Magnetic field applied) which pulls up a single crystal while applying a magnetic field to a silicon melt. CZ) law.
  • CZ method Czochralski method
  • MCZ Magnetic field applied
  • the MCZ method is known as a method for producing a silicon single crystal by the CZ method.
  • the melt convection is suppressed by applying a magnetic field to the silicon melt in the quartz crucible, and the elution of oxygen from the quartz crucible is suppressed.
  • HMCZ HorizontalZMCZ
  • Patent Document 1 describes an HMCZ method in which a horizontal magnetic field center line is set in the vicinity of a melt surface within 5 cm from the melt surface during the entire process of growing a silicon single crystal. According to this method, convection in the vicinity of the melt surface is suppressed, and thermal convection below the melt surface is strengthened. Therefore, heat transfer to the solid-liquid interface is enhanced, and the temperature difference between the crucible and the solid-liquid interface is increased. Can be reduced. Further, since the melt sufficiently stirred below the melt surface is supplied to the solid-liquid interface, a single crystal with more uniform characteristics can be obtained, and cracking of the quartz crucible due to thermal stress can be prevented.
  • Patent Document 2 in order to prevent a rapid increase in crystal diameter and deterioration of the in-plane distribution of oxygen concentration, the position in the height direction of the center of the horizontal magnetic field is set at a position 100 mm or more away from the melt surface.
  • An HMCZ method for carrying out the pulling process is also described.
  • Patent Document 3 describes a method for producing a silicon single crystal in which the temperature of the melt surface is measured with a radiation thermometer before the seed crystal is deposited, and the melt is deposited when the temperature reaches a predetermined temperature.
  • Patent Document 4 describes a method of accurately measuring the temperature of the melt surface by attaching a stray light removing plate to the inner surface of the chamber and removing the influence of ambient light.
  • Patent Document 5 the temperature of the melt surface is measured with high accuracy by measuring the temperature of the melt surface using two radiation thermometers and a temperature measurement auxiliary plate to eliminate the influence of stray light.
  • measurement is continuously performed with good followability to temperature changes.
  • the MCZ method it is desirable not only to reduce the oxygen concentration in the silicon single crystal by suppressing melt convection, but also to make the oxygen concentration distribution in the cross section of the silicon single crystal perpendicular to the pulling axis direction as uniform as possible.
  • the variation in oxygen concentration in the cross section of the silicon single crystal is low, it is possible to reduce the incidence of device defects of chips cut from the silicon wafer.
  • an object of the present invention is to provide a method and an apparatus for producing a silicon single crystal that can suppress in-plane variation in oxygen concentration.
  • the in-plane variation of the oxygen concentration is considered to be caused by the shape of the solid-liquid interface being curved or the amount of oxygen taken from the solid-liquid interface fluctuating periodically.
  • the wafer cross section alternately crosses the high oxygen concentration region and the low oxygen region, and as a result, the oxygen concentration fluctuates up and down within the cut wafer cross section.
  • the behavior of these oxygen concentrations can be confirmed by taking an X-ray topographic image after the precipitation heat treatment using the oxygen precipitation phenomenon in the silicon single crystal, and a concentric oxygen precipitation pattern called oxygen striation Is observed.
  • the source of oxygen is a quartz crucible, and it is mainly melt convection that transports oxygen to the solid-liquid interface. Therefore, it is predicted that the melt convection also varies periodically as well as the periodic variation of oxygen.
  • the inventors of the present application attached a radiation thermometer capable of continuously measuring the surface temperature of the melt to a CZ furnace to grow a silicon single crystal while growing a silicon single crystal. The surface temperature of the liquid was measured. From the frequency analysis results of the acquired surface temperature data, two types of periods were observed, a period mainly synchronized with the crucible rotation and a period not synchronized with the crucible rotation.
  • the relative relationship of the amplitude intensity of these periods is related to the in-plane variation of the oxygen concentration in the single crystal. Specifically, if the amplitude intensity of the rotation period of the crucible is defined as A and the maximum amplitude intensity of the period other than the rotation period of the crucible is defined as B, the in-plane variation of the oxygen concentration is low and good under the crystal growth condition of A ⁇ B. It became a result. Furthermore, it was found that the device yield of the cut chips was high for wafers with low in-plane variation of oxygen concentration.
  • the present invention is based on such technical knowledge.
  • the method for producing a silicon single crystal according to the present invention is a method for pulling a silicon single crystal from the silicon melt while applying a magnetic field to the silicon melt in a quartz crucible.
  • a method for producing a silicon single crystal by the Larski method wherein the surface temperature of the silicon melt is continuously measured during the pulling process of the silicon single crystal, and crystal growth conditions are determined based on the frequency analysis result of the surface temperature. It is characterized by changing.
  • the silicon single crystal manufacturing apparatus includes a quartz crucible for supporting a silicon melt, a crucible rotating mechanism for rotating the quartz crucible, a magnetic field applying device for applying a magnetic field to the silicon melt, and the silicon melt.
  • a pulling mechanism for pulling up the silicon single crystal from the liquid, a radiation thermometer for continuously measuring the surface temperature of the silicon melt, a calculation unit for frequency analysis of the surface temperature measured by the radiation thermometer, and the surface And a control unit that controls the magnetic field application device based on a frequency analysis result of temperature.
  • variation in oxygen concentration in the crystal radial direction perpendicular to the pulling axis direction of the silicon single crystal can be reduced. Therefore, it is possible to create a wafer having a uniform in-plane distribution of oxygen concentration, and to reduce the defect rate of device characteristics of chips cut out from the wafer to a small size.
  • the crystal growth conditions it is preferable to change the crystal growth conditions so that the maximum amplitude intensity of a period other than the rotation period of the quartz crucible included in the periodic spectrum of the surface temperature is equal to or less than a threshold value.
  • the vibration period of the amplitude of the surface temperature of the silicon melt the period that is not synchronized with the rotation of the crucible is considered to be vibration caused by instability of the melt convection. Therefore, high-quality silicon with a uniform in-plane oxygen concentration can be obtained by optimizing the crystal growth conditions, for example, the height position of the magnet, so that the maximum amplitude intensity of the period other than the rotation period of the quartz crucible can be suppressed.
  • a single crystal can be grown.
  • the threshold value is an amplitude intensity of a rotation period of the quartz crucible included in a periodic spectrum of the surface temperature, and an amplitude intensity A of the rotation period of the quartz crucible and a period other than the rotation period of the quartz crucible. It is preferable to change the crystal growth conditions so that the relationship with the maximum amplitude intensity B of A satisfies A ⁇ B. As described above, when the amplitude intensity B other than the rotation period of the quartz crucible is lower than the amplitude intensity A of the rotation period of the quartz crucible, the variation of the oxygen concentration in the wafer surface can be suppressed, and the chip cut out from the wafer can be suppressed. It is possible to improve device yield.
  • a data table showing the correspondence between the relative relationship between A and B and the crystal growth conditions for each residual amount of the silicon melt is prepared in advance, and the current residual liquid of the silicon melt is prepared. It is preferable to derive from the data table the crystal growth conditions that can satisfy the above-mentioned A ⁇ B when the amount is large.
  • the crystal growth conditions that can satisfy the above-mentioned A ⁇ B when the amount is large.
  • the oscillation periods of the amplitude of the surface temperature of the silicon melt the periods that do not synchronize with the rotation of the crucible are considered to be vibrations caused by the instability of the melt convection. It varies depending on the amount of residual liquid and the height position of the magnetic field. Therefore, a high quality silicon single crystal with a uniform in-plane oxygen concentration can be grown by optimizing the crystal growth conditions, for example, the height position of the magnetic field with the change in the amount of melt.
  • the crystal growth conditions preferably include a position in the height direction of the magnetic field, and also preferably include the strength of the magnetic field.
  • the magnetic field application conditions in this way, it is possible to suppress variations in oxygen concentration within the wafer surface.
  • a high-quality silicon single crystal having a uniform in-plane oxygen concentration can be grown.
  • the measurement position of the surface temperature is preferably at least D / 30 mm away from the outermost periphery in the vicinity of the crystal growth interface of the growing silicon single crystal (D is the target diameter of the silicon single crystal).
  • D is the target diameter of the silicon single crystal.
  • the target diameter D of the silicon single crystal means a target diameter when the body portion of the silicon single crystal is grown.
  • the target diameter of the silicon single crystal used for manufacturing a 300 mm diameter wafer is 320 mm
  • a target diameter of a silicon single crystal used for manufacturing a 450 mm wafer can be set to 480 mm.
  • a method for producing a silicon single crystal wherein the silicon single crystal is pulled by the Czochralski method of pulling the silicon single crystal from the silicon melt while applying a magnetic field to the silicon melt in the quartz crucible.
  • the surface temperature of the silicon melt is continuously measured, and the amplitude intensity A of the rotation period of the quartz crucible and the maximum amplitude intensity B of a period other than the rotation period of the quartz crucible included in the periodic spectrum of the surface temperature,
  • the body portion of the silicon single crystal is pulled up in a state where A ⁇ B.
  • the amplitude intensity B other than the rotation period of the quartz crucible is lower than the amplitude intensity A of the rotation period of the quartz crucible, the in-plane variation of the oxygen concentration of the wafer cut out from the body portion can be suppressed, and the wafer It is possible to improve the device yield of the chip cut out from the chip.
  • it is desirable that the state where A ⁇ B is obtained over the entire body portion it is not always necessary, and a state where A ⁇ B may be obtained in a part of the body portion.
  • FIG. 1 is a side sectional view schematically showing a configuration of a silicon single crystal manufacturing apparatus according to an embodiment of the present invention.
  • FIG. 2 is a flowchart showing manufacturing steps of a silicon single crystal according to this embodiment.
  • FIG. 3 is a schematic cross-sectional view showing the shape of a silicon single crystal ingot.
  • FIG. 4 is a flowchart for explaining a control method of the magnetic field application device based on the surface temperature of the silicon melt.
  • FIGS. 5A and 5B are graphs showing examples of frequency analysis results of the surface temperature of the silicon melt measured by the radiation thermometer.
  • FIG. 1 is a side sectional view schematically showing a configuration of a silicon single crystal manufacturing apparatus according to an embodiment of the present invention.
  • the silicon single crystal manufacturing apparatus 1 includes a water-cooled chamber 10, a quartz crucible 11 that holds the silicon melt 2 in the chamber 10, a graphite crucible 12 that holds the quartz crucible 11, and graphite.
  • a heat insulating material 16 disposed along the quartz crucible 11, a heat shield 17 disposed above the quartz crucible 11, and a single crystal pulling wire 18 disposed above the quartz crucible 11 and coaxially with the rotary shaft 13.
  • a wire take-up mechanism 19 disposed above the chamber 10.
  • the chamber 10 includes a main chamber 10a and an elongated cylindrical pull chamber 10b connected to an upper opening of the main chamber 10a.
  • the quartz crucible 11, the graphite crucible 12, the heater 15, and the heat shield 17 are the main ones. It is provided in the chamber 10a.
  • the pull chamber 10b is provided with a gas inlet 10c for introducing an inert gas (purge gas) such as argon gas or a dopant gas into the chamber 10, and an atmospheric gas in the chamber 10 is provided below the main chamber 10a. Is provided with a gas discharge port 10d.
  • a viewing window 10e is provided in the upper part of the main chamber 10a, and the growth state of the silicon single crystal 3 can be observed from the viewing window 10e.
  • the quartz crucible 11 is a quartz glass container having a cylindrical side wall and a curved bottom.
  • the graphite crucible 12 is held in close contact with the outer surface of the quartz crucible 11 so as to wrap the quartz crucible 11 in order to maintain the shape of the quartz crucible 11 softened by heating.
  • the quartz crucible 11 and the graphite crucible 12 constitute a double-structure crucible that supports the silicon melt in the chamber 10.
  • the graphite crucible 12 is fixed to the upper end of the rotating shaft 13, and the lower end of the rotating shaft 13 passes through the bottom of the chamber 10 and is connected to a shaft drive mechanism 14 provided outside the chamber 10.
  • the rotating shaft 13 and the shaft driving mechanism 14 constitute a rotating mechanism and a lifting mechanism for the quartz crucible 11 and the graphite crucible 12.
  • the heater 15 is used for melting the silicon raw material filled in the quartz crucible 11 to generate the silicon melt 2 and maintaining the molten state of the silicon melt 2.
  • the heater 15 is a carbon resistance heating heater, and is provided so as to surround the quartz crucible 11 in the graphite crucible 12. Further, a heat insulating material 16 is provided outside the heater 15 so as to surround the heater 15, thereby enhancing the heat retaining property in the chamber 10.
  • the heat shield 17 suppresses temperature fluctuation of the silicon melt 2 to form an appropriate hot zone in the vicinity of the crystal growth interface and prevents the silicon single crystal 3 from being heated by radiant heat from the heater 15 and the quartz crucible 11. It is provided for.
  • the heat shield 17 is a graphite member that covers an upper region of the silicon melt 2 excluding the pulling path of the silicon single crystal 3, and has, for example, an inverted frustoconical shape whose opening size increases from the lower end toward the upper end. Have.
  • the diameter of the opening 17a at the lower end of the heat shield 17 is larger than the diameter of the silicon single crystal 3, thereby securing a pulling path for the silicon single crystal 3.
  • the diameter of the opening 17 a of the heat shield 17 is smaller than the diameter of the quartz crucible 11, and the lower end of the heat shield 17 is located inside the quartz crucible 11, so the upper end of the rim of the quartz crucible 11 is the lower end of the heat shield 17.
  • the heat shield 17 does not interfere with the quartz crucible 11 even if it is raised further upward.
  • the quartz crucible 11 is raised so that the distance ⁇ G between the melt surface and the lower end of the heat shield 17 becomes constant. It is possible to control the evaporation amount of the dopant from the silicon melt 2 while suppressing the temperature fluctuation of the melt 2 and keeping the flow velocity of the gas flowing near the melt surface constant. Therefore, the stability of the silicon single crystal 3 such as the crystal defect distribution, the oxygen concentration distribution, and the resistivity distribution in the pulling axis direction can be improved.
  • FIG. 1 shows a state in which the silicon single crystal 3 being grown is suspended from the wire 18.
  • Observation windows 10e and 10f for observing the inside are provided on the upper part of the main chamber 10a, and the CCD camera 20 is installed outside the inspection window 10e.
  • the CCD camera 20 takes an image of the boundary between the silicon single crystal 3 and the silicon melt 2 that can be seen from the viewing window 10e through the opening 17a of the thermal shield 17 from obliquely above.
  • the image captured by the CCD camera 20 is processed by the image processing unit 21, and the processing result is used by the control unit 22 for controlling the lifting conditions.
  • a radiation thermometer 25 for measuring the surface temperature of the silicon melt 2 is installed outside the viewing window 10f of the main chamber 10a, and is located at the same height as the radiation thermometer 25 inside the main chamber 10a.
  • a silicon mirror 26 is installed. The silicon mirror 26 forms an angle of 45 degrees with respect to the melt surface, and the light that travels straight upward from the melt surface and is reflected by the silicon mirror 26 is taken into the radiation thermometer 25.
  • the radiation thermometer 25 receives the radiation light of the silicon melt 2 emitted directly upward from the melt surface and measures the surface temperature thereof, thereby suppressing the influence of disturbance light such as multiple reflected light.
  • the surface temperature of the silicon melt 2 can be accurately measured.
  • the temperature data measured by the radiation thermometer 25 is processed by the calculation unit 27, and the processing result is used by the control unit 22 for controlling the pulling conditions.
  • the magnetic field application device 30 includes a pair of electromagnet coils 31A and 31B arranged opposite to each other across the main chamber 10a, and a lift mechanism 33 that supports the electromagnet coils 31A and 31B so as to be movable up and down.
  • the electromagnet coils 31A and 31B and the lift mechanism 33 operate according to instructions from the control unit 22, and the magnetic field strength and the height position of the electromagnet coils 31A and 31B are controlled.
  • the center position (magnetic field center position C) of the horizontal magnetic field generated by the magnetic field application device 30 can be moved in the vertical direction.
  • the magnetic field center position C refers to a position in the height direction of a horizontal line (magnetic field center line) connecting the centers of the electromagnet coils 31A and 31B arranged opposite to each other. According to the horizontal magnetic field method, convection of the silicon melt 2 can be effectively suppressed.
  • the seed crystal In the pulling process of the silicon single crystal 3, the seed crystal is lowered and immersed in the silicon melt 2, and then the seed crystal is slowly raised while rotating the seed crystal and the quartz crucible 11. A cylindrical silicon single crystal 3 is grown. At that time, the diameter of the silicon single crystal 3 is controlled by controlling the pulling speed and the power of the heater 15. Further, by applying a horizontal magnetic field to the silicon melt 2, melt convection in a direction perpendicular to the magnetic field lines can be suppressed.
  • FIG. 2 is a flowchart showing a manufacturing process of a silicon single crystal according to the present embodiment.
  • FIG. 3 is a schematic cross-sectional view showing the shape of a silicon single crystal ingot.
  • the silicon raw material in the quartz crucible 11 is heated and melted by the heater 15 to generate the silicon melt 2 (step S11).
  • the seed crystal attached to the tip end portion of the wire 18 is lowered and deposited on the silicon melt 2 (step S12).
  • a single crystal pulling step (steps S13 to S16) is performed in which the seed crystal is gradually pulled and the single crystal is grown while maintaining the contact state with the silicon melt 2.
  • a necking step for forming a neck portion 3a with a narrowed crystal diameter for dislocation elimination, and a shoulder portion for forming a shoulder portion 3b with a gradually increasing crystal diameter.
  • a growing step step S14
  • a body portion growing step step S15
  • the tail growing step step S16) to be formed is sequentially performed, and finally the single crystal is cut off from the melt surface.
  • a silicon single crystal ingot 3I having a neck portion 3a, a shoulder portion 3b, a body portion 3c, and a tail portion 3d as shown in FIG. 3 is completed.
  • the magnetic field application for pulling up the single crystal is performed with the magnetic field center position C set near the melt surface, for example (step S20).
  • near the melt surface means within a range of ⁇ 50 mm from the liquid surface of the silicon melt 2. If the magnetic field center position C is within this range, the same effect as when the magnetic field center position C matches the melt surface can be obtained, and convection of the melt surface can be suppressed.
  • the melt surface gradually decreases, but the absolute height of the melt surface is constant by raising the quartz crucible 11 as the melt surface decreases.
  • the distance (gap) between the melt surface and the lower end of the heat shield is kept constant, and the magnetic field center position C can be fixed near the melt surface.
  • FIG. 4 is a flowchart for explaining a control method of the magnetic field application device based on the surface temperature of the silicon melt.
  • step S21 application of a horizontal magnetic field is started by the magnetic field application device 30 at the start of the liquid deposition step S12 (step S21). Then, during the pulling process of the silicon single crystal 3, the time change of the surface temperature of the silicon melt 2 is continuously measured by the radiation thermometer 25 (step S22). The temperature data measured by the radiation thermometer 25 is sent to the calculation unit 27, and the frequency analysis of the surface temperature of the silicon melt 2 is performed (step S23).
  • the amplitude intensity A of the rotation period of the quartz crucible 11 and the maximum amplitude intensity B of a period other than the rotation period of the quartz crucible 11 are obtained (steps S24 and S25).
  • a comparison is made.
  • the magnetic field center position is maintained as it is (step S26Y), and when A ⁇ B, the magnetic field center position is changed so that A ⁇ B is satisfied (steps S26N, S27).
  • Such control is continued until the end of the magnetic field application (steps S28N, S21 to S27).
  • the surface temperature of the silicon melt 2 is affected by the melt convection, and the melt convection is affected by the rotation of the quartz crucible 11. For this reason, the rotation period component of the quartz crucible 11 is always superimposed on the amplitude fluctuation of the surface temperature.
  • the quartz crucible 11 is attached to the rotating shaft 13, it is difficult to completely match the central axis of the quartz crucible 11 and the central axis of the rotating shaft 13, and the quartz crucible 11 is eccentric due to a slight misalignment. Further, as the pulling process proceeds, the quartz crucible 11 is softened and deformed and cannot maintain a circular shape. Due to the influence of the eccentricity of the quartz crucible 11, the rotation period component of the quartz crucible 11 is transmitted to the surface temperature via the melt convection.
  • the amplitude fluctuation of the surface temperature includes a periodic component other than the rotation period of the quartz crucible 11, but when the amplitude fluctuation of the periodic component other than the rotation period of the quartz crucible 11 is very large.
  • the change in melt convection increases, and as a result, the in-plane variation of the oxygen concentration of the silicon single crystal 3 increases. For this reason, control is performed to change the magnetic field center position so as to keep the amplitude fluctuation of the period other than the rotation period of the quartz crucible 11 low.
  • the magnetic field center position may be changed so that the maximum amplitude intensity B of a period other than the rotation period of the quartz crucible 11 is equal to or less than a threshold value.
  • the current remaining amount of the silicon melt 2 is taken into consideration. This is because even when the frequency analysis results are the same, the magnetic field action on the silicon melt 2 differs depending on whether the residual amount of the silicon melt 2 is large or small.
  • a data table showing the correspondence between the relative relationship between the amplitude strengths A and B and the magnetic field center position for each remaining amount of the silicon melt is prepared in advance, and the remaining amount of the current silicon melt 2 is determined.
  • the magnetic field center position C that can satisfy A ⁇ B when the amount is liquid is derived from the data table and actually changed. By doing in this way, the appropriate magnetic field center position according to the amount of remaining liquid can be set.
  • the measurement position of the surface temperature of the silicon melt 2 is a position at least D / 30 mm away from the outermost periphery in the vicinity of the crystal growth interface of the growing silicon single crystal 3 (D is the target diameter of the silicon single crystal). This is because if the crystal is too close to the silicon single crystal 3, the behavior of the crystal diameter is superimposed on the periodic vibration of the surface temperature due to the influence of the meniscus, and the temperature data is lowered.
  • the meniscus is a bent surface of the silicon melt 2 formed at the boundary with the silicon single crystal 3, and its influence becomes wider as the diameter of the silicon single crystal 3 increases.
  • the position is preferably separated from the outermost periphery by 10.7 mm or more, and in the case of a silicon single crystal having a diameter of 480 mm, the position is separated by 16 mm or more from the outermost periphery. Is preferred.
  • FIGS. 5A and 5B are graphs showing examples of frequency analysis results of the surface temperature of the silicon melt 2 measured by the radiation thermometer 25, and the horizontal axis represents the oscillation period of the amplitude of the surface temperature ( s), the vertical axis indicates the amplitude intensity of the surface temperature.
  • the periodic spectrum of the surface temperature of the silicon melt 2 shown in FIG. 5A has two peaks, one of which is the peak of the rotation period of the quartz crucible 11 and the other of which is the quartz. It is a peak of a period other than the rotation period of the crucible 11.
  • the peak level (amplitude intensity B) of a period other than the rotation period of the quartz crucible 11 exceeds the peak level (amplitude intensity A) of the rotation period of the quartz crucible 11.
  • the periodic spectrum of the surface temperature of the silicon melt 2 shown in FIG. 5B has one peak at each of the rotation period of the quartz crucible 11 and the other period, as in FIG.
  • the peak level (amplitude intensity A) of the rotation period of the quartz crucible 11 exceeds the peak level (amplitude intensity B) of a period other than the rotation period of the quartz crucible 11.
  • the silicon single crystal manufacturing method has the relationship between the amplitude intensity A of the rotation period of the quartz crucible included in the periodic spectrum of the surface temperature and the maximum amplitude intensity B of a period other than the rotation period of the quartz crucible.
  • the step of pulling up the body portion of the silicon single crystal is performed in a state where A ⁇ B, the in-plane variation in the oxygen concentration of the wafer cut out from the body portion of the silicon single crystal grown under the condition of A ⁇ B And the device yield of chips cut from the wafer can be improved.
  • the state of A ⁇ B is desirably obtained over the entire body portion, but is not necessarily required, and may be obtained at least at a part of the body portion.
  • the silicon single crystal manufacturing method changes the height direction position of the magnetic field center position C based on the frequency analysis result of the surface temperature of the silicon melt 2. 3 can suppress variations in oxygen concentration in the cross section. Therefore, the product yield of semiconductor devices manufactured from a wafer cut out from the silicon single crystal 3 can be improved.
  • the magnetic field center position is controlled based on the frequency analysis result of the surface temperature of the silicon melt, but the present invention is not limited to controlling the magnetic field center position.
  • the strength of the magnetic field can also be adjusted based on the frequency analysis result of the surface temperature of the silicon melt 2 in the same manner as the magnetic field center position described above.
  • the control target is a crystal growth condition other than the magnetic field application condition, for example, the rotation speed (rotation period) of the quartz crucible, the output of the heater 15, the pulling speed of the silicon single crystal 3, the rising speed of the quartz crucible 11 and the like. Also good.
  • the present invention may be used for the production of single crystals other than silicon.
  • a silicon single crystal having a diameter of 320 mm is manufactured by the MCZ method using the silicon single crystal manufacturing apparatus shown in FIG. 1, and 3.2 mm from the outermost periphery in the vicinity of the crystal growth interface of the growing silicon single crystal.
  • the surface temperatures at positions separated by 5.3 mm, 7.1 mm, 10.7 mm, and 32 mm were measured with a radiation thermometer, and the frequency analysis was performed.
  • the results are shown in Table 1. Since the target diameter D of the silicon single crystal to be grown is 320 mm, in Table 1, for example, 3.2 mm is expressed as D / 100 mm.
  • the frequency analysis of the surface temperature of the silicon melt can be performed at a measurement position that is 10.7 mm (D / 30 mm) or more away from the outermost periphery of the silicon single crystal.
  • a silicon single crystal having a diameter of about 320 mm was manufactured by the MCZ method using the silicon single crystal manufacturing apparatus shown in FIG. At that time, the position (magnet position) in the height direction of the center of the horizontal magnetic field by the magnetic field application device was changed by 50 mm.
  • the surface temperature of the silicon melt was continuously measured with a radiation thermometer. The surface temperature was measured at a position 32 mm away from the outermost periphery near the crystal growth interface of the silicon single crystal. Then, frequency analysis of the time change of the obtained surface temperature was performed, and the amplitude intensity A of the rotation period of the quartz crucible and the maximum amplitude intensity B of a period other than the rotation period of the quartz crucible were obtained.
  • ROG Ring Oxygen Gradient: oxygen concentration gradient
  • the oxygen concentration was measured using FTIR (Fourier Transform Infrared Spectroscopy) and a total of 30 measurement points set at a pitch of 5 mm in the radial direction from the center of the wafer cut out from the silicon single crystal ingot.
  • the maximum value and the maximum value of the oxygen concentration were extracted from the above and substituted into the following ROG equation.
  • ROG (%) ⁇ (maximum value of oxygen concentration ⁇ minimum value of oxygen concentration) / minimum value of oxygen concentration ⁇ ⁇ 100)
  • the magnetic field center position is fixed at a position 50 mm higher than the reference position ⁇ , the sample # 1 of the silicon single crystal ingot is pulled up, and the relative relationship between the amplitude intensities A and B and the ROG are stored in the residual silicon melt Determined for each quantity.
  • Table 2 is a table showing the amount of silicon melt remaining in Comparative Examples 1 to 3 and Example 1, the relative relationship between amplitude strengths A and B, and the relationship between ROGs.
  • Example 1 the silicon single crystal ingot was pulled up according to Example 1, and the relative relationship between the amplitude strengths A and B and the ROG were determined for each remaining amount of the silicon melt.
  • Example 1 the results of Comparative Examples 1 to 3 in Table 2 were used as a “data table”, and a silicon single crystal was grown under conditions satisfying A> B for each residual liquid amount. That is, the magnetic field center position is initially set to a position of ⁇ + 50 (mm), and the pulling is started.
  • the magnetic field center position is set to ⁇ + 50 ( The position of the magnetic field center is changed from ⁇ (mm) to ⁇ -50 (mm) when A ⁇ B is detected when the residual liquid amount is in the range of 300 to 200 kg. Then, the sample # 4 of the silicon single crystal ingot was pulled up. The results are shown in Table 3.
  • Example 1 in which the magnetic field center position is changed in accordance with the change in the relative relationship between the amplitude strengths A and B, the relative relationship between the amplitude strengths A and B is always A> regardless of the remaining liquid amount. B, ROG was always less than 5%, and the variation in the in-plane distribution of oxygen concentration was very small.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

【課題】MCZ法によるシリコン単結晶の製造において、ウェーハ面内の酸素濃度のばらつきを低く抑える。 【解決手段】石英ルツボ11内のシリコン融液2に磁場を印加しながらシリコン融液2からシリコン単結晶3を引き上げるチョクラルスキー法によるシリコン単結晶の製造方法であって、シリコン単結晶3の引き上げ工程中にシリコン融液2の表面温度を連続的に測定し、表面温度の周波数解析結果に基づいて結晶育成条件を変化させる。

Description

シリコン単結晶の製造方法及び装置
 本発明は、チョクラルスキー法(以下、「CZ法」という)によるシリコン単結晶の製造方法及び装置に関し、特に、シリコン融液に磁場を印加しながら単結晶の引き上げを行うMCZ(Magnetic field applied CZ)法に関するものである。
 CZ法によるシリコン単結晶の製造方法としてMCZ法が知られている。MCZ法では、石英ルツボ内のシリコン融液に磁場を印加することにより融液対流を抑えて石英ルツボからの酸素の溶出を抑制するものである。磁場の印加方法は様々であるが、水平方向の磁場を印加しながら単結晶の引き上げを行うHMCZ(Horizontal MCZ)法の実用化が進んでいる。
 例えば、特許文献1には、シリコン単結晶が成長する全過程中、水平方向の磁場中心線を融液面から5cm以内の融液面近傍に設定するHMCZ法が記載されている。この方法によれば、融液面近傍の対流が抑制され、融液面近傍よりも下方の熱対流が強まるので、固液界面への熱伝達を高めてルツボ周囲と固液界面との温度差を減少させることができる。また融液面の下方で十分に撹拌された融液が固液界面に供給されるため、特性がより均一な単結晶を得ることができ、熱応力による石英ルツボのクラックも防止できる。また、特許文献2には、結晶径の急増及び酸素濃度の面内分布の悪化を防止するため、水平磁場の中心の高さ方向の位置を融液面から100mm以上離れた位置に設定して引き上げ工程を実施するHMCZ法も記載されている。
 CZ法によるシリコン単結晶の製造では、シリコン融液の温度を一定に保つ必要があり、そのためシリコン融液の表面温度の測定が行われている。例えば、特許文献3には、種結晶着液前に融液表面の温度を放射温度計で測定し、所定の温度になった時に着液を行うシリコン単結晶の製造方法が記載されている。また特許文献4には、迷光除去板をチャンバー内側面に取り付けて外乱光の影響を除去することにより、融液表面の温度を正確に測定する方法が記載されている。特許文献5には、2個の放射温度計と温度測定補助板とを用いて融液表面の温度を測定して迷光の影響を除去することにより、融液表面の温度を高精度に測定し、温度変化に追従性良く連続的に測定することが記載されている。
特開平8-231294号公報 特開2004-182560号公報 特開2012-148938号公報 特開平9-263486号公報 特開平6-129911号公報
 MCZ法においては、融液対流を抑えてシリコン単結晶中の酸素濃度を低減するだけでなく、引き上げ軸方向と直交するシリコン単結晶の断面内の酸素濃度分布ができるだけ均一であることが望ましい。シリコン単結晶の断面内の酸素濃度のばらつきが低い場合には、シリコンウェーハから切り出したチップのデバイス不良の発生率を減少させることが可能である。
 しかしながら、従来のMCZ法では酸素濃度の面内ばらつきを低く抑えることができず、その後のデバイス工程において製品歩留まりを低下させる原因となっていた。
 したがって、本発明の目的は、酸素濃度の面内ばらつきを低く抑えることが可能なシリコン単結晶の製造方法及び装置を提供することにある。
 酸素濃度の面内ばらつきは、固液界面の形状が湾曲していることや固液界面から取り込まれる酸素量が周期的に変動していることが原因で発生すると考えられている。シリコン単結晶を半径方向にスライスした場合、ウェーハ断面は酸素濃度が高い領域と低い領域を交互に横切ることになり、その結果、切り出したウェーハ断面内で酸素濃度が上下に変動することになる。これらの酸素濃度の挙動は、シリコン単結晶中の酸素析出現象を利用し、析出熱処理後のX線トポグラフ像を撮影することで確認することができ、酸素ストリエーションと呼ばれる同心円状の酸素析出模様が観察される。
 酸素の発生源は石英ルツボであり、酸素を固液界面まで輸送するのは主に融液対流である。したがって、酸素の周期的な変動と同様に融液対流も周期的に変動していることが予測される。本願発明者らは、結晶育成中の融液対流の振動現象を把握するため、融液の表面温度を連続的に測定できる放射温度計をCZ炉に取り付けてシリコン単結晶を育成しながらシリコン融液の表面温度を計測した。取得した表面温度データの周波数解析結果から、主にルツボの回転に同期した周期と、ルツボ回転に同期しない周期の2種の周期が観察された。これら周期の振幅強度の相対関係が、単結晶中の酸素濃度の面内ばらつきと関係があることがわかった。詳細には、ルツボの回転周期の振幅強度をA、ルツボの回転周期以外の周期の最大振幅強度をBと定義すると、A≧Bとなる結晶育成条件下で酸素濃度の面内ばらつきが低く良好な結果となった。さらに酸素濃度の面内ばらつきが低いウェーハでは切り出したチップのデバイス歩留まりも高いことがわかった。
 本発明はこのような技術的知見に基づくものであり、本発明によるシリコン単結晶の製造方法は、石英ルツボ内のシリコン融液に磁場を印加しながら前記シリコン融液からシリコン単結晶を引き上げるチョクラルスキー法によるシリコン単結晶の製造方法であって、前記シリコン単結晶の引き上げ工程中に前記シリコン融液の表面温度を連続的に測定し、前記表面温度の周波数解析結果に基づいて結晶育成条件を変化させることを特徴とする。
 また、本発明によるシリコン単結晶製造装置は、シリコン融液を支持する石英ルツボと、前記石英ルツボを回転させるルツボ回転機構と、前記シリコン融液に磁場を印加する磁場印加装置と、前記シリコン融液からシリコン単結晶を引き上げる引き上げ機構と、前記シリコン融液の表面温度を連続的に測定する放射温度計と、前記放射温度計によって測定された前記表面温度を周波数解析する演算部と、前記表面温度の周波数解析結果に基づいて前記磁場印加装置を制御する制御部とを備えることを特徴とする。
 本発明によれば、シリコン単結晶の引き上げ軸方向と直交する結晶半径方向の酸素濃度のばらつきを低減することができる。したがって、酸素濃度の面内分布が均一なウェーハの作成が可能であり、ウェーハから小サイズに切り出したチップのデバイス特性の不良率を減少させることができる。
 本発明においては、前記表面温度の周期スペクトルに含まれる前記石英ルツボの回転周期以外の周期の最大振幅強度が閾値以下となるように、前記結晶育成条件を変化させることが好ましい。シリコン融液の表面温度の振幅の振動周期のうちルツボの回転と同期しない周期は融液対流の不安定性に起因した振動であると考えられる。したがって、石英ルツボの回転周期以外の周期の最大振幅強度が抑えられるように結晶育成条件、例えば磁石の高さ位置を適正化していくことにより、面内の酸素濃度が均一である高品質なシリコン単結晶を育成することが可能となる。
 本発明において、前記閾値は、前記表面温度の周期スペクトルに含まれる前記石英ルツボの回転周期の振幅強度であり、前記石英ルツボの回転周期の振幅強度Aと、前記石英ルツボの回転周期以外の周期の最大振幅強度Bとの関係が、A≧Bを満たすように、前記結晶育成条件を変化させることが好ましい。このように、石英ルツボの回転周期以外の振幅強度Bが石英ルツボの回転周期の振幅強度Aを下回る場合には、ウェーハ面内の酸素濃度のばらつきを抑えることができ、ウェーハから切り出したチップのデバイス歩留まりを向上させることが可能である。
 本発明においては、前記A及びBの相対関係と前記結晶育成条件との対応関係を前記シリコン融液の残液量ごとに示すデータテーブルを予め用意しておき、現在のシリコン融液の残液量のときに前記A≧Bを満たすことができる結晶育成条件を前記データテーブルから導き出すことが好ましい。シリコン融液の表面温度の振幅の振動周期のうちルツボの回転と同期しない周期は融液対流の不安定性に起因した振動であると考えられ、これらの振動は、石英ルツボ中のシリコン融液の残液量や磁場の高さ位置によって変化している。したがって、結晶育成条件、例えば磁場の高さ位置を融液量の変化とともに適正化していくことにより、面内の酸素濃度が均一である高品質なシリコン単結晶を育成することができる。
 本発明において、前記結晶育成条件は、前記磁場の高さ方向の位置を含むことが好ましく、前記磁場の強度を含むこともまた好ましい。このように磁場印加条件を調整することでウェーハ面内の酸素濃度のばらつきを抑えることが可能となる。このように、結晶育成条件として、磁場の高さ位置や磁場の強さを適正化するにより、面内の酸素濃度が均一である高品質なシリコン単結晶を育成することができる。
 本発明において、前記表面温度の測定位置は、育成中のシリコン単結晶の結晶成長界面近傍の最外周から少なくともD/30mm(Dはシリコン単結晶の目標直径)離した位置であることが好ましい。これによれば、外乱光の影響を抑えてシリコン融液の表面温度の周期振動を正確に測定することができる。なお、シリコン単結晶の目標直径Dとは、シリコン単結晶のボディー部を育成する際の狙いの直径のことを言い、例えば直径300mmウェーハの製造に用いられるシリコン単結晶の目標直径は320mm、直径450mmウェーハの製造に用いられるシリコン単結晶の目標直径は480mmに設定することができる。
 本発明の他の側面によるシリコン単結晶の製造方法は、石英ルツボ内のシリコン融液に磁場を印加しながら前記シリコン融液からシリコン単結晶を引き上げるチョクラルスキー法によるシリコン単結晶の引き上げ工程中に前記シリコン融液の表面温度を連続的に測定し、前記表面温度の周期スペクトルに含まれる前記石英ルツボの回転周期の振幅強度Aと前記石英ルツボの回転周期以外の周期の最大振幅強度Bとの関係が、A≧Bとなる状態で前記シリコン単結晶のボディー部の引き上げを行うことを特徴とする。このように、石英ルツボの回転周期以外の振幅強度Bが石英ルツボの回転周期の振幅強度Aを下回る場合には、ボディー部から切り出したウェーハの酸素濃度の面内ばらつきを抑えることができ、ウェーハから切り出したチップのデバイス歩留まりを向上させることが可能である。なおA≧Bとなる状態はボディー部の全域で得られることが望ましいが、必ずしもその必要はなく、ボディー部の一部でA≧Bとなる状態が得られればよい。
 本発明によれば、酸素濃度の面内ばらつきを低く抑えることが可能なシリコン単結晶の製造方法及び装置を提供することができる。
図1は、本発明の実施の形態によるシリコン単結晶製造装置の構成を概略的に示す側面断面図である。 図2は、本実施の形態によるシリコン単結晶の製造工程を示すフローチャートである。 図3は、シリコン単結晶インゴットの形状を示す略断面図である。 図4は、シリコン融液の表面温度に基づく磁場印加装置の制御方法を説明するためのフローチャートである。 図5(a)及び(b)は、放射温度計によって測定されたシリコン融液の表面温度の周波数解析結果の例を示すグラフである。
 以下、添付図面を参照しながら、本発明の好ましい実施の形態について詳細に説明する。
 図1は、本発明の実施の形態によるシリコン単結晶製造装置の構成を概略的に示す側面断面図である。
 図1に示すように、シリコン単結晶製造装置1は、水冷式のチャンバー10と、チャンバー10内においてシリコン融液2を保持する石英ルツボ11と、石英ルツボ11を保持する黒鉛ルツボ12と、黒鉛ルツボ12を支持する回転シャフト13と、回転シャフト13を回転及び昇降駆動するシャフト駆動機構14と、黒鉛ルツボ12の周囲に配置されたヒーター15と、ヒーター15の外側であってチャンバー10の内面に沿って配置された断熱材16と、石英ルツボ11の上方に配置された熱遮蔽体17と、石英ルツボ11の上方であって回転シャフト13と同軸上に配置された単結晶引き上げ用のワイヤー18と、チャンバー10の上方に配置されたワイヤー巻き取り機構19とを備えている。
 チャンバー10は、メインチャンバー10aと、メインチャンバー10aの上部開口に連結された細長い円筒状のプルチャンバー10bとで構成されており、石英ルツボ11、黒鉛ルツボ12、ヒーター15及び熱遮蔽体17はメインチャンバー10a内に設けられている。プルチャンバー10bにはチャンバー10内にアルゴンガス等の不活性ガス(パージガス)やドーパントガスを導入するためのガス導入口10cが設けられており、メインチャンバー10aの下部にはチャンバー10内の雰囲気ガスを排出するためのガス排出口10dが設けられている。また、メインチャンバー10aの上部には覗き窓10eが設けられており、シリコン単結晶3の育成状況を覗き窓10eから観察可能である。
 石英ルツボ11は、円筒状の側壁部と湾曲した底部とを有する石英ガラス製の容器である。黒鉛ルツボ12は、加熱によって軟化した石英ルツボ11の形状を維持するため、石英ルツボ11の外表面に密着して石英ルツボ11を包むように保持する。石英ルツボ11及び黒鉛ルツボ12はチャンバー10内においてシリコン融液を支持する二重構造のルツボを構成している。
 黒鉛ルツボ12は回転シャフト13の上端部に固定されており、回転シャフト13の下端部はチャンバー10の底部を貫通してチャンバー10の外側に設けられたシャフト駆動機構14に接続されている。回転シャフト13及びシャフト駆動機構14は石英ルツボ11及び黒鉛ルツボ12の回転機構及び昇降機構を構成している。
 ヒーター15は、石英ルツボ11内に充填されたシリコン原料を融解してシリコン融液2を生成すると共に、シリコン融液2の溶融状態を維持するために用いられる。ヒーター15はカーボン製の抵抗加熱式ヒーターであり、黒鉛ルツボ12内の石英ルツボ11を取り囲むように設けられている。さらにヒーター15の外側には断熱材16がヒーター15を取り囲むように設けられており、これによりチャンバー10内の保温性が高められている。
 熱遮蔽体17は、シリコン融液2の温度変動を抑制して結晶成長界面近傍に適切なホットゾーンを形成するとともに、ヒーター15及び石英ルツボ11からの輻射熱によるシリコン単結晶3の加熱を防止するために設けられている。熱遮蔽体17は、シリコン単結晶3の引き上げ経路を除いたシリコン融液2の上方の領域を覆う黒鉛製の部材であり、例えば下端から上端に向かって開口サイズが大きくなる逆円錐台形状を有している。
 熱遮蔽体17の下端の開口17aの直径はシリコン単結晶3の直径よりも大きく、これによりシリコン単結晶3の引き上げ経路が確保されている。熱遮蔽体17の開口17aの直径は石英ルツボ11の口径よりも小さく、熱遮蔽体17の下端部は石英ルツボ11の内側に位置するので、石英ルツボ11のリム上端を熱遮蔽体17の下端よりも上方まで上昇させても熱遮蔽体17が石英ルツボ11と干渉することはない。
 シリコン単結晶3の成長と共に石英ルツボ11内の融液量は減少するが、融液面と熱遮蔽体17の下端との間隔ΔGが一定になるように石英ルツボ11を上昇させることにより、シリコン融液2の温度変動を抑制すると共に、融液面近傍を流れるガスの流速を一定にしてシリコン融液2からのドーパントの蒸発量を制御することができる。したがって、シリコン単結晶3の引き上げ軸方向の結晶欠陥分布、酸素濃度分布、抵抗率分布等の安定性を向上させることができる。
 石英ルツボ11の上方には、シリコン単結晶3の引き上げ軸であるワイヤー18と、ワイヤー18を巻き取るワイヤー巻き取り機構19が設けられている。ワイヤー巻き取り機構19はワイヤー18と共にシリコン単結晶3を回転させる機能を有している。ワイヤー巻き取り機構19はプルチャンバー10bの上方に配置されており、ワイヤー18はワイヤー巻き取り機構19からプルチャンバー10b内を通って下方に延びており、ワイヤー18の先端部はメインチャンバー10aの内部空間まで達している。図1には、育成途中のシリコン単結晶3がワイヤー18に吊設された状態が示されている。シリコン単結晶3の引き上げ時には石英ルツボ11とシリコン単結晶3とをそれぞれ回転させながらワイヤー18を徐々に引き上げることによりシリコン単結晶3を成長させる。
 メインチャンバー10aの上部には内部を観察するための覗き窓10e,10fが設けられており、CCDカメラ20は覗き窓10eの外側に設置されている。単結晶引き上げ工程中、CCDカメラ20は覗き窓10eから熱遮蔽体17の開口17aを通して見えるシリコン単結晶3とシリコン融液2との境界部を斜め上方から撮影する。CCDカメラ20による撮影画像は画像処理部21で処理され、処理結果は制御部22において引き上げ条件の制御に用いられる。
 メインチャンバー10aの覗き窓10fの外側にはシリコン融液2の表面温度を測定するための放射温度計25が設置されており、メインチャンバー10aの内部の放射温度計25と同じ高さ位置にはシリコンミラー26が設置されている。シリコンミラー26は融液面に対して斜め45度の角度をなしており、融液面から真っすぐ上方に進行してシリコンミラー26で反射した光が放射温度計25に取り込まれる。このように、放射温度計25は、融液面から真っすぐ上方に出射したシリコン融液2の輻射光を受光してその表面温度を測定するので、多重反射光等の外乱光の影響を抑えてシリコン融液2の表面温度を正確に測定することができる。放射温度計25によって測定された温度データは演算部27で処理され、処理結果は制御部22において引き上げ条件の制御に用いられる。
 磁場印加装置30は、メインチャンバー10aを挟んで対向配置された一対の電磁石コイル31A,31Bと、電磁石コイル31A,31Bを昇降自在に支持するリフト機構33とを備えている。電磁石コイル31A,31B及びリフト機構33は制御部22からの指示に従って動作し、磁場強度及び電磁石コイル31A,31Bの高さ方向の位置が制御される。磁場印加装置30が発生させる水平磁場の中心位置(磁場中心位置C)は上下方向に移動可能である。磁場中心位置Cとは対向配置された電磁石コイル31A,31Bの中心どうしを結んだ水平方向の線(磁場中心線)の高さ方向の位置のことをいう。水平磁場方式によればシリコン融液2の対流を効果的に抑制することができる。
 シリコン単結晶3の引き上げ工程では、種結晶を降下させてシリコン融液2に浸漬した後、種結晶及び石英ルツボ11をそれぞれ回転さながら、種結晶をゆっくり上昇させることにより、種結晶の下方に略円柱状のシリコン単結晶3を成長させる。その際、シリコン単結晶3の直径は、その引き上げ速度やヒーター15のパワーを制御することにより制御される。また、シリコン融液2に水平磁場を印加することで磁力線に直交する方向の融液対流が抑えられる。
 図2は、本実施の形態によるシリコン単結晶の製造工程を示すフローチャートである。また、図3は、シリコン単結晶インゴットの形状を示す略断面図である。
 図2に示すように、本実施の形態によるシリコン単結晶の製造では、石英ルツボ11内のシリコン原料をヒーター15で加熱して融解することによりシリコン融液2を生成する(ステップS11)。次に、ワイヤー18の先端部に取り付けられた種結晶を降下させてシリコン融液2に着液させる(ステップS12)。その後、シリコン融液2との接触状態を維持しながら種結晶を徐々に引き上げて単結晶を育成する単結晶の引き上げ工程(ステップS13~S16)を実施する。
 単結晶の引き上げ工程では、無転位化のために結晶直径が細く絞られたネック部3aを形成するネッキング工程(ステップS13)と、結晶直径が徐々に大きくなったショルダー部3bを形成するショルダー部育成工程(ステップS14)と、結晶直径が規定の直径(例えば320mm)に維持されたボディー部3cを形成するボディー部育成工程(ステップS15)と、結晶直径が徐々に小さくなったテール部3dを形成するテール部育成工程(ステップS16)が順に実施され、最終的には単結晶が融液面から切り離される。以上により、図3に示すようなネック部3a、ショルダー部3b、ボディー部3c及びテール部3dを有するシリコン単結晶インゴット3Iが完成する。
 着液工程S12の開始からボディー部育成工程S15の終了までの間は、磁場中心位置Cを例えば融液面付近に設定して単結晶を引き上げる磁場印加を実施する(ステップS20)。ここで「融液面付近」とは、シリコン融液2の液面から±50mmの範囲内のことをいう。磁場中心位置Cがこの範囲内であれば磁場中心位置Cが融液面と一致している場合と同等の効果を得ることができ、融液面の対流を抑制することができる。
 単結晶の成長が進んで融液が消費されると融液面は徐々に低下するが、融液面の低下に合わせて石英ルツボ11を上昇させて融液面の絶対的な高さが一定となるように制御するので、融液面と熱遮蔽体の下端との間隔(ギャップ)が一定に維持されると共に、磁場中心位置Cを融液面付近に固定することができる。
 このように、単結晶のボディー部育成工程S15で磁場中心位置Cをシリコン融液2の融液面付近に設定することにより、融液面付近の熱対流が抑制され、融液面付近よりも下方の熱対流が強まるので、固液界面への熱伝達が高められ、ルツボ周囲と固液界面との温度差を減少させることができる。また融液面の下方で十分に撹拌されたシリコン融液2が固液界面に供給されるため、特性がより均一な単結晶を得ることができ、熱応力による石英ルツボ11のクラックも防止できる。
 図4は、シリコン融液の表面温度に基づく磁場印加装置の制御方法を説明するためのフローチャートである。
 図4に示すように、着液工程S12の開始時には磁場印加装置30により水平磁場の印加が開始される(ステップS21)。そして、シリコン単結晶3の引き上げ工程中はシリコン融液2の表面温度の時間変化が放射温度計25によって連続的に測定される(ステップS22)。放射温度計25が計測した温度データは演算部27に送られ、シリコン融液2の表面温度の周波数解析が行われる(ステップS23)。
 シリコン融液2の表面温度の周波数解析では、石英ルツボ11の回転周期の振幅強度Aと石英ルツボ11の回転周期以外の周期の最大振幅強度Bとがそれぞれ求められ(ステップS24,S25)、両者の比較が行われる。そしてA≧Bを満たす場合には磁場中心位置をそのまま維持し(ステップS26Y)、A<Bとなる場合にはA≧Bとなるように磁場中心位置を変化させる(ステップS26N,S27)。このような制御は磁場印加終了まで続けられる(ステップS28N、S21~S27)。
 シリコン融液2の表面温度は融液対流の影響を受けており、融液対流は石英ルツボ11の回転の影響を受けている。そのため、表面温度の振幅変動には石英ルツボ11の回転周期成分が常に重畳されている。石英ルツボ11を回転シャフト13に取り付けるとき、石英ルツボ11の中心軸と回転シャフト13の中心軸とを完全に一致させることは困難であり、微妙な軸ずれによって石英ルツボ11は偏芯する。また、引き上げ工程が進むにつれて石英ルツボ11は軟化して変形し、円形を維持することができない。このような石英ルツボ11の偏芯の影響により、石英ルツボ11の回転周期成分は融液対流を介して表面温度に伝達される。
 また、表面温度の振幅変動にはこのような石英ルツボ11の回転周期以外の周期成分も含まれるが、このような石英ルツボ11の回転周期以外の周期成分の振幅変動が非常に大きい場合には、融液対流の変化が大きくなり、その結果、シリコン単結晶3の酸素濃度の面内ばらつきが大きくなる。そのため、磁場中心位置を変化させて石英ルツボ11の回転周期以外の周期の振幅変動を低く抑える制御が行われる。
 シリコン融液2の表面温度の周波数解析では、石英ルツボ11の回転周期以外の周期の最大振幅強度Bのみを求め、これが所定の閾値を超えたかどうかを基準にして磁場中心位置を変化させるかどうかを決定してもよい。すなわち、石英ルツボ11の回転周期以外の周期の最大振幅強度Bが閾値以下となるように、磁場中心位置を変化させてもよい。
 シリコン融液2の表面温度の周波数解析結果に基づいて磁場中心位置を変化させる場合、現在のシリコン融液2の残液量が考慮される。周波数解析結果が同じ結果の場合でも、シリコン融液2の残液量が多い場合と少ない場合とではシリコン融液2に対する磁場の作用が異なるからである。
 そのため本実施形態では、振幅強度A及びBの相対関係と磁場中心位置との対応関係をシリコン融液の残液量ごとに示すデータテーブルを予め用意しておき、現在のシリコン融液2の残液量のときにA≧Bを満たすことができる磁場中心位置Cをデータテーブルから導き出して実際に変更する。このようにすることで、残液量に応じた適切な磁場中心位置を設定することができる。
 シリコン融液2の表面温度の測定位置は、育成中のシリコン単結晶3の結晶成長界面近傍の最外周から少なくともD/30mm(Dはシリコン単結晶の目標直径)離した位置である。シリコン単結晶3に近すぎるとメニスカスの影響によって表面温度の周期振動に結晶直径の変動の挙動が重なり、温度データが低グレード化するからである。メニスカスはシリコン単結晶3との境界部に形成されるシリコン融液2の屈曲面であり、その影響はシリコン単結晶3の直径が大きくなるほど広範囲になる。そのため、例えば直径320mmのシリコン単結晶の場合には最外周から10.7mm以上離した位置であることが好ましく、直径480mmのシリコン単結晶の場合には最外周から16mm以上離した位置であることが好ましい。
 図5(a)及び(b)は、放射温度計25によって測定されたシリコン融液2の表面温度の周波数解析結果の例を示すグラフであって、横軸は表面温度の振幅の振動周期(s)、縦軸は表面温度の振幅強度をそれぞれ示している。
 図5(a)に示すシリコン融液2の表面温度の周期スペクトルは、2つのピークを有しており、一方はシリコン融液2の表面温度が石英ルツボ11の回転周期のピーク、他方は石英ルツボ11の回転周期以外の周期のピークである。この例では、石英ルツボ11の回転周期以外の周期のピークレベル(振幅強度B)が石英ルツボ11の回転周期のピークレベル(振幅強度A)を上回っている。このようなピークパターンが検出される場合、シリコン単結晶3の断面内の酸素濃度のばらつきが大きくなる傾向があるので、磁場中心位置Cの高さ位置の変更が行われる。
 一方、図5(b)に示すシリコン融液2の表面温度の周期スペクトルは、図5(a)と同様に石英ルツボ11の回転周期とそれ以外の周期にそれぞれ1つずつピークを有するが、石英ルツボ11の回転周期のピークレベル(振幅強度A)が石英ルツボ11の回転周期以外の周期のピークレベル(振幅強度B)を上回っている。このようなピークパターンが検出される場合、シリコン単結晶3の断面内の酸素濃度のばらつきが低く抑えられる傾向があるので、磁場中心位置Cの高さ位置を変更することなくシリコン単結晶3の引き上げが継続される。
 このように、本実施形態によるシリコン単結晶の製造方法は、表面温度の周期スペクトルに含まれる石英ルツボの回転周期の振幅強度Aと石英ルツボの回転周期以外の周期の最大振幅強度Bとの関係が、A≧Bとなる状態でシリコン単結晶のボディー部の引き上げ工程を行うので、A≧Bとなる条件下で育成されたシリコン単結晶のボディー部から切り出したウェーハの酸素濃度の面内ばらつきを小さくすることができ、ウェーハから切り出したチップのデバイス歩留まりを向上させることが可能である。A≧Bとなる状態はボディー部の全域で得られることが望ましいが、必ずしもその必要はなく、ボディー部の少なくとも一部で得られればよい。
 以上説明したように、本実施形態によるシリコン単結晶の製造方法は、シリコン融液2の表面温度の周波数解析結果に基づいて磁場中心位置Cの高さ方向の位置を変化させるので、シリコン単結晶3の断面内の酸素濃度のばらつきを抑えることができる。したがって、シリコン単結晶3から切り出したウェーハから製造される半導体デバイスの製品歩留まりを向上させることができる。
 以上、本発明の好ましい実施形態について説明したが、本発明は、上記の実施形態に限定されることなく、本発明の主旨を逸脱しない範囲で種々の変更が可能であり、それらも本発明の範囲内に包含されるものであることはいうまでもない。
 例えば、上記実施形態においては、シリコン融液の表面温度の周波数解析結果に基づいて磁場中心位置を制御しているが、本発明は磁場中心位置を制御する場合に限定されるものではなく、例えば磁場の強度を制御するものであってもよい。磁場の強度も上述した磁場中心位置と同じようにシリコン融液2の表面温度の周波数解析結果に基づいて調整することができる。さらに制御対象は磁場印加条件以外の他の結晶育成条件、例えば石英ルツボの回転速度(回転周期)、ヒーター15の出力、シリコン単結晶3の引き上げ速度、石英ルツボ11の上昇速度などを制御対象としてもよい。さらにはこれらを適宜組み合わせた複数の対象を制御するものであってもよい。さらに、本発明はシリコン以外の他の単結晶の製造に用いてもよい。
 始めに、放射温度計で測定するシリコン融液の表面温度の測定位置について評価した。
 この評価試験では、図1に示したシリコン単結晶製造装置を用いて直径320mmのシリコン単結晶をMCZ法により製造すると共に、育成中のシリコン単結晶の結晶成長界面近傍の最外周から3.2mm、5.3mm、7.1mm、10.7mm、32mmそれぞれ離した位置の表面温度を放射温度計で測定し、その周波数解析を行った。その結果を表1に示す。育成するシリコン単結晶の目標直径Dは320mmであるため、表1において例えば3.2mmはD/100mmとして表されている。
Figure JPOXMLDOC01-appb-T000001
 表1から明らかなように、シリコン単結晶の最外周から3.2mm及び5.3mmそれぞれ離れた測定位置では、外乱が非常に多く、周波数スペクトルのピークを検出することができなかった。またシリコン単結晶の最外周から7.1mm離れた測定位置でも外乱が多く、周波数スペクトルのピークの検出が困難であった。一方、シリコン単結晶の最外周から10.7mm離れた測定位置では外乱が少なく、周波数スペクトルのピークの検出が可能であり、32mm離れた測定位置では周波数スペクトルのピークが鮮明に表れた。
 以上の結果から、シリコン単結晶の最外周から10.7mm(D/30mm)以上離れた測定位置であればシリコン融液の表面温度の周波数解析が可能であることが分かった。
 次に、磁場中心位置及びシリコン融液の残液量の違いによる、振幅強度A,Bの相対関係並びにシリコン単結晶のボディー部の断面内の半径方向の酸素濃度分布について評価した。
 この評価試験では、図1に示したシリコン単結晶製造装置を用いて直径約320mmのシリコン単結晶をMCZ法により製造した。その際、磁場印加装置による水平磁場の中心の高さ方向の位置(磁石位置)を50mmずつ変化させた。シリコン単結晶の引き上げ工程中は放射温度計でシリコン融液の表面温度を連続的に測定した。表面温度の測定位置は、シリコン単結晶の結晶成長界面近傍の最外周から32mm離した位置とした。そして得られた表面温度の時間変化の周波数解析を行い、石英ルツボの回転周期の振幅強度Aと石英ルツボの回転周期以外の周期の最大振幅強度Bをそれぞれ求めた。
 次に、育成されたシリコン単結晶インゴットのボディー部の断面内の半径方向のROG(Radial Oxygen Gradient:酸素濃度勾配)を求めた。なお酸素濃度はFTIR(Fourier Transform Infrared Spectroscopy:フーリエ変換赤外分光法)を用いて測定し、シリコン単結晶インゴットから切り出したウェーハの中心から半径方向に5mmピッチで設定した全部で30箇所の測定点から酸素濃度の最大値と最大値を抽出し、次のROGの式に代入することにより求めた。
 ROG(%)={(酸素濃度の最大値-酸素濃度の最小値)/酸素濃度の最小値}×100)
 比較例1では、磁場中心位置を基準位置αよりも50mm高い位置に固定してシリコン単結晶インゴットのサンプル#1を引き上げると共に、振幅強度A,Bの相対関係並びにROGをシリコン融液の残液量ごとに求めた。
 比較例2では、磁場中心位置を基準位置αに固定してシリコン単結晶インゴットのサンプル#2を引き上げると共に、振幅強度A,Bの相対関係並びにROGをシリコン融液の残液量ごとに求めた。
 比較例3では、磁場中心位置を基準位置αに固定してシリコン単結晶インゴットのサンプル#3を引き上げると共に、振幅強度A,Bの相対関係並びにROGをシリコン融液の残液量ごとに求めた。
 表2は、比較例1~3及び実施例1におけるシリコン融液の残液量、振幅強度A,Bの相対関係、並びにROGの関係を示す表である。
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、磁場中心位置がα+50(mm)と相対的に高い位置に設定された比較例1では、残液量が400kgと100kgのときの振幅強度A,Bの相対関係がA>Bと良好であったが、残液量が300kgのときの振幅強度A,Bの相対関係はA=Bとなり、さらに残液量が200kgのときの振幅強度A,Bの相対関係はA<Bとなった。そして振幅強度A,Bの相対関係がA>BのときのROGは5%未満となったが、A=BのときのROGは5%以上10%未満となり、A<BのときのROGは10%以上となった。
 磁場中心位置がα(mm)に設定された比較例2では、残液量が300kgのときの振幅強度A,Bの相対関係がA>Bと良好であったが、残液量が400kgのときの振幅強度A,Bの相対関係はA=Bとなり、さらに残液量が200kgと100kgのときの振幅強度A,Bの相対関係はA<Bとなった。そして振幅強度A,Bの相対関係がA>BのときのROGは5%未満となったが、A=BのときのROGは5%以上10%未満となり、A<BのときのROGは10%以上となった。
 磁場中心位置がα-50(mm)と相対的に低い位置に設定された比較例3では、残液量が200kgと100kgのときの振幅強度A,Bの相対関係がA>Bと良好であったが、残液量が400kgと300kgのときの振幅強度A,Bの相対関係はA<Bとなった。そして振幅強度A,Bの相対関係がA>BのときのROGは5%未満となったが、A<BのときのROGは10%以上となった。
 次に、実施例1によるシリコン単結晶インゴットの引き上げを行うと共に、振幅強度A,Bの相対関係並びにROGをシリコン融液の残液量ごとに求めた。実施例1では、表2の比較例1~3の結果を「データテーブル」として使用して、残液量ごとにA>Bを満たす条件下でシリコン単結晶の育成を行った。すなわち、磁場中心位置をα+50(mm)の位置に初期設定して引き上げを開始し、シリコン融液の残液量が400~300kgの範囲においてA<Bを検出した時点で磁場中心位置をα+50(mm)からα(mm)の位置に変更し、残液量が300~200kgの範囲においてA<Bを検出した時点で磁場中心位置をα(mm)からα―50(mm)の位置に変更してシリコン単結晶インゴットのサンプル#4の引き上げを行った。その結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3に示すように、振幅強度A,Bの相対関係の変化に合わせて磁場中心位置を変化させた実施例1では、残液量によらず振幅強度A,Bの相対関係が常にA>Bとなり、ROGも常に5%未満となり、酸素濃度の面内分布のばらつきは非常に小さくなった。
1  シリコン単結晶製造装置
2  シリコン融液
3  シリコン単結晶
3I  シリコン単結晶インゴット
3a  ネック部
3b  ショルダー部
3c  ボディー部
3d  テール部
10  チャンバー
10a  メインチャンバー
10b  プルチャンバー
10c  ガス導入口
10d  ガス排出口
10e,10f  覗き窓
11  石英ルツボ
12  黒鉛ルツボ
13  回転シャフト
14  シャフト駆動機構
15  ヒーター
16  断熱材
17  熱遮蔽体
17a  熱遮蔽体の開口
18  ワイヤー
19  ワイヤー巻き取り機構
20  CCDカメラ
21  画像処理部
22  制御部
25  放射温度計
26  シリコンミラー
27  演算部
30  磁場印加装置
31A,31B  電磁石コイル
33  リフト機構
C  磁場中心位置

Claims (15)

  1.  石英ルツボ内のシリコン融液に磁場を印加しながら前記シリコン融液からシリコン単結晶を引き上げるチョクラルスキー法によるシリコン単結晶の製造方法であって、
     前記シリコン単結晶の引き上げ工程中に前記シリコン融液の表面温度を連続的に測定し、前記表面温度の周波数解析結果に基づいて結晶育成条件を変化させることを特徴とするシリコン単結晶の製造方法。
  2.  前記表面温度の周期スペクトルに含まれる前記石英ルツボの回転周期以外の周期の最大振幅強度が閾値以下となるように、前記結晶育成条件を変化させる、請求項1に記載のシリコン単結晶の製造方法。
  3.  前記閾値は、前記表面温度の周期スペクトルに含まれる前記石英ルツボの回転周期の振幅強度であり、
     前記石英ルツボの回転周期の振幅強度Aと、前記石英ルツボの回転周期以外の周期の最大振幅強度Bとの関係が、A≧Bを満たすように、前記結晶育成条件を変化させる、請求項2に記載のシリコン単結晶の製造方法。
  4.  前記A及びBの相対関係と前記結晶育成条件との対応関係を前記シリコン融液の残液量ごとに示すデータテーブルを予め用意しておき、現在のシリコン融液の残液量のときに前記A≧Bを満たすことができる結晶育成条件を前記データテーブルから導き出す、請求項3に記載のシリコン単結晶の製造方法。
  5.  前記結晶育成条件は、前記磁場の高さ方向の位置を含む、請求項1乃至4のいずれか一項に記載のシリコン単結晶の製造方法。
  6.  前記結晶育成条件は、前記磁場の強度を含む、請求項1乃至5のいずれか一項に記載のシリコン単結晶の製造方法。
  7.  前記表面温度の測定位置は、育成中のシリコン単結晶の結晶成長界面近傍の最外周から少なくともD/30mm(Dはシリコン単結晶の目標直径)離した位置である、請求項1乃至6のいずれか一項に記載のシリコン単結晶の製造方法。
  8.  石英ルツボ内のシリコン融液に磁場を印加しながら前記シリコン融液からシリコン単結晶を引き上げるチョクラルスキー法によるシリコン単結晶の製造方法であって、
     前記シリコン単結晶の引き上げ工程中に前記シリコン融液の表面温度を連続的に測定し、前記表面温度の周期スペクトルに含まれる前記石英ルツボの回転周期の振幅強度Aと前記石英ルツボの回転周期以外の周期の最大振幅強度Bとの関係が、A≧Bとなる状態で前記シリコン単結晶のボディー部の引き上げを行うことを特徴とするシリコン単結晶の製造方法。
  9.  シリコン融液を支持する石英ルツボと、
     前記石英ルツボを回転させるルツボ回転機構と、
     前記シリコン融液に磁場を印加する磁場印加装置と、
     前記シリコン融液からシリコン単結晶を引き上げる引き上げ機構と、
     前記シリコン融液の表面温度を連続的に測定する放射温度計と、
     前記放射温度計によって測定された前記表面温度を周波数解析する演算部と、
     前記表面温度の周波数解析結果に基づいて前記磁場印加装置を制御する制御部とを備えることを特徴とするシリコン単結晶製造装置。
  10.  前記制御部は、前記表面温度の周期スペクトルに含まれる前記石英ルツボの回転周期以外の周期の最大振幅強度が閾値以下となるように、前記結晶育成条件を変化させる、請求項9に記載のシリコン単結晶製造装置。
  11.  前記閾値は、前記表面温度の周期スペクトルに含まれる前記石英ルツボの回転周期の振幅強度であり、
     前記石英ルツボの回転周期の振幅強度Aと、前記石英ルツボの回転周期以外の周期の最大振幅強度Bとの関係が、A≧Bを満たすように、前記結晶育成条件を変化させる、請求項10に記載のシリコン単結晶製造装置。
  12.  前記A及びBの相対関係と前記結晶育成条件との対応関係を前記シリコン融液の残液量ごとに示すデータテーブルを予め用意しておき、現在のシリコン融液の残液量のときに前記A≧Bを満たすことができる結晶育成条件を前記データテーブルから導き出す、請求項11に記載のシリコン単結晶製造装置。
  13.  前記結晶育成条件は、前記磁場の高さ方向の位置を含む、請求項9乃至12のいずれか一項に記載のシリコン単結晶製造装置。
  14.  前記結晶育成条件は、前記磁場の強度を含む、請求項9乃至13のいずれか一項に記載のシリコン単結晶製造装置。
  15.  前記表面温度の測定位置は、育成中のシリコン単結晶の結晶成長界面近傍の最外周から少なくともD/30mm(Dはシリコン単結晶の目標直径)離した位置である、請求項9乃至14のいずれか一項に記載のシリコン単結晶製造装置。
PCT/JP2017/017517 2016-05-10 2017-05-09 シリコン単結晶の製造方法及び装置 WO2017203968A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020187030613A KR102157388B1 (ko) 2016-05-25 2017-05-09 실리콘 단결정 제조 방법 및 장치
CN201780032194.5A CN109196144B (zh) 2016-05-25 2017-05-09 单晶硅的制造方法及装置
US16/303,923 US10858753B2 (en) 2016-05-25 2017-05-09 Method and apparatus for manufacturing silicon single crystal
MYPI2018703955A MY189529A (en) 2016-05-10 2017-05-09 Tinned copper terminal material, terminal, and electrical wire end part structure
DE112017002662.8T DE112017002662B4 (de) 2016-05-25 2017-05-09 Verfahren zur Herstellung von Silicium-Einkristall

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016103983A JP6583142B2 (ja) 2016-05-25 2016-05-25 シリコン単結晶の製造方法及び装置
JP2016-103983 2016-05-25

Publications (1)

Publication Number Publication Date
WO2017203968A1 true WO2017203968A1 (ja) 2017-11-30

Family

ID=60411262

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/017517 WO2017203968A1 (ja) 2016-05-10 2017-05-09 シリコン単結晶の製造方法及び装置

Country Status (7)

Country Link
US (1) US10858753B2 (ja)
JP (1) JP6583142B2 (ja)
KR (1) KR102157388B1 (ja)
CN (1) CN109196144B (ja)
DE (1) DE112017002662B4 (ja)
TW (1) TWI641731B (ja)
WO (1) WO2017203968A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113638037A (zh) * 2020-05-11 2021-11-12 西安奕斯伟材料科技有限公司 一种单晶炉及单晶硅的制备方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6930458B2 (ja) * 2018-02-28 2021-09-01 株式会社Sumco シリコン融液の対流パターン推定方法、シリコン単結晶の酸素濃度推定方法、シリコン単結晶の製造方法、および、シリコン単結晶の引き上げ装置
KR102409211B1 (ko) * 2019-02-27 2022-06-14 가부시키가이샤 사무코 실리콘 융액의 대류 패턴 제어 방법 및, 실리콘 단결정의 제조 방법
JP7006636B2 (ja) * 2019-03-01 2022-01-24 株式会社Sumco シリコン単結晶製造装置
JP7040491B2 (ja) * 2019-04-12 2022-03-23 株式会社Sumco シリコン単結晶の製造時におけるギャップサイズ決定方法、および、シリコン単結晶の製造方法
CN110512278A (zh) * 2019-09-12 2019-11-29 西安奕斯伟硅片技术有限公司 一种拉晶装置、设备及方法
KR102492237B1 (ko) * 2020-11-25 2023-01-26 에스케이실트론 주식회사 실리콘 단결정 잉곳의 성장 방법 및 장치
CN112831836A (zh) * 2020-12-30 2021-05-25 上海新昇半导体科技有限公司 拉晶方法和拉晶装置
JP2022114134A (ja) * 2021-01-26 2022-08-05 信越半導体株式会社 単結晶引上げ装置および単結晶引上げ方法
CN113136619B (zh) * 2021-04-19 2022-05-31 上海磐盟电子材料有限公司 一种同轴对准装置
CN113151892B (zh) * 2021-04-27 2022-02-18 曲靖阳光新能源股份有限公司 一种单晶硅生产设备
WO2024016159A1 (zh) * 2022-07-19 2024-01-25 眉山博雅新材料股份有限公司 一种晶体制备装置及晶体制备方法
CN116126056B (zh) * 2023-04-04 2023-07-07 国网山东省电力公司潍坊供电公司 材料加工温度动态控制策略生成方法、系统、终端及介质
CN117822126B (zh) * 2024-03-02 2024-06-04 山东华特磁电科技股份有限公司 一种磁拉晶永磁装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11278993A (ja) * 1998-03-31 1999-10-12 Sumitomo Metal Ind Ltd 単結晶成長方法
JP2004099415A (ja) * 2002-09-13 2004-04-02 Shin Etsu Handotai Co Ltd 単結晶、単結晶ウエーハ及びエピタキシャルウエーハ、並びに単結晶育成方法
JP2006143582A (ja) * 2004-11-23 2006-06-08 Siltron Inc シリコン単結晶の成長方法,成長装置及びそれから製造されたシリコンウエハ
JP2008526667A (ja) * 2004-12-30 2008-07-24 エムイーエムシー・エレクトロニック・マテリアルズ・インコーポレイテッド 結晶成長プロセスにおける液状シリコンの電磁的ポンピング
JP2009132552A (ja) * 2007-11-29 2009-06-18 Covalent Materials Corp シリコン単結晶の製造方法
JP2012031005A (ja) * 2010-07-30 2012-02-16 Shin Etsu Handotai Co Ltd シリコン単結晶の製造方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61236678A (ja) * 1985-04-10 1986-10-21 Agency Of Ind Science & Technol 半導体単結晶層の製造方法及び電子ビ−ムアニ−ル装置
JPH06129911A (ja) 1992-10-16 1994-05-13 Sumitomo Metal Ind Ltd 結晶引上炉内融液表面温度測定方法及びその装置
JPH08213294A (ja) 1995-02-07 1996-08-20 Kokusai Electric Co Ltd 半導体製造装置
JPH08231294A (ja) 1995-02-24 1996-09-10 Toshiba Ceramics Co Ltd 水平磁界下シリコン単結晶引上方法
US5593498A (en) * 1995-06-09 1997-01-14 Memc Electronic Materials, Inc. Apparatus for rotating a crucible of a crystal pulling machine
US5676751A (en) * 1996-01-22 1997-10-14 Memc Electronic Materials, Inc. Rapid cooling of CZ silicon crystal growth system
JPH09263486A (ja) 1996-03-28 1997-10-07 Sumitomo Sitix Corp 単結晶引き上げ装置
DE60041429D1 (de) * 1999-03-17 2009-03-12 Shinetsu Handotai Kk Verfahren zur herstellung von silicium einkristallen
JP3570343B2 (ja) * 2000-06-09 2004-09-29 三菱住友シリコン株式会社 単結晶製造方法
JP3927786B2 (ja) * 2001-10-30 2007-06-13 シルトロニック・ジャパン株式会社 単結晶の製造方法
CN1324166C (zh) * 2002-11-12 2007-07-04 Memc电子材料有限公司 利用坩锅旋转以控制温度梯度的制备单晶硅的方法
JP4951186B2 (ja) 2002-12-05 2012-06-13 株式会社Sumco 単結晶成長方法
DE10259588B4 (de) * 2002-12-19 2008-06-19 Siltronic Ag Verfahren und Vorrichtung zur Herstellung eines Einkristalls aus Silicium
US8221545B2 (en) * 2008-07-31 2012-07-17 Sumco Phoenix Corporation Procedure for in-situ determination of thermal gradients at the crystal growth front
JP2012148938A (ja) 2011-01-20 2012-08-09 Shin Etsu Handotai Co Ltd 融液温度の測定方法、放射温度計、及びシリコン単結晶の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11278993A (ja) * 1998-03-31 1999-10-12 Sumitomo Metal Ind Ltd 単結晶成長方法
JP2004099415A (ja) * 2002-09-13 2004-04-02 Shin Etsu Handotai Co Ltd 単結晶、単結晶ウエーハ及びエピタキシャルウエーハ、並びに単結晶育成方法
JP2006143582A (ja) * 2004-11-23 2006-06-08 Siltron Inc シリコン単結晶の成長方法,成長装置及びそれから製造されたシリコンウエハ
JP2008526667A (ja) * 2004-12-30 2008-07-24 エムイーエムシー・エレクトロニック・マテリアルズ・インコーポレイテッド 結晶成長プロセスにおける液状シリコンの電磁的ポンピング
JP2009132552A (ja) * 2007-11-29 2009-06-18 Covalent Materials Corp シリコン単結晶の製造方法
JP2012031005A (ja) * 2010-07-30 2012-02-16 Shin Etsu Handotai Co Ltd シリコン単結晶の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113638037A (zh) * 2020-05-11 2021-11-12 西安奕斯伟材料科技有限公司 一种单晶炉及单晶硅的制备方法

Also Published As

Publication number Publication date
CN109196144B (zh) 2021-04-02
CN109196144A (zh) 2019-01-11
JP6583142B2 (ja) 2019-10-02
TWI641731B (zh) 2018-11-21
KR20180126542A (ko) 2018-11-27
US20200165742A1 (en) 2020-05-28
DE112017002662T5 (de) 2019-03-14
US10858753B2 (en) 2020-12-08
DE112017002662B4 (de) 2021-01-14
TW201807267A (zh) 2018-03-01
KR102157388B1 (ko) 2020-09-17
JP2017210387A (ja) 2017-11-30

Similar Documents

Publication Publication Date Title
JP6583142B2 (ja) シリコン単結晶の製造方法及び装置
JP5664573B2 (ja) シリコン融液面の高さ位置の算出方法およびシリコン単結晶の引上げ方法ならびにシリコン単結晶引上げ装置
CN108779577B (zh) 单晶硅的制造方法
JP2008195545A (ja) 遮熱部材下端面と原料融液面との間の距離の測定方法、及びその距離の制御方法
WO2020039553A1 (ja) シリコン単結晶の育成方法
JP6885301B2 (ja) 単結晶の製造方法及び装置
TWI694182B (zh) 矽單結晶的氧濃度推測方法及矽單結晶的製造方法
JP6729470B2 (ja) 単結晶の製造方法及び装置
TWI635199B (zh) 單晶矽的製造方法
JP2019214486A (ja) 融液面と種結晶の間隔測定方法、種結晶の予熱方法、及び単結晶の製造方法
KR101862157B1 (ko) 단결정 실리콘 잉곳 제조 방법 및 장치
TWI785889B (zh) 矽單結晶的氧濃度推定方法、矽單結晶的製造方法及矽單結晶製造裝置
JP2019210199A (ja) シリコン単結晶の製造方法
JP6958632B2 (ja) シリコン単結晶及びその製造方法並びにシリコンウェーハ
JP7238709B2 (ja) シリコン単結晶の製造方法
WO2022254885A1 (ja) シリコン単結晶の製造方法
KR20100071507A (ko) 실리콘 단결정 제조 장치, 제조 방법 및 실리콘 단결정의 산소 농도 조절 방법

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20187030613

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17802563

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17802563

Country of ref document: EP

Kind code of ref document: A1