WO2017195619A1 - ニトロベンゼン化合物を製造する方法 - Google Patents

ニトロベンゼン化合物を製造する方法 Download PDF

Info

Publication number
WO2017195619A1
WO2017195619A1 PCT/JP2017/016700 JP2017016700W WO2017195619A1 WO 2017195619 A1 WO2017195619 A1 WO 2017195619A1 JP 2017016700 W JP2017016700 W JP 2017016700W WO 2017195619 A1 WO2017195619 A1 WO 2017195619A1
Authority
WO
WIPO (PCT)
Prior art keywords
mol
water
acid
copper
toluene
Prior art date
Application number
PCT/JP2017/016700
Other languages
English (en)
French (fr)
Inventor
尊之 中村
加藤 聡
真希 榎本
淳 田藤
Original Assignee
クミアイ化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by クミアイ化学工業株式会社 filed Critical クミアイ化学工業株式会社
Priority to JP2018516941A priority Critical patent/JP6789526B2/ja
Priority to EP17795980.6A priority patent/EP3456705B1/en
Priority to CN201780028766.2A priority patent/CN109071411B/zh
Publication of WO2017195619A1 publication Critical patent/WO2017195619A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C201/00Preparation of esters of nitric or nitrous acid or of compounds containing nitro or nitroso groups bound to a carbon skeleton
    • C07C201/06Preparation of nitro compounds

Definitions

  • the present invention is represented by the general formula (1):
  • R 1 represents a halogen atom
  • R 2 , R 3 and R 4 may be the same or different and each represents a hydrogen atom, a halogen atom or an alkyl group
  • R 5 represents a halogen atom or an alkoxycarbonyl group
  • the present invention relates to a method for producing a nitrobenzene compound.
  • the nitrobenzene compound of the general formula (1) is useful as an intermediate for producing various useful organic compounds.
  • 2,6-dichloronitrobenzene see Patent Documents 1 and 2
  • 2-chloro-6-alkoxycarbonylnitrobenzene see Patent Documents 3 and 4
  • a production method comprising diazotization of an aniline compound and subsequent nitration is known (see Patent Document 5 and Non-Patent Document 1).
  • this method has several problems.
  • One problem is low economic efficiency due to the large amount of water used as a solvent.
  • Another problem is that dinitro compounds are by-produced.
  • the dinitro compound is a dinitrobenzene compound. That is, the dinitro compound is a compound having two nitro groups on the benzene ring.
  • Such dinitro compounds are generally known to be extremely dangerous. It is industrially unfavorable that the dinitro compound is produced even in a small amount. That is, a method for reducing the amount of dinitro compounds by-produced has been desired.
  • Patent Document 6 a method of oxidizing an aniline compound with hydrogen peroxide is also known as a method for producing a nitrobenzene compound of the general formula (1) (see Patent Document 6).
  • This method uses hydrogen peroxide, which requires caution in order to keep it safe in industrial practice operations.
  • the method described in Patent Document 6 is superior to the prior art known before Patent Document 6, but there is still room for improvement in terms of using hydrogen peroxide.
  • the present inventors reacted an aniline derivative with a metal salt of nitrous acid in the presence of an acid, and then obtained product or a reaction mixture containing the product was converted into a metal salt of nitrous acid and a copper compound.
  • a corresponding method for producing a nitrobenzene derivative has been developed, wherein the reaction is further carried out in the presence, and the total amount of water used in the reaction is 1.2 to 2.2 L with respect to 1 mol of the starting aniline derivative.
  • This method is not only a manufacturing method suitable for industrialization because it can reduce the amount of dangerous dinitro compounds as a by-product, improves safety, and does not use hydrogen peroxide. Since the amount of nitrous acid metal salt to be used can be greatly reduced, and the amount of water to be used can also be reduced, the method is very efficient as an industrial production method with good economic efficiency.
  • An object of the present invention is to provide a further improved and excellent method as an industrial production method of the nitrobenzene compound represented by the general formula (1).
  • the method disclosed in Patent Document 7 is an excellent method as an industrial production method, but is not necessarily sufficient in terms of operational safety, yield, etc., and the object of the present invention is that these points are It is to provide an improved method.
  • Patent Document 7 describes that hydrochloric acid is preferable as the acid, but even when hydrochloric acid is used as the acid, it is not sufficient to suppress thermal runaway during the reaction process, and is safer.
  • the development of a method was desired. Further, even when hydrochloric acid is used as the acid, the yield is limited to about 90%. From this point, a more excellent method has been desired. Therefore, the present inventors have further studied diligently about the method for producing the nitrobenzene compound of the general formula (1).
  • nitric acid as an acid, thermal runaway during the reaction process can be further suppressed, and not only can a safe industrial production method be provided, but also the yield can be significantly improved. I found out that I can.
  • the present invention uses nitric acid instead of hydrochloric acid or sulfuric acid as the acid, that is, the general formula (2):
  • R 1 represents a halogen atom
  • R 2 , R 3 and R 4 may be the same or different and each represents a hydrogen atom, a halogen atom or an alkyl group
  • R 5 represents a halogen atom or an alkoxycarbonyl group
  • Is shown. Is reacted in the presence of nitric acid metal salt and nitric acid, and the resulting product or reaction mixture containing the product is further reacted in the presence of nitrous acid metal salt and copper compound.
  • the general formula (1) is characterized in that the total amount of water used in the reaction is 1.2 to 2.2 L with respect to 1 mol of the compound represented by the general formula (2):
  • the present invention is as follows.
  • R 1 represents a halogen atom
  • R 2 , R 3 and R 4 may be the same or different and each represents a hydrogen atom, a halogen atom or an alkyl group
  • R 5 represents a halogen atom or an alkoxycarbonyl group
  • R 1 , R 2 , R 3 , R 4 and R 5 are as defined above.
  • Reacting a metal salt of nitrous acid with a metal salt of nitrous acid in the presence of nitric acid (Ii) reacting the product of step (i) or a reaction mixture containing the product (hereinafter referred to as the product of step (i)) with a metal salt of nitrous acid in the presence of a copper compound; Including methods.
  • Step (ii) is a step of reacting in the presence of water, and the total amount of water used in step (ii) is 1.2-2.
  • step (i) or step (ii) is an alkali metal salt of nitrous acid or an alkaline earth metal salt of nitrous acid.
  • the amount of the metal salt of nitrous acid used in the step (i) is 1.0 to 10.0 mol with respect to 1 mol of the compound of the general formula (2). ] The method as described in any one of.
  • the amount of the metal salt of nitrous acid used in the step (i) is 1.0 to 3.0 mol with respect to 1 mol of the compound of the general formula (2). ] The method as described in any one of.
  • the amount of the metal salt of nitrous acid used in the step (ii) is 1.0 to 10.0 mol with respect to 1 mol of the compound of the general formula (2). ] The method as described in any one of.
  • the amount of the metal salt of nitrous acid used in the step (ii) is 1.0 to 3.0 mol with respect to 1 mol of the compound of the general formula (2). ] The method as described in any one of.
  • step (ii) Any of [1] to [8] above, wherein the amount of the copper compound used in step (ii) is 0.01 to 5.0 moles per mole of the compound of the general formula (2).
  • step (ii) is copper oxide, a copper (I) salt, or a copper (II) salt.
  • the organic solvent is selected from the group consisting of diisopropyl ether, dibutyl ether, cyclopentyl methyl ether (CPME), isobutyl methyl ketone (MIBK), ethyl acetate, butyl acetate, benzene, toluene, xylene, chlorobenzene, dichlorobenzene and trichlorobenzene.
  • CPME cyclopentyl methyl ether
  • MIBK isobutyl methyl ketone
  • step (ii) is further performed in the presence of a base.
  • step (ii) is performed in a hydrous solvent system containing an organic solvent.
  • the organic solvent is one or a mixture selected from the group consisting of isobutyl methyl ketone (MIBK), ethyl acetate, butyl acetate, benzene, toluene, xylene, chlorobenzene, dichlorobenzene, and dichloromethane, [23] ] The method of description.
  • MIBK isobutyl methyl ketone
  • an industrially excellent method for producing a nitrobenzene compound of the general formula (1) is provided.
  • the method of the present invention is characterized in that nitric acid is used as an acid in the method described in Patent Document 7, is a method that does not use hydrogen peroxide, and adjusts the amount of water to be used.
  • nitric acid is used as an acid in the method described in Patent Document 7
  • the method of the present invention not only can suppress thermal runaway during the process by using nitric acid as an acid, but also has an excellent yield of the nitrobenzene compound of the general formula (1).
  • the method of the present invention provides a method in which the method disclosed in Patent Document 7 is further improved and is not only a method capable of safe and stable operation suitable for industrial production, but also a high method.
  • the nitrobenzene compound of the general formula (1) having high yield can be efficiently produced, and the method of the present invention is environmentally friendly and has high industrial utility value.
  • halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom, preferably a fluorine atom and a chlorine atom, and more preferably a chlorine atom.
  • C a -C b means that the number of carbon atoms is ab.
  • C 1 ⁇ C 4" of the "C 1 ⁇ C 4 alkyl group” means that the number of carbon atoms in the alkyl group is from 1 to 4
  • alkyl group examples include C 1 -C 4 alkyl groups.
  • Specific examples of the C 1 -C 4 alkyl group include methyl, ethyl, propyl, isopropyl, butyl, sec-butyl, isobutyl, tert-butyl, etc., preferably methyl, ethyl, propyl, isopropyl, More preferred is methyl, ethyl, and even more preferred is methyl.
  • alkoxycarbonyl group examples include a C 1 -C 4 alkoxycarbonyl group.
  • Specific examples of the C 1 -C 4 alkoxycarbonyl group include methoxycarbonyl, ethoxycarbonyl, propoxycarbonyl, isopropoxycarbonyl, butoxycarbonyl, sec-butoxycarbonyl, isobutoxycarbonyl, tert-butoxycarbonyl and the like.
  • Step (i) is represented by the general formula (2):
  • R 1 represents a halogen atom
  • R 2 , R 3 and R 4 may be the same or different and each represents a hydrogen atom, a halogen atom or an alkyl group
  • R 5 represents a halogen atom or an alkoxycarbonyl group
  • the aniline compound of the general formula (2) is used as a raw material for the method of the present invention.
  • the aniline compound of the general formula (2) is a known compound, or a compound that can be produced from a known compound by a known method.
  • an aniline compound of General formula (2) for example, 2,6-dichloroaniline, 2,6-dibromoaniline, 2,6-difluoroaniline, 2-chloro-6-fluoroaniline, 2-bromo-6-chloroaniline, 2-chloro-6-iodoaniline, Methyl 2-amino-3-chlorobenzoate, Ethyl 2-amino-3-chlorobenzoate, Propyl 2-amino-3-chlorobenzoate, Isopropyl 2-amino-3-chlorobenzoate, Butyl 2-amino-3-chlorobenzoate, Isobutyl 2-amino-3-chlorobenzoate, Sec-butyl 2-amino-3-chlorobenzoate, Tert-butyl 2-amino-3-chlorobenzoate, Methyl 2-amino-3-fluorobenzoate, Ethyl 2-amino-3-fluorobenzoate, E
  • Metal salt of nitrous acid in step (i) examples include alkali metal salts of nitrous acid (for example, lithium nitrite, sodium nitrite, potassium nitrite, etc.), alkaline earth metal salts of nitrous acid (for example, nitrous acid) Magnesium, calcium nitrite, barium nitrite, and the like), but are not limited thereto. From the viewpoints of price, availability, reactivity, and the like, an alkali metal salt of nitrous acid is preferable, sodium nitrite or potassium nitrite is more preferable, and sodium nitrite is more preferable.
  • the metal salt of nitrous acid used in step (i) may be different from the metal salt of nitrous acid used in step (ii) described later, or the same one may be used. Good. That is, the metal salt of nitrous acid used in step (i) and the metal salt of nitrous acid used in step (ii) may be the same or different.
  • the form of the metal salt of nitrous acid may be any form as long as the reaction proceeds.
  • Examples of the form of the metal salt of nitrous acid include a solid containing only the metal salt of nitrous acid, an aqueous solution of an arbitrary concentration, or a solution of a solvent other than water.
  • the alkali metal salt of nitrous acid may be used alone or in combination of two or more in any ratio.
  • the amount of nitrous acid metal salt used in step (i) may be any amount as long as the reaction proceeds. From the viewpoints of yield, by-product suppression and economic efficiency, etc., usually 1.0 to 10.0 mol, preferably 1.0 to 5.0 mol, relative to 1 mol of the aniline compound of the general formula (2), A range of 1.0 to 3.0 mol, more preferably 1.0 to 2.0 mol, particularly preferably 1.0 to 1.2 mol is more preferable.
  • the method of the present invention is characterized in that nitric acid is used as the acid used in step (i).
  • Nitric acid aqueous solution is preferably used as nitric acid.
  • concentration of nitric acid in the aqueous nitric acid solution is not particularly limited, but usually a nitric acid concentration of 30% to 90%, preferably about 68% to 70%, which forms an azeotrope is used.
  • nitric acid in the method of the present invention does not exclude the use in combination with other acids such as inorganic acids such as hydrochloric acid and sulfuric acid, but it is usually preferable to use nitric acid alone.
  • the amount of nitric acid used in step (i) may be any amount as long as the reaction proceeds. From the viewpoints of yield, by-product suppression, economic efficiency, etc., it is usually 1 to 10 mol, preferably 1 to 5 mol, more preferably 1 to 3 mol, relative to 1 mol of the aniline compound of the general formula (2). A range can be illustrated.
  • the reaction in step (i) is preferably carried out in the presence of a solvent.
  • the solvent in step (i) may be any solvent as long as the reaction in step (i) proceeds and does not adversely affect the reaction in step (ii).
  • the solvent in step (i) is particularly preferably water.
  • a solvent other than water described later is not excluded.
  • water and a solvent other than water can be used as long as the desired reaction proceeds.
  • solvents other than water that can be used in step (i) include alcohols (eg, methanol, ethanol, 2-propanol, butanol, etc.), ethers (eg, tetrahydrofuran (THF), 1,4-dioxane).
  • solvent other than water in step (i) include alcohols, ethers, nitriles, amides, sulfoxides, ketones, Aromatic hydrocarbon derivatives, halogenated aliphatic hydrocarbons and the like can be mentioned, and more preferred are ketones.
  • the solvent other than water in step (i) include methanol, ethanol, tetrahydrofuran (THF), dibutyl ether, acetonitrile, N, N-dimethylformamide (DMF), N, N-dimethylacetamide (DMAC). ), N-methylpyrrolidone (NMP), dimethyl sulfoxide (DMSO), isobutyl methyl ketone (MIBK), toluene, xylene, chlorobenzene, dichlorobenzene, trichlorobenzene, dichloromethane and the like, more preferably isobutyl methyl ketone (MIBK). Is mentioned.
  • the amount of the solvent used in step (i) may be any amount as long as the reaction system can be sufficiently stirred. From the viewpoint of reactivity, suppression of by-products and economic efficiency, the total amount of water used in step (i) is usually 0.1 to 1.5 L (1 mol) per 1 mol of the aniline compound of the general formula (2) ( Liter), preferably 0.3 to 1.3 L, more preferably 0.4 to 1.2 L.
  • the total amount of water used in step (i) is the amount of all water present in the reaction system when the reaction in step (i) is completed.
  • the total amount of water used in step (i) includes the amount of water in the aqueous solution of nitric acid used in step (i), the amount of water in the aqueous solution of the metal salt of nitrous acid, and the like.
  • the amount of the above-mentioned solvent other than water is usually in the range of 0 (zero) to 5 L (liter), preferably 0 to 1 L with respect to 1 mol of the aniline compound of the general formula (2). it can.
  • the ratio of water and the solvent other than water may be any ratio as long as the reaction proceeds.
  • the ratio of the two or more solvents other than water may be any ratio as long as the reaction proceeds.
  • reaction temperature of step (i) The reaction temperature in step (i) is not particularly limited. From the viewpoints of yield, suppression of by-products and economic efficiency, etc., it is usually ⁇ 30 ° C. (minus 30 ° C.) to 50 ° C., preferably ⁇ 20 ° C. to 25 ° C., more preferably ⁇ 10 ° C. to 10 ° C., still more preferably. A range of -5 ° C to 5 ° C can be exemplified.
  • reaction time of step (i) The reaction time in step (i) is not particularly limited. From the viewpoints of yield, by-product suppression and economic efficiency, it is usually 0.1 to 48 hours, preferably 0.1 to 24 hours, more preferably 0.1 to 12 hours, and still more preferably 0. Examples include the range of 1 hour to 3 hours.
  • the product of step (i) is a diazonium salt corresponding to the aniline compound of general formula (2) used as a raw material.
  • diazonium salts are compounds well known to those skilled in the art.
  • the “product of step (i)” in the present invention refers not only to a substance obtained by purifying and isolating the reaction product of step (i), but also to an unpurified crude product and a reaction product of step (i). Containing the reaction mixture.
  • Such a mixture may be, for example, the reaction mixture itself of step (i) or a layer containing the reaction product of step (i) in the reaction mixture, for example, only an aqueous layer portion. It may be.
  • Such a mixture may be a further purified mixture as required.
  • the reaction mixture of step (i) is used in the next step (ii)
  • an organic solvent immiscible with water examples include ethers (for example, diisopropyl ether, dibutyl ether, cyclopentyl methyl ether (CPME), methyl-tert-butyl ether, etc.), ketones (for example, isobutyl methyl ketone (MIBK), etc.) , Carboxylic acid esters (eg, ethyl acetate, butyl acetate, etc.), aromatic hydrocarbon derivatives (eg, benzene, toluene, xylene, chlorobenzene, dichlorobenzene, trichlorobenzene, nitrobenzene, etc.), halogenated aliphatic hydrocarbons (For example, dichloromethane etc.) etc
  • organic solvents that are not miscible with water include ethers, ketones, carboxylic acid esters, aromatic hydrocarbon derivatives and the like. More preferred are aromatic hydrocarbon derivatives.
  • organic solvent immiscible with water examples include diisopropyl ether, dibutyl ether, cyclopentyl methyl ether (CPME), isobutyl methyl ketone (MIBK), ethyl acetate, butyl acetate, benzene, toluene, xylene, chlorobenzene, A chlorobenzene, a trichlorobenzene, etc. are mentioned, More preferably, a toluene is mentioned.
  • the amount of the organic solvent to be used is not particularly limited as long as it is a washable amount, but is preferably about 50 mL to 300 mL, more preferably about 100 mL to 200 mL with respect to 1 mol of the aniline compound of the general formula (2). is there.
  • step (i) When the reaction mixture in step (i) is washed with an organic solvent, water required in step (ii) may be added at the same time. That is, washing can be performed by simultaneously adding an organic solvent immiscible with water and water. In washing with an organic solvent, an organic solvent or a mixture of an organic solvent and water is added to the reaction mixture after adding a base to the reaction mixture of step (i) or the reaction mixture of step (i). Thereafter, the organic layer and the aqueous layer can be separated and the aqueous layer can be separated.
  • a base may be added to the mixture after completion of the reaction in step (i) or before the start of the reaction in step (ii).
  • the pH of the reaction system in step (ii) may be adjusted by adding a base as necessary.
  • the addition of a base that is, the adjustment of pH may or may not be performed.
  • the addition of the base may be performed anytime and anywhere (in any reaction vessel or the like).
  • the pH range adjusted by the addition of the base is not particularly limited as long as the reaction proceeds smoothly, but is preferably in the range of pH 0.5 to 3.0, more preferably pH 0.6 to 2.0. The range can be exemplified.
  • base examples include alkali metal hydroxides (eg, lithium hydroxide, sodium hydroxide, potassium hydroxide), alkaline earth metal hydroxides (eg, magnesium hydroxide, calcium hydroxide, hydroxide) Barium, etc.), alkali metal carbonates (eg, lithium carbonate, sodium carbonate, potassium carbonate, etc.), alkaline earth metal carbonates (eg, magnesium carbonate, calcium carbonate, barium carbonate, etc.), alkali metal bicarbonates (eg, Lithium hydrogen carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, etc.), alkaline earth metal hydrogen carbonates (eg, magnesium hydrogen carbonate, calcium hydrogen carbonate, barium hydrogen carbonate, etc.), phosphates (eg, sodium phosphate, phosphoric acid) Potassium, calcium phosphate, etc.), hydrogen phosphate (eg, sodium hydrogen phosphate) , Potassium hydrogen phosphate, calcium hydrogen phosphate, etc.), carboxylic acid alkali metal salts (e
  • the base include alkali metal hydroxides, alkali metal carbonates, alkali metal hydrogen carbonates, and more preferably alkali.
  • Metal hydrogen carbonate is mentioned.
  • the base preferably include sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, and more preferably sodium hydrogen carbonate, potassium hydrogen carbonate, and the like. More preferred is sodium hydrogen carbonate.
  • the form of the base may be any form as long as the reaction proceeds. Examples of the form of the base include a solid or liquid containing only the base, an aqueous solution having an arbitrary concentration, or a solution of a solvent other than water. Moreover, the said base may be used individually or in mixture of 2 or more types in arbitrary ratios.
  • the amount of the base used can be determined by a person skilled in the art as needed.
  • the amount of the base used may be any amount as long as the reaction proceeds. From the viewpoints of yield, by-product suppression and economic efficiency, etc., usually from 0 (zero) to 5 mol, preferably from 0 to 1 mol, more preferably from 0 to 1 mol per 1 mol of the aniline compound of the general formula (2).
  • a range of 0.6 mol can be exemplified.
  • step (ii) Next, process (ii) is demonstrated.
  • step (ii) the product of step (i) is reacted in the presence of a metal salt of nitrous acid and a copper compound to give the following general formula (1):
  • Metal salt of nitrous acid in step (ii) examples include alkali metal salts of nitrous acid (for example, lithium nitrite, sodium nitrite, potassium nitrite), alkaline earth metal salts of nitrous acid (for example, nitrous acid) Magnesium, calcium nitrite, barium nitrite, and the like), but are not limited thereto. From the viewpoints of price, availability, reactivity, and the like, an alkali metal salt of nitrous acid is preferable, sodium nitrite or potassium nitrite is more preferable, and sodium nitrite is more preferable.
  • the form of the metal salt of nitrous acid may be any form as long as the reaction proceeds.
  • Examples of the form of the metal salt of nitrous acid include a solid containing only the metal salt of nitrous acid, an aqueous solution of an arbitrary concentration, or a solution of a solvent other than water.
  • the alkali metal salt of nitrous acid may be used alone or in combination of two or more in any ratio.
  • the amount of nitrous acid metal salt used in step (ii) may be any amount as long as the reaction proceeds. From the viewpoints of yield, suppression of by-products and economic efficiency, etc., usually 1.0-10.0 mol, preferably 1.0-7.0 mol, A range of 1.0 to 5.0 mol is more preferable, and a range of 1.0 to 3.0 mol is more preferable.
  • a copper compound in step (ii) In the step (ii), it is preferable to use a copper compound as a catalyst.
  • the copper compound that can be used in the step (ii) include a copper compound that is generally known as a catalyst for the Sandmeyer reaction. Furthermore, the catalyst of the method of Hantzsch et al. Can be mentioned.
  • the copper compound include copper oxide, copper (I) salt, copper (II) salt, double salt composed of copper (I) and copper (II), copper powder, and the like.
  • copper oxide include copper (I) oxide and copper (II) oxide.
  • Examples of the copper (I) salt include copper sulfate (I), copper sulfite (I), copper carbonate (I), copper chloride (I), copper bromide (I), copper cyanide (I) and the like. It is done.
  • Examples of the copper (II) salt include copper (II) sulfate, copper (II) sulfite, copper (II) carbonate, copper (II) chloride, copper (II) bromide, and copper (II) cyanide. It is done.
  • Examples of the double salt composed of copper (I) and copper (II) include copper (I) copper (II) (cupro-sulfurite) which is a catalyst of the method of Hantzsch et al.
  • the copper compound that can be used in step (ii) are preferably copper (I) oxide, copper (I) sulfate, copper (I) sulfite, copper (I) sulfite (II) (cupro-cuprisulfite). ), Copper (I) carbonate, copper powder, etc., more preferably copper (I) oxide, copper (I) sulfate, copper (I) sulfite, copper (I) sulfite (II) (cupro-cuprisulfite) And copper powder, and more preferable examples include, but are not limited to, copper (I) oxide and copper (I) copper (II) (cupro-cuprisulfite).
  • the copper compound may be a single salt or a double salt.
  • the copper compound may be an anhydride or a hydrate.
  • the form of the copper compound may be any form as long as the reaction proceeds. Examples of the form of the copper compound include a solid containing only a copper compound, an aqueous solution having an arbitrary concentration, or a solution of a solvent other than water. Moreover, you may mix and use a copper compound individually or in mixture of 2 or more types in arbitrary ratios.
  • the amount of copper compound used in step (ii) may be any amount as long as the reaction proceeds. From the viewpoints of yield, by-product suppression, economic efficiency, safety, etc., the amount is usually 0.01 to 5.0 mol, preferably 0.01 to 1. A range of 0 mol, more preferably 0.01 to 0.5 mol can be exemplified.
  • the reaction in step (ii) is preferably carried out in the presence of a solvent.
  • the solvent for step (ii) may be any solvent as long as the reaction of step (ii) proceeds.
  • Examples of the solvent that can be used in the step (ii) include water, alcohols (eg, methanol, ethanol, 2-propanol, butanol, etc.), ethers (eg, tetrahydrofuran (THF), 1,4-dioxane, Diisopropyl ether, dibutyl ether, cyclopentyl methyl ether (CPME), methyl-tert-butyl ether, 1,2-dimethoxyethane (DME), diglyme, triglyme etc.), nitriles (eg acetonitrile etc.), Amides (eg, N, N-dimethylformamide (DMF), N, N-dimethylacetamide (DMAC), N-methylpyrrolidone (NMP), etc.), alkylureas (eg, N, N′-dimethylimidazolidinone) (DMI ), Sulfoxides (eg, dimethyl sulfoxide (DMSO
  • step (ii) is preferably carried out in the presence of water.
  • Preferred examples of the solvent in step (ii) include water alone, a combination of water and ketones, a combination of water and carboxylic acid esters, a combination of water and aromatic hydrocarbon derivatives, water and halogenated aliphatic hydrocarbons.
  • the solvent in step (ii) are preferably water alone, a combination of water and isobutyl methyl ketone (MIBK), a combination of water and ethyl acetate, a combination of water and butyl acetate, and a combination of water and toluene.
  • MIBK isobutyl methyl ketone
  • the amount of the solvent used in step (ii) may be any amount as long as the reaction system can be sufficiently stirred. In the case where the reaction in the step (ii) is carried out in the presence of water, the step (ii) is carried out with respect to 1 mol of the aniline compound of the general formula (2) from the viewpoints of reactivity, suppression of by-products and economic efficiency.
  • the total amount of water used in (1) is preferably 1.2 to 2.2 L (liter), more preferably 1.2 to 1.9 L.
  • the total amount of water used in step (ii) is the amount of all water present in the reaction system when the reaction in step (ii) is completed.
  • step (ii) not only the amount of water added in step (ii) but also the amount of water when using an acid or a metal salt of nitrous acid as an aqueous solution is added. Furthermore, when the reaction mixture in step (i) is used as it is, the amount of water in the reaction mixture is also added.
  • the total amount of water used in step (ii) includes water in an aqueous solution of a metal salt of nitrous acid used in step (ii) and water in an aqueous solution of a base. When the reaction mixture of i) is used as it is, the total amount of water in step (i) is also added.
  • the amount of the above-mentioned solvent other than water is usually 0 (zero) to 5 L (liter), preferably 0.1 to 1 L, relative to 1 mol of the aniline compound of the general formula (2).
  • a range of 0.2 to 0.9 L is preferable.
  • the ratio of water and the solvent other than water may be any ratio as long as the reaction proceeds.
  • the ratio of the two or more solvents other than water may be any ratio as long as the reaction proceeds.
  • reaction temperature of step (ii) is not particularly limited. From the viewpoints of yield, by-product suppression, economic efficiency, etc., it is usually ⁇ 30 ° C. (minus 30 ° C.) to 70 ° C., preferably ⁇ 20 ° C. to 50 ° C., more preferably ⁇ 10 ° C. to 35 ° C., more preferably A range of ⁇ 5 ° C. to 10 ° C. can be exemplified.
  • reaction time of step (ii) is not particularly limited. From the viewpoints of yield, by-product suppression and economic efficiency, it is usually 0.1 to 48 hours, preferably 0.1 to 24 hours, more preferably 0.5 to 12 hours, and even more preferably 0 A range of 5 hours to 1 hour can be exemplified.
  • nitrobenzene compound of general formula (1) Specific examples of the nitrobenzene compound of the general formula (1) obtained in the step (ii) include: 2,6-dichloronitrobenzene, 2,6-dibromonitrobenzene, 2,6-difluoronitrobenzene, 2-chloro-6-fluoronitrobenzene, 2-bromo-6-chloronitrobenzene, 2-chloro-6-iodonitrobenzene, Methyl 3-chloro-2-nitrobenzoate, Ethyl 3-chloro-2-nitrobenzoate, Propyl 3-chloro-2-nitrobenzoate, Isopropyl 3-chloro-2-nitrobenzoate, Butyl 3-chloro-2-nitrobenzoate, Isobutyl 3-chloro-2-nitrobenzoate, Sec-butyl 3-chloro-2-nitrobenzoate, Tert-butyl 3-chloro-2-nitrobenzoate, Methyl
  • the target compound can be obtained by separating and purifying the target nitrobenzene compound of the general formula (1) from the reaction mixture of step (ii).
  • the separation / purification means include usual means such as filtration of insoluble matter, extraction method, distillation method, recrystallization method, chromatography method and the like.
  • the amount of the target compound in the reaction mixture can be determined by high performance liquid chromatography (HPLC) or gas chromatography (GC).
  • the yield through the steps (i) and (ii) of the method of the present invention can be 90% or more by using nitric acid as an acid. More specifically, it may be 95% or more. Such a dramatic increase in yield is thought to be due to an improvement in not only the conversion rate but also the selectivity.
  • the residence temperature (T R ) at the time of TMR measurement is 5 ° C. for the residence temperature of Example 2 and Comparative Example 1 and 0 ° C. for the residence temperature of Example 3 and Comparative Example 8 with reference to the actual operation temperature.
  • the heat generation start temperature (° C.) was 137.25 ° C. in Example 2 using nitric acid, but was 114.51 ° C. in Comparative Example 1 using hydrochloric acid.
  • the reaction temperature in step (ii) is usually sufficient to be 5 ° C. or less, and at most about 30 ° C., so it is considered that the difference from the heat generation start temperature is sufficient, but the method using nitric acid of the present invention It was found that the method has a higher heat generation start temperature and is safer.
  • TMR at T R (hr) is, in Example 2 using nitric acid of the present invention, it was 2385.6 hours, in Comparative Example 1 was used hydrochloric acid was 255.3 hours.
  • the reaction temperature of step (ii) of the present invention is sufficient at 5 ° C. and the reaction time is about 0.5 hours
  • Example 2 using the nitric acid of the present invention is hot. It is thought that 4000 times or more of time is required before the runaway.
  • Comparative Example 1 using hydrochloric acid there is a possibility that thermal runaway may occur in about 500 times, and from the point of time until such thermal runaway, the method of the present invention is also possible. It was confirmed that there is much higher safety.
  • ADT 24 (° C.) was 63.2 ° C. in Example 2 using the nitric acid of the present invention, and 38.8 ° C. in Comparative Example 1 using hydrochloric acid.
  • the reaction temperature in step (ii) was 5 ° C.
  • Example 2 using the nitric acid of the present invention the temperature increased from 5 ° C. to 58.2 ° C. (the temperature increased 12.6 times).
  • Comparative Example 1 using hydrochloric acid the temperature rises only 33.8 ° C. from 5 ° C. (the temperature is increased by 7.8 times). A thermal runaway may occur after 24 hours. Even from this point of temperature increase, it was confirmed that Example 2 using nitric acid had about twice as much safety as Comparative Example 1 using hydrochloric acid.
  • the method using nitric acid of the present invention is greatly improved not only in the yield improvement but also in the safety of operation as compared with the method using hydrochloric acid disclosed in Patent Document 7. An improvement was found.
  • the use of nitric acid is expected to increase the by-product of dinitro compounds and reduce the safety of the reaction.
  • the result that the method using nitric acid of the present invention has higher safety than the method using hydrochloric acid is completely It was unexpected.
  • room temperature is usually in the range of 10 ° C to 35 ° C.
  • the following apparatus was used for the measurement of each physical property of Examples and Comparative Examples.
  • 1 H nuclear magnetic resonance spectrum 1 H-NMR
  • Varian Mercury-300, internal reference material tetramethylsilane (TMS) (Gas chromatography (GC) analysis method); GC-2010 (manufactured by Shimadzu Corporation), detection method: FID Regarding the GC analysis method, the following documents can be referred to as necessary.
  • the pH was measured with a glass electrode type hydrogen ion concentration indicator.
  • a glass electrode type hydrogen ion concentration indicator for example, model HM-20P manufactured by Toa DKK Corporation can be used.
  • acceleration rate calorimetry In the acceleration rate calorimetric analysis, the thermal behavior in an adiabatic state was measured in a temperature range of 40 to 400 ° C. using a model: New ARC® (manufactured by TIAX LLC). ADT 24 is the temperature at which the time taken for thermal runaway to occur is 24 hours, and the time taken for thermal runaway to occur is called TMR.
  • Example 1 Production of 2,6-dichloronitrobenzene using nitric acid
  • a stirrer, reflux condenser, thermometer and dropping funnel 16.2 g (0.10 mol) of 2,6-dichloroaniline, 81.7 mL of water and 21 g (0.23 mol) of 69% nitric acid were added and the mixture was heated to 60 ° C. to dissolve.
  • the mixture was cooled to 37 ° C. with stirring, and stirred at that temperature for 30 minutes, and then the mixture was further cooled to 0 ° C.
  • the obtained toluene layer was washed with 33.6 mL (0.04 mol) of a 10% aqueous sodium hydrogen carbonate solution to obtain 2,6-dichloronitrobenzene as a toluene solution.
  • the obtained toluene solution was analyzed by the GC internal standard method. As a result, the yield of 2,6-dichloronitrobenzene was 94.2%.
  • Example 2 Production of 2,6-dichloronitrobenzene using nitric acid
  • a 500 mL four-necked separable flask equipped with a stirrer, reflux condenser, thermometer and dropping funnel 32.4 g (0.20 mol) of 2,6-dichloroaniline was added.
  • 190 mL of water and 42.0 g (0.46 mol) of 69% nitric acid were added and the mixture was heated to 60 ° C. to dissolve.
  • the mixture was cooled to 37 ° C. with stirring, and stirred at that temperature for 30 minutes, and then the mixture was further cooled to 0 ° C.
  • the aqueous layer was further extracted with 35.0 mL of toluene.
  • the obtained toluene layers were combined and washed with 67.2 mL (0.08 mol) of a 10% aqueous sodium hydrogen carbonate solution to obtain 2,6-dichloronitrobenzene as a toluene solution.
  • the obtained toluene solution was analyzed by the GC internal standard method. As a result, the yield of 2,6-dichloronitrobenzene was 95.5%.
  • the obtained toluene layer was washed with 33.6 mL (0.04 mol) of a 10% aqueous sodium hydrogen carbonate solution to obtain 2,6-dichloronitrobenzene as a toluene solution.
  • the obtained toluene solution was analyzed by the GC internal standard method. As a result, the yield of 2,6-dichloronitrobenzene was 90.6%.
  • the obtained toluene layer was washed with 336.0 mL (0.40 mol) of a saturated aqueous sodium hydrogen carbonate solution to obtain 2,6-dichloronitrobenzene as a toluene solution.
  • the obtained toluene solution was analyzed by the GC internal standard method. As a result, the yield of 2,6-dichloronitrobenzene was 85%.
  • Comparative Example 2 is an example described as Example 5 in Patent Document 7. The yield was only 85%.
  • the filtrate was separated into an aqueous layer and a toluene layer, and the obtained toluene layer was washed with 33.6 mL (0.04 mol) of a 10% aqueous sodium hydrogen carbonate solution to obtain 2,6-dichloronitrobenzene as a toluene solution.
  • the obtained toluene solution was analyzed by the GC internal standard method. As a result, the yield of 2,6-dichloronitrobenzene was 28.7%.
  • Comparative Example 3 is an example using sulfuric acid as the acid. The yield was only 28.7%.
  • the obtained toluene layer was washed with 33.6 mL (0.04 mol) of a 10% aqueous sodium hydrogen carbonate solution to obtain 2,6-dichloronitrobenzene as a toluene solution.
  • the obtained toluene solution was analyzed by the GC internal standard method. As a result, the yield of 2,6-dichloronitrobenzene was 52.3%.
  • Comparative Example 4 is an example using sodium hydrogen sulfate as the acid. The yield was only 52.3%.
  • the obtained toluene layer was washed with 16.8 mL (0.02 mol) of a 10% aqueous sodium hydrogen carbonate solution to obtain 2,6-dichloronitrobenzene as a toluene solution.
  • the obtained toluene solution was analyzed by the GC internal standard method. As a result, the yield of 2,6-dichloronitrobenzene was 40%.
  • Comparative Example 5 is an example using tetrafluoroboric acid as the acid. The yield was only 40%.
  • the filtrate was separated into an aqueous layer and a toluene layer, and the obtained toluene layer was washed with 33.6 mL (0.04 mol) of a 10% aqueous sodium hydrogen carbonate solution to obtain 2,6-dichloronitrobenzene as a toluene solution.
  • the obtained toluene solution was analyzed by the GC internal standard method. As a result, the yield of 2,6-dichloronitrobenzene was 2.8%.
  • Comparative Example 6 is an example using acetic acid as the acid. The yield was only 2.8%.
  • Example 3 Preparation of methyl 3-chloro-2-nitrobenzoate using nitric acid
  • methyl 2-amino-3-chlorobenzoate 106.1 g (0.20 mol) of 35% isobutyl methyl ketone (MIBK) solution and 96.8 mL of water were added. While stirring the mixture, 42 g (0.46 mol) of 69% nitric acid was added dropwise over 30 minutes, and the mixture was further cooled to ⁇ 5 ° C. to 0 ° C. with stirring.
  • MIBK isobutyl methyl ketone
  • the obtained toluene layer was washed with 40 mL of water to obtain methyl 3-chloro-2-nitrobenzoate as a toluene solution.
  • the obtained toluene solution was analyzed by HPLC absolute calibration curve method. As a result, the yield of methyl 3-chloro-2-nitrobenzoate was 95.2%.
  • Example 4 Preparation of methyl 3-chloro-2-nitrobenzoate using nitric acid
  • methyl 2-amino-3-chlorobenzoate 37 .12 g (0.20 mol) and 96.8 mL of water were added and the mixture was heated to 55 ° C. to dissolve.
  • 42 g (0.46 mol) of 69% nitric acid was added dropwise over 30 minutes, and the mixture was further cooled to ⁇ 5 ° C. to 0 ° C. with stirring.
  • the obtained toluene layer was washed with 40 mL of water to obtain methyl 3-chloro-2-nitrobenzoate as a toluene solution.
  • the obtained toluene solution was analyzed by HPLC absolute calibration curve method. As a result, the yield of methyl 3-chloro-2-nitrobenzoate was 94.9%.
  • the obtained toluene layer was washed with 25 mL of water to obtain methyl 3-chloro-2-nitrobenzoate as a toluene solution.
  • the obtained toluene solution was analyzed by HPLC absolute calibration curve method. As a result, the yield of methyl 3-chloro-2-nitrobenzoate was 88%. At this time, the content of impurity methyl 2,3-dinitrobenzoate was 0.6%.
  • Comparative Example 7 is an example described in Example 1 in Patent Document 7, and methyl 2-amino-3-chlorobenzoate is used as a raw material. The yield of nitro compound was only 88%.
  • the obtained toluene layer was washed with 40 mL of water to obtain methyl 3-chloro-2-nitrobenzoate as a toluene solution.
  • the obtained toluene solution was analyzed by HPLC absolute calibration curve method. As a result, the yield of methyl 3-chloro-2-nitrobenzoate was 74.3%.
  • a safer and higher yield method for producing the nitrobenzene compound of the general formula (1) is provided.
  • the method of the present invention is economical, friendly to the environment, has a high industrial utility value, and is a simple and easy-to-use nitrobenzene compound of the general formula (1) used as a raw material for chemical products such as various pharmaceuticals and agricultural chemicals.
  • a highly safe and efficient manufacturing method is provided and has industrial applicability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

本発明の目的は、経済的に好ましくかつ工業化に適した、下記一般式(1)のニトロベンゼン化合物の製造方法を提供することにある。 本発明は、次の一般式(1):(式中、Rはハロゲン原子を示し;R、R及びRは水素原子等を示し;Rはハロゲン原子又はアルコキシカルボニル基を示す。) のニトロベンゼン化合物の製造方法であって、以下の工程: (i) 一般式(2):(式中、R、R、R、R及びRは前記で定義した通りである。) のアニリン化合物を亜硝酸の金属塩と硝酸の存在下で反応させる工程; (ii) 工程(i)の生成物を亜硝酸の金属塩と銅化合物の存在下で反応させる工程、 を含む方法に関する。

Description

ニトロベンゼン化合物を製造する方法
 本発明は、一般式(1):
Figure JPOXMLDOC01-appb-C000003
(式中、Rはハロゲン原子を示し;R、R及びRは、同一又は異なっていてもよく、水素原子、ハロゲン原子又はアルキル基を示し;Rはハロゲン原子又はアルコキシカルボニル基を示す。)
のニトロベンゼン化合物の製造方法に関する。
 一般式(1)のニトロベンゼン化合物は、種々の有益な有機化合物を製造する中間体として有用である。特に、2,6-ジクロロニトロベンゼン(特許文献1及び2参照)及び2-クロロ-6-アルコキシカルボニルニトロベンゼン類(特許文献3及び4参照)は、医薬及び農薬等を製造する中間体として知られている。
 一般式(1)のニトロベンゼン化合物の製造方法として、アニリン化合物のジアゾ化とそれに続くニトロ化からなる製造方法が知られている(特許文献5及び非特許文献1参照)。しかし、この方法にはいくつかの問題点があった。一つの問題は、溶媒として大量の水を使用するために、経済効率が低いことである。他の問題はジニトロ化合物が副生することである。ここで、ジニトロ化合物とはジニトロベンゼン化合物である。すなわち、ジニトロ化合物とは、ベンゼン環上に2個のニトロ基を有する化合物である。当該ジニトロ化合物は極めて危険であることが一般に知られている。少量でさえも当該ジニトロ化合物が生成することは工業的に好ましくない。つまり、副生するジニトロ化合物の量を減らす方法が望まれていた。
 一方で、一般式(1)のニトロベンゼン化合物の製造方法として、アニリン化合物を過酸化水素により酸化する方法も知られている(特許文献6参照)。この方法では、工業的な実施の操作において安全を保つために注意を必要とする過酸化水素を使用する。特許文献6に記載された方法は、特許文献6以前に知られていた従来技術よりも優れているが、過酸化水素を使用する点で未だ改善の余地がある。
 また、本発明者らは、アニリン誘導体を亜硝酸の金属塩と酸の存在下で反応させた後、得られる生成物又は生成物を含有する反応混合物を、亜硝酸の金属塩と銅化合物の存在下でさらに反応させ、反応に使用される水の総量が原料のアニリン誘導体1モルに対して1.2~2.2Lであることを特徴とする、対応するニトロベンゼン誘導体の製造方法を開発してきた(特許文献7参照)。この方法は、副生する危険なジニトロ化合物の量を減らすことができ安全性が改善され、かつ過酸化水素を使用しない方法であることから、工業化に適した製造方法であるだけでなく、使用する亜硝酸の金属塩の量を大幅に減らすことができ、さらに使用する水の量も減らすことができることから、経済効率が良く工業的な製造方法として極めて優れた方法であった。
特表2005-533756号公報 特表2008-537953号公報 国際公開第2005/081960号公報 米国特許第5084086号明細書 特許第2606291号公報 国際公開第2013/005425号公報 国際公開第2014/208296号公報
Transactions of Tianjin University,2002年,8巻,1号,40-41頁
 本発明の目的は、一般式(1)で表されるニトロベンゼン化合物の工業的な製造方法として、さらに改善された優れた方法を提供することにある。
 特許文献7に開示された方法は、工業的な製造方法として優れた方法であるが、操業の安全性や収率等において必ずしも十分であるとはいえず、本発明の目的はこれらの点が改善された方法を提供することにある。
 特許文献7には、酸としては塩酸が好ましいことが記載されているが、酸として塩酸を用いた場合であっても、反応工程中の熱暴走を抑制することが十分ではなく、より安全な方法の開発が望まれた。さらに酸として塩酸を用いた場合であっても、収率は90%程度が限界であり、この点からもより優れた方法が望まれていた。
 そこで、本発明者らは一般式(1)のニトロベンゼン化合物の製造方法についてさらに鋭意研究してきた。その結果、意外にも、酸として硝酸を使用することにより、反応工程中の熱暴走をより抑制することができ、安全な工業的な製造方法を提供できるだけでなく、収率を著しく改善することができることを見出した。本発明は、酸として塩酸や硫酸などではなく、硝酸を使用する、即ち、一般式(2):
Figure JPOXMLDOC01-appb-C000004
(式中、Rはハロゲン原子を示し;R、R及びRは、同一又は異なっていてもよく、水素原子、ハロゲン原子又はアルキル基を示し;Rはハロゲン原子又はアルコキシカルボニル基を示す。)
で表されるアニリン化合物を亜硝酸の金属塩と硝酸の存在下で反応させた後、得られる生成物又は生成物を含有する反応混合物を、亜硝酸の金属塩と銅化合物の存在下でさらに反応させ、反応に使用される水の総量が一般式(2)で表される化合物1モルに対して1.2~2.2Lであることを特徴とする、一般式(1):
Figure JPOXMLDOC01-appb-C000005
(式中、R、R、R、R及びRは前記で定義した通りである。)
で表されるニトロベンゼン化合物の製造方法により、前記課題が解決可能であることが見出された。本発明者らはこの知見に基づき本発明を完成するに至った。
すなわち、本発明は以下の通りである。
 〔1〕一般式(1):
Figure JPOXMLDOC01-appb-C000006
(式中、Rはハロゲン原子を示し;R、R及びRは、同一又は異なっていてもよく、水素原子、ハロゲン原子又はアルキル基を示し;Rはハロゲン原子又はアルコキシカルボニル基を示す。)
で表されるニトロベンゼン化合物の製造方法であって、以下の工程:
(i) 一般式(2):
Figure JPOXMLDOC01-appb-C000007
(式中、R、R、R、R及びRは前記で定義した通りである。)
で表されるアニリン化合物を、亜硝酸の金属塩と、硝酸の存在下で反応させる工程;
(ii) 工程(i)の生成物又は生成物を含有する反応混合物(以下、工程(i)の生成物という。)を、亜硝酸の金属塩と、銅化合物の存在下で反応させる工程、
を含む方法。
 〔2〕工程(ii)が、水の存在下で反応させる工程であり、工程(ii)で使用される水の総量が一般式(2)の化合物1モルに対して1.2~2.2Lである、前記〔1〕に記載の方法。
 〔3〕工程(ii)で使用される水の総量が一般式(2)の化合物1モルに対して1.2~1.9Lである、前記〔2〕に記載の方法。
 〔4〕工程(i)又は工程(ii)における亜硝酸の金属塩が、亜硝酸のアルカリ金属塩又は亜硝酸のアルカリ土類金属塩である、前記〔1〕から〔3〕のいずれか一項に記載の方法。
 〔5〕工程(i)で使用される亜硝酸の金属塩の量が、一般式(2)の化合物1モルに対して1.0~10.0モルである、前記〔1〕から〔4〕のいずれか一項に記載の方法。
 〔6〕工程(i)で使用される亜硝酸の金属塩の量が、一般式(2)の化合物1モルに対して1.0~3.0モルである、前記〔1〕から〔5〕のいずれか一項に記載の方法。
 〔7〕工程(ii)で使用される亜硝酸の金属塩の量が、一般式(2)の化合物1モルに対して1.0~10.0モルである、前記〔1〕から〔6〕のいずれか一項に記載の方法。
 〔8〕工程(ii)で使用される亜硝酸の金属塩の量が、一般式(2)の化合物1モルに対して1.0~3.0モルである、前記〔1〕から〔7〕のいずれか一項に記載の方法。
 〔9〕工程(ii)で使用される銅化合物の量が、一般式(2)の化合物1モルに対して0.01~5.0モルである、前記〔1〕から〔8〕のいずれか一項に記載の方法。
 〔10〕工程(ii)で使用される銅化合物の量が、一般式(2)の化合物1モルに対して0.01~0.5モルである、前記〔1〕から〔9〕のいずれか一項に記載の方法。
 〔11〕工程(ii)における銅化合物が、酸化銅、銅(I)塩、又は銅(II)塩である、前記〔1〕から〔10〕のいずれか一項に記載の方法。
 〔12〕工程(i)の生成物を、塩基を用いてpHを調整する工程を含む、前記〔1〕から〔11〕のいずれか一項に記載の方法。
 〔13〕塩基が、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム及び炭酸水素カリウムからなる群から選ばれる1種又はこれらの混合物である、前記〔12〕に記載の方法。
 〔14〕塩基が、炭酸水素ナトリウムである、前記〔12〕又は〔13〕に記載の方法。
 〔15〕塩基により調整されたpHが、0.5~3.0である、前記〔12〕から〔14〕のいずれか一項に記載の方法。
 〔16〕塩基により調整されたpHが、0.6~2.0である、前記〔12〕から〔14〕のいずれか一項に記載の方法。
 〔17〕工程(i)の生成物、又は当該工程(i)の生成物のpHが塩基により調整された生成物が、有機溶媒で洗浄される工程を含む、前記〔1〕から〔16〕のいずれか一項に記載の方法。
 〔18〕有機溶媒が、ジイソプロピルエーテル、ジブチルエーテル、シクロペンチルメチルエーテル(CPME)、イソブチルメチルケトン(MIBK)、酢酸エチル、酢酸ブチル、ベンゼン、トルエン、キシレン、クロロベンゼン、ジクロロベンゼン及びトリクロロベンゼンからなる群から選ばれる1種又はこれらの混合物である、前記〔17〕に記載の方法。
 〔19〕有機溶媒が、トルエンである、前記〔17〕又は〔18〕に記載の方法。
 〔20〕工程(ii)が、さらに塩基の存在下で行われる、前記〔1〕から〔11〕のいずれか一項に記載の方法。
 〔21〕塩基が、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム及び炭酸水素カリウムからなる群から選ばれる1種又はこれらの混合物である、前記〔20〕に記載の方法。
 〔22〕塩基が、炭酸水素ナトリウムである、前記〔20〕又は〔21〕に記載の方法。
 〔23〕工程(ii)が、有機溶媒を含有する含水溶媒系で行われる、前記〔1〕から〔22〕のいずれか一項に記載の方法。
 〔24〕有機溶媒が、イソブチルメチルケトン(MIBK)、酢酸エチル、酢酸ブチル、ベンゼン、トルエン、キシレン、クロロベンゼン、ジクロロベンゼン及びジクロロメタンからなる群から選ばれる1種又はこれらの混合物である、前記〔23〕に記載の方法。
 〔25〕有機溶媒が、トルエンである、前記〔23〕又は〔24〕に記載の方法。
 〔26〕R、R及びRが水素原子である、前記〔1〕から〔25〕のいずれか一項に記載の方法。
 〔27〕Rがハロゲン原子であり、RがC~Cアルコキシカルボニル基である、前記〔1〕から〔26〕のいずれか一項に記載の方法。
 〔28〕Rが塩素原子であり、RがC~Cアルコキシカルボニル基である、前記〔27〕に記載の方法。
 〔29〕Rが塩素原子であり、Rがメトキシカルボニルである、前記〔28〕に記載の方法。
 〔30〕Rがハロゲン原子であり、Rがハロゲン原子である、前記〔1〕から〔26〕のいずれか一項に記載の方法。
 〔31〕Rが塩素原子であり、Rが塩素原子である、前記〔30〕に記載の方法。
 本発明によれば、一般式(1)のニトロベンゼン化合物の工業的に優れた製造方法が提供される。
 本発明の方法は、特許文献7に記載の方法において、酸として硝酸を使用することを特徴とするものであり、過酸化水素を使用しない方法であること、及び使用する水の量を調整することにより副生する危険なジニトロ化合物の量を減らすことができ安全性が改善されていること、また廃棄物の量を減らすことができるなどの優れた特徴を有し、簡便な操作により、穏やかな条件下で、特殊な反応装置を用いることなく、実施できるという、特許文献7に開示の優れた効果を備えている。
 さらに本発明の方法は、酸として硝酸を使用することにより、工程中における熱暴走を抑制することができるだけでなく、一般式(1)のニトロベンゼン化合物の収率にも優れているという、特に優れた効果を奏する。
 したがって、本発明の方法は、特許文献7に開示の方法が、更に改善された方法を提供するものであり、工業生産に適した安全で安定した操業が可能な方法であるだけでなく、高収率で高純度の一般式(1)のニトロベンゼン化合物を効率的に製造することができる方法であり、さらに本発明の方法は、環境にも優しく、高い工業的な利用価値を有する。
 以下、本発明について詳細に説明する。
 本明細書において用いられる用語及び記号について以下に説明する。
 ハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子、好ましくはフッ素原子、塩素原子、より好ましくは塩素原子が挙げられる。
 「C~C」とは炭素原子数がa~b個であることを意味する。例えば、「C~Cアルキル基」の「C~C」とは、アルキル基の炭素原子数が1~4であることを意味する
 アルキル基としては、例えば、C~Cアルキル基が挙げられる。C~Cアルキル基としては、具体的には例えば、メチル、エチル、プロピル、イソプロピル、ブチル、sec-ブチル、イソブチル、tert-ブチルなどが挙げられ、好ましくはメチル、エチル、プロピル、イソプロピル、より好ましくはメチル、エチル、さらに好ましくはメチルが挙げられる。
 アルコキシカルボニル基としては、例えば、C~Cアルコキシカルボニル基が挙げられる。C~Cアルコキシカルボニル基としては、具体的には例えば、メトキシカルボニル、エトキシカルボニル、プロポキシカルボニル、イソプロポキシカルボニル、ブトキシカルボニル、sec-ブトキシカルボニル、イソブトキシカルボニル、tert-ブトキシカルボニルなどが挙げられ、好ましくはメトキシカルボニル、エトキシカルボニル、プロポキシカルボニル、イソプロポキシカルボニル、より好ましくはメトキシカルボニル、エトキシカルボニル、さらに好ましくはメトキシカルボニルが挙げられる。
 (工程(i))
まず、工程(i)について説明する。
 工程(i)は、一般式(2):
Figure JPOXMLDOC01-appb-C000008
(式中、Rはハロゲン原子を示し;R、R及びRは、同一又は異なっていてもよく、水素原子、ハロゲン原子又はアルキル基を示し;Rはハロゲン原子又はアルコキシカルボニル基を示す。)
で表されるアニリン化合物を、亜硝酸の金属塩、及び硝酸の存在下で反応させる工程である。
 (原料;一般式(2)のアニリン化合物)
 本発明の方法の原料として、上記一般式(2)のアニリン化合物を用いる。一般式(2)のアニリン化合物は公知の化合物であるか、あるいは、公知の化合物から公知の方法により製造することができる化合物である。一般式(2)のアニリン化合物としては、具体的には例えば、
2,6-ジクロロアニリン、
2,6-ジブロモアニリン、
2,6-ジフルオロアニリン、
2-クロロ-6-フルオロアニリン、
2-ブロモ-6-クロロアニリン、
2-クロロ-6-ヨードアニリン、
2-アミノ-3-クロロ安息香酸メチル、
2-アミノ-3-クロロ安息香酸エチル、
2-アミノ-3-クロロ安息香酸プロピル、
2-アミノ-3-クロロ安息香酸イソプロピル、
2-アミノ-3-クロロ安息香酸ブチル、
2-アミノ-3-クロロ安息香酸イソブチル、
2-アミノ-3-クロロ安息香酸sec-ブチル、
2-アミノ-3-クロロ安息香酸tert-ブチル、
2-アミノ-3-フルオロ安息香酸メチル、
2-アミノ-3-フルオロ安息香酸エチル、
2-アミノ-3-フルオロ安息香酸プロピル、
2-アミノ-3-フルオロ安息香酸イソプロピル、
2-アミノ-3-フルオロ安息香酸ブチル、
2-アミノ-3-フルオロ安息香酸イソブチル、
2-アミノ-3-フルオロ安息香酸sec-ブチル、
2-アミノ-3-フルオロ安息香酸tert-ブチル、
2-アミノ-3-ブロモ安息香酸メチル、
2-アミノ-3-ブロモ安息香酸エチル、
2-アミノ-3-ブロモ安息香酸プロピル、
2-アミノ-3-ブロモ安息香酸イソプロピル、
2-アミノ-3-ヨード安息香酸メチル、
2-アミノ-3-ヨード安息香酸エチル等が挙げられるが、これらに限定されるものではない。加えて、一般式(2)のアニリン化合物は、塩酸、硫酸、又は硝酸等の酸との塩であってもよい。
 (工程(i)における亜硝酸の金属塩)
 工程(i)で使用できる亜硝酸の金属塩としては、亜硝酸のアルカリ金属塩(例えば、亜硝酸リチウム、亜硝酸ナトリウム、亜硝酸カリウム等)、亜硝酸のアルカリ土類金属塩(例えば、亜硝酸マグネシウム、亜硝酸カルシウム、亜硝酸バリウム等)等が挙げられるが、これらに限定されるものではない。価格、入手性、及び反応性等の観点から、亜硝酸のアルカリ金属塩が好ましく、亜硝酸ナトリウム又は亜硝酸カリウムがより好ましく、亜硝酸ナトリウムがさらに好ましい。
 また、工程(i)で使用される亜硝酸の金属塩は、後述する工程(ii)で使用される亜硝酸の金属塩と別のものを使用してもよく、同じものを使用してもよい。すなわち、工程(i)で使用される亜硝酸の金属塩と工程(ii)で使用される亜硝酸の金属塩は、同一でも異なっていてもよい。
 亜硝酸の金属塩の形態は、反応が進行する限りは如何なる形態でもよい。亜硝酸の金属塩の形態としては、例えば、亜硝酸の金属塩のみの固体、又は任意の濃度の水溶液若しくは水以外の溶媒の溶液等を挙げられる。また、亜硝酸のアルカリ金属塩は単独で又は2種以上を任意の割合で混用してもよい。
 (工程(i)における亜硝酸の金属塩の使用量)
 亜硝酸の金属塩の使用量は、反応が進行する限りは何れの量でもよい。
 収率、副生成物抑制及び経済効率等の観点から、一般式(2)のアニリン化合物1モルに対して、通常1.0~10.0モル、好ましくは1.0~5.0モル、より好ましくは1.0~3.0モル、さらに好ましくは1.0~2.0モル、特に好ましくは1.0~1.2モルの範囲を例示できる。
 (工程(i)における酸)
 本発明の方法は、工程(i)で使用する酸として硝酸を使用することを特徴としている。硝酸としては硝酸水溶液を使用するのが好ましい。硝酸水溶液における硝酸の濃度は特に制限はないが、通常は硝酸の濃度が30%~90%、好ましくは共沸混合物となる68%~70%程度のものが使用される。
 本発明の方法における硝酸は、他の酸、例えば、塩酸、硫酸などの無機酸などと組み合わせて使用することを排除するものではないが、通常は硝酸を単独で使用するのが好ましい。
 (工程(i)における硝酸の使用量)
 硝酸の使用量は、反応が進行する限りは何れの量でもよい。収率、副生成物抑制及び経済効率等の観点から、一般式(2)のアニリン化合物1モルに対して、通常1~10モル、好ましくは1~5モル、より好ましくは1~3モルの範囲を例示できる。
 (工程(i)の溶媒)
 反応の円滑な進行等の観点から、工程(i)の反応は溶媒の存在下で実施することが好ましい。工程(i)の溶媒は、工程(i)の反応が進行してかつ工程(ii)の反応へ悪影響を及さない限りは、如何なる溶媒でもよい。価格及び取り扱いの容易さ等の観点から、工程(i)の溶媒は特に好ましくは水である。
 しかしながら、所望の反応が進行する限りは、後述する水以外の溶媒を排除するものではない。例えば、所望の反応が進行する限りは、水と水以外の溶媒を用いることもできる。工程(i)に用いることができる水以外の溶媒としては、例えば、アルコール類(例えば、メタノール、エタノール、2-プロパノール、ブタノール等)、エーテル類(例えば、テトラヒドロフラン(THF)、1,4-ジオキサン、ジイソプロピルエーテル、ジブチルエーテル、シクロペンチルメチルエーテル(CPME)、メチル-tert-ブチルエーテル、1,2-ジメトキシエタン(DME)、ジグリム(diglyme)、トリグリム(triglyme)等)、ニトリル類(例えば、アセトニトリル等)、アミド類(例えば、N,N-ジメチルホルムアミド(DMF)、N,N-ジメチルアセトアミド(DMAC)、N-メチルピロリドン(NMP)等)、アルキル尿素類(例えば、N,N’-ジメチルイミダゾリジノン(DMI)等)、スルホキシド類(例えば、ジメチルスルホキシド(DMSO)等)、スルホン類(例えば、スルホラン等)、ケトン類(例えば、アセトン、イソブチルメチルケトン(MIBK)等)、カルボン酸エステル類(例えば、酢酸エチル、酢酸ブチル等)、カルボン酸類(例えば、酢酸等)、芳香族炭化水素誘導体類(例えば、ベンゼン、トルエン、キシレン、クロロベンゼン、ジクロロベンゼン、トリクロロベンゼン、ニトロベンゼン等)、ハロゲン化脂肪族炭化水素類(例えば、ジクロロメタン等)等が挙げられるが、これらに限定されるものではない。
 価格、取り扱いの容易さ、反応性及び収率等の観点から、工程(i)の水以外の溶媒の好ましい例としては、アルコール類、エーテル類、ニトリル類、アミド類、スルホキシド類、ケトン類、芳香族炭化水素誘導体類、ハロゲン化脂肪族炭化水素類などが挙げられ、より好ましくはケトン類が挙げられる。
 工程(i)の水以外の溶媒の具体的な好ましい例としては、メタノール、エタノール、テトラヒドロフラン(THF)、ジブチルエーテル、アセトニトリル、N,N-ジメチルホルムアミド(DMF)、N,N-ジメチルアセトアミド(DMAC)、N-メチルピロリドン(NMP)、ジメチルスルホキシド(DMSO)、イソブチルメチルケトン(MIBK)、トルエン、キシレン、クロロベンゼン、ジクロロベンゼン、トリクロロベンゼン、ジクロロメタンなどが挙げられ、より好ましくはイソブチルメチルケトン(MIBK)が挙げられる。
 (工程(i)の溶媒の使用量)
 工程(i)の溶媒の使用量としては、反応系の撹拌が充分にできる限りは何れの量でもよい。反応性、副生成物抑制及び経済効率等の観点から、一般式(2)のアニリン化合物1モルに対して、工程(i)で使用される水の総量が通常0.1~1.5L(リットル)、好ましくは0.3~1.3L、より好ましくは0.4~1.2Lの範囲を例示できる。ここで、工程(i)で使用される水の総量とは、工程(i)の反応が終了したときに、反応系内に存在する全ての水の量である。したがって、溶媒として添加した水の量だけでなく、硝酸や亜硝酸の金属塩を水溶液として添加した場合の水の量も加算されることになる。例えば、工程(i)で使用される水の総量には、工程(i)で使用される硝酸の水溶液中の水の量、及び亜硝酸の金属塩の水溶液中の水の量などが含まれる。さらに、同様の観点から、一般式(2)のアニリン化合物1モルに対して、水以外の上記した溶媒の量が通常0(ゼロ)~5L(リットル)、好ましくは0~1Lの範囲を例示できる。なお、水及び水以外の溶媒を組み合わせて使用するときは、水及び水以外の溶媒の割合は、反応が進行する限りはいずれの割合でもよい。水以外の2種以上の溶媒を用いるときは、水以外の2種以上の溶媒の割合は、反応が進行する限りはいずれの割合でもよい。しかしながら、溶媒として水を単独で使用するか、水と混和しない有機溶媒との組み合わせで使用することが特に好ましい。
 (工程(i)の反応温度)
 工程(i)における反応温度は、特に制限されない。収率、副生成物抑制及び経済効率等の観点から、通常-30℃(マイナス30℃)~50℃、好ましくは-20℃~25℃、より好ましくは-10℃~10℃、更に好ましくは-5℃~5℃の範囲を例示できる。
 (工程(i)の反応時間)
 工程(i)における反応時間は、特に制限されない。収率、副生成物抑制及び経済効率等の観点から、通常は0.1時間~48時間、好ましくは0.1時間~24時間、より好ましくは0.1時間~12時間、更に好ましくは0.1時間~3時間の範囲を例示できる。
 (工程(i)の生成物)
 工程(i)の生成物は、原料として用いた一般式(2)のアニリン化合物に相当するジアゾニウム塩である。一般にジアゾニウム塩は当業者によく知られた化合物である。
 本発明における「工程(i)の生成物」とは、工程(i)の反応生成物を精製・単離した物質のみならず、未精製の粗生成物、及び工程(i)の反応生成物を含有する反応混合物を包含している。このような混合物としては、例えば、工程(i)の反応混合物そのものであってもよいし、当該反応混合物のうちの工程(i)の反応生成物が含有されている層、例えば水層部分だけであってもよい。このような混合物は必要に応じて、さらに精製された混合物であってもよい。
 工程(i)の反応混合物の水層部分だけを、次の工程(ii)に使用する場合には、工程(i)の反応混合物を水と混和しない有機溶媒で洗浄するのが好ましい。水と混和しない有機溶媒としては、例えば、エーテル類(例えば、ジイソプロピルエーテル、ジブチルエーテル、シクロペンチルメチルエーテル(CPME)、メチル-tert-ブチルエーテル等)、ケトン類(例えば、イソブチルメチルケトン(MIBK)等)、カルボン酸エステル類(例えば、酢酸エチル、酢酸ブチル等)、芳香族炭化水素誘導体類(例えば、ベンゼン、トルエン、キシレン、クロロベンゼン、ジクロロベンゼン、トリクロロベンゼン、ニトロベンゼン等)、ハロゲン化脂肪族炭化水素類(例えば、ジクロロメタン等)等が挙げられるが、これらに限定されるものではない。
 価格、取り扱いの容易さ、反応性及び収率等の観点から、水と混和しない有機溶媒の好ましい例としては、エーテル類、ケトン類、カルボン酸エステル類、芳香族炭化水素誘導体類などが挙げられ、より好ましくは芳香族炭化水素誘導体類が挙げられる。
 水と混和しない有機溶媒の具体的な好ましい例としては、ジイソプロピルエーテル、ジブチルエーテル、シクロペンチルメチルエーテル(CPME)、イソブチルメチルケトン(MIBK)、酢酸エチル、酢酸ブチル、ベンゼン、トルエン、キシレン、クロロベンゼン、ジクロロベンゼン、トリクロロベンゼンなどが挙げられ、より好ましくはトルエンが挙げられる。
 使用される有機溶媒の量としては、洗浄できる量であれば特に制限はないが、好ましくは一般式(2)のアニリン化合物1モルに対して、50mL~300mL、より好ましくは100mL~200mL程度である。
 工程(i)の反応混合物を有機溶媒で洗浄する際に、工程(ii)において必要とされる水を同時に添加しておいてもよい。即ち、水に混和しない有機溶媒と水を同時に加えて、洗浄することもできる。
 有機溶媒による洗浄は、工程(i)の反応混合物又は工程(i)の反応混合物に塩基を添加してpHが調整された後の反応混合物に、有機溶媒又は有機溶媒と水との混合物を加えた後、有機層と水層を分配し、水層を分離することにより行うことができる。
 (塩基の使用)
 本発明の方法は、工程(i)の反応の終了後又は工程(ii)の反応の開始前の混合物などに塩基を加えてもよい。言い換えれば、必要に応じて塩基を加えることにより工程(ii)の反応系のpHを調整してもよい。工程(ii)の反応が円滑に進行する限りは、塩基の添加、すなわちpHの調整は行ってもよく、また行わなくてもよい。また、工程(ii)反応が円滑に進行する限りは、当該塩基の添加はいつ行ってもよく、どこで(いずれの反応容器等で)行ってもよい。
 塩基の添加により調整されるpHの範囲としては、反応が円滑に進行する限りは特に制限はないが、好ましくはpH0.5~3.0の範囲、より好ましくはpH0.6~2.0の範囲が例示できる。
 (塩基)
 上記の塩基としては、例えば、アルカリ金属水酸化物(例えば、水酸化リチウム、水酸化ナトリウム、水酸化カリウム等)、アルカリ土類金属水酸化物(例えば、水酸化マグネシウム、水酸化カルシウム、水酸化バリウム等)、アルカリ金属炭酸塩(例えば、炭酸リチウム、炭酸ナトリウム、炭酸カリウム等)、アルカリ土類金属炭酸塩(例えば、炭酸マグネシウム、炭酸カルシウム、炭酸バリウム等)、アルカリ金属炭酸水素塩(例えば、炭酸水素リチウム、炭酸水素ナトリウム、炭酸水素カリウム等)、アルカリ土類金属炭酸水素塩(例えば、炭酸水素マグネシウム、炭酸水素カルシウム、炭酸水素バリウム等)、リン酸塩(例えば、リン酸ナトリウム、リン酸カリウム、リン酸カルシウム等)、リン酸水素塩(例えば、リン酸水素ナトリウム、リン酸水素カリウム、リン酸水素カルシウム等)、カルボン酸アルカリ金属塩(例えば、ギ酸ナトリウム、ギ酸カリウム、酢酸リチウム、酢酸ナトリウム、酢酸カリウム等)、カルボン酸アルカリ土類金属塩(例えば、酢酸マグネシウム、酢酸カルシウム等)、アンモニア等が挙げられるが、これらに限定されるものではない。
 価格、取り扱いの容易さ、反応性及び収率等の観点から、当該塩基の好ましい例としては、アルカリ金属水酸化物、アルカリ金属炭酸塩、アルカリ金属炭酸水素塩などが挙げられ、より好ましくはアルカリ金属炭酸水素塩が挙げられる。
 当該塩基の具体的な例としては、好ましくは水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸水素カリウムなどが挙げられ、より好ましくは炭酸水素ナトリウム、炭酸水素カリウムなどが挙げられ、さらに好ましくは炭酸水素ナトリウムが挙げられる。
 当該塩基の形態は、反応が進行する限りは如何なる形態でもよい。当該塩基の形態としては、例えば、塩基のみの固体若しくは液体、又は任意の濃度の水溶液若しくは水以外の溶媒の溶液等を挙げられる。また、当該塩基は単独で又は2種以上を任意の割合で混用しても良い。
 (塩基の使用量)
 上記塩基の使用量は、必要に応じて、当業者が検討して決定できるものである。上記塩基の使用量は、反応が進行する限りは何れの量でもよい。収率、副生成物抑制及び経済効率等の観点から、一般式(2)のアニリン化合物1モルに対して、通常0(ゼロ)~5モル、好ましくは0~1モル、より好ましくは0~0.6モルの範囲を例示できる。
 (工程(ii))
 次に、工程(ii)について説明する。
 工程(ii)は、工程(i)の生成物を亜硝酸の金属塩と銅化合物の存在下で反応させて、次の一般式(1):
Figure JPOXMLDOC01-appb-C000009
(式中、R、R、R、R及びRは前記で定義した通りである。)
の化合物を製造する工程である。
 (工程(ii)における亜硝酸の金属塩)
 工程(ii)で使用できる亜硝酸の金属塩としては、亜硝酸のアルカリ金属塩(例えば、亜硝酸リチウム、亜硝酸ナトリウム、亜硝酸カリウム等)、亜硝酸のアルカリ土類金属塩(例えば、亜硝酸マグネシウム、亜硝酸カルシウム、亜硝酸バリウム等)等が挙げられるが、これらに限定されるものではない。価格、入手性、及び反応性等の観点から、亜硝酸のアルカリ金属塩が好ましく、亜硝酸ナトリウム又は亜硝酸カリウムがより好ましく、亜硝酸ナトリウムがさらに好ましい。
 亜硝酸の金属塩の形態は、反応が進行する限りは如何なる形態でもよい。亜硝酸の金属塩の形態としては、例えば、亜硝酸の金属塩のみの固体、又は任意の濃度の水溶液若しくは水以外の溶媒の溶液等を挙げられる。また、亜硝酸のアルカリ金属塩は単独で又は2種以上を任意の割合で混用してもよい。
 (工程(ii)における亜硝酸の金属塩の使用量)
 亜硝酸の金属塩の使用量は、反応が進行する限りは何れの量でもよい。収率、副生成物抑制及び経済効率等の観点から、一般式(2)のアニリン化合物1モルに対して、通常1.0~10.0モル、好ましくは1.0~7.0モル、より好ましくは1.0~5.0モル、さらに好ましくは1.0~3.0モルの範囲を例示できる。
 (工程(ii)における銅化合物)
 工程(ii)では、触媒として銅化合物を使用することが好ましい。工程(ii)で使用できる銅化合物としては、一般にザンドマイヤー反応(Sandmeyer reaction)の触媒として知られる銅化合物が挙げられる。さらには、Hantzschらの方法の触媒が挙げられる。当該銅化合物としては、例えば、酸化銅、銅(I)塩、銅(II)塩、銅(I)及び銅(II)からなる複塩、銅粉等が挙げられる。酸化銅としては、例えば、酸化銅(I)、酸化銅(II)が挙げられる。銅(I)塩としては、例えば、硫酸銅(I)、亜硫酸銅(I)、炭酸銅(I)、塩化銅(I)、臭化銅(I)、シアン化銅(I)等が挙げられる。銅(II)塩としては、例えば、硫酸銅(II)、亜硫酸銅(II)、炭酸銅(II)、塩化銅(II)、臭化銅(II)、シアン化銅(II)等が挙げられる。銅(I)及び銅(II)からなる複塩としては、例えば、Hantzschらの方法の触媒である亜硫酸銅(I)銅(II)(cupro-cuprisulfite)等が挙げられる。
 工程(ii)で使用できる銅化合物の具体的な例としては、好ましくは酸化銅(I)、硫酸銅(I)、亜硫酸銅(I)、亜硫酸銅(I)銅(II)(cupro-cuprisulfite)、炭酸銅(I)、銅粉等が挙げられ、より好ましくは酸化銅(I)、硫酸銅(I)、亜硫酸銅(I)、亜硫酸銅(I)銅(II)(cupro-cuprisulfite)、銅粉などが挙げられ、さらに好ましくは酸化銅(I)、亜硫酸銅(I)銅(II)(cupro-cuprisulfite)が挙げられるが、これらに限定されるものではない。
 上記のように、銅化合物は単塩でも複塩でもよい。さらに、銅化合物は無水物でも水和物でもよい。また、銅化合物の形態は、反応が進行する限りは如何なる形態でもよい。銅化合物の形態としては、例えば、銅化合物のみの固体、又は任意の濃度の水溶液若しくは水以外の溶媒の溶液等を挙げられる。また、銅化合物は単独で又は2種以上を任意の割合で混用してもよい。
 (工程(ii)における銅化合物の使用量)
 銅化合物の使用量は、反応が進行する限りは何れの量でもよい。収率、副生成物抑制、経済効率及び安全性等の観点から、一般式(2)のアニリン化合物1モルに対して、通常0.01~5.0モル、好ましくは0.01~1.0モル、より好ましくは0.01~0.5モルの範囲を例示できる。
 (工程(ii)の溶媒)
 反応の円滑な進行等の観点から、工程(ii)の反応は溶媒の存在下で実施することが好ましい。工程(ii)の溶媒は、工程(ii)の反応が進行する限りは、如何なる溶媒でもよい。工程(ii)に用いることができる溶媒としては、例えば、水、アルコール類(例えば、メタノール、エタノール、2-プロパノール、ブタノール等)、エーテル類(例えば、テトラヒドロフラン(THF)、1,4-ジオキサン、ジイソプロピルエーテル、ジブチルエーテル、シクロペンチルメチルエーテル(CPME)、メチル-tert-ブチルエーテル、1,2-ジメトキシエタン(DME)、ジグリム(diglyme)、トリグリム(triglyme)等)、ニトリル類(例えば、アセトニトリル等)、アミド類(例えば、N,N-ジメチルホルムアミド(DMF)、N,N-ジメチルアセトアミド(DMAC)、N-メチルピロリドン(NMP)等)、アルキル尿素類(例えば、N,N’-ジメチルイミダゾリジノン(DMI)等)、スルホキシド類(例えば、ジメチルスルホキシド(DMSO)等)、スルホン類(例えば、スルホラン等)、ケトン類(例えば、アセトン、イソブチルメチルケトン(MIBK)等)、カルボン酸エステル類(例えば、酢酸エチル、酢酸ブチル等)、カルボン酸類(例えば、酢酸等)、芳香族炭化水素誘導体類(例えば、ベンゼン、トルエン、キシレン、クロロベンゼン、ジクロロベンゼン、トリクロロベンゼン、ニトロベンゼン等)、ハロゲン化脂肪族炭化水素類(例えば、ジクロロメタン等)などが挙げられ、これらの1種又は2種以上を任意の割合で混合した混合溶媒が挙げられるが、これらに限定されるものではない。
 価格、取り扱いの容易さ、反応性及び収率等の観点から、工程(ii)の反応は水の存在下で実施することが好ましい。工程(ii)の溶媒の好ましい例としては、水単独、水とケトン類の組み合わせ、水とカルボン酸エステル類の組み合わせ、水と芳香族炭化水素誘導体類の組み合わせ、水とハロゲン化脂肪族炭化水素類の組み合わせ、より好ましくは水単独、水とケトン類の組み合わせ、水と芳香族炭化水素誘導体類の組み合わせ、さらに好ましくは水と芳香族炭化水素誘導体類の組み合わせが挙げられる。
 工程(ii)の溶媒の具体的な例としては、好ましくは、水単独、水とイソブチルメチルケトン(MIBK)の組み合わせ、水と酢酸エチルの組み合わせ、水と酢酸ブチルの組み合わせ、水とトルエンの組み合わせ、水とキシレンの組み合わせ、水とクロロベンゼンの組み合わせ、水とジクロロベンゼンの組み合わせ、水とジクロロメタンの組み合わせなどが挙げられ、より好ましくは水単独、水とイソブチルメチルケトン(MIBK)の組み合わせ、水とトルエンの組み合わせ、水とキシレンの組み合わせ、水とクロロベンゼンの組み合わせ、水とジクロロベンゼンの組み合わせなどが挙げられ、さらに好ましくは水とトルエンの組み合わせ、水とキシレンの組み合わせ、水とクロロベンゼンの組み合わせ、水とジクロロベンゼンの組み合わせなどが挙げられ、特に好ましくは水とトルエンの組み合わせが挙げられる。
 (工程(ii)の溶媒の使用量)
 工程(ii)の溶媒の使用量としては、反応系の撹拌が充分にできる限りは何れの量でもよい。工程(ii)の反応が水の存在下で実施される場合において、反応性、副生成物抑制及び経済効率等の観点から、一般式(2)のアニリン化合物1モルに対して、工程(ii)で使用される水の総量が好ましくは1.2~2.2L(リットル)、より好ましくは1.2~1.9Lの範囲を例示できる。ここで、工程(ii)で使用される水の総量とは、工程(ii)の反応が終了したときに、反応系内に存在する全ての水の量である。したがって、工程(ii)で添加した水の量だけでなく、酸や亜硝酸の金属塩を水溶液として使用する場合の水の量も加算されることになる。さらには、工程(i)の反応混合物をそのまま使用する場合には、当該反応混合物中の水の量も加算されることになる。例えば、工程(ii)で使用される水の総量には、工程(ii)で使用される亜硝酸の金属塩の水溶液中の水、塩基の水溶液中の水が加算されるし、さらに工程(i)の反応混合物をそのまま使用した場合には、工程(i)の水の総量も加算されることになる。さらに、同様の観点から、一般式(2)のアニリン化合物1モルに対して、水以外の上記した溶媒の量が通常0(ゼロ)~5L(リットル)、好ましくは0.1~1L、より好ましくは0.2~0.9Lの範囲を例示できる。なお、水及び水以外の溶媒を組み合わせて使用するときは、水及び水以外の溶媒の割合は、反応が進行する限りはいずれの割合でもよい。水以外の2種以上の溶媒を用いるときは、水以外の2種以上の溶媒の割合は、反応が進行する限りはいずれの割合でもよい。
 (工程(ii)の反応温度)
 工程(ii)における反応温度は、特に制限されない。収率、副生成物抑制及び経済効率等の観点から、通常-30℃(マイナス30℃)~70℃、好ましくは-20℃~50℃、より好ましくは-10℃~35℃、さらに好ましくは-5℃~10℃の範囲を例示できる。
 (工程(ii)の反応時間)
 工程(ii)における反応時間は、特に制限されない。収率、副生成物抑制及び経済効率等の観点から、通常は0.1時間~48時間、好ましくは0.1時間~24時間、より好ましくは0.5時間~12時間、さらに好ましくは0.5時間~1時間の範囲を例示できる。
 (工程(ii)の生成物;一般式(1)のニトロベンゼン化合物)
 工程(ii)で得られる一般式(1)のニトロベンゼン化合物としては、具体的には例えば、
2,6-ジクロロニトロベンゼン、
2,6-ジブロモニトロベンゼン、
2,6-ジフルオロニトロベンゼン、
2-クロロ-6-フルオロニトロベンゼン、
2-ブロモ-6-クロロニトロベンゼン、
2-クロロ-6-ヨードニトロベンゼン、
3-クロロ-2-ニトロ安息香酸メチル、
3-クロロ-2-ニトロ安息香酸エチル、
3-クロロ-2-ニトロ安息香酸プロピル、
3-クロロ-2-ニトロ安息香酸イソプロピル、
3-クロロ-2-ニトロ安息香酸ブチル、
3-クロロ-2-ニトロ安息香酸イソブチル、
3-クロロ-2-ニトロ安息香酸sec-ブチル、
3-クロロ-2-ニトロ安息香酸tert-ブチル、
3-フルオロ-2-ニトロ安息香酸メチル、
3-フルオロ-2-ニトロ安息香酸エチル、
3-フルオロ-2-ニトロ安息香酸プロピル、
3-フルオロ-2-ニトロ安息香酸イソプロピル、
3-フルオロ-2-ニトロ安息香酸ブチル、
3-フルオロ-2-ニトロ安息香酸イソブチル、
3-フルオロ-2-ニトロ安息香酸sec-ブチル、
3-フルオロ-2-ニトロ安息香酸tert-ブチル、
3-ブロモ-2-ニトロ安息香酸メチル、
3-ブロモ-2-ニトロ安息香酸エチル、
3-ブロモ-2-ニトロモ安息香酸プロピル、
3-ブロモ-2-ニトロ安息香酸イソプロピル、
3-ヨード-2-ニトロ安息香酸メチル、
3-ヨード-2-ニトロ安息香酸エチル等が挙げられるが、これらに限定されるものではない。
 工程(ii)の反応混合物から、目的の一般式(1)のニトロベンゼン化合物を分離・精製することにより、目的の化合物を得ることができる。分離・精製の手段としては、通常の手段、例えば、不溶物の濾別、抽出法、蒸留法、再結晶法、クロマトグラフィー法などが挙げられる。また、高速液体クロマトグラフィー(HPLC)、ガスクロマトグラフィー(GC)により、反応混合物中の目的化合物の量を知ることもできる。
 (工程(i)と工程(ii)の収率)
 本発明の方法の工程(i)と工程(ii)を通した収率としては、酸として硝酸を使用することにより、90%以上とすることができる。より具体的には、95%以上とすることもできる。このような収率の飛躍的な向上は、転化率の向上だけでなく、選択率も向上したためと考えられる。
 工程(i)と工程(ii)を通した収率は、原料としての一般式(2)のアニリン化合物のモル数に対する、得られる一般式(1)のニトロベンゼン化合物のモル数から計算することができる。すなわち、この収率は次の式で表される;
収率(%)=100×{(得られた一般式(1)のニトロベンゼン化合物のモル数)/(原料としての一般式(2)のアニリン化合物のモル数)}
 (工程(i)で生成したジアゾニウム塩の安全性)
 工程(i)で生成したジアゾニウム塩の安全性について検討した。即ち、酸として硝酸を使用した本発明の方法に従って生成したジアゾニウム塩(後記する実施例2及び3参照)と、酸として塩酸を使用した場合の方法に従って生成したジアゾニウム塩(後記する比較例1及び8参照)における、発熱開始温度(℃)、滞留温度(T)を保ち続けた時の熱暴走が生じるまでにかかる時間(TでのTMR(hr))、及び熱暴走が生じるまでにかかる時間が24時間となる温度(ADT24(℃))を、示差走査熱量測定法及び加速速度熱量測定法による測定値又は当該測定値から算出した。TMR測定時の滞留温度(T)は、実際の操作時の温度を参考にして、実施例2及び比較例1の滞留温度を5℃、実施例3及び比較例8の滞留温度を0℃に設定した。
 次に、実施例2と比較例1の測定結果を例に挙げて説明する。発熱開始温度(℃)は、硝酸を使用した実施例2では、137.25℃であったが、塩酸を使用した比較例1では、114.51℃であった。工程(ii)の反応温度は通常5℃以下で十分であり、高くても30℃程度であるから、発熱開始温度との差は十分であると考えられるが、本発明の硝酸を使用した方法の方が発熱開始温度が高く、より安全性のある方法であることが判明した。
 また、TでのTMR(hr)は、本発明の硝酸を使用した実施例2では、2385.6時間であったが、塩酸を使用した比較例1では、255.3時間であった。本発明の工程(ii)の反応温度は5℃で十分であり、また反応時間は0.5時間程度であれば十分であることからすれば、本発明の硝酸を使用した実施例2が熱暴走にいたるまでには4000倍以上の時間が必要であると考えられる。一方、塩酸を使用した比較例1では、約500倍程度の時間で熱暴走が起こる可能性があることになり、このような熱暴走に至るまでの時間の点からも、本発明の方法の方がはるかに高い安全性があることが確認された。
 さらに、ADT24(℃)は、本発明の硝酸を使用した実施例2では、63.2℃であったのに対して、塩酸を使用した比較例1では38.8℃であった。工程(ii)の反応温度が5℃であった場合には、本発明の硝酸を使用した実施例2では、温度が5℃から58.2℃上昇した場合(温度が12.6倍になった場合)に24時間後に熱暴走が起こる可能性があることになるが、塩酸を使用した比較例1では、温度が5℃からわずか33.8℃上昇した場合(温度が7.8倍になった場合)に24時間後に熱暴走が起こる可能性が有ることになる。このような温度上昇の点からしても、硝酸を使用した実施例2の方が、塩酸を使用した比較例1に対して約2倍程度のより高い安全性が有ることが確認された。
 これらのことから、本発明の硝酸を使用した方法が、特許文献7に開示されている塩酸を使用した方法に比べて、収率の改善だけでなく、操業の安全性の観点からも大幅な改善が見られることが判明した。硝酸の使用は、ジニトロ化合物の副生を増加させ反応の安全性を低下させると予想されるところ、本発明の硝酸を使用した方法が塩酸を使用する方法より高い安全性を有するという結果は全く予想外であった。
 次に、実施例を挙げて本発明の製造方法を具体的に説明するが、本発明は、これら実施例によって何ら限定されるものではない。
 以下の実施例において、室温とは、通常10℃~35℃の範囲である。
 本明細書中、実施例及び比較例の各物性の測定には次の機器を用いた。
 H核磁気共鳴スペクトル(H-NMR);Varian Mercury-300、内部基準物質:テトラメチルシラン(TMS)
 (ガスクロマトグラフィー(GC)分析方法);GC-2010(株式会社島津製作所製)、検出方法:FID
 GC分析方法に関しては、必要に応じて、以下の文献を参照することができる。
(a):(社)日本化学会編、「新実験化学講座9 分析化学 II」、第60~86頁(1977年)、発行者 飯泉新吾、丸善株式会社(例えば、カラムに使用可能な固定相液体に関しては、第66頁を参照できる。)
(b):(社)日本化学会編、「実験化学講座20-1 分析化学」第5版、第121~129頁(2007年)、発行者 村田誠四郎、丸善株式会社(例えば、中空キャピラリー分離カラムの具体的な使用方法に関しては、第124~125頁を参照できる。)
 (高速液体クロマトグラフィー(HPLC)分析方法);LC20AD(株式会社島津製作所製)
 HPLC分析方法に関しては、必要に応じて、以下の文献を参照することができる。
(a):(社)日本化学会編、「新実験化学講座9 分析化学 II」、第86~112頁(1977年)、発行者 飯泉新吾、丸善株式会社(例えば、カラムに使用可能な充填剤-移動相の組合せに関しては、第93~96頁を参照できる。)
(b):(社)日本化学会編、「実験化学講座20-1 分析化学」第5版、第130~151頁(2007年)、発行者 村田誠四郎、丸善株式会社(例えば、逆相クロマトグラフィー分析の具体的な使用方法及び条件に関しては、第135~137頁を参照できる。)
 (pHの測定方法)
 pHはガラス電極式水素イオン濃度指示計により測定した。ガラス電極式水素イオン濃度指示計としては、例えば、東亜ディーケーケー株式会社製、形式:HM-20Pが使用できる。
 (示差走査熱量測定法)
 示差走査熱量分析は、機種:DSC-60(株式会社島津製作所社製)を用いて、40~400℃の温度範囲において10℃/minの加熱速度で行われた。示差走査熱量測定方法に関しては、必要に応じて、以下の文献を参照することができる。
(a):(社)日本化学会編、「第4版実験化学講座4 熱、圧力」、第57~93頁(1992年)、発行者 海老原熊雄、丸善株式会社
(b):(社)日本化学会編、「第5版実験化学講座6 温度・熱、圧力」、第203~205頁(2005年)、発行者 村田誠四郎、丸善株式会社
 (加速速度熱量測定法)
加速速度熱量分析は、機種:New ARC(R)(TIAX LLC社製)を用いて、40~400℃の温度範囲において断熱状態での熱的挙動を測定した。ADT24は熱暴走が生じるまでにかかる時間が24時間となるときの温度であり、熱暴走が生じるまでにかかる時間をTMRという。
 実施例1
 硝酸を使用した2,6-ジクロロニトロベンゼンの製造
 攪拌器、還流冷却器、温度計及び滴下ロートを備えた200mLの四つ口フラスコに、2,6-ジクロロアニリン16.2g(0.10mоl)、水81.7mL及び69%硝酸21g(0.23mol)を加え、混合物を60℃に加熱し溶解させた。混合物を攪拌しながら37℃に冷却し、その温度のまま30分間撹拌した後、更に混合物を0℃まで冷却した。そこへ40%亜硝酸ナトリウム水溶液19.0g(0.11mol)を0~5℃で25分間かけて滴下した後、反応混合物を0~5℃で30分間撹拌した。その後、5%炭酸水素ナトリウム水溶液36mLを滴下し、反応混合物のpHを0.6~1.3に調整した後、トルエン17.5mL及び水30gを加えた。上記で得られた混合物をトルエン層と水層に分配した後、水層を分離した。
 攪拌器、還流冷却器、温度計及び滴下ロートを備えた300mLの四つ口フラスコに酸化銅(I)2.15g(0.015mоl)、トルエン34.9mL及び40%亜硝酸ナトリウム水溶液19.0g(0.11mol)を加え、そこへ上記で得られた反応混合物の水層を0~5℃で1時間かけて滴下した。反応混合物を0~4℃で30分間撹拌した後、ろ過助剤を加え、沈殿物を濾別した。得られたトルエン層を10%炭酸水素ナトリウム水溶液33.6mL(0.04mоl)で洗浄し、2,6-ジクロロニトロベンゼンをトルエン溶液として得た。得られたトルエン溶液をGC内部標準法により分析した。その結果、2,6-ジクロロニトロベンゼンの収率は94.2%であった。
 実施例2
 硝酸を使用した2,6-ジクロロニトロベンゼンの製造
 攪拌器、還流冷却器、温度計及び滴下ロートを備えた500mLの四つ口セパラブルフラスコに、2,6-ジクロロアニリン32.4g(0.20mоl)、水190mL及び69%硝酸42.0g(0.46mol)を加え、混合物を60℃に加熱し溶解させた。混合物を攪拌しながら37℃に冷却し、その温度のまま30分間撹拌した後、更に混合物を0℃まで冷却した。そこへ40%亜硝酸ナトリウム水溶液38.0g(0.22mol)を-3(マイナス3)~5℃で35分かけて滴下した後、反応混合物を-3~5℃で30分間撹拌した。その後、5%炭酸水素ナトリウム水溶液72.2mLを滴下し、反応混合物のpHを0.8~2.0に調整した後、トルエン30.4mLを加えた。上記で得られた混合物をトルエン層と水層に分配した後、水層を分離した。得られた水層は、示差走査熱量測定及び加速速度熱量測定に供された。
 攪拌器、還流冷却器、温度計及び滴下ロートを備えた500mLの四つ口フラスコに酸化銅(I)1.43g(0.01mоl)、トルエン69.9mL及び40%亜硝酸ナトリウム水溶液38.0g(0.22mol)を加え、そこへ上記で得られた反応混合物の水層を-3~5℃で75分間かけて滴下した。反応混合物を-3~5℃で30分間撹拌した後、10%スルファミン酸38.8g(0.04mol)及び35%塩酸4g(0.04mol)を加え、沈殿物を濾別した。ろ液を水層とトルエン層に分離した後、更に水層をトルエン35.0mLで抽出した。得られたトルエン層を合わせて10%炭酸水素ナトリウム水溶液67.2mL(0.08mоl)で洗浄し、2,6-ジクロロニトロベンゼンをトルエン溶液として得た。得られたトルエン溶液をGC内部標準法により分析した。その結果、2,6-ジクロロニトロベンゼンの収率は95.5%であった。
H-NMR(300MHz,CDCl)δ(ppm):7.47-7.36(m,3H)
 示差走査熱量測定; 発熱開始温度:137.25℃、発熱量:551.92J/g
 加速速度熱量測定; ADT24:63.2℃、TでのTMR:2385.6時間
 比較例1
 塩酸を使用した2,6-ジクロロニトロベンゼンの製造
 攪拌器、還流冷却器、温度計及び滴下ロートを備えた200mLの四つ口フラスコに、2,6-ジクロロアニリン16.2g(0.10mоl)、水39.6mL及び35%塩酸24.0g(0.23mol)を加え、混合物を60℃に加熱し溶解させた。混合物を攪拌しながら37℃に冷却し、その温度のまま30分間撹拌した後、更に混合物を0℃まで冷却した。そこへ40%亜硝酸ナトリウム水溶液19.0g(0.11mol)を0~4℃で20分間かけて滴下した後、反応混合物を0~4℃で30分間撹拌した。その後、5%炭酸水素ナトリウム水溶液36mLを滴下し、反応混合物のpHを0.6~1.3に調整した後、トルエン17.5mLを加えた。上記で得られた混合物をトルエン層と水層に分配した後、水層を分離した。得られた水層は、示差走査熱量測定及び加速速度熱量測定に供された。
 攪拌器、還流冷却器、温度計及び滴下ロートを備えた300mLの四つ口フラスコに酸化銅(I)1.08g(0.0075mоl)、水32.9mL、トルエン34.9mL及び40%亜硝酸ナトリウム水溶液19.0g(0.11mol)を加え、そこへ上記で得られた反応混合物の水層を0~4℃で75分間かけて滴下した。反応混合物を0~4℃で30分間撹拌した後、ろ過助剤を加え、沈殿物を濾別した。ろ液を水層とトルエン層に分離した後、得られたトルエン層を10%炭酸水素ナトリウム水溶液33.6mL(0.04mоl)で洗浄し、2,6-ジクロロニトロベンゼンをトルエン溶液として得た。得られたトルエン溶液をGC内部標準法により分析した。その結果、2,6-ジクロロニトロベンゼンの収率は90.6%であった。
 示差走査熱量測定; 発熱開始温度:114.51℃、発熱量:503.39J/g
 加速速度熱量測定; ADT24:38.8℃、TでのTMR:255.3時間
 塩酸を使用した比較例1では、反応条件を改善してみたが、収率は90%程度にしか改善することができなかった。また、発熱開始温度(℃)やADT24、及びTでのTMRなどの熱指標は明らかに硝酸を使用した場合よりも悪く、安全性の改善にも限界があることがわかった。
 比較例2
 塩酸を使用した2,6-ジクロロニトロベンゼンの製造
 攪拌器、還流冷却器、温度計及び滴下ロートを備えた2000mLの四つ口フラスコに、2,6-ジクロロアニリン162.0g(1.00mоl)、水396.4mL及び35%塩酸239.6g(2.30mol)を加えた。混合物を60℃に加熱し溶解させた。攪拌しながら、混合物を-5℃(マイナス5℃)に冷却した後、そこへ38%亜硝酸ナトリウム水溶液199.7g(1.10mol)を-5~0℃で滴下した。その後、トルエン174.7mLを加え、飽和炭酸水素ナトリウム水溶液420mLを-5~0℃で滴下し、pHを3に調整した。混合物をトルエンと水に分配した後、水層を分離した。
 攪拌器、還流冷却器、温度計及び滴下ロートを備えた3000mLの四つ口フラスコに酸化銅(I)48.4g(0.34mоl)、トルエン349.5mL及び38%亜硝酸ナトリウム水溶液544.7g(3.00mol)を加え、そこへ上記で得られた水層を0~5℃で2時間かけて滴下した。混合物を0~5℃で30分間撹拌した後、銅をろ過により除去した。ろ液をトルエンと水に分配した後、トルエン層を分離した。得られたトルエン層を飽和炭酸水素ナトリウム水溶液336.0mL(0.40mоl)で洗浄し、2,6-ジクロロニトロベンゼンをトルエン溶液として得た。得られたトルエン溶液をGC内部標準法により分析した。その結果、2,6-ジクロロニトロベンゼンの収率は85%であった。
 比較例2は、特許文献7に実施例5として記載されている例である。収率は85%に過ぎなかった。
 比較例3
 硫酸を使用した2,6-ジクロロニトロベンゼンの製造
 攪拌器、還流冷却器、温度計及び滴下ロートを備えた200mLの四つ口フラスコに、2,6-ジクロロアニリン16.2g(0.10mоl)、水39.6mL及び57.6%硫酸39.1g(0.23mol)を加え、混合物を60℃に加熱し溶解させた。混合物を攪拌しながら37℃に冷却し、その温度のまま30分間撹拌した後、更に混合物を0℃まで冷却した。そこへ40%亜硝酸ナトリウム水溶液19.0g(0.11mol)を0~4℃で40分間かけて滴下した後、反応混合物を0~4℃で10分間撹拌した。その後、トルエン17.5mLを加え、5%炭酸水素ナトリウム水溶液36mLを滴下した。更に、粉末の炭酸水素ナトリウムを1.93g(0.02mol)加え、反応混合物のpHを0.21に調整した。上記で得られた混合物をトルエン層と水層に分配した後、水層を分離した。
 攪拌器、還流冷却器、温度計及び滴下ロートを備えた300mLの四つ口フラスコに酸化銅(I)2.15g(0.015mоl)、トルエン34.9mL及び40%亜硝酸ナトリウム水溶液19.0g(0.11mol)を加え、そこへ上記で得られた反応混合物の水層を0~4℃で2時間かけて滴下した。反応混合物を0~4℃で30分間撹拌した後、ろ過助剤を加え、沈殿物を濾別した。ろ液を水層とトルエン層を分離した後、得られたトルエン層を10%炭酸水素ナトリウム水溶液33.6mL(0.04mоl)で洗浄し、2,6-ジクロロニトロベンゼンをトルエン溶液として得た。得られたトルエン溶液をGC内部標準法により分析した。その結果、2,6-ジクロロニトロベンゼンの収率は28.7%であった。
 比較例3は、酸として硫酸を使用した例である。収率は28.7%に過ぎなかった。
 比較例4
 硫酸水素ナトリウムを使用した2,6-ジクロロニトロベンゼンの製造
 攪拌器、還流冷却器、温度計及び滴下ロートを備えた200mLの四つ口フラスコに、2,6-ジクロロアニリン16.2g(0.10mоl)、水39.6mL及び41.7%硫酸水素ナトリウム水溶液76.2g(0.23mol)を加え、混合物を60℃に加熱し溶解させた。混合物を攪拌しながら37℃に冷却し、その温度のまま30分間撹拌した後、更に混合物を0℃まで冷却した。そこへ40%亜硝酸ナトリウム水溶液19.0g(0.11mol)を0~4℃で25分間かけて滴下した後、反応混合物を0~4℃で30分間撹拌した。その後、トルエン17.5mLを加え、5%炭酸水素ナトリウム水溶液36mLを滴下し、反応混合物のpHを1.11に調整した。上記で得られた混合物をトルエン層と水層に分配した後、水層を分離した。
 攪拌器、還流冷却器、温度計及び滴下ロートを備えた300mLの四つ口フラスコに酸化銅(I)2.15g(0.015mоl)、トルエン34.9mL及び40%亜硝酸ナトリウム水溶液19.0g(0.11mol)を加え、そこへ上記で得られた反応混合物の水層を0~4℃で70分間かけて滴下した。反応混合物を0~4℃で30分間撹拌した後、ろ過助剤を加え、沈殿物を濾別した。ろ液を水層とトルエン層に分離した後、得られたトルエン層を10%炭酸水素ナトリウム水溶液33.6mL(0.04mоl)で洗浄し、2,6-ジクロロニトロベンゼンをトルエン溶液として得た。得られたトルエン溶液をGC内部標準法により分析した。その結果、2,6-ジクロロニトロベンゼンの収率は52.3%であった。
 比較例4は、酸として硫酸水素ナトリウムを使用した例である。収率は52.3%に過ぎなかった。
 比較例5
 テトラフルオロホウ酸を使用した2,6-ジクロロニトロベンゼンの製造
 攪拌器、還流冷却器、温度計及び滴下ロートを備えた100mLの四つ口フラスコに、2,6-ジクロロアニリン8.1g(0.05mоl)、水15.9mL及び42%テトラフルオロホウ酸水溶液24.0g(0.115mol)を加え、混合物を60℃に加熱し溶解させた。混合物を攪拌しながら37℃に冷却し、その温度のまま30分間撹拌した後、更に混合物を0℃まで冷却し。そこへ40%亜硝酸ナトリウム水溶液9.5g(0.055mol)を0~4℃で20分間かけて滴下した後、反応混合物を0~4℃で45分間撹拌した。その後、トルエン8.7mLを加え、5%炭酸水素ナトリウム水溶液18mLを滴下し、反応混合物のpHを0.4に調整した後、水20mLを加えた。
 攪拌器、還流冷却器、温度計及び滴下ロートを備えた300mLの四つ口フラスコに酸化銅(I)1.1g(0.0077mоl)、トルエン17.5mL及び40%亜硝酸ナトリウム水溶液9.5g(0.055mol)を加え、そこへ上記で得られた反応混合物を0~4℃で1時間かけて滴下した。滴下時に滴下ロート内に残った固体は、水40gを更に加えることによりフラスコに流し入れた。反応混合物を0~4℃で30分間撹拌した後、ろ過助剤を加え、沈殿物を濾別した。ろ液を水層とトルエン層に分離した後、得られたトルエン層を10%炭酸水素ナトリウム水溶液16.8mL(0.02mоl)で洗浄し、2,6-ジクロロニトロベンゼンをトルエン溶液として得た。得られたトルエン溶液をGC内部標準法により分析した。その結果、2,6-ジクロロニトロベンゼンの収率は40%であった。
 比較例5は、酸としてテトラフルオロホウ酸を使用した例である。収率は40%に過ぎなかった。
 比較例6
 酢酸を使用した2,6-ジクロロニトロベンゼンの製造
 攪拌器、還流冷却器、温度計及び滴下ロートを備えた200mLの四つ口フラスコに、2,6-ジクロロアニリン16.2g(0.10mоl)、水85.5mL及び酢酸13.9g(0.23mol)を加え、混合物を60℃に加熱し溶解させた。混合物を攪拌しながら37℃に冷却し、その温度のまま30分間撹拌した後、更に混合物を0℃まで冷却した。そこへ40%亜硝酸ナトリウム水溶液19.0g(0.11mol)を0~4℃で25分間かけて滴下した後、反応混合物を0~4℃で30分間撹拌した。その後、反応混合物にトルエン32.7mLと水36.7mLを加えた。
 攪拌器、還流冷却器、温度計及び滴下ロートを備えた300mLの四つ口フラスコに酸化銅(I)2.15g(0.015mоl)、トルエン34.9mL及び40%亜硝酸ナトリウム水溶液19.0g(0.11mol)を加え、そこへ上記で得られた反応混合物を0~4℃で75分間かけて滴下した。反応混合物を0~4℃で30分間撹拌した後、ろ過助剤を加え、沈殿物を濾別した。ろ液を水層とトルエン層を分離した後、得られたトルエン層を10%炭酸水素ナトリウム水溶液33.6mL(0.04mоl)で洗浄し、2,6-ジクロロニトロベンゼンをトルエン溶液として得た。得られたトルエン溶液をGC内部標準法により分析した。その結果、2,6-ジクロロニトロベンゼンの収率は2.8%であった。
 比較例6は、酸として酢酸を使用した例である。収率は2.8%に過ぎなかった。
 実施例3
 硝酸を使用した3-クロロ-2-ニトロ安息香酸メチルの製造
 攪拌器、還流冷却器、温度計及び滴下ロートを備えた300mLの四つ口フラスコに、2-アミノ-3-クロロ安息香酸メチルの35%イソブチルメチルケトン(MIBK)溶液106.1g(0.20mоl)及び水96.8mLを加えた。混合物を攪拌しながら69%硝酸42g(0.46mol)を30分間かけて滴下し、更に攪拌しながら-5℃~0℃まで冷却した。そこへ38%亜硝酸ナトリウム水溶液39.9g(0.22mol)を-5℃~0℃で1時間かけて滴下した後、反応混合物を-5℃~0℃で1時間撹拌した。上記で得られた混合物をMIBK層と水層に分配した後、水層を分離した。得られた水層は、示差走査熱量測定及び加速速度熱量測定に供された。
 攪拌器、還流冷却器、温度計及び滴下ロートを備えた1000mLの四つ口フラスコに酸化銅(I)9.7g(0.068mоl)、水22.5mL、10%炭酸水素ナトリウム水溶液168mL、トルエン174mL及び38%亜硝酸ナトリウム水溶液72.6g(0.40mol)を加え、そこへ上記で得られた反応混合物の水層を0~10℃で2時間かけて滴下した。反応混合物を0~10℃で1時間撹拌した後、ろ過助剤を加え、沈殿物を濾別した。得られたトルエン層を水40mLで洗浄し、3-クロロ-2-ニトロ安息香酸メチルをトルエン溶液として得た。得られたトルエン溶液をHPLC絶対検量線法により分析した。その結果、3-クロロ-2-ニトロ安息香酸メチルの収率は95.2%であった。
H-NMR(300MHz,CDCl)δ(ppm):7.56-8.01(m,3H)、3.92(s,3H)
 示差走査熱量測定; 発熱開始温度:133.63℃、発熱量:120.48J/g
 加速速度熱量測定; ADT24:27.0℃、TでのTMR:78.6時間
実施例4
 硝酸を使用した3-クロロ-2-ニトロ安息香酸メチルの製造
 攪拌器、還流冷却器、温度計及び滴下ロートを備えた300mLの四つ口フラスコに、2-アミノ-3-クロロ安息香酸メチル37.12g(0.20mоl)及び水96.8mLを加え、混合物を55℃に加熱し溶解させた。混合物を攪拌しながら69%硝酸42g(0.46mol)を30分間かけて滴下し、更に攪拌しながら-5℃~0℃まで冷却した。そこへ38%亜硝酸ナトリウム水溶液39.9g(0.22mol)を-5℃~0℃で45分間かけて滴下した後、反応混合物を-5℃~0℃で1時間撹拌した。その後、トルエン17.4mLを加え、得られた混合物をトルエン層と水層に分配した後、水層を分離した。
 攪拌器、還流冷却器、温度計及び滴下ロートを備えた1000mLの四つ口フラスコに酸化銅(I)9.7g(0.068mоl)、水22.5mL、10%炭酸水素ナトリウム水溶液168mL、トルエン174mL及び38%亜硝酸ナトリウム水溶液72.6g(0.40mol)を加え、そこへ上記で得られた反応混合物の水層を0~10℃で2時間かけて滴下した。反応混合物を0~10℃で1時間撹拌した後、ろ過助剤を加え、沈殿物を濾別した。得られたトルエン層を水40mLで洗浄し、3-クロロ-2-ニトロ安息香酸メチルをトルエン溶液として得た。得られたトルエン溶液をHPLC絶対検量線法により分析した。その結果、3-クロロ-2-ニトロ安息香酸メチルの収率は94.9%であった。
 比較例7
 塩酸を使用した3-クロロ-2-ニトロ安息香酸メチルの製造
 攪拌器、還流冷却器、温度計及び滴下ロートを備えた100mLの四つ口フラスコに、2-アミノ-3-クロロ安息香酸メチル9.28g(0.050mоl)、水24mL及び35%塩酸10.95g(0.105mol)を加えた。混合物を-5℃(マイナス5℃)で攪拌しながら、そこへ38%亜硝酸ナトリウム水溶液9.35g(0.0515mol)を滴下した。その後、混合物を-5~0℃で2時間攪拌して、反応混合物を得た。
 攪拌器、還流冷却器、温度計及び滴下ロートを備えた200mLの四つ口フラスコに、酸化銅(I)2.42g(0.0169mоl)、トルエン25mL、38%亜硝酸ナトリウム水溶液27.24g(0.150mol)及び水21gを加え、そこへ上記で得られた反応混合物を25℃で2時間かけて滴下した。得られた反応混合物へトルエン25mLを加え、混合物を30℃で10分間撹拌した後、銅をろ過により除去した。ろ液をトルエンと水に分配した後、トルエン層を分離した。得られたトルエン層を水25mLで洗浄し、3-クロロ-2-ニトロ安息香酸メチルをトルエン溶液として得た。得られたトルエン溶液をHPLC絶対検量線法により分析した。その結果、3-クロロ-2-ニトロ安息香酸メチルの収率は88%であった。このとき、不純物の2,3-ジニトロ安息香酸メチルの含有率は0.6%であった。
 比較例7は、特許文献7に実施例1として記載されている例であり、原料として、2-アミノ-3-クロロ安息香酸メチルが使用されている。ニトロ化合物の収率は、88%に過ぎなかった。
 比較例8
 塩酸を使用した3-クロロ-2-ニトロ安息香酸メチルの製造
 攪拌器、還流冷却器、温度計及び滴下ロートを備えた300mLの四つ口フラスコに、2-アミノ-3-クロロ安息香酸メチルの35%イソブチルメチルケトン(MIBK)溶液106.1g(0.20mоl)、水78.6mLを加えた。混合物を攪拌しながら35%塩酸47.90g(0.460mol)を30分間かけて滴下し、更に攪拌しながら-5℃~0℃まで冷却した。そこへ38%亜硝酸ナトリウム水溶液39.9g(0.22mol)を-5℃~0℃で1時間かけて滴下した後、反応混合物を-5℃~0℃で1時間撹拌した。上記で得られた混合物をMIBK層と水層に分配した後、水層を分離した。得られた水層は、示差走査熱量測定及び加速速度熱量測定に供された。
 攪拌器、還流冷却器、温度計及び滴下ロートを備えた1000mLの四つ口フラスコに、酸化銅(I)9.7g(0.068mоl)、水22.5mL、10%炭酸水素ナトリウム水溶液168mL、トルエン174mL及び38%亜硝酸ナトリウム水溶液72.6g(0.40mol)を加え、そこへ上記で得られた反応混合物の水層を0~10℃で2時間かけて滴下した。反応混合物を0~10℃で1時間撹拌した後、沈殿物を濾別した。得られたトルエン層を水40mLで洗浄し、3-クロロ-2-ニトロ安息香酸メチルをトルエン溶液として得た。得られたトルエン溶液をHPLC絶対検量線法により分析した。その結果、3-クロロ-2-ニトロ安息香酸メチルの収率は74.3%であった。
 示差走査熱量測定; 発熱開始温度:72.22℃、発熱量:171.65J/g
 加速速度熱量測定; ADT24:2.5℃、TでのTMR:25.6時間
 塩酸を使用した比較例8では、収率は74%程度であり、硝酸を使用した実施例3に劣る結果であった。更に、発熱開始温度(℃)やADT24、及びTでのTMRなどの熱指標についても明らかに硝酸を使用した実施例3よりも悪い結果であり、安全性の改善にも限界があることがわかった。
 酸として硝酸を使用した本発明の方法によれば、より安全で、より高収率の、一般式(1)のニトロベンゼン化合物の製造方法が提供される。
 本発明の方法は、経済的であり、環境にも優しく、高い工業的な利用価値を有し、各種の医薬品や農薬などの化学製品の原料となる一般式(1)のニトロベンゼン化合物の簡便で安全性の高い効率的な製造方法が提供され、産業上の利用可能性を有している。

Claims (9)

  1.  一般式(1):
    Figure JPOXMLDOC01-appb-C000001
    (式中、Rはハロゲン原子を示し;R、R及びRは、同一又は異なっていてもよく、水素原子、ハロゲン原子又はアルキル基を示し;Rはハロゲン原子又はアルコキシカルボニル基を示す。)
    で表されるニトロベンゼン化合物の製造方法であって、以下の工程:
    (i) 一般式(2):
    Figure JPOXMLDOC01-appb-C000002
    (式中、R、R、R、R及びRは前記で定義した通りである。)
    で表されるアニリン化合物を亜硝酸の金属塩と硝酸の存在下で反応させる工程;
    (ii) 工程(i)の生成物又は工程(i)の反応混合物を、亜硝酸の金属塩と銅化合物の存在下で反応させる工程、
    を含む方法。
  2.  工程(ii)が、水の存在下で反応させる工程であり、工程(ii)で使用される水の総量が一般式(2)で表される化合物1モルに対して1.2~2.2Lである、請求項1に記載の方法。
  3.  工程(ii)で使用される水の総量が一般式(2)で表される化合物1モルに対して1.2~1.9Lである、請求項2に記載の方法。
  4.  R、R及びRが水素原子である、請求項1から3のいずれか一項に記載の方法。
  5.  Rがハロゲン原子であり、Rがハロゲン原子である、請求項1から4のいずれか一項に記載の方法。
  6.  Rが塩素原子であり、Rが塩素原子である、請求項1から5のいずれか一項に記載の方法。
  7. がハロゲン原子であり、RがC~Cアルコキシカルボニル基である、請求項1から4のいずれか一項に記載の方法。
  8.  Rが塩素原子であり、RがC~Cアルコキシカルボニル基である、請求項1から4のいずれか一項に記載の方法。
  9.  Rが塩素原子であり、Rがメトキシカルボニルである、請求項8に記載の方法。
PCT/JP2017/016700 2016-05-09 2017-04-27 ニトロベンゼン化合物を製造する方法 WO2017195619A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018516941A JP6789526B2 (ja) 2016-05-09 2017-04-27 ニトロベンゼン化合物を製造する方法
EP17795980.6A EP3456705B1 (en) 2016-05-09 2017-04-27 Method for producing nitrobenzene compound
CN201780028766.2A CN109071411B (zh) 2016-05-09 2017-04-27 制造硝基苯化合物的方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-093792 2016-05-09
JP2016093792 2016-05-09

Publications (1)

Publication Number Publication Date
WO2017195619A1 true WO2017195619A1 (ja) 2017-11-16

Family

ID=60267141

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/016700 WO2017195619A1 (ja) 2016-05-09 2017-04-27 ニトロベンゼン化合物を製造する方法

Country Status (5)

Country Link
EP (1) EP3456705B1 (ja)
JP (1) JP6789526B2 (ja)
CN (1) CN109071411B (ja)
TW (1) TWI734776B (ja)
WO (1) WO2017195619A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115490646A (zh) * 2022-10-10 2022-12-20 安徽昊帆生物有限公司 3-硝基-1,2,4-三氮唑的制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS615061A (ja) * 1984-06-15 1986-01-10 Sumitomo Chem Co Ltd メトキシベンゼンジアゾニウム塩の製造方法
US5084086A (en) 1991-04-12 1992-01-28 E. I. Du Pont De Nemours And Company Herbicide utility on resistant crops
JP2606291B2 (ja) 1988-06-27 1997-04-30 藤沢薬品工業株式会社 2−ニトロトルエン誘導体の製造法
WO2005081960A2 (en) 2004-02-25 2005-09-09 Wyeth Inhibitors of protein tyrosine phosphatase 1b
JP2005533756A (ja) 2002-04-12 2005-11-10 ファイザー株式会社 Il−6関連疾病の治療におけるep4レセプターリガンドの使用
JP2008537953A (ja) 2005-04-15 2008-10-02 エラン ファーマシューティカルズ,インコーポレイテッド ブラジキニンb1受容体拮抗作用に有用な新規化合物
WO2013005425A1 (ja) 2011-07-07 2013-01-10 イハラケミカル工業株式会社 ニトロベンゼン化合物の製造方法
WO2014208296A1 (ja) 2013-06-25 2014-12-31 イハラケミカル工業株式会社 ニトロベンゼン化合物を製造する方法
CN105216407A (zh) * 2015-10-20 2016-01-06 江苏增强新材料科技有限公司 一种聚醚型帐篷材料的生产方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101870653B (zh) * 2009-04-23 2013-07-10 上海合全药业有限公司 一种2-甲基-3-氟-6-硝基苯甲酸的合成方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS615061A (ja) * 1984-06-15 1986-01-10 Sumitomo Chem Co Ltd メトキシベンゼンジアゾニウム塩の製造方法
JP2606291B2 (ja) 1988-06-27 1997-04-30 藤沢薬品工業株式会社 2−ニトロトルエン誘導体の製造法
US5084086A (en) 1991-04-12 1992-01-28 E. I. Du Pont De Nemours And Company Herbicide utility on resistant crops
JP2005533756A (ja) 2002-04-12 2005-11-10 ファイザー株式会社 Il−6関連疾病の治療におけるep4レセプターリガンドの使用
WO2005081960A2 (en) 2004-02-25 2005-09-09 Wyeth Inhibitors of protein tyrosine phosphatase 1b
JP2008537953A (ja) 2005-04-15 2008-10-02 エラン ファーマシューティカルズ,インコーポレイテッド ブラジキニンb1受容体拮抗作用に有用な新規化合物
WO2013005425A1 (ja) 2011-07-07 2013-01-10 イハラケミカル工業株式会社 ニトロベンゼン化合物の製造方法
WO2014208296A1 (ja) 2013-06-25 2014-12-31 イハラケミカル工業株式会社 ニトロベンゼン化合物を製造する方法
CN105216407A (zh) * 2015-10-20 2016-01-06 江苏增强新材料科技有限公司 一种聚醚型帐篷材料的生产方法

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
"Dai-Go Han, Jikkenkagaku Koza 6, Ondo, Netsu, Atsuryoku (A Course in Experimental Chemistry 6, Temperature, Heat, Pressure", 2005, SEISHIRO MURATA, MARUZEN COMPANY, LIMITED, pages: 203 - 205
"Dai-Yon Han, Jikkenkagaku Koza 4, Netsu, Atsuryoku (A Course in Experimental Chemistry 4, Heat, Pressure", 1992, KUMAO EBIHARA, MARUZEN COMPANY, LIMITED, pages: 57 - 93
"Jikkenkagaku Koza 20-1, Bunseki Kagaku (A Course in Experimental Chemistry 20-1, Analytical Chemistry", 2007, SEISHIRO MURATA, MARUZEN COMPANY, LIMITED, pages: 121 - 129
"Jikkenkagaku Koza 20-1, Bunseki Kagaku (A Course in Experimental Chemistry 20-1, Analytical Chemistry", 2007, SEISHIRO MURATA, MARUZEN COMPANY, LIMITED, pages: 130 - 151
"Shin-Jikkenkagaku Koza 9, Bunseki Kagaku II (A New Course in Experimental Chemistry 9, Analytical Chemistry II", 1977, SHINGO IIZUMI, MARUZEN COMPANY, LIMITED, pages: 86 - 112
"Shin-Jikkenkagaku Koza 9, Bunseki Kagaku II (A New Course in Experimental Chemistry Course 9, Analytical Chemistry II", 1977, SHINGO IIZUMI, MARUZEN COMPANY, LIMITED, pages: 60 - 86
TRANSACTIONS OF TIANJIN UNIVERSITY, vol. 8, no. 1, 2002, pages 40 - 41

Also Published As

Publication number Publication date
CN109071411B (zh) 2021-08-27
EP3456705B1 (en) 2020-12-16
JPWO2017195619A1 (ja) 2019-03-14
EP3456705A1 (en) 2019-03-20
JP6789526B2 (ja) 2020-11-25
CN109071411A (zh) 2018-12-21
TW201741279A (zh) 2017-12-01
EP3456705A4 (en) 2019-12-25
TWI734776B (zh) 2021-08-01

Similar Documents

Publication Publication Date Title
US9006477B2 (en) Method for producing nitrobenzene compound
JP2007182399A (ja) フルオレノン類の製造方法
JPS6339578B2 (ja)
WO2017195619A1 (ja) ニトロベンゼン化合物を製造する方法
WO2014208296A1 (ja) ニトロベンゼン化合物を製造する方法
WO2017014214A1 (ja) 4-(トリフルオロメチルスルホニル)フェノール化合物の製造方法
CN101585783B (zh) 一种邻硝基苯腈类化合物的制备方法
JP5736201B2 (ja) 2,3−ジクロロピリジンの製造方法
WO2018180943A1 (ja) ハロゲン含有ピラゾールカルボン酸及びその中間体の製造方法
WO2017056501A1 (ja) 酸ハライド溶液の製造方法、混合溶液、及びモノエステル化合物の製造方法
JP6327754B2 (ja) 2−アミノ−2−ヒドロキシイミノ−n−アルコキシアセトイミドイルシアニドの製造方法およびその製造中間体
CN111170933A (zh) 一种2-氯-5-硝基吡啶的制备方法
EP0994099B1 (en) Process for preparing 4-cyano-3-nitrobenzotrifluoride from 3-bromo-4-cyanobenzotrifluoride in the presence of catalytic cuprous cyanide and a phase transfer catalyst.
JP6660518B1 (ja) トリフルオロメチルチオアルキル化合物の製造方法及びトリフルオロメチルチオアルキルハライド化合物の組成物
JP2018076289A (ja) ハロゲン化ベンゼン誘導体の製造方法
CN105523922B (zh) 一种罗氟司特中间体的制备方法
WO2016190280A1 (ja) O-[1-(2-ヒドロキシプロピル)]オキシム化合物の製造方法
EP1121344A2 (en) Chemical processes
WO2023281536A1 (en) A process for the preparation of pure 2-nitro-4-methylsulfonyl benzoic acid
JP5200428B2 (ja) テトラヒドロピラン−4−オンの製法
JP5112621B2 (ja) 5−置換オキサゾール化合物の精製方法及び製造方法
JP2023087571A (ja) 除草剤中間体の製造方法
WO2017130871A1 (ja) 酸ハライド溶液の製造方法、及びモノエステル化合物の製造方法
JPH041159A (ja) 2,6―ジハロゲノアニリンの製造方法
JP2007191466A (ja) 2,4−ジフルオロニトロベンゼンの製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018516941

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17795980

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017795980

Country of ref document: EP

Effective date: 20181210