WO2017185580A1 - 倒装led芯片集成封装的光源组件结构及其制作方法 - Google Patents

倒装led芯片集成封装的光源组件结构及其制作方法 Download PDF

Info

Publication number
WO2017185580A1
WO2017185580A1 PCT/CN2016/097979 CN2016097979W WO2017185580A1 WO 2017185580 A1 WO2017185580 A1 WO 2017185580A1 CN 2016097979 W CN2016097979 W CN 2016097979W WO 2017185580 A1 WO2017185580 A1 WO 2017185580A1
Authority
WO
WIPO (PCT)
Prior art keywords
light source
flip
chip
integrated
carrier substrate
Prior art date
Application number
PCT/CN2016/097979
Other languages
English (en)
French (fr)
Inventor
王良臣
汪延明
苗振林
张雪亮
谈健
Original Assignee
湘能华磊光电股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 湘能华磊光电股份有限公司 filed Critical 湘能华磊光电股份有限公司
Publication of WO2017185580A1 publication Critical patent/WO2017185580A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04105Bonding areas formed on an encapsulation of the semiconductor or solid-state body, e.g. bonding areas on chip-scale packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/23Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
    • H01L2224/24Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of an individual high density interconnect connector
    • H01L2224/241Disposition
    • H01L2224/24135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/24137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/96Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being encapsulated in a common layer, e.g. neo-wafer or pseudo-wafer, said common layer being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/005Processes relating to semiconductor body packages relating to encapsulations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0066Processes relating to semiconductor body packages relating to arrangements for conducting electric current to or from the semiconductor body

Definitions

  • the present invention relates to the technical field of LED light sources, and in particular to a light source assembly structure of a flip-chip LED chip integrated package and a manufacturing method thereof.
  • LED Light Emitting Diode
  • LED Light Emitting Diode
  • the research on LED field has become more and more important, and the light source composed of LED chips has become a research topic of great concern. Among them, further improving the manufacturing efficiency of the light source, reducing the manufacturing cost, and improving the luminous efficiency and reliability have become important research contents.
  • the LED flip chip has been widely recognized by the LED industry as a new generation of products with its low voltage, high current carrying capacity, high brightness, high reliability, and high saturation current density.
  • the main structural feature of the LED flip chip is that the P and N electrodes of the chip adopt a large-area structure, and the main light-emitting surface is a sapphire surface.
  • the interval between the two glue points is too large, the contact area between the chip and the COB board is reduced, that is, the heat dissipation channel area of the chip becomes small, which directly affects the light efficiency and the reliability of the light source driven by the large current.
  • the solder contained in the solder paste and other materials used in the current LED packaging industry will easily form voids at the connection interface after volatilization of the reflow soldering, which will further reduce the heat dissipation surface of the chip.
  • the flux in the solder paste volatilizes and often causes brown matter to remain between the LED chip surface and the COB board surface, absorbing a part of the light, reducing the light output of the light source; and, the larger voids and the residual in the gap Volatile substances such as gases are heated to increase in temperature when the chip is driven by a large current, which ultimately leads to a decrease in contact fastness and reliability of the chip electrodes.
  • the P and N electrodes of each flip chip are coated with conductive paste. The more solder joints the chip, the more chances of the above-mentioned defects will occur, and the influence on the quality of the light source. It is also more serious.
  • the invention provides a light source component structure of a flip-chip LED chip integrated package and a manufacturing method thereof, and the invention has a novel light source component with higher optical density, which further improves the quality of the light source, reduces the manufacturing cost of the LED light source, and solves the current
  • the invention is an innovative flip-chip LED chip integrated package light source component structure and manufacturing method developed on the basis of CSP.
  • the flip-chip LED chips are regularly arranged according to pre-designed chip spacing requirements;
  • each interconnecting integrated unit is regarded as a light source component unit cell, so that The P, N electrode connection region of the light source component unit cell is exposed, and other regions of the light source component unit cell are covered and planarized by the thermal conductive adhesive;
  • the carrier substrate integrated with the electrical interconnection is cut according to the light source unit cell, and is divided into a light source assembly.
  • the flexible transition base film is coated with a uniform thickness of a specific encapsulant; further:
  • a coating of a certain thickness that is uniform and does not affect curing is coated on the flexible transition base film, and the encapsulant contains a fluorescent powder doped with a phosphor.
  • the encapsulated adhesive is used as a package adhesive carrier substrate for flip-chip LED chip array; further: the cured package adhesive is used as a non-stained flip-chip LED chip array The encapsulant carrier substrate.
  • the printing technology is further: using a screen printing technology of a wire mesh, a steel mesh or a flexographic plate.
  • the slurry fluid is further thermally conductive, has solderability, has adhesion to the encapsulant, and has a reflectance greater than 70% for visible light, and contains powder A slurry fluid of a resinous slurry of a metal.
  • the thermal conductive adhesive is printed, further: the second time is adopted on the carrier substrate after the electrical interconnection is integrated.
  • a printing technique after the printing is cured, becomes a carrier substrate integrated with the electrical interconnection adhered to the thermal conductive insulating adhesive, the printed thermal conductive insulating adhesive being a transparent adhesive or a white thermal conductive having a reflectance greater than 70% for visible light Insulating glue.
  • the light source component unit cell slashes the electrically-interconnected carrier substrate and divides into a light source component, further: by mechanical cutting, according to the light source component unit cell
  • the electrically interconnected integrated carrier substrate is divided into light source components.
  • the invention also discloses a light source component structure of a flip-chip LED chip integrated package, characterized in that the light source component structure, the light source component structure of the flip-chip LED chip integrated package comprises: a flip chip LED chip, a flip chip LED chip array a package carrier substrate, an integrated carrier substrate after electrical interconnection, and a light source component unit cell after secondary printing of the thermal conductive adhesive; wherein
  • the packaged adhesive carrier substrate of the flip-chip LED chip array is arranged on a flexible transition base film having a viscosity tolerance of more than 150° and baked without deformation, and is arranged according to a pre-designed chip spacing requirement.
  • LED chip pasting the P and N electrode faces of the flip-chip LED chip on the adhesive side of the flexible transition base film to form a flip-chip LED chip array; coating the flexible transition base film a uniform thickness of the encapsulant, and curing the encapsulant; removing the flexible transition base film, and using the encapsulated adhesive as a package carrier substrate for flip-chip LED chip array;
  • the electrically interconnected integrated carrier substrate is such that the electrical interconnection of the electrodes between the flip-chip LED chips is completed sequentially by using a slurry fluid, a printing technique and a thermal curing technique on the package adhesive carrier substrate. Integrating to form an integrated carrier substrate after electrical interconnection;
  • the light source assembly unit cell after the secondary printing of the thermal conductive insulating rubber is printed for the second time on the carrier substrate after the electrical interconnection is integrated, and the thermal conductive insulating rubber is printed and cured after being planarized.
  • An interconnecting integrated unit is regarded as a light source unit cell such that the P and N electrode connection regions of the light source unit cell are exposed, and other regions of the light source unit cell are covered and planarized by a thermally conductive insulating material.
  • the printing technique is further: using a screen printing technology of a wire mesh, a steel mesh or a flexographic plate; the slurry fluid is further electrically conductive after being thermally cured, and between the sealing glue A slurry fluid having a property of adhesion and having a reflectance of more than 70% for visible light, and the slurry fluid is weldable to metal and a resinous slurry containing a powdery metal.
  • each interconnecting integrated unit is regarded as a light source component unit cell, so that the P and N electrodes of the light source unit cell The connection area is exposed, and other areas of the light source unit cell are covered and planarized by a thermally conductive insulating paste.
  • the light source assembly structure of the flip-chip LED chip integrated package of the present invention and the manufacturing method thereof achieve the following beneficial effects:
  • the structure of the light source assembly of the present invention and the manufacturing method thereof are simplified compared to the current process of patching the LED chips one by one on the interconnection circuit of the COB substrate; and the present invention will A plurality of flip-chip LED chips are arranged in an array on the transition base film, and a plurality of light source components can be prepared at one time by the printing technology, thereby improving the productivity and the shipment rate, and reducing the production cost of the light source.
  • the structure of the light source assembly and the manufacturing method thereof according to the present invention adopt a printing method to ensure a gap between the P and N electrode interconnection lines of the chip, avoiding a short circuit between the P and N electrodes and forming a cavity between the chip and the COB board surface. , residues and other phenomena. Maximize the heat dissipation area of the chip, ensure the photoelectric characteristics and reliability of the flip-chip LED, withstand greater current and provide greater light output.
  • the structure of the light source assembly and the manufacturing method thereof according to the present invention adopt a printing method to ensure the uniformity of the chromaticity of the light source.
  • the light source assembly structure and the manufacturing method thereof according to the present invention are arranged in an array by using flip-chip LED chips, and the preparation of a plurality of light source components is completed at one time, and a plurality of miniaturized light source components can be obtained after the division. At the same time, the size of the light source component can be reduced from the overall design, which is convenient for the user.
  • FIG. 1 is a schematic flow chart of a method for fabricating a light source assembly of a flip-chip LED integrated package according to the present invention
  • 2A is a top plan view showing the structure of a light source assembly of the flip-chip LED integrated package according to the present invention
  • 2B is a side view showing the structure of a light source assembly of the flip-chip LED integrated package according to the present invention
  • FIG. 3 is a schematic flow chart of an application example of a method for fabricating a light source component of a flip-chip LED integrated package according to the present invention
  • FIG. 4 is a cross-sectional view showing a flip-chip LED chip forming a flip-chip LED chip array on a flexible transition base film according to the present invention
  • FIG. 5 is a cross-sectional view showing the flip-chip LED chip of the present invention after curing by applying an encapsulant on a flexible transition base film;
  • FIG. 6 is a cross-sectional view showing a flip-chip LED chip array formed after removing a flexible transition base film according to the present invention
  • Figure 7 is a cross-sectional view showing the integrated carrier substrate after electrical interconnection of the first conductive paste (slurry fluid) after the first conductive paste (slurry fluid) is printed and cured;
  • FIG. 8 is a cross-sectional view showing a single cell electrode surface of a light source module after flat printing of a thermal conductive insulating rubber according to the present invention
  • Figure 9 is a cross-sectional view showing a flip chip LED chip array showing a split position of a flip chip LED chip light source unit according to the present invention.
  • Figure 10 is a cross-sectional view showing a flip-chip LED chip light source assembly formed after the division of the present invention.
  • FIG. 2A and FIG. 2B a top view and a side view of a light source assembly structure of the flip-chip LED chip integrated package of the present invention are shown in FIG. 1.
  • the method for fabricating the light source assembly structure in the embodiment includes the following steps:
  • Step 101 On a flexible transition base film having a viscous withstand temperature greater than 150° and baked without deformation, the flip-chip LED chips are arranged according to a pre-designed chip spacing requirement;
  • Step 102 Pasting the P and N electrode faces of the flip-chip LED chip on the adhesive side of the flexible transition base film to form a flip chip LED chip array;
  • Step 103 coating a uniform thickness of the encapsulant on the flexible transition base film, and curing the encapsulant;
  • the thickness of the encapsulant 50 is uniformly applied and controlled according to the height of the installed dam;
  • Step 104 removing the flexible transition base film, and using the encapsulated adhesive 50 as a package carrier substrate for flip-chip LED chip array;
  • Step 105 on the package adhesive carrier substrate, sequentially using the slurry fluid, printing technology and thermal curing technology to complete the electrical interconnection integration of the electrodes between the flip-chip LED chips, forming an integrated carrier after electrical interconnection Substrate
  • Step 106 Printing the thermal conductive adhesive on the carrier substrate after the electrical interconnection is integrated, printing the thermal conductive adhesive, and curing after planarization, and each interconnecting integrated unit is regarded as a light source component unit cell.
  • the connection area of the P and N electrodes of the light source component unit cell is exposed, and other areas of the light source component unit cell are covered and planarized by the thermal conductive adhesive;
  • Step 107 Scratching the electrically-interconnected carrier substrate according to the light source component unit cell, and dividing into a light source component.
  • the flexible transition base film has viscosity, does not deform at 150 degree baking, and the encapsulant coating on the transition base film does not affect the curing of the encapsulant, the encapsulant After curing, it is separated from the transition base film.
  • a coating of a certain thickness that is uniform and does not affect curing is coated on the flexible transition base film, and the encapsulant contains a fluorescent powder doped with a phosphor.
  • the encapsulant is cured on the transition base film, and is separated from the base film after curing, and at the same time, the encapsulant has adhesion to the flip-chip LED chip in the coating curing process.
  • the electrode surface of the flip-chip LED chip is not contaminated.
  • the encapsulated adhesive is used as a package adhesive carrier substrate for a non-stained inverted LED chip array.
  • the interconnection of the P and N electrodes of the flip-chip LED chip array and the flattening of the thermal conductive adhesive are realized by printing technology, and the printing technology adopts the screen of the screen, the steel mesh or the flexographic version. Printing Technology.
  • the slurry fluid further has a conductivity, solderability, adhesion to the encapsulant, and a reflectance greater than 70% for visible light after thermal curing, and contains powder.
  • a slurry fluid of a resinous slurry of a metal is a slurry fluid of a resinous slurry of a metal.
  • the thermal conductive adhesive is printed, further: on the carrier substrate after the electrical interconnection is integrated Printing technology is used twice, and it is a white thermal conductive adhesive that has adhesion and is transparent or has a reflectivity greater than 70% for visible light.
  • the carrier substrate integrated by the electrical interconnection is cut according to the unit of the light source component, and is divided into a light source component, and further, by means of mechanical cutting, the unit cell is cut according to the light source component.
  • the electrically interconnected integrated carrier substrate is divided into light source components.
  • the inter-electrode electrical interconnection of the separated flip-chip LED chip array is used as a substrate-free package adhesive.
  • the interconnection circuit on the COB substrate is omitted, and the process is simplified one by one, which simplifies the process, greatly increases the capacity and the shipment rate, and reduces the production cost and the equipment cost.
  • the method of the invention also eliminates the phenomenon that the traditional method is easy to cause short circuit between electrodes in the patch on the COB substrate, and voids and residues are formed between the chip surface and the COB board, thereby realizing the maximum heat conduction channel area of the flip-chip LED chip. It ensures the photoelectric characteristics and reliability of the flip-chip LED chip, can withstand more current, and can provide greater light output.
  • FIG. 2A and FIG. 2B a top view and a side view of a structure of a light source assembly of a flip-chip LED chip integrated package according to the present invention
  • the light source assembly structure including: a flip-chip LED chip 10 and a package of flip-chip LED chip arrays a plastic carrier substrate, an integrated carrier substrate 61 after electrical interconnection, and a light source component unit cell after secondary printing of the thermal conductive insulating rubber;
  • a flip-chip LED chip 10 a package adhesive carrier substrate for flip-chip LED chip array, a carrier substrate after electrical interconnection integration, and a light source component unit cell after secondary printing of thermal conductive adhesive;
  • the packaged adhesive carrier substrate of the flip-chip LED chip array is arranged on a flexible transition base film having a viscosity tolerance of more than 150° and baked without deformation, and is arranged according to a pre-designed chip spacing requirement.
  • LED chip; the surface of the P electrode 31 and the N electrode 32 of the flip-chip LED chip are pasted on the adhesive side of the flexible transition base film to form a flip chip LED chip array; on the flexible transition base film Applying a certain thickness of the uniform encapsulant 50, and curing the encapsulant 50; removing the flexible transition base film, and using the encapsulated adhesive 50 as a package carrier substrate for flip-chip LED chip array;
  • the electrically-interconnected integrated carrier substrate 61 is used to perform electrical interaction between the flip-chip LED chips on the package adhesive carrier substrate in the order of slurry fluid, printing technology and thermal curing technology. Integrating, forming a carrier substrate 61 after electrical interconnection integration;
  • the light source assembly unit cell after the secondary printing of the thermal conductive insulating rubber is printed for the second time on the carrier substrate after the electrical interconnection is integrated, and the thermal conductive insulating rubber is printed and cured after being planarized.
  • An interconnecting integrated unit is regarded as a light source unit cell such that the P and N electrode connection regions of the light source unit cell are exposed, and other regions of the light source unit cell are covered and planarized by a thermally conductive insulating material.
  • the flip chip LED chip 10 includes an LED chip body and an electrode.
  • the separated flip-chip LED integrated inter-electrode electrical interconnection line is formed on the substrate-free encapsulant, which is obviously different from the conventional method for realizing the chip electrode interconnection integrated package on the COB substrate.
  • This method eliminates the conventional conventional patching process on the COB substrate, which easily causes short circuit between the electrodes, and forms voids and residues between the chip surface and the surface of the COB board, thereby realizing the maximum heat conduction channel area of the chip and ensuring the fall of the chip.
  • LED photoelectric characteristics and reliability can withstand greater current and provide greater light output.
  • the light source component of the flip-chip LED integrated package of the invention has uniform color chromaticity, realizes miniaturization of the light source, broadens the scope of use and flexibility, and provides convenience for the user.
  • the method includes:
  • Step 201 Arranging a plurality of flip-chip LED chips 10 on the flexible transition base film (conversion base film) 20 according to the designed chip spacing requirement, and pasting the P electrode 31 and the N electrode 32 surface of the flip-chip LED chip 10 into the flexible On the side of the transition base film 20 with the glue side, a flip chip LED chip array is formed, see FIG.
  • the flip chip LED chip 10 is a chip that has been sorted according to the excitation wavelength of the phosphor.
  • the flip-chip LED chips are arranged equidistantly on the flexible transition base film 20 according to design requirements, and the electrode surface of the flip-chip LED chip 10 is adhered to the flexible transition base film 20 having a certain viscosity, and the flexible transition base film 20 needs at least resistance.
  • 150 ° C high temperature and baking is not deformed, and can ensure that the encapsulant 50 is coated on the film with a side of the film for curing, depending on the nature of the flexible transition base film 20, the cured seal
  • the glue 50 is used as a package carrier substrate for flip chip LED chip arrays.
  • the equidistance in the present invention means that the arrangement distances of the plurality of flip-chip light-emitting devices in the x-axis and y-axis directions are equal.
  • the flexible transition base film 20 needs to be at least resistant to a high temperature of 150 ° C, and the baking is not deformed, and is not a problem of being replaced by a general or ordinary base film.
  • Step 202 attaching a dam 40 of a certain height around the inverted LED array on the flexible transition base film 20, uniformly coating and controlling the thickness of the encapsulant 50 according to the height of the installed dam, see FIG.
  • the material of the dam 40 may be a flexible film (such as a plastic film, etc.) or a hard plate (such as a metal plate, etc.).
  • the encapsulant 50 is a high transmittance (>95%, 450 nm), high refractive index, (preferred refractive index greater than 1.50) silica gel, which can be cured on the flexible transition base film 20 and has good adhesion to the chip. Attachable and easy to cut.
  • the encapsulant 50 can be added to the phosphor according to the thickness and color requirements of the glue.
  • the glue can be applied by dispensing or by spraying, including one-time coating and two-coating.
  • the applied glue can be a phosphor-free encapsulant or fluorescent glue.
  • Step 203 After the encapsulant 50 is cured, the dam 40 is removed, as shown in FIG. 6. Specifically, in order to remove the flexible transition base film 20, the cured encapsulant 50 is used as an encapsulant carrier substrate for flip-chip LED chip arrays.
  • Step 204 on the package adhesive carrier substrate, sequentially using the slurry fluid, printing technology and thermal curing technology to complete the electrical interconnection integration of the electrodes between the flip-chip LED chips, forming an integrated carrier after electrical interconnection
  • the substrate specifically, the P, N electrode region of the flip-chip LED chip interconnection is aligned with the printing fluid (slurry) 71 printing hole on the printing plate on the encapsulant 50, and the slurry fluid is printed and removed.
  • the printing plate heats and cures the printed slurry fluid to complete the serial and electrical connection of the electrodes between the flip-chip LED chips (electrical interconnection integration) to form the carrier substrate 61 after the electrical interconnection is integrated, see FIG. 2B and FIG. 7.
  • the array of flip-chip LED chips 10 on the encapsulant 50 is printed in different series-parallel manners to complete the electrical connection of the P electrodes 31 and the N electrodes 32 in the unit cells of the plurality of light source components that meet the design requirements.
  • the printed slurry fluid (slurry) as an electrical interconnect in the present invention may be a printing paste or other slurry of highly conductive, highly reflective or highly transmissive granular or linear nanometal mixed with organic matter, ie
  • the slurry fluid is further a material having electrical conductivity, weldability, adhesion to the encapsulant and having a reflectance greater than 70% for visible light, and a resinous slurry containing a powdery metal. Slurry fluid.
  • Step 205 printing the thermal conductive adhesive 81 on the carrier substrate 61 after the electrical interconnection is integrated for the second time, and curing the thermal conductive adhesive 81 after planarization (forming the region as shown in FIG. 2B and FIG.
  • Each of the interconnecting integrated units is regarded as a light source unit cell such that the P and N electrode connection regions of the light source unit cell are exposed, and other regions of the light source unit cell are covered and planarized by the heat conductive insulating material.
  • the flattening process uses a highly viscous gelatinous liquid (including printed thermal conductive insulating tape for the positive-fit structure patch, white oil coated by the reflector in the luminaire), which is insulated, thermally conductive, highly reflective or highly transmissive, and then cured by heating. To achieve flattening.
  • the P and N electrode lead-out regions (also referred to as connection regions) of the light source unit cells are bare.
  • Step 206 Scratching the electrically-interconnected carrier substrate 61 according to the light source component unit cell, and dividing into a light source component. That is, an integrated chip carrier containing a plurality of light source unit cells is attached to a viscous blue film or a white film, and cut at a cell size, see the cutting position 70 shown in FIG. 9, and then the film is peeled off in another blue On the membrane, a separate light source assembly is formed, see Figure 10.
  • the cutting uses a mechanical cutting method.
  • the welding of the electrode lead-out area (also referred to as the connection area) on the heat-dissipating substrate and the contact interface of the two are completed (for example, using a thermal conductive adhesive), and finally assembled into a light source. There must be a good thermal interface between the surface of the component and the light source substrate.
  • the fabrication of the light source assembly of the flip-chip LED integrated package is completed, and the flip-chip LED light-emitting device formed by the method of the invention does not need to take out electrodes or leads on the main light-emitting surface, and the light-emitting wavelength is not limited to blue light, and may also include the entire visible light. Band, ultraviolet and infrared bands, or mixed light consisting of light in the above bands.
  • a light-emitting diode is taken as an example to illustrate a high-voltage and high-current light source component structure and a manufacturing method for realizing the integration of inter-chip electrode interconnections on the integrated flip-chip LED chip 10 array without the basic board package adhesive 50.
  • the present invention separates the LED flip-chips at a certain pitch on a flexible transition base film flexible transition base film having a certain viscosity, and then coats a uniform thickness of the package adhesive (also referred to as fluorescent glue). And curing the encapsulant; removing the flexible transition base film, the cured encapsulant has become the carrier substrate of the flip-chip LED array; on the carrier substrate of the packaged flip-chip LED array, according to the design requirements
  • the inter-chip electrode interconnection integration is completed by a process such as printing technology, and each interconnection integrated unit can be regarded as a light source unit cell; and the second application of the interconnected integrated flip-chip LED array substrate is completed. Printing technology prints thermal insulation rubber and heats it.
  • connection region of the P and N electrodes of the source unit cell is exposed, and other regions of the unit cell of the light source component are covered and planarized by the thermal conductive adhesive; the carrier base of the electrical interconnection is divided by the unit of the light source component
  • the film is divided into a plurality of light source components; the light source component is bonded and assembled with a heat conductive substrate (such as a COB substrate such as aluminum or alumina) to realize electrical connection and combined into an independent light source.
  • a heat conductive substrate such as a COB substrate such as aluminum or alumina
  • the invention completely eliminates the traditional integrated packaging form of the separate flip-chip LED interconnection on the COB board in the current packaging industry, and eliminates almost all processes such as patching and solid crystal on the COB board in the package.
  • the industry chain has been reduced, costs have been reduced, and production capacity has been greatly increased. It is an innovative package and process integrated packaged light source component with huge market space and potential economic value.
  • the above-mentioned light source assembly can be electrically connected to the heat-conducting substrate and the heat-dissipating interface can be assembled and assembled to form a flip-chip LED chip integrated light source.
  • the light source assembly is prepared by the manufacturing method in the above embodiment by using a flip-chip LED chip array integrated package, and a method for fabricating a plurality of light source assembly structures at one time.
  • the size of the light source component can be reduced by the overall design, and the miniaturized light source component can be obtained after being divided, which is convenient for the user.
  • the structure of the light source assembly and the manufacturing method thereof according to the present invention eliminate the LED chip patching, curing and coating of the LED chips one by one on the COB substrate compared with the flip chip LED packaging technology of the prior art.
  • the process of re-cure of the encapsulant and the like simplifies the preparation process of the flip-chip LED package light source assembly; and in the invention, a plurality of flip-chip LED chips are formed into a form of a flip-chip LED chip array, and a plurality of uniform light source components can be prepared at one time
  • the preparation process can be industrialized, the production capacity of the light source component is greatly improved, and the production cost of the light source component is reduced to some extent.
  • the structure of the light source assembly and the manufacturing method thereof are carried out by using a package glue, an electrical interconnection integrated glue and a thermal conductive insulating glue on the surface of the package adhesive carrier, thereby ensuring P and N electrode pads.
  • the coverage of the thermal conductive adhesive avoids the gap between the chip and the COB substrate interface to ensure the heat dissipation area of the chip, ensures the photoelectric characteristics and reliability of the flip-chip LED, and can withstand greater current and provide greater light output.
  • the light source assembly structure and the manufacturing method thereof according to the present invention are coated one by one on the basis of a base film having a flip-chip LED chip array by using a package adhesive, an electrical interconnection integrated adhesive and a thermal conductive insulating glue, and are not formed.
  • the void or leaving a residue improves the luminous efficiency of the light source assembly and ensures the uniformity of the chromaticity of the light source.
  • the structure of the light source assembly and the manufacturing method thereof are in the form of a flip chip LED chip array, and the preparation of the plurality of light source components is completed at one time, and the size of the light source component can be reduced from the overall design, and after being divided A plurality of miniaturized light source components can be obtained, which are convenient for users to use, facilitate industrialization and increase productivity.
  • the invention completely eliminates the traditional integrated packaging form of the separate flip-chip LED interconnection on the COB board, and eliminates almost all the process steps of chip mounting and solid crystal on the COB board. Solved a series of problems such as "empty" brought about by this. Improve the reliability of the light source, reduce costs and increase productivity. It is an innovative package and process integrated packaged light source component with huge application market space and potential economic value.
  • embodiments of the present invention provide structures, methods, apparatus, materials, and the like for LED integrated packaged light source assemblies. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Led Device Packages (AREA)

Abstract

一种倒装LED芯片集成封装的光源组件结构及其制作方法,将倒装LED芯片(10)排列在柔性过渡基膜(20)上形成芯片列阵;在基膜(20)上均匀涂覆一定厚度的封装胶(50),并固化;去除柔性过渡基膜(20),固化后的封装胶(50)作为芯片列阵的载体基片;在封装胶载体基片上完成芯片间电极的电性互连集成;电性互连集成的载体基片(61)上印刷导热绝缘胶(81)、固化,形成各个光源组件单胞;依照各个光源组件单胞切割后得到分离的光源组件。该光源组件与导热基板粘结装配,实现与外电路的电连接组合成独立光源。此方法摆脱了目前封装界在COB板上对分离芯片互连集成封装形式,省去了在COB板上的贴片、固晶等工艺环节,简化了制程。

Description

倒装LED芯片集成封装的光源组件结构及其制作方法 技术领域
本发明涉及LED光源的技术领域,具体地,涉及一种倒装LED芯片集成封装的光源组件结构及其制作方法。
背景技术
LED(Light Emitting Diode,发光二极管)作为一种新型的产业品,以其工作电压低、工作电流小、抗冲击和抗震性能好、可靠性高、寿命长等特点,在人们生活的的应用越来越普遍。近些年来,各方面对LED领域的研究力度也越来越大,由LED芯片构成的光源也随之成为重点关注的研究课题。其中,进一步提高光源的制造效率、降低制造成本以及提高发光效率和可靠性就成为重要的研究内容。
LED倒装芯片以其低电压、大电流下的承载能力、高亮度、高可靠性、高饱和电流密度等特点已普遍被LED产业界认可的新一代的产品。目前LED倒装芯片主要的结构特点是芯片的P、N电极采用大面积结构,主出光面是蓝宝石面。
在LED封装产业界,从芯片到光源的生产流程中,普遍采用的是:将倒装LED芯片或所谓无基板芯片级封装(CSP)芯片在COB(Chip On Board,板上芯片)基板上用锡膏、银浆等膏状或浆状流体材料分别点涂在芯片上的P、N两个电极的互连区,加热固化后完成贴片,实现芯片的P、N电极与COB板上的外电路的连接和在COB板的芯片集成。实际遇到的问题是,在贴片加热固化过程中,常因P、N电极的两区的点浆量难以控制而造成芯片在COB上移位,或因两区点胶点的间隔过小,导致P、N电极间短路。若两胶点的间隔过大,会造成芯片与COB板的接触面积减小,即芯片的散热通道面积变小,它直接影响到了大电流驱动下的光效及光源的信赖性。此外, 目前的LED封装业界使用的锡膏等材料中包含的助焊剂在回流焊挥发之后,会在连接界面处容易形成空洞,同样会使芯片的散热面进一步减小。
另外,一般锡膏中的助焊剂挥发后常产生褐色物残留在LED芯片面与COB板面之间,吸收一部分光,减小了光源的光输出;并且,较大的空洞和间隙内的残留气体等挥发物在芯片大电流驱动下温度升高产生膨胀,最终导致芯片电极的接触牢度及可靠性降低。目前的在COB板上对每一个倒装芯片的P、N电极两个区作导电浆料点涂,芯片越多焊点越多,上述诸多弊病出现的几率将更多,对光源品质的影响也更为严重。
发明内容
本发明提供的一种倒装LED芯片集成封装的光源组件结构及其制作方法,该发明具有更高光密度的新型光源组件,它进一步提高了光源的品质,降低LED光源的制造成本,解决了目前倒装LED芯片在完成光源制程的工艺过程中和推向市场的使用过程中亟待解决的问题。本发明是在CSP的基础上开发的一种创新性的倒装LED芯片集成封装的光源组件结构和制造方法。
本发明提出的一种倒装LED芯片集成封装的光源组件结构的制作方法,其特征在于,包括:
在具有粘性的耐受温度大于150°且烘烤不变形的柔性过渡基膜上,按预先设计的芯片间隔要求规则排列上倒装LED芯片;
将所述倒装LED芯片的P、N电极面粘贴在所述柔性过渡基膜的带胶面一侧,形成倒装LED芯片列阵;
在所述柔性过渡基膜上涂覆一定厚度的均匀的封装胶,并对封装胶进行固化;
去除所述柔性过渡基膜,将固化后的所述封装胶作为倒装LED芯片列阵的封装胶载体基片;
在所述封装胶载体基片上,按顺序用浆状流体、印刷技术和热固化技术完成所述倒装LED芯片间电极的电性互连集成,形成电性互连集成后的载体基片;
在所述电性互连集成后的载体基片上第二次采用印刷技术,印刷导热绝缘胶,并经平坦化处理后固化,每一个互连集成单元视为一个光源组件单胞,使得所述光源组件单胞的P、N电极连接区裸露,所述光源组件单胞的其它区域被导热绝缘胶覆盖并平坦化;
按所述光源组件单胞划切所述电性互连集成后的载体基片,分割成光源组件。
进一步地,其中,在所述柔性过渡基膜上涂覆一定厚度的均匀的封装胶;进一步为:
在所述柔性过渡基膜上涂覆一定厚度的均匀的且不影响固化的封装胶,且该封装胶中包含掺有荧光粉的荧光胶。
进一步地,其中,将固化后的所述封装胶作为倒装LED芯片列阵的封装胶载体基片;进一步为:将固化后的所述封装胶作为无沾污的倒装LED芯片列阵的封装胶载体基片。
进一步地,其中,所述印刷技术,进一步为:采用丝网、钢网或柔性版的网版印刷技术。
进一步地,其中,所述浆状流体,进一步为热固化后具有导电性、可焊性、与所述封装胶之间具有粘附性而且对可见光有大于70%反射率的材料,且含粉状金属的树脂型浆料的浆状流体。
进一步地,其中,在所述电性互连集成后的载体基片上第二次采用印刷技术,印刷导热绝缘胶,进一步为:在所述电性互连集成后的载体基片上第二次采用印刷技术,印刷固化后成为与所述导热绝缘胶粘附的所述电性互连集成后的载体基片,所述印刷导热绝缘胶为透明胶或对可见光有大于70%反射率的白色导热绝缘胶。
进一步地,其中,按所述光源组件单胞划切所述电性互连集成后的载体基片,分割成光源组件,进一步为:利用机械切割的方法,按所述光源组件单胞划切所述电性互连集成后的载体基片,分割成光源组件。
本发明还公开了倒装LED芯片集成封装的光源组件结构,其特征在于,所述光源组件结构,倒装LED芯片集成封装的光源组件结构包括:倒装LED芯片、倒装LED芯片列阵的封装胶载体基片、电性互连集成后的载体基片、二次印刷导热绝缘胶后的光源组件单胞;其中,
所述倒装LED芯片列阵的封装胶载体基片,为在具有粘性的耐受温度大于150°且烘烤不变形的柔性过渡基膜上,按预先设计的芯片间隔要求规则排列上倒装LED芯片;将所述倒装LED芯片的P、N电极面粘贴在所述柔性过渡基膜的带胶面一侧,形成倒装LED芯片列阵;在所述柔性过渡基膜上涂覆一定厚度的均匀的封装胶,并对封装胶进行固化;去除所述柔性过渡基膜,将固化后的所述封装胶作为倒装LED芯片列阵的封装胶载体基片;
所述电性互连集成后的载体基片,为在所述封装胶载体基片上,按顺序用浆状流体、印刷技术和热固化技术完成所述倒装LED芯片间电极的电性互连集成,形成电性互连集成后的载体基片;
所述二次印刷导热绝缘胶后的光源组件单胞,为在所述电性互连集成后的载体基片上第二次采用印刷技术,印刷导热绝缘胶,并经平坦化处理后固化,每一个互连集成单元视为一个光源组件单胞,使得所述光源组件单胞的P、N电极连接区裸露,所述光源组件单胞的其它区域被导热绝缘胶覆盖并平坦化。
进一步地,其中,所述印刷技术,进一步为:采用丝网、钢网或柔性版的网版印刷技术;所述浆状流体,进一步为热固化后具有导电性,与所述封装胶之间具有粘附性而且对可见光有大于70%反射率的材料,并该浆状流体与金属有可焊性,且含粉状金属的树脂型浆料的浆状流体。
进一步地,其中,所述二次印刷导热绝缘胶后的光源组件单胞,为在所述电性互连集成后的载体基片上第二次采用印刷技术,印刷具有粘附性,且为透明胶或对可见光有大于70%反射率的白色导热绝缘胶,并经平坦化处理后固化,每一个互连集成单元视为一个光源组件单胞,使得所述光源组件单胞的P、N电极连接区裸露,所述光源组件单胞的其它区域被导热绝缘胶覆盖并平坦化。
与现有的在COB基板上集成封装光源的结构与制作方法相比,本发明的倒装LED芯片集成封装的光源组件结构及其制作方法,实现了如下的有益效果:
(1)本发明所述的光源组件结构及其制作方法与目前将对LED芯片的进行逐一贴片在COB基板的互连电路上相比,简化了制程;且本发明中将 多个倒装LED芯片在过渡基膜上排列成列阵形式,通过印刷技术一次性可以制备多个光源组件,提高了产能和出货率,降低了光源的生产成本。
(2)本发明所述的光源组件结构及其制作方法采用印刷方式,保证了芯片P、N电极互连线间的间隙,避免了P、N电极短路和芯片与COB板面之间形成空洞,残留物等现象。使芯片散热面积最大化,保证了倒装LED光电特性和信赖性,承受更大的电流和提供更大的光输出。
(3)本发明所述的光源组件结构及其制作方法采用印刷方式,保证了光源色度的均匀性。
(4)本发明所述的光源组件结构及其制作方法,采用倒装LED芯片排布成列阵形式,一次性完成多个光源组件的制备,分割后可以得到多个小型化光源组件。同时,可以从整体设计上缩小光源组件的尺寸,方便用户使用。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本发明的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1为本发明所述的倒装LED集成封装的光源组件制作方法的流程示意图;
图2A为本发明所述的倒装LED集成封装的光源组件结构的俯视图;
图2B为本发明所述的倒装LED集成封装的光源组件结构的侧视图;
图3为本发明所述的倒装LED集成封装的光源组件制作方法应用实施例的流程示意图;
图4为本发明倒装LED芯片在柔性过渡基膜上形成倒装LED芯片列阵的剖视图;
图5为本发明倒装LED芯片在柔性过渡基膜上涂覆封装胶固化后的剖视图;
图6为本发明去除柔性过渡基膜后形成倒装LED芯片列阵的剖视图;
图7为本发明第一次导电浆料(浆状流体)印刷固化后进行电性互连集成后形成的电性互连集成后的载体基片的剖视图;
图8为本发明第二次印刷导热绝缘胶后光源组件单细胞电极面平坦化后的剖视图;
图9为本发明显示出倒装LED芯片光源组件单胞分割位置的倒装LED芯片列阵的剖视图;
图10为本发明分割后形成的倒装LED芯片光源组件的剖视图。
具体实施方式
如在说明书及权利要求当中使用了某些词汇来指称特定组件。本领域技术人员应可理解,硬件制造商可能会用不同名词来称呼同一个组件。本说明书及权利要求并不以名称的差异来作为区分组件的方式,而是以组件在功能上的差异来作为区分的准则。如在通篇说明书及权利要求当中所提及的“包含”为一开放式用语,故应解释成“包含但不限定于”。“大致”是指在可接收的误差范围内,本领域技术人员能够在一定误差范围内解决所述技术问题,基本达到所述技术效果。说明书后续描述为实施本发明的较佳实施方式,然所述描述乃以说明本发明的一般原则为目的,并非用以限定本发明的范围。本发明的保护范围当视所附权利要求所界定者为准。
实施例1
如图2A及图2B所示,为本发明的倒装LED芯片集成封装的光源组件结构的俯视图和侧视图,参见图1,本实施例中所述光源组件结构的制作方法,包括以下步骤:
步骤101、在具有粘性的耐受温度大于150°、且烘烤不变形的柔性过渡基膜上,按预先设计的芯片间隔要求规则排列上倒装LED芯片;
步骤102、将所述倒装LED芯片的P、N电极面粘贴在所述柔性过渡基膜的带胶面一侧,形成倒装LED芯片列阵;
步骤103、在所述柔性过渡基膜上涂覆一定厚度的均匀的封装胶,并对所述封装胶进行固化;
具体地,通过在柔性过渡基膜20上的倒装LED列阵周围贴附一定高度的围坝40,按照设置的围坝的高度来均匀涂敷、控制封装胶50的厚度;
步骤104、去除所述柔性过渡基膜,将固化后的所述封装胶50作为倒装LED芯片列阵的封装胶载体基片;
步骤105、在所述封装胶载体基片上,按顺序用浆状流体、印刷技术和热固化技术完成所述倒装LED芯片间电极的电性互连集成,形成电性互连集成后的载体基片;
步骤106、在所述电性互连集成后的载体基片上第二次采用印刷技术,印刷导热绝缘胶,并经平坦化处理后固化,每一个互连集成单元视为一个光源组件单胞,使得所述光源组件单胞的P、N电极的连接区裸露,所述光源组件单胞的其它区域被导热绝缘胶覆盖并平坦化;
步骤107、按所述光源组件单胞划切所述电性互连集成后的载体基片,分割成光源组件。
上述步骤102中,所述柔性过渡基膜具有粘性,在150度烘烤不变形,并且,所述封装胶涂覆在所述过渡基膜上不影响所述封装胶的固化,所述封装胶固化之后,与所述过渡基膜分离。
在所述柔性过渡基膜上涂覆一定厚度的均匀的封装胶;进一步为:
在所述柔性过渡基膜上涂覆一定厚度的均匀的且不影响固化的封装胶,且该封装胶中包含掺有荧光粉的荧光胶。
上述步骤103和步骤104中,所述封装胶在过渡基膜上固化,固化后与基膜分离,同时,所述封装胶与所述倒装LED芯片具有粘附性,在涂覆固化制程中不会对所述倒装LED芯片的电极面造成沾污。进一步为:将固化后的所述封装胶作为无沾污的倒装LED芯片列阵的封装胶载体基片。
上述步骤105和步骤106中,所述倒装LED芯片列阵的P、N电极的互连及导热绝缘胶的平坦化采用印刷技术实现,印刷技术采用丝网、钢网或柔性版的网版印刷技术。
上述步骤105中,所述浆状流体,进一步为热固化后具有导电性、可焊性、与所述封装胶之间具有粘附性而且对可见光有大于70%反射率的材料,且含粉状金属的树脂型浆料的浆状流体。
上述步骤106中,在所述电性互连集成后的载体基片上第二次采用印刷技术,印刷导热绝缘胶,进一步为:在所述电性互连集成后的载体基片上第 二次采用印刷技术,印刷具有粘附性,且为透明胶或对可见光有大于70%反射率的白色导热绝缘胶。
上述步骤107中,按所述光源组件单胞划切所述电性互连集成后的载体基片,分割成光源组件,进一步为:利用机械切割的方法,按所述光源组件单胞划切所述电性互连集成后的载体基片,分割成光源组件。
与传统的在COB基板上实现芯片电极互连集成封装的方法相比,本发明所提供的上述方法中,分离的倒装LED芯片列阵的电极间电互连线是作在无基板封装胶上,省去了在COB基板上的互联电路对逐一芯片贴片,简化了制程,大大提高了产能和出货率,降低了生产成本和设备成本。此外,本发明的方法还排除了传统方法在COB基板上贴片中容易造成电极间短路,芯片面与COB板之间形成空洞、残留物的现象,实现了倒装LED芯片导热通道面积最大化,保证了倒装LED芯片光电特性和可信赖性,可承受更大的电流,并能提供更大的光输出。
实施例2
如图2A、图2B所示,为本发明的倒装LED芯片集成封装的光源组件结构的俯视图和侧视图,该光源组件结构,包括:倒装LED芯片10、倒装LED芯片列阵的封装胶载体基片、电性互连集成后的载体基片61、二次印刷导热绝缘胶后的光源组件单胞;
倒装LED芯片10、倒装LED芯片列阵的封装胶载体基片、电性互连集成后的载体基片、二次印刷导热绝缘胶后的光源组件单胞;其中,
所述倒装LED芯片列阵的封装胶载体基片,为在具有粘性的耐受温度大于150°且烘烤不变形的柔性过渡基膜上,按预先设计的芯片间隔要求规则排列上倒装LED芯片;将所述倒装LED芯片的P电极31、N电极32面粘贴在所述柔性过渡基膜的带胶面一侧,形成倒装LED芯片列阵;在所述柔性过渡基膜上涂覆一定厚度的均匀的封装胶50,并对封装胶50进行固化;去除所述柔性过渡基膜,将固化后的所述封装胶50作为倒装LED芯片列阵的封装胶载体基片;
所述电性互连集成后的载体基片61,为在所述封装胶载体基片上,按顺序用浆状流体、印刷技术和热固化技术完成所述倒装LED芯片间电极的电性互连集成,形成电性互连集成后的载体基片61;
所述二次印刷导热绝缘胶后的光源组件单胞,为在所述电性互连集成后的载体基片上第二次采用印刷技术,印刷导热绝缘胶,并经平坦化处理后固化,每一个互连集成单元视为一个光源组件单胞,使得所述光源组件单胞的P、N电极连接区裸露,所述光源组件单胞的其它区域被导热绝缘胶覆盖并平坦化。
进一步地,所述倒装LED芯片10,包括:LED芯片体和电极。
本发明中,分离的倒装LED集成的电极间电互连线是作在无基板的封装胶上,显然区别于目前传统的在COB基板上实现芯片电极互连集成封装的方法。这种方式排除了目前传统的在COB基板上贴片工序中,容易造成电极间短路,芯片面与COB板面之间形成空洞,残留物等,实现了芯片导热通道面积最大化,保证了倒装LED光电特性和信赖性,可承受更大的电流和提供更大的光输出。
本发明中的倒装LED集成封装的光源组件光源色度均匀,实现了光源的小型化,拓宽了使用范围和灵活性,为用户提供了便利。
实施例3
以下提供本发明倒装LED芯片集成封装的光源组件结构的制作方法应用实施例,参见图3,包括:
步骤201、将多颗倒装LED芯片10按设计的芯片间隔要求规则排列在柔性过渡基膜(转换基膜)20上,将倒装LED芯片10的P电极31、N电极32面粘贴在柔性过渡基膜20的带胶面的一侧,形成倒装LED芯片列阵,参见图4。
其中,倒装LED芯片10是依荧光粉的激发波长而分选过后的芯片。将倒装LED芯片按设计要求等距离排列在柔性过渡基膜20上,倒装LED芯片10的电极面粘附在具有一定粘度的柔性过渡基膜20上,该柔性过渡基膜20至少需要耐150℃高温且烘烤不变形,并可保证封装胶50涂敷在膜上有胶一面进行固化,具体的依照柔性过渡基膜20的性质而定,将固化后的所述封 装胶50作为倒装LED芯片列阵的封装胶载体基片。本发明中的等距离是指多个倒装发光器件在x轴和y轴方向的排列距离均相等。这里的柔性过渡基膜20至少需要耐150℃高温,且烘烤不变形,而并不是采用一般或普通的基膜代替那么简单的问题。
步骤202、在柔性过渡基膜20上的倒装LED列阵周围贴附一定高度的围坝40,按照设置的围坝的高度来均匀涂敷、控制封装胶50的厚度,参见图5。
其中,围坝40的材料可以是柔性膜(如塑料膜等)或硬质板材(如金属板材等)。封装胶50是一种高透射率(>95%,450nm))、高折射率,(优选的折射率大于1.50)的硅胶,在柔性过渡基膜20上可以固化、与芯片有很好的粘附性且便于切割。封装胶50可根据胶的厚度和色度要求加入荧光粉调配。涂敷胶的方式可以是点胶,也可以是喷涂,包括一次涂胶完成和两次涂胶完成,涂敷的胶可以是无掺荧光粉的封装胶或荧光胶。
步骤203、待所述封装胶50固化后去除上述围坝40,参见图6。具体地,为去除所述柔性过渡基膜20,将固化后的所述封装胶50作为倒装LED芯片列阵的封装胶载体基片。
步骤204、在所述封装胶载体基片上,按顺序用浆状流体、印刷技术和热固化技术完成所述倒装LED芯片间电极的电性互连集成,形成电性互连集成后的载体基片;具体地为,在封装胶50上将倒装LED芯片间互连P、N电极区与印刷版上的浆状流体(浆料)71印刷孔对准,印刷浆状流体,取下印刷版,加热固化印刷后的浆状流体,完成倒装LED芯片间电极的串并电连接(电性互连集成),形成电性互连集成后的载体基片61,参见图2B和图7。
其中,封装胶50上的倒装LED芯片10列阵按不同的串并联方式印刷,完成满足设计要求的多个光源组件单胞内的P电极31、N电极32的电连接。本发明中作为电互连的印刷的浆状流体(浆料)可以是印刷银浆或其他高导电、高反射或高透射的粒状或线状纳米金属与有机物混合的浆状物,即所述浆状流体,进一步为热固化后具有导电性、可焊性、与所述封装胶之间具有粘附性而且对可见光有大于70%反射率的材料,且含粉状金属的树脂型浆料的浆状流体。
步骤205、在所述电性互连集成后的载体基片61上第二次采用印刷技术,印刷导热绝缘胶81,并经平坦化处理后固化(形成如图2B和图8中62的区域),每一个互连集成单元视为一个光源组件单胞,使得所述光源组件单胞的P、N电极连接区裸露,所述光源组件单胞的其它区域被导热绝缘胶覆盖并平坦化。
其中,平坦化的过程采用绝缘、导热、高反射或高透射的高粘性胶状液体(包括正装结构贴片用的印刷导热绝缘胶,灯具中反光板涂覆的白油等),然后加热固化,实现平坦化。二次印刷后,光源组件单胞的P、N电极引出区(也称为连接区)是裸露的。
步骤206、按所述光源组件单胞划切所述电性互连集成后的载体基片61,分割成光源组件。即:将包含有多个光源组件单胞的集成芯片载体粘贴在有粘性的蓝膜或白膜上,按单胞尺寸切割,参见图9所示切割位置70,然后倒膜在另一张蓝膜上,形成分离的光源组件,参见图10。
其中,切割采用机械切割方法。完成光源组件与散热基板上的电极引出区(也称为连接区)焊接和二者接触界面的紧密贴合(例如可采用导热胶实现),最终组装成光源。组件的表面与光源基板之间要有良好的导热界面。
如此即完成了倒装LED集成封装的光源组件的制作,采用本发明的方法制成的倒装LED发光器件的主出光面上无需引出电极或引线,发光波长不限于蓝光,还可以包括整个可见光波段、紫外和红外波段,或者由上述波段的光组成的混合光。
本实施例以发光二极管为例,说明本发明在分离倒装LED芯片10列阵无基本板封装胶50上实现芯片间电极互连集成的一种高压大电流光源组件结构及制作方法。
总体来说,本发明将分离的LED倒装芯片按一定的间距排列在有一定粘性的柔性过渡基膜柔性过渡基膜上,然后涂覆一定厚度的均匀的封装胶(也可称为荧光胶),并对封装胶固化;去除柔性过渡基膜,固化后的封装胶已成为倒装LED列阵的载体基片;在该封装胶封装的倒装LED列阵的载体基片上,依设计要求采用印刷技术等工艺完成芯片间电极互连集成,每一个互连集成单元可视为一个光源组件单胞;再在此已完成互连集成的倒装LED列阵的载体基片上第二次采用印刷技术印刷导热绝缘胶并加热固化。光 源组件单胞的P,N电极的连接区裸露,所述光源组件单胞的其它区域被导热绝缘胶覆盖并平坦化;按光源组件单胞划切所述电性互连集成后的载体基片,分割成多个光源组件;该光源组件与导热基板(如铝,氧化铝等COB基板等)粘接装配,实现电连接组合成独立光源。
依上所述,本发明完全摆脱了目前封装界传统的在COB板上实现对分离倒装LED互连集成封装形式,省去了在封装中在COB板上贴片、固晶等几乎全部工艺环节,并解决了由此而带来的一系列问题。缩小了产业链,降低了成本,大大提高了产能。是一种创新型结构和制程的集成封装光源组件,有着巨大的市场空间和潜在的经济价值。
需要指出的是,上述的光源组件可与导热基板电性互连及散热界面贴合装配组成倒装LED芯片集成光源。
在本实施例中,所述光源组件是由上述实施例中的制作方法采用倒装LED芯片列阵集成封装的形式,一次性完成多个光源组件结构的制作方法制备得到。可以从整体设计上缩小制备得到光源组件的尺寸,分割后可以得到小型化的光源组件,方便用户使用。
通过以上各个实施例可知,本发明新型的倒装LED芯片集成封装的光源组件结构及其制作方法存在的有益效果是:
(1)本发明所述的光源组件结构及其制作方法与现有技术的倒装LED封装技术相比,省去了在COB基板上对LED芯片进行逐一的LED芯片贴片、固化、涂覆封装胶再固化等工序,简化了倒装LED封装光源组件的制备工艺;且本发明中通过多个倒装LED芯片形成倒装LED芯片列阵的形式,一次性可以制备多个均匀的光源组件,使得制备过程可以产业化,大大提高了光源组件的产能,并在一定程度上降低了光源组件的生产成本。
(2)本发明所述的光源组件结构及其制作方法与现有技术的倒装LED封装技术相比,将分离的倒装LED芯片的电极间电互连集成是在无基板封装胶上进行,完全避免了目前的贴片工序中的因点浆量难控,造成固化后芯片发生移位甚至短路。
(3)本发明所述的光源组件结构及其制作方法采用封装胶、电性互连集成胶及导热绝缘胶依次在封装胶载体表面上进行,保证了P、N电极焊点 间的间隙。导热绝缘胶的覆盖避免了上述的芯片与COB基板界面间的空洞确保芯片散热面积,保证了倒装LED光电特性和信赖性,且可承受更大的电流和提供更大的光输出。
(4)本发明所述的光源组件结构及其制作方法采用封装胶、电性互连集成胶及导热绝缘胶在具有倒装LED芯片列阵的基膜基础上逐一地涂覆,不会形成空洞或者留下残留物,提高了制备光源组件的发光效率,且保证了光源色度的均匀性。
(5)本发明所述的光源组件结构及其制作方法采用倒装LED芯片列阵的形式,一次性完成多个光源组件的制备,可以从整体设计上缩小制备得到光源组件的尺寸,分割后可以得到多个小型化的光源组件,方便用户使用,便于产业化并提高产能。
依上所述,本发明完全摆脱了目前封装界传统的在COB板上实现对分离倒装LED互连集成封装形式,省去了在COB板上芯片的贴片、固晶等几乎全部工艺环节解决了由此而带来的诸如“空洞”等一系列问题。提高了光源的可靠性,降低了成本,提高了产能。是一种创新型结构和制程的集成封装光源组件,有着巨大的应用市场空间和潜在的经济价值。
本领域内的技术人员应明白,本发明的实施例提供LED集成封装光源组件的结构、方法、装置、材料等。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。
上述说明示出并描述了本发明的若干可选实施例,但如前所述,应当理解本发明并非局限于本文所披露的形式,不应看作是对其他实施例的排除,而可用于各种其他组合、修改和环境,并能够在本文所述发明构想范围内,通过上述教导或相关领域的技术或知识进行改动。而本领域人员所进行的改动和变化不脱离本发明的精神和范围,则都应在本发明所附权利要求的保护范围内。

Claims (10)

  1. 一种倒装LED芯片集成封装的光源组件结构的制作方法,其特征在于,包括:
    在具有粘性的耐受温度大于150°、且烘烤不变形的柔性过渡基膜上,按预先设计的芯片间隔要求规则排列上倒装LED芯片;
    将所述倒装LED芯片的P、N电极面粘贴在所述柔性过渡基膜的带胶面一侧,形成倒装LED芯片列阵;
    在所述柔性过渡基膜上涂覆一定厚度的均匀的封装胶,并对所述封装胶进行固化;
    去除所述柔性过渡基膜,将固化后的所述封装胶作为倒装LED芯片列阵的封装胶载体基片;
    在所述封装胶载体基片上,按顺序用浆状流体、印刷技术和热固化技术完成所述倒装LED芯片间电极的电性互连集成,形成电性互连集成后的载体基片;
    在所述电性互连集成后的载体基片上第二次采用印刷技术,印刷导热绝缘胶,并经平坦化处理后固化,每一个互连集成单元视为一个光源组件单胞,使得所述光源组件单胞的P、N电极的连接区裸露,所述光源组件单胞的其它区域被导热绝缘胶覆盖并平坦化;
    按所述光源组件单胞划切所述电性互连集成后的载体基片,分割成光源组件。
  2. 根据权利要求1所述的倒装LED芯片集成封装的光源组件结构的制作方法,其特征在于,在所述柔性过渡基膜上涂覆一定厚度的均匀的封装胶;进一步为:
    在所述柔性过渡基膜上涂覆一定厚度的均匀的且不影响固化的封装胶,且该封装胶中包含掺有荧光粉的荧光胶。
  3. 根据权利要求2所述的倒装LED芯片集成封装的光源组件结构的制作方法,其特征在于,将固化后的所述封装胶作为倒装LED芯片列阵的封 装胶载体基片;进一步为:将固化后的所述封装胶作为倒装LED芯片列阵的封装胶载体基片。
  4. 根据权利要求1所述的倒装LED芯片集成封装的光源组件结构的制作方法,其特征在于,所述印刷技术,进一步为:采用丝网、钢网或柔性版的网版印刷技术。
  5. 根据权利要求1所述的倒装LED芯片集成封装的光源组件结构的制作方法,其特征在于,所述浆状流体,进一步为热固化后具有导电性、可焊性、与所述封装胶之间具有粘附性而且对可见光有大于70%反射率的材料,且含粉状金属的树脂型浆料的浆状流体。
  6. 根据权利要求1所述的倒装LED芯片集成封装的光源组件结构的制作方法,其特征在于,在所述电性互连集成后的载体基片上第二次采用印刷技术,印刷导热绝缘胶,进一步为:在所述电性互连集成后的载体基片上第二次采用印刷技术,印刷固化后成为与所述导热绝缘胶粘附的所述电性互连集成后的载体基片,所述印刷导热绝缘胶为透明胶或对可见光有大于70%反射率的白色导热绝缘胶。
  7. 根据权利要求1所述的倒装LED芯片集成封装的光源组件结构的制作方法,其特征在于,按所述光源组件单胞划切所述电性互连集成后的载体基片,分割成光源组件,进一步为:利用机械切割的方法,按所述光源组件单胞划切所述电性互连集成后的载体基片,分割成光源组件。
  8. 一种倒装LED芯片集成封装的光源组件结构,其特征在于,所述光源组件结构,倒装LED芯片集成封装的光源组件结构包括:倒装LED芯片、倒装LED芯片列阵的封装胶载体基片、电性互连集成后的载体基片、二次印刷导热绝缘胶后的光源组件单胞;其中,
    所述倒装LED芯片列阵的封装胶载体基片,为在具有粘性的耐受温度大于150°且烘烤不变形的柔性过渡基膜上,按预先设计的芯片间隔要求规 则排列上倒装LED芯片;将所述倒装LED芯片的P、N电极面粘贴在所述柔性过渡基膜的带胶面一侧,形成倒装LED芯片列阵;在所述柔性过渡基膜上涂覆一定厚度的均匀的封装胶,并对封装胶进行固化;去除所述柔性过渡基膜,将固化后的所述封装胶作为倒装LED芯片列阵的封装胶载体基片;
    所述电性互连集成后的载体基片,为在所述封装胶载体基片上,按顺序用浆状流体、印刷技术和热固化技术完成所述倒装LED芯片间电极的电性互连集成,形成电性互连集成后的载体基片;
    所述二次印刷导热绝缘胶后的光源组件单胞,为在所述电性互连集成后的载体基片上第二次采用印刷技术,印刷导热绝缘胶,并经平坦化处理后固化,每一个互连集成单元视为一个光源组件单胞,使得所述光源组件单胞的P、N电极连接区裸露,所述光源组件单胞的其它区域被导热绝缘胶覆盖并平坦化。
  9. 根据权利要求8所述的倒装LED芯片集成封装的光源组件结构,其特征在于,所述印刷技术,进一步为:采用丝网、钢网或柔性版的网版印刷技术;所述浆状流体,进一步为热固化后具有导电性、可焊性、与所述封装胶之间具有粘附性而且对可见光有大于70%反射率的材料,且含粉状金属的树脂型浆料的浆状流体。
  10. 根据权利要求8所述的倒装LED芯片集成封装的光源组件结构,其特征在于,所述二次印刷导热绝缘胶后的光源组件单胞,为在所述电性互连集成后的载体基片上第二次采用印刷技术,印刷具有粘附性,且为透明胶或对可见光有大于70%反射率的白色导热绝缘胶,并经平坦化处理后固化,每一个互连集成单元视为一个光源组件单胞,使得所述光源组件单胞的P、N电极连接区裸露,所述光源组件单胞的其它区域被导热绝缘胶覆盖并平坦化。
PCT/CN2016/097979 2016-04-25 2016-09-03 倒装led芯片集成封装的光源组件结构及其制作方法 WO2017185580A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610261522.6A CN105895785B (zh) 2016-04-25 2016-04-25 倒装led芯片集成封装的光源组件结构及其制作方法
CN201610261522.6 2016-04-25

Publications (1)

Publication Number Publication Date
WO2017185580A1 true WO2017185580A1 (zh) 2017-11-02

Family

ID=56705339

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/097979 WO2017185580A1 (zh) 2016-04-25 2016-09-03 倒装led芯片集成封装的光源组件结构及其制作方法

Country Status (2)

Country Link
CN (1) CN105895785B (zh)
WO (1) WO2017185580A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110060965A (zh) * 2019-04-30 2019-07-26 苏州固锝电子股份有限公司 免封装二极管及其加工工艺
CN112435999A (zh) * 2019-08-26 2021-03-02 中国科学院半导体研究所 贴片led封装光源及制备方法
CN113130466A (zh) * 2021-03-26 2021-07-16 杭州美卡乐光电有限公司 Led显示模组及其制作方法
KR20210101281A (ko) * 2019-09-18 2021-08-18 취안저우 산안 세미컨덕터 테크놀러지 컴퍼니 리미티드 발광다이오드 패키징 어셈블리

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105895785B (zh) * 2016-04-25 2018-06-29 湘能华磊光电股份有限公司 倒装led芯片集成封装的光源组件结构及其制作方法
CN106449939A (zh) * 2016-10-18 2017-02-22 湘能华磊光电股份有限公司 简单化倒装led结构的csp芯片的结构及制作方法
CN106784268B (zh) * 2016-11-25 2020-03-31 安徽巨合电子科技有限公司 一种微型无基板封装的三基色led及其封装方法
CN106531731A (zh) * 2016-12-07 2017-03-22 鸿利智汇集团股份有限公司 一种无支架led封装结构及其制造方法
CN110383512A (zh) * 2017-02-17 2019-10-25 江苏新云汉光电科技有限公司 一种无基板的封装体的制备方法及其应用
CN106848036B (zh) * 2017-03-14 2018-10-30 华进半导体封装先导技术研发中心有限公司 一种led封装结构及其封装方法
CN107093600A (zh) * 2017-04-10 2017-08-25 导装光电科技(深圳)有限公司 无衬底led白光芯片及其制作工艺
CN106932951B (zh) 2017-04-14 2018-11-23 深圳市华星光电技术有限公司 Led灯源及其制造方法、背光模组
CN107731985B (zh) * 2017-10-18 2019-08-06 湘能华磊光电股份有限公司 一种led芯片阵列排布的高精度定位方法
CN108520873B (zh) * 2018-04-29 2020-07-10 浙江唯唯光电科技股份有限公司 一种串联式led芯片组件及其装配方法
CN110544674A (zh) * 2018-05-28 2019-12-06 浙江清华柔性电子技术研究院 芯片集成结构
CN108987558B (zh) * 2018-09-20 2024-05-17 东莞市春瑞电子科技有限公司 Led支架集成板材
CN109445192B (zh) * 2019-01-03 2022-04-22 京东方科技集团股份有限公司 一种面光源及其制作方法、背光模组及显示装置
CN113054072A (zh) * 2020-02-28 2021-06-29 深圳市聚飞光电股份有限公司 Led芯片单元、led器件及其制作方法
CN111640737A (zh) * 2020-06-02 2020-09-08 上海九山电子科技有限公司 一种模具及背光源的封装方法
CN112563386A (zh) * 2020-12-07 2021-03-26 扬州中科半导体照明有限公司 一种led芯片阵列膜的制作工艺

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102244012A (zh) * 2010-05-13 2011-11-16 新科金朋有限公司 半导体器件及其制造方法
CN103943764A (zh) * 2014-04-18 2014-07-23 立达信绿色照明股份有限公司 模压一体化封装led光源的成型模具及成型方法
CN105895785A (zh) * 2016-04-25 2016-08-24 湘能华磊光电股份有限公司 倒装led芯片集成封装的光源组件结构及其制作方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8896010B2 (en) * 2012-01-24 2014-11-25 Cooledge Lighting Inc. Wafer-level flip chip device packages and related methods
US20130187540A1 (en) * 2012-01-24 2013-07-25 Michael A. Tischler Discrete phosphor chips for light-emitting devices and related methods
CN202616230U (zh) * 2012-04-28 2012-12-19 天津三安光电有限公司 发光二极管封装结构
CN105280795A (zh) * 2014-07-25 2016-01-27 新世纪光电股份有限公司 发光单元与发光模块
CN105591006A (zh) * 2014-10-20 2016-05-18 展晶科技(深圳)有限公司 覆晶式led封装体

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102244012A (zh) * 2010-05-13 2011-11-16 新科金朋有限公司 半导体器件及其制造方法
CN103943764A (zh) * 2014-04-18 2014-07-23 立达信绿色照明股份有限公司 模压一体化封装led光源的成型模具及成型方法
CN105895785A (zh) * 2016-04-25 2016-08-24 湘能华磊光电股份有限公司 倒装led芯片集成封装的光源组件结构及其制作方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110060965A (zh) * 2019-04-30 2019-07-26 苏州固锝电子股份有限公司 免封装二极管及其加工工艺
CN112435999A (zh) * 2019-08-26 2021-03-02 中国科学院半导体研究所 贴片led封装光源及制备方法
KR20210101281A (ko) * 2019-09-18 2021-08-18 취안저우 산안 세미컨덕터 테크놀러지 컴퍼니 리미티드 발광다이오드 패키징 어셈블리
KR102644916B1 (ko) 2019-09-18 2024-03-06 취안저우 산안 세미컨덕터 테크놀러지 컴퍼니 리미티드 발광다이오드 패키징 어셈블리
CN113130466A (zh) * 2021-03-26 2021-07-16 杭州美卡乐光电有限公司 Led显示模组及其制作方法

Also Published As

Publication number Publication date
CN105895785A (zh) 2016-08-24
CN105895785B (zh) 2018-06-29

Similar Documents

Publication Publication Date Title
WO2017185580A1 (zh) 倒装led芯片集成封装的光源组件结构及其制作方法
US11081471B2 (en) LED module with hermetic seal of wavelength conversion material
CN104282819B (zh) 倒装式发光二极管封装模块及其制造方法
US8399899B2 (en) Light emitting device
WO2016150069A1 (zh) 发光器件的芯片级封装方法及结构
WO2013168802A1 (ja) Ledモジュール
US10847691B2 (en) LED flip chip structures with extended contact pads formed by sintering silver
TW201251145A (en) Light emitting device module and method of manufacturing the same
US20140175495A1 (en) Die bonding method and die bonding structure of light emitting diode package
WO2019010865A1 (zh) 一种单面发光的led器件及封装方法
CN113130466A (zh) Led显示模组及其制作方法
CN104979447A (zh) 倒装led封装结构及制作方法
CN114823996A (zh) Led芯片的转移方法、显示面板
CN102280562A (zh) 发光二极管的封装工艺与其结构
CN114284420A (zh) 发光单元及其制作方法、发光组件
KR100865835B1 (ko) 발광다이오드 반사 커버 성형 방법, 그 구조, 및 상기 반사커버를 이용한 발광다이오드 적재장치
CN114023777B (zh) 电路板组件、发光组件及其制作方法
CN101777549B (zh) 化合物半导体元件的封装模块结构及其制造方法
CN203941950U (zh) 一种led封装组件
CN107123721B (zh) 一种带透镜式led封装结构及封装方法
CN112242473A (zh) 一种led灯丝光源及其制作方法、灯具
JP2010003946A (ja) 発光素子用パッケージ及び発光素子の製造方法
CN113054072A (zh) Led芯片单元、led器件及其制作方法
KR20040089571A (ko) Led 램프 및 이를 제조하는 방법
CN110212073B (zh) 单面csp及其制造方法

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16900089

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16900089

Country of ref document: EP

Kind code of ref document: A1