WO2017190593A1 - 进气道及涡轮增压汽油发动机燃烧系统 - Google Patents

进气道及涡轮增压汽油发动机燃烧系统 Download PDF

Info

Publication number
WO2017190593A1
WO2017190593A1 PCT/CN2017/081324 CN2017081324W WO2017190593A1 WO 2017190593 A1 WO2017190593 A1 WO 2017190593A1 CN 2017081324 W CN2017081324 W CN 2017081324W WO 2017190593 A1 WO2017190593 A1 WO 2017190593A1
Authority
WO
WIPO (PCT)
Prior art keywords
intake
combustion chamber
passage
gasoline engine
exhaust
Prior art date
Application number
PCT/CN2017/081324
Other languages
English (en)
French (fr)
Inventor
张著云
占文锋
刘巨江
刘卓
丁尚芬
李钰怀
Original Assignee
广州汽车集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州汽车集团股份有限公司 filed Critical 广州汽车集团股份有限公司
Priority to US16/094,208 priority Critical patent/US20190093595A1/en
Publication of WO2017190593A1 publication Critical patent/WO2017190593A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • F02F1/42Shape or arrangement of intake or exhaust channels in cylinder heads
    • F02F1/4235Shape or arrangement of intake or exhaust channels in cylinder heads of intake channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/08Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B31/00Modifying induction systems for imparting a rotation to the charge in the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B31/00Modifying induction systems for imparting a rotation to the charge in the cylinder
    • F02B31/04Modifying induction systems for imparting a rotation to the charge in the cylinder by means within the induction channel, e.g. deflectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B31/00Modifying induction systems for imparting a rotation to the charge in the cylinder
    • F02B31/08Modifying induction systems for imparting a rotation to the charge in the cylinder having multiple air inlets
    • F02B31/085Modifying induction systems for imparting a rotation to the charge in the cylinder having multiple air inlets having two inlet valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • F02F1/242Arrangement of spark plugs or injectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • F02F1/42Shape or arrangement of intake or exhaust channels in cylinder heads
    • F02F1/4214Shape or arrangement of intake or exhaust channels in cylinder heads specially adapted for four or more valves per cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10091Air intakes; Induction systems characterised by details of intake ducts: shapes; connections; arrangements
    • F02M35/10144Connections of intake ducts to each other or to another device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/1015Air intakes; Induction systems characterised by the engine type
    • F02M35/10157Supercharged engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B31/00Modifying induction systems for imparting a rotation to the charge in the cylinder
    • F02B2031/006Modifying induction systems for imparting a rotation to the charge in the cylinder having multiple air intake valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B2275/00Other engines, components or details, not provided for in other groups of this subclass
    • F02B2275/48Tumble motion in gas movement in cylinder
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to the field of turbocharged gasoline engines, and more particularly to an intake port and a turbocharged gasoline engine combustion system.
  • the engine combustion system is one of the main factors affecting engine intake and in-cylinder combustion.
  • the intake air volume of each cylinder of the engine is the premise to ensure the highest power of the engine, and the tumble ratio of the intake air of each cylinder directly affects the combustion performance of the cylinders of the engine and the high tumble ratio to obtain a high combustion rate.
  • a part of the space is reserved to pass through the intake passage to supplement the intake air flow.
  • the rolling valve is closed, the lower intake passage is basically closed, and the air flow is basically closed. It is completely entered by the upper intake port, resulting in a strong intake tumble.
  • the other is to design a convex shielding device in the part of the combustion chamber away from the center.
  • the protrusion height of the combustion chamber shielding device is 1 ⁇ 3mm, which is used to block the gas entering the combustion chamber from the air inlet. The gas enters from the central portion of the combustion chamber, thereby causing the gas to form a tumble flow in the combustion chamber, improving combustion efficiency.
  • the present invention provides an intake passage including an intake port body, the intake passage body including an intake portion and a connection portion connected to the intake portion, an interior of the intake portion a first passage is provided, a second passage is disposed in the interior of the connecting portion, and the first passage and the second passage are disposed through, and one side of the connecting portion is disposed to the inlet body An axially inclined connecting surface, the connecting surface extending obliquely from the connection of the connecting portion and the inlet portion to an end of the connecting portion such that a cross-sectional area of the first passage is larger than the second passage Cross-sectional area.
  • the intake portion is provided at an position adjacent to the connecting portion with an intake surface inclined to an axis of the intake port body, the intake surface being connected to the connecting surface.
  • the inlet surface is a connecting surface that is convex with respect to an axis of the inlet body;
  • the intake surface is a slope that is inclined toward an axis of the intake body.
  • the connecting surface is a connecting surface that is concave toward an axis of the inlet body
  • the connecting surface is a slope that is inclined toward an axis of the inlet body.
  • the present invention also provides a turbocharged gasoline engine combustion system including a cylinder head, a combustion chamber, an exhaust passage, and an intake passage as described above, the intake air
  • the passage, the combustion chamber and the exhaust passage are both disposed on the cylinder head, the intake passage being connected to the intake side of the combustion chamber, and the exhaust side of the combustion chamber being connected to the exhaust passage.
  • the turbocharged gasoline engine combustion system further includes an intake valve seat, the intake valve seat is disposed on the cylinder head, and one end of the intake valve seat is fixed Connected to the connection of the intake passage, the other end of the exhaust valve seat is connected to the intake side of the combustion chamber.
  • the turbocharged gasoline engine combustion system further includes a spark plug electrode center disposed at a center of the combustion chamber and at least one combustion chamber squish structure disposed on an intake side of the combustion chamber.
  • combustion chamber squish structure is a concave curved surface formed on the combustion chamber, and the combustion chamber squish structure is recessed toward a center of the spark plug electrode;
  • the combustion chamber squish structure is a chord cut surface formed on the combustion chamber.
  • combustion chamber squish structure is integrally formed with the combustion chamber.
  • the turbocharged gasoline engine combustion system further includes an exhaust valve seat ring, and one end of the exhaust valve seat ring is fixedly connected to an exhaust port of the exhaust passage, the exhaust gas The other end of the door race is connected to the exhaust side of the combustion chamber.
  • the intake port and the turbocharged gasoline engine combustion system provided by the present invention are disposed through a first passage of the intake portion and a second passage of the connecting portion, and then are provided on the connecting portion to be inclined to the axis of the inlet body a connecting surface such that a cross-sectional area of the air inlet portion is larger than a cross-sectional area of the connecting portion, so that when the air flow is in the air inlet, the flow direction of the air flow can be forcibly changed by the pressing action of the connecting surface, so that the air flow A high tumble ratio air flow is formed at the joint face of the joint portion, so that the combustion efficiency of the engine can be improved.
  • the structure is simple, and the manufacturing cost is greatly reduced.
  • FIG. 1 is a schematic structural view of an air inlet provided by an embodiment of the present invention
  • FIG. 2 is a schematic structural view of a turbocharged gasoline engine combustion system according to an embodiment of the present invention
  • FIG. 3 is a schematic structural view of the other direction of FIG. 2.
  • turbocharged gasoline engine combustion system 10
  • intake port 11, intake port body; 111, intake portion; 111a, intake surface; 112, connecting portion; 112a, connecting surface; L, axis 20, cylinder head; 30, intake valve seat; 40, combustion chamber; 41, combustion chamber squeezing structure; 50, spark plug electrode center; 60, exhaust passage; 70, exhaust valve seat.
  • an intake port 10 includes an intake port body 11 , and the intake port body 11 includes an intake portion 111 and a connecting portion 112 connected to the intake portion 111 .
  • the inside of the air inlet portion 111 is provided with a first pass A passage (not shown) is provided in the interior of the connecting portion 112, and a second passage (not shown) is disposed, and the second passage is disposed through the first passage.
  • One side of the connecting portion 112 is provided with a connecting face 112a obliquely disposed to the axis L of the intake port body 11, and the connecting face 112a is connected from the connecting portion 112 and the intake portion 111
  • An oblique extension extends to an end of the connecting portion 112 such that a cross-sectional area of the first passage is greater than a cross-sectional area of the second passage.
  • the intake passage 10 provided by the present invention is applied to a turbocharged air passage multi-point sequential injection gasoline engine combustion system.
  • the connecting surface 112a is disposed on the connecting portion 112 penetrating the air inlet portion 111, and the connecting surface 112a is inclined to the axis L of the air inlet portion 11 so that the connecting portion 112a is disposed.
  • the cross-sectional area of the first passage is larger than the cross-sectional area of the second passage, so that when the airflow is in the intake passage body 11, the airflow is concentrated on the connecting portion 112 by the pressing action of the connecting surface 112a.
  • the connection surface 112a is provided to increase the tumble ratio of the gas, thereby improving the combustion efficiency of the engine.
  • the intake portion 111 is disposed adjacent to the connecting portion 112 at an inclination of the intake surface 111a toward the axis L of the intake port body 11, and
  • the intake surface 111a is connected to the connecting surface 112a. That is, the cross-sectional area of the first passage at the position of the intake surface 111a is larger than the cross-sectional area of the second passage at the position of the joint surface 112a.
  • the intake surface 111a is a convex curved surface that is convex with respect to the axis L of the intake port body 11, or the intake surface 111a is inclined toward the axis L of the intake passage body 11.
  • the inclined surface is such that the diameter of the inlet portion 111 adjacent to the connecting portion 112 is large, so that more airflow can be collected.
  • the intake surface 111a may be integrally formed when the intake port body 11 is molded.
  • the connecting surface 112a is a concave curved surface that is concave toward the axis L of the inlet body 11, or the connecting surface 112a is inclined toward the axis L of the inlet body 11. a slope so that the diameter of the connecting portion 112 is smaller than that of the inlet portion 111, so that when the airflow is collected to the inlet surface 111a and passes through the connecting surface 112a, due to the diameter of the tube Smaller, therefore, a large amount of airflow is collected at the joint surface 112a of the connecting portion 112, thereby forming a shape of a gas flow requiring a high tumble ratio for combustion, so that when the cylinder is subsequently introduced, turbulent energy can be formed, thereby improving combustion efficiency. .
  • the turbocharged gasoline engine combustion system 100 includes a cylinder head 20 , a combustion chamber 40 , and an exhaust passage. 60 and the aforementioned intake passage 10, the intake passage 10, the combustion chamber 40, and the exhaust passage 60 are all disposed on the cylinder head 20.
  • the intake passage 10 is connected to the intake side of the combustion chamber 40, and the exhaust side of the combustion chamber 40 is connected to the exhaust passage 60.
  • the intake passage 10 is embedded in the cylinder head 20, and the intake passage 10 may be one or more.
  • the turbocharged gasoline engine combustion system 100 further includes an intake valve seat 30, the intake valve seat 30 is disposed on the cylinder head 20, and the intake valve seat 30 One end of which is fixedly connected to the air inlet 10 a connecting portion 112, the other end of the intake valve seat 30 is connected to an intake side of the combustion chamber 40 such that airflow collected at the connecting portion 112 can be derived via the intake valve seat 30 Combustion is performed into the combustion chamber 40.
  • the intake valve seat 30 is attached to the cylinder head 20 by press fitting.
  • the turbocharged gasoline engine combustion system 100 further includes a spark plug electrode center 50 disposed at a center of the combustion chamber 40 and at least one combustion chamber squish structure 41 disposed on an intake side of the combustion chamber 40.
  • the combustion chamber 40 is embedded in the cylinder head 20, and the at least one combustion chamber squish structure 41 is used to squeeze the gas on the intake side of the combustion chamber 40 to achieve a large amount of airflow. Squeeze to the vicinity of the center 50 of the spark plug electrode to improve combustion efficiency, thereby achieving an effect of improving engine combustion performance.
  • the at least one combustion chamber squish structure 41 is a concave curved surface formed on the combustion chamber 40, and the at least one combustion chamber squish structure 41 is recessed toward the spark plug electrode center 50 to A large amount of gas in the combustion chamber 40 is squeezed to the vicinity of the spark plug electrode center 50, so that a high tumble ratio airflow that is introduced into the combustion chamber 40 via the intake port 10 can be squeezed
  • the kinetic energy is formed near the center 50 of the spark plug electrode to improve combustion efficiency.
  • the combustion chamber squish structure 41 is integrally formed with the combustion chamber to save processing steps. It will be appreciated that the combustion chamber squish structure 41 may be one, two or more, etc., depending on the particular circumstances in which the gas stream 40 is offset from the center of the spark plug electrode 50.
  • the at least one combustion chamber squish structure 41 may also be a chord cut surface formed on the combustion chamber 40, as well as squeezing the air flow from the center of the spark plug electrode 50 to the same. Near the center of the spark plug electrode.
  • the turbocharged gasoline engine combustion system 100 further includes an exhaust valve seat 70, one end of the exhaust valve seat 70 is fixedly coupled to the exhaust port of the exhaust passage 60, The other end of the exhaust valve seat 70 is connected to the exhaust side of the combustion chamber 40.
  • the exhaust passage 60 is embedded in the cylinder head 20, and the exhaust valve seat 70 is connected to the exhaust side of the combustion chamber 40, so that the burned gas can be passed through the The exhaust passage 60 is exhausted.
  • the exhaust passages 60 may be one, two or more.
  • the exhaust passage 60 may be disposed opposite to the intake passage 10, and the number of the exhaust valve races 70 is set corresponding to the number of the exhaust passages 60.
  • the working process of the turbocharged gasoline engine combustion system 100 of the embodiment of the present invention is as follows:
  • Fresh air is introduced into the intake passage 10, and an oil mist sprayed from the injector inside the intake passage 10 forms an oil and gas mixture.
  • the intake valve is opened, the piston is descended, the position of the oil and gas mixture passing through the intake surface 111a of the intake portion 111 and the position of the connecting surface 112a of the connecting portion 112 before passing through the intake throat, and The position of the connecting surface 112a of the connecting portion 112 forms a shape of a gas flow having a high tumble ratio required for combustion, and is then introduced into the combustion chamber 40 via the intake valve seat 30.
  • the high tumble ratio airflow can generate high kinetic energy in the combustion chamber 40.
  • the piston upwardly compresses the high tumble ratio airflow, and at the compression end, squeezes through the combustion chamber in the combustion chamber 40.
  • Extrusion of structure 41 Acting such that the kinetic energy center formed above is near the center of the spark plug electrode 50, then the spark plug ignites, igniting a high tumble ratio airflow, the gas flow combustion expansion pushes the piston to work, the piston again goes up, and finally passes the The exhaust passage 60 exhausts the combusted exhaust gas to achieve a primary combustion process of the engine.
  • the intake passage 10 and the turbocharged gasoline engine combustion system 100 provided by the present invention are provided with a connection surface 112a close to the axis L of the intake port body 11 at a connection portion 112 penetratingly provided with the intake portion 111, thereby
  • the cross-sectional area of the air inlet portion 111 is larger than the cross-sectional area of the connecting portion 112, so that when the airflow is in the air inlet 10, the flow direction of the airflow can be forcibly changed by the pressing action of the connecting surface 112a, so that the airflow is
  • the air flow of the high tumble ratio is formed at the joint surface 112a of the connecting portion 112, so that the combustion efficiency of the gasoline engine can be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Abstract

一种进气道,包括进气道本体(11),进气道本体(11)包括进气部(111)及与进气部(111)连接的连接部(112),进气部(111)内部设第一通道,连接部(112)内部设第二通道,第一通道与第二通道贯通设置,连接部(112)的一侧设向进气道本体(11)的轴线倾斜的连接面(112a),连接面(112a)自连接部(112)和进气部(111)的连接处倾斜延伸至连接部(112)的端部,以使第一通道的横截面面积大于第二通道的横截面面积。进气道及涡轮增压汽油发动机燃烧系统,利用连接面(112a)向进气道本体(111)的中心轴向的倾斜设置,从而能够对气流具有挤压作用,以强行改变气流的流向,使得气流在连接部(112)的连接面(112a)处形成高滚流比的气流,从而能够提高发动机的燃烧效率。由于无需额外在进气道或汽缸盖上设部件,结构简单,大大地降低了制作成本。

Description

进气道及涡轮增压汽油发动机燃烧系统 技术领域
本发明涉及涡轮增压汽油发动机领域,尤其涉及一种进气道及涡轮增压汽油发动机燃烧系统。
背景技术
发动机燃烧系统是影响发动机进气量和缸内燃烧的主要因素之一。发动机各缸的进气量是保证发动机最高功率实现的前提,而各缸进气的滚流比又直接影响发动机各缸缸内燃烧性能以及高滚流比,以获得高燃烧速率。
目前,为了获得高滚流比,通常采用的方法有以下两种:
一种是在进气道增加滚流阀翼板,设计关闭时保留一部分空间通下进气道,起到补充进气流量的作用,当滚流阀关闭时,下进气道基本关闭,气流完全由上进气道进入,从而产生强烈的进气滚流。
另一种是在燃烧室远离中心的部分设计一个凸起的遮蔽装置来实现,燃烧室遮蔽装置的凸起高度在1~3mm,用来阻挡从进气道进入燃烧室的气体,强行使进气从燃烧室中心部分进入,从而使气体在燃烧室内形成滚流,提高燃烧效率。
然而,采用上述两种方案,都需要额外增加部件,增加部件间装配并且大大地增加了发动机燃烧系统的制作成本。
发明内容
鉴于现有技术中存在的上述问题,本发明的目的在于,提供一种无需额外增加部件即可提高燃烧效率的进气道及涡轮增压汽油发动机燃烧系统。
为了实现上述目的,本发明实施方式提供如下技术方案:
第一方面,本发明提供了一种进气道,其包括进气道本体,所述进气道本体包括进气部以及与所述进气部连接的连接部,所述进气部的内部设有第一通道,所述连接部的内部设有第二通道,并且所述第一通道与所述第二通道贯通设置,所述连接部的一侧设置有向所述进气道本体的轴线倾斜的连接面,所述连接面自所述连接部和进气部的连接处倾斜延伸至所述连接部的端部,以使所述第一通道的横截面面积大于所述第二通道的横截面面积。
作为上述技术方案的改进,所述进气部邻近所述连接部的位置处设置有向所述进气道本体的轴线倾斜的进气面,所述进气面与所述连接面连接。
进一步地,所述进气面为相对所述进气道本体的轴线外凸的连接面;或者
所述进气面为向所述进气道本体的轴线倾斜的斜面。
作为上述技术方案的改进,所述连接面为朝向所述进气道本体的轴线内凹的连接面;或者
所述连接面为朝向所述进气道本体的轴线倾斜的斜面。
第二方面,本发明还提供了一种涡轮增压汽油发动机燃烧系统,所述涡轮增压汽油发动机燃烧系统包括汽缸盖、燃烧室、排气道以及如上述的进气道,所述进气道、燃烧室和排气道均设于所述汽缸盖上,所述进气道与所述燃烧室的进气侧连接,所述燃烧室的排气侧与所述排气道连接。
作为上述技术方案的改进,所述涡轮增压汽油发动机燃烧系统还包括进气门座圈,所述进气门座圈设于所述汽缸盖上,并且所述进气门座圈的一端固定连接于所述进气道的连接部,所述排气门座圈的另一端连接至所述燃烧室的进气侧。
作为上述技术方案的改进,所述涡轮增压汽油发动机燃烧系统还包括设置于所述燃烧室中心的火花塞电极中心以及设置于所述燃烧室进气侧的至少一个燃烧室挤气结构。
进一步地,所述燃烧室挤气结构为形成于所述燃烧室上的凹弧面,并且所述燃烧室挤气结构朝向所述火花塞电极中心凹陷设置;或者
所述燃烧室挤气结构为形成于所述燃烧室上的弦切面。
进一步地,所述燃烧室挤气结构与所述燃烧室一体成型。
作为上述技术方案的改进,所述涡轮增压汽油发动机燃烧系统还包括排气门座圈,所述排气门座圈的一端固定连接于所述排气道的排气口,所述排气门座圈的另一端连接至所述燃烧室的排气侧。
本发明提供的进气道及涡轮增压汽油发动机燃烧系统,通过设置进气部的第一通道与连接部的第二通道贯通设置,然后在连接部上设有向进气道本体的轴线倾斜的连接面,从而使得该进气部的横截面面积大于该连接部的横截面面积,从而当气流在进气道内时,利用该连接面的挤压作用,能够强行改变气流的流向,使得气流在连接部的连接面处形成高滚流比的气流,从而能够提高发动机的燃烧效率。采用上述方式,由于无需额外在进气道或者是汽缸盖上设置部件,结构简单,并且大大地降低了制作成本。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1时本发明实施例提供的进气道的结构示意图;
图2是本发明实施例提供的涡轮增压汽油发动机燃烧系统的结构示意图;
图3是图2的另一方向的结构示意图。
其中,100、涡轮增压汽油发动机燃烧系统;10、进气道;11、进气道本体;111、进气部;111a、进气面;112、连接部;112a、连接面;L、轴线;20、气缸盖;30、进气门座圈;40、燃烧室;41、燃烧室挤气结构;50、火花塞电极中心;60、排气道;70、排气门座圈。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
为便于描述,这里可以使用诸如“在...之下”、“在...下面”、“下”、“在...之上”、“上”等空间相对性术语来描述如图中所示的一个元件或特征与另一个(些)元件或特征的关系。可以理解,当一个元件或层被称为在另一元件或层“上”、“连接到”或“耦接到”另一元件或层时,它可以直接在另一元件或层上、直接连接到或耦接到另一元件或层,或者可以存在居间元件或层。
可以理解,这里所用的术语仅是为了描述特定实施例,并非要限制本发明。在这里使用时,除非上下文另有明确表述,否则单数形式“一”和“该”也旨在包括复数形式。进一步地,当在本说明书中使用时,术语“包括”和/或“包含”表明所述特征、整体、步骤、元件和/或组件的存在,但不排除一个或多个其他特征、整体、步骤、元件、组件和/或其组合的存在或增加。说明书后续描述为实施本发明的较佳实施方式,然所述描述乃以说明本发明的一般原则为目的,并非用以限定本发明的范围。本发明的保护范围当视所附权利要求所界定者为准。
请参阅图1,本发明提供的一种进气道10,其包括进气道本体11,所述进气道本体11包括进气部111以及与所述进气部111连接的连接部112,所述进气部111的内部设有第一通 道(图未示),所述连接部112的内部设有第二通道(图未示),并且所述第二通道与所述第一通道贯通设置。所述连接部112的一侧设置有向所述进气道本体11的轴线L倾斜设置的连接面112a,并且所述连接面112a自所述连接部112和所述进气部111的连接处倾斜延伸至所述连接部112的端部,以使所述第一通道的横截面面积大于所述第二通道的横截面面积。本实施例中,本发明提供的进气道10应用于涡轮增压气道多点顺序喷射汽油发动机燃烧系统。
本发明实施例提供的进气道10,采用在与进气部111贯通的连接部112上设置连接面112a,并使得该连接面112a向该进气部本体11的轴线L倾斜设置,以使第一通道的横截面面积大于第二通道的横截面面积,从而当气流在所述进气道本体11内时,利用该连接面112a的挤压作用,使得气流聚集在所述连接部112的连接面112a处,从而增加气体的滚流比,进而能够提高发动机的燃烧效率。
本实施例中,为了进一步增加气体的滚流比,所述进气部111邻近所述连接部112的位置处设置有向所述进气道本体11的轴线L倾斜进气面111a,并且所述进气面111a与所述连接面112a连接。即,所述第一通道在所述进气面111a的位置处的横截面面积大于所述第二通道在所述连接面112a的位置处的横截面面积。具体地,所述进气面111a为相对所述进气道本体11的轴线L外凸的凸弧面,或者是所述进气面111a为向所述进气道本体11的轴线L倾斜的斜面,以使所述进气部111邻近所述连接部112位置处的管径较大,以便于能够聚集较多的气流。具体地,所述进气面111a可在成型所述进气道本体11时一体成型。
本实施例中,所述连接面112a为朝向所述进气道本体11的轴线L内凹的凹弧面,或者是所述连接面112a为朝向所述进气道本体11的轴线L倾斜的斜面,以使所述连接部112相较于所述进气部111的管径小,从而使得气流在聚集到所述进气面111a并经过所述连接面112a时,由于此处的管径较小,因此,大量的气流被聚集在所述连接部112的连接面112a处,从而形成燃烧需要滚流比高的气流形状,以便于后续进入气缸时,能够形成湍动能,进而提高燃烧效率。
请一并参阅图2至图3,为本发明实施例提供的一种涡轮增压汽油发动机燃烧系统100,所述涡轮增压汽油发动机燃烧系统100包括汽缸盖20、燃烧室40、排气道60以及前述的进气道10,所述进气道10、燃烧室40以及所述排气道60均设于所述汽缸盖20上。所述进气道10与所述燃烧室40的进气侧连接,所述燃烧室40的排气侧与所述排气道60连接。本实施例中,所述进气道10嵌设于所述汽缸盖20上,并且所述进气道10可为一个或多个。
本实施例中,所述涡轮增压汽油发动机燃烧系统100还包括进气门座圈30,所述进气门座圈30设于所述气缸盖20上,并且所述进气门座圈30的一端固定连接于所述进气道10的 连接部112,所述进气门座圈30的另一端连接至所述燃烧室40的进气侧,以使聚集于所述连接部112处的气流能够经由所述进气门座圈30导出至所述燃烧室40内进行燃烧。具体地,所述进气门座圈30通过压装的方式安装于所述气缸盖20上。
进一步地,所述涡轮增压汽油发动机燃烧系统100还包括设于所述燃烧室40中心的火花塞电极中心50以及设于所述燃烧室40的进气侧的至少一个燃烧室挤气结构41。具体地,所述燃烧室40嵌设于所述气缸盖20上,所述至少一个燃烧室挤气结构41用以将所述燃烧室40进气侧的气体进行挤压,以实现将大量气流挤压至所述火花塞电极中心50附近,以提高燃烧效率,进而实现提高发动机燃烧性能的效果。具体地,所述至少一个燃烧室挤气结构41为形成于所述燃烧室40上的凹弧面,并且所述至少一个燃烧室挤气结构41朝向所述火花塞电极中心50凹陷设置,以将所述燃烧室40内的大量气体挤压至所述火花塞电极中心50附近,从而能够使得经由所述进气道10通入所述燃烧室40内的高滚流比的气流能够挤压在所述火花塞电极中心50附近形成湍动能,以提高燃烧效率。优选地,所述燃烧室挤气结构41与所述燃烧室一体成型,以节省加工工序。可以理解的是,所述燃烧室挤气结构41可为一个、两个或者更多个等,根据燃烧室气40气流偏离所述火花塞电极中心50的位置的具体情况设置。
此外,在其他实施例中,所述至少一个燃烧室挤气结构41还可为形成于所述燃烧室40上的弦切面,同样能够实现将偏离所述火花塞电极中心50的气流挤压至所述火花塞电极中心附近。
本实施例中,所述涡轮增压汽油发动机燃烧系统100还包括排气门座圈70,所述排气门座圈70的一端固定连接于所述排气道60的排气口,所述排气门座圈70的另一端连接至所述燃烧室40的排气侧。具体地,所述排气道60嵌设于所述气缸盖20上,将所述排气门座圈70连接至所述燃烧室40的排气侧,从而能够将燃烧完成的气体经由所述排气道60排出。可以理解的是,所述排气道60可为一个、两个或者多个。所述排气道60可与所述进气道10相对设置,所述排气门座圈70的个数对应所述排气道60的个数设置。
本发明实施例的涡轮增压汽油发动机燃烧系统100的工作过程如下:
新鲜空气通入所述进气道10内,在所述进气道10内部与喷油器喷出的油雾形成油气混合物。此时,进气门打开,活塞下行,油气混合物经过进气喉口前通过所述进气部111的进气面111a的位置以及所述连接部112的连接面112a的位置处,并在所述连接部112的连接面112a的位置处形成燃烧需要的滚流比高的气流形状,然后经由所述进气门座圈30导入至所燃烧室40内。该上述高滚流比的气流能够在所述燃烧室40内形成高湍动能,此时,活塞上行压缩高滚流比的气流,在压缩末端,通过所述燃烧室40中的燃烧室挤气结构41的挤压 作用,使得上述形成的湍动能中心在所述火花塞电极中心50附近,然后火花塞发火,点燃高滚流比的气流,该气流燃烧膨胀推动所述活塞做功,所述活塞再次上行,最后通过所述排气道60排出燃烧的废气,从而实现发动机的一次燃烧过程。
本发明提供的进气道10及涡轮增压汽油发动机燃烧系统100,通过在与进气部111贯通设置的连接部112上设有靠近进气道本体11的轴线L的连接面112a,从而使得该进气部111的横截面面积大于该连接部112的横截面面积,从而当气流在进气道10内时,利用该连接面112a的挤压作用,能够强行改变气流的流向,使得气流在连接部112的连接面112a处形成高滚流比的气流,从而能够提高汽油发动机的燃烧效率。采用上述方式,由于无需额外在进气道10或者是汽缸盖20上设置部件,结构简单,并且大大地降低了制作成本。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、“一些示例”或类似“第一实施例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上所述的实施方式,并不构成对该技术方案保护范围的限定。任何在上述实施方式的精神和原则之内所作的修改、等同替换和改进等,均应包含在该技术方案的保护范围之内。

Claims (10)

  1. 一种进气道,其特征在于,其包括进气道本体,所述进气道本体包括进气部以及与所述进气部连接的连接部,所述进气部的内部设有第一通道,所述连接部的内部设有第二通道,并且所述第一通道与所述第二通道贯通设置,所述连接部的一侧设置有向所述进气道本体的轴线倾斜的连接面,所述连接面自所述连接部和进气部的连接处倾斜延伸至所述连接部的端部,所述第一通道的横截面面积大于所述第二通道的横截面面积。
  2. 如权利要求1所述的进气道,其特征在于,所述进气部邻近所述连接部的位置处设置有向所述进气道本体的轴线倾斜的进气面,所述进气面与所述连接面连接。
  3. 如权利要求2所述的进气道,其特征在于,所述进气面为相对所述进气道本体的轴线外凸的凸弧面;或者
    所述进气面为向所述进气道本体的轴线倾斜的斜面。
  4. 如权利要求1-3任一项所述的进气道,其特征在于,所述连接面为朝向所述进气道本体的轴线内凹的凹弧面;或者
    所述连接面为朝向所述进气道本体的轴线倾斜的斜面。
  5. 一种涡轮增压汽油发动机燃烧系统,其特征在于,所述涡轮增压汽油发动机燃烧系统包括汽缸盖、燃烧室、排气道以及如权利要求1至4任意一项所述的进气道,所述进气道、燃烧室和排气道均设于所述汽缸盖上,所述进气道与所述燃烧室的进气侧连接,所述排气道与所述燃烧室的排气侧连接。
  6. 如权利要求5所述的涡轮增压汽油发动机燃烧系统,其特征在于,所述涡轮增压汽油发动机燃烧系统还包括进气门座圈,所述进气门座圈设于所述汽缸盖上,并且所述进气门座圈的一端固定连接于所述进气道的连接部,所述进气门座圈的另一端连接至所述燃烧室的进气侧。
  7. 如权利要求5所述的涡轮增压汽油发动机燃烧系统,其特征在于,所述涡轮增压汽油发动机燃烧系统还包括设置于所述燃烧室中心的火花塞电极中心以及设置于所述燃烧室进气 侧的至少一个燃烧室挤气结构。
  8. 如权利要求7所述的涡轮增压汽油发动机燃烧系统,其特征在于,所述燃烧室挤气结构为形成于所述燃烧室上的凹弧面,并且所述燃烧室挤气结构朝向所述火花塞电极中心凹陷设置;或者
    所述燃烧室挤气结构为形成于所述燃烧室上的弦切面。
  9. 如权利要求7或8所述的涡轮增压汽油发动机燃烧系统,其特征在于,所述燃烧室挤气结构与所述燃烧室一体成型。
  10. 如权利要求5所述的涡轮增压汽油发动机燃烧系统,其特征在于,所述涡轮增压汽油发动机燃烧系统还包括排气门座圈,所述排气门座圈的一端固定连接于所述排气道的排气口,所述排气门座圈的另一端连接至所述燃烧室的排气侧。
PCT/CN2017/081324 2016-05-04 2017-04-21 进气道及涡轮增压汽油发动机燃烧系统 WO2017190593A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/094,208 US20190093595A1 (en) 2016-05-04 2017-04-21 Air intake duct and combustion system of turbocharged gasoline engine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610290262.5A CN105863868B (zh) 2016-05-04 2016-05-04 进气道及涡轮增压汽油发动机燃烧系统
CN201610290262.5 2016-05-04

Publications (1)

Publication Number Publication Date
WO2017190593A1 true WO2017190593A1 (zh) 2017-11-09

Family

ID=56630257

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/081324 WO2017190593A1 (zh) 2016-05-04 2017-04-21 进气道及涡轮增压汽油发动机燃烧系统

Country Status (3)

Country Link
US (1) US20190093595A1 (zh)
CN (1) CN105863868B (zh)
WO (1) WO2017190593A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105863868B (zh) * 2016-05-04 2021-02-09 广州汽车集团股份有限公司 进气道及涡轮增压汽油发动机燃烧系统
DE102017208683A1 (de) * 2017-05-23 2018-11-29 Bayerische Motoren Werke Aktiengesellschaft Ansaugsystem für eine Verbrennungskraftmaschine, insbesondere eines Kraftfahrzeugs
CN108035820A (zh) * 2017-12-04 2018-05-15 杨程日 一种汽车发动机气缸盖进气道
CN108049982A (zh) * 2017-12-14 2018-05-18 广州汽车集团股份有限公司 汽车、发动机燃烧系统及其气缸盖
CN109538368A (zh) * 2018-12-14 2019-03-29 力帆实业(集团)股份有限公司 进气道带挡圈的发动机气缸头
CN110242437B (zh) * 2019-06-28 2021-12-28 奇瑞汽车股份有限公司 汽油机燃烧系统
CN112112729B (zh) * 2020-08-28 2021-10-12 江苏大学 一种双燃料缸内直喷发动机的可变进气滚流装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201588702U (zh) * 2009-12-16 2010-09-22 浙江吉利汽车研究院有限公司 一种汽车发动机的进气道
CN203856596U (zh) * 2014-02-20 2014-10-01 奇瑞汽车股份有限公司 一种缸内直喷汽油机高滚流进气道
CN204552968U (zh) * 2015-04-24 2015-08-12 长城汽车股份有限公司 气缸盖及发动机和发动机曲轴箱通风机构
CN104863743A (zh) * 2015-04-01 2015-08-26 上海交通大学 内燃机缸盖、内燃机及装有这种内燃机的机械装置
EP2933466A1 (en) * 2014-04-15 2015-10-21 Volvo Car Corporation Cylinder head for a combustion engine
JP2016017434A (ja) * 2014-07-07 2016-02-01 ダイハツ工業株式会社 内燃機関のシリンダヘッド
CN105863868A (zh) * 2016-05-04 2016-08-17 广州汽车集团股份有限公司 进气道及涡轮增压汽油发动机燃烧系统
CN205744119U (zh) * 2016-07-01 2016-11-30 重庆长安汽车股份有限公司 一种缸内直喷汽油机的进气道结构

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB682450A (en) * 1948-08-06 1952-11-12 Fiat Spa Inlet conduit for internal combustion engines
GB723711A (en) * 1951-11-27 1955-02-09 Texaco Development Corp Improvements in the inlet passages of four-stroke internal-combustion engines
FR1079530A (fr) * 1952-07-09 1954-11-30 Daimler Benz Ag Moteur à combustion interne avec soupapes d'admission s'ouvrant de haut en bas
US3145696A (en) * 1962-08-31 1964-08-25 White Motor Co Internal combustion engine
DE1291945B (de) * 1964-04-25 1969-04-03 Motoren Werke Mannheim Ag Einlasskanal fuer Brennkraftmaschinen, insbesondere Dieselmaschinen
JPS61250340A (ja) * 1985-04-26 1986-11-07 Kubota Ltd 内燃機関のダブル吸気ポ−ト式吸気装置
KR100233933B1 (ko) * 1995-05-15 1999-12-15 나까무라히로까즈 내연기관의 흡기계구조 및 내연기관의 흡기통로부의 제조방법
DE19724607A1 (de) * 1996-06-21 1998-01-02 Volkswagen Ag Einlaßkanalordnung
JP3885320B2 (ja) * 1997-11-13 2007-02-21 マツダ株式会社 エンジンの吸気ポート構造
DE112006001575A5 (de) * 2005-11-15 2008-11-06 Avl List Gmbh Brennkraftmaschine
FR2900969A3 (fr) * 2006-05-11 2007-11-16 Renault Sas Conduit d'admission a aerodynamique variable
FR2902464B1 (fr) * 2006-06-20 2012-11-09 Renault Sas Dispositif d'admission d'air dans un cylindre de moteur a combustion interne
FR2910541B1 (fr) * 2006-12-21 2009-07-31 Renault Sas Systeme d'admission de gaz pour la generation d'ecoulement de rotation energetique de tumble
AT508181A3 (de) * 2010-04-29 2011-03-15 Avl List Gmbh Zylinderkopf einer brennkraftmaschine
FR2962168A3 (fr) * 2010-07-05 2012-01-06 Renault Sas Conduite d'admission de culasse de moteur a combustion interne generant un fort tourbillon transversal
CN202391552U (zh) * 2011-09-19 2012-08-22 隆鑫通用动力股份有限公司 复合面燃烧室缸头及其汽油机
CN202628295U (zh) * 2012-06-27 2012-12-26 重庆嘉泰精密机械有限公司 一种通用汽油机缸头结构
CN103696868B (zh) * 2013-12-10 2016-05-25 天津大学 具有高涡流与滚流比的内燃机缸盖
JP6334990B2 (ja) * 2014-03-31 2018-05-30 ダイハツ工業株式会社 内燃機関
CN105089880B (zh) * 2014-05-15 2020-02-07 广州汽车集团股份有限公司 发动机进气道、气缸盖及发动机
MX2016014035A (es) * 2014-05-26 2017-02-14 Aichi Machine Ind Cabeza de cilindro, motor de combustion interna equipado con la misma, y nucleo para moldear el puerto de entrada.
JP2016041915A (ja) * 2014-08-18 2016-03-31 トヨタ自動車株式会社 内燃機関
CN204610055U (zh) * 2015-03-21 2015-09-02 山西新天地发动机制造有限公司 点燃式发动机气缸盖
JP6172193B2 (ja) * 2015-03-24 2017-08-02 マツダ株式会社 エンジンの吸気装置
CN204851420U (zh) * 2015-06-15 2015-12-09 华晨汽车集团控股有限公司 一种增压发动机缸盖燃烧室结构
US20170058823A1 (en) * 2015-08-24 2017-03-02 GM Global Technology Operations LLC Cylinder head with blended inlet valve seat for high tumble inlet port
CN205013118U (zh) * 2015-08-31 2016-02-03 重庆长安汽车股份有限公司 一种缸内直喷发动机高滚流进气道结构和发动机

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201588702U (zh) * 2009-12-16 2010-09-22 浙江吉利汽车研究院有限公司 一种汽车发动机的进气道
CN203856596U (zh) * 2014-02-20 2014-10-01 奇瑞汽车股份有限公司 一种缸内直喷汽油机高滚流进气道
EP2933466A1 (en) * 2014-04-15 2015-10-21 Volvo Car Corporation Cylinder head for a combustion engine
JP2016017434A (ja) * 2014-07-07 2016-02-01 ダイハツ工業株式会社 内燃機関のシリンダヘッド
CN104863743A (zh) * 2015-04-01 2015-08-26 上海交通大学 内燃机缸盖、内燃机及装有这种内燃机的机械装置
CN204552968U (zh) * 2015-04-24 2015-08-12 长城汽车股份有限公司 气缸盖及发动机和发动机曲轴箱通风机构
CN105863868A (zh) * 2016-05-04 2016-08-17 广州汽车集团股份有限公司 进气道及涡轮增压汽油发动机燃烧系统
CN205744119U (zh) * 2016-07-01 2016-11-30 重庆长安汽车股份有限公司 一种缸内直喷汽油机的进气道结构

Also Published As

Publication number Publication date
CN105863868A (zh) 2016-08-17
CN105863868B (zh) 2021-02-09
US20190093595A1 (en) 2019-03-28

Similar Documents

Publication Publication Date Title
WO2017190593A1 (zh) 进气道及涡轮增压汽油发动机燃烧系统
JP6010944B2 (ja) 圧縮自己着火エンジン
CN101128657A (zh) 具有适配凹坑的车用活塞式内燃机
JPS63173813A (ja) 2サイクル内燃機関
CN201794675U (zh) 一种挤流式紧凑型高压缩比燃烧系统
JPS6038535B2 (ja) 内燃機関
JPS6260918A (ja) オツト−サイクル内燃機関
JPH01305121A (ja) 2サイクルディーゼルエンジン
CN208831093U (zh) 缸内直喷增压汽油机燃烧系统
JP5978677B2 (ja) 圧縮自己着火エンジン
JP6750724B2 (ja) 内燃機関の吸気ポート構造
JP4558090B1 (ja) 茸弁の傘部の底面を覆う部品を持つピストン式エンジン
JP5978678B2 (ja) 圧縮自己着火エンジン
CN203515845U (zh) 一种柴油机及其气缸盖
CN203962232U (zh) 改良的进气导管件
US2900971A (en) Internal combustion engine
CN105019999B (zh) 汽油机燃烧系统及汽油机燃油喷射方法
US4719884A (en) Combustion chamber with a domed auxiliary chamber for a spark-ignition engine
US20160273444A1 (en) Internal combustion engine
CN104791077A (zh) 一种新型二冲程分层扫气发动机
CN216306074U (zh) 一种压燃式二冲程航空活塞发动机及其气道
CN209781026U (zh) 三气门发动机的燃烧室、燃烧室结构、气道布置结构
JPS6137790Y2 (zh)
JPS6023463Y2 (ja) デイ−ゼルエンジンの燃料噴射ノズル装置
CN202017556U (zh) 一种125cc摩托车发动机活塞

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17792419

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17792419

Country of ref document: EP

Kind code of ref document: A1