WO2017199468A1 - 内部応力制御膜の形成方法 - Google Patents

内部応力制御膜の形成方法 Download PDF

Info

Publication number
WO2017199468A1
WO2017199468A1 PCT/JP2017/002484 JP2017002484W WO2017199468A1 WO 2017199468 A1 WO2017199468 A1 WO 2017199468A1 JP 2017002484 W JP2017002484 W JP 2017002484W WO 2017199468 A1 WO2017199468 A1 WO 2017199468A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
internal stress
control film
stress control
pressure
Prior art date
Application number
PCT/JP2017/002484
Other languages
English (en)
French (fr)
Inventor
賢明 中野
大典 平松
幸展 沼田
Original Assignee
株式会社アルバック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アルバック filed Critical 株式会社アルバック
Priority to CN201780005953.9A priority Critical patent/CN108474107B/zh
Priority to US16/071,532 priority patent/US10975465B2/en
Priority to KR1020187017953A priority patent/KR102140914B1/ko
Priority to JP2018518073A priority patent/JP6653383B2/ja
Publication of WO2017199468A1 publication Critical patent/WO2017199468A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • C23C14/0042Controlling partial pressure or flow rate of reactive or inert gases with feedback of measurements
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3435Applying energy to the substrate during sputtering
    • C23C14/345Applying energy to the substrate during sputtering using substrate bias
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3492Variation of parameters during sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/033Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers
    • H01L21/0334Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane
    • H01L21/0337Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane characterised by the process involved to create the mask, e.g. lift-off masks, sidewalls, or to modify the mask, e.g. pre-treatment, post-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/2855Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table by physical means, e.g. sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/32051Deposition of metallic or metal-silicide layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics

Definitions

  • the present invention relates to a method for forming an internal stress control film capable of separately creating a thin film having a desired film stress from the compression side to the tension side while maintaining a high film density.
  • the thin film material, thin film thickness, production conditions such as pressure and temperature when forming the thin film, or the thin film and the underlying of the thin film are configured.
  • an internal stress is generated in the thin film.
  • Such internal stress includes compressive stress in which atoms are compressed from the reference state and the interatomic distance is extended, and atoms are pulled from the reference state.
  • Patent Documents 1 and 2 a technique for separately forming a thin film having two types of internal stresses (compressive stress and tensile stress) has not been realized only by changing the production conditions when forming the thin film.
  • the range of the interlayer insulating film to be etched is limited when dry etching the interlayer insulating film, which is the object to be processed, in order to obtain a predetermined wiring pattern.
  • a hard mask is used.
  • the hard mask for example, a titanium nitride (TiN) film is preferably used, but since resistance to etching is required, it is required to have a high density. Further, when the internal stress of the titanium nitride film is high, the wiring pattern may be deformed, and therefore it is desirable that the internal stress is low (the absolute value is small).
  • the base film formed before the hard mask is manufactured may have internal stresses generated in various directions such as compressive stress and tensile stress. In such a case, it is necessary to reduce the stress acting on the entire film including the hard mask (a laminate of the base film and the hard mask).
  • the base film formed before forming the hard mask has a high compressive stress
  • a hard mask made of a titanium nitride film having a high stress (tensile stress) is formed on the tensile side, and the entire film is formed. It is important to balance stress.
  • the stress of the titanium nitride film itself in order to offset the stress generated before the hard mask is formed, the stress is applied from a high compressive stress to a high tensile stress (in terms of numerical values, about ⁇ 2 GPa to +2 GPa). Development of control technology was expected.
  • the titanium nitride film has a high compressive stress (compression stress).
  • compression stress compressive stress
  • the film density decreases as shown in FIG. While maintaining the high density of the titanium nitride film, reduce the stress on the compression side, or change the stress on the compression side to the stress on the compression side, and further change the stress on the compression side to the stress on the high tension side.
  • FIG. 12A to 12D are diagrams showing the relationship between the structure of the titanium nitride film and the film stress.
  • FIG. 12A is a schematic diagram showing a cross section of the film, and shows a state in which Tensile Stress is generated so that the film (titanium nitride film) contracts with respect to the substrate (object to be processed).
  • FIG. 12B is an enlarged view of FIG. 12A and shows a state in which the titanium nitride film has a columnar structure and a gap exists between adjacent columnar structures.
  • FIG. 12C is a STEM photograph showing a cross section of the titanium nitride film, and the state shown in FIG.
  • the present invention has been devised in view of such a conventional situation, and it is possible to have a large stress and a high density on the Tensile side only by selecting a manufacturing condition when forming a thin film.
  • Another object of the present invention is to provide a method for forming an internal stress control film.
  • a method for forming an internal stress control film according to the first aspect of the present invention is a method for forming an internal stress control film on one surface of an object to be processed by a sputtering method, and a process for forming the internal stress control film.
  • the pressure of the gas is selected from a pressure region higher than the threshold value 5 (Pa), and the stress of the object to be processed when bias is applied to the object to be processed is closer to the Tensile side than the stress when bias is not applied. Large stress and high density.
  • the stress before applying Bias has a Tensile Stress.
  • a method for forming an internal stress control film according to a second aspect of the present invention is a method of forming an internal stress control film on one surface of an object to be processed by a sputtering method, wherein the bias BS applied to the object to be processed is 0.
  • the power density of the bias BS is in the range of 1/150 or less of the power density of the bias BT applied to the target, and the pressure of the process gas when forming the internal stress control film is a threshold value 5 ( Pa) is selected from a higher pressure region.
  • a method for forming an internal stress control film according to a third aspect of the present invention is a method for forming an internal stress control film on one surface of an object to be processed by a sputtering method, and a process for forming the internal stress control film.
  • the pressure of the gas is selected from a pressure region higher than a threshold value 5 (Pa)
  • the internal stress control film is made of titanium nitride, a target made of titanium, and a gas containing nitrogen as the process gas is used.
  • a method for forming an internal stress control film according to a fourth aspect of the present invention is a method for forming an internal stress control film on one surface of an object to be processed by a sputtering method, and a process for forming the internal stress control film.
  • the pressure of the gas is selected from a pressure region higher than a threshold value 5 (Pa)
  • the internal stress control film is made of titanium nitride, a target made of titanium, and a gas containing nitrogen as the process gas is used.
  • the gas containing nitrogen constituting the process gas is composed of argon gas and nitrogen gas, and occupies the gas containing nitrogen.
  • the flow rate ratio of nitrogen gas is 50 (%) or more.
  • the gas containing nitrogen constituting the process gas is composed of argon gas and nitrogen gas, and occupies the gas containing nitrogen.
  • the flow rate ratio of nitrogen gas is 70 (%) or more.
  • a weak bias BS is applied to the object to be processed when the internal stress control film is formed on one surface of the object to be processed by sputtering.
  • the internal stress control film is formed on the object to be processed with the bias BS applied.
  • a strong Tensile Stress film can be obtained by applying weak Bias at a process gas pressure (pressure at which a thin film is formed, discharge pressure) of a threshold value 5 (Pa) or more.
  • Pa threshold value 5
  • the titanium nitride film is manufactured so as to satisfy the above index, the film density is 4.6 (g / cm 3 ) or more, or 5.0 (g / cm 3 ) or more, and the film stress is tensile (Tensile).
  • the titanium nitride film having the film stress on the () side can be stably produced.
  • STEM Sccanning Transmission Electron Microscope
  • 5 is a graph showing the relationship between Pw-Ratio (sub./target) and film density based on Table 2. It is a graph (graph G1) which shows the relationship between the pressure at the time of forming a thin film, and Pw-Ratio (sub./target). It is a graph (graph G2) which shows the relationship between the pressure at the time of forming a thin film, and Ratio (sub./Rate). It is a graph which shows the relationship between Bias Power and film
  • the substrate W constituting the object to be processed is a silicon wafer and titanium nitride is formed on the substrate W as an internal stress control film will be described in detail.
  • FIG. 1 is a schematic configuration diagram showing an example of a sputtering apparatus SM that can carry out a method of manufacturing an internal stress control film according to an embodiment of the present invention.
  • the sputtering apparatus SM is a magnetron type sputtering apparatus and includes a vacuum chamber 1 that defines a vacuum processing chamber 1a.
  • a cathode unit C is attached to the ceiling of the vacuum chamber 1.
  • the direction facing the ceiling side of the vacuum chamber 1 is referred to as “up”, and the direction facing the bottom side of the vacuum chamber 1 is described as “down”.
  • the cathode unit C includes a target 2 that is a base material of an internal stress control film, and a magnet unit 3 that is disposed above the target 2.
  • the target 2 is made of titanium (for example, a target containing titanium and an unavoidable element), and is formed in a circular shape in plan view by a known method according to the outline of the substrate W constituting the object to be processed.
  • a backing plate 21 that cools the target 2 during film formation by sputtering is attached, and the sputtering surface 2a is located on the lower side (not shown). It is attached to the vacuum chamber 1 through an insulator.
  • An output from a sputtering power source E1 such as a DC power source is connected to the target 2.
  • a sputtering power source E1 such as a DC power source
  • direct current power (30 kW or less) having a negative potential is applied to the target 2. It is configured.
  • the magnet unit 3 disposed above the target 2 generates a magnetic field in a space below the sputtering surface 2 a of the target 2.
  • the magnet unit 3 has a known structure that efficiently ionizes sputtered particles scattered from the target 2 by supplementing electrons etc. ionized below the sputtering surface 2a during sputtering. Detailed description of the magnet unit 3 is omitted.
  • a stage 4 is disposed at the bottom of the vacuum chamber 1 so as to face the sputtering surface 2 a of the target 2.
  • the substrate W placed on the stage 4 is positioned and held so that the film formation surface of the substrate W faces upward.
  • the distance between the target 2 and the substrate W may be set to 20 to 800 mm in consideration of productivity, the number of scattering, and the like, preferably 40 to 450 mm, and more preferably 40 to 100 mm.
  • an output from a bias power source E2 such as an RF power source is connected to the stage 4 so that AC power can be input to the substrate W when a thin film is formed.
  • the stage 4 has a built-in temperature control device H (temperature control means), and is configured to control the temperature of the substrate W when forming a thin film as necessary.
  • a first gas pipe 5a for introducing a sputtering gas which is a rare gas such as argon and a second gas pipe 5b for introducing a nitrogen-containing gas are connected to the side wall of the vacuum chamber 1.
  • Mass flow controllers 51a and 51b are interposed in the first gas pipe 5a and the second gas pipe 5b, respectively, and communicate with a gas source (not shown).
  • a gas source not shown.
  • the sputter gas and the reaction gas whose flow rates are controlled are introduced into the vacuum processing chamber 1a that is evacuated at a constant evacuation speed by an evacuation apparatus (evacuation means) described later. Therefore, the pressure (total pressure) in the vacuum processing chamber 1a is kept substantially constant during film formation.
  • the sputtering apparatus SM includes a known control device (control means) including a microcomputer, a sequencer, and the like. This control device is configured to comprehensively manage the operation of the power sources E1 and E2, the operation of the mass flow controllers 51a and 51b, the operation of the vacuum exhaust device, and the like.
  • a substrate W for example, a silicon wafer
  • the vacuum exhaust device is operated to evacuate the vacuum processing chamber 1a to a predetermined degree of vacuum (for example, 1 ⁇ 10 ⁇ 5 Pa).
  • the mass flow controllers 51a and 51b are controlled to introduce argon gas and nitrogen gas into the vacuum processing chamber 1a at desired flow rates.
  • the gas obtained by adding nitrogen gas to argon gas is the “gas containing nitrogen” in the present invention.
  • the argon gas and the nitrogen gas are each controlled to a desired flow rate so that the inside of the vacuum processing chamber 1a has a predetermined pressure (total pressure) in the range of 0.5 to 40 Pa.
  • the target made from titanium is a target which has titanium as a main component, and a main component points out that titanium is 50% or more of weight ratio. It is preferable to use a target made of titanium and inevitable impurities.
  • a strong Tensile Stress film can be obtained by applying a weak bias of about 5 (W), for example. Furthermore, by increasing the value of Bias to be applied, the stress can be changed from the Tensile side to the Compressive side while maintaining a high film density.
  • the bias BS applied to the object to be processed is greater than 0, and the power density of the bias BS is within a range of 1/150 or less of the power density of the bias BT applied to the target.
  • the method of manufacturing an internal stress control film according to the embodiment of the present invention is applied to a titanium nitride film that grows in a columnar shape on a target object in a film forming atmosphere at a high pressure and a large amount of nitrogen.
  • Film formation is performed while applying a weak bias BS. Therefore, according to the embodiment of the present invention, the object to be processed is tensioned from the compressive side without causing abrupt damage to the columnar structure of the titanium nitride film while maintaining a high film density.
  • a film having a desired film stress up to the side can be formed separately. Therefore, the present invention provides a manufacturing method capable of forming a titanium nitride film having a necessary film stress while maintaining a high density state.
  • the internal stress control film when the internal stress control film is titanium nitride, the internal stress control film has a high film density of 5.0 (g / cm 3 ) or more and a compression of about ⁇ 2 GPa against the object to be processed
  • a film having a desired film stress from the (Compressive) side to the Tensile side of about +2 GPa can be formed.
  • the film stress on the tensile side is about ⁇ 500 MPa, or the film is compressed on the side of the tensile side of about +500 MPa.
  • the film stress on the (Compressive) side can be selected.
  • a membrane stress on the tensile side from the compression side of about ⁇ 100 MPa, or a membrane stress on the compression side from the tensile side of about +100 MPa.
  • the film stress of the internal stress control film should be reduced by approximately ⁇ A selection can be made between the 2GPa compressive side and the approximately + 2GPa Tensile side.
  • the pressure of the process gas when forming the internal stress control film is selected from a pressure region higher than the threshold value 5 (Pa), 5.0 (g / cm) according to the embodiment of the present invention. 3 ) It was possible to form an internal stress control film having a tensile-side film stress while maintaining the above high film density.
  • the internal stress control film is made of titanium nitride
  • the pressure P of the process gas is shown on the horizontal axis
  • the bias BS applied to the object to be processed is set as the bias BS.
  • the ratio R1 ( BS / BT), which is a numerical value divided by the bias BT applied to the target, is shown on the vertical axis.
  • the internal stress control film is made of titanium nitride
  • the pressure P of the process gas is shown on the horizontal axis
  • the film formation rate DR of the internal stress control film is shown.
  • a ratio R2 ( DR / BS), which is a numerical value divided by the bias BS applied to the object to be processed, is shown on the vertical axis.
  • a combination of argon gas and nitrogen gas is suitably used as the nitrogen-containing gas.
  • the flow rate ratio of the nitrogen gas in the nitrogen-containing gas is 50 (%) or more
  • the inside of the vacuum processing chamber 1a where the internal stress control film is formed is at a high pressure and a large amount of nitrogen exists.
  • the film forming atmosphere can be made. Thereby, the combination of the production conditions shown in the graph G1 and the graph G2 described above is obtained.
  • the flow rate ratio of the nitrogen gas occupying the gas containing nitrogen is 70% or more, the inside of the vacuum processing chamber 1a can be formed into a film formation atmosphere in which more nitrogen exists.
  • the pressure of the process gas when forming the internal stress control film is 5 (Pa) or more.
  • the pressure region is selected from the following pressure regions.
  • Example 1 In this embodiment, the sputtering apparatus SM of FIG. 1 is used, and the pressure (discharge pressure) when forming a thin film on the object to be processed (substrate W made of a silicon wafer) is changed between 0.35 and 25 Pa. Then, a titanium nitride film (thickness: 20 nm) was formed. At that time, the bias BS dependency was examined by changing the bias BS applied to the substrate W (3 conditions: 0 W, 5 W, and 50 W). This result is shown in FIG. 2 and is a graph showing the relationship between the pressure (discharge pressure) and the film stress when forming a thin film.
  • the film stress changes from the compressive film stress to the tensile film stress as the discharge pressure increases. I understood that. The change from compression to tension occurs near the threshold value of 5 Pa.
  • the film stress (MPa) in this case can be changed in the range of ⁇ 1000 to +600.
  • the film density was approximately 4.15 (g / cm 3 ) (see FIG. 4 at a later stage).
  • FIG. 3A is a graph showing the relationship between the bias BS applied to the object to be processed and the film stress.
  • 3B to 3E are STEM (Scanning Transmission Electron Microscope (STEM)) photographs showing the cross section. 3B to 3E show the cases where the bias BS is 0 W, 5 W, 15 W, and 20 W in order.
  • FIG. 4A is a graph showing the relationship between the bias power applied to the object to be processed and the film density.
  • 4B to 4E are STEM photographs showing cross sections. 4B to 4E show the cases where the bias BS is 0 W, 5 W, 15 W, and 20 W in order.
  • the roughness (arithmetic mean roughness Ra) of the film surface was measured using an atomic force microscope (AFM).
  • AFM atomic force microscope
  • the roughness of the surface of the film produced under only high pressure conditions when the bias BS was 0 W
  • the roughness of the film surface produced under high pressure and weak bias conditions when the bias BS is 5 W
  • the evaluation result regarding the roughness of the film surface supports the above estimation (the separation portion of the columnar structure is narrowed and the separation portion is closed to change to a dense structure).
  • Example 2 In this example, the film stress and film density of the titanium nitride film were examined under four pressure conditions (10.0, 17.0, 25.0, 37.0 (Pa)). At that time, the direct-current power (having a negative potential) applied to the target 2 was changed by a maximum of 5 conditions (3.5, 7, 10.5, 14, 17.5, 21 (kW)). Further, the bias BS applied to the object to be processed was changed in a maximum of 8 conditions (0, 2, 5, 10, 15, 20, 25, 30 (W)).
  • Tables 1 to 3 show cases where the pressure P of the process gas is 10.0 (Pa), Table 1 shows film stress, Table 2 shows film density, and Table 3 shows film formation speed.
  • Tables 4 to 6 show cases where the pressure P of the process gas is 17.0 (Pa), Table 4 shows film stress, Table 5 shows film density, and Table 6 shows film formation speed.
  • Tables 7 to 9 show cases where the pressure P of the process gas is 25.0 (Pa), Table 7 shows film stress, Table 8 shows film density, and Table 9 shows film formation speed.
  • Tables 10 to 12 show cases where the pressure P of the process gas is 37.0 (Pa), Table 10 shows film stress, Table 11 shows film density, and Table 12 shows film formation speed.
  • the indication “7.6E-03” means “7.6 ⁇ 10 ⁇ 3 ”.
  • the sign “-” means that there is no corresponding data.
  • FIG. 5 is a graph showing the relationship between Pw-Ratio (sub./target) and membrane stress based on Table 4.
  • FIG. 6 is a graph showing the relationship between Pw-Ratio (sub./target) and membrane stress based on Table 7. From FIG. 5, it was found that under the pressure condition (17 Pa) in Table 4, the film stress becomes the film stress on the tensile side over the whole area of the measured Pw-Ratio (sub./target). In the case of 7 kW (symbol ⁇ ), the maximum film stress was obtained over the entire area of the measured Pw-Ratio (sub./target). From FIG.
  • FIG. 7 is a graph showing the relationship between Pw-Ratio (sub./target) and film density based on Table 2. From FIG. 7, it was found that the film density showed an increasing tendency as the Pw-Ratio (sub./target) increased over the entire measured Pw-Ratio (sub./target). When Pw-Ratio (sub./target) was approximately 0.0016, the film density was 4.6. Further, when Pw-Ratio (sub./target) was approximately 0.00241, the film density was 5.0. Therefore, from the result of FIG. 7, in order to set the film density to 4.6 (5.0) or more, the setting of Pw-Ratio (sub./target) should be 0.0016 or more (0.00241 or more). It became clear that it would be good.
  • Tables 13 to 15 shown below are three conditions (7, 10.5, 14 (kW)) of DC power applied to the target 2 (having a negative potential) based on the data of Tables 1 to 12. Recalculated for each. In each table, the results (film stress, film density) of the conditions in which the bias BS applied to the object to be processed is increased are listed in order from the top to the bottom.
  • FIG. 8 is a graph showing the relationship between the pressure when forming a thin film and Pw-Ratio (sub./target).
  • FIG. 9 is a graph showing the relationship between the pressure when forming a thin film and Ratio (sub./Rate).
  • the “pressure when forming the thin film” is “the pressure P of the process gas”.
  • “Ratio (sub./Rate)” means “ratio R2 which is a numerical value of bias BS applied to the object to be processed with respect to the deposition rate of the internal stress control film of 10 nm / min”.
  • the horizontal axis represents the pressure P of the process gas
  • the upper right of the curve ⁇ passing through three plots, a1 (10.0, 0.0016), a2 (17.0, 0.00059), and a3 (25.0, 0.0001) By selecting a combination of the pressure P and the ratio R1, a titanium nitride film having a film density of 4.6 (g / cm 3 ) or more can be obtained.
  • the manufactured titanium nitride film has a film density of 5.0 (g / cm 3 ) or more.
  • the film density may take a curve like a contour line. I understood. As the film density increased, the tendency to occupy the upper right region in the graph 2 was confirmed.
  • a titanium nitride film having a film density of 4.6 (g / cm 3 ) or more can be obtained by selecting a combination of the pressure P and the ratio R2 so as to be included in the upper right region.
  • the manufactured titanium nitride film has a film density of 5.0 (g / cm 3 ) or more.
  • the results shown in FIGS. 8 and 9 provide an important index for managing the process of manufacturing a titanium nitride film having a high film density and having a film stress on the tensile side as a film stress. Yes. That is, if the titanium nitride film is manufactured so as to satisfy the indices of FIGS. 8 and 9, the film density is 4.6 (g / cm 3 ) or more, or 5.0 (g / cm 3 ) or more. It is possible to construct a process suitable for mass production, which can stably produce a titanium nitride film having a film stress on the tensile side as a film stress.
  • FIG. 10 is a graph showing the relationship between Bias Power and film stress.
  • the symbol ⁇ indicates that the nitrogen gas is 100%
  • the symbol ⁇ indicates that the argon gas is 10%
  • the nitrogen gas is 90%
  • the symbol ⁇ indicates that the argon gas is 30%
  • the nitrogen gas is 70%.
  • the symbol ⁇ represents the case where the argon gas is 50% and the nitrogen gas is 50%.
  • the gas containing nitrogen constituting the process gas is composed of argon gas and nitrogen gas, and the flow rate ratio of the nitrogen gas to the gas containing nitrogen is 50 (%) or more. It was revealed that an internal stress control film having a (Tensile) side film stress can be obtained stably.
  • the method of manufacturing the internal stress control film according to the embodiment of the present invention has been described above, it should be understood that these are exemplary of the present invention and should not be considered as limiting. is there. Additions, omissions, substitutions, and other changes can be made without departing from the scope of the invention. Accordingly, the invention is not to be seen as limited by the foregoing description, but is limited by the scope of the claims.
  • the case where the internal stress control film is titanium nitride has been described in detail.
  • the present invention is not limited to titanium nitride (TiN), and a material formed using a gas containing nitrogen is used. Widely applicable. That is, examples of the internal stress control film to which the present invention is applied include aluminum nitride (AlN) and silicon nitride (SiN) in addition to titanium nitride (TiN).
  • the substrate W made of a silicon wafer is described as an example of the object to be processed.
  • the present invention is also applicable to the case where the substrate W is formed on the surface of the interlayer insulating film or the outermost surface of the multilayer structure. It is possible to apply.
  • the internal stress control film formed by the manufacturing method of the present invention has an advantage that it can be applied flexibly without depending on the underlying material and structure on which the internal stress control film is provided.
  • the substrate W that is the object to be processed is not heat-treated, but the present invention is not limited to this.
  • the object to be processed may be controlled to a desired temperature as appropriate.
  • the temperature control of the object to be processed can be performed by arranging the temperature control device H for controlling the temperature of the object to be processed inside the stage 4 on which the object to be processed (substrate W) is placed in FIG. .
  • the present invention is widely applicable to a method for producing an internal stress control film.
  • Such an internal stress control film is used not only for a hard mask in a manufacturing process of a semiconductor device, but also for various other devices.
  • E1 sputtering power supply E2 bias power supply, SM sputtering device, W substrate (object to be processed), 1a vacuum processing chamber, 2 targets, 4 stages, 51 mass flow controller.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Fluid Mechanics (AREA)
  • Inorganic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

内部応力制御膜の形成方法は、スパッタリング法により被処理体の一面に内部応力制御膜を形成し、前記内部応力制御膜を成膜する際のプロセスガスの圧力が、閾値5(Pa)より高い圧力領域から選択され、かつ、前記被処理体にBiasを印加した際の被処理体のStressがBiasを印加しない場合のStressに比べてTensile側に大きなStressであり、高い密度を有する内部応力制御膜を形成する。

Description

内部応力制御膜の形成方法
 本発明は、高い膜密度を保ちつつ、圧縮側から引張側までの所望の膜ストレスを有する薄膜を作り分けることが可能な、内部応力制御膜の形成方法に関する。
 本願は、2016年5月16日に日本に出願された特願2016-98158号に基づき優先権を主張し、その内容をここに援用する。
 複数の薄膜を積層して各種デバイスを作製する工程においては、薄膜の材質、薄膜の厚さ、薄膜を成膜する時の圧力や温度等の作製条件、あるいは、薄膜と薄膜の下地を構成する被処理体との相対的条件に依存して、薄膜には内部応力(Internal stress)が発生する。このような内部応力(以下、膜ストレスとも呼ぶ)としては、原子が基準状態より圧縮されていて原子間距離が伸びようとする圧縮応力(Compressive Stress)と、原子が基準状態より引っ張られていて原子間距離が縮もうとする引張応力(Tensile Stress)とがある。
 従来、圧縮応力が生じている薄膜において、膜ストレスを低減する方法が提案されている(特許文献1、特許文献2)。しかしながら、薄膜を成膜する時の作製条件を変更するだけで、この2種類(圧縮応力及び引張応力)の内部応力を有する薄膜を作り分ける技術は実現されていなかった。
国際公開第2013/190765号パンフレット 日本国特開2015-151575号公報
 具体的な事例で説明すると、半導体装置の製造工程においては、所定の配線パターンを得るために被処理体である層間絶縁膜をドライエッチングする際に、エッチングされる層間絶縁膜の範囲を制限するハードマスクが用いられる。ハードマスクとして、例えば、窒化チタン(TiN)膜が好適に用いられるが、エッチングに対する耐性が必要であることから、高い密度を備えることが求められる。また、窒化チタン膜の内部応力が高い場合は、配線パターンが変形を生じる虞もあるため、内部応力は低い(絶対値が小さい)ことが望ましいとされていた。
 近年、デバイス構造の多様化により、ハードマスクを作製する以前に形成されている下地膜が、圧縮応力や引張応力といった様々な方向に生じる内部応力を持っている場合がある。このような場合は、ハードマスクを含んだ膜全体(下地膜とハードマスクの積層体)に働くストレスを低減する必要がある。例えば、ハードマスクを形成する以前に形成される下地膜が高い圧縮応力を持っている場合等は、引張側に高い応力(引張応力)を有する窒化チタン膜からなるハードマスクを形成し、膜全体としてストレスのバランスをとることが大切である。そこで、窒化チタン膜自体のストレスに関し、ハードマスクを形成する以前に生じているストレスを相殺するために、高い圧縮応力から高い引張応力まで(数値で言うと、-2GPaから+2GPa程度)、ストレスを制御する技術の開発が期待されていた。
 しかしながら、通常、高密度の窒化チタンを成膜した場合、窒化チタン膜は高い圧縮側のストレス(圧縮応力)を持っている。この場合、単純な方法で、引張側のストレス(引張応力)を有するように窒化チタン膜を形成すると、図10に示すように膜密度が低下することが公知である。窒化チタン膜の密度を高い状態に保ったまま、圧縮側のストレスを小さくする、または、引張側のストレスを圧縮側のストレスに変化させる、さらには、圧縮側のストレスを高い引張側のストレスにするためには、例えば、成膜後の膜に熱を加える方法、または、窒化チタン膜の形成時に窒化チタン粒子の入射エネルギーを抑制するための複雑なシステムを用いる方法等、量産には不向きな手法を採る必要があった。
 本発明者らは、窒化チタン膜の構造を解析し、発生する膜ストレスについて検討した。
 図12A~図12Dは、窒化チタン膜の構造と膜ストレスとの関係を示す図である。図12Aは膜の断面を示す模式図であり、基板(被処理体)に対して膜(窒化チタン膜)が縮むように働くTensile Stressが発生している状態を表している。図12Bは図12Aの拡大図であり、窒化チタン膜が柱状構造を有し、隣接する柱状構造の間に隙間が存在している様子を表している。図12Cは窒化チタン膜の断面を示すSTEM写真であり、この写真から図12Dに示す状態が確認された。
 そこで、本発明者らは、図12Dに示すように、隣接する柱状構造を密着させて、隙間を低減することができれば、高い膜密度を保ちつつ、圧縮側から引張側まで所望の膜ストレスを有する薄膜を作り分けることが可能ではないかと考察し、本発明を開発するに至った。
 本発明は、このような従来の実情に鑑みて考案されたものであり、薄膜を成膜する時の作製条件を選択するだけで、Tensile側に大きなStressと、高い密度を有することが可能な、内部応力制御膜の形成方法を提供することを目的とする。
 本発明の第1態様に係る内部応力制御膜の形成方法は、スパッタリング法により被処理体の一面に内部応力制御膜を形成する方法であって、前記内部応力制御膜を成膜する際のプロセスガスの圧力が、閾値5(Pa)より高い圧力領域から選択され、かつ、前記被処理体にBiasを印加した際の被処理体のStressがBiasを印加しない場合のStressに比べてTensile側に大きなStressと、高い密度を有する。
 本発明の第1態様に係る内部応力制御膜の形成方法において、前記Biasを印加する前のStressがTensile Stressを有する。
 本発明の第2態様に係る内部応力制御膜の形成方法は、スパッタリング法により被処理体の一面に内部応力制御膜を形成する方法であって、前記被処理体に印加するバイアスBSが0より大きく、前記バイアスBSの電力密度がターゲットに印加するバイアスBTの電力密度の1/150以下の範囲であり、かつ、前記内部応力制御膜を成膜する際のプロセスガスの圧力が、閾値5(Pa)より高い圧力領域から選択される。
 本発明の第3態様に係る内部応力制御膜の形成方法は、スパッタリング法により被処理体の一面に内部応力制御膜を形成する方法であって、前記内部応力制御膜を成膜する際のプロセスガスの圧力が、閾値5(Pa)より高い圧力領域から選択され、前記内部応力制御膜が窒化チタンからなり、チタンからなるターゲットと、前記プロセスガスとして窒素を含むガスを用い、前記プロセスガスの圧力Pを横軸、前記被処理体に印加するバイアスBSを前記ターゲットに印加するバイアスBTにより除した数値である比率R1(=BS/BT)を縦軸としたグラフG1において、3つのプロット、a1(10.0、0.0016)、a2(17.0、0.00059)、およびa3(25.0、0.0001)を通過する曲線αより、右上の領域に含まれるように、前記圧力Pと前記比率R1の組み合わせを選択する。
 本発明の第3態様に係る内部応力制御膜の形成方法において、前記グラフG1において、3つのプロット、b1(10.0、0.00241)、b2(17.0、0.0012)、およびb3(25.0、0.0004)を通過する曲線βより、右上の領域に含まれるように、前記圧力Pと前記比率R1の組み合わせを選択する。
 本発明の第4態様に係る内部応力制御膜の形成方法は、スパッタリング法により被処理体の一面に内部応力制御膜を形成する方法であって、前記内部応力制御膜を成膜する際のプロセスガスの圧力が、閾値5(Pa)より高い圧力領域から選択され、前記内部応力制御膜が窒化チタンからなり、チタンからなるターゲットと、前記プロセスガスとして窒素を含むガスを用い、前記プロセスガスの圧力Pを横軸、前記内部応力制御膜の成膜速度10nm/minに対する前記被処理体に印加するバイアスBSの数値である比率R2を縦軸としたグラフG2において、3つのプロット、c1(10.0、0.0032)、c2(17.0、0.0018)、およびc3(25.0、0.0008)を通過する曲線γより、右上の領域に含まれるように、前記圧力Pと前記比率R2の組み合わせを選択する。
 本発明の第4態様に係る内部応力制御膜の形成方法において、前記グラフG2において、3つのプロット、d1(10.0、0.008)、d2(17.0、0.0034)、およびd3(25.0、0.002)を通過する曲線δより、右上の領域に含まれるように、前記圧力Pと前記比率R2の組み合わせを選択する。
 本発明の第1態様~第4態様に係る内部応力制御膜の形成方法において、前記プロセスガスを構成する窒素を含むガスが、アルゴンガスと窒素ガスから構成され、前記窒素を含むガスに占める前記窒素ガスの流量比が50(%)以上である。
 本発明の第1態様~第4態様に係る内部応力制御膜の形成方法において、前記プロセスガスを構成する窒素を含むガスが、アルゴンガスと窒素ガスから構成され、前記窒素を含むガスに占める前記窒素ガスの流量比が70(%)以上である。
 本発明の上記態様に係る内部応力制御膜の形成方法では、スパッタリング法により被処理体の一面に内部応力制御膜を形成する際に、前記被処理体に微弱なバイアスBSを印加する。バイアスBSを印加した状態の被処理体に対して、前記内部応力制御膜を成膜する。その際に、プロセスガスの圧力(薄膜を成膜する時の圧力、放電圧力)を閾値5(Pa)以上として、微弱なBiasを印加することにより、強いTensile Stress膜が得られる。さらに、印加するBiasの値を増やすことにより、高い膜密度を保ったまま、StressをTensile側からCompressive側へ変化させることができる。
 また、プロセスガスの圧力Pを横軸、前記被処理体に印加するバイアスBSを前記ターゲットに印加するバイアスBTにより除した数値である比率R1(=BS/BT)を縦軸としたグラフG1、あるいは、前記プロセスガスの圧力Pを横軸、前記内部応力制御膜の成膜速度10nm/minに対する前記被処理体に印加するバイアスBSの数値である比率R2を縦軸としたグラフG2において、特定の指標を満たすように窒化チタン膜を製造するならば、膜密度が4.6(g/cm)以上、あるいは5.0(g/cm)以上であって、膜ストレスとして引張(Tensile)側の膜ストレスを有する窒化チタン膜を、安定して製造できる。
内部応力制御膜の製造方法に用いる製造装置の一例を示す概略構成図である。 薄膜を成膜する時の圧力と膜ストレスとの関係を示すグラフである。 被処理体に印加するバイアスと膜ストレスとの関係を示すグラフである。 被処理体の断面を示す図であって、STEM(走査型透過電子顕微鏡(Scanning Transmission Electron Microscope; STEM))を用いた撮影によって得られた写真である。 被処理体の断面を示す図であって、STEMを用いた撮影によって得られた写真である。 被処理体の断面を示す図であって、STEMを用いた撮影によって得られた写真である。 被処理体の断面を示す図であって、STEMを用いた撮影によって得られた写真である。 被処理体に印加するバイアスと膜密度との関係を示すグラフである。 被処理体の断面を示す図であって、STEM(走査型透過電子顕微鏡(Scanning Transmission Electron Microscope; STEM))を用いた撮影によって得られた写真である。 被処理体の断面を示す図であって、STEMを用いた撮影によって得られた写真である。 被処理体の断面を示す図であって、STEMを用いた撮影によって得られた写真である。 被処理体の断面を示す図であって、STEMを用いた撮影によって得られた写真である。 表4に基づき、Pw-Ratio(sub./target)と膜ストレスとの関係を示すグラフである。 表7に基づき、Pw-Ratio(sub./target)と膜ストレスとの関係を示すグラフである。 表2に基づき、Pw-Ratio(sub./target)と膜密度との関係を示すグラフである。 薄膜を成膜する時の圧力とPw-Ratio(sub./target)との関係を示すグラフ(グラフG1)である。 薄膜を成膜する時の圧力とRatio(sub./Rate)との関係を示すグラフ(グラフG2)である。 Bias Powerと膜ストレスとの関係を示すグラフである。 従来の窒化チタン膜における膜ストレスと膜密度との関係を示すグラフである。 内部応力制御膜(窒化チタン膜)の構造と膜ストレスとの関係を示す図であって、内部応力制御膜の断面を示すとともに、基板(被処理体)に対して膜(窒化チタン膜)が縮むように働くTensile Stressが発生している状態を表す図である。 内部応力制御膜(窒化チタン膜)の構造と膜ストレスとの関係を示す図であって、図12Aの拡大図である。 内部応力制御膜(窒化チタン膜)の構造と膜ストレスとの関係を示す図であって、窒化チタン膜の断面を示すSTEM写真である。 内部応力制御膜(窒化チタン膜)の構造と膜ストレスとの関係を示す図である。
 以下では、図面を参照して、本発明に係る内部応力制御膜の製造方法の一実施形態について説明する。本実施形態は、被処理体を構成する基板Wがシリコンウェハであり、この基板Wの上に内部応力制御膜として窒化チタンを成膜する場合について詳述する。
 図1は、本発明の一実施形態に係る内部応力制御膜の製造方法を実施することができるスパッタリング装置SMの一例を示す概略構成図である。スパッタリング装置SMは、マグネトロン方式のスパッタリング装置であり、真空処理室1aを画成する真空チャンバ1を備える。真空チャンバ1の天井部にカソードユニットCが取り付けられている。以下では、図1において、真空チャンバ1の天井部側を向く方向を「上」とし、真空チャンバ1の底部側を向く方向を「下」として説明する。
 カソードユニットCは、内部応力制御膜の母材であるターゲット2と、このターゲット2の上方に配置された磁石ユニット3とから構成されている。ターゲット2は、チタン製(例えば、チタンと不可避的な元素とを含むターゲット)であり、被処理体を構成する基板Wの輪郭に応じて、公知の方法で平面視円形に形成されている。
 ターゲット2の上面(スパッタリング面2aとは反対側の面)には、スパッタリングによる成膜中、ターゲット2を冷却するバッキングプレート21が装着され、スパッタリング面2aが下側に位置するように、不図示の絶縁体を介して真空チャンバ1に取り付けられている。
 ターゲット2には、DC電源等のスパッタリング電源E1からの出力が接続されており、薄膜を成膜する時には、ターゲット2に対して、負の電位を有する直流電力(30kW以下)が投入されるように構成されている。ターゲット2の上方に配置される磁石ユニット3は、ターゲット2のスパッタリング面2aの下方空間に磁場を発生させる。磁石ユニット3は、スパッタリング時にスパッタリング面2aの下方で電離した電子等を補足してターゲット2から飛散したスパッタリング粒子を効率よくイオン化する公知の構造を有する。磁石ユニット3の詳細な説明は省略する。
 真空チャンバ1の底部には、ターゲット2のスパッタリング面2aに対向させてステージ4が配置されている。このステージ4に載置された基板Wは、基板Wの成膜面が上側に向くように位置決め保持される。本実施形態においては、ターゲット2と基板Wとの間隔は、生産性や散乱回数等を考慮して、20~800mmに設定されてよく、40~450mmが好ましく、40~100mmがより好ましい。
 また、ステージ4には、RF電源等のバイアス電源E2からの出力が接続されており、薄膜を成膜する時には、基板Wに対して、交流電力の投入が可能なように構成されている。さらに、ステージ4は、温度制御装置H(温度制御手段)を内蔵しており、必要に応じて、薄膜を成膜する時の基板Wの温度をコントロールするように構成されている。
 真空チャンバ1の側壁には、アルゴン等の希ガスであるスパッタガスを導入する第1ガス管5aと、窒素を含むガスを導入する第2ガス管5bとが接続されている。第1ガス管5aと第2ガス管5bには各々、マスフローコントローラ51a、51bが介設され、不図示のガス源に連通している。これにより、流量制御されたスパッタガスと反応ガスとが、後述の真空排気装置(真空排気手段)により、一定の排気速度で真空引きされている真空処理室1aの内部に導入される。ゆえに、成膜中、真空処理室1aの圧力(全圧)は、略一定に保持される。
 真空チャンバ1の底部には、所望のポンプから構成される不図示の真空排気装置に通じる排気管6が接続されている。このスパッタリング装置SMは、特に図示しないが、マイクロコンピュータやシーケンサ等を備えた公知の制御装置(制御手段)を備えている。この制御装置は、上述した電源E1、E2の稼働や、マスフローコントローラ51a、51bの稼働、真空排気装置の稼働等を統括管理するように構成されている。
 以下では、前述したスパッタリング装置SMを用いた内部応力制御膜の製造方法について具体的に説明する。
 まず、チタン製のターゲット2が装着された真空チャンバ1内のステージ4に基板W(例えば、シリコンウェハ)を載置する。真空排気装置を作動させて、真空処理室1a内を所定の真空度(例えば、1×10-5Pa)まで真空引きする。真空処理室1a内が所定圧力に達した後、マスフローコントローラ51a、51bを各々制御して、アルゴンガスと窒素ガスとを所望の流量にて、真空処理室1a内に導入する。ここで、アルゴンガスに窒素ガスを加えたガスが、本発明における「窒素を含むガス」である。例えば、真空処理室1aの内部が0.5~40Paの範囲の所定圧力(全圧)となるように、アルゴンガスと窒素ガスは各々、所望の流量に制御される。ここで、チタン製のターゲットとは、チタンを主成分とするターゲットであり、主成分とはチタンが重量比50%以上であることを指す。なお、チタン及び不可避不純物からなるターゲットを用いることが好ましい。
 真空処理室1a内が所定圧力(全圧)とされた状態にて、スパッタリング電源E1よりターゲット2に所定の負の電位を有する直流電力を投入して、真空チャンバ1内にプラズマ雰囲気を形成する。これにより、反応性スパッタリングによって、基板Wの表面に窒化チタン膜が成膜される。
 上述の反応性スパッタリングを、ある圧力条件下で行う際に、例えば、5(W)程度の微弱なBiasを印加することにより、強いTensile Stress膜が得られる。さらに、印加するBiasの値を増やすことにより、高い膜密度を保ったまま、StressをTensile側からCompressive側へ変化させることができる。
 上述したTensile Stress膜を得るためには、前記被処理体に印加するバイアスBSが0より大きく、前記バイアスBSの電力密度がターゲットに印加するバイアスBTの電力密度の1/150以下の範囲であり、かつ、前記内部応力制御膜を成膜する際のプロセスガスの圧力が、閾値5(Pa)より高い圧力領域から選択される、という条件を満たすことが重要である。
 換言すると、本発明の実施形態に係る内部応力制御膜の製造方法は、高圧力で、かつ、窒素が多く存在する成膜雰囲気において、被処理体上に柱状に成長する窒化チタン膜に対して微弱なバイアスBSを印加しながら成膜が行われる。ゆえに、本発明の実施形態によれば、高い膜密度を保ちつつ、窒化チタン膜の柱状構造に急激なダメージを与えることなく、被処理体に対して、圧縮(Compressive)側から引張(Tensile)側までの所望の膜ストレスを有する膜を作り分けることができる。したがって、本発明は、高密度な状態を保ちながら、必要な膜ストレスを有する窒化チタン膜を狙って形成できる製造方法をもたらす。
 本発明の実施形態によれば、内部応力制御膜が窒化チタンの場合には、5.0(g/cm)以上の高い膜密度を備えるとともに、被処理体に対して約-2GPaの圧縮(Compressive)側から約+2GPaの引張(Tensile)側までの所望の膜ストレスを有する膜を作り分けることができる。
 つまり、膜ストレスの小さい内部応力制御膜を形成するという観点から、約-500MPaの圧縮(Compressive)側よりも引張(Tensile)側の膜ストレス、又は、約+500MPaの引張(Tensile)側よりも圧縮(Compressive)側の膜ストレスを選択することができる。また、約-100MPaの圧縮(Compressive)側よりも引張(Tensile)側の膜ストレス、又は、約+100MPaの引張(Tensile)側よりも圧縮(Compressive)側の膜ストレスを選択することもできる。あるいは内部応力制御膜を形成する以前に形成される下地膜が高い応力を持っている場合等は、膜全体としてストレスを相殺してバランスをとるために、内部応力制御膜の膜ストレスを約-2GPaの圧縮(Compressive)側から約+2GPaの引張(Tensile)側までの間で選択することができる。
 特に、前記内部応力制御膜を成膜する際のプロセスガスの圧力が、閾値5(Pa)より高い圧力領域の中から選択されるならば、本発明の実施形態によって5.0(g/cm)以上の高い膜密度を保ちつつ、引張側の膜ストレスを有する内部応力制御膜を形成することが可能となった。
 次に、内部応力制御膜が窒化チタンからなる場合についてより具体的に説明する。図8に示すグラフG1においては、チタンからなるターゲットと、窒素を含むガスを用いており、前記プロセスガスの圧力Pが横軸に示されており、前記被処理体に印加するバイアスBSを前記ターゲットに印加するバイアスBTにより除した数値である比率R1(=BS/BT)が縦軸に示されている。グラフG1において、3つのプロット、a1(10.0、0.0016)、a2(17.0、0.00059)、およびa3(25.0、0.0001)を通過する曲線αより、右上の領域に含まれるように、前記圧力Pと前記比率R1の組み合わせを選択することにより、4.6(g/cm)以上の高い膜密度を備え、かつ、引張(Tensile)側の膜ストレスを有する内部応力制御膜を形成することができる。
 ここで、「3つのプロット、a1(10.0、0.0016)、a2(17.0、0.00059)、およびa3(25.0、0.0001)」のことを、特定の指標とも呼ぶ。
 中でも、グラフG1において、3つのプロット、b1(10.0、0.00241)、b2(17.0、0.0012)、およびb3(25.0、0.0004)を通過する曲線βより、右上の領域に含まれるように、前記圧力Pと前記比率R1の組み合わせを選択することにより、膜密度はさらに高くなり、膜密度が5.0(g/cm)以上の窒化チタン膜を安定して作製できる。
 ここで、「3つのプロット、b1(10.0、0.00241)、b2(17.0、0.0012)、およびb3(25.0、0.0004)」のことを、特定の指標とも呼ぶ。
 また、内部応力制御膜が窒化チタンからなる場合についてより具体的に説明する。図9に示すグラフG2においては、チタンからなるターゲットと、窒素を含むガスを用いており、前記プロセスガスの圧力Pが横軸に示されており、前記内部応力制御膜の成膜速度DRを前記被処理体に印加するバイアスBSにより除した数値である比率R2(=DR/BS)が縦軸に示されている。グラフG2において、3つのプロット、c1(10.0、0.0032)、c2(17.0、0.0018)、およびc3(25.0、0.0008)を通過する曲線γより、右上の領域に含まれるように、前記圧力Pと前記比率R2の組み合わせを選択することにより、4.6(g/cm)以上の高い膜密度を備え、かつ、引張(Tensile)側の膜ストレスを有する内部応力制御膜を形成することができる。
 ここで、「3つのプロット、c1(10.0、0.0032)、c2(17.0、0.0018)、およびc3(25.0、0.0008)」のことを、特定の指標とも呼ぶ。
 中でも、グラフG2において、3つのプロット、d1(10.0、0.008)、d2(17.0、0.0034)、およびd3(25.0、0.002)を通過する曲線δより、右上の領域に含まれるように、前記圧力Pと前記比率R2の組み合わせを選択することにより、膜密度はさらに高くなり、膜密度が5.0(g/cm)以上の窒化チタン膜を安定して作製できる。
 ここで、「3つのプロット、d1(10.0、0.008)、d2(17.0、0.0034)、およびd3(25.0、0.002)」のことを、特定の指標とも呼ぶ。
 本発明の実施形態に係る内部応力制御膜の形成方法においては、前記窒素を含むガスとして、アルゴンガスと窒素ガスの組み合わせが好適に用いられる。前記窒素を含むガスに占める前記窒素ガスの流量比が50(%)以上とすることにより、内部応力制御膜が形成される真空処理室1aの内部を、高圧力で、かつ、窒素が多く存在する成膜雰囲気とすることができる。
 これにより、上述したグラフG1やグラフG2に示す作製条件の組み合わせが得られる。
 前記窒素を含むガスに占める前記窒素ガスの流量比を、70%以上とした場合には、真空処理室1aの内部をさらに窒素が多く存在する成膜雰囲気とすることができる。これによって、より大きなTensile側のStressを得ることができるので、より好ましい。また、高い膜密度を備えながらも、引張(Tensile)側の膜ストレスを有する内部応力制御膜を形成するにおいて、前記内部応力制御膜を成膜する際のプロセスガスの圧力が5(Pa)以上の圧力領域の中から選択されることが好ましい。
<実施例1>
 本実施例では、図1のスパッタリング装置SMを用い、被処理体(シリコンウェハからなる基板W)上に、薄膜を成膜する時の圧力(放電圧力)を0.35~25Paの間で変更して、窒化チタン膜(厚さ:20nm)を形成した。その際、基板Wに対して印加するバイアスBSを変更(3条件:0W、5W、50W)することにより、バイアスBS依存性について調べた。この結果が、図2であり、薄膜を成膜する時の圧力(放電圧力)と膜ストレスとの関係を示すグラフである。
 図2より、以下の点が明らかとなった。
(A1)バイアスBSが50Wの場合は、作製された窒化チタン膜は、放電圧力に依存せず、被処理体に対して圧縮(Compressive)側の膜ストレスを有する。放電圧力が1Paを超えると、圧縮(Compressive)側の膜ストレスが増加傾向を示し、放電圧力が25Paにおいて、最大の膜ストレス(およそ-2800(MPa))が観測された。膜密度は、およそ5.65(g/cm)であった(後段の図4参照)。
(A2)バイアスBSを印加しない場合(0W)は、放電圧力の増加に伴い、膜ストレスが被処理体に対して圧縮(Compressive)側の膜ストレスから引張(Tensile)側の膜ストレスへ変化することが分かった。圧縮から引張への変化は、閾値5Pa付近で生じる。この場合の膜ストレス(MPa)は、-1000~+600の範囲で変更できる。膜密度は、およそ4.15(g/cm)であった(後段の図4参照)。
(A3)バイアスBSを微弱に印加する場合(5W)は、放電圧力の増加に伴い、膜ストレスが被処理体に対して圧縮(Compressive)側の膜ストレスから引張(Tensile)側の膜ストレスへ急激に変化することが分かった。この場合も、バイアスBSを印加しない場合と同様に、圧縮から引張への変化は、閾値5Pa付近で生じる。この場合の膜ストレス(MPa)は、-1600~+1500の範囲で変更できる。膜密度は、およそ5.35(g/cm)であった(後段の図4参照)。
 図3Aは、被処理体に印加するバイアスBSと膜ストレスとの関係を示すグラフである。図3B~図3Eは、断面を示すSTEM(走査型透過電子顕微鏡(Scanning Transmission Electron Microscope; STEM))写真である。図3B~図3Eは、順に、バイアスBSが、0W、5W、15W、20Wの場合を示している。
 図4Aは、被処理体に印加するバイアスパワーと膜密度との関係を示すグラフである。図4B~図4Eは、断面を示すSTEM写真である。図4B~図4Eは、順に、バイアスBSが、0W、5W、15W、20Wの場合を示している。
 図3及び図4より、以下の点が明らかとなった。
(B1)バイアスBSが0Wから5Wに増加すると、膜ストレスは、引張(Tensile)側において増加傾向を示す(+600→+1500(MPa))。その際、膜密度が急激に増加する(4.15→5.35(g/cm))。
(B2)バイアスBSが5Wを超えると、膜ストレスは、単調に減少する傾向を示す。バイアスBSが20W付近を閾値として、引張(Tensile)側の膜ストレスから圧縮(Compressive)側の膜ストレスへ、膜ストレスが変化する。
(B3)バイアスBSが5Wを超えると、膜密度は5.50~5.75(g/cm)の範囲で安定する。断面SEM写真より、薄膜を成膜する時に印加するバイアスBSの大きさを増やすにつれて、柱状構造の離間部が狭まり、離間部が閉じて緻密な構造へ変化したことにより、膜密度の大きな窒化チタン膜が得られたと推定した。また、密度の変化が殆どない状態でStressが大きく変化していることから、これらの領域では膜自体のStress特性が変わっていると推測できる。
 また、原子間力顕微鏡(AFM)を用いて膜表面の粗さ(算術平均粗さRa)を測定した。その結果、高圧だけの条件(上記バイアスBSが0Wの場合)にて作製した膜表面の粗さは0.94nmであった。これに対して、高圧かつ弱バイアスの条件(上記バイアスBSが5Wの場合)にて作製した膜表面の粗さは0.26nmであった。この膜表面の粗さに関する評価結果は、上記推定(柱状構造の離間部が狭まり、離間部が閉じて緻密な構造へ変化した)を支持している。
<実施例2>
 本実施例では、窒化チタン膜について、4つの圧力条件(10.0、17.0、25.0、37.0(Pa))下における膜ストレスと膜密度を調べた。その際、ターゲット2に印加される(負の電位を有する)直流電力は、最大5条件(3.5、7、10.5、14、17.5、21(kW))変化させた。また、被処理体に印加するバイアスBSは、最大8条件(0、2、5、10、15、20、25、30(W))変化させた。
 表1~表3は、プロセスガスの圧力Pが10.0(Pa)の場合であり、表1は膜ストレス、表2は膜密度、表3は成膜速度を表す。
 表4~表6は、プロセスガスの圧力Pが17.0(Pa)の場合であり、表4は膜ストレス、表5は膜密度、表6は成膜速度を表す。
 表7~表9は、プロセスガスの圧力Pが25.0(Pa)の場合であり、表7は膜ストレス、表8は膜密度、表9は成膜速度を表す。
 表10~表12は、プロセスガスの圧力Pが37.0(Pa)の場合であり、表10は膜ストレス、表11は膜密度、表12は成膜速度を表す。
 各表の中で、例えば、「7.6E-03」という表示は、「7.6×10-3」を意味する。
 符号「--」は、該当するデータが無いことを意味する。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
 図5は、表4に基づき、Pw-Ratio(sub./target)と膜ストレスとの関係を示すグラフである。図6は、表7に基づき、Pw-Ratio(sub./target)と膜ストレスとの関係を示すグラフである。
 図5より、表4の圧力条件(17Pa)では、測定したPw-Ratio(sub./target)の全域に亘って、膜ストレスは、引張(Tensile)側の膜ストレスとなることが分かった。7kW(記号◇印)の場合、測定したPw-Ratio(sub./target)の全域に亘って、最大の膜ストレスが得られた。
 図6より、表7の圧力条件(25Pa)においても、測定したPw-Ratio(sub./target)の全域に亘って、膜ストレスは、引張(Tensile)側の膜ストレスとなることが分かった。7kW(記号◇印)の場合、測定したPw-Ratio(sub./target)の全域に亘って、最大の膜ストレスが得られた。特に、7kW(記号◇印)の測定結果を示す曲線と横軸との交点が、0.0067(1/150)であった。したがって、この交点より、Pw-Ratio(sub./target)の値が小さい条件を満たすとき、膜ストレスは、引張(Tensile)側の膜ストレスとなることが確認された。
 図7は、表2に基づき、Pw-Ratio(sub./target)と膜密度との関係を示すグラフである。
 図7より、測定したPw-Ratio(sub./target)の全域に亘って、Pw-Ratio(sub./target)が増えるに連れて、膜密度は増加傾向を示すことが分かった。Pw-Ratio(sub./target)がおよそ0.0016の場合に、膜密度は4.6であった。また、Pw-Ratio(sub./target)がおよそ0.00241の場合に、膜密度は5.0であった。
 ゆえに、図7の結果より、膜密度を4.6(5.0)以上とするためには、Pw-Ratio(sub./target)の設定を0.0016以上(0.00241以上)とすれば良いことが明らかとなった。
 以下に示す表13~表15は、表1~表12のデータに基づき、ターゲット2に印加される(負の電位を有する)直流電力の3条件(7、10.5、14(kW))ごとに、再集計して示している。各表において、上段から下段に向けて、被処理体に印加するバイアスBSを増加させた条件の結果(膜ストレス、膜密度)が順に掲載されている。
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
 本発明者らは、上述した表1~表15から、さらに特徴ある傾向を見出すため、図8と図9のグラフを作製した。
 図8は、薄膜を成膜する時の圧力とPw-Ratio(sub./target)との関係を示すグラフである。図9は、薄膜を成膜する時の圧力とRatio(sub./Rate)との関係を示すグラフである。
 ここで、「薄膜を成膜する時の圧力」とは、「プロセスガスの圧力P」である。「Pw-Ratio(sub./target)」とは、「被処理体に印加するバイアスBSを前記ターゲットに印加するバイアスBTにより除した数値である比率R1(=BS/BT)」である。「Ratio(sub./Rate)」とは、「内部応力制御膜の成膜速度10nm/minに対する被処理体に印加するバイアスBSの数値である比率R2」を意味する。
 図8と図9は、極めて同じ傾向が読み取れる。すなわち、横軸を、薄膜を成膜する時の圧力とし、縦軸をPw-Ratio(sub./target)としたグラフG1(図8)においては、膜密度が等高線のような曲線をとることが分かった。膜密度が高くなるほど、グラフ1においては右上方の領域を占める傾向が確認された。
 具体的には、前記プロセスガスの圧力Pを横軸、前記被処理体に印加するバイアスBSを前記ターゲットに印加するバイアスBTにより除した数値である比率R1(=BS/BT)を縦軸としたグラフG1において、3つのプロット、a1(10.0、0.0016)、a2(17.0、0.00059)、およびa3(25.0、0.0001)を通過する曲線αより、右上の領域に含まれるように、前記圧力Pと前記比率R1の組み合わせを選択することにより、膜密度が4.6(g/cm)以上の窒化チタン膜が得られる。
 また、前記グラフG1において、3つのプロット、b1(10.0、0.00241)、b2(17.0、0.0012)、およびb3(25.0、0.0004)を通過する曲線βより、右上の領域に含まれるように、前記圧力Pと前記比率R1の組み合わせを選択することによって、作製される窒化チタン膜は、膜密度が5.0(g/cm)以上となる。
 同様に、横軸を、薄膜を成膜する時の圧力とし、縦軸をRatio(sub./Rate)としたグラフG2(図9)においても、膜密度が等高線のような曲線をとることが分かった。膜密度が高くなるほど、グラフ2においては右上方の領域を占める傾向が確認された。
 具体的には、前記プロセスガスの圧力Pを横軸、前記内部応力制御膜の成膜速度DRを前記被処理体に印加するバイアスBSにより除した数値である比率R2(=DR/BS)を縦軸としたグラフG2において、3つのプロット、c1(10.0、0.0032)、c2(17.0、0.0018)、およびc3(25.0、0.0008)を通過する曲線γより、右上の領域に含まれるように、前記圧力Pと前記比率R2の組み合わせを選択することにより、膜密度が4.6(g/cm)以上の窒化チタン膜が得られる。
 また、前記グラフG2において、3つのプロット、d1(10.0、0.008)、d2(17.0、0.0034)、およびd3(25.0、0.002)を通過する曲線δより、右上の領域に含まれるように、前記圧力Pと前記比率R2の組み合わせを選択することによって、作製される窒化チタン膜は、膜密度が5.0(g/cm)以上となる。
 図8と図9が示した結果は、高い膜密度を備えるとともに、膜ストレスとして引張(Tensile)側の膜ストレスを有する窒化チタン膜を製造する工程を管理するための重要な指標を提供している。
 つまり、図8及び図9の指標を満たすように窒化チタン膜を製造するならば、膜密度が4.6(g/cm)以上、あるいは5.0(g/cm)以上であって、膜ストレスとして引張(Tensile)側の膜ストレスを有する窒化チタン膜を、安定して製造できる、量産に好適な工程を構築することが可能となる。
 図10は、Bias Powerと膜ストレスとの関係を示すグラフである。プロセスガスを構成する窒素を含むガスが、アルゴンガスと窒素ガスから構成された場合について検討した。図10において、記号◇印は窒素ガスが100%の場合、記号□印はアルゴンガス10%、窒素ガスが90%の場合、記号△印はアルゴンガス30%、窒素ガスが70%の場合、記号○印はアルゴンガス50%、窒素ガスが50%の場合、を各々表している。
 図10から、以下の点が明らかとなった。
(C1)バイアスBSを微弱に印加する場合(5W~10W)は、バイアスBSを印加しない場合(0W)に比べて、膜ストレスが引張(Tensile)となり、増大傾向を示す。この増大傾向は、窒素を含むガスに占める窒素ガスの割合が50%以上であるなら、アルゴンガスと窒素ガスの比率に依存しない。
(C2)バイアスBSが同じ数値(例えば、5(W))で比較すると、窒素を含むガスに占める窒素ガスの割合が増えるに連れて、より大きな引張(Tensile)の膜ストレスが観測された。
(C3)バイアスBSが15Wの場合は、10Wに比べて膜ストレスが減少傾向に転じる。この増大傾向は、窒素を含むガスに占める窒素ガスの割合が50%以上であるなら、アルゴンガスと窒素ガスの比率に依存しない。
 以上の結果より、プロセスガスを構成する窒素を含むガスが、アルゴンガスと窒素ガスから構成され、前記窒素を含むガスに占める前記窒素ガスの流量比が50(%)以上とすることによって、引張(Tensile)側の膜ストレスを有する内部応力制御膜が安定して得られることが明らかとなった。
 以上、本発明の実施形態に係る内部応力制御膜の製造方法について説明してきたが、これらは本発明の例示的なものであり、限定するものとして考慮されるべきではないことを理解すべきである。追加、省略、置換、およびその他の変更は、本発明の範囲から逸脱することなく行うことができる。従って、本発明は、前述の説明によって限定されていると見なされるべきではなく、請求の範囲によって制限されている。
 上述した実施形態では、内部応力制御膜が窒化チタンの場合について詳述したが、本発明は窒化チタン(TiN)に限定されるものではなく、窒素を含むガスを用いて成膜される材料に広く適用できる。すなわち、本発明が適用される内部応力制御膜としては、窒化チタン(TiN)の他に、窒化アルミニウム(AlN)、窒化シリコン(SiN)等が挙げられる。
 また、上述した実施形態では、被処理体としてシリコンウェハからなる基板Wを例として説明したが、例えば、層間絶縁膜の表面や多層構造体の最表面に形成するような場合にも、本発明を適用することが可能である。換言すると、本発明の製造方法により形成される内部応力制御膜は、その内部応力制御膜が設けられる下地材料や構造に依存せず、柔軟に適用できる利点を備えている。
 さらに、上述した実施形態では、内部応力制御膜を成膜する際に、被処理体である基板Wを熱処理していないが、本発明はこれに限定されるものではない。形成する内部応力制御膜の材質や膜厚、内部応力制御膜の下地条件(基板Wや膜材料、膜構造等)に応じて、被処理体は適宜、望ましい温度に制御してもよい。例えば、図1において被処理体(基板W)を載置するステージ4の内部に、被処理体の温度を制御する温度制御装置Hを配置することによって、被処理体の温度管理が可能となる。
 本発明は、内部応力制御膜の製造方法に広く適用可能である。このような内部応力制御膜は、例えば、半導体装置の製造工程におけるハードマスク用途に限らず、他の各種デバイス用途にも用いられる。
 E1 スパッタリング電源、E2 バイアス電源、SM スパッタリング装置、W 基板(被処理体)、1a 真空処理室、2 ターゲット、4 ステージ、51 マスフローコントローラ。

Claims (9)

  1.  スパッタリング法により被処理体の一面に内部応力制御膜を形成する方法であって、
     前記内部応力制御膜を成膜する際のプロセスガスの圧力が、閾値5(Pa)より高い圧力領域から選択され、かつ、前記被処理体にBiasを印加した際の被処理体のStressがBiasを印加しない場合のStressに比べてTensile側に大きなStressと、高い密度を有する内部応力制御膜の形成方法。
  2.  前記Biasを印加する前のStressがTensile Stressを有する請求項1に記載の内部応力制御膜の形成方法。
  3.  スパッタリング法により被処理体の一面に内部応力制御膜を形成する方法であって、
     前記被処理体に印加するバイアスBSが0より大きく、前記バイアスBSの電力密度がターゲットに印加するバイアスBTの電力密度の1/150以下の範囲であり、かつ、前記内部応力制御膜を成膜する際のプロセスガスの圧力が、閾値5(Pa)より高い圧力領域から選択される内部応力制御膜の形成方法。
  4.  スパッタリング法により被処理体の一面に内部応力制御膜を形成する方法であって、
     前記内部応力制御膜を成膜する際のプロセスガスの圧力が、閾値5(Pa)より高い圧力領域から選択され、
     前記内部応力制御膜が窒化チタンからなり、
     チタンからなるターゲットと、前記プロセスガスとして窒素を含むガスを用い、
     前記プロセスガスの圧力Pを横軸、前記被処理体に印加するバイアスBSを前記ターゲットに印加するバイアスBTにより除した数値である比率R1(=BS/BT)を縦軸としたグラフG1において、
     3つのプロット、a1(10.0、0.0016)、a2(17.0、0.00059)、およびa3(25.0、0.0001)を通過する曲線αより、右上の領域に含まれるように、前記圧力Pと前記比率R1の組み合わせを選択する内部応力制御膜の形成方法。
  5.  前記グラフG1において、
     3つのプロット、b1(10.0、0.00241)、b2(17.0、0.0012)、およびb3(25.0、0.0004)を通過する曲線βより、右上の領域に含まれるように、前記圧力Pと前記比率R1の組み合わせを選択する請求項4に記載の内部応力制御膜の形成方法。
  6.  スパッタリング法により被処理体の一面に内部応力制御膜を形成する方法であって、
     前記内部応力制御膜を成膜する際のプロセスガスの圧力が、閾値5(Pa)より高い圧力領域から選択され、
     前記内部応力制御膜が窒化チタンからなり、
     チタンからなるターゲットと、前記プロセスガスとして窒素を含むガスを用い、
     前記プロセスガスの圧力Pを横軸、前記内部応力制御膜の成膜速度10nm/minに対する前記被処理体に印加するバイアスBSの数値である比率R2を縦軸としたグラフG2において、
     3つのプロット、c1(10.0、0.0032)、c2(17.0、0.0018)、およびc3(25.0、0.0008)を通過する曲線γより、右上の領域に含まれるように、前記圧力Pと前記比率R2の組み合わせを選択する内部応力制御膜の形成方法。
  7.  前記グラフG2において、
     3つのプロット、d1(10.0、0.008)、d2(17.0、0.0034)、およびd3(25.0、0.002)を通過する曲線δより、右上の領域に含まれるように、前記圧力Pと前記比率R2の組み合わせを選択する請求項6に記載の内部応力制御膜の形成方法。
  8.  前記プロセスガスを構成する窒素を含むガスが、アルゴンガスと窒素ガスから構成され、前記窒素を含むガスに占める前記窒素ガスの流量比が50(%)以上である請求項1から請求項7のいずれか一項に記載の内部応力制御膜の形成方法。
  9.  前記プロセスガスを構成する窒素を含むガスが、アルゴンガスと窒素ガスから構成され、前記窒素を含むガスに占める前記窒素ガスの流量比が70(%)以上である請求項1から請求項7のいずれか一項に記載の内部応力制御膜の形成方法。
PCT/JP2017/002484 2016-05-16 2017-01-25 内部応力制御膜の形成方法 WO2017199468A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780005953.9A CN108474107B (zh) 2016-05-16 2017-01-25 内部应力控制膜的形成方法
US16/071,532 US10975465B2 (en) 2016-05-16 2017-01-25 Method of forming internal stress control film
KR1020187017953A KR102140914B1 (ko) 2016-05-16 2017-01-25 내부 응력 제어막의 형성 방법
JP2018518073A JP6653383B2 (ja) 2016-05-16 2017-01-25 内部応力制御膜の形成方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-098158 2016-05-16
JP2016098158 2016-05-16

Publications (1)

Publication Number Publication Date
WO2017199468A1 true WO2017199468A1 (ja) 2017-11-23

Family

ID=60325792

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/002484 WO2017199468A1 (ja) 2016-05-16 2017-01-25 内部応力制御膜の形成方法

Country Status (6)

Country Link
US (1) US10975465B2 (ja)
JP (1) JP6653383B2 (ja)
KR (1) KR102140914B1 (ja)
CN (1) CN108474107B (ja)
TW (1) TWI690613B (ja)
WO (1) WO2017199468A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11802349B2 (en) * 2019-10-25 2023-10-31 Applied Materials, Inc. Method for depositing high quality PVD films

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08288273A (ja) * 1995-04-19 1996-11-01 Nippon Steel Corp TiNバリア膜の製造方法およびその装置
JPH10330938A (ja) * 1997-05-28 1998-12-15 Anelva Corp イオン化スッパタ装置及びイオン化スパッタ方法
JP2005519198A (ja) * 2002-02-27 2005-06-30 ジェイ ラモス,ヘンリー 窒化チタン膜の製法

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2689931B2 (ja) * 1994-12-29 1997-12-10 日本電気株式会社 スパッタ方法
US5972178A (en) * 1995-06-07 1999-10-26 Applied Materials, Inc. Continuous process for forming improved titanium nitride barrier layers
US6139699A (en) 1997-05-27 2000-10-31 Applied Materials, Inc. Sputtering methods for depositing stress tunable tantalum and tantalum nitride films
JP3248570B2 (ja) 1997-10-09 2002-01-21 日本電気株式会社 半導体装置の製造方法
US6548402B2 (en) 1999-06-11 2003-04-15 Applied Materials, Inc. Method of depositing a thick titanium nitride film
US20040007779A1 (en) 2002-07-15 2004-01-15 Diane Arbuthnot Wafer-level method for fine-pitch, high aspect ratio chip interconnect
JP5013675B2 (ja) * 2004-11-25 2012-08-29 株式会社リコー 電極触媒の製造方法及び電極触媒
US8936702B2 (en) * 2006-03-07 2015-01-20 Micron Technology, Inc. System and method for sputtering a tensile silicon nitride film
JP5162869B2 (ja) * 2006-09-20 2013-03-13 富士通セミコンダクター株式会社 半導体装置およびその製造方法
US7727882B1 (en) * 2007-12-17 2010-06-01 Novellus Systems, Inc. Compositionally graded titanium nitride film for diffusion barrier applications
US8691057B2 (en) * 2008-03-25 2014-04-08 Oem Group Stress adjustment in reactive sputtering
US20090246385A1 (en) * 2008-03-25 2009-10-01 Tegal Corporation Control of crystal orientation and stress in sputter deposited thin films
US20090242385A1 (en) * 2008-03-28 2009-10-01 Tokyo Electron Limited Method of depositing metal-containing films by inductively coupled physical vapor deposition
US7829456B2 (en) * 2008-10-23 2010-11-09 Applied Materials, Inc. Method to modulate coverage of barrier and seed layer using titanium nitride
US8482375B2 (en) * 2009-05-24 2013-07-09 Oem Group, Inc. Sputter deposition of cermet resistor films with low temperature coefficient of resistance
JP2011171322A (ja) * 2010-02-16 2011-09-01 Toshiba Corp 不揮発性半導体記憶装置、及びその製造方法
US9123622B2 (en) * 2010-06-23 2015-09-01 California Institute Of Technology Atomic layer deposition of high performance anti reflection coatings on delta-doped CCDs
CN102618823A (zh) * 2011-01-27 2012-08-01 鸿富锦精密工业(深圳)有限公司 镀膜件及其制备方法
JP5834944B2 (ja) * 2012-01-19 2015-12-24 東京エレクトロン株式会社 マグネトロンスパッタ装置及び成膜方法
WO2013190765A1 (ja) 2012-06-22 2013-12-27 株式会社アルバック ハードマスク及びハードマスクの製造方法
US8802578B2 (en) * 2012-07-13 2014-08-12 Institute of Microelectronics, Chinese Academy of Sciences Method for forming tin by PVD
JP6030589B2 (ja) 2014-02-13 2016-11-24 株式会社アルバック ハードマスク形成方法及びハードマスク形成装置
CN104328384A (zh) 2014-11-18 2015-02-04 沈阳大学 一种氮化钛铝锆铌氮梯度硬质反应膜的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08288273A (ja) * 1995-04-19 1996-11-01 Nippon Steel Corp TiNバリア膜の製造方法およびその装置
JPH10330938A (ja) * 1997-05-28 1998-12-15 Anelva Corp イオン化スッパタ装置及びイオン化スパッタ方法
JP2005519198A (ja) * 2002-02-27 2005-06-30 ジェイ ラモス,ヘンリー 窒化チタン膜の製法

Also Published As

Publication number Publication date
JP6653383B2 (ja) 2020-02-26
US20190071767A1 (en) 2019-03-07
JPWO2017199468A1 (ja) 2018-11-29
US10975465B2 (en) 2021-04-13
KR20180086238A (ko) 2018-07-30
TWI690613B (zh) 2020-04-11
KR102140914B1 (ko) 2020-08-04
TW201809328A (zh) 2018-03-16
CN108474107A (zh) 2018-08-31
CN108474107B (zh) 2020-06-12

Similar Documents

Publication Publication Date Title
JP5901762B2 (ja) ハードマスクの製造方法
KR101449081B1 (ko) 기판 처리 방법
US11462412B2 (en) Etching method
TWI633579B (zh) Hard mask forming method and hard mask forming device
WO2010054112A2 (en) Plasma resistant coatings for plasma chamber components
JP2007005381A (ja) プラズマエッチング方法、及びプラズマエッチング装置
JP2017011127A (ja) エッチング方法
TW201705265A (zh) 蝕刻方法
TW201806026A (zh) 電漿處理方法
US20170287727A1 (en) Metal hard mask and method of manufacturing same
WO2017199468A1 (ja) 内部応力制御膜の形成方法
JP2019175975A (ja) ボロン系膜の成膜方法および成膜装置
KR102033826B1 (ko) 플라스마 에칭 방법
CN107710391B (zh) 对多层膜进行蚀刻的方法
KR102423457B1 (ko) 에칭 방법
JP5265309B2 (ja) スパッタリング方法
KR100874867B1 (ko) 지르코늄산화막 형성방법
JP7196372B2 (ja) 積層構造体及び積層構造体の製造方法
WO2011034092A1 (ja) バリアメタル膜の形成方法
JP2016084508A (ja) 金属膜成膜方法
JPH11172429A (ja) 超平滑膜の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20187017953

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020187017953

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2018518073

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17798906

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17798906

Country of ref document: EP

Kind code of ref document: A1