WO2017203733A1 - 作業車及び作業車に適用される時間ベース管理システム - Google Patents

作業車及び作業車に適用される時間ベース管理システム Download PDF

Info

Publication number
WO2017203733A1
WO2017203733A1 PCT/JP2016/086232 JP2016086232W WO2017203733A1 WO 2017203733 A1 WO2017203733 A1 WO 2017203733A1 JP 2016086232 W JP2016086232 W JP 2016086232W WO 2017203733 A1 WO2017203733 A1 WO 2017203733A1
Authority
WO
WIPO (PCT)
Prior art keywords
travel
work
time
travel time
target
Prior art date
Application number
PCT/JP2016/086232
Other languages
English (en)
French (fr)
Inventor
新海敦
山口幸太郎
Original Assignee
株式会社クボタ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クボタ filed Critical 株式会社クボタ
Priority to EP16903212.5A priority Critical patent/EP3466232B1/en
Priority to CN201680084238.4A priority patent/CN109068576B/zh
Priority to US16/093,678 priority patent/US11144061B2/en
Publication of WO2017203733A1 publication Critical patent/WO2017203733A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0217Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory in accordance with energy consumption, time reduction or distance reduction criteria
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01BSOIL WORKING IN AGRICULTURE OR FORESTRY; PARTS, DETAILS, OR ACCESSORIES OF AGRICULTURAL MACHINES OR IMPLEMENTS, IN GENERAL
    • A01B69/00Steering of agricultural machines or implements; Guiding agricultural machines or implements on a desired track
    • A01B69/007Steering or guiding of agricultural vehicles, e.g. steering of the tractor to keep the plough in the furrow
    • A01B69/008Steering or guiding of agricultural vehicles, e.g. steering of the tractor to keep the plough in the furrow automatic
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01BSOIL WORKING IN AGRICULTURE OR FORESTRY; PARTS, DETAILS, OR ACCESSORIES OF AGRICULTURAL MACHINES OR IMPLEMENTS, IN GENERAL
    • A01B69/00Steering of agricultural machines or implements; Guiding agricultural machines or implements on a desired track
    • A01B69/007Steering or guiding of agricultural vehicles, e.g. steering of the tractor to keep the plough in the furrow
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2058Electric or electro-mechanical or mechanical control devices of vehicle sub-units
    • E02F9/2087Control of vehicle steering
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0088Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots characterized by the autonomous decision making process, e.g. artificial intelligence, predefined behaviours
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0219Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory ensuring the processing of the whole working surface
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0276Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle
    • G05D1/0278Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle using satellite positioning signals, e.g. GPS
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2025Particular purposes of control systems not otherwise provided for
    • E02F9/205Remotely operated machines, e.g. unmanned vehicles

Definitions

  • the present invention relates to a work vehicle that performs ground work while traveling on a work site such as a farm field or a civil engineering site, and a time-based management system applied to the work vehicle.
  • Patent Document 1 describes a seedling transplanter equipped with a work measuring device that measures the degree of progress of planting work in a field during planting while traveling seedlings.
  • This seedling transplanting machine calculates the seedling planting strip area of the unit seedling traveling strip using a rotation detection member that detects the driving rotation of the rear wheel and a steering detection member that detects the steering operation of the front wheel. Measure the time required to move the planting distance in the vertical direction and the time required to move the turning distance.
  • the planting work is intended to be performed while predicting the progress of the planting work, the end time, the remaining area, and the like.
  • a work vehicle includes a vehicle body equipped with a traveling mechanism, a work device that is mounted on the vehicle body and performs ground work on a work site, a satellite positioning module that outputs positioning data, and the vehicle body based on the positioning data.
  • a travel distance calculation unit that calculates the travel distance of the vehicle, a travel time calculation unit that calculates the actual distance travel time from the time required for travel of the travel distance calculated by the travel distance calculation unit, and an actual distance travel time
  • a work management unit for managing the ground work.
  • the travel distance (travel distance) of the vehicle body is obtained from the coordinate position of the vehicle body that is sequentially calculated from the positioning data of the satellite positioning module, and the time taken for the travel (travel) is calculated as the actual distance travel time.
  • this actual distance travel time can be obtained as a travel time from which an error in travel distance due to slip or the like is eliminated.
  • the travel time management using this actual distance travel time accurately grasps the work status of the work vehicle. can do.
  • a constant vehicle speed command is given to a traveling mechanism, and work is often performed while traveling at a constant speed. In such a constant speed work travel, it is possible to accurately grasp the situation (appropriate or inappropriate) of the ground work simply by managing the actual distance travel time.
  • a target travel time setting unit that sets a target travel time of ground work for the work site
  • the work management unit includes the target travel time and the actual distance.
  • the traveling time is compared to calculate the progress of the ground work.
  • an appropriate work time can be calculated. Therefore, in this configuration, the appropriate work time is set as the target travel time.
  • the actual distance travel time calculated sequentially and the target travel time are compared, and the progress of work such as how much of all work is completed and how much unworked remains The degree is calculated. Thereby, time management of ground work by a work vehicle is realized.
  • the progress degree is configured to be notified during traveling.
  • the driver and the operator can grasp the degree of progress at any point during the work travel, and the future work travel plan (for example, whether the work can be completed by nightfall, until the work is completed) It is possible to appropriately determine whether the fuel is ok.
  • an emergency stop command is output when a time difference between the target travel time and the actual distance travel time exceeds a predetermined time. Yes.
  • Agricultural work machines that perform tillage work, seedling planting work, harvesting work, etc., on a work area called a farm field run while repeating straight running and turning (90 ° turn, 180 ° turn, etc.), and the entire field Complete farming.
  • the farm work is carried out in a straight traveling, while the farm work is not substantially carried out in the turning run in which the posture of the vehicle body is changed. Therefore, time management divided into straight traveling and turning traveling is important. For example, in straight running, it should be considered that if the time difference between the target running time and the actual distance running time is large, the ground work result is poor.
  • the work management unit includes a straight travel time shift that is a time shift between the target travel time and the actual distance travel time during straight travel, and a turn travel time. And a turn time shift that is a time shift between the target travel time and the actual distance travel time.
  • the time difference between the target travel time and the actual distance travel time is caused by slip between the ground and the travel mechanism (wheels, etc.). From this, by calculating
  • the slip ratio calculation unit is a straight travel that is a slip ratio during straight travel from a time difference between the target travel time and the actual distance travel time during straight travel.
  • a slip ratio is calculated, and a turning slip ratio, which is a slip ratio during turning, is calculated from a time difference between the target traveling time and the actual distance traveling time during turning.
  • a recording unit that records management information managed by the work management unit so as to be able to transfer data and a notification unit that notifies the management information.
  • the management information includes, for example, the above-described progress, time lag, slip rate, and the like.
  • management information is recorded in the recording unit over time, it can be linked to the traveling track of the work vehicle, and a finer work evaluation can be performed.
  • these pieces of management information are transferred to the management computer of the management center that manages the ground work at the work places in each place, so that the ground work can be analyzed using a large amount of data.
  • the management information as described above is notified to a driver of the work vehicle, an operator who remotely controls the work vehicle, and the like, thereby creating a chance to take measures to improve work quality.
  • Time-based work management as described above is particularly suitable for automated driving that cannot be changed due to driver intuition and experience.
  • a route setting unit that sets a target travel route of the vehicle body at the work site, and an automatic travel command for automatically traveling the vehicle body based on the target travel route and the positioning data are generated.
  • An automatic travel control unit is provided.
  • a time-based management system for a work vehicle equipped with a work device that performs ground work on a vehicle body equipped with a travel mechanism includes a route setting unit that sets a target travel route for work travel by the work vehicle, and the target travel A target travel time setting unit that assigns a target travel time to a plurality of work travel points set along a route, and travel that calculates an elapsed time at the work travel point during actual work travel of the work vehicle as an actual travel time A time calculation unit, and a work management unit that performs comparative evaluation (difference value calculation) between the target travel time and the actual travel time at the work travel point.
  • the time-based management system when a difference value indicating a difference between the target travel time and the actual travel time exceeds a predetermined threshold, a work travel abnormality (warning) is notified. It is preferable. Further, the time-based management system includes a slip ratio calculation unit that calculates the slip ratio of the vehicle body, and a difference value indicating a difference between the target travel time and the actual travel time exceeds a predetermined threshold value. In this case, it is preferable that the influence of the slip ratio on the difference is evaluated. Such a time-based management system can also obtain the same operational effects as the work vehicle described above, and can adopt the various preferred embodiments described above.
  • FIG. 1 shows a data flow in a work vehicle performing ground work
  • FIG. 2 schematically shows a travel route and a travel time of the work vehicle.
  • the work vehicle includes a vehicle body 1 equipped with a traveling mechanism 10 including steered wheels and drive wheels, and a work device 30 attached to the vehicle body 1.
  • the work vehicle travels through the entire work area while repeating straight travel and 180 ° turning travel.
  • the work vehicle is provided with a satellite positioning module 80 constituted by a GNSS module or the like.
  • the satellite positioning module 80 outputs positioning data indicating the coordinate position of the vehicle body 1 (hereinafter simply referred to as the own vehicle position).
  • the position of the vehicle represented by the positioning data is based on the position of the antenna, but here, the position of the vehicle is not the position of the antenna but an appropriate position of the vehicle (for example, the ground operation of the work device 30).
  • a position correction process is performed so as to become a point.
  • the travel distance calculation unit 51 periodically acquires the own vehicle position (or travel time) ( The travel distance (indicated by L01... In FIG. 2) is calculated from the distance (indicated by P01... In FIG. 2).
  • the travel distance is calculated from the distance (indicated by P01... In FIG. 2).
  • the traveling locus of the work vehicle is obtained.
  • the travel distance of a predetermined travel section for example, the travel distance of the whole process, is obtained by integrating the travel distance.
  • the travel time calculation unit 52 calculates the time required for travel of the travel distance calculated by the travel distance calculation unit 51 (indicated by t01... In FIG. 2) as the actual distance travel time.
  • the actual distance travel time of the predetermined travel section for example, the actual distance travel time of the entire stroke
  • the work management unit 50 uses the actual distance travel time for time management of ground work by the work vehicle.
  • This work vehicle is provided with a target travel time setting unit 62.
  • the target travel time setting unit 62 sets a target travel time that is required when performing ground work while traveling on a work place at a predetermined vehicle speed (for example, a constant vehicle speed such as 5 km / h or 10 km / h).
  • the target travel time can be set by the driver, or can be automatically set by means such as communication.
  • the target travel time setting unit 62 calculates and sets the target travel time from the target travel route set by the route setting unit 61. It is also possible.
  • the vehicle speed setting for straight traveling and the vehicle speed setting for turning traveling may not be the same, and can be set separately. Also, it is possible to set different vehicle speeds in a specific section in both straight traveling and turning traveling.
  • the target vehicle time set by the target traveling time setting unit 62 The difference (time shift) between the target travel time and the actual distance travel time calculated by the travel time calculation unit 52 may become unexpectedly large. In this case, it is necessary to stop the work vehicle and check the state of the traveling mechanism 10 and the state of the work device 30. Therefore, the work management unit 50 has a function of outputting an emergency stop command when the time difference between the target travel time and the actual distance travel time exceeds a predetermined time. This function is particularly suitable when the work vehicle is operated as an automatic traveling work vehicle.
  • the work management unit 50 includes a progress calculation unit 501 and a slip rate calculation unit 502.
  • the progress degree calculation unit 501 integrates the target travel time set for the work on the work site and the actual distance travel time calculated by the travel time calculation unit 52 (more specifically, the actual distance travel time for each predetermined section). Value) and the progress of ground work is calculated.
  • the calculated degree of progress can be notified through visual means or auditory means. This progress notification makes it easy to grasp the progress of work (work efficiency), the remaining work time (work completion prediction time), and the like.
  • the slip ratio calculation unit 502 calculates the slip ratio of the vehicle body 1 based on the time difference between the target travel time at the predetermined vehicle position and the actual distance travel time.
  • the slip that occurs when running on a sluggish surface or turning with a small turning radius appears as a time lag between the target travel time when traveling at a constant vehicle speed and the actual actual distance travel time.
  • the rate can be calculated. Based on the slip ratio, the ground state and the turning state of the work place can be evaluated.
  • this work management unit 50 has a function of calculating a time shift during straight traveling as a straight time shift and a time shift during turning as a turn time shift.
  • the traveling load differs greatly between straight traveling and turning traveling. For this reason, it is important for the slip evaluation that the slip caused by the travel load is evaluated separately for straight travel and turning travel.
  • the slip ratio calculation unit 502 calculates a straight slip ratio that is a slip ratio during straight travel from a time shift during straight travel, and a turn that is a slip ratio during a turn travel from a time shift during a turn travel. It is also possible to calculate the slip ratio.
  • the work management unit 50 can also input various data other than those described above (for example, travel data indicating the state of the travel mechanism 10 and work data indicating the state of the work device 30), and record them as management information. Furthermore, data generated or managed by the work management unit 50 such as progress, time lag, slip rate, and vehicle body travel locus is also recorded as management information. The recorded management information can be taken out from the work vehicle through a recording medium or data communication. Management information that should be notified immediately is reported directly to the driver or operator of the work vehicle through visual or audible means.
  • the traveling control unit 40 includes an automatic traveling control unit 42.
  • the travel control unit 40 moves the vehicle body 1 so that the position of the host vehicle coincides with the target travel route of the vehicle body 1 at the work site set by the route setting unit 61.
  • An automatic travel command for automatically traveling is generated.
  • the work vehicle is equipped with a working device 30 such as a rotary tillage device that performs farming work such as tillage work on a farm field (working place) bounded by straw.
  • a working device 30 such as a rotary tillage device that performs farming work such as tillage work on a farm field (working place) bounded by straw.
  • This tractor is provided with a steering unit 20 at the center of the vehicle body 1 supported by the front wheels 11 and the rear wheels 12.
  • a working device 30 that is a rotary tiller is provided via a hydraulic lifting mechanism 31.
  • the front wheel 11 functions as a steered wheel, and the traveling direction of the tractor is changed by changing the steering angle.
  • the steering angle of the front wheels 11 is changed by the operation of the steering mechanism 13.
  • the steering mechanism 13 includes a steering motor 14 for automatic steering. During manual travel, steering of the front wheels 11 arranged in the control unit 20 can be performed by operating the steering wheel 22.
  • the cabin 21 of the tractor is provided with a satellite positioning module 80 configured as a GNSS module.
  • a satellite antenna for receiving a GPS signal or a GNSS signal is attached to the ceiling area of the cabin 21.
  • the satellite positioning module 80 can include an inertial navigation module incorporating a gyro acceleration sensor or a magnetic azimuth sensor to complement satellite navigation.
  • the inertial navigation module may be provided at a location different from the satellite positioning module 80.
  • FIG. 4 shows a control system constructed in this tractor.
  • the control unit 4 which is the core element of this control system, includes an output processing unit 7, an input processing unit 8, and a communication processing unit 70 that function as an input / output interface.
  • the output processing unit 7 is connected to a vehicle travel device group 71, a work travel device group 72, a notification device 73, and the like.
  • the vehicle travel device group 71 includes the steering motor 14 and other devices that are controlled for vehicle travel, such as a speed change mechanism and an engine unit (not shown).
  • the work traveling device group 72 includes a drive mechanism of the work device 30, an elevating mechanism 31 that raises and lowers the work device 30, and the like.
  • the communication processing unit 70 has a function of transmitting data processed by the control unit 4 to a management computer 100 constructed in a remote management center and receiving various data from the management computer 100.
  • the notification device 73 includes a flat panel display, a lamp, and a buzzer, and visually or audibly displays various information to be notified to the driver, such as travel attention information and deviation from the target travel route in automatic steering travel. In this manner, the driver and the operator are notified. Signal transmission between the notification device 73 and the output processing unit 7 is performed by wire or wireless.
  • the input processing unit 8 is connected to a satellite positioning module 80, a traveling system detection sensor group 81, a work system detection sensor group 82, an automatic / manual switching operation tool 83, and the like.
  • the traveling system detection sensor group 81 includes sensors that detect a traveling state such as an engine speed and a shift state.
  • the work system detection sensor group 82 includes a sensor that detects the position and inclination of the work device 30, a sensor that detects a work load, and the like.
  • the automatic / manual switching operation tool 83 is a switch for selecting either an automatic travel mode for traveling by automatic steering or a manual steering mode for traveling by manual steering. For example, by operating the automatic / manual switching operation tool 83 during traveling in the automatic steering mode, the vehicle can be switched to traveling by manual steering, and by operating the automatic / manual switching operation tool 83 during traveling by manual steering. It can be switched to automatic steering.
  • the control unit 4 includes a travel control unit 40, a travel distance calculation unit 51, a travel time calculation unit 52, and a work management unit 50, which are functional units already described with reference to FIG.
  • a work control unit 54 is provided in order to control the work device 30, a work control unit 54 is provided.
  • This tractor can travel both in automatic travel (automatic steering) and manual travel (manual steering).
  • the travel control unit 40 includes an automatic travel control unit 42 together with the manual travel control unit 41.
  • the control unit 4 is provided with a route setting unit 61 and a target travel time setting unit 62.
  • the route setting unit 61 sets a target travel route
  • the target travel time setting unit 62 sets a target travel time that is an appropriate time until the vehicle travels to a predetermined position on the set target travel route.
  • the generation of the target travel route is performed by the control unit 4 and / or the management computer 100.
  • the control unit 4 When the control unit 4 creates a target travel route, the control unit 4 includes a route generation unit 63 having a route generation algorithm.
  • the generated target travel route is sent to the control unit 4 and set by the route setting unit 61.
  • the automatic travel control unit 42 calculates an azimuth shift and a positional shift between the target travel route and the host vehicle position, generates an automatic steering command, and outputs it to the steering motor 14 via the output processing unit 7.
  • Any of the manual travel control unit 41 and the automatic travel control unit 42 constituting the travel control unit 40 can give a constant vehicle speed command to command the travel mechanism 10 to travel at a constant vehicle speed by an operation instruction. Accordingly, it is possible to perform constant vehicle speed traveling that automatically maintains a constant vehicle speed (which may adopt different vehicle speeds for straight traveling and turning traveling) in both automatic traveling and manual traveling. .
  • the work management unit 50 includes the progress degree calculation unit 501 and the slip rate calculation unit 502 described with reference to FIG.
  • Data input to the control unit 4 and data generated by the control unit 4 are recorded in the recording unit 55.
  • the specified data among the recorded data is transferred to the management computer 100 by real time processing or badge processing.
  • the control unit 4 is also provided with a notification unit 56.
  • various items managed by the work management unit 50 for example, progress, slip rate, azimuth deviation and positional deviation during automatic driving
  • the notification unit 56 passes through the notification device 73.
  • Notification data for generating an alarm or the like is generated. Further, the progress degree or the like can be notified through the notification device 73 by an operation of a button or the like.
  • FIG. 5 An example of a data group handled over time by the control unit 4 as the tractor travels is shown in a schematic time chart in FIG.
  • the travel route of the tractor connecting the travel points is shown in a straight line, and the travel locus includes a straight travel route and a turning route. That is, in the example of FIG. 5, the travel points P00 to P04 are straight travels, the travel from P04 to P05 is a turn travel, and the straight travel and the turn travel are repeated again from P05.
  • the driving point that is the vehicle position at a predetermined time point (indicated by T00... T06) is indicated by P00.
  • the travel distance which is the distance of is indicated by L00... L06. Since this travel distance is calculated based on the positioning data from the satellite positioning module 80, the travel time required for each travel distance (indicated by t00... T06) is an error in travel distance due to slip or the like. The actual distance travel time is eliminated.
  • each accumulated actual distance travel time is illustrated as having a constant length (constant time), but in actuality, it is hardly constant.
  • the slip ratio (indicated by k01... K06 in FIG. 5) is calculated from the actual travel distance and the target travel time. Is calculated and recorded. When the slip ratio exceeds a preset allowable limit, a warning is notified.
  • the slip ratio can be calculated from the apparent travel distance calculated from the axle rotational speed of the rear wheel 12 and the travel distance calculated based on the positioning data. 502 may use the slip ratio calculated by this method.
  • the function of executing the travel time management at the work site travel is substantially built in the work vehicle. However, some of these functions are managed, for example, in addition to the work vehicle. It can also be distributed to the computer 100.
  • An example of such a time-based management system is shown in FIG.
  • a route setting unit 61 for setting a target travel route and a target travel time setting unit 62 are constructed in the management computer 100 of the management center or the communication terminal of the manager, and the target travel route and the target travel time are determined based on the work vehicle.
  • the travel time calculation unit 52 and the slip rate calculation unit 502 that calculate the actual travel time are conveniently constructed in a work vehicle for reasons such as transfer of data to be used.
  • the work management unit 50 can be constructed on either the work vehicle, the management computer, or the administrator's communication terminal, whichever is convenient.
  • the work management unit 50 compares and evaluates the target travel time and the actual travel time, and calculates a difference value indicating the difference between the target travel time and the actual travel time. When the difference value exceeds a predetermined threshold value, the work management unit 50 outputs work travel abnormality information (warning).
  • the work management unit 50 can also input the slip rate calculated by the slip rate calculation unit 502 and evaluate the influence of the slip rate on the difference value.
  • a tractor equipped with a rotary tiller as the work device 30 is taken up as a work vehicle as the work vehicle, but other than such a tractor, for example, a rice transplanter, a fertilizer applicator, a combine
  • Various work vehicles such as a farm work vehicle such as a construction work vehicle provided with a dozer, a roller, or the like as the work device 30 can also be adopted as an embodiment.
  • each functional unit in the functional block diagrams shown in FIGS. 1, 4, and 6 are divided mainly for the purpose of explanation. Actually, each functional unit can be integrated with other functional units or divided into a plurality of functional units.
  • the present invention is applicable to work vehicles that perform ground work while traveling.
  • it is suitable for an automatic traveling work vehicle that automatically travels along a target travel route.

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Automation & Control Theory (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Soil Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • General Engineering & Computer Science (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Computation (AREA)
  • Game Theory and Decision Science (AREA)
  • Medical Informatics (AREA)
  • Guiding Agricultural Machines (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

作業地走行での走行時間管理が正確に行うことができる作業車が要望されている。 作業車は、走行機構を装備する車体と、作業地に対する対地作業を行う作業装置と、測位データを出力する衛星測位モジュール80と、測位データに基づいて前記車体の走行距離を算出する走行距離算出部51と、走行距離算出部51で算出された走行距離の走行に要した時間から実距離走行時間を算出する走行時間算出部52と、実距離走行時間に基づいて対地作業を管理する作業管理部50と、を備えている。

Description

作業車及び作業車に適用される時間ベース管理システム
 本発明は、圃場や土木現場などの作業地を走行しながら対地作業を行う作業車、及びこの作業車に適用される時間ベース管理システムに関する。
 特許文献1には、苗植走行しながら、植付作業中の圃場における植付作業の進捗度合等を測定する作業測定装置を備えた苗移植機が記載されている。この苗移植機は、後輪の駆動回転を検出する回転検出部材や、前輪の操向動作を検出する操向検出部材を用いて、単位苗植走行条の苗植付条面積を算出するとともに、縦方向の植付走行距離の移動に要する時間と、旋回距離の移動に要する時間を測定する。これにより、植付作業の進捗度や、終了時間、残余面積等を予測しながら植付作業を行うことを意図している。
特開2012-29600号公報
 しかしながら、特許文献1による技術のように、車輪の駆動回転に基づいて車速を算出し、直進走行と旋回走行を繰り返しながら行われる作業走行の時間を求める場合、車輪のスリップにより誤差が生じる。特に旋回半径の小さな旋回走行では、大きなスリップが発生し、車輪の回転数と移動距離とが対応しなくなり、大きな誤差が生じる。この誤差は積算されていくので、作業後半での進捗度の正確な算出は困難となる。
 上述した実情に鑑み、作業地走行での走行時間管理を正確に行うことができる技術が要望されている。
 本発明による作業車は、走行機構を装備する車体と、前記車体に装備され、作業地に対する対地作業を行う作業装置と、測位データを出力する衛星測位モジュールと、前記測位データに基づいて前記車体の走行距離を算出する走行距離算出部と、前記走行距離算出部で算出された走行距離の走行に要した時間から実距離走行時間を算出する走行時間算出部と、実距離走行時間に基づいて前記対地作業を管理する作業管理部と、を備えている。
 この構成では、衛星測位モジュールの測位データから遂次算出される車体の座標位置から車体の移動距離(走行距離)が求められ、その移動(走行)にかかった時間が実距離走行時間として算出される。したがって、この実距離走行時間は、スリップなどによる走行距離の誤差が排除された走行時間を得られる。作業車の作業状況を時間で管理する際には、走行距離当たりの正確な走行時間が必要となるので、この実距離走行時間を用いた走行時間管理により、作業車の作業状況を正確に把握することができる。特に、トラクタや田植機などのような対地作業車では、定車速指令を走行機構に与えて、一定速度で走行しながら作業が行われることが多い。そのような定速度作業走行では、実距離走行時間を管理するだけで、対地作業の状況(適正または不適)を正確に把握することができる。
 また、本発明の好適な実施形態の1つでは、前記作業地に対する対地作業の目標走行時間を設定する目標走行時間設定部が備えられ、前記作業管理部は、前記目標走行時間と前記実距離走行時間とを比較して、前記対地作業の進捗度を算出するように構成されている。特定の作業地における特定の対地作業を行う場合、適正な作業時間は算出可能である。したがって、この構成では、その適正な作業時間が目標走行時間として設定される。作業中において、逐次算出される実距離走行時間と、目標走行時間と、が比較されることで、全作業のうちでどの程度完了しているか、未作業がどの程度残っているかといった作業の進捗度が算出される。これにより、作業車による対地作業の時間管理が実現する。
 さらに好ましい実施形態の1つでは、前記進捗度が走行中に報知可能に構成されている。これにより、運転者や操作者は、作業走行中において、任意の時点での進捗度を把握することができ、これからの作業走行計画(例えば、日暮れまでに作業が完了できるかどうか、作業終了まで燃料が大丈夫かどうかなど)を適切に判断することができる。
 このような時間管理において、設定された目標走行時間と、遂次算出される実距離走行時間と、の間に大きな差が出てくると、適正な作業が行われていないと推定される。このような場合、現在行っている作業を一旦停止することが望ましい。このことから、本発明の好適な実施形態の1つでは、前記目標走行時間と前記実距離走行時間との時間ずれが所定時間を超えた場合、緊急停止指令が出力されるように構成されている。
 圃場と呼ばれる作業地に対して、耕耘作業、苗植付け作業、収穫作業などを行う農業作業機では、直進走行と旋回走行(90°ターンや180°ターンなど)とを繰り返しながら走行し、圃場全体の農作業を完了する。その際、直進走行で農作業が実施される一方、車体の姿勢を変更する旋回走行では、実質的に農作業は実施されない。このことから、直進走行と旋回走行とに区分けした、時間管理が重要である。例えば、直進走行において、目標走行時間と実距離走行時間との時間ずれが大きいと、対地作業結果が悪いことが考慮されるべきである。また、旋回走行において、目標走行時間と実距離走行時間との時間ずれが大きいと、旋回走行が困難な地面状況が発生しているか、あるいは実行されている旋回半径が不適切であるといったことが考慮されるべきである。このことから、本発明の好適な実施形態の1つでは、前記作業管理部は、直進走行時における前記目標走行時間と前記実距離走行時間との時間ずれである直進時間ずれと、旋回走行時における前記目標走行時間と前記実距離走行時間との時間ずれである旋回時間ずれと、を算出するように構成されている。
 目標走行時間と実距離走行時間との時間ずれは、地面と走行機構(車輪など)との間でのスリップによって生じる。このことから、スリップ率を求めることで、車速、作業装置における作業負荷、地面(圃場面)の状態が適正であるかどうかを評価することができる。このため、本発明の好適な実施形態の1つでは、前記目標走行時間と前記実距離走行時間との時間ずれに基づいて前記車体のスリップ率を算出するスリップ率算出部が備えられている。
 このスリップ率においても、直進走行と旋回走行とではスリップ状況が異なるので、上述した形態と同様に、直進走行と旋回走行とで区分けして算出することが好ましい。このため、本発明の好適な実施形態の1つでは、前記スリップ率算出部は、直進走行時における前記目標走行時間と前記実距離走行時間との時間ずれから直進走行時のスリップ率である直進スリップ率を算出するとともに、旋回走行時における前記目標走行時間と前記実距離走行時間との時間ずれから旋回走行時のスリップ率である旋回スリップ率を算出するように構成されている。
 本発明の好適な実施形態の1つでは、前記作業管理部で管理される管理情報をデータ転送可能に記録する記録部と、前記管理情報を報知する報知部と、が備えられている。管理情報には、例えば、上述した進捗度、時間ずれ、スリップ率、などが含まれる。このような管理情報が、経時的に記録部に記録されると、作業車の走行軌跡とリンクさせることができ、より精細な作業評価を行うことができる。さらに、これらの管理情報が、各地の作業地での対地作業を管理する管理センタの管理コンピュータに転送されることにより、大量のデータを用いた対地作業の分析を行うことができる。さらに、上述のような管理情報が、作業車の運転者や作業車を遠隔操縦する操作者などに報知されることで、作業品質を向上させる方策を講じるきっかけを作ることができる。
 運転者の直感や経験による作業の変更ができない自動走行の場合、上述したような、時間をベースにした作業の管理は、特に適している。作業車を自動走行させるためには、前記作業地における前記車体の目標走行経路を設定する経路設定部と、前記目標走行経路及び前記測位データに基づいて前記車体を自動走行させる自動走行指令を生成する自動走行制御部が備えられる。
 さらに、この作業車に組み込まれている、上述したような作業車のための時間ベースの管理システムそれ自体も、本発明に含まれる。走行機構を装備する車体に対地作業を行う作業装置を装備した作業車のための時間ベース管理システムは、前記作業車による作業走行のための目標走行経路を設定する経路設定部と、前記目標走行経路に沿って設定された複数の作業走行点に目標走行時間を割り当てる目標走行時間設定部と、前記作業車の実際の作業走行時の前記作業走行点における経過時間を実走行時間として算出する走行時間算出部と、前記作業走行点における前記目標走行時間と前記実走行時間とを比較評価(相違値算出)する作業管理部と、を備えている。また、このような時間ベース管理システムにおいても、前記目標走行時間と前記実走行時間との相違を示す相違値が、所定のしきい値を超えた場合、作業走行異常(警告)が報知されると好適である。さらに、時間ベース管理システムに、前記車体のスリップ率を算出するスリップ率算出部が備えられ、かつ前記目標走行時間と前記実走行時間との相違を示す相違値が、所定のしきい値を超えた場合、前記相違に対する前記スリップ率の影響が評価されると好適である。このような時間ベース管理システムも、上述した作業車と同じ作用効果を得ることができ、また上述した種々の好適な実施形態を取り入れることも可能である。
作業車による対地作業の時間管理に関する基本原理を模式的に示す説明図である。 作業車の走行時間と走行位置と走行軌跡とを模式的に示す説明図である。 作業車の実施形態の1つを示すトラクタの側面図である。 トラクタの制御系を示す機能ブロック図である。 作業車の走行時に経時的に取り扱われるデータ群の一例をタイムチャート的に示す説明図である。 時間ベース管理システムにおける基本的な制御構成を示す機能ブロック図である。
 本発明による作業車の具体的な実施形態を説明する前に、図1と図2とを用いて、作業車による対地作業の時間管理に関する基本原理を説明する。図1には、対地作業を行っている作業車におけるデータの流れが示されており、図2には、作業車の走行経路と走行時間とが模式的に示されている。
 ここでは、作業車は、図2に示すように操向輪や駆動輪などから構成される走行機構10を装備する車体1と、車体1に取り付けられた作業装置30と、を備えている。図2の例では、作業車は、直進走行と、180°の旋回走行と、を繰り返しながら、作業地全体を作業走行する。作業車には、GNSSモジュールなどによって構成される衛星測位モジュール80が備えられている。衛星測位モジュール80は、車体1の座標位置(以下単に自車位置と称する)を示す測位データを出力する。なお、測位データで表される自車位置は、アンテナの位置が基準となるが、ここでは、自車位置は、アンテナの位置ではなく、車両の適切な位置(例えば、作業装置30の対地作用点など)となるような位置補正処理が行われる。
 図2で、模式的に示されているように、衛星測位モジュール80により取得された測位データに基づいて、走行距離算出部51は、周期的に取得された自車位置(または走行時点)(図2ではP01・・・で示されている)から走行距離(図2ではL01・・・で示されている)を算出する。この周期的に取得された自車位置を取得順に繋いでいくと、作業車の走行軌跡が得られる。また、走行距離の積算により、所定走行区間の走行距離、例えば全行程の走行距離が得られる。さらに、走行時間算出部52は、走行距離算出部51で算出された走行距離の走行に要した時間(図2ではt01・・・で示されている)を実距離走行時間として算出する。この実距離走行時間を積算することで、所定走行区間の実距離走行時間(例えば全行程の実距離走行時間)が得られる。作業管理部50は、この作業車による対地作業の時間管理に、この実距離走行時間を用いる。
 この作業車には、目標走行時間設定部62が備えられている。目標走行時間設定部62は、所定車速(例えば5km/hや10km/hなどの一定の車速)で作業地を走行しながら対地作業する際に必要となる、目標走行時間を設定する。目標走行時間は、運転者が設定することもできるし、通信等の手段で自動的に設定されることも可能である。例えば、この作業車が、自動走行作業車として運用される場合には、目標走行時間設定部62が、経路設定部61によって設定された目標走行経路から、目標走行時間を算出して、設定することも可能である。なお、直進走行での車速設定、及び、旋回走行での車速設定は、同一でなくてもよく、それぞれ別々に設定することができる。また、直進走行と旋回走行のいずれにおいても特定の区間において異なる車速を設定することも可能である。
 走行上のトラブル(走行機構10の不調、ぬかるみでのスリップなど)や作業上のトラブル(過負荷の発生など)があった場合、目標走行時間設定部62によって設定されている所定自車位置での目標走行時間と、走行時間算出部52によって算出される実距離走行時間と、の間の相違(時間ずれ)が、想定外に大きくなることがある。この場合には、作業車を停止して、走行機構10の状態や作業装置30の状態を点検する必要がある。したがって、作業管理部50は、目標走行時間と実距離走行時間との時間ずれが所定時間を超えた場合、緊急停止指令を出力する機能を有する。この機能は、作業車が、自動走行作業車として運用される場合に、特に好適である。
 図1の例では、作業管理部50には、進捗度算出部501とスリップ率算出部502とが含まれている。進捗度算出部501は、この作業地に対する作業のために設定された目標走行時間と、走行時間算出部52によって算出された実距離走行時間(より詳しくは所定区間ごとの実距離走行時間の積算値)と、を比較して、対地作業の進捗度を算出する。算出された進捗度は、視覚的な手段あるいは聴覚的な手段を通じて報知することができる。この進捗度の報知により、作業の進み具合(作業効率)、作業の残り時間(作業終了予測時間)などの把握が容易になる。スリップ率算出部502は、所定自車位置での目標走行時間と、実距離走行時間と、の時間ずれに基づいて、車体1のスリップ率を算出する。ぬかるみ面の走行時や小旋回半径での旋回走行時に生じるスリップは、一定車速で走行した場合の目標走行時間と、実際の実距離走行時間と、の時間ずれとして現れるので、その時間ずれからスリップ率を算出することができる。このスリップ率により、作業地の地面状態や旋回状態などを評価することができる。
 この作業車のように、直進走行と旋回走行とを繰り返して作業地に対する作業を行っていく場合、直進走行で作業装置30が駆動され、旋回走行では作業装置30は駆動されないことが多い。また、直進走行と旋回走行とでは、走行機構10の状況が大きく異なる。このため、直進走行と旋回走行とを区分けして、走行管理あるいは作業管理することが好ましい。このため、この作業管理部50は、直進走行時における時間ずれを直進時間ずれとし、旋回走行時における時間ずれを旋回時間ずれとして、算出する機能を有する。特に、直進走行と旋回走行とでは、走行負荷が大きく異なる。このため、走行負荷に起因するスリップは、直進走行と旋回走行とでは区分けして評価することは、スリップ評価にとって重要である。このことから、スリップ率算出部502は、直進走行時における時間ずれから直進走行時のスリップ率である直進スリップ率を算出するとともに、旋回走行時における時間ずれから旋回走行時のスリップ率である旋回スリップ率を算出することも可能である。
 作業管理部50は、上述した以外の種々のデータ(例えば走行機構10の状態を示す走行データや作業装置30の状態を示す作業データ)も入力して、管理情報として記録することができる。さらに、進捗度、時間ずれ、スリップ率、車体走行軌跡などの、作業管理部50で生成あるいは管理されているデータも管理情報として記録される。記録された管理情報は、記録メディアやデータ通信を通じて、作業車から持ち出すことができる。至急に報知した方がよい管理情報は、作業車の運転者や操作者に、視覚的あるいは聴覚的な手段を通じて直接報知される。
 走行制御部40には、自動走行制御部42が備えられる。この作業車を自動走行として構成する場合には、走行制御部40は、経路設定部61によって設定される作業地における車体1の目標走行経路に、自車位置が一致するように、車体1を自動走行させる自動走行指令を生成する。
 次に、本発明の作業車の具体的な実施形態の1つを説明する。この実施形態では、作業車は、図3に示されているように、畦によって境界づけられた圃場(作業地)に対して耕耘作業などの農作業を行うロータリ耕耘装置などの作業装置30を装備したトラクタである。このトラクタは、前輪11と後輪12とによって支持された車体1の中央部に操縦部20が設けられている。車体1の後部には油圧式の昇降機構31を介してロータリ耕耘装置である作業装置30が装備されている。前輪11は操向輪として機能し、その操舵角を変更することでトラクタの走行方向が変更される。前輪11の操舵角は操舵機構13の動作によって変更される。操舵機構13には自動操舵のための操舵モータ14が含まれている。手動走行の際には、操縦部20に配置されている前輪11の操舵はステアリングホイール22の操作によって可能である。トラクタのキャビン21には、GNSSモジュールとして構成されている衛星測位モジュール80が設けられている。図示されていないが、GPS信号やGNSS信号を受信するための衛星用アンテナがキャビン21の天井領域に取り付けられている。なお、衛星測位モジュール80には、衛星航法を補完するために、ジャイロ加速度センサや磁気方位センサを組み込んだ慣性航法モジュールを含めることができる。もちろん、慣性航法モジュールは、衛星測位モジュール80とは別の場所に設けてもよい。
 図4には、このトラクタに構築されている制御系が示されている。この制御系は、図1を用いて説明された基本原理を採用している。この制御系の中核要素である制御ユニット4には、入出力インタフェースとして機能する、出力処理部7、入力処理部8、通信処理部70が備えられている。出力処理部7は、車両走行機器群71、作業走行機器群72、報知デバイス73などと接続している。車両走行機器群71には、操舵モータ14をはじめ、図示されていないが変速機構やエンジンユニットなど車両走行のために制御される機器が含まれている。作業走行機器群72には、作業装置30の駆動機構や、作業装置30を昇降させる昇降機構31などが含まれている。通信処理部70は、制御ユニット4で処理されたデータを遠隔地の管理センタに構築された管理コンピュータ100に送信するとともに、管理コンピュータ100から種々のデータを受信する機能を有する。報知デバイス73には、フラットパネルディスプレイやランプやブザーが含まれており、走行注意情報や自動操舵走行での目標走行経路からの外れなど、運転者に報知したい種々の情報を視覚的または聴覚的な形態で運転者や操作者に対して報知する。報知デバイス73と出力処理部7との間の信号伝送は、有線または無線で行われる。
 入力処理部8は、衛星測位モジュール80、走行系検出センサ群81、作業系検出センサ群82、自動/手動切替操作具83などと接続している。走行系検出センサ群81には、エンジン回転数や変速状態などの走行状態を検出するセンサが含まれている。作業系検出センサ群82には、作業装置30の位置や傾きを検出するセンサ、作業負荷などを検出するセンサなどが含まれている。自動/手動切替操作具83は、自動操舵で走行する自動走行モードと、手動操舵で走行する手動操舵モードと、のいずれかを選択するスイッチである。例えば、自動操舵モードで走行中に自動/手動切替操作具83を操作することで、手動操舵での走行に切り替えられ、手動操舵での走行中に自動/手動切替操作具83を操作することで、自動操舵での走行に切り替えられる。
 制御ユニット4には、図1を用いて既に説明した機能部である、走行制御部40、走行距離算出部51、走行時間算出部52、作業管理部50が備えられている。作業装置30を制御するために、作業制御部54が備えられている。このトラクタは、自動走行(自動操舵)と手動走行(手動操舵)の両方で走行可能である。このため、走行制御部40には、手動走行制御部41とともに自動走行制御部42が含まれる。この自動走行では、予め設定された目標走行経路に沿って走行するので、制御ユニット4には、経路設定部61及び目標走行時間設定部62が備えられている。経路設定部61は目標走行経路を設定し、目標走行時間設定部62は、設定された目標走行経路の所定位置まで走行するまでの、適正な時間である目標走行時間を設定する。
 目標走行経路の生成は、制御ユニット4または管理コンピュータ100あるいはその両方で行われる。制御ユニット4で、目標走行経路の作成を行う場合には、経路生成アルゴリズムを有する経路生成部63が制御ユニット4に備えられる。管理コンピュータ100で目標走行経路が生成される場合は、生成された目標走行経路が制御ユニット4に送られ、経路設定部61によって設定される。自動走行制御部42は、目標走行経路と自車位置との間の方位ずれ及び位置ずれを算出し、自動操舵指令を生成し、出力処理部7を介して操舵モータ14に出力する。走行制御部40を構成する手動走行制御部41及び自動走行制御部42のいずれもが、操作指示により、走行機構10に一定車速での走行を命じる定車速指令を与えることができる。これにより、自動走行と手動走行のいずれであっても、自動的に一定車速(直進走行と旋回走行とで異なる車速を採用してもよい)を維持して走行する定車速走行が可能である。
 この実施形態においても、作業管理部50には、図1を用いて説明した、進捗度算出部501及びスリップ率算出部502が備えられている。制御ユニット4に入力されたデータや制御ユニット4で生成されたデータは、記録部55に記録される。記録されたデータのなかで指定されたものは、リアルタイム処理またはバッジ処理で、管理コンピュータ100に転送される。
 制御ユニット4には、報知部56も備えられている。作業管理部50で管理されている各種項目(例えば進捗度、スリップ率、自動走行時の方位ずれ及び位置ずれなど)が、所定の許容範囲を超えた場合、報知部56は、報知デバイス73を通じて警報等を発するための報知データを生成する。また、ボタンなどの操作によって、進捗度などは報知デバイス73を通じて報知させることも可能である。
 トラクタの走行とともに、制御ユニット4で経時的に取り扱われるデータ群の一例が、図5に模式的なタイムチャートで示されている。走行地点を結んだトラクタの走行経路が、直線状で示されているが、その走行軌跡には直進経路や旋回経路が含まれている。つまり、図5の例では、走行地点P00からP04までが直進走行であり、P04からP05までが旋回走行であり、P05から再び直進走行と旋回走行が繰り返されている。
 図5で示された走行例では、所定の時点(T00・・・T06で示している)における自車位置である走行地点が、P00・・・P06で示されており、各走行地点の間の距離である走行距離が、L00・・・L06で示されている。この走行距離は、衛星測位モジュール80からの測位データに基づいて算出されるので、各走行距離に必要とした走行時間(t00・・・t06で示している)は、スリップなどによる走行距離の誤差が排除された実距離走行時間となる。
 各走行地点間の目標走行時間(rt00・・・rt06で示している)が目標走行時間設定部62で設定されている場合、目標走行時間と実走行距離時間との差である時間ずれが算出される。この時間ずれが許容範囲を超えた場合、警告の報知や走行停止が行われる。また、走行スタートからの実走行距離時間を積算することで、その時点までの積算実距離走行時間を算出することができる。この算出された積算実距離走行時間も目標の積算実距離走行時間との差が許容範囲を超えた場合(時点T04)、警告の報知や走行停止が行われる。なお、図5では、各積算実距離走行時間が一定長さ(一定時間)で図示されているが、実際にはほとんど一定長さにはならない。
 実走行距離時間が目標走行時間を上回った場合、スリップが発生していると見なすことができるので、実走行距離時間と目標走行時間とからスリップ率(図5ではk01・・・k06で示している)が算出され、記録される。スリップ率が予め設定された許容限度を超えた場合、警告が報知される。もちろん、スリップ率は、後輪12の車軸回転数から算出される見かけの走行距離と、測位データに基づいて算出された走行距離とから、スリップ率の算出が可能であるので、スリップ率算出部502は、この方法で算出されたスリップ率を用いてもよい。
〔別の実施形態〕
(1)上述した実施形態では、作業地走行での走行時間管理を実行する機能は、実質的に作業車に構築されていたが、これらの機能のいくつかは、作業車以外に、例えば管理コンピュータ100に分散することも可能である。そのような時間ベース管理システムの一例が図6に示されている。このシステムでは、目標走行経路を設定する経路設定部61、目標走行時間設定部62が、管理センタの管理コンピュータ100または管理者の通信端末に構築され、目標走行経路と目標走行時間とが作業車に転送される。実走行時間を算出する走行時間算出部52やスリップ率算出部502は、利用するデータの転送などの理由から作業車に構築されるのが好都合である。ただし、作業管理部50は、作業車または管理コンピュータまたは管理者の通信端末のいずれか都合のよい方に構築可能である。作業管理部50は、目標走行時間と実走行時間とを比較評価し、目標走行時間と実走行時間との相違を示す相違値を算出する。そして、当該相違値が所定のしきい値を超えた場合、作業管理部50は、作業走行異常情報(警告)を出力する。また、作業管理部50は、スリップ率算出部502により算出されたスリップ率を入力し、当該相違値に対するスリップ率の影響を評価することもできる。
(2)上述した実施形態では、作業車として、ロータリ耕耘機を作業装置30として装備したトラクタを、作業車として取り上げたが、そのようなトラクタ以外にも、例えば、田植機、施肥機、コンバインなどの農作業車、あるいは作業装置30としてドーザやローラ等を備える建設作業車等の種々の作業車も、実施形態として採用することができる
(3)図1、図4、図6で示された機能ブロック図における各機能部は、主に説明目的で区分けされている。実際には、各機能部は他の機能部と統合または複数の機能部に分けることができる。
 本発明は、走行しながら対地作業を行う作業車に適用可能である。特に、目標走行経路に沿って、自動走行する自動走行作業車に好適である。
1   :車体
10  :走行機構
4   :制御ユニット
40  :走行制御部
41  :手動走行制御部
42  :自動走行制御部
50  :作業管理部
501 :進捗度算出部
502 :スリップ率算出部
51  :走行距離算出部
52  :走行時間算出部
54  :作業制御部
55  :記録部
56  :報知部
61  :経路設定部
62  :目標走行時間設定部
63  :経路生成部
7   :出力処理部
70  :通信処理部
73  :報知デバイス
8   :入力処理部
80  :衛星測位モジュール

Claims (12)

  1.  走行機構を装備する車体と、
     前記車体に装備され、作業地に対する対地作業を行う作業装置と、
     測位データを出力する衛星測位モジュールと、
     前記測位データに基づいて前記車体の走行距離を算出する走行距離算出部と、
     前記走行距離算出部で算出された走行距離の走行に要した時間から実距離走行時間を算出する走行時間算出部と、
     前記実距離走行時間に基づいて前記対地作業を管理する作業管理部と、
    を備えた作業車。
  2.  前記作業地に対する対地作業の目標走行時間を設定する目標走行時間設定部が備えられ、前記作業管理部は、前記目標走行時間と前記実距離走行時間とを比較して、前記対地作業の進捗度を算出する請求項1に記載の作業車。
  3.  前記進捗度が走行中に報知可能である請求項2に記載の作業車。
  4.  前記目標走行時間と前記実距離走行時間との時間ずれが所定時間を超えた場合、緊急停止指令が出力される請求項2または3に記載の作業車。
  5.  前記作業管理部は、直進走行時における前記目標走行時間と前記実距離走行時間との時間ずれである直進時間ずれと、旋回走行時における前記目標走行時間と前記実距離走行時間との時間ずれである旋回時間ずれと、を算出する請求項2から4のいずれか一項に記載の作業車。
  6.  前記目標走行時間と前記実距離走行時間との時間ずれに基づいて前記車体のスリップ率を算出するスリップ率算出部が備えられている請求項2から4のいずれか一項に記載の作業車。
  7.  前記スリップ率算出部は、直進走行時における前記目標走行時間と前記実距離走行時間との時間ずれから直進走行時のスリップ率である直進スリップ率を算出するとともに、旋回走行時における前記目標走行時間と前記実距離走行時間との時間ずれから旋回走行時のスリップ率である旋回スリップ率を算出する請求項6に記載の作業車。
  8.  前記作業管理部で管理される管理情報をデータ転送可能に記録する記録部と、前記管理情報を報知する報知部と、が備えられている請求項1から7のいずれか一項に記載の作業車。
  9.  前記作業地における前記車体の目標走行経路を設定する経路設定部と、前記目標走行経路及び前記測位データに基づいて前記車体を自動走行させる自動走行指令を生成する自動走行制御部が備えられている請求項1から8のいずれか一項に記載の作業車。
  10.  走行機構を装備する車体に対地作業を行う作業装置を装備した作業車のための時間ベース管理システムであって、
     前記作業車による作業走行のための目標走行経路を設定する経路設定部と、
     前記目標走行経路に沿って設定された複数の作業走行点に目標走行時間を割り当てる目標走行時間設定部と、
     前記作業車の実際の作業走行時の前記作業走行点における経過時間を実走行時間として算出する走行時間算出部と、
     前記作業走行点における前記目標走行時間と前記実走行時間とを比較評価する作業管理部と、
    を備えた作業車のための時間ベース管理システム。
  11.  前記目標走行時間と前記実走行時間との相違を示す相違値が、所定のしきい値を超えた場合、作業走行異常が報知される請求項10に記載の作業車のための時間ベース管理システム。
  12.  前記車体のスリップ率を算出するスリップ率算出部が備えられ、かつ
     前記目標走行時間と前記実走行時間との相違を示す相違値が、所定のしきい値を超えた場合、前記相違に対する前記スリップ率の影響が評価される請求項10または11に記載の作業車のための時間ベース管理システム。
PCT/JP2016/086232 2016-05-26 2016-12-06 作業車及び作業車に適用される時間ベース管理システム WO2017203733A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP16903212.5A EP3466232B1 (en) 2016-05-26 2016-12-06 Work vehicle and time-based management system applicable to the work vehicle
CN201680084238.4A CN109068576B (zh) 2016-05-26 2016-12-06 作业车及在作业车中应用的基于时间的管理系统
US16/093,678 US11144061B2 (en) 2016-05-26 2016-12-06 Work vehicle and time-based management system applicable to the work vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-105365 2016-05-26
JP2016105365A JP6697955B2 (ja) 2016-05-26 2016-05-26 作業車及び作業車に適用される時間ベース管理システム

Publications (1)

Publication Number Publication Date
WO2017203733A1 true WO2017203733A1 (ja) 2017-11-30

Family

ID=60411223

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/086232 WO2017203733A1 (ja) 2016-05-26 2016-12-06 作業車及び作業車に適用される時間ベース管理システム

Country Status (5)

Country Link
US (1) US11144061B2 (ja)
EP (1) EP3466232B1 (ja)
JP (1) JP6697955B2 (ja)
CN (1) CN109068576B (ja)
WO (1) WO2017203733A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015010726A1 (de) * 2015-08-17 2017-02-23 Liebherr-Werk Biberach Gmbh Verfahren zur Baustellenüberwachung, Arbeitsmaschine und System zur Baustellenüberwachung
US10662613B2 (en) * 2017-01-23 2020-05-26 Built Robotics Inc. Checking volume in an excavation tool
JP7006682B2 (ja) * 2017-03-31 2022-01-24 日本電気株式会社 作業管理装置、作業管理方法およびプログラム
JP6951231B2 (ja) 2017-12-19 2021-10-20 株式会社クボタ 水田作業機
JP6918713B2 (ja) * 2018-01-10 2021-08-11 ヤンマーパワーテクノロジー株式会社 走行速度制御装置
US10820508B2 (en) * 2018-08-20 2020-11-03 Cnh Industrial America Llc System and method for operating an agricultural harvester
JP7192667B2 (ja) * 2019-06-06 2022-12-20 井関農機株式会社 自律走行作業車
JP7159121B2 (ja) * 2019-06-28 2022-10-24 株式会社クボタ 作業車両
JP7438851B2 (ja) 2020-06-01 2024-02-27 本田技研工業株式会社 移動体制御装置、移動体、移動体管理システム、移動体制御方法、およびプログラム
JP7259814B2 (ja) * 2020-08-17 2023-04-18 井関農機株式会社 作業車両
US20220287218A1 (en) * 2021-03-15 2022-09-15 Kubota Corporation Work vehicle and control system for work vehicle

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63148909A (ja) * 1986-12-11 1988-06-21 井関農機株式会社 収穫機における自動操向制御装置
JP2002358122A (ja) * 2001-05-31 2002-12-13 Yanmar Agricult Equip Co Ltd 農業用作業車
JP2003303021A (ja) * 2002-04-10 2003-10-24 Mitsubishi Agricult Mach Co Ltd 作業用走行車
US6901319B1 (en) * 2004-07-06 2005-05-31 Deere & Company System and method for controlling a ground vehicle
JP2005315768A (ja) * 2004-04-30 2005-11-10 National Agriculture & Bio-Oriented Research Organization Gps信号をトリガとする計測システム
JP2010142185A (ja) * 2008-12-20 2010-07-01 Iseki & Co Ltd 自律走行苗移植機
JP2015019640A (ja) * 2013-07-22 2015-02-02 株式会社クボタ 車輪駆動式作業車
WO2016076289A1 (ja) * 2014-11-13 2016-05-19 ヤンマー株式会社 農用作業車

Family Cites Families (98)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2566745B2 (ja) * 1994-04-29 1996-12-25 三星重工業株式会社 電子制御油圧掘削機の自動平坦作業方法
WO1998032645A1 (fr) * 1997-01-23 1998-07-30 Yanmar Agricultual Equipment Co., Ltd. Machine agricole mobile
US6108949A (en) * 1997-12-19 2000-08-29 Carnegie Mellon University Method and apparatus for determining an excavation strategy
US6523765B1 (en) * 1998-03-18 2003-02-25 Hitachi Construction Machinery Co., Ltd. Automatically operated shovel and stone crushing system comprising the same
US6167336A (en) * 1998-05-18 2000-12-26 Carnegie Mellon University Method and apparatus for determining an excavation strategy for a front-end loader
US6363632B1 (en) * 1998-10-09 2002-04-02 Carnegie Mellon University System for autonomous excavation and truck loading
US6823616B1 (en) * 2001-07-06 2004-11-30 Boskalis Westminister Inc. Method of excavating
US6711838B2 (en) * 2002-07-29 2004-03-30 Caterpillar Inc Method and apparatus for determining machine location
US7627410B2 (en) * 2005-12-12 2009-12-01 Caterpillar Inc. Machine payload measurement dial-a-load system
US20070240341A1 (en) * 2006-04-12 2007-10-18 Esco Corporation UDD dragline bucket machine and control system
US7509198B2 (en) * 2006-06-23 2009-03-24 Caterpillar Inc. System for automated excavation entry point selection
US7853382B2 (en) * 2006-09-29 2010-12-14 Deere & Company Loader boom control system
US7516563B2 (en) * 2006-11-30 2009-04-14 Caterpillar Inc. Excavation control system providing machine placement recommendation
AU2008229615B2 (en) * 2007-03-21 2012-05-17 Commonwealth Scientific And Industrial Research Organisation Method for planning and executing obstacle-free paths for rotating excavation machinery
US7832126B2 (en) * 2007-05-17 2010-11-16 Siemens Industry, Inc. Systems, devices, and/or methods regarding excavating
DE202007008557U1 (de) * 2007-06-19 2008-10-30 Liebherr-Werk Bischofshofen Ges.M.B.H. System zum automatischen Bewegen von Material
US7711842B2 (en) * 2007-06-29 2010-05-04 Caterpillar Inc. System and method for remote machine data transfer
JP4998324B2 (ja) * 2008-02-26 2012-08-15 井関農機株式会社 走行車両
DE102008015277A1 (de) * 2008-03-20 2009-09-24 Deere & Company, Moline Verfahren und Vorrichtung zur Lenkung einer zweiten landwirtschaftlichen Maschine, die relativ zu einer ersten landwirtschaftlichen Maschine über ein Feld lenkbar ist
JP5391717B2 (ja) * 2009-02-16 2014-01-15 井関農機株式会社 可変散布装置
JP2010187588A (ja) 2009-02-17 2010-09-02 Kao Corp α−アミラーゼの生産方法
JP2012029600A (ja) 2010-07-29 2012-02-16 Iseki & Co Ltd 苗移植機
US8639393B2 (en) * 2010-11-30 2014-01-28 Caterpillar Inc. System for automated excavation planning and control
US9269200B2 (en) * 2010-12-30 2016-02-23 Agco Corporation Real-time evaluation of machine performance for fleet management
US8655505B2 (en) * 2011-02-18 2014-02-18 Caterpillar Inc. Worksite management system implementing remote machine reconfiguration
JP5727822B2 (ja) * 2011-03-15 2015-06-03 株式会社クボタ トラクタ
CN103004340B (zh) * 2011-09-20 2017-04-12 井关农机株式会社 苗移植机
US9206587B2 (en) * 2012-03-16 2015-12-08 Harnischfeger Technologies, Inc. Automated control of dipper swing for a shovel
JP5597222B2 (ja) * 2012-04-11 2014-10-01 株式会社小松製作所 油圧ショベルの掘削制御システム
US8620535B2 (en) * 2012-05-21 2013-12-31 Caterpillar Inc. System for automated excavation planning and control
ITMI20120922A1 (it) * 2012-05-28 2013-11-29 Snowgrolic S A R L Metodo di controllo, programma per elaboratore elettronico e dispositivo di controllo di un veicolo cingolato
US20140012404A1 (en) * 2012-07-06 2014-01-09 Caterpillar Inc. Methods and systems for machine cut planning
US9234750B2 (en) * 2012-07-30 2016-01-12 Caterpillar Inc. System and method for operating a machine
US20140064897A1 (en) * 2012-08-29 2014-03-06 Deere And Company Single stick operation of a work tool
AU2013227999A1 (en) * 2012-09-13 2014-03-27 Technological Resources Pty Ltd A system for, and a method of, controlling operation of a vehicle in a defined area
US8755977B2 (en) * 2012-09-21 2014-06-17 Siemens Industry, Inc. Method and system for preemptive load weight for mining excavating equipment
US8838331B2 (en) * 2012-09-21 2014-09-16 Caterpillar Inc. Payload material density calculation and machine using same
US9014922B2 (en) * 2012-12-20 2015-04-21 Caterpillar Inc. System and method for optimizing a cut location
US8948981B2 (en) * 2012-12-20 2015-02-03 Caterpillar Inc. System and method for optimizing a cut location
US20140277905A1 (en) * 2013-03-15 2014-09-18 Deere & Company Methods and apparatus to manage a fleet of work machines
CA2888742C (en) * 2013-09-23 2015-09-15 Jason G. Tatge Farming data collection and exchange system
WO2015072484A1 (ja) * 2013-11-15 2015-05-21 株式会社小松製作所 作業車両及びその制御方法
US10380704B2 (en) * 2014-01-14 2019-08-13 Deere & Company Operator performance recommendation generation
JP6170185B2 (ja) * 2014-02-06 2017-07-26 ヤンマー株式会社 作業車両の走行経路の設定方法
KR102472494B1 (ko) * 2014-03-28 2022-11-29 얀마 파워 테크놀로지 가부시키가이샤 자율 주행 작업 차량
US9267837B2 (en) * 2014-03-31 2016-02-23 Siemens Industry, Inc. Methods and systems for active load weight for mining excavating equipment
US9458598B2 (en) * 2014-04-24 2016-10-04 Komatsu Ltd. Work vehicle
US9454155B2 (en) * 2014-06-02 2016-09-27 Trimble Navigation Limited Implement guidance
US9404239B2 (en) * 2014-06-09 2016-08-02 Caterpillar Inc. Sub-bin refinement for autonomous machines
AU2014203829A1 (en) * 2014-07-11 2016-01-28 Caterpillar Of Australia Pty Ltd System and method for determining machine operational state
US9891605B2 (en) * 2014-08-06 2018-02-13 Caterpillar Inc. Grade control cleanup pass using volume constraints
US10109024B2 (en) * 2014-09-05 2018-10-23 The Climate Corporation Collecting data to generate an agricultural prescription
US9228321B1 (en) * 2014-09-12 2016-01-05 Caterpillar Inc. System and method for adjusting the operation of a machine
US9469967B2 (en) * 2014-09-12 2016-10-18 Caterpillar Inc. System and method for controlling the operation of a machine
US9256227B1 (en) * 2014-09-12 2016-02-09 Caterpillar Inc. System and method for controlling the operation of a machine
US9388550B2 (en) * 2014-09-12 2016-07-12 Caterpillar Inc. System and method for controlling the operation of a machine
US9760081B2 (en) * 2014-09-12 2017-09-12 Caterpillar Inc. System and method for optimizing a work implement path
US9360334B2 (en) * 2014-09-12 2016-06-07 Caterpillar Inc. System and method for setting an end location of a path
US9605415B2 (en) * 2014-09-12 2017-03-28 Caterpillar Inc. System and method for monitoring a machine
US20160076222A1 (en) * 2014-09-12 2016-03-17 Caterpillar Inc. System and Method for Optimizing a Work Implement Path
US9297147B1 (en) * 2014-09-30 2016-03-29 Caterpillar Inc. Semi-autonomous tractor system crest ramp removal
EP3207187B1 (en) * 2014-10-13 2019-11-20 Sandvik Mining and Construction Oy Arrangement for controlling a work machine
US20160201298A1 (en) * 2015-01-08 2016-07-14 Caterpillar Inc. Systems and Methods for Constrained Dozing
AR105551A1 (es) * 2015-04-07 2017-10-18 Gates Corp Sistema y método de gestión del ciclo de vida de un producto
US9563867B2 (en) * 2015-04-13 2017-02-07 Caterpillar Inc. System for allocating and monitoring machines
US10186004B2 (en) * 2015-05-20 2019-01-22 Caterpillar Inc. System and method for evaluating a material movement plan
US9587369B2 (en) * 2015-07-02 2017-03-07 Caterpillar Inc. Excavation system having adaptive dig control
US9974225B2 (en) * 2016-01-14 2018-05-22 Cnh Industrial America Llc System and method for generating and implementing an end-of-row turn path
US9968025B2 (en) * 2016-01-14 2018-05-15 CNH Industrial American LLC System and method for generating and implementing an end-of-row turn path
AU2016216347B2 (en) * 2016-03-01 2019-05-23 Komatsu Ltd. Evaluation device and evaluation method
US10066367B1 (en) * 2016-06-20 2018-09-04 Robo Industries, Inc. System for determining autonomous adjustments to an implement position and angle
JP2018021348A (ja) * 2016-08-02 2018-02-08 株式会社小松製作所 作業車両の制御システム、制御方法、及び作業車両
JP2018021347A (ja) * 2016-08-02 2018-02-08 株式会社小松製作所 作業車両の制御システム、制御方法、及び作業車両
JP2018021346A (ja) * 2016-08-02 2018-02-08 株式会社小松製作所 作業車両の制御システム、制御方法、及び作業車両
JP2018021345A (ja) * 2016-08-02 2018-02-08 株式会社小松製作所 作業車両の制御システム、制御方法、及び作業車両
JP7122800B2 (ja) * 2016-08-05 2022-08-22 株式会社小松製作所 作業車両の制御システム、制御方法、及び作業車両
US10860016B1 (en) * 2016-09-07 2020-12-08 Robo Industries, Inc. Automated site based mission planning system
US10234368B2 (en) * 2016-10-13 2019-03-19 Deere & Company System and method for load evaluation
US10662613B2 (en) * 2017-01-23 2020-05-26 Built Robotics Inc. Checking volume in an excavation tool
US10267018B2 (en) * 2017-01-27 2019-04-23 Deere & Company Work vehicle load control system and method
CA2991823C (en) * 2017-01-31 2020-04-28 Kazuhiro Hashimoto Control system for work vehicle, and method for setting trajectory of work implement
US10850734B2 (en) * 2017-04-03 2020-12-01 Motional Ad Llc Processing a request signal regarding operation of an autonomous vehicle
US10479354B2 (en) * 2017-05-02 2019-11-19 Cnh Industrial America Llc Obstacle detection system for a work vehicle
US10208453B2 (en) * 2017-05-16 2019-02-19 Caterpillar Inc. Methods and systems for monitoring work zone in worksite
US10407878B2 (en) * 2017-05-23 2019-09-10 Caterpillar Inc. System and method for dumping material
US10151078B1 (en) * 2017-05-23 2018-12-11 Caterpillar Trimble Control Technologies Llc Blade control below design
US10472803B2 (en) * 2017-08-07 2019-11-12 Caterpillar Inc. System and method for determining stale terrain value of worksite
JP6868938B2 (ja) * 2017-08-24 2021-05-12 日立建機株式会社 建設機械の荷重計測システム
US20190101641A1 (en) * 2017-10-04 2019-04-04 Caterpillar Paving Products Inc. Work tool collision avoidance system for underground objects
US10738439B2 (en) * 2018-01-19 2020-08-11 Deere & Company Open loop electrohydraulic bucket position control method and system
US20200019192A1 (en) * 2018-07-13 2020-01-16 Caterpillar Paving Products Inc. Object detection and implement position detection system
US20200032490A1 (en) * 2018-07-26 2020-01-30 Built Robotics Inc. Filling earth at a location within a dig site using an excavation vehicle
US10794039B2 (en) * 2018-08-08 2020-10-06 Caterpillar Inc. System and method for controlling the operation of a machine
US10820508B2 (en) * 2018-08-20 2020-11-03 Cnh Industrial America Llc System and method for operating an agricultural harvester
US11041291B2 (en) * 2018-09-14 2021-06-22 Deere & Company Controlling a work machine based on sensed variables
US10774506B2 (en) * 2018-09-28 2020-09-15 Caterpillar Inc. System and method for controlling the operation of a machine
US10832435B1 (en) * 2019-04-26 2020-11-10 Caterpillar Inc. Determining payload carrier volume using a neural network
US10849264B1 (en) * 2019-05-21 2020-12-01 Farmobile Llc Determining activity swath from machine-collected worked data

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63148909A (ja) * 1986-12-11 1988-06-21 井関農機株式会社 収穫機における自動操向制御装置
JP2002358122A (ja) * 2001-05-31 2002-12-13 Yanmar Agricult Equip Co Ltd 農業用作業車
JP2003303021A (ja) * 2002-04-10 2003-10-24 Mitsubishi Agricult Mach Co Ltd 作業用走行車
JP2005315768A (ja) * 2004-04-30 2005-11-10 National Agriculture & Bio-Oriented Research Organization Gps信号をトリガとする計測システム
US6901319B1 (en) * 2004-07-06 2005-05-31 Deere & Company System and method for controlling a ground vehicle
JP2010142185A (ja) * 2008-12-20 2010-07-01 Iseki & Co Ltd 自律走行苗移植機
JP2015019640A (ja) * 2013-07-22 2015-02-02 株式会社クボタ 車輪駆動式作業車
WO2016076289A1 (ja) * 2014-11-13 2016-05-19 ヤンマー株式会社 農用作業車

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3466232A4 *

Also Published As

Publication number Publication date
CN109068576A (zh) 2018-12-21
JP2017209070A (ja) 2017-11-30
JP6697955B2 (ja) 2020-05-27
US20190072972A1 (en) 2019-03-07
EP3466232A4 (en) 2020-01-15
US11144061B2 (en) 2021-10-12
EP3466232B1 (en) 2022-04-27
EP3466232A1 (en) 2019-04-10
CN109068576B (zh) 2021-07-13

Similar Documents

Publication Publication Date Title
WO2017203733A1 (ja) 作業車及び作業車に適用される時間ベース管理システム
JP6999221B2 (ja) 自動作業システム
US10474153B2 (en) Work vehicle, slope travel control system for work vehicle, and slope travel control method for work vehicle
KR102140854B1 (ko) 자율 주행 작업 차량의 주행 경로 설정 방법
KR102140859B1 (ko) 병주 작업 시스템
US20140170617A1 (en) Monitoring System for a Machine
WO2015118731A1 (ja) 併走作業システムの制御装置
US11937526B2 (en) Control device for work vehicle configured to travel autonomously
JP2016011024A (ja) 植播系圃場作業機
JP6925133B2 (ja) 作業車のための衛星電波感度分布管理システム
JP7069364B2 (ja) 作業車両
JP7034799B2 (ja) 作業車
JP6980001B2 (ja) 作業車協調システム
JP6945353B2 (ja) 自動走行作業車
US20150204901A1 (en) System and method for determining ground speed of machine
WO2020158295A1 (ja) 作業車両用の目標経路生成システム
JP6972225B2 (ja) 時間ベース管理システム
JP6879183B2 (ja) 農作業情報管理システム
KR102496210B1 (ko) 농사용 차량의 직진구동을 위한 기준값 조정 방법 및 그 장치
US20230251669A1 (en) Path determination for automatic mowers
JP7038651B2 (ja) 圃場作業機及び農作業支援システム
EP3901722A1 (en) Travel state display device and automated travel system
JP2023126466A (ja) 自動走行方法及び自動走行システム
KR20240020638A (ko) 자율주행식 농사용 차량의 작업 경로 생성 장치 및 방법
TW202039285A (zh) 自動行駛系統

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16903212

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016903212

Country of ref document: EP

Effective date: 20190102