WO2017188575A1 - 스크롤 압축기 - Google Patents

스크롤 압축기 Download PDF

Info

Publication number
WO2017188575A1
WO2017188575A1 PCT/KR2017/001677 KR2017001677W WO2017188575A1 WO 2017188575 A1 WO2017188575 A1 WO 2017188575A1 KR 2017001677 W KR2017001677 W KR 2017001677W WO 2017188575 A1 WO2017188575 A1 WO 2017188575A1
Authority
WO
WIPO (PCT)
Prior art keywords
wrap
scroll
fixed
offset
turning
Prior art date
Application number
PCT/KR2017/001677
Other languages
English (en)
French (fr)
Inventor
최용규
이강욱
김철환
이병철
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Publication of WO2017188575A1 publication Critical patent/WO2017188575A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0246Details concerning the involute wraps or their base, e.g. geometry
    • F04C18/0269Details concerning the involute wraps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0215Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0246Details concerning the involute wraps or their base, e.g. geometry
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/02Pumps characterised by combination with, or adaptation to, specific driving engines or motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/28Safety arrangements; Monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2210/00Fluid
    • F04C2210/26Refrigerants with particular properties, e.g. HFC-134a
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/10Stators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/20Rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/30Casings or housings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/60Shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0042Driving elements, brakes, couplings, transmissions specially adapted for pumps
    • F04C29/0085Prime movers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2210/00Working fluid
    • F05B2210/10Kind or type
    • F05B2210/14Refrigerants with particular properties, e.g. HFC-134a
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/10Stators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors

Definitions

  • the present invention relates to a scroll compressor.
  • the scroll compressor is widely used for refrigerant compression in an air conditioner, etc., because a relatively high compression ratio can be obtained compared to other types of compressors, and a stable torque can be obtained by smoothly inducing, compressing and discharging the refrigerant.
  • the behavior of the scroll compressor is determined by the types of non-orbiting wraps (hereinafter, abbreviated to fixed scrolls) of non-orbiting scrolls (hereinafter, abbreviated to fixed scrolls) and pivoting wraps of orbiting scrolls.
  • the stationary wrap and the swiveling wrap may have any shape, but typically have the form of an involute curve that is easy to machine.
  • An involute curve refers to a curve that corresponds to the trajectory of the end of the yarn when unwinding the yarn wound around the base circle with any radius. When the involute curve is used, the thickness of the wrap is constant, thereby forming a compression chamber for compressing the refrigerant while the fixed wrap and the swing wrap are stably relative to each other.
  • the compression chamber of the scroll compressor has a narrower volume from the outside to the inside, and the suction chamber is formed on the outside and the discharge chamber is formed on the inside.
  • the refrigerant temperature sucked into the suction chamber is about 18 ° C
  • the refrigerant temperature discharged from the discharge chamber is about 80 ° C.
  • the swinging scroll since the rear surface is supported by the main frame and positioned between the fixed scrolls, the swinging scroll itself is not significantly affected by the discharge temperature of the refrigerant, whereas the fixed scrolls have the casing that forms the backing. It is coupled to the inner space of the discharge cover or the high or low pressure separator is exposed to the discharge temperature of the refrigerant.
  • the entire hard plate portion of the fixed scroll undergoes thermal expansion under the influence of the discharge temperature of the refrigerant.
  • the fixed wrap provided on one side of the hard plate portion of the fixed scroll to form the compression chamber is not entirely affected by the discharge temperature. In the vicinity of the discharge chamber, the temperature is affected by the discharge temperature, and the thermal expansion rate is changed for each part. Due to this, the fixed scroll is deformed in the form of the fixed wrap as a whole, while the hard plate is more thermally deformed than the fixed wrap.
  • the fixed wrap near the suction chamber is in direct contact with the cold suction refrigerant of about 18 ° C.
  • the fixed wrap near the suction chamber is deformed toward the center portion, which is more deformed than in other areas.
  • the opposite crank angle of 180 ° advancing the rotating wrap has a problem in that the compression loss occurs as it opens from the fixed wrap.
  • An object of the present invention is to provide a scroll compressor that can suppress the leakage of the refrigerant in the compression chamber as the space between the fixed wrap and the swing wrap is leaked.
  • Another object of the present invention is to provide a scroll compressor that can prevent a specific portion of the fixed wrap from thermal deformation and prevent the turning wrap from being pushed out.
  • Another object of the present invention is to provide a scroll compressor that can prevent a frictional loss or wear from being caused by excessive contact of a specific portion of the fixed wrap or the swing wrap.
  • a fixed scroll having a fixed wrap the suction port is formed in the edge portion, the discharge port is formed in the center;
  • a swing scroll having a swing wrap to engage the fixed wrap to form a compression chamber, wherein the scroll compressor may include an offset portion for reducing the wrap thickness with respect to the fixed wrap near the suction port.
  • a fixed scroll having a fixed wrap the inlet is formed in the edge portion, the discharge port is formed in the center;
  • a swing scroll having a swing wrap to engage the fixed wrap to form a compression chamber, wherein the suction scroll is formed on the inner surface of the fixed wrap at the point where the suction port starts with respect to the center of the fixed scroll.
  • a scroll compressor may be provided that includes at least a part of a portion where the thickness of the wrap wrap of the fixed wrap or the swing wrap becomes thin within the range up to this completion point.
  • a fixed scroll having a fixed wrap the inlet is formed in the edge portion, the discharge port is formed in the center; And a turning scroll having a turning wrap to engage the fixed wrap to form a compression chamber, wherein an offset portion is formed to have a predetermined depth in a radial direction on an inner surface of a portion of the fixing wrap facing the inlet.
  • a scroll compressor can be provided.
  • a fixed scroll having a fixed wrap the inlet is formed in the edge portion, the discharge port is formed in the center;
  • a swing scroll having a swing wrap to engage the fixed wrap to form a compression chamber, wherein the fixed wrap around the suction port has a chamfer formed at an inner side edge thereof.
  • a fixed scroll having a fixed wrap the inlet is formed in the edge portion, the discharge port is formed in the center;
  • a swing scroll having a swing wrap to engage the fixed wrap to form a compression chamber, wherein the fixed wrap around the suction port has an inner surface formed of a curved surface having a smaller curvature radius than other portions.
  • the turning wrap is provided, the turning scroll to the turning movement; And a fixed scroll provided with a fixed wrap so as to form a compression chamber composed of a suction chamber, an intermediate pressure chamber, and a discharge chamber in engagement with the swing wrap, wherein the center of the swing scroll and the center of the fixed scroll coincide with each other between the wraps.
  • the scroll compressor may be provided between the side of the swing wrap and the side of the fixed wrap facing it has an offset section to have a larger interval than the turn radius. have.
  • the offset section may overlap a section in which at least a portion of the offset section forms the suction chamber.
  • the wrap thickness in the offset section may be thinner than the wrap thickness outside the offset section.
  • the turning wrap is provided, the turning scroll to the turning movement;
  • a fixed scroll provided with a fixed wrap so as to form a compression chamber composed of a suction chamber, an intermediate pressure chamber, and a discharge chamber in engagement with the swing wrap, wherein at least one of the fixed wrap or the swing wrap has a side of the swing scroll.
  • a scroll compressor may be provided, wherein an offset portion is formed to have a distance between laps larger than a turning radius defined by the distance between both laps in a state where the center and the center of the fixed scroll coincide.
  • the offset portion may be formed on the opposite side of the side portion of the fixing wrap to form the suction chamber.
  • the offset part may be formed to include at least a portion between two virtual lines connecting both ends of the section forming the suction chamber at the center of the fixed scroll.
  • the offset part may be formed on the inner side of the fixed wrap when the surface facing the center of the fixed scroll is the inner surface and the opposite surface is the outer surface among the both sides of the fixed wrap.
  • the offset part may be formed on an outer surface of the pivoting wrap when the surface facing the center of the pivoting scroll is an inner surface and an opposite surface of the pivoting wrap.
  • the offset portion may be formed to have a deeper depth from both ends toward the center in the advancing direction of the wrap.
  • the offset portion may be formed of a curved surface having at least one radius of curvature, and the radius of curvature of the curved surface constituting the offset portion may be smaller than the radius of curvature of the wrap.
  • the fixed wrap at the portion where the offset portion is formed may be formed such that the cross-sectional area decreases toward the lap tip near the lap root or the lap root.
  • the turning wrap at the portion where the offset portion is formed may be formed to increase in cross-sectional area from the wrap root to the wrap tip.
  • the fixed wrap at the portion where the offset portion is formed may have a stepped edge of the wrap tip.
  • the turning wrap at the portion where the offset portion is formed may have a groove having a predetermined depth near the wrap root.
  • the fixed wrap or the swiveling wrap at the portion where the offset portion is formed may be formed to have the same cross-sectional area from the wrap root to the wrap tip.
  • the offset amount of the offset portion may be formed by a value calculated by (the coefficient of thermal expansion of the scroll ⁇ the distance from the center of the scroll to the side of the wrap corresponding to the temperature difference of the suction discharge refrigerant).
  • a fixed hard plate portion a fixed wrap projecting from the fixed hard plate portion, a suction port formed near the outer end of the fixed wrap, and at least formed near the inner end of the fixed wrap
  • a fixed scroll having at least one discharge port and having the fixed hard disk part exposed in a space communicating with the discharge port;
  • a turning scroll provided with a turning wrap for forming a compression chamber consisting of a suction chamber, an intermediate pressure chamber, and a discharge chamber in a direction, wherein at least one of the turning wraps and the fixed wrap has a distance between the wraps of the turning scrolls;
  • An offset portion is formed so as to be larger than the turning radius, and the offset amount is calculated by (the coefficient of thermal expansion of the scroll ⁇ the distance from the center of the scroll to the side of the wrap ⁇ the temperature difference of the suction discharge refrigerant). It may be provided with a scroll compressor, characterized in that formed.
  • a casing In addition, in order to achieve the object of the present invention, a casing; A drive motor provided in the inner space of the casing; A rotating shaft coupled to the rotor of the drive motor and rotating together; A frame provided below the drive motor; A fixed scroll provided on the lower side of the frame, provided with a suction port and a discharge port, and having a fixed wrap; The rotating scroll is provided between the frame and the fixed scroll, the rotating wrap is provided to be engaged with the fixed wrap to form a compression chamber consisting of a suction chamber, an intermediate pressure chamber, and a discharge chamber, and a rotating shaft engaging portion having the rotating shaft penetrated therethrough.
  • a discharge cover coupled to the lower side of the fixed scroll and accommodating the discharge port and guiding the refrigerant discharged through the discharge port to the inner space of the casing, wherein the center of the orbiting scroll coincides with the center of the fixed scroll.
  • the offset section may be formed such that at least a portion within the range of ⁇ 30 degrees in the crank angle with respect to the point where the suction to the compression chamber formed on the inner surface of the fixed wrap is completed.
  • the offset amount of the offset section may be formed by a value calculated by (thermal expansion coefficient of the scroll x distance from the center of the scroll to the side of the wrap x temperature difference of the suction discharge refrigerant).
  • the compression chamber may include a first compression chamber formed on an inner side and a second compression chamber formed on an outer side of the fixing wrap, and the first compression chamber may include an inner surface of the fixing wrap and an outer surface of the turning wrap.
  • an offset portion recessed by a predetermined depth is formed on the side of the fixed wrap and / or the swing wrap in the section constituting the suction chamber, whereby specific portions of the fixed wrap and the swing wrap interfere with thermal deformation. Can be prevented.
  • the fixed wrap and the swing wrap are prevented from excessively contacting the specific portions of the fixed wrap and the swing wrap, thereby reducing frictional losses. This wear can be prevented to increase the reliability of the compressor.
  • FIG. 1 is a longitudinal sectional view showing an example of a bottom compression scroll compressor according to the present invention
  • FIG. 2 is a sectional view taken along the line "IV-IV" in the scroll compressor according to FIG.
  • FIG. 3 is a plan view showing a state in which the fixed scroll is heat deformation in the scroll compressor according to FIG.
  • Figure 4 is a schematic view showing the fixed scroll according to Figure 3 from the front
  • FIG. 5 is a cross-sectional view showing a state in which a part of the fixed wrap and the swing wrap interferes in a state in which the swing scroll is coupled to the fixed scroll of FIG.
  • FIG. 6 is a cross-sectional view taken along the line "V-V" of FIG.
  • FIG. 7 is an enlarged cross-sectional view of part “C” of FIG. 6;
  • FIG. 8 is a plan view showing a combination of a fixed scroll and a rotating scroll, each of which has offset portions, in a scroll compressor according to the present invention in a state where the center coincides with each other;
  • FIG. 10 is a sectional view taken along the line "VI-VI" of FIG. 9;
  • 11 is a schematic view showing the lap distance between the inner surface of the fixed wrap and the outer surface of the turning wrap for the case where there is no offset portion;
  • 12 is a schematic view showing the lap distance between the inner surface of the fixed wrap and the outer surface of the turning wrap for the case where there is an offset portion;
  • FIG. 13 is a plan view showing a coupling state of the fixed scroll and the rotating scroll provided with an offset unit according to the present invention
  • FIG. 14 is a cross-sectional view taken along the line "VIII-VIII" of FIG. 13;
  • 15 and 16 are longitudinal cross-sectional views showing other embodiments of the offset unit according to the present invention.
  • the scroll compressor according to the present invention forms a thinner thickness of the fixed wrap and / or the swing wrap near the suction chamber, and the fixed wrap and the swing wrap interfere with the suction chamber due to uneven heat deformation of the fixed scroll. It is to be prevented. Therefore, the scroll compressor having the fixed wrap and the swing wrap can be applied to any type of scroll compressor.
  • the compression compressor will be described as a representative example of a scroll compressor having a rotary shaft overlapping with the swing wrap in the lower compression scroll compressor positioned below the electric drive. Scroll compressors of this type are known to be suitable for applications in refrigeration cycles at high temperature and high compression ratio conditions.
  • FIG. 1 is a longitudinal cross-sectional view showing an example of a lower compression scroll compressor according to the present invention
  • Figure 2 is a "IV-IV" front cross-sectional view in the scroll compressor according to FIG.
  • an electric motor 2 that forms a driving motor and generates rotational force is installed in an internal space 1a of the casing 1, and an electric motor 2 is provided.
  • a compression unit 3 may be installed to receive the rotational force of the transmission unit 2 to compress the refrigerant.
  • the casing 1 includes a cylindrical shell 11 forming an airtight container, an upper shell 12 covering an upper part of the cylindrical shell 11 together to form a sealed container, and a lower part of the cylindrical shell 11 covering an airtight container together. At the same time it can be made of a lower shell 13 to form the reservoir 1b.
  • the refrigerant suction pipe 15 penetrates to the side surface of the cylindrical shell 11 to directly communicate with the suction chamber of the compression unit 3, and the upper portion of the upper shell 12 communicates with the inner space 1a of the casing 1.
  • a refrigerant discharge tube 16 may be installed.
  • the refrigerant discharge tube 16 corresponds to a passage through which the compressed refrigerant discharged from the compression unit 3 into the inner space 1a of the casing 1 is discharged to the outside, and separates oil mixed in the discharged refrigerant.
  • a separator (not shown) may be connected to the refrigerant discharge pipe 16.
  • the upper part of the casing 1 is fixedly installed with a stator 21 constituting the transmission part 2, and inside the stator 21 together with the stator 21 to form the transmission part 2 and mutually with the stator 21.
  • the rotating rotor 22 can be rotatably installed.
  • the stator 21 has a plurality of slots (unsigned) formed in the inner circumferential surface thereof so that the coil 25 is wound, and the inner circumferential surface of the cylindrical shell 11 is cut in the form of a cut in the outer circumferential surface thereof.
  • An oil recovery passageway 26 may be formed to allow oil to pass between the and.
  • the lower side of the stator 21 may be fixedly coupled to the inner circumferential surface of the casing 1, the main frame 31 forming the compression unit 3 at predetermined intervals.
  • the main frame 31 may be fixedly coupled to its outer circumferential surface by being shrunk or welded to the inner circumferential surface of the cylindrical shell 11.
  • annular frame side wall portion (first side wall portion) 311 is formed at an edge of the main frame 31, and a first axis number for supporting the main bearing portion 51 of the rotating shaft 5 to be described later is formed at the center thereof.
  • the portion 312 may be formed.
  • the first bearing hole 312a may be axially penetrated in the first bearing part so that the main bearing part 51 of the rotating shaft 5 is rotatably inserted and supported in the radial direction.
  • a fixed scroll 32 may be installed on the bottom of the main frame 31 with the swing scroll 33 eccentrically coupled to the rotation shaft 5 therebetween.
  • the fixed scroll 32 may be fixedly coupled to the main frame 31, but may be coupled to be movable in the axial direction.
  • the fixed scroll 32 has a fixed hard plate portion (hereinafter, the first hard plate portion) 321 is formed in a substantially disk shape, the edge of the first hard plate portion 321 is coupled to the bottom edge of the main frame 31
  • a scroll sidewall portion (hereinafter, referred to as a second sidewall portion) 322 may be formed.
  • a fixing wrap 323 may be formed on an upper surface of the first hard plate part 321 to form a compression chamber V by engaging with the turning wrap 33 to be described later.
  • the compression chamber (V) is formed between the first hard plate portion 321 and the fixed wrap 323, and the turning wrap 332 and the second hard plate portion 331, which will be described later, the suction chamber, The intermediate pressure chamber and the discharge chamber may be formed continuously.
  • the compression chamber (V) is the first compression chamber (V1) formed between the inner surface of the fixed wrap 323 and the outer surface of the swing wrap 332, the outer surface and the swing wrap ( A second compression chamber (V2) formed between the inner side of the 332 may be made.
  • the first compression chamber (V1) is formed between the two contact points (P11, P12) generated by the inner surface of the fixed wrap 323 and the outer surface of the turning wrap 332,
  • an angle having a larger value among angles formed by two lines connecting the center O of the eccentric portion and the two contact points P11 and P12, respectively, is ⁇ , at least ⁇ ⁇ 360 ° before the start of discharge.
  • the second compression chamber V2 is formed between two contact points P21 and P22 generated by the contact between the outer surface of the fixed wrap 323 and the inner surface of the turning wrap 332.
  • the first compression chamber V1 the refrigerant is sucked first and the compression path is relatively longer than the second compression chamber V2, but as the turning wrap 332 is formed with an amorphous shape, the first compression chamber V1 is formed.
  • the second compression chamber (V2) is compared with the first compression chamber (V1), the refrigerant is sucked in later and the compression path is relatively short, but as the turning wrap 332 is formed with an amorphous shape, the second compression chamber ( The compression ratio of V2) is formed relatively higher than that of the first compression chamber V1.
  • a suction port 324 through which the refrigerant suction pipe 15 and the suction chamber communicate with each other is formed at one side of the second side wall part 322, and a refrigerant compressed and communicated with the discharge chamber at the central portion of the first hard plate part 321.
  • An ejection opening 325 may be formed. Only one discharge port 325 may be formed so as to communicate with both the first compression chamber V1 and the second compression chamber V2, but may be independently communicated with each compression chamber V1 and V2. Plural pieces may be formed.
  • a second bearing portion 326 for supporting the sub bearing portion 52 of the rotating shaft 5 to be described later is formed at the center of the hard plate portion 321 of the fixed scroll 32, and the second bearing portion 326 A second bearing hole 326a may be formed to penetrate in the axial direction and support the sub bearing 52 in the radial direction.
  • the thrust bearing part 327 may be formed at the lower end of the second bearing part 326 to support the lower end surface of the sub bearing part 52 in the axial direction.
  • the thrust bearing part 327 may be formed to protrude radially from the lower end of the second bearing hole 326a toward the axis center.
  • the thrust bearing portion is not formed in the second bearing portion, and may be formed between the bottom surface of the eccentric portion 53 of the rotating shaft 5 and the first hard plate portion 321 of the fixed scroll 32 corresponding thereto. .
  • the lower side of the fixed scroll 32 may be coupled to the discharge cover 34 for receiving the refrigerant discharged from the compression chamber (V) to guide the refrigerant flow path to be described later.
  • the discharge cover 34 accommodates the inlet of the refrigerant flow path PG, which guides the refrigerant discharged from the compression chamber V1 to the internal space 1a of the casing 1 while the inner space accommodates the discharge port 325. It can be formed to.
  • the refrigerant flow path PG may be formed through the second side wall portion 322 of the fixed scroll 32 and the first side wall portion 311 of the main frame 31 in order, and the second side wall portion 322.
  • the outer peripheral surface of the) and the outer peripheral surface of the first frame 311 may be formed to be continuously grooved.
  • the revolving scroll 33 may be pivotally installed between the main frame 31 and the fixed scroll (32). Further, an old dam ring 35 is installed between an upper surface of the swing scroll 33 and a bottom surface of the main frame 31 corresponding to the swing scroll 33 to prevent rotation of the swing scroll 33.
  • Sealing member 36 to form (S) may be installed. Therefore, the back pressure chamber (S) is made of a space formed by the main frame 31, the fixed scroll 32 and the turning scroll 33 on the outside of the sealing member 36 around the sealing member 36 and The back pressure chamber S is in communication with the intermediate compression chamber V by the back pressure hole 321a provided in the fixed scroll 32 to form a medium pressure by filling the medium pressure refrigerant.
  • the space formed inside the sealing member 36 is filled with a high pressure oil, this space can also serve as a back pressure chamber.
  • the revolving scroll 33 may have a revolving hard plate portion (hereinafter referred to as a second hard plate portion) 331 in a substantially disc shape.
  • the upper surface of the second hard plate portion 331 is formed with a back pressure chamber (S), the bottom surface may be formed a turning wrap 332 to form a compression chamber in engagement with the fixed wrap 322.
  • a rotation shaft coupling portion 333 through which the eccentric portion 53 of the rotation shaft 5, which will be described later, is rotatably inserted and coupled to the central portion of the second hard plate portion 331 may be formed in the axial direction.
  • the rotary shaft coupling part 333 may extend from the pivot wrap 332 to form an inner end of the pivot wrap 332.
  • the rotation shaft coupling portion 333 is formed at a height overlapping the pivot wrap 332 on the same plane, and the eccentric portion 53 of the rotation shaft 5 is disposed at the height overlapping the pivot wrap 332 on the same plane.
  • the repulsive force and the compressive force of the refrigerant are offset to each other while being applied to the same plane based on the second hard plate part, thereby preventing the tilting of the turning scroll 33 due to the action of the compressive force and the repulsive force.
  • the outer circumferential portion of the rotating shaft coupling part 333 is connected to the turning wrap 332 to serve to form the compression chamber V together with the fixed wrap 322 in the compression process.
  • the turning wrap 332 may be formed in an involute shape together with the fixing wrap 323, but may be formed in various other shapes.
  • the turning wrap 332 and the fixed wrap 323 have a shape in which a plurality of arcs having different diameters and origins are connected to each other, and the outermost curve has an approximately elliptical shape having a long axis and a short axis. It can be formed as.
  • a protruding portion 328 protruding toward an outer circumferential side of the rotating shaft coupling portion 333 is formed near the inner end (suction end or starting end) of the fixed wrap 323, and the protruding portion 328 is formed to protrude from the protruding portion.
  • Contact 328a may be formed. That is, the inner end of the fixed wrap 323 may be formed to have a larger thickness than other portions. As a result, the wrap strength of the inner end portion that receives the greatest compressive force among the fixed wraps 323 may be improved, thereby improving durability.
  • the outer circumferential portion 333c of the rotary shaft coupling portion 333 opposite to the inner end of the fixed wrap 323 is formed with a recess 335 that is engaged with the protrusion 328 of the fixed wrap 323.
  • One side of the concave portion 335 is formed with an increasing portion 335a that increases in thickness from the rotation shaft coupling portion 333 to the outer circumferential portion upstream along the forming direction of the compression chamber V. This shortens the length of the first compression chamber V1 immediately before the discharge, and consequently makes it possible to increase the compression ratio of the first compression chamber V1.
  • the other side of the recess 335 is formed with an arc surface 335b having an arc shape.
  • the diameter of the arc surface 335b is determined by the inner end thickness of the fixed wrap 323 and the turning radius of the turning wrap 332.
  • the diameter of the arc surface 335b is increased by increasing the inner end thickness of the fixed wrap 323. Will become large. As a result, the thickness of the turning wrap around the circular arc surface 335b may be increased to ensure durability, and the compression path may be longer to increase the compression ratio of the second compression chamber V2.
  • the rotary shaft 5 may be coupled to the upper portion of the rotor 22 by being pressed into the center of the rotor 22 while the lower portion may be coupled to the compression portion 3 to be supported radially. As a result, the rotating shaft 5 transmits the rotational force of the transmission part 2 to the turning scroll 33 of the compression part 3. Then, the turning scroll 33 which is eccentrically coupled to the rotating shaft 5 is pivoted about the fixed scroll 32.
  • the main bearing part 51 is formed in the lower half part of the rotating shaft 5 so that it may be inserted into the 1st bearing hole 312a of the main frame 31, and may be supported radially, and the fixed scroll (below) of the main bearing part 51 may be provided.
  • the sub bearing portion 52 may be formed to be inserted into the second bearing hole 326a of the 32 to be radially supported.
  • An eccentric portion 53 may be formed between the main bearing portion 51 and the sub bearing portion 52 so as to be inserted into and coupled to the rotation shaft coupling portion 333 of the swing scroll 33.
  • the main bearing portion 51 and the sub bearing portion 52 are formed coaxially to have the same axial center, and the eccentric portion 53 is radially relative to the main bearing portion 51 or the sub bearing portion 52. It may be formed eccentrically.
  • the sub bearing part 52 may be eccentrically formed with respect to the main bearing part 51.
  • the eccentric portion 53 has to be formed such that its outer diameter is smaller than the outer diameter of the main bearing portion 51 and larger than the outer diameter of the sub bearing portion 52 so as to couple the rotation shaft 5 to each of the bearing holes 312a and 326a. It may be advantageous to join through portion 333. However, when the eccentric portion 53 is not formed integrally with the rotating shaft 5 and is formed using a separate bearing, the outer shaft of the sub bearing portion 52 is not formed smaller than the outer diameter of the eccentric portion 53 without causing the rotating shaft to be formed. (5) can be inserted and combined.
  • an oil supply passage 5a for supplying oil to each bearing part and the eccentric part may be formed in the rotation shaft 5.
  • the oil supply passage 5a is formed at approximately the lower end or the middle height of the stator 21 at the lower end of the rotating shaft 5 as the compression part 3 is located below the transmission part 2, or of the main bearing part 31. It can be formed with grooves up to a height higher than the top.
  • An oil feeder 6 for pumping oil filled in the oil storage space 1b may be coupled to a lower end of the rotation shaft 5, that is, a lower end of the sub bearing part 52.
  • the oil feeder 6 includes an oil supply pipe 61 inserted into and coupled to the oil supply passage 5a of the rotary shaft 5 and an oil suction member such as a propeller to be inserted into the oil supply pipe 61 to suck oil. 62).
  • the oil supply pipe 61 may be installed to pass through the through hole 341 of the discharge cover 34 to be immersed in the oil storage space 1b.
  • an oil supply hole and / or an oil supply groove may be formed between each bearing part and the eccentric part or each bearing part so that oil sucked through the oil supply passage is supplied to the outer circumferential surface of each bearing part and the eccentric part. Therefore, the oil drawn up in the upper direction of the main bearing portion 51 along the oil supply passage 5a, the oil supply hole (unsigned), and the oil supply groove (unsigned) of the rotating shaft 5 is formed in the main frame 31. After flowing out of the bearing surface at the top of the first bearing portion 312 and flowing down the upper surface of the main frame 31 along the first bearing portion 312, the outer peripheral surface (or the upper surface to the outer peripheral surface of the main frame 31) is communicated. Grooves) and oil passages (PO) that are continuously formed on the outer circumferential surface of the fixed scroll (32).
  • the oil discharged from the compression chamber (V) together with the refrigerant into the inner space (1a) of the casing (1) is separated from the refrigerant in the upper space of the casing (1), a passage formed on the outer peripheral surface of the transmission unit (2) And it is recovered to the oil storage space (1b) through the oil passage (PO) formed on the outer peripheral surface of the compression unit (3).
  • the lower compression scroll compressor according to the present embodiment as described above is operated as follows.
  • the coolant supplied from the outside of the casing 1 through the coolant suction pipe 15 flows into the compression chamber V, and the coolant flows in the volume of the compression chamber V by the swinging motion of the swing scroll 33. As it decreases, it is compressed and discharged into the inner space of the discharge cover 34 through the discharge hole 322a.
  • the refrigerant discharged into the inner space of the discharge cover 34 circulates through the inner space of the discharge cover 34 and moves to the space between the main frame 31 and the stator 21 after the noise is reduced.
  • the coolant moves to the upper space of the transmission part 2 through the gap between the stator 21 and the rotor 22.
  • the coolant is discharged to the outside of the casing 1 through the coolant discharge pipe 16, while the oil is discharged from the inner circumferential surface of the casing 1 and the stator ( 21 is repeated a series of processes to be recovered to the storage space of the lower space of the casing (1) through the flow path between the inner peripheral surface of the casing (1) and the outer peripheral surface of the compression section (3).
  • the compression chamber (V) formed between the fixed scroll (32) and the revolving scroll (33) is a fixed scroll, as the suction chamber is formed in the edge portion, the discharge chamber is formed in the center portion based on the revolving scroll (33)
  • the center temperature of 32 and the turning scroll 33 are the highest, and the edge temperature is the lowest.
  • the temperature of the suction chamber is about 18 ° C. while the temperature of the discharge chamber is about 80 ° C., the temperature around the suction chamber is significantly lower than the temperature around the discharge chamber.
  • the hot refrigerant discharged from the discharge chamber diffuses into the entire inner space of the discharge cover 34 and contacts the rear surface of the first hard plate portion 321 of the fixed scroll 32 which forms the internal space of the discharge cover 34. Done. Then, while the first hard plate portion 321 of the fixed scroll 32 tends to receive heat from the high temperature refrigerant and expand in the edge direction, it is relatively far from the inner space of the discharge cover 34.
  • the wrap 323 is less affected than the first light plate portion 321, so that the wrap 323 is less likely to expand than the first light plate portion 321.
  • the fixed scroll 32 Due to the difference in thermal deformation, the fixed scroll 32 is deformed in a laminar shape in the wrap direction, but in particular, the fixed wrap near the suction chamber tries to shrink under the influence of the suction refrigerant temperature compared to the fixed wrap in other areas. This tends to be more deformed in the direction where the end of the lap is larger than the stationary lap opposite the suction chamber.
  • FIG. 3 is a plan view showing a state where the fixed scroll is thermally deformed in the scroll compressor according to FIG. 1
  • FIG. 4 is a schematic view of the fixed scroll according to FIG. 3
  • FIG. 5 is a turning scroll of the fixed scroll of FIG. 3.
  • 6 is a cross-sectional view illustrating a state in which a part of the fixed wrap and the swing wrap interfere with each other
  • FIG. 6 is a cross-sectional view taken along the line “V-V” of FIG. 5
  • FIG. 7 is an enlarged cross-sectional view of the portion “C” of FIG. 6. .
  • the fixed scroll 32 is bent in a direction opposite to the surface where the first hard plate portion 321 is in contact with the upper side, that is, the discharge cover 34, and the fixed wrap 323 is the suction chamber (Vs).
  • the vicinity A) is bent by a predetermined angle ⁇ 1- ⁇ 2 than the opposite side (the neighborhood rotated 180 ° by the crank angle) B.
  • the revolving scroll 33 is in contact with the back pressure chamber (S) in which the rear surface of the second hard plate portion 331 forms an intermediate pressure, the revolving scroll 33 is fixed to the fixed scroll 32 as shown in FIGS. Less deformation compared to
  • the edge 323a of the fixed wrap 323 interferes with the side of the lap root portion (the portion where the swivel wrap and the second hard plate part contact) 332a of the swivel wrap 332, thereby turning wheel scroll.
  • Reference numeral 33 is pushed in the right direction (the direction opposite to the suction chamber relative to the center of the fixed scroll) X in the figure.
  • a gap t is generated between the side of the turning wrap 332 and the side of the fixing wrap 323, thereby causing a compression loss.
  • the present embodiment forms an offset portion that forms an offset section in the vicinity of the suction chamber of the fixed wrap and the suction chamber of the swing wrap corresponding thereto, even if the fixed scroll and the swing scroll are thermally deformed. It is possible to prevent the fixed wrap and the swing wrap from interfering in the vicinity, and thereby prevent the refrigerant from being compressed from leaking between the fixed wrap and the swing wrap in the vicinity of the suction chamber.
  • FIG. 8 is a plan view showing the fixed scroll and the turning scroll formed with offset portions in a state where the centers are coincident with each other in the scroll compressor according to the present invention
  • FIG. 9 is an enlarged plan view showing the offset portion according to the present embodiment.
  • 10 is a cross-sectional view taken along line "VI-VI" in FIG. 9.
  • the offset part Os may be formed in the fixed wrap 323 and the turning wrap 332, respectively.
  • the offset portion formed in the fixed wrap 323 is called a first offset portion
  • the offset portion formed in the turning wrap 332 is a second offset portion
  • the first offset portion 323b and the second offset portion 332b are suction chambers.
  • Each of the sections of the fixed wrap 323 constituting the Vs and at least a portion of the sections of the turning wrap 332 corresponding thereto may be formed.
  • the first offset part 323b is formed within a range of ⁇ 30 degrees at the center O of the fixed scroll on the basis of the suction completion point among the fixed wraps 323, and the second offset part 332b is the turning wrap 332. ) May be formed within a range corresponding to the first offset portion 323b of the fixed wrap 323.
  • the suction completion point is the point where the suction is completed in the first compression chamber (V1) formed by the inner surface of the fixed wrap 323, that is, the suction end of the turning wrap 332 is the inner surface of the fixed wrap 323
  • V1 first compression chamber
  • the suction end of the turning wrap 332 is the inner surface of the fixed wrap 323
  • the point of contact with the edge is referred to, and the crank angle at this time is referred to as zero degree.
  • crank angle of -30 degrees means the angle from the imaginary line connecting the center of the fixed scroll 32 and the suction completion point to the farthest side wall surface of the suction port 324, that is, the direction opposite to the compression progress direction. The angle to the far point.
  • the appropriate offset amount of the offset portion Os satisfies [the coefficient of thermal expansion ( ⁇ ) for the scroll material ⁇ the distance (L) from the center of the scroll to the offset portion ⁇ the temperature difference ( ⁇ T) of the intake and discharge refrigerant)] Value.
  • the proper offset amount is, for example, the temperature range of the refrigerant, the suction temperature is -40 ⁇ 30 °C, the discharge temperature is about 35 ⁇ 140 °C, the distance (L) to the offset portion is 32mm, the coefficient of thermal expansion of the material
  • the fixed wrap 323 or the turning wrap 332 is excessively thinned in the first offset part 323b and the second offset part 332b to prevent the wrap from being damaged during the high compression ratio operation. can do.
  • the offset portion 323b is formed only in the fixed wrap 323 without forming an offset portion in the turning wrap, or the offset portion 332b is formed only in the turning wrap 332 without forming the offset portion in the fixed wrap. It may be formed. However, when the offset portion is formed in only one of the wraps, the wrap thickness of the fixed wrap or the swiveling wrap becomes thin, and thus the reliability of the high-compression ratio operation may be degraded.
  • the specific shape of the offset portion will be described with the example of the first offset portion formed in the fixed wrap and the second offset portion formed in the turning wrap so as to correspond to the first offset portion.
  • the first offset part 323b and the second offset part 332b may be formed in a curved shape so that the offset amount increases from both ends to the center part of the offset part.
  • This is where the center of the offset portion is located on the line CL connecting the suction completion point at the center O of the fixed scroll (or swing scroll) 32, as shown in the figure, and the deformation of the fixed scroll 32 It is the place where the stress is greatest when it is deformed the greatest. Accordingly, the amount of interference between the fixed wrap 323 and the turning wrap 332 may be minimized by offsetting the largest section (or point) to be deformed the most among the entire sections of the fixed wrap 323.
  • each of the offset portions 323b and 332b is formed in a curved surface having at least one radius of curvature and the first The radius of curvature R2 of the curved surface constituting the offset portion 323b may be formed smaller than the radius of curvature R1 of the wrap 323 at the corresponding portion.
  • the second offset portion of the turning wrap may be formed vice versa.
  • each offset portion may be formed in a straight surface shape so that the depth of the offset portion is the same, but both ends of the offset portion may be formed in a curved surface to make contact between the laps slippery.
  • first offset part 323b and the second offset part 332b may be formed in all sections along the advancing direction of the wraps 323 and 332, respectively.
  • first offset portion and the second offset portion may be formed uniformly in the depth along the advancing direction of each wrap.
  • the depth of each offset portion is also formed deeper from the center portion to the edge portion. have. If the depths of the offset portions are uniformly formed even though the deformation amounts of the fixed wrap and the swing wrap are different along the direction of the wrap, if the deformation amount is small, the offset amount is relatively large. In the region, the offset amount is relatively small, and interference between laps may occur. Accordingly, it may be desirable to form the offset amount of the portion having the largest deformation amount, the offset amount of the portion having the smallest deformation amount, the smallest, and the offset amount proportionally smaller from the portion with the large offset amount to the small portion.
  • the first offset part 323b is inclined so that the lap thickness becomes thinner toward the lap end from the lap root vicinity (or the middle of the lap) of the fixed lap 323 that meets the first hard plate part 321.
  • the second offset part 332b may be formed to be inclined so that the thickness of the lap becomes thinner from the tip of the lap to the lap root as opposed to the first offset part 323b.
  • first offset part 323b and the second offset part 332b are to prevent the fixed wrap 323 and the turning wrap 332 in the vicinity of the suction chamber Vs from being bent in the center direction to interfere with each other.
  • the first offset portion 323b is preferably formed on the inner side of the fixed wrap 323, and the second offset portion 332b is formed on the outer side of the turning wrap 332.
  • the envelope means the trajectory that is drawn while the compression chamber is moving. If the parallel movement is performed in both directions by the turning radius of the turning scroll, the inner side of the fixed wrap and the outer side of the fixed wrap, or the outer side of the fixed wrap It becomes the side surface and the inner surface shape of the turning wrap.
  • FIG. 11 is a schematic view showing the distance between laps between the inner surface of the fixed wrap and the outer surface of the turning wrap for the absence of an offset portion, and FIG. 12 between the inner surface of the fixed wrap for the presence of the offset portion and the outer surface of the turning wrap. A schematic showing the distance between laps.
  • the distance between the wraps ⁇ which adds the distance ⁇ 1 from the envelope Lp to the inner surface of the fixed wrap 323 and the distance ⁇ 2 from the outer surface of the turning wrap 332 12 is the same as the turning radius r, but as shown in FIG. 12, when the offset portions are formed in the fixed wrap and the swing wrap, respectively, the distance ⁇ 1 'from the envelope Lp to the inner surface of the fixed wrap and the outer surface of the swing wrap.
  • the distance between the laps ⁇ ' which is the sum of the distances ⁇ 2', is larger than the turning radius r. The same applies to the case where the offset portion is formed only in the fixed wrap.
  • the fixed wrap 323 and the turning wrap 332 may be different from each other in the amount of deformation, in this case, the offset amount of each of the first offset portion 323b and the second offset portion 332b is the appropriate offset amount It may be desirable to form differently at a satisfactory level.
  • the offset amount of the first offset part 323b may be larger than the offset amount of the second offset part 332b. That is, in this embodiment, as both the lap end of the fixed wrap 323 and the lap end of the pivoting wrap 332 are bent toward the center, the inner edge of the fixed wrap 323 is the wrap root of the pivoting wrap 332. May be interfered with. Therefore, the lap root of the fixed wrap 323 does not come into contact with the lap tip (more precisely, the lap tip side) of the turning wrap 332, so that the first offset portion 323b has an inner side edge of the fixed wrap 323. Can only be formed. Accordingly, in the wrap root of the fixed wrap 323, the original wrap thickness can be maintained and reliability can be maintained even at the time of high compression ratio operation.
  • the second offset portion 332b is the end of the lap root, that is, to the point where the lap and the hard plate meet or close to It must be formed. Therefore, since the lap thickness of the turning wrap 332 may be relatively thin in the lap root, it may be desirable to form the offset amount of the first offset part 323b larger than the offset amount of the second offset part 332b. have.
  • the fixed scroll according to the present embodiment is heated by a high temperature refrigerant discharged into the inner space of the discharge cover, so that the thickness of the wrap in some sections of the fixed wrap that receives the most stress even if the heat deformation occurs in the radial direction of the hard plate portion.
  • 13 and 14 are diagrams for explaining this.
  • FIG. 13 is a plan view illustrating a coupling state between a fixed scroll and an orbiting scroll having an offset unit according to the present invention
  • FIG. 14 is a cross-sectional view of the line "VII-VII" of FIG.
  • the tip of the fixing wrap 323 is severely bent to the right side of the drawing in some sections of the fixing wrap 323 proximate the suction port 324 and the turning wrap 332 ) May interfere with the rap root.
  • first offset portion 323b and the second offset portion 332b are formed in opposite shapes on the right side of the fixed wrap 323 and the left side of the swing wrap 332, the fixed wrap 323 and the swing wrap, respectively. It is possible to prevent the 332 from interfering with each other and to prevent the turning scroll 33 from being pushed to the right side of the drawing. In this way, even if the gap between the fixed wrap 323 and the turning wrap 332 does not open or diarrhea in the right side of the drawing can minimize the amount of the leakage of the compressed refrigerant can be minimized.
  • the first offset part or the first offset part and the second offset part are formed to be inclined from the lap root to the lap tip, but the first offset part and the second offset part of the present embodiment are considered in consideration of workability.
  • the tip and the lap root may be formed stepped respectively.
  • the first offset part 323b forms the inner wrap leading edge of the fixed wrap 323 stepwise, while the second offset part 332b forms the outside of the turning wrap 332.
  • the lap root may be formed stepwise to form a groove shape.
  • the appropriate offset amount is the same as in the above-described embodiment, the basic configuration and the effects thereof are substantially the same. Therefore, detailed description thereof will be omitted.
  • the fixing wrap may be easily processed.
  • the second offset portion 332b may be relatively easier than the above-described inclined machining, thereby improving workability.
  • the wrap thickness of the fixed wrap 323 is generally thin, and thus the wrap strength of the fixed wrap 323 is increased. If the first offset portion 323b is formed at the lap end of the fixed wrap 323 as in the present embodiment, the wrap thickness of the fixed wrap 323 may be maintained and thus the fixed wrap ( Reliability can be secured by maintaining the lap strength of 323.
  • the cross sections of the lap tips and the lap roots of the fixed wrap and the swivel wrap are differently formed, but in this embodiment, the offset portions are formed while the cross sections of the lap tips and the wrap roots are the same.
  • the first offset part 323b according to the present embodiment is located on the inner side of the fixed wrap 323, and the second offset part 332b is located on the outer side of the turning wrap 332.
  • Each of the first offset portion 323b and the second offset portion 332b may be formed to have the same cross-sectional area of the lap tip and the lap root, respectively.
  • the remaining portions of the fixed wrap 323 and the turning wrap 332 except for the first offset part 323b and the second offset part 332b may also have the same cross-sectional area of the wrap tip and the wrap root.
  • first offset part 323b and the second offset part 332b may be formed by processing in a direction perpendicular to the lap, so that the offset part may be easily processed.
  • first offset portion 323b of the fixed wrap 323 may be formed to be stepped by cutting only the edge of the lap.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

본 발명에 의한 스크롤 압축기는, 선회랩이 구비되며, 선회운동을 하는 선회스크롤; 및 상기 선회랩과 맞물려 흡입실, 중간압실, 토출실로 이루어진 압축실을 형성하도록 고정랩이 구비되는 고정스크롤;을 포함하고, 상기 선회스크롤의 중심과 고정스크롤의 중심이 일치된 상태에서 상기 선회랩의 측면과 이에 대면하는 상기 고정랩의 측면 사이에는 선회반경보다 큰 간격을 가지도록 한 옵셋구간이 존재함으로써, 고정스크롤 또는 선회스크롤이 열팽창하여 변형되더라도 변형량이 큰 부위에서의 고정랩과 선회랩이 간섭되는 것을 방지할 수 있고 이를 통해 고정랩과 선회랩 사이의 마찰손실이나 마모를 방지할 수 있으며, 반대쪽에서의 고정랩과 선회랩 사이가 벌어지는 것을 억제하거나 최소화하여 압축효율을 향상시킬 수 있다.

Description

스크롤 압축기
본 발명은 스크롤 압축기에 관한 것이다.
일반적으로 스크롤 압축기는 다른 종류의 압축기에 비하여 상대적으로 높은 압축비를 얻을 수 있으면서 냉매의 흡입,압축,토출 행정이 부드럽게 이어져 안정적인 토오크를 얻을 수 있는 장점 때문에 공조장치 등에서 냉매압축용으로 널리 사용되고 있다.
스크롤 압축기의 거동 특성은 비선회스크롤(이하, 고정스크롤으로 약칭함)의 비선회랩(이하, 고정랩으로 약칭함)과 선회스크롤의 선회랩의 형태에 의해 결정된다. 고정랩과 선회랩은 임의의 형상을 가질 수 있지만, 통상적으로는 가공이 용이한 인볼류트 곡선의 형태를 가진다. 인볼류트 곡선은 임의의 반경을 갖는 기초원의 주위에 감겨있는 실을 풀어낼 때, 실의 단부가 그리는 궤적에 해당되는 곡선을 의미한다. 이러한 인볼류트 곡선을 이용하는 경우 랩의 두께가 일정하게 되어 고정랩과 선회랩이 안정적으로 상대운동을 하면서 냉매를 압축하는 압축실을 형성하게 된다.
스크롤 압축기의 압축실은 바깥쪽에서 안쪽으로 갈수록 체적이 좁아지면서 바깥쪽에는 흡입실이, 안쪽에는 토출실이 형성된다. 흡입실로 흡입되는 냉매온도는 대략 18℃ 내외가 되고, 토출실에서 토출되는 냉매온도는 대략 80℃ 내외가 된다. 하지만, 선회스크롤의 경우는 그 배면이 메인 프레임에 지지되어 고정스크롤과의 사이에 위치하게 되므로 선회스크롤 자체가 냉매의 토출온도에 크게 영향을 받지 않는 반면, 고정스크롤은 그 배면을 이루는 경판이 케이싱의 내부공간이나 토출커버 또는 고저압 분리판에 결합되어 냉매의 토출온도에 노출되게 된다.
상기와 같이 고정스크롤의 배면이 냉매의 토출온도에 노출됨에 따라, 고정스크롤의 경판부 전체는 냉매의 토출온도에 영향을 받아 열팽창을 하게 된다. 반면, 고정스크롤의 경판부 일측면에 구비되어 압축실을 형성하는 고정랩은 전체가 토출온도의 영향을 받는 것이 아니라, 흡입실 부근은 흡입온도의 영향을, 중간압실 부근은 중간 압축온도의 영향을, 토출실 부근은 토출온도의 영향을 각각 받게 되어 부위마다 열팽창율이 달라지게 된다. 이로 인해, 고정스크롤은 경판부가 고정랩에 비해 더 크게 열변형되면서 전체적으로는 고정랩이 오무라드는 형태로 변형된다.
특히, 흡입실 부근의 고정랩은 18℃정도의 차가운 흡입냉매와 직접 접촉하게 되므로 흡입실 부근의 고정랩은 중심부를 향해 수축하려는 현상이 더해져 다른 부위에서 보다 더욱 크게 변형되고, 이로 인해 흡입실 부근의 고정랩과 접하는 선회랩이 휘어진 고정랩에 의해 밀려나면서 크랭크각이 180°진행된 반대쪽 선회랩은 고정랩으로부터 벌어지면서 압축손실이 발생하게 되는 문제점이 있었다.
또, 고정랩의 특정부위가 다른 부위에 비해 크게 열변형됨에 따라 그 고정랩과 선회랩 사이가 과도하게 접촉되면서 고정스크롤과 선회스크롤 사이에서의 마찰손실이 증가하거나 또는 마모가 증가하게 될 수 있었다.
본 발명의 목적은, 고정랩과 선회랩 사이가 이격되면서 압축실의 냉매가 누설되어 압축손실이 발생되는 것을 억제할 수 있는 스크롤 압축기를 제공하려는데 있다.
본 발명의 다른 목적은, 고정랩의 특정부위가 열변형되는 것을 억제하여 선회랩이 밀려나는 것을 미연에 방지할 수 있는 스크롤 압축기를 제공하려는데 있다.
본 발명의 다른 목적은, 고정랩 또는 선회랩의 특정부위가 과도하게 접촉되면서 마찰손실이 발생되거나 또는 마모되는 것을 방지할 수 있는 스크롤 압축기를 제공하려는데 있다.
본 발명의 목적을 달성하기 위하여, 고정랩을 가지며, 가장자리부에 흡입구가 형성되고, 중심부에 토출구가 형성되는 고정스크롤; 및 상기 고정랩에 맞물려 압축실을 이루도록 선회랩을 가지는 선회스크롤;을 포함하고, 상기 흡입구 부근의 고정랩에 대해 랩두께를 줄이는 옵셋부를 형성하는 것을 특징으로 하는 스크롤 압축기가 제공될 수 있다.
또, 본 발명의 목적을 달성하기 위하여, 고정랩을 가지며, 가장자리부에 흡입구가 형성되고, 중심부에 토출구가 형성되는 고정스크롤; 및 상기 고정랩에 맞물려 압축실을 이루도록 선회랩을 가지는 선회스크롤;을 포함하고, 상기 고정스크롤의 중심을 기준으로 상기 흡입구가 시작되는 지점에서 상기 고정랩의 내측면에 형성되는 압축실에 대한 흡입이 완료되는 지점까지 범위내에는 상기 고정랩 또는 상기 선회랩의 랩두께가 얇아진 부위의 적어도 일부가 포함되는 것을 특징으로 하는 스크롤 압축기가 제공될 수 있다.
또, 본 발명의 목적을 달성하기 위하여, 고정랩을 가지며, 가장자리부에 흡입구가 형성되고, 중심부에 토출구가 형성되는 고정스크롤; 및 상기 고정랩에 맞물려 압축실을 이루도록 선회랩을 가지는 선회스크롤;을 포함하고, 상기 고정랩 중에서 흡입구를 마주보는 부위의 내측면에 반경방향으로 소정의 깊이를 가지도록 옵셋부가 형성되는 것을 특징으로 하는 스크롤 압축기가 제공될 수 있다.
또, 본 발명의 목적을 달성하기 위하여, 고정랩을 가지며, 가장자리부에 흡입구가 형성되고, 중심부에 토출구가 형성되는 고정스크롤; 및 상기 고정랩에 맞물려 압축실을 이루도록 선회랩을 가지는 선회스크롤;을 포함하고, 상기 흡입구 주변의 고정랩은 내측면 모서리가 모따기 형성되는 것을 특징으로 하는 스크롤 압축기가 제공될 수 있다.
또, 본 발명의 목적을 달성하기 위하여, 고정랩을 가지며, 가장자리부에 흡입구가 형성되고, 중심부에 토출구가 형성되는 고정스크롤; 및 상기 고정랩에 맞물려 압축실을 이루도록 선회랩을 가지는 선회스크롤;을 포함하고, 상기 흡입구 주변의 고정랩은 내측면은 다른 부위에 비해 곡률반경이 작은 곡면으로 형성되는 것을 특징으로 하는 스크롤 압축기가 제공될 수 있다.
또, 본 발명의 목적을 달성하기 위하여, 선회랩이 구비되며, 선회운동을 하는 선회스크롤; 및 상기 선회랩과 맞물려 흡입실, 중간압실, 토출실로 이루어진 압축실을 형성하도록 고정랩이 구비되는 고정스크롤;을 포함하고, 상기 선회스크롤의 중심과 고정스크롤의 중심이 일치된 상태에서 양쪽 랩 사이의 거리를 선회반경이라고 할 때, 상기 선회랩의 측면과 이에 대면하는 상기 고정랩의 측면 사이에는 상기 선회반경보다 큰 간격을 가지도록 한 옵셋구간이 존재하는 것을 특징으로 하는 스크롤 압축기가 제공될 수 있다.
여기서, 상기 옵셋구간은 그 옵셋구간의 적어도 일부가 상기 흡입실을 이루는 구간과 중첩될 수 있다.
그리고, 상기 옵셋구간에서의 랩두께는 그 옵셋구간 밖에서의 랩두께에 비해 얇게 형성될 수 있다.
또, 본 발명의 목적을 달성하기 위하여, 선회랩이 구비되며, 선회운동을 하는 선회스크롤; 및 상기 선회랩과 맞물려 흡입실, 중간압실, 토출실로 이루어진 압축실을 형성하도록 고정랩이 구비되는 고정스크롤;을 포함하고, 상기 고정랩 또는 선회랩 중에서 적어도 어느 한쪽 랩의 측면에는 상기 선회스크롤의 중심과 고정스크롤의 중심이 일치된 상태에서 양쪽 랩 사이의 거리로 정의되는 선회반경보다 큰 랩간 거리를 가지도록 하는 옵셋부(Offset portion)가 형성되는 것을 특징으로 하는 스크롤 압축기가 제공될 수 있다.
여기서, 상기 옵셋부는 상기 고정랩 중에서 상기 흡입실을 이루는 측면 부위에서의 반대쪽 측면에 형성될 수 있다.
그리고, 상기 옵셋부는 상기 고정스크롤의 중심에서 상기 흡입실을 이루는 구간의 양단을 각각 잇는 두 개의 가상선 사이에 적어도 일부가 포함되도록 형성될 수 있다.
그리고, 상기 고정랩의 양쪽 측면 중에서 상기 고정스크롤의 중심을 향하는 면을 내측면, 그 반대면을 외측면이라고 할 때, 상기 옵셋부는 상기 고정랩의 내측면에 형성될 수 있다.
그리고, 상기 선회랩의 양쪽 측면 중에서 상기 선회스크롤의 중심을 향하는 면을 내측면, 그 반대면을 외측면이라고 할 때, 상기 옵셋부는 상기 선회랩의 외측면에 형성될 수 있다.
그리고, 상기 옵셋부는 랩의 진행방향을 따라 양단에서 중앙쪽으로 갈수록 깊이가 깊어지도록 형성될 수 있다.
그리고, 상기 옵셋부는 적어도 한 개 이상의 곡률반경을 가지는 곡면으로 형성되고, 상기 옵셋부를 이루는 곡면의 곡률반경은 상기 랩의 곡률반경보다 작게 형성될 수 있다.
그리고, 상기 옵셋부가 형성되는 부위에서의 고정랩은 그 랩뿌리 또는 랩뿌리 부근에서 랩선단으로 갈수록 단면적이 감소하도록 형성될 수 있다.
그리고, 상기 옵셋부가 형성되는 부위에서의 선회랩은 그 랩뿌리에서 랩선단으로 갈수록 단면적이 증가하도록 형성될 수 있다.
그리고, 상기 옵셋부가 형성되는 부위에서의 고정랩은 그 랩선단의 모서리가 단차지게 형성될 수 있다.
그리고, 상기 옵셋부가 형성되는 부위에서의 선회랩은 그 랩뿌리 부근에 소정의 깊이를 가지는 홈이 형성될 수 있다.
그리고, 상기 옵셋부가 형성되는 부위에서의 고정랩 또는 선회랩은 그 랩뿌리에서 랩선단까지 동일한 단면적을 가지도록 형성될 수 있다.
그리고, 상기 옵셋부의 옵셋량은 (스크롤의 열팽창계수 × 스크롤의 중심에서 해당 랩 측면까지의 거리 × 흡 토출냉매의 온도차)에 의해 산출되는 값으로 형성될 수 있다.
또, 본 발명의 목적을 달성하기 위하여, 고정 경판부와, 상기 고정 경판부에서 돌출되는 고정랩와, 상기 고정랩의 외측단 부근에 형성되는 흡입구와, 상기 고정랩의 내측단 부근에 형성되는 적어도 한 개 이상의 토출구를 가지며, 상기 토출구와 연통되는 공간에 상기 고정 경판부가 노출되는 고정스크롤; 및 선회 경판부, 및 상기 선회 경판부에서 돌출되어 상기 고정랩에 결합되고 상기 고정랩에 대해 선회운동을 하면서 상기 고정 경판부, 고정랩, 선회 경판부와 함께 랩의 진행방향을 따라 외측에서 내측방향으로 흡입실, 중간압실, 토출실로 이루어지는 압축실을 형성하는 선회랩이 구비되는 선회스크롤;을 포함하고, 상기 선회랩과 또는 고정랩 중에서 적어도 어느 한쪽 랩의 측면에는 랩간 거리가 상기 선회스크롤의 선회반경보다 확대되도록 하는 옵셋부(Offset portion)가 형성되며, 상기 옵셋부의 옵셋량은 (스크롤의 열팽창계수 × 스크롤의 중심에서 해당 랩 측면까지의 거리 × 흡 토출냉매의 온도차)에 의해 산출되는 값으로 형성되는 것을 특징으로 하는 스크롤 압축기가 제공될 수 있다.
또, 본 발명의 목적을 달성하기 위하여, 케이싱; 상기 케이싱의 내부공간에 구비되는 구동모터; 상기 구동모터의 회전자에 결합되어 함께 회전하는 회전축; 상기 구동모터의 하측에 구비되는 프레임; 상기 프레임의 하측에 구비되며, 흡입구와 토출구가 구비되고, 고정랩이 구비되는 고정스크롤; 상기 프레임과 상기 고정스크롤 사이에 구비되며, 상기 고정랩과 맞물려 흡입실, 중간압실, 토출실로 이루어진 압축실을 형성하도록 선회랩이 구비되고, 상기 회전축이 관통하여 결합되는 회전축 결합부가 구비되는 선회스크롤; 및 상기 고정스크롤의 하측에 결합되며, 상기 토출구를 수용하여 그 토출구를 통해 토출되는 냉매를 상기 케이싱의 내부공간으로 안내하는 토출커버;를 포함하고, 상기 선회스크롤의 중심과 고정스크롤의 중심이 일치된 상태에서 양쪽 랩 사이의 거리를 선회반경이라고 할 때, 상기 선회랩의 측면과 이에 대면하는 상기 고정랩의 측면의 사이에는 상기 선회반경보다 큰 간격을 가지도록 한 옵셋구간이 형성되며, 상기 옵셋구간은 그 옵셋구간의 적어도 일부가 상기 흡입실을 이루는 구간과 중첩되는 것을 특징으로 하는 스크롤 압축기가 제공될 수 있다.
여기서, 상기 옵셋구간은 상기 고정랩의 내측면에 형성되는 압축실에 대한 흡입이 완료되는 지점을 기준으로 크랭크각으로 ±30도의 범위내에 적어도 일부가 위치하도록 형성될 수 있다.
그리고, 상기 옵셋구간의 옵셋량은 (스크롤의 열팽창계수 × 스크롤의 중심에서 해당 랩 측면까지의 거리 × 흡 토출냉매의 온도차)에 의해 산출되는 값으로 형성될 수 있다.
그리고, 상기 압축실은 상기 고정랩을 기준으로 내측면에 형성되는 제1 압축실과 외측면에 형성되는 제2 압축실로 이루어지며, 상기 제1 압축실은 상기 고정랩의 내측면과 선회랩의 외측면이 접촉하여 생기는 두 개의 접촉점(P1, P2) 사이에서 형성되고, 상기 편심부의 중심(O)과 상기 두 개의 접촉점(P1, P2)을 각각 연결한 두 개의 선이 이루는 각도 중 큰 값을 갖는 각도를 α라 할 때, 0 < α < 360° 를 만족한다.
본 발명에 의한 스크롤 압축기는, 흡입실을 이루는 구간에서의 고정랩 또는/및 선회랩의 측면에 소정의 깊이만큼 함몰진 옵셋부가 형성됨으로써, 고정랩과 선회랩의 특정부위가 열변형에 의해 간섭되는 것을 방지할 수 있다. 이를 통해, 흡입실에서 180°정도 진행된 반대쪽에서 고정랩과 선회랩 사이가 이격되면서 압축되는 냉매가 누설되는 것을 방지하여 압축기 효율을 높일 수 있다.
또, 고정랩의 열변형으로 인해 그 고정랩과 선회랩의 특정부위가 간섭되는 것을 방지함으로써, 고정랩과 선회랩의 특정부위가 과도하게 접촉되는 것을 막아 마찰손실을 줄이는 동시에 고정랩 또는 선회랩이 마모되는 것을 방지하여 압축기의 신뢰성을 높일 수 있다.
도 1은 본 발명에 의한 하부 압축식 스크롤 압축기의 일례를 보인 종단면도,
도 2는 도 1에 따른 스크롤 압축기에서, "IV-IV"선단면도,
도 3은 도 1에 따른 스크롤 압축기에서 고정스크롤이 열변형된 상태를 보인 평면도,
도 4는 도 3에 따른 고정스크롤을 정면에서 보인 개략도,
도 5는 도 3의 고정스크롤에 선회스크롤이 결합된 상태에서 고정랩과 선회랩의 일부가 간섭되는 상태를 보인 단면도,
도 6은 도 5의 "Ⅴ-Ⅴ"선단면도,
도 7은 도 6의 "C"부를 확대하여 보인 단면도,
도 8은 본 발명에 의한 스크롤 압축기에서, 옵셋부가 각각 형성된 고정스크롤과 선회스크롤을 중심이 일치된 상태로 결합시켜 보인 평면도,
도 9는 본 실시예에 의한 옵셋부를 확대하여 보인 평면도,
도 10은 도 9의 "Ⅵ-Ⅵ"선단면도,
도 11은 옵셋부가 없는 경우에 대한 고정랩의 내측면과 선회랩의 외측면 사이의 랩간 거리를 보인 개략도,
도 12는 옵셋부가 있는 경우에 대한 고정랩의 내측면과 선회랩의 외측면 사이의 랩간 거리를 보인 개략도,
도 13은 본 발명에 의한 옵셋부가 구비된 고정스크롤과 선회스크롤의 결합상태를 보인 평면도,
도 14는 도 13의 "Ⅶ-Ⅶ"선단면도,
도 15 및 도 16은 본 발명에 의한 옵셋부에 대한 다른 실시예들을 보인 종단면도.
이하, 본 발명에 의한 스크롤 압축기를 첨부도면에 도시된 일실시예에 의거하여 상세하게 설명한다. 참고로, 본 발명에 의한 스크롤 압축기는 흡입실 부근의 고정랩 또는/및 선회랩의 두께를 얇게 형성하여, 고정스크롤의 불균일한 열변형으로 인해 흡입실 부근에서 고정랩과 선회랩이 간섭되는 것을 방지하고자 하는 것이다. 따라서, 고정랩과 선회랩을 가지는 스크롤 압축기는 어떤 유형의 스크롤 압축기라도 모두 적용될 수 있다. 다만, 이하에서는 편의상 압축부가 전동부보다 하측에 위치하는 하부 압축식 스크롤 압축기에서 회전축이 선회랩과 동일 평면상에서 중첩되는 유형의 스크롤 압축기를 대표예로 삼아 살펴본다. 이러한 유형의 스크롤 압축기는 고온 고압축비 조건의 냉동사이클에 적용하기에 적합한 것으로 알려져 있다.
도 1은 본 발명에 의한 하부 압축식 스크롤 압축기의 일례를 보인 종단면도이고, 도 2는 도 1에 따른 스크롤 압축기에서, "IV-IV"선단면도이다.
도 1을 참조하면, 본 실시예에 의한 하부 압축식 스크롤 압축기는, 케이싱(1)의 내부공간(1a)에 구동모터를 이루며 회전력을 발생하는 전동부(2)가 설치되고, 전동부(2)의 하측에는 그 전동부(2)의 회전력을 전달받아 냉매를 압축하는 압축부(3)가 설치될 수 있다.
케이싱(1)은 밀폐용기를 이루는 원통 쉘(11)과, 원통 쉘(11)의 상부를 덮어 함께 밀폐용기를 이루는 상부 쉘(12)과, 원통 쉘(11)의 하부를 덮어 함께 밀폐용기를 이루는 동시에 저유공간(1b)을 형성하는 하부 쉘(13)로 이루어질 수 있다.
원통 쉘(11)의 측면으로 냉매 흡입관(15)이 관통하여 압축부(3)의 흡입실에 직접 연통되고, 상부 쉘(12)의 상부에는 케이싱(1)의 내부공간(1a)과 연통되는 냉매 토출관(16)이 설치될 수 있다. 냉매 토출관(16)은 압축부(3)에서 케이싱(1)의 내부공간(1a)으로 토출되는 압축된 냉매가 외부로 배출되는 통로에 해당되며, 토출되는 냉매에 혼입된 오일을 분리하는 오일 세퍼레이터(미도시)가 냉매 토출관(16)과 연결될 수 있다.
케이싱(1)의 상부에는 전동부(2)를 이루는 고정자(21)가 고정 설치되고, 고정자(21)의 내부에는 그 고정자(21)와 함께 전동부(2)를 이루며 고정자(21)와의 상호작용에 의해 회전하는 회전자(22)가 회전 가능하게 설치될 수 있다.
고정자(21)는 그 내주면에 원주방향을 따라 다수 개의 슬롯(미부호)이 형성되어 코일(25)이 권선되며, 그 외주면에는 디컷(D-cut) 모양으로 절단되어 원통 쉘(11)의 내주면과의 사이에 오일이 통과하도록 오일회수통로(26)가 형성될 수 있다.
고정자(21)의 하측에는 소정의 간격을 두고 압축부(3)를 이루는 메인 프레임(31)이 케이싱(1)의 내주면에 고정 결합될 수 있다. 메인 프레임(31)은 그 외주면이 원통 쉘(11)의 내주면에 열박음되거나 용접되어 고정 결합될 수 있다.
그리고 메인 프레임(31)의 가장자리에는 환형으로 된 프레임 측벽부(제1 측벽부)(311)가 형성되고, 중심에는 후술할 회전축(5)의 메인 베어링부(51)를 지지하기 위한 제1 축수부(312)가 형성될 수 있다. 제1 축수부에는 회전축(5)의 메인 베어링부(51)가 회전 가능하게 삽입되어 반경방향으로 지지되도록 제1 축수구멍(312a)이 축방향으로 관통 형성될 수 있다.
메인 프레임(31)의 저면에는 회전축(5)에 편심 결합된 선회스크롤(33)을 사이에 두고 고정스크롤(32)이 설치될 수 있다. 고정스크롤(32)은 메인 프레임(31)에 고정 결합될 수도 있지만, 축방향으로 이동 가능하게 결합될 수도 있다.
그리고, 고정스크롤(32)은 고정 경판부(이하, 제1 경판부)(321)가 대략 원판모양으로 형성되고, 제1 경판부(321)의 가장자리에는 메인 프레임(31)의 저면 가장자리에 결합되는 스크롤 측벽부(이하, 제2 측벽부)(322)가 형성될 수 있다.
그리고 제1 경판부(321)의 상면에는 후술할 선회랩(33)과 맞물려 압축실(V)을 이루는 고정랩(323)이 형성될 수 있다. 압축실(V)은 제1 경판부(321)와 고정랩(323), 그리고 후술할 선회랩(332)과 제2 경판부(331) 사이에 형성되며, 랩의 진행방향을 따라 흡입실, 중간압실, 토출실이 연속으로 형성되어 이루어질 수 있다.
여기서, 압축실(V)은 고정랩(323)의 내측면과 선회랩(332)의 외측면 사이에 형성되는 제1 압축실(V1)과, 고정랩(323)의 외측면과 선회랩(332)의 내측면 사이에 형성되는 제2 압축실(V2)로 이루어질 수 있다.
즉, 도 2에서와 같이, 제1 압축실(V1)은 고정랩(323)의 내측면과 선회랩(332)의 외측면이 접촉하여 생기는 두 개의 접촉점(P11, P12) 사이에 형성되고, 편심부의 중심(O)과 두 개의 접촉점(P11, P12)을 각각 연결한 두 개의 선이 이루는 각도 중 큰 값을 갖는 각도를 α라 할 때, 적어도 토출 개시 전에 α < 360°로 이루어진다. 또, 제2 압축실(V2)은 고정랩(323)의 외측면과 선회랩(332)의 내측면이 접촉하여 생기는 두 개의 접촉점(P21, P22) 사이에 형성된다.
따라서, 제1 압축실(V1)은 제2 압축실(V2)에 비해 냉매가 먼저 흡입되고 압축경로가 상대적으로 길지만 선회랩(332)이 비정형성을 가지고 형성됨에 따라, 제1 압축실(V1)의 압축비가 제2 압축실(V2)에 비해 상대적으로 낮게 형성된다. 또, 제2 압축실(V2)은 제1 압축실(V1)에 비해 냉매가 나중에 흡입되고 압축경로가 상대적으로 짧지만 선회랩(332)이 비정형성을 가지고 형성됨에 따라, 제2 압축실(V2)의 압축비는 제1 압축실(V1)에 비해 상대적으로 높게 형성된다.
그리고, 제2 측벽부(322)의 일측에는 냉매 흡입관(15)과 흡입실이 연통되는 흡입구(324)가 관통 형성되고, 제1 경판부(321)의 중앙부에는 토출실과 연통되어 압축된 냉매가 토출되는 토출구(325)가 형성될 수 있다. 토출구(325)는 제1 압축실(V1)과 제2 압축실(V2)에 모두 연통될 수 있도록 한 개만 형성될 수도 있지만, 각각의 압축실(V1)(V2)과 독립적으로 연통될 수 있도록 복수 개가 형성될 수도 있다.
또, 고정스크롤(32)의 경판부(321) 중심에는 후술할 회전축(5)의 서브 베어링부(52)를 지지하는 제2 축수부(326)가 형성되고, 제2 축수부(326)에는 축방향으로 관통되어 서브 베어링(52)부를 반경방향으로 지지하는 제2 축수구멍(326a)이 형성될 수 있다.
그리고, 제2 축수부(326)의 하단에는 서브 베어링부(52)의 하단면을 축방향으로 지지하는 스러스트 베어링부(327)가 형성될 수 있다. 스러스트 베어링부(327)은 제2 축수구멍(326a)의 하단에서 축중심을 향해 반경방향으로 돌출되어 형성될 수 있다. 하지만, 스러스트 베어링부는 제2 축수부에 형성되지 않고, 후술할 회전축(5)의 편심부(53) 저면과 이에 대응하는 고정스크롤(32)의 제1 경판부(321) 사이에 형성될 수도 있다.
한편, 고정스크롤(32)의 하측에는 압축실(V)에서 토출되는 냉매를 수용하여 후술할 냉매유로로 안내하기 위한 토출커버(34)가 결합될 수 있다. 토출커버(34)는 그 내부공간이 토출구(325)를 수용하는 동시에 압축실(V1)에서 토출된 냉매를 케이싱(1)의 내부공간(1a)으로 안내하는 냉매유로(PG)의 입구를 수용하도록 형성될 수 있다.
여기서, 냉매유로(PG)는 고정스크롤(32)의 제2 측벽부(322)와 메인 프레임(31)의 제1 측벽부(311)를 차례로 관통하여 형성될 수도 있고, 제2 측벽부(322)의 외주면과 제1 프레임(311)의 외주면에 연속으로 홈지게 형성될 수도 있다.
한편, 선회스크롤(33)은 메인 프레임(31)과 고정스크롤(32) 사이에서 선회 가능하게 설치될 수 있다. 그리고 선회스크롤(33)의 상면과 이에 대응하는 메인 프레임(31)의 저면 사이에는 선회스크롤(33)의 자전을 방지하는 올담링(35)이 설치되고, 올담링(35)보다 안쪽에는 배압실(S)을 형성하는 실링부재(36)가 설치될 수 있다. 따라서, 배압실(S)은 실링부재(36)를 중심으로 그 실링부재(36)의 바깥쪽에서 메인 프레임(31)과 고정스크롤(32) 그리고 선회스크롤(33)에 의해 형성되는 공간으로 이루어지고, 이 배압실(S)은 고정스크롤(32)에 구비되는 배압구멍(321a)에 의해 중간 압축실(V)과 연통되어 중간압의 냉매가 채워짐으로써 중간압을 형성하게 된다. 하지만, 실링부재(36)의 안쪽에 형성되는 공간은 고압의 오일이 채워짐으로써 이 공간 역시 배압실의 역할을 할 수 있다.
선회스크롤(33)은 선회 경판부(이하, 제2 경판부)(331)가 대략 원판모양으로 형성될 수 있다. 제2 경판부(331)의 상면은 배압실(S)이 형성되며, 저면에는 고정랩(322)과 맞물려 압축실을 이루는 선회랩(332)이 형성될 수 있다.
그리고, 제2 경판부(331)의 중앙부위에는 후술할 회전축(5)의 편심부(53)가 회전가능하게 삽입되어 결합되는 회전축 결합부(333)가 축방향으로 관통 형성될 수 있다.
회전축 결합부(333)는 선회랩(332)의 내측 단부를 이루도록 그 선회랩(332)에서 연장 형성될 수 있다. 이로써, 회전축 결합부(333)는 선회랩(332)과 동일 평면상에서 중첩되는 높이로 형성되어, 회전축(5)의 편심부(53)가 선회랩(332)과 동일 평면상에서 중첩되는 높이에 배치될 수 있다. 이를 통해, 냉매의 반발력과 압축력이 제2 경판부를 기준으로 하여 동일 평면에 가해지면서 서로 상쇄되어, 압축력과 반발력의 작용에 의한 선회스크롤(33)의 기울어짐이 방지될 수 있다.
회전축 결합부(333)의 외주부는 선회랩(332)과 연결되어 압축과정에서 고정랩(322)과 함께 압축실(V)을 형성하는 역할을 하게 된다. 선회랩(332)은 고정랩(323)과 함께 인볼류트 형상으로 형성될 수 있지만 그 외의 다양한 형상으로 형성될 수 있다. 예를 들어, 도 2와 같이, 선회랩(332)과 고정랩(323)은 직경과 원점이 서로 다른 다수의 원호를 연결한 형태를 가지며, 최외곽의 곡선은 장축과 단축을 갖는 대략 타원형 형태로 형성될 수 있다.
그리고, 고정랩(323)의 내측 단부(흡입단 또는 시작단) 부근에는 회전축 결합부(333)의 외주부측으로 돌출되는 돌기부(328)가 형성되는데, 돌기부(328)에는 그 돌기부로부터 돌출되도록 형성되는 접촉부(328a)가 형성될 수 있다. 즉, 고정랩(323)의 내측 단부는 다른 부분에 비해서 큰 두께를 갖도록 형성될 수 있다. 이로 인해, 고정랩(323) 중에서 가장 큰 압축력을 받게 되는 내측 단부의 랩 강도가 향상되어 내구성이 향상될 수 있다.
고정랩(323)의 내측 단부와 대향되는 회전축 결합부(333)의 외주부(333c)에는 고정랩(323)의 돌기부(328)와 맞물리게 되는 오목부(335)가 형성된다. 이 오목부(335)의 일측은 압축실(V)의 형성방향을 따라 상류측에 회전축 결합부(333)에서 외주부까지의 두께가 증가하는 증가부(335a)가 형성된다. 이는 토출 직전의 제1 압축실(V1)의 길이를 짧게 하여, 결과적으로 제1 압축실(V1)의 압축비를 높일 수 있게 한다.
오목부(335)의 타측은 원호 형태를 갖는 원호면(335b)이 형성된다. 원호면(335b)의 직경은 고정랩(323)의 내측 단부 두께 및 선회랩(332)의 선회반경에 의해 결정되는데, 고정랩(323)의 내측 단부 두께를 증가시키면 원호면(335b)의 직경이 커지게 된다. 이로 인해, 원호면(335b) 주위의 선회랩 두께도 증가되어 내구성이 확보될 수 있고, 압축 경로가 길어져서 그만큼 제2 압축실(V2)의 압축비도 증가할 수 있다.
회전축(5)은 그 상부는 회전자(22)의 중심에 압입되어 결합되는 반면 하부는 압축부(3)에 결합되어 반경방향으로 지지될 수 있다. 이로써, 회전축(5)은 전동부(2)의 회전력을 압축부(3)의 선회스크롤(33)에 전달하게 된다. 그러면 회전축(5)에 편심 결합된 선회스크롤(33)이 고정스크롤(32)에 대해 선회운동을 하게 된다.
회전축(5)의 하반부에는 메인 프레임(31)의 제1 축수구멍(312a)에 삽입되어 반경방향으로 지지되도록 메인 베어링부(51)가 형성되고, 메인 베어링부(51)의 하측에는 고정스크롤(32)의 제2 축수구멍(326a)에 삽입되어 반경방향으로 지지되도록 서브 베어링부(52)가 형성될 수 있다. 그리고 메인 베어링부(51)와 서브 베어링부(52)의 사이에는 선회스크롤(33)의 회전축 결합부(333)에 삽입되어 결합되도록 편심부(53)가 형성될 수 있다.
메인 베어링부(51)와 서브 베어링부(52)는 동일 축중심을 가지도록 동축 선상에 형성되고, 편심부(53)는 메인 베어링부(51) 또는 서브 베어링부(52)에 대해 반경방향으로 편심지게 형성될 수 있다. 서브 베어링부(52)는 메인 베어링부(51)에 대해 편심지게 형성될 수도 있다.
편심부(53)는 그 외경이 메인 베어링부(51)의 외경보다는 작게, 서브 베어링부(52)의 외경보다는 크게 형성되어야 회전축(5)을 각각의 축수구멍(312a)(326a)과 회전축 결합부(333)를 통과하여 결합시키는데 유리할 수 있다. 하지만, 편심부(53)가 회전축(5)에 일체로 형성되지 않고 별도의 베어링을 이용하여 형성하는 경우에는 서브 베어링부(52)의 외경이 편심부(53)의 외경보다 작게 형성되지 않고도 회전축(5)을 삽입하여 결합할 수 있다.
그리고 회전축(5)의 내부에는 각 베어링부와 편심부에 오일을 공급하기 위한 오일공급유로(5a)가 형성될 수 있다. 오일공급유로(5a)는 압축부(3)가 전동부(2)보다 하측에 위치함에 따라 회전축(5)의 하단에서 대략 고정자(21)의 하단이나 중간 높이, 또는 메인 베어링부(31)의 상단보다는 높은 높이까지 홈파기로 형성될 수 있다.
그리고 회전축(5)의 하단, 즉 서브 베어링부(52)의 하단에는 저유공간(1b)에 채워진 오일을 펌핑하기 위한 오일피더(6)가 결합될 수 있다. 오일피더(6)는 회전축(5)의 오일공급유로(5a)에 삽입되어 결합되는 오일공급관(61)과, 오일공급관(61)의 내부에 삽입되어 오일을 흡상하도록 프로펠러와 같은 오일흡상부재(62)로 이루어질 수 있다. 오일공급관(61)은 토출커버(34)의 관통구멍(341)을 통과하여 저유공간(1b)에 잠기도록 설치될 수 있다.
여기서, 각 베어링부와 편심부, 또는 각 베어링부의 사이에는 오일공급유로를 통해 흡상되는 오일이 각 베어링부와 편심부의 외주면으로 공급되도록 급유구멍 및/또는 급유홈이 형성될 수 있다. 따라서, 회전축(5)의 오일공급유로(5a), 급유구멍(미부호) 및 급유홈(미부호)을 따라 메인 베어링부(51)의 상단방향으로 흡상되는 오일은 메인 프레임(31)의 제1 축수부(312) 상단에서 베어링면 밖으로 흘러나와 그 제1 축수부(312)를 따라 메인 프레임(31)의 상면으로 흘러내린 후, 그 메인 프레임(31)의 외주면(또는 상면에서 외주면으로 연통되는 홈)과 고정스크롤(32)의 외주면에 연속으로 형성되는 오일통로(PO)를 통해 저유공간(1b)으로 회수된다.
아울러, 압축실(V)에서 냉매와 함께 케이싱(1)의 내부공간(1a)으로 토출되는 오일은 케이싱(1)의 상부공간에서 냉매로부터 분리되어, 전동부(2)의 외주면에 형성되는 통로 및 압축부(3)의 외주면에 형성되는 오일통로(PO)를 통해 저유공간(1b)으로 회수된다.
상기와 같은 본 실시예에 의한 하부 압축식 스크롤 압축기는 다음과 같이 동작된다.
즉, 전동부(2)에 전원이 인가되면, 회전자(21)와 회전축(5)에 회전력이 발생되어 회전하고, 회전축(5)이 회전함에 따라 그 회전축(5)에 편심 결합된 선회스크롤(33)이 올담링(35)에 의해 선회운동을 하게 된다.
그러면, 케이싱(1)의 외부에서 냉매 흡입관(15)을 통하여 공급되는 냉매는 압축실(V)로 유입되고, 이 냉매는 선회스크롤(33)의 선회운동에 의해 압축실(V)의 체적이 감소함에 따라 압축되어 토출구(322a)을 통해 토출커버(34)의 내부공간으로 토출된다.
그러면, 토출커버(34)의 내부공간으로 토출된 냉매는 그 토출커버(34)의 내부공간을 순환하며 소음이 감소된 후 메인 프레임(31)과 고정자(21) 사이의 공간으로 이동하고, 이 냉매는 고정자(21)와 회전자(22) 사이의 간극을 통해 전동부(2)의 상측공간으로 이동하게 된다.
그러면, 전동부(2)의 상측공간에서 냉매로부터 오일이 분리된 후 냉매는 냉매 토출관(16)을 통해 케이싱(1)의 외부로 배출되는 반면, 오일은 케이싱(1)의 내주면과 고정자(21) 사이의 유로 및 케이싱(1)의 내주면과 압축부(3)의 외주면 사이의 유로를 통해 케이싱(1)의 하부공간인 저유공간으로 회수되는 일련의 과정을 반복한다.
여기서, 고정스크롤(32)과 선회스크롤(33) 사이에 형성되는 압축실(V)은 선회스크롤(33)을 기준으로 하여 가장자리부에 흡입실이, 중심부에 토출실이 형성됨에 따라, 고정스크롤(32)과 선회스크롤(33)의 중심부 온도가 가장 높고 가장자리부의 온도가 가장 낮다. 특히, 흡입실의 온도는 흡입 냉매온도가 18℃ 정도가 되는 반면 토출실의 온도는 토출 냉매온도가 80℃ 정도가 되므로, 흡입실 주변의 온도가 토출실 주변의 온도에 비해 크게 낮아지게 된다.
하지만, 토출실에서 토출되는 고온의 냉매는 토출커버(34)의 내부공간 전체로 확산되면서 그 토출커버(34)의 내부공간을 이루는 고정스크롤(32)의 제1 경판부(321) 배면과 접촉하게 된다. 그러면, 고정스크롤(32)의 제1 경판부(321)는 고온의 냉매로부터 열을 전달받아 가장자리 방향으로 팽창하려는 경향이 발생하는 반면, 상대적으로 토출커버(34)의 내부공간과 거리가 먼 고정랩(323)은 제1 경판부(321)에 비해 적은 영향을 받아 제1 경판부(321)보다는 팽창하려는 경향이 적게 발생하게 된다. 이러한 열변형의 차이로 인해 고정스크롤(32)은 랩 방향으로 오무라드는 모양으로 변형을 하게 되나, 특히 흡입실 부근의 고정랩은 다른 부위의 고정랩에 비해 흡입 냉매온도의 영향을 받아 수축하려는 경향을 가지게 되어, 흡입실의 반대쪽 고정랩에 비해 랩 끝단이 더욱 많이 오무라드는 방향으로 변형을 일으키게 된다.
이는, 선회스크롤(33)을 흡입실 반대방향으로 밀어내 선회랩(332)의 측면과 고정랩(323)의 측면 사이에 틈새를 발생시키고, 이 틈새로 압축실(V)이 밀봉되지 못하면서 압축손실을 초래하거나 또는 랩간 마찰손실 및 마모를 초래할 수 있다.
도 3은 도 1에 따른 스크롤 압축기에서 고정스크롤이 열변형된 상태를 보인 평면도이고, 도 4는 도 3에 따른 고정스크롤을 정면에서 보인 개략도이며, 도 5는 도 3의 고정스크롤에 선회스크롤이 결합된 상태에서 고정랩과 선회랩의 일부가 간섭되는 상태를 보인 단면도이고, 도 6은 도 5의 "Ⅴ-Ⅴ"선단면도이며, 도 7은 도 6의 "C"부를 확대하여 보인 단면도이다.
이들 도면에서 보는 바와 같이, 고정스크롤(32)은 제1 경판부(321)가 상측, 즉 토출커버(34)와 접하는 면의 반대쪽방향으로 휘어지게 되고, 고정랩(323)은 흡입실(Vs) 부근(A)이 그 반대쪽(크랭크각으로 180°회전한 부근)(B)보다 소정의 각도(α1-α2)만큼 더 휘어지게 된다.
반면, 선회스크롤(33)은 제2 경판부(331)의 배면이 중간압을 이루는 배압실(S)과 접하게 되므로, 도 5 및 도 6과 같이 선회스크롤(33)은 고정스크롤(32)에 비해 적게 변형된다.
이에 따라, 도 7과 같이 고정랩(323)의 선단(323a) 모서리는 선회랩(332)의 랩 뿌리부(선회랩과 제2 경판부가 접하는 부분)(332a) 측면과 간섭되어, 결국 선회스크롤(33)이 도면의 우측방향(고정스크롤의 중심을 기준으로 흡입실 반대방향)(X)으로 밀려나게 된다. 이와 같이 선회스크롤(33)이 고정스크롤(32)에 대해 반경방향으로 밀려나게 되면, 선회랩(332)의 측면과 고정랩(323)의 측면 사이에 틈새(t)가 발생되어 압축손실이 초래될 수 있다.
이를 감안하여, 본 실시예는 고정랩의 흡입실 부근과 이에 대응하는 선회랩의 흡입실 부근에 옵셋구간을 이루는 옵셋부(Offset portion)를 형성하여, 고정스크롤과 선회스크롤이 열변형되더라도 흡입실 부근에서 고정랩과 선회랩이 간섭되는 것을 방지하고, 이를 통해 흡입실의 반대쪽 부근에서 고정랩과 선회랩 사이가 벌어져 압축되는 냉매가 누설되는 것을 억제할 수 있다.
도 8은 본 발명에 의한 스크롤 압축기에서, 옵셋부가 각각 형성된 고정스크롤과 선회스크롤을 중심이 일치된 상태로 결합시켜 보인 평면도이고, 도 9는 본 실시예에 의한 옵셋부를 확대하여 보인 평면도이며, 도 10은 도 9의 "Ⅵ-Ⅵ"선단면도이다.
도 8에서 보는 바와 같이, 옵셋부(Os)는 고정랩(323)과 선회랩(332)에 각각 형성될 수 있다. 고정랩(323)에 형성되는 옵셋부를 제1 옵셋부, 선회랩(332)에 형성되는 옵셋부를 제2 옵셋부라고 하며, 제1 옵셋부(323b)와 제2 옵셋부(332b)는 흡입실(Vs)을 이루는 고정랩(323)의 구간과 이에 대응하는 선회랩(332)의 구간의 적어도 일부가 포함되는 부위에 각각 형성될 수 있다.
제1 옵셋부(323b)는 고정랩(323) 중에서 흡입완료지점을 기준으로 하여 고정스크롤의 중심(O)에서 각각 ±30도 범위내에 형성되고, 제2 옵셋부(332b)는 선회랩(332) 중에서 고정랩(323)의 제1 옵셋부(323b)와 대응하는 범위내에 형성될 수 있다.
여기서, 흡입완료지점은 고정랩(323)의 내측면이 형성하는 제1 압축실(V1)에서의 흡입이 완료되는 지점, 즉 선회랩(332)의 흡입단이 고정랩(323)의 내측면에 접촉하는 시점을 말하고, 이때의 크랭크각을 0(zero)도라고 한다.
또, 크랭크각이 -30도라는 의미는 고정스크롤(32)의 중심과 흡입완료지점을 연결하는 가상선에서 흡입구(324)의 가장 먼 측벽면까지의 각도, 즉 압축진행방향의 반대방향으로 가장 먼 지점까지의 각도이다.
한편, 옵셋부(Os)의 적정 옵셋량은 [스크롤의 재료에 대한 열팽창 계수(α) × 스크롤의 중심에서 옵셋부까지의 거리(L) × 흡토출 냉매의 온도차(△T)]를 만족하는 값이다. 이 적정 옵셋량은 예를 들어, 냉매의 온도범위가 흡입온도는 -40 ~ 30℃이고, 토출온도는 35 ~ 140℃ 정도이며, 옵셋부까지 거리(L)가 32mm이고, 재료의 열팽창 계수가 1×10-5/℃이며, 온도차(△T)가 최소 5℃, 최대 180℃인 경우, 최소 옵셋량은 [1×10-5 × 32 × 5 = 0.0016mm]가 되므로 대략 2㎛ 정도가 된다. 그리고 최대 옵셋량은 [1×10-5 × 32 × 180 = 0.0576mm]가 되므로 대략 58㎛ 정도가 된다. 따라서, 적정 옵셋량(δ)은 2㎛ ≤ δ ≤58㎛ 정도가 된다.
따라서, 실제 옵셋량이 적정 옵셋량보다 작은 경우에는 흡입실 부근에서의 고정랩(323)과 선회랩(332) 사이에 간섭이 발생되어 그 반대쪽에서는 선회스크롤(33)이 밀려나면서 고정랩(323)과 선회랩(332) 사이에 틈새(t)가 발생되는 반면, 적정 옵셋량보다 큰 경우에는 오히려 흡입실 부근에서 고정랩(323)과 선회랩(332) 사이에 틈새가 발생되고 그 반대쪽에서는 간섭에 따른 마찰손실 및 마모가 발생될 수 있다.
상기와 같은 적정 옵셋량이 고정랩과 선회랩의 대응면에 각각 형성되는 경우에는 제1 옵셋부(323b)와 제2 옵셋부(332b)의 합이 적정 옵셋량을 만족할 수 있도록 적절하게 배분하여 형성할 수 있다. 이 경우, 제1 옵셋부(323b)와 제2 옵셋부(332b)에서 고정랩(323)이나 선회랩(332)이 과도하게 얇아지는 것을 방지하여 고압축비 운전시 랩이 파손되는 것을 미연에 방지할 수 있다.
하지만, 경우에 따라서는 선회랩에는 옵셋부를 형성하지 않고 고정랩(323)에만 옵셋부(323b)를 형성하거나, 또는 고정랩에는 옵셋부를 형성하지 않고 선회랩(332)에만 옵셋부(332b)를 형성할 수도 있다. 다만, 어느 한 쪽 랩에만 옵셋부를 형성하는 경우에는 고정랩 또는 선회랩의 랩두께가 얇아져 고압축비 운전시 신뢰성이 저하될 수 있다. 이하에서는, 고정랩에는 제1 옵셋부가, 선회랩에는 제1 옵셋부와 대응하도록 제2 옵셋부가 각각 형성되는 예를 중심으로 하여 옵셋부의 구체적인 형상을 설명본다.
도 9에서와 같이, 제1 옵셋부(323b)와 제2 옵셋부(332b)는 옵셋부의 양단에서 중앙부로 갈수록 옵셋량이 증가하도록 곡면 형상으로 형성될 수 있다. 이는, 도면에서와 같이 옵셋부의 중앙이 대략 고정스크롤(또는, 선회스크롤)(32)의 중심(O)에서 흡입완료지점을 잇는 선상(CL)에 위치하는 곳으로, 고정스크롤(32)의 변형시 가장 크게 변형되면서 응력을 가장 크게 받게 되는 곳이다. 따라서, 고정랩(323)의 전체 구간 중에서 가장 크게 변형될 구간(또는, 지점)을 가장 크게 옵셋시켜 고정랩(323)과 선회랩(332) 사이의 간섭량을 최소화할 수 있다.
여기서, 제1 옵셋부(323b) 또는 제2 옵셋부(332b)가 곡면 형상으로 형성되는 경우에는 각 옵셋부(323b)(332b)는 적어도 한 개 이상의 곡률반경을 가지는 곡면으로 형성되고, 제1 옵셋부(323b)를 이루는 곡면의 곡률반경(R2)은 해당 부위에서 랩(323)의 곡률반경(R1)보다 작게 형성될 수 있다. 물론, 선회랩의 제2 옵셋부는 그 반대로 형성될 수 있다. 도면으로 도시하지는 않았으나, 각 옵셋부는 옵셋부의 깊이가 동일하도록 직선면 형상으로 형성되되 옵셋부의 양단은 랩간 접촉이 미끄럽게 이루어지도록 곡면으로 형성될 수도 있다.
또, 도면으로 도시하지는 않았으나, 제1 옵셋부(323b)와 제2 옵셋부(332b)는 각각 랩(323)(332)의 진행방향을 따라 전 구간에 걸쳐 형성될 수도 있다. 이 경우 제1 옵셋부와 제2 옵셋부는 각 랩의 진행방향을 따라 그 깊이가 균일하게 형성될 수도 있다.
하지만, 고정랩(323)과 선회랩(332)이 랩의 진행방향을 따라 중심부에서 가장자리부로 갈수록 변형량이 증가되는 점을 감안하면 각 옵셋부의 깊이도 중심부에서 가장자리부로 갈수록 깊게 형성되는 것이 바람직할 수 있다. 만약, 고정랩과 선회랩의 변형량이 랩의 진행방향을 따라 상이함에도 불구하고 각 옵셋부의 깊이를 균일하게 형성하게 되면, 변형량이 작은 부위에서는 옵셋량이 상대적으로 커서 랩간 틈새가 발생되는 반면 변형량이 큰 부위에서는 옵셋량이 상대적으로 작아 랩간 간섭이 발생될 수 있다. 따라서, 변형량이 가장 큰 부위의 옵셋량이 가장 크고, 변형량이 가장 작은 부위의 옵셋량은 가장 작으며, 옵셋량이 큰 부위에서 작은 부위로 갈수록 옵셋량을 비례적으로 작게 형성하는 것이 바람직할 수 있다.
상기와 같이, 고정스크롤 또는/및 선회스크롤이 열변형되어 랩간 간섭이 발생되는 부위의 고정랩 또는/및 선회랩의 측면에 옵셋부를 형성하는 경우에는 선회스크롤이 반경방향으로 밀려나는 것을 미연에 방지할 수 있고, 이를 통해 고정랩과 선회랩 사이에 틈새가 발생되는 것을 억제하거나 최소화하여 압축효율이 향상될 수 있다.
또, 도 10에와 같이, 제1 옵셋부(323b)는 제1 경판부(321)과 만나는 고정랩(323)의 랩뿌리 부근(또는 랩중간)에서 랩선단으로 갈수록 랩두께가 얇아지도록 경사지게 형성하고, 제2 옵셋부(332b)는 제1 옵셋부(323b)와 반대로 랩선단에서 랩뿌리로 갈수록 랩두께가 얇아지도록 경사지게 형성될 수 있다.
여기서, 제1 옵셋부(323b)와 제2 옵셋부(332b)는 흡입실(Vs) 부근의 고정랩(323)과 선회랩(332)이 중심부 방향으로 휘어져 서로 간섭되는 것을 방지하는 것이므로, 제1 옵셋부(323b)는 고정랩(323)의 내측면에, 제2 옵셋부(332b)는 선회랩(332)의 외측면에 각각 형성되는 것이 바람직하다.
이를 포락선을 이용하여 설명할 수 있다. 여기서, 포락선은 압축실이 이동하면서 그리는 궤적을 의미하는데, 이 포락선을 기준으로 하여 선회스크롤의 선회반경만큼 양쪽으로 평행이동을 시키면 고정랩의 내측면과 선회랩의 외측면, 또는 고정랩의 외측면과 선회랩의 내측면 형상이 된다. 도 11은 옵셋부가 없는 경우에 대한 고정랩의 내측면과 선회랩의 외측면 사이의 랩간 거리를 보인 개략도이고, 도 12는 옵셋부가 있는 경우에 대한 고정랩의 내측면과 선회랩의 외측면 사이의 랩간 거리를 보인 개략도이다.
도 11과 같이 옵셋부가 없는 경우에는 포락선(Lp)에서 고정랩(323)의 내측면까지의 거리(δ1)와 선회랩(332)의 외측면까지의 거리(δ2)를 합한 랩간 거리(δ)가 선회반경(r)과 동일하지만, 도 12와 같이 옵셋부가 고정랩과 선회랩에 각각 형성되는 경우에는 포락선(Lp)에서 고정랩의 내측면까지의 거리(δ1')와 선회랩의 외측면까지의 거리(δ2')를 합한 랩간 거리(δ')가 선회반경(r)보다 크게 형성된다. 이는, 옵셋부가 고정랩에만 형성되는 경우에도 마찬가지이다.
한편, 고정랩(323)과 선회랩(332)은 변형되는 양이 서로 다를 수 있으므로, 이 경우에는 제1 옵셋부(323b)와 제2 옵셋부(332b)의 각 옵셋량은 적정 옵셋량을 만족하는 수준에서 서로 다르게 형성하는 것이 바람직할 수 있다.
그리고 이 경우, 제1 옵셋부(323b)의 옵셋량이 제2 옵셋부(332b)의 옵셋량보다 크게 형성하는 것이 바람직할 수 있다. 즉, 본 실시예에서 고정랩(323)의 랩단부와 선회랩(332)의 랩단부가 모두 중심부 방향으로 휘어짐에 따라, 고정랩(323)의 내측면 모서리가 선회랩(332)의 랩뿌리에 간섭될 수 있다. 따라서, 고정랩(323)의 랩뿌리는 선회랩(332)의 랩선단(더 정확하게는 랩선단 측면)과 접촉하지 않게 되므로, 제1 옵셋부(323b)는 고정랩(323)의 내측면 모서리에만 형성할 수 있다. 이에 따라, 고정랩(323)의 랩뿌리에서는 원래의 랩두께를 유지할 수 있어 고압축비 운전시에도 신뢰성을 유지할 수 있다. 반면, 고정랩(323)의 랩선단이 선회랩(332)의 랩뿌리에 접촉하게 되므로, 제2 옵셋부(332b)는 랩뿌리의 끝단, 즉 랩과 경판부가 만나는 지점 또는 이와 인접된 지점까지 형성되어야 한다. 따라서, 선회랩(332)은 상대적으로 랩뿌리에서의 랩두께가 얇아질 수 있으므로, 제1 옵셋부(323b)의 옵셋량이 제2 옵셋부(332b)의 옵셋량보다 크게 형성하는 것이 바람직할 수 있다.
이로써, 본 실시예에 의한 고정스크롤은 토출커버의 내부공간으로 토출되는 고온의 냉매에 의해 가열되어 경판부가 반경방향으로 늘어나는 열변형이 발생되더라도 응력을 가장 많이 받는 고정랩의 일부 구간에서의 랩두께가 감소됨에 따라 해당 구간에서의 고정랩이 선회랩과 간섭되는 것을 최대한 억제할 수 있다. 이를 통해 고정랩과 선회랩의 일부 구간이 간섭되면서 반대쪽에서 랩간 틈새가 발생되어 냉매가 누설되는 것을 미연에 방지할 수 있다. 도 13 및 도 14는 이를 설명하기 위해 보인 도면이다.
도 13은 본 발명에 의한 옵셋부가 구비된 고정스크롤과 선회스크롤의 결합상태를 보인 평면도이고, 도 14는 도 13의 "Ⅶ-Ⅶ"선단면도이다. 이에 도시된 바와 같이, 도면의 좌측에 흡입구가 형성되는 경우 그 흡입구(324)에 근접한 고정랩(323)의 일부 구간에서 그 고정랩(323)의 선단이 도면의 우측으로 심하게 휘어져 선회랩(332)의 랩뿌리와 간섭될 수 있다.
하지만, 고정랩(323)의 우측면과 선회랩(332)의 좌측면에 각각 제1 옵셋부(323b)와 제2 옵셋부(332b)를 반대 형상으로 형성하게 되면 고정랩(323)과 선회랩(332)이 서로 간섭되는 것을 미연에 방지하여 선회스크롤(33)이 도면의 우측으로 밀려나는 것을 억제할 수 있다. 이를 통해 도면의 우측에서 고정랩(323)과 선회랩(332) 사이가 벌어지지 않거나 설사 벌어지더도 그 양을 최소화하여 압축되는 냉매의 누설을 최소화할 수 있다.
한편, 제1 옵셋부와 제2 옵셋부에 대한 다른 실시예가 있는 경우는 다음과 같다.
즉, 전술한 실시예에서는 제1 옵셋부 또는 제1 옵셋부와 제2 옵셋부가 랩뿌리에서 랩선단까지 경사지게 형성하는 것이었으나, 본 실시예의 제1 옵셋부와 제2 옵셋부는 가공성을 고려하여 랩선단과 랩뿌리에 각각 단차지게 형성될 수 있다.
예를 들어, 도 15에서와 같이, 제1 옵셋부(323b)는 고정랩(323)의 내측 랩선단 모서리를 단차지게 형성하는 반면, 제2 옵셋부(332b)는 선회랩(332)의 외측 랩뿌리를 단차지게 형성하여 홈 형상으로 형성할 수도 있다.
이 경우에도 적정 옵셋량은 전술한 실시예와 동일하므로 그 기본적인 구성과 그에 따른 효과는 대동소이하다. 따라서, 이에 대한 구체적인 설명은 생략한다. 다만, 본 실시예는 고정랩의 랩선단 모서리에 제1 옵셋부(323b)가 형성됨에 따라 그만큼 고정랩의 가공이 용이할 수 있다. 또, 선회랩(332)의 경우 제2 옵셋부(332b)가 전술한 경사 가공보다 상대적으로 용이할 수 있어 가공성이 향상될 수 있다.
아울러, 전술한 실시예와 같이 고정랩(323)의 측면 전체에 제1 옵셋부(323b)를 형성하는 경우에는 고정랩(323)의 랩두께가 전반적으로 얇아져 고정랩(323)의 랩강도가 약해질 수 있으나, 본 실시예와 같이 고정랩(323)의 랩선단에 제1 옵셋부(323b)를 형성하게 되면 고정랩(323)의 랩뿌리에서 랩두께를 유지할 수 있고 이를 통해 고정랩(323)의 랩강도를 유지하여 그만큼 신뢰성이 확보될 수 있다.
한편, 제1 옵셋부와 제2 옵셋부에 대한 또다른 실시예가 있는 경우는 다음과 같다.
즉, 전술한 실시예들에서는 고정랩과 선회랩의 랩선단과 랩뿌리의 단면적을 상이하게 형성하는 것이나, 본 실시예는 랩선단과 랩뿌리의 단면적을 동일하게 하면서 옵셋부를 형성하는 것이다.
예를 들어, 도 16에서와 같이, 본 실시예에 따른 제1 옵셋부(323b)는 고정랩(323)의 내측면에, 제2 옵셋부(332b)는 선회랩(332)의 외측면에 각각 형성하되, 제1 옵셋부(323b)와 제2 옵셋부(332b)는 각각 랩선단과 랩뿌리의 단면적이 서로 동일하게 형성될 수 있다.
이에 따라, 제1 옵셋부(323b)와 제2 옵셋부(332b)를 제외한 고정랩(323)과 선회랩(332)의 남은 부분 역시 랩선단과 랩뿌리의 단면적이 동일하게 될 수 있다.
이 경우, 제1 옵셋부(323b)와 제2 옵셋부(332b)는 랩에 수직한 방향으로 가공하여 형성할 수 있어 그만큼 옵셋부의 가공을 용이하게 할 수 있다. 물론, 이 경우에도 고정랩(323)의 제1 옵셋부(323b)는 랩선단 모서리만 절개하여 단차지게 형성할 수도 있다.
상기와 같은 본 실시예에 따른 기본적인 구성과 작용효과는 전술한 실시예들과 대동소이하므로 이에 대한 구체적인 설명은 생략한다. 다만, 본 실시예의 경우 가공이 단순하여 가공오차를 최소화할 수 있다.

Claims (19)

  1. 선회랩이 구비되며, 선회운동을 하는 선회스크롤; 및
    상기 선회랩과 맞물려 흡입실, 중간압실, 토출실로 이루어진 압축실을 형성하도록 고정랩이 구비되는 고정스크롤;을 포함하고,
    상기 선회스크롤의 중심과 고정스크롤의 중심이 일치된 상태에서 양쪽 랩 사이의 거리를 선회반경이라고 할 때, 상기 선회랩의 측면과 이에 대면하는 상기 고정랩의 측면 사이에는 상기 선회반경보다 큰 간격을 가지도록 한 옵셋구간이 존재하는 것을 특징으로 하는 스크롤 압축기.
  2. 제1항에 있어서,
    상기 옵셋구간은 그 옵셋구간의 적어도 일부가 상기 흡입실을 이루는 구간과 중첩되는 것을 특징으로 하는 스크롤 압축기.
  3. 제1항에 있어서,
    상기 옵셋구간에서의 랩두께는 그 옵셋구간 밖에서의 랩두께에 비해 얇게 형성되는 것을 특징으로 하는 스크롤 압축기.
  4. 선회랩이 구비되며, 선회운동을 하는 선회스크롤;
    상기 선회랩과 맞물려 흡입실, 중간압실, 토출실로 이루어진 압축실을 형성하도록 고정랩이 구비되는 고정스크롤; 및
    상기 선회랩과 또는 고정랩 중에서 적어도 어느 한쪽 랩의 측면에 형성되며, 상기 선회스크롤의 중심과 고정스크롤의 중심이 일치된 상태에서 양쪽 랩 사이의 거리로 정의되는 선회반경보다 큰 랩간 거리를 가지는 옵셋부(Offset portion);를 포함하는 것을 특징으로 하는 스크롤 압축기.
  5. 제4항에 있어서,
    상기 옵셋부는 상기 고정랩 중에서 상기 흡입실을 이루는 측면 부위에서의 반대쪽 측면에 형성되는 것을 특징으로 하는 스크롤 압축기.
  6. 제5항에 있어서,
    상기 옵셋부는 상기 고정스크롤의 중심에서 상기 흡입실을 이루는 구간의 양단을 각각 잇는 두 개의 가상선 사이에 적어도 일부가 포함되도록 형성되는 것을 특징으로 하는 스크롤 압축기.
  7. 제4항에 있어서,
    상기 고정랩의 양쪽 측면 중에서 상기 고정스크롤의 중심을 향하는 면을 내측면, 그 반대면을 외측면이라고 할 때,
    상기 옵셋부는 상기 고정랩의 내측면에 형성되는 것을 특징으로 하는 스크롤 압축기.
  8. 제7항에 있어서,
    상기 선회랩의 양쪽 측면 중에서 상기 선회스크롤의 중심을 향하는 면을 내측면, 그 반대면을 외측면이라고 할 때,
    상기 옵셋부는 상기 선회랩의 외측면에 형성되는 것을 특징으로 하는 스크롤 압축기.
  9. 제4항에 있어서,
    상기 옵셋부는 랩의 진행방향을 따라 양단에서 중앙쪽으로 갈수록 깊이가 깊어지도록 형성되는 것을 특징으로 하는 스크롤 압축기.
  10. 제9항에 있어서,
    상기 옵셋부는 적어도 한 개 이상의 곡률반경을 가지는 곡면으로 형성되고,
    상기 옵셋부를 이루는 곡면의 곡률반경은 상기 랩의 곡률반경보다 작게 형성되는 것을 특징으로 하는 스크롤 압축기.
  11. 제4항에 있어서,
    상기 옵셋부가 형성되는 부위에서의 고정랩은 그 랩뿌리 또는 랩뿌리 부근에서 랩선단으로 갈수록 단면적이 감소하도록 형성되는 것을 특징으로 하는 스크롤 압축기.
  12. 제4항에 있어서,
    상기 옵셋부가 형성되는 부위에서의 선회랩은 그 랩뿌리에서 랩선단으로 갈수록 단면적이 증가하도록 형성되는 것을 특징으로 하는 스크롤 압축기.
  13. 제4항에 있어서,
    상기 옵셋부가 형성되는 부위에서의 고정랩은 그 랩선단의 모서리가 단차지게 형성되는 것을 특징으로 하는 스크롤 압축기.
  14. 제4항에 있어서,
    상기 옵셋부가 형성되는 부위에서의 선회랩은 그 랩뿌리 부근에 소정의 깊이를 가지는 홈이 형성되는 것을 특징으로 하는 스크롤 압축기.
  15. 제4항에 있어서,
    상기 옵셋부가 형성되는 부위에서의 고정랩 또는 선회랩은 그 랩뿌리에서 랩선단까지 동일한 단면적을 가지도록 형성되는 것을 특징으로 하는 스크롤 압축기.
  16. 제4항에 있어서,
    상기 옵셋부의 옵셋량은 (스크롤의 열팽창계수 × 스크롤의 중심에서 해당 랩 측면까지의 거리 × 흡 토출냉매의 온도차)에 의해 산출되는 값으로 형성되는 것을 특징으로 하는 스크롤 압축기.
  17. 케이싱;
    상기 케이싱의 내부공간에 구비되는 구동모터;
    상기 구동모터의 회전자에 결합되어 함께 회전하는 회전축;
    상기 구동모터의 하측에 구비되는 프레임;
    상기 프레임의 하측에 구비되며, 흡입구와 토출구가 구비되고, 고정랩이 구비되는 고정스크롤;
    상기 프레임과 상기 고정스크롤 사이에 구비되며, 상기 고정랩과 맞물려 흡입실, 중간압실, 토출실로 이루어진 압축실을 형성하도록 선회랩이 구비되고, 상기 회전축이 관통하여 결합되는 회전축 결합부가 구비되는 선회스크롤; 및
    상기 고정스크롤의 하측에 결합되며, 상기 토출구를 수용하여 그 토출구를 통해 토출되는 냉매를 상기 케이싱의 내부공간으로 안내하는 토출커버;를 포함하고,
    상기 선회스크롤의 중심과 고정스크롤의 중심이 일치된 상태에서 양쪽 랩 사이의 거리를 선회반경이라고 할 때, 상기 선회랩의 측면과 이에 대면하는 상기 고정랩의 측면 사이에는 상기 선회반경보다 큰 간격을 가지도록 한 옵셋구간이 형성되며,
    상기 옵셋구간은 그 옵셋구간의 적어도 일부가 상기 흡입실을 이루는 구간과 중첩되는 것을 특징으로 하는 스크롤 압축기.
  18. 제17항에 있어서,
    상기 옵셋구간은 흡입완료지점을 기준으로 크랭크각으로 ±30도의 범위내에 적어도 일부가 위치하도록 형성되는 것을 특징으로 하는 스크롤 압축기.
  19. 제18항에 있어서,
    상기 옵셋구간에서의 옵셋량은 (스크롤의 열팽창계수 × 스크롤의 중심에서 해당 랩 측면까지의 거리 × 흡 토출냉매의 온도차)에 의해 산출되는 값으로 형성되는 것을 특징으로 하는 스크롤 압축기.
PCT/KR2017/001677 2016-04-26 2017-02-15 스크롤 압축기 WO2017188575A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0051046 2016-04-26
KR1020160051046A KR102487906B1 (ko) 2016-04-26 2016-04-26 스크롤 압축기

Publications (1)

Publication Number Publication Date
WO2017188575A1 true WO2017188575A1 (ko) 2017-11-02

Family

ID=58544843

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/001677 WO2017188575A1 (ko) 2016-04-26 2017-02-15 스크롤 압축기

Country Status (5)

Country Link
US (3) US10648470B2 (ko)
EP (2) EP3633198A1 (ko)
KR (2) KR102487906B1 (ko)
CN (1) CN107313931B (ko)
WO (1) WO2017188575A1 (ko)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102492941B1 (ko) * 2018-05-10 2023-01-27 엘지전자 주식회사 개선된 랩 구조를 구비한 압축기
KR102497530B1 (ko) * 2018-05-28 2023-02-08 엘지전자 주식회사 토출 구조를 개선한 스크롤 압축기
JP6874795B2 (ja) * 2019-08-05 2021-05-19 ダイキン工業株式会社 スクロール圧縮機
KR20210129535A (ko) 2020-04-20 2021-10-28 엘지전자 주식회사 압축기
KR102630535B1 (ko) 2022-03-03 2024-01-29 엘지전자 주식회사 스크롤 압축기

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008163895A (ja) * 2006-12-28 2008-07-17 Mitsubishi Heavy Ind Ltd スクロール圧縮機
JP2009174406A (ja) * 2008-01-24 2009-08-06 Panasonic Corp スクロール圧縮機
JP2010248994A (ja) * 2009-04-15 2010-11-04 Panasonic Corp スクロール圧縮機及びその組立方法
JP2010248995A (ja) * 2009-04-15 2010-11-04 Panasonic Corp スクロール圧縮機
KR20160022146A (ko) * 2014-08-19 2016-02-29 엘지전자 주식회사 스크롤 압축기

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6079189A (ja) * 1983-10-05 1985-05-04 Hitachi Ltd スクロ−ル流体機械
JPH0667504B2 (ja) * 1986-09-29 1994-08-31 積水化学工業株式会社 塗装体の形成方法
CH672351A5 (ko) 1986-12-24 1989-11-15 Bbc Brown Boveri & Cie
DE3801156C2 (de) * 1987-01-24 1998-09-24 Volkswagen Ag Spiralverdichter
US4927341A (en) * 1987-11-23 1990-05-22 Copeland Corporation Scroll machine with relieved flank surface
US5395222A (en) * 1989-11-02 1995-03-07 Matsushita Electric Industrial Co., Ltd. Scroll compressor having recesses on the scroll wraps
US5318424A (en) 1992-12-07 1994-06-07 Carrier Corporation Minimum diameter scroll component
US5413469A (en) * 1993-06-17 1995-05-09 Zexel Corporation Thrust bearing arrangement for a drive shaft of a scroll compressor
JP3105729B2 (ja) * 1994-02-04 2000-11-06 三菱重工業株式会社 スクロール型圧縮機
JP2971739B2 (ja) * 1994-06-20 1999-11-08 トキコ株式会社 スクロール式流体機械
US5591022A (en) 1995-10-18 1997-01-07 General Motors Corporation Scroll compressor with integral anti rotation means
JP3194076B2 (ja) 1995-12-13 2001-07-30 株式会社日立製作所 スクロール形流体機械
JP3684293B2 (ja) * 1997-09-16 2005-08-17 株式会社豊田自動織機 スクロール型圧縮機
JP2001020878A (ja) * 1999-07-06 2001-01-23 Fujitsu General Ltd スクロール圧縮機
US6275122B1 (en) * 1999-08-17 2001-08-14 International Business Machines Corporation Encapsulated MEMS band-pass filter for integrated circuits
US6527526B2 (en) * 2000-12-07 2003-03-04 Lg Electronics, Inc. Scroll compressor having wraps of varying thickness
DE10103775B4 (de) * 2001-01-27 2005-07-14 Danfoss A/S Verfahren und Spiralverdichter zur Verdichtung eines kompressiblen Mediums
JP4310960B2 (ja) 2002-03-13 2009-08-12 ダイキン工業株式会社 スクロール型流体機械
JP3991810B2 (ja) * 2002-08-05 2007-10-17 株式会社豊田自動織機 スクロール型圧縮機
US6736622B1 (en) * 2003-05-28 2004-05-18 Scroll Technologies Scroll compressor with offset scroll members
JP4789623B2 (ja) 2003-10-17 2011-10-12 パナソニック株式会社 スクロール圧縮機
ES2536506T3 (es) 2006-02-28 2015-05-26 Daikin Industries, Ltd. Parte de deslizamiento del compresor, preforma de la parte de deslizamiento, parte de la espiral y compresor
JP2007278271A (ja) 2006-03-14 2007-10-25 Daikin Ind Ltd スクロール部材およびそれを備えたスクロール圧縮機
JP4301315B2 (ja) 2007-03-30 2009-07-22 ダイキン工業株式会社 スクロール部材及びその製造方法、並びに圧縮機構及びスクロール圧縮機
KR20090012618A (ko) * 2007-07-30 2009-02-04 엘지전자 주식회사 스크롤 압축기
JP5888897B2 (ja) * 2011-08-05 2016-03-22 三菱重工業株式会社 スクロール部材及びスクロール型流体機械
US9163632B2 (en) 2011-09-21 2015-10-20 Daikin Industries, Ltd. Injection port and orbiting-side wrap for a scroll compressor
BE1021558B1 (nl) * 2013-02-15 2015-12-14 Atlas Copco Airpower, Naamloze Vennootschap Spiraalcompressor
WO2014134961A1 (zh) * 2013-03-04 2014-09-12 艾默生环境优化技术(苏州)有限公司 涡旋部件和涡旋压缩机
JP6267441B2 (ja) * 2013-05-28 2018-01-24 株式会社ヴァレオジャパン スクロール型圧縮機
KR102051095B1 (ko) 2013-06-10 2019-12-02 엘지전자 주식회사 스크롤 압축기
KR102385789B1 (ko) 2017-09-01 2022-04-13 삼성전자주식회사 스크롤 압축기

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008163895A (ja) * 2006-12-28 2008-07-17 Mitsubishi Heavy Ind Ltd スクロール圧縮機
JP2009174406A (ja) * 2008-01-24 2009-08-06 Panasonic Corp スクロール圧縮機
JP2010248994A (ja) * 2009-04-15 2010-11-04 Panasonic Corp スクロール圧縮機及びその組立方法
JP2010248995A (ja) * 2009-04-15 2010-11-04 Panasonic Corp スクロール圧縮機
KR20160022146A (ko) * 2014-08-19 2016-02-29 엘지전자 주식회사 스크롤 압축기

Also Published As

Publication number Publication date
KR20170122016A (ko) 2017-11-03
EP3239528A3 (en) 2017-11-08
US20200049146A1 (en) 2020-02-13
US20220364560A1 (en) 2022-11-17
KR102487906B1 (ko) 2023-01-12
KR20230008690A (ko) 2023-01-16
US11920590B2 (en) 2024-03-05
EP3633198A1 (en) 2020-04-08
CN107313931B (zh) 2021-05-04
EP3239528A2 (en) 2017-11-01
US11408423B2 (en) 2022-08-09
CN107313931A (zh) 2017-11-03
US20170306955A1 (en) 2017-10-26
EP3239528B1 (en) 2019-11-06
US10648470B2 (en) 2020-05-12

Similar Documents

Publication Publication Date Title
WO2017188575A1 (ko) 스크롤 압축기
WO2017188557A1 (ko) 스크롤 압축기
WO2017188573A1 (ko) 스크롤 압축기
WO2017188576A1 (ko) 스크롤 압축기
WO2017188574A1 (ko) 스크롤 압축기
WO2018056635A1 (ko) 배압 구조가 적용된 상호 회전형 스크롤 압축기
WO2017188558A1 (ko) 스크롤 압축기
WO2017175945A1 (en) Motor-operated compressor
EP2689137A2 (en) Scroll compressor
WO2018190520A1 (en) Scroll compressor
KR20190129372A (ko) 개선된 랩 구조를 구비한 압축기
KR100677528B1 (ko) 스크롤 압축기
WO2018147562A1 (en) Hermetic compressor
WO2018199488A1 (ko) 스크롤 압축기
WO2018190544A1 (en) Scroll compressor
JPH02248675A (ja) スクロール流体機械
WO2018174449A1 (en) Hermetic compressor
WO2022197092A1 (ko) 로터리 압축기
JP3126845B2 (ja) スクロール式流体機械
WO2021215652A1 (ko) 압축기
WO2022169117A1 (ko) 로터리 압축기
WO2019221400A1 (ko) 일체형 밸브 시트와 스토퍼 시트가 구비되는 압축기
WO2018230827A1 (ko) 스크롤 압축기
KR102043157B1 (ko) 전동식 압축기
WO2017099384A1 (ko) 스크롤 압축기

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17789760

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17789760

Country of ref document: EP

Kind code of ref document: A1