WO2017183797A1 - 차량용 운전 보조 장치 - Google Patents

차량용 운전 보조 장치 Download PDF

Info

Publication number
WO2017183797A1
WO2017183797A1 PCT/KR2016/015204 KR2016015204W WO2017183797A1 WO 2017183797 A1 WO2017183797 A1 WO 2017183797A1 KR 2016015204 W KR2016015204 W KR 2016015204W WO 2017183797 A1 WO2017183797 A1 WO 2017183797A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
information
bsd
processor
region
Prior art date
Application number
PCT/KR2016/015204
Other languages
English (en)
French (fr)
Inventor
배현주
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Publication of WO2017183797A1 publication Critical patent/WO2017183797A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/14Means for informing the driver, warning the driver or prompting a driver intervention
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/01Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents
    • B60R21/013Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over
    • B60R21/0134Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over responsive to imminent contact with an obstacle, e.g. using radar systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • B60W40/04Traffic conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • B60W40/105Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/0098Details of control systems ensuring comfort, safety or stability not otherwise provided for
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/166Anti-collision systems for active traffic, e.g. moving vehicles, pedestrians, bikes
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/167Driving aids for lane monitoring, lane changing, e.g. blind spot detection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0062Adapting control system settings
    • B60W2050/0075Automatic parameter input, automatic initialising or calibrating means
    • B60W2050/0083Setting, resetting, calibration
    • B60W2050/0085Setting or resetting initial positions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/14Means for informing the driver, warning the driver or prompting a driver intervention
    • B60W2050/143Alarm means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2420/00Indexing codes relating to the type of sensors based on the principle of their operation
    • B60W2420/40Photo or light sensitive means, e.g. infrared sensors
    • B60W2420/403Image sensing, e.g. optical camera
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/05Type of road
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/40Dynamic objects, e.g. animals, windblown objects
    • B60W2554/404Characteristics
    • B60W2554/4041Position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/40Dynamic objects, e.g. animals, windblown objects
    • B60W2554/404Characteristics
    • B60W2554/4042Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/40Dynamic objects, e.g. animals, windblown objects
    • B60W2554/406Traffic density
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/80Spatial relation or speed relative to objects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2300/00Purposes or special features of road vehicle drive control systems
    • B60Y2300/08Predicting or avoiding probable or impending collision
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2400/00Special features of vehicle units
    • B60Y2400/92Driver displays

Definitions

  • the present invention relates to a vehicle driving assistance apparatus provided in a vehicle.
  • the vehicle is a device for moving in the direction desired by the user on board.
  • An example is a car.
  • various electronic devices are provided in a vehicle
  • various devices or systems are mounted in the vehicle.
  • blind spot detection is used to output an alarm when another vehicle exists in the blind spot of the rear side of the vehicle.
  • BSD blind spot detection
  • the BSD area for detecting other vehicles is variable according to the situation, and a vehicle driving assistance device for outputting an alarm indicating a danger is under study.
  • an embodiment of the present invention has an object to provide a vehicle driving assistance apparatus for changing the BSD area for detecting other vehicles according to the situation.
  • an embodiment of the present invention is to provide a driving assistance device for a vehicle that outputs an alarm of different stages according to the degree of danger.
  • the driving assistance apparatus for a vehicle changes the blind spot detection (BSD) area based on a sensing unit and vehicle information for detecting an object located outside the vehicle, and the changed It includes a processor that provides a signal corresponding to an alarm based on the BSD area.
  • BSD blind spot detection
  • FIG. 1 is a view showing the outside of a vehicle according to an embodiment of the present invention.
  • FIG. 2 is a block diagram referenced to describe a vehicle according to an embodiment of the present invention.
  • FIG. 3 is a block diagram referred to describe a driving assistance apparatus for a vehicle according to an embodiment of the present invention.
  • 4A to 4C are views referred to for explaining the arrangement of the sensing unit and the arrangement of the BSD area of the vehicle driving assistance apparatus according to the embodiment of the present invention.
  • 5A to 5C are views for explaining a BSD area for outputting an alarm by a vehicle driving assistance apparatus according to an embodiment of the present invention.
  • 6A and 6B are views referred to for explaining the change of the BSD area based on the vehicle state information in the vehicle driving assistance apparatus according to the embodiment of the present invention.
  • FIG. 7A to 7D are views for explaining the change of the second BSD region based on the vehicle state information in the vehicle driving assistance apparatus according to the embodiment of the present invention.
  • FIGS. 8A and 8B are views for explaining a case in which the vehicle driving assistance apparatus outputs a first stage alarm even when an object is detected in the second BSD region according to an embodiment of the present invention.
  • 9A and 9B are views referred to for explaining the change of the BSD area on the basis of other vehicle state information in the vehicle driving assistance apparatus according to the embodiment of the present invention.
  • FIG. 10 is a diagram referred to for describing a vehicle driving assistance apparatus outputting a second stage alarm based on vehicle state information and other vehicle state information according to an embodiment of the present invention.
  • 11A to 11C are views referred to for explaining that the vehicle driving assistance apparatus according to the embodiment of the present invention changes the BSD area based on the driving environment information.
  • FIGS. 12A and 12B are views referred to for explaining that the vehicle driving assistance apparatus according to the embodiment of the present invention changes the second BSD region based on the driving environment information.
  • the vehicle described herein may be a concept including an automobile and a motorcycle.
  • a vehicle is mainly described for a vehicle.
  • the vehicle described herein may be a concept including both an internal combustion engine vehicle having an engine as a power source, a hybrid vehicle having an engine and an electric motor as a power source, an electric vehicle having an electric motor as a power source, and the like.
  • the left side of the vehicle means the left side of the driving direction of the vehicle
  • the right side of the vehicle means the right side of the driving direction of the vehicle
  • FIG. 1 is a view showing the outside of a vehicle according to an embodiment of the present invention.
  • the vehicle 100 may include a wheel that rotates by a power source and a steering input device for adjusting a traveling direction of the vehicle 100.
  • the vehicle 100 may include a vehicle driving assistance device 200 according to the present invention.
  • the vehicle driving assistance apparatus 200 may output an alarm when an object is detected within the set BSD region.
  • the vehicle driving assistance device 200 can change the BSD area based on the vehicle information.
  • the vehicle driving assistance apparatus 200 may output an alarm when an object is detected within the changed BSD region.
  • the vehicle driving assistance apparatus 200 can set a plurality of BSD regions.
  • the vehicle driving assistance apparatus 200 may individually change the plurality of BSD regions based on the vehicle information.
  • the vehicle driving assistance device 200 may set a danger level corresponding to each of the plurality of BSD regions. When the object is detected in at least one BSD area among the plurality of BSD areas, the vehicle driving assistance device 200 may output an alarm corresponding to the danger level of the BSD area in which the object is located.
  • the vehicle 100 may be an autonomous vehicle. In the case of the autonomous vehicle, it may be switched to the autonomous driving mode or the manual mode according to the user input. When switching to the manual mode, the autonomous vehicle 100 may receive a steering input through the steering input device.
  • the overall length is the length from the front to the rear of the vehicle 100
  • the width is the width of the vehicle 100
  • the height is the length from the bottom of the wheel to the roof.
  • the full length direction L is a direction in which the full length measurement of the vehicle 100 is a reference
  • the full width direction W is a direction in which the full width measurement of the vehicle 100 is a reference
  • the total height direction H is a vehicle. It may mean the direction which is the reference of the height measurement of (100).
  • FIG. 2 is a block diagram referenced to describe a vehicle according to an embodiment of the present invention.
  • the vehicle 100 includes a communication unit 110, an input unit 120, a sensing unit 125, a memory 130, an output unit 140, a vehicle driving unit 150, a control unit 170,
  • the interface unit 180 may include a power supply unit 190 and a vehicle driving assistance device 200.
  • the communication unit 110 may include a short range communication module 113, a location information module 114, an optical communication module 115, and a V2X communication module 116.
  • the short range communication module 113 is for short range communication, and includes Bluetooth TM, Radio Frequency Identification (RFID), Infrared Data Association (IrDA), Ultra Wideband (UWB), ZigBee, Near field communication may be supported using at least one of Near Field Communication (NFC), Wireless-Fidelity (Wi-Fi), Wi-Fi Direct, and Wireless Universal Serial Bus (Wireless USB) technologies.
  • RFID Radio Frequency Identification
  • IrDA Infrared Data Association
  • UWB Ultra Wideband
  • ZigBee ZigBee
  • Near field communication may be supported using at least one of Near Field Communication (NFC), Wireless-Fidelity (Wi-Fi), Wi-Fi Direct, and Wireless Universal Serial Bus (Wireless USB) technologies.
  • the short range communication module 113 may form short range wireless networks to perform short range communication between the vehicle 100 and at least one external device. For example, the short range communication module 113 may exchange data with a mobile terminal wirelessly.
  • the short range communication module 113 may receive weather information and traffic condition information of a road (for example, a transport protocol expert group (TPEG)) from a mobile terminal. For example, when the user boards the vehicle 100, the mobile terminal of the user and the vehicle 100 may perform pairing with each other automatically or by executing an application of the user.
  • TPEG transport protocol expert group
  • the location information module 114 is a module for obtaining the location of the vehicle 100, and a representative example thereof is a GPS (Global Positioning System) module.
  • GPS Global Positioning System
  • the vehicle may acquire the position of the vehicle using a signal transmitted from a GPS satellite.
  • the location information module 114 may be a component included in the sensing unit 125, not a component included in the communication unit 110.
  • the optical communication module 115 may include an optical transmitter and an optical receiver.
  • the light receiver may convert the light signal into an electrical signal to receive information.
  • the light receiver may include a photo diode (PD) for receiving light.
  • Photodiodes can convert light into electrical signals.
  • the light receiver may receive information of the front vehicle through the light emitted from the light source included in the front vehicle.
  • the light emitter may include at least one light emitting device for converting an electrical signal into an optical signal.
  • the light emitting element is a light emitting diode (LED).
  • the light emitting unit converts the electric signal into an optical signal and transmits it to the outside.
  • the light transmitting unit may emit an optical signal to the outside through the blinking of the light emitting device corresponding to the predetermined frequency.
  • the light emitting unit may include a plurality of light emitting element arrays.
  • the light emitting unit may be integrated with a lamp provided in the vehicle 100.
  • the light emitting unit may be at least one of a headlight, a taillight, a brake light, a turn signal, and a vehicle width lamp.
  • the optical communication module 115 may exchange data with another vehicle through optical communication.
  • the V2X communication module 116 is a module for performing wireless communication with a server or another vehicle.
  • the V2X module 116 includes a module capable of implementing inter-vehicle communication (V2V) or inter-vehicle communication (V2I) protocol.
  • the vehicle 100 may perform wireless communication with an external server and another vehicle through the V2X communication module 116.
  • the input unit 120 may include a driving manipulation apparatus 121, a microphone 123, and a user input unit 124.
  • the driving manipulation apparatus 121 receives a user input for driving the vehicle 100.
  • the driving manipulation apparatus 121 may include a steering input device, a shift input device, an acceleration input device, and a brake input device.
  • the steering input device receives a driving direction input of the vehicle 100 from the user.
  • the steering input device is preferably formed in a wheel shape to enable steering input by rotation.
  • the steering input device may be formed as a touch screen, a touch pad, or a button.
  • the shift input device receives an input of parking (P), forward (D), neutral (N), and reverse (R) of the vehicle 100 from the user.
  • the shift input device is preferably formed in the form of a lever.
  • the shift input device may be formed as a touch screen, a touch pad, or a button.
  • the acceleration input device receives an input for accelerating the vehicle 100 from a user.
  • the brake input device receives an input for deceleration of the vehicle 100 from a user.
  • the acceleration input device and the brake input device are preferably formed in the form of a pedal.
  • the acceleration input device or the brake input device may be formed as a touch screen, a touch pad, or a button.
  • the microphone 123 may process an external sound signal into electrical data.
  • the processed data may be utilized in various ways depending on the function being performed in the vehicle 100.
  • the microphone 123 may convert a voice command of the user into electrical data.
  • the converted electrical data may be transferred to the controller 170.
  • the camera 122 or the microphone 123 may be a component included in the sensing unit 125, not a component included in the input unit 120.
  • the user input unit 124 is for receiving information from the user. When information is input through the user input unit 124, the controller 170 may control an operation of the vehicle 100 to correspond to the input information.
  • the user input unit 124 may include a touch input means or a mechanical input means. According to an embodiment, the user input unit 124 may be disposed in one region of the steering wheel. In this case, the driver may manipulate the user input unit 124 with a finger while holding the steering wheel.
  • the sensing unit 125 senses various situations of the vehicle 100 or external situations of the vehicle.
  • the sensing unit 125 may include a collision sensor, a wheel sensor, a speed sensor, an inclination sensor, a weight sensor, a heading sensor, a yaw sensor, a gyro sensor.
  • Position module vehicle forward / reverse sensor, battery sensor, fuel sensor, tire sensor, steering sensor by steering wheel rotation, vehicle interior temperature sensor, vehicle interior humidity sensor, ultrasonic sensor, illuminance sensor, accelerator pedal position sensor , Brake pedal position sensors, and the like.
  • the sensing unit 125 may include vehicle collision information, vehicle direction information, vehicle position information (GPS information), vehicle angle information, vehicle speed information, vehicle acceleration information, vehicle tilt information, vehicle forward / reverse information, battery information, fuel information.
  • the sensing signal may be obtained such as tire information, vehicle lamp information, vehicle internal temperature information, vehicle internal humidity information, steering wheel rotation angle, vehicle external illumination, pressure applied to the accelerator pedal, pressure applied to the brake pedal, and the like.
  • the sensing unit 125 may further include an accelerator pedal sensor, a pressure sensor, an engine speed sensor, an air flow sensor (AFS), an intake temperature sensor (ATS), a water temperature sensor (WTS), and a throttle position sensor. (TPS), TDC sensor, crank angle sensor (CAS), and the like.
  • AFS air flow sensor
  • ATS intake temperature sensor
  • WTS water temperature sensor
  • TPS throttle position sensor
  • TDC crank angle sensor
  • CAS crank angle sensor
  • the location information module 114 may be classified as a lower component of the sensing unit 125.
  • the sensing unit 125 may include an object sensing unit that may sense an object around a vehicle.
  • the object sensing unit may include a camera module, a radar, a rider, and an ultrasonic sensor.
  • the sensing unit 125 may detect a front object located in front of the vehicle or a rear object located in the rear of the vehicle through a camera module, a radar, a rider, or an ultrasonic sensor.
  • the sensing unit 125 may include a camera module.
  • the camera module may include an external camera module photographing the outside of the vehicle and an external camera module photographing the inside of the vehicle.
  • the external camera module may include one or more cameras to photograph the outside of the vehicle 100.
  • the external camera module may include an AVM (Arond View Monitoring) device or a rear camera device.
  • the AVM device may synthesize a plurality of images obtained from a plurality of cameras and provide a vehicle surrounding image to a user.
  • the AVM device may synthesize a plurality of images and convert them into images that are easy for a user to display.
  • the AVM device may be displayed by synthesizing a plurality of images and converting them into a top view image.
  • the AVM device may include first to fourth cameras.
  • the first camera may be arranged around the front bumper, around the radiator grille, around the emblem or around the windshield.
  • the second camera may be arranged in the left side mirror, the left front door, the left rear door, and the left fender.
  • the third camera may be disposed in the right side mirror, the right front door, the right rear door or the right fender.
  • the fourth camera may be arranged around the rear bumper, around the emblem or around the license plate.
  • the rear camera may include a camera for acquiring a rear image of the vehicle.
  • the rear camera can be placed around the rear bumper, around the emblem or around the license plate.
  • the camera of the sensing unit 210 included in the vehicle driving assistance apparatus 200 may be a camera included in any one of an AVM device, a BSD device, and a rear camera device provided in the vehicle 100.
  • the memory 130 is electrically connected to the controller 170.
  • the memory 130 may store basic data for the unit, control data for controlling the operation of the unit, and input / output data.
  • the memory 130 may be various storage devices such as a ROM, a RAM, an EPROM, a flash drive, a hard drive, and the like, in hardware.
  • the memory 130 may store various data for overall operation of the vehicle 100, such as a program for processing or controlling the controller 170.
  • the output unit 140 outputs the information processed by the controller 170 and may include a display device 141, a sound output unit 142, and a haptic output unit 143.
  • the display device 141 may display various graphic objects.
  • the display device 141 may display vehicle related information.
  • the vehicle related information may include vehicle control information for direct control of the vehicle, or vehicle driving assistance information for driving guide to the vehicle driver.
  • the vehicle related information may include vehicle state information indicating a current state of a vehicle or vehicle driving information related to driving of the vehicle.
  • the display device 141 includes a liquid crystal display (LCD), a thin film transistor-liquid crystal display (TFT LCD), an organic light-emitting diode (OLED), and a flexible display (flexible). display, a 3D display, or an e-ink display.
  • LCD liquid crystal display
  • TFT LCD thin film transistor-liquid crystal display
  • OLED organic light-emitting diode
  • flexible display flexible display
  • display a 3D display, or an e-ink display.
  • the display device 141 forms a layer structure with or is integrally formed with the touch sensor, thereby implementing a touch screen.
  • the touch screen may function as a user input unit 724 that provides an input interface between the vehicle 100 and the user, and may provide an output interface between the vehicle 100 and the user.
  • the display device 141 may include a touch sensor that senses a touch on the display device 141 so as to receive a control command by a touch method. Using this, when a touch is made to the display device 141, the touch sensor may sense the touch, and the controller 170 may generate a control command corresponding to the touch based on the touch sensor.
  • the content input by the touch method may be letters or numbers or menu items that can be indicated or designated in various modes.
  • the display device 141 may include a cluster so that the driver can check the vehicle status information or the vehicle driving information while driving.
  • the cluster can be located on the dashboard. In this case, the driver can check the information displayed on the cluster while keeping the gaze in front of the vehicle.
  • the display device 141 may be implemented as a head up display (HUD).
  • HUD head up display
  • information may be output through a transparent display provided in the wind shield.
  • the display device 141 may include a projection module to output information through an image projected on the wind shield.
  • the display device 141 may include a transparent display.
  • the transparent display may be attached to the wind shield.
  • the transparent display may display a predetermined screen while having a predetermined transparency.
  • Transparent display in order to have transparency, transparent display is transparent thin film elecroluminescent (TFEL), transparent organic light-emitting diode (OLED), transparent liquid crystal display (LCD), transmissive transparent display, transparent light emitting diode (LED) display It may include at least one of. The transparency of the transparent display can be adjusted.
  • the sound output unit 142 converts the electric signal from the control unit 170 into an audio signal and outputs the audio signal. To this end, the sound output unit 142 may be provided with a speaker. The sound output unit 142 may output a sound corresponding to the operation of the user input unit 724.
  • the haptic output unit 143 generates a tactile output.
  • the haptic output unit 143 may operate by vibrating the steering wheel, the seat belt, and the seat so that the user can recognize the output.
  • the vehicle driver 150 may control operations of various vehicles.
  • the vehicle driver 150 includes a power source driver 151, a steering driver 152, a brake driver 153, a lamp driver 154, an air conditioning driver 155, a window driver 156, an airbag driver 157, and a sunroof.
  • the driver 158 and the suspension driver 159 may be included.
  • the power source driver 151 may perform electronic control of the power source in the vehicle 100.
  • the power source driver 151 may perform electronic control of the engine. Thereby, the output torque of an engine, etc. can be controlled.
  • the power source driver 151 is the engine, the speed of the vehicle may be limited by limiting the engine output torque under the control of the controller 170.
  • the power source driver 151 may control the motor. Thereby, the rotation speed, torque, etc. of a motor can be controlled.
  • the steering driver 152 may perform electronic control of a steering apparatus in the vehicle 100. As a result, the traveling direction of the vehicle can be changed.
  • the brake driver 153 may perform electronic control of a brake apparatus (not shown) in the vehicle 100.
  • the speed of the vehicle 100 may be reduced by controlling the operation of the brake disposed on the wheel.
  • the traveling direction of the vehicle 100 may be adjusted to the left or the right.
  • the lamp driver 154 may control turn on / turn off of a lamp disposed in or outside the vehicle. In addition, it is possible to control the intensity, direction, etc. of the light of the lamp. For example, control of a direction indicator lamp, a brake lamp, and the like can be performed.
  • the air conditioning driver 155 may perform electronic control of an air cinditioner (not shown) in the vehicle 100. For example, when the temperature inside the vehicle is high, the air conditioner may be operated to control cold air to be supplied into the vehicle.
  • the window driver 156 may perform electronic control on a window apparatus in the vehicle 100. For example, the opening or closing of the left and right windows of the side of the vehicle can be controlled.
  • the airbag driver 157 may perform electronic control of an airbag apparatus in the vehicle 100. For example, in case of danger, the airbag can be controlled to burst.
  • the sunroof driver 158 may perform electronic control of a sunroof apparatus (not shown) in the vehicle 100. For example, the opening or closing of the sunroof can be controlled.
  • the suspension driver 159 may perform electronic control of a suspension apparatus (not shown) in the vehicle 100. For example, when there is a curvature on the road surface, the suspension device may be controlled to control the vibration of the vehicle 100 to be reduced.
  • the vehicle driver 150 may include a chassis driver.
  • the chassis driver may be a concept including a steering driver 152, a brake driver 153, and a suspension driver 159.
  • the controller 170 may control the overall operation of each unit in the vehicle 100.
  • the controller 170 may be referred to as an electronic control unit (ECU).
  • ECU electronice control unit
  • the controller 170 may include application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable gate arrays (FPGAs), and processors ( It may be implemented using at least one of processors, controllers, micro-controllers, microprocessors, and electrical units for performing other functions.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • processors It may be implemented using at least one of processors, controllers, micro-controllers, microprocessors, and electrical units for performing other functions.
  • the interface unit 180 may serve as a path to various types of external devices connected to the vehicle 100.
  • the interface unit 180 may include a port connectable with the mobile terminal, and may connect with the mobile terminal through the port. In this case, the interface unit 180 may exchange data with the mobile terminal.
  • the interface unit 180 may serve as a passage for supplying electrical energy to the connected mobile terminal.
  • the interface unit 180 may provide the mobile terminal with electrical energy supplied from the power supply unit 190.
  • the power supply unit 190 may supply power required for the operation of each component under the control of the controller 170.
  • the controller 170 may receive power from a battery (not shown) in the vehicle.
  • the vehicle driving assistance apparatus 200 outputs an alarm when an object is detected in a variable blind spot detection (BSD) region.
  • BSD variable blind spot detection
  • FIG. 3 is a block diagram referred to describe a driving assistance apparatus for a vehicle according to an embodiment of the present invention.
  • the vehicle driving assistance apparatus 200 may include a sensing unit 210, a communication unit 220, an input unit 230, a memory 240, an interface unit 250, an output unit 260, and a processor ( 270, and a power supply unit 290.
  • the sensing unit 210 may include a means for detecting an object.
  • the sensing unit 210 may detect an object located outside the vehicle 100.
  • the sensing unit 210 may detect an object located in at least one BSD region.
  • the sensing unit 210 may be electrically connected to the processor 270. If the object is detected, the sensing unit 210 may provide an object detection signal to the processor 270. The processor 270 may determine whether the location where the object is detected is within the BSD region based on the object detection signal provided by the sensing unit 210. The processor 270 may output a signal corresponding to an alarm when it is determined that the detected position of the object is within the BSD region. The output unit 260 may output an alarm in response to a signal provided by the processor 270.
  • the BSD area may be an area within a specific range in which a driver's attention is required when driving a vehicle.
  • the processor 270 can set an area within a specific range for which the driver's attention is required as the BSD area.
  • the processor 270 may set a BSD area around the vehicle 100.
  • the processor 270 may set the BSD region within a predetermined distance to the side and the rear of the vehicle 100 with respect to the vehicle 100.
  • the processor 270 may set the rear blind spot of the vehicle 100 as the BSD region.
  • the BSD area may be an area including a part of the rear blind spot of the vehicle 100.
  • the sensing unit 210 may be disposed in an area of the vehicle 100.
  • the sensing unit 210 may be disposed in at least one of a side mirror, a front door, a rear door, a fender, and a rear bumper of the vehicle 100.
  • the sensing unit 210 may be one or more.
  • the sensing unit 210 may be disposed at least one on the right side and the left side of the vehicle 100.
  • the sensing unit 210 may include various types of devices capable of detecting an object.
  • the sensing unit 210 may include at least one of a camera, a radar, a lidar, an ultrasonic sensor, and an infrared sensor.
  • the camera may detect the object based on the acquired image.
  • the camera may include an image sensor and an image processor. According to an embodiment, the camera may be a stereo camera.
  • the image processor may detect the object by processing the acquired image.
  • the image processor may track the detected object.
  • the image processor may measure a distance from the object.
  • the image processor may measure the distance to the object using at least one of a pinhole, a motion vector, a disparity, and a change in the size of the object.
  • the camera may provide image data to the processor 270.
  • the processor 270 may perform image processing.
  • the ultrasonic sensor may include an ultrasonic transmitter and a receiver.
  • the ultrasonic sensor may detect the object based on the received ultrasonic waves on which the transmitted ultrasonic waves are reflected on the object.
  • the ultrasonic sensor may measure a distance between the detected object and the vehicle 100.
  • the sensing unit 210 may provide the processor 270 with distance data between the vehicle 100 and the detected object.
  • the communicator 220 may perform data communication with another device located inside or outside the vehicle 100.
  • the other device may include a mobile terminal, a server, or another vehicle.
  • the communication unit 220 may communicate with other vehicles.
  • the communication unit 220 may receive information about at least one of a vehicle model, a position, a speed, a steering wheel angle, a direction indicator, and a driving route of the other vehicle from the other vehicle.
  • the processor 270 via the communication unit 220, the vehicle type information of the other vehicle, the position information of the other vehicle, the speed information of the other vehicle, the steering information of the other vehicle, the turn signal information of the other vehicle At least one of driving route information of the vehicle may be acquired.
  • the processor 270 may change a preset BSD region based on the obtained information.
  • the communication unit 220 may include at least one of a V2X communication module, an optical communication module, a location information module, and a short range communication module.
  • the V2X communication module may perform wireless communication with a server or another vehicle.
  • the V2X module may implement an inter-vehicle communication (V2V) or vehicle-to-infrastructure communication (V2I) protocol.
  • the communication unit 220 may receive information related to another vehicle through the V2X communication module.
  • the optical communication module may include an optical transmitter and an optical receiver.
  • the light receiver may receive information by converting a received light signal into an electrical signal.
  • the light receiver may include a photo diode (PD) for receiving light. Photodiodes can convert light into electrical signals.
  • the light receiver may receive information related to the other vehicle through the light emitted by the other vehicle.
  • PD photo diode
  • the light transmitting unit may convert an electrical signal into an optical signal.
  • the light transmitting unit may include at least one light emitting device.
  • the light emitting device may be a light emitting diode (LED).
  • the light transmitting unit may emit an optical signal to the outside through the blinking of the light emitting device corresponding to the predetermined frequency.
  • the light transmitting unit may include a plurality of light emitting element arrays.
  • the light transmitting unit may be integrated with a lamp provided in the vehicle 100.
  • the light transmitting unit may include at least one of a headlight, a taillight, a brake light, a turn signal, and a vehicle width lamp.
  • the location information module may obtain information about the location of the vehicle 100.
  • the location information module may be a global positioning system (GPS) module.
  • GPS global positioning system
  • the GPS module may acquire the position of the vehicle 100 based on the signal transmitted from the GPS satellites.
  • the short range communication module may perform short range communication.
  • the short range communication module forms a wireless area network.
  • the short range communication module may perform short range communication between at least one other device through a short range wireless communication network.
  • the short-range communication module may exchange data with the mobile terminal.
  • the short range communication module may receive weather information and traffic condition information of a road (eg, a transport protocol expert group (TPEG)) from a mobile terminal.
  • TPEG transport protocol expert group
  • the short range communication module may perform pairing with the mobile terminal automatically or by executing an application.
  • the near field communication module includes Bluetooth TM, Radio Frequency Identification (RFID), Infrared Data Association (IrDA), Ultra Wideband (UWB), ZigBee, Near Field Communication (NFC), and Wireless-Fidelity (Wi-Fi). ), Wi-Fi Direct, or Wireless USB (Wireless Universal Serial Bus) technology.
  • RFID Radio Frequency Identification
  • IrDA Infrared Data Association
  • UWB Ultra Wideband
  • UWB Ultra Wideband
  • ZigBee Ultra Wideband
  • NFC Near Field Communication
  • Wi-Fi Wireless-Fidelity
  • Wi-Fi Direct Wireless USB (Wireless Universal Serial Bus) technology.
  • the communicator 220 may be electrically connected to the processor 270.
  • the communication unit 220 may provide the processor 270 with information about the received other vehicle.
  • the interface unit 250 may serve as a path between the vehicle driving assistance apparatus 200 and an external device.
  • the interface unit 250 may receive various signals or information from the outside or transmit the signals or information provided by the processor 270 to the outside.
  • the interface unit 250 may be connected to the processor 270, the vehicle driver 150, the controller 170, and the communication unit 110 to perform data communication.
  • the interface unit 250 may receive information about at least one of a position, a gear state, a speed, a steering wheel angle, a direction indicator, and a driving route of the vehicle 100.
  • the interface unit 250 may provide the processor 270 with information about at least one of the position, the gear state, the speed, the steering wheel angle, the direction indicator, and the driving route of the vehicle 100.
  • the processor 270 via the interface unit 250, position information of the vehicle 100, gear position information of the vehicle 100, speed information of the vehicle 100, steering information of the vehicle 100, and the vehicle 100. At least one of the turn signal information and the driving route information of the vehicle 1000 may be obtained.
  • the processor 270 may change a preset BSD region based on the obtained information.
  • the interface unit 250 may receive sensing information from the control unit 170 or the sensing unit 125.
  • the sensing information is information related to the vehicle 100.
  • the sensing information includes position information (GPS information), gear state information, speed information, steering wheel angle information, direction indicator light information, vehicle direction information, vehicle angle information, acceleration information, tilt information, forward / reverse information, battery information, It may include at least one of fuel information, tire information, lamp information, vehicle interior temperature information, vehicle interior humidity information, and rain information.
  • the sensing information includes a position module that provides position information, a gear position sensor, a speed sensor, a steering angle sensor, a turn signal sensor, a heading sensor, a yaw sensor, a gyro sensor. ), Vehicle forward / reverse sensor, wheel sensor, wheel inclination sensor, battery sensor, fuel sensor, tire sensor, steering sensor by steering wheel rotation, in-vehicle temperature sensor, in-vehicle humidity sensor, and rain sensor Can be obtained by The position module may include a GPS module for receiving GPS information.
  • vehicle state information information on the position, the gear state, the speed, the steering wheel angle, and the direction indication of the vehicle 100 may be referred to as vehicle state information.
  • the interface unit 250 may receive information about a driving route of the vehicle 100 by data communication with the controller 170 or another navigation device.
  • the information on the driving route may include at least one of set destination information, route information according to the destination, map information related to the driving route, and current location information of the vehicle 100.
  • the interface unit 250 may provide a signal to the controller 170 or the vehicle driver 150.
  • the signal may be a control signal.
  • the interface unit 250 may provide a signal for controlling at least one of a steering device, a braking device, and a driving device of the vehicle 100 provided by the processor 270 to the control unit 170 or the vehicle driving unit 150. Can be.
  • the output unit 260 outputs an alarm.
  • the output unit 260 outputs an alarm corresponding to a signal provided by the processor 270.
  • the output unit 260 may include at least one of an audio output unit 261, an optical output unit 262, a haptic output unit 263, and a display unit 264.
  • the sound output unit 261 outputs an alarm by sound.
  • the sound output unit 261 may include a speaker.
  • the light output unit 262 outputs an alarm with light.
  • the light output unit 262 may include a light emitting device.
  • the haptic output unit 263 outputs an alarm by vibration.
  • the haptic output unit 263 may be disposed on the handle or the driver's seat.
  • the display unit 264 displays information related to the alarm.
  • the display unit 264 may display various vehicle information received through the interface unit 250 or the communication unit 220.
  • the sensing unit 210 When the sensing unit 210 is disposed on the left and right sides of the vehicle 100 and the BSD regions are formed on the left and right sides of the vehicle 100, the sound output unit 261, the light output unit 262, and the haptic are provided.
  • the output unit 263 may be provided at left and right sides corresponding to the sensing unit 210 or the BSD region.
  • the processor 270 may include the sound output unit 261, the light output unit 262, and the haptic output provided at the right side.
  • the alarm may be output through at least one of the units 263.
  • the processor 270 may classify corresponding alarms for each of a plurality of preset BSD regions.
  • the processor 270 may control the output unit 260 to output an alarm corresponding to the BSD region where the object detected by the sensing unit 210 is located.
  • the output unit 260 outputs an alarm of a danger level corresponding to a signal provided by the processor 270.
  • the risk level is set by the processor 270.
  • the risk level may indicate how dangerous the vehicle 100 is.
  • the risk level can be set in several steps.
  • the risk level may comprise a first stage and a second stage.
  • the alarm output by the output unit 260 may include a first stage alarm corresponding to the first stage risk level and a second stage alarm corresponding to the second stage risk level.
  • the light output unit 262 may output light as the first stage alarm.
  • the sound output unit 261 and the haptic output unit 263 may output sound and vibration as a second stage alarm.
  • the risk level may vary depending on the type of BSD region.
  • the BSD region may include a first BSD region and a second BSD region.
  • the second BSD region may be a narrower region than the first BSD region.
  • the second BSD area may be an area closer to the vehicle 100 than the first BSD area.
  • An alarm corresponding to each stage of the danger level may be set through the input unit 230.
  • the first step alarm may be set to vibration output by the haptic output unit 263 through the input unit 230.
  • the second stage alarm may be set as a sound output by the sound output unit 261 through the input unit 230.
  • the alarm set through the input unit 230 may be stored in the memory 240.
  • the processor 270 may control the overall operation of each unit in the vehicle driving assistance apparatus 200.
  • the processor 270 may be electrically connected to the sensing unit 210, the communication unit 220, the input unit 230, the memory 240, the interface unit 250, the output unit 260, and the power supply unit 290. have.
  • the processor 270 detects the object 210 based on the object detection signal. Determines whether an object is detected in the BSD space. If it is determined that the object is detected in the BSD region, the processor 270 may provide a signal corresponding to an alarm. The output unit 260 may output an alarm corresponding to a signal provided by the processor 270.
  • the BSD area may be a specific range of areas that require operator attention.
  • the processor 270 may set a region of a specific range that needs attention of the driver as the BSD region.
  • the processor 270 may set the rear blind spot of the vehicle 100 as the BSD region.
  • the BSD area may be an area including a part of the rear blind spot of the vehicle 100.
  • the processor 270 may change a preset blind spot detection (BSD) region based on the obtained information.
  • the processor 270 may change the BSD region based on the vehicle information, which is obtained information.
  • the processor 270 may provide a signal corresponding to an alarm.
  • the output unit 260 may output an alarm corresponding to a signal provided by the processor 270.
  • the information obtained by the processor 270 may be referred to as vehicle information.
  • vehicle information may include at least one of vehicle state information, other vehicle state information, and driving environment information.
  • the vehicle state information may include information about at least one of a position, a gear state, a speed, a steering wheel angle, a direction indicator, and a driving route of the vehicle 100.
  • the vehicle state information includes position information of the vehicle 100, gear position information indicating a gear state of the vehicle 100, speed information of the vehicle 100, steering information indicating a steering angle of the vehicle 100, and the vehicle 100. It may include at least one of the turn signal information indicating the direction indicator of the) and the driving route information of the vehicle (100).
  • the other vehicle state information may include information about at least one of a vehicle model, a position, a speed, a steering wheel angle, a direction indicator, and a driving route of the other vehicle. And at least one of vehicle type information of the other vehicle, position information of the other vehicle, speed information of the other vehicle, steering information of the other vehicle, and turn signal information of the other vehicle. .
  • the driving environment information may include driving time information indicating that the driving time zone of the vehicle 100 is night or day, driving road information indicating a type of road on which the vehicle 100 runs, and traffic conditions around the vehicle 100. It may include at least one of traffic situation information indicating that the traffic jam.
  • the processor 270 may determine the possibility of an accident of the vehicle 100 based on the vehicle information.
  • the processor 270 may enlarge the BSD area when it is determined that the probability of an accident occurring in the vehicle 100 increases based on the vehicle information.
  • the processor 270 may enlarge the BSD area and advance a time point at which an alarm is output. The driver can recognize a dangerous situation more quickly.
  • the processor 270 may reduce the BSD area when it is determined that the probability of an accident occurring in the vehicle 100 is reduced based on the vehicle information.
  • the processor 270 may delay the time at which the alarm is output by reducing the BSD area.
  • the processor 270 may determine the possibility of an accident occurring in the vehicle 100 in a specific area based on the vehicle information. When it is determined that the probability of an accident occurring in the vehicle 100 in a specific region increases based on the vehicle information, the processor 270 may enlarge the BSD region in the direction in which the specific region exists. For example, when it is determined that the probability of an accident occurring in the vehicle 100 at the left rear side of the vehicle 100 increases based on the vehicle information, the processor 270 moves the BSD to the left rear side of the vehicle 100. You can enlarge the area.
  • the processor 270 can set a reference BSD area which is a standard for changing the BSD area.
  • the reference BSD area may be stored in the memory 240 as an initial setting.
  • the processor 270 may change the BSD area based on the reference BSD area. For example, the processor 270 may enlarge or reduce the BSD region based on the reference BSD region.
  • the processor 270 may change the reference BSD region in response to the BSD region setting input through the input unit 230.
  • the processor 270 may enlarge or reduce the BSD area based on the changed reference BSD area.
  • the processor 270 changes a preset blind spot detection (BSD) region based on the obtained information, and when the object detected by the sensing unit 210 is located in the changed BSD region, the processor 270 changes the output unit 260. You can control the alarm output.
  • BSD blind spot detection
  • the processor 270 may acquire at least one of driving time information, driving road information, and traffic condition information, and change the preset BSD region based on the obtained information.
  • the information obtained by the processor 270 may include driving time information indicating that the driving time zone of the vehicle 100 is night or daytime, driving road information indicating a type of road on which the vehicle 100 runs, and surrounding traffic of the vehicle 100.
  • Traffic situation information indicating that the situation is smooth or congested, may include at least one.
  • the processor 270 may determine whether a time zone in which the vehicle 100 is driving is day or night based on the travel time information.
  • the driving time information may be information indicating a current time.
  • the processor 270 may determine that the current time is daytime before the first reference time and nighttime after the second reference time.
  • the first reference time and the second reference time may be the same time, or may be a time earlier than the second reference time. For example, if the first reference time is 5 pm and the second reference time is 7 pm, the processor 270 determines the driving time zone as day if the current time is before 5 pm, and the current time. After 7 pm, the driving time can be determined at night.
  • the first reference time and the second reference time may be set by a user.
  • the processor 270 can reduce the BSD area when the driving time zone is daytime.
  • the processor 270 can enlarge the BSD region when the driving time zone is night.
  • the processor 270 may determine that the occurrence of an accident of the vehicle 100 is reduced since the surroundings of the vehicle 100 are brighter than at night.
  • the processor 270 determines that the driver's field of view is narrower and the likelihood of an accident of the vehicle 100 increases because the surrounding of the vehicle 100 is darker than the daytime. can do.
  • the processor 270 may reduce the BSD area by determining that an accident occurrence probability of the vehicle 100 decreases when the time period during which the vehicle 100 is driving is daytime.
  • the processor 270 may enlarge the BSD area by determining that an accident occurrence probability of the vehicle 100 increases when the vehicle 100 is running at night time.
  • the processor 270 may determine whether the type of road on which the vehicle 100 runs is one of a highway, a bottleneck, a ramp, a curve, a mountain, and a construction section based on the driving road information.
  • the driving road information may be one of navigation information, a camera image, and road traffic information.
  • the processor 270 may determine the type of road on which the vehicle 100 travels based on the navigation information.
  • the driving road information is a camera image
  • the camera image may be an image of a surrounding of the vehicle 100.
  • the processor 270 may determine the type of the road on which the vehicle 100 travels by analyzing the image photographing the surroundings of the vehicle 100.
  • the road traffic information may be received through a communication unit 220 from a specific server that provides road traffic information.
  • the road traffic information includes content of a type of road on which the vehicle 100 is determined based on the location information of the vehicle 100.
  • the processor 270 can enlarge the BSD area when the road type is a highway.
  • the processor 270 may determine that an accident occurrence of the vehicle 100 increases because the speeds of the vehicle 100 and other vehicles are relatively fast.
  • the processor 270 may increase the BSD area by determining that an accident occurrence probability of the vehicle 100 increases.
  • the processor 270 may reduce the BSD area when the road type is a bottleneck.
  • the processor 270 may determine that an accident occurrence of the vehicle 100 is reduced because the speed of the vehicle 100 and the other vehicle is relatively slow.
  • the processor 270 may reduce the BSD area by determining that an accident occurrence of the vehicle 100 decreases when the vehicle 100 travels a bottleneck section.
  • the processor 270 may expand the BSD area to a joining point.
  • the ramp section refers to a section in which other roads are joined.
  • the processor 270 may approach another vehicle at a joining point of another road, and thus an accident of the vehicle 100 may occur at the joining point. It can be judged that this increases.
  • the processor 270 determines that an accident occurrence rate of the vehicle 100 increases at the joining point, and thus the BSD in the direction in which the joining point exists. You can enlarge the area.
  • the processor 270 may determine whether the traffic situation around the vehicle 100 is smooth or congested based on the traffic condition information.
  • the traffic state information may be one of navigation information, a camera image, and road traffic information.
  • the processor 270 is congested when the congestion degree is greater than or equal to a predetermined value by utilizing information on the congestion degree of a traffic condition of a road on which the vehicle 100 included in the navigation information is traveling. It can be judged that it is smooth if it is below.
  • the driving road information is a camera image
  • the camera image may be an image of a surrounding of the vehicle 100.
  • the processor 270 analyzes an image photographing the periphery of the vehicle 100, detects the number of vehicles on the road on which the vehicle 100 is traveling, calculates the number of detected vehicles per unit area, and calculates the calculated number. If the value is more than the set value, it may be determined that the traffic situation is congested.
  • the driving road information is road traffic information
  • the road traffic information may be received through a communication unit 220 from a specific server that provides road traffic information.
  • the road traffic information includes a content of evaluating whether traffic conditions around the vehicle 100 are smooth or congested based on the location information of the vehicle 100.
  • the processor 270 may expand the BSD region when the traffic is smooth.
  • the processor 270 may reduce the BSD area when the traffic situation is congested.
  • the processor 270 may determine that an accident occurrence of the vehicle 100 increases because the speed of the vehicle 100 and other vehicles is relatively fast.
  • the processor 270 may enlarge the BSD area by determining that an accident occurrence of the vehicle 100 increases when the traffic situation around the vehicle 100 is smooth.
  • the processor 270 may determine that an accident occurrence of the vehicle 100 is reduced since the speed of the vehicle 100 and other vehicles is relatively slow.
  • the processor 270 may reduce the BSD area by determining that the probability of an accident occurring in the vehicle 100 decreases.
  • the processor 270 may reduce the BSD area when the type of road on which the vehicle 100 is driving is a highway and the traffic situation around the vehicle 100 is congested.
  • the processor 270 may reduce the possibility of an accident of the vehicle 100 because the speed of the vehicle 100 and the other vehicle is relatively slow even when the vehicle 100 is driven on the highway, when the surrounding traffic situation is a traffic jam. You can judge that.
  • the processor 270 may reduce the BSD area even when the vehicle 100 is traveling on the highway, when the surrounding traffic situation is a traffic jam.
  • the processor 270 may reduce the BSD area when the running time zone of the vehicle 100 is night and the traffic situation around the vehicle 100 is congested.
  • the processor 270 may cause an accident of the vehicle 100 because the speed of the vehicle 100 and the other vehicles is relatively slow even when the traffic time zone is night, even when the surrounding traffic situation is a traffic jam. We can judge that it decreases.
  • the processor 270 may reduce the BSD area even when the driving time zone of the vehicle 100 is at night, when the traffic situation is congested.
  • the vehicle information may include information about at least one of a position, a gear state, a speed, a steering wheel angle, a direction indicator, and a driving route of the vehicle 100.
  • the processor 270 may change the BSD region based on the information on at least one of the position, the gear state, the speed, the steering wheel angle, the direction indicator, and the driving route of the vehicle 100 received through the interface unit 250. have.
  • the processor 270 can reduce the BSD area when the gear state of the vehicle 100 is R.
  • FIG. For example, when the vehicle 100 reverses while parking, an object close to the vehicle 100 is problematic, so that the processor 270 reduces the BSD area so that an alarm for an object close to the vehicle 100 is output. do.
  • the processor 270 may enlarge the BSD region when the speed of the vehicle 100 increases.
  • the processor 270 may reduce the BSD area when the speed of the vehicle 100 decreases.
  • an object around the vehicle 100 should be detected relatively quickly so that the driver of the vehicle 100 may correspond to the detected object in advance.
  • the processor 270 enlarges the BSD area so that objects around the vehicle 100 can be detected relatively quickly.
  • the processor 270 may reduce the BSD area.
  • the processor 270 may enlarge the BSD area when the speed of the vehicle 100 is equal to or greater than a set speed.
  • the processor 270 may reduce the BSD area when the speed of the vehicle 100 is less than the set speed.
  • the set speed may be a value determined through an experiment and stored in the memory 240.
  • the processor 270 may adjust the amount of change in the BSD region in response to the difference between the speed of the vehicle 100 and the set speed. For example, when the speed of the vehicle 100 is greater than or equal to the set speed, and the difference between the speed of the vehicle 100 and the set speed is large, the processor 270 may expand the BSD region to be larger. .
  • the processor 270 determines a lane change intention of the vehicle based on at least one of steering information of the vehicle, turn signal information of the vehicle, and driving route information of the vehicle, and based on the lane change intention.
  • the BSD region may be enlarged in a direction in which the vehicle is to move.
  • the processor 270 may enlarge the BSD region in a direction corresponding to a steering wheel steering angle or a direction indicator of the vehicle 100.
  • the processor 270 may determine whether to change the lane of the vehicle 100 based on a steering angle or a direction indication of the vehicle 100. When it is determined that the vehicle 100 changes lanes, the processor 270 may enlarge the BSD area in the lane direction in which the vehicle 100 moves.
  • the processor 270 determines that the vehicle 100 will change lanes when the set time elapses with the steering wheel angle of the vehicle 100 being greater than or equal to the set angle, so that the steering wheel steering angle of the vehicle 100 is increased. Enlarge the BSD area in the tilted direction.
  • the setting angle and the setting time may be values determined through experiments and stored in a memory.
  • the processor 270 determines that the vehicle 100 will change lanes when the set time has elapsed while the direction indicator of the vehicle 100 is turned on, and thus the direction in which the direction indicator of the vehicle 100 is turned on.
  • the set time may be a value determined through an experiment and stored in a memory.
  • the processor 270 may enlarge the BSD area in the lane direction to be changed when a lane change of the vehicle 100 is expected based on the information on the driving route.
  • the processor 270 may determine a lane change possibility of the vehicle 100 based on the information about the driving route of the vehicle 100 received through the interface unit 250. For example, the processor 270 determines that the lane of the vehicle 100 may be changed when the driving route of the vehicle 100 is a right turn ahead 200 m ahead and the driving lane of the vehicle 100 is the first lane. can do. If it is determined that there is a possibility of changing the lane of the vehicle 100, the processor 270 may enlarge the BSD area in the lane direction in which the vehicle 100 moves.
  • the vehicle information may further include information on at least one of a vehicle model, a position, a speed, a steering wheel angle, a direction indicator, and a driving route of another vehicle.
  • the communication unit 220 receives information about at least one of a vehicle model, a position, a speed, a steering wheel angle, a direction indicator, and a driving route of the other vehicle from the other vehicle driving around the vehicle 100.
  • the communication unit 220 provides the received information to the processor 270.
  • the processor 270 may change the BSD region based on information on at least one of a vehicle model, a position, a speed, a steering wheel angle, a direction indicator, and a driving route of another vehicle received through the communication unit 220.
  • the processor 270 may expand the BSD area in the direction of the other vehicle.
  • the processor 270 may receive information about a vehicle type of another vehicle that is driving around the vehicle 100 through the communication unit 220.
  • the processor 270 may enlarge the BSD area in the direction in which the large vehicle is located, when it is determined that the vehicle model of the other vehicle is the large vehicle based on the received information.
  • the processor 270 expands the BSD area in the direction in which the large vehicle is located, so that the driver can recognize the large vehicle in advance.
  • the processor 270 enlarges the BSD area in the direction in which the other vehicle is located, based on the positional information of the other vehicle received through the communication unit 220.
  • the processor 270 may enlarge the BSD area in the direction of the other vehicle when the position of the other vehicle approaches the vehicle 100 for a set time or more.
  • the processor 270 may receive information about a position of another vehicle that is driving around the vehicle 100 through the communication unit 220.
  • the information of the other vehicle may be GPS information.
  • the processor 270 may determine a distance between the vehicle 100 and the other vehicle based on the position information of the vehicle 100 received through the interface unit 250 and the position information of the other vehicle received through the communication unit 220. You can judge. The processor 270 may determine that the other vehicle approaches the vehicle 100 when the distance between the vehicle 100 and the other vehicle decreases for more than a predetermined time.
  • the set time may be a value determined through an experiment and stored in the memory 240.
  • the processor 270 may enlarge the BSD area in the direction where the other vehicle is located. Accordingly, the driver may recognize another vehicle approaching the vehicle 100 in advance.
  • the processor 270 may enlarge the BSD region in the direction of the other vehicle when the speed of the other vehicle is greater than or equal to the speed of the vehicle 100.
  • the processor 270 may receive information about the speed of another vehicle that is driving around the vehicle 100 through the communication unit 220.
  • the processor 270 compares the speed information of the vehicle 100 received through the interface unit 250 with the speed information of the other vehicle received through the communication unit 220, so that the speed of the other vehicle is determined by the speed of the vehicle 100. If the speed is higher than that, the BSD area can be expanded in the direction of the other vehicle.
  • the processor 270 expands the BSD area in the direction in which the other vehicle is located, so that the driver can recognize the other vehicle in advance.
  • the processor 270 may enlarge the BSD area in the direction of the other vehicle when the steering wheel steering angle or the direction indicator of the other vehicle is directed toward the vehicle 100.
  • the processor 270 may receive information about a steering wheel steering angle or a direction indicator of another vehicle that is driving around the vehicle 100 through the communication unit 220. The processor 270 may determine whether the other vehicle moves toward the vehicle 100 based on the information about the steering angle or the direction indication of the other vehicle. When it is determined that the other vehicle is moving toward the vehicle 100, the processor 270 enlarges the BSD area in the direction where the other vehicle is located.
  • the processor 270 may enlarge the BSD area in the direction in which the other vehicle is located when the set time has elapsed while the steering wheel angle of the other vehicle is inclined more than the set angle in the direction in which the vehicle 100 is located.
  • the processor 270 may expand the BSD area in the direction in which the other vehicle exists when the direction indicator of the other vehicle is turned on in the direction in which the vehicle 100 is located for more than a predetermined time.
  • the processor 270 expands the BSD area in the direction in which the other vehicle is located, so that the driver can recognize the other vehicle approaching the vehicle 100 in advance.
  • the processor 270 may enlarge the BSD area in the direction of the other vehicle.
  • the processor 270 may receive information about a driving route of another vehicle that is driving around the vehicle 100 through the communication unit 220. The processor 270 may determine whether the other vehicle approaches the vehicle 100 based on the information on the driving route of the other vehicle.
  • the processor 270 based on the position and the driving route information of the vehicle 100 received through the interface unit 250 and the position and the driving route information of the other vehicle received through the communication unit 220, the other vehicle It may be determined whether the vehicle 100 approaches.
  • the processor 270 may enlarge the BSD area in the direction where the other vehicle is located.
  • the processor 270 can set a plurality of BSD areas. For example, the processor 270 can set four BSD regions.
  • the plurality of BSD regions may include regions that overlap each other.
  • the plurality of BSD regions may not include overlapping regions.
  • the processor 270 may individually change a plurality of BSD regions based on the vehicle information. For example, when it is determined that the large vehicle approaches the vehicle 100 based on the vehicle information, the processor 270 includes the large vehicle in the center of the vehicle 100 among the plurality of BSD regions. You can expand the BSD space in the direction. For example, when it is determined that the vehicle 100 moves to the right lane based on the vehicle information, the processor 270 selects a BSD region existing on the right side of the vehicle 100 among the plurality of BSD regions. While expanding, the BSD area existing on the left side of the vehicle 100 can be reduced.
  • the processor 270 can set a left BSD area and a right BSD area.
  • the BSD region may include a left BSD region and a right BSD region of the vehicle 100.
  • the left BSD area is an area existing on the left side of the vehicle 100.
  • the right BSD area is an area existing on the right side of the vehicle 100.
  • the sensing unit 210 provided on the left side of the vehicle 100 may detect an object located in the left BSD region.
  • the sensing unit 210 provided on the right side of the vehicle 100 may detect an object located in the right BSD region.
  • the processor 270 may determine the possibility of an accident occurring in the vehicle 100 on the left side and the right side of the vehicle 100 based on the vehicle information. Based on the vehicle information, the processor 270 may enlarge the BSD region of the side of the vehicle 100, in which the possibility of an accident occurrence of the vehicle 100 increases. For example, the processor 270 may enlarge the left BSD area when it is determined that the probability of an accident occurring in the vehicle 100 on the left rear side of the vehicle 100 increases based on the vehicle information.
  • the processor 270 determines a lane change intention of the vehicle based on at least one of steering information of the vehicle, turn signal information of the vehicle, and driving route information of the vehicle, and based on the lane change intention.
  • the BSD region of the side to which the vehicle is to be moved can be enlarged among the left BSD region and the right BSD region.
  • the processor 270 can enlarge the BSD area of the side surface corresponding to the steering wheel steering angle and the direction indicating direction of the vehicle 100 among the left BSD area and the right BSD area.
  • the processor 270 can enlarge the BSD region existing in the direction in which the steering wheel steering angle of the vehicle 100 is inclined among the left BSD region and the right BSD region.
  • the processor 270 can enlarge the BSD area existing in the direction in which the direction indicator of the vehicle 100 turns on among the left BSD area and the right BSD area.
  • the processor 270 may include a direction in which the steering wheel steering angle of the vehicle 100 is inclined. You can also expand the BSD area on the side that exists in the direction that the turn indicators turn on.
  • the processor 270 may enlarge the BSD area of the side corresponding to the lane to be changed among the left BSD area and the right BSD area.
  • the vehicle information may include information on at least one of a steering wheel steering angle, a direction indicator, and a driving route of the vehicle 100.
  • the processor 270 may determine a lane change possibility of the vehicle 100 based on information on at least one of a steering wheel steering angle, a direction indicator, and a driving route of the vehicle 100.
  • the processor 270 may determine that the vehicle 100 changes lanes when the set time elapses with the steering angle of the vehicle 100 being greater than or equal to the set angle.
  • the processor 270 may determine that the vehicle 100 changes lanes when the set time elapses while the direction indicator of the vehicle 100 is turned on.
  • the processor 270 may determine the possibility of changing the lane of the vehicle 100 based on the information about the driving route to the destination to which the vehicle 100 moves.
  • the processor 270 may enlarge the BSD region existing in the lane direction to which the vehicle 100 moves, among the left BSD region and the right BSD region. Can be.
  • the processor 270 may enlarge the BSD region of the side where the other vehicle exists among the left BSD region and the right BSD region. .
  • the processor 270 may receive information about at least one of a vehicle model, a position, a speed, a steering wheel angle, a direction indicator, and a driving route of the other vehicle through the communication unit 220.
  • the processor 270 may determine whether the other vehicle approaches the vehicle 100 based on the information related to the other vehicle received through the communication unit 220.
  • the processor 270 may comprehensively analyze information on the position, speed, steering angle, direction indication, and driving route of the other vehicle, and determine whether the other vehicle approaches the vehicle 100.
  • the processor 270 may enlarge the BSD region of the side surface where the other vehicle exists among the left BSD region and the right BSD region.
  • the processor 270 may enlarge the BSD region of the side where the confluence point exists among the left BSD region and the right BSD region when the road type on which the vehicle 100 runs is a ramp section based on the vehicle information. have.
  • the processor 270 may approach another vehicle at a joining point of another road, and thus an accident of the vehicle 100 may occur at the joining point. It can be judged that this increases.
  • the processor 270 determines that an accident occurrence of the vehicle 100 increases at the joining point, and thus, among the left BSD area and the right BSD area.
  • the BSD region of the side where the confluence point exists can be expanded.
  • the processor 270 based on the vehicle information, is a bottleneck in which the road type on which the vehicle 100 runs is a bottleneck, and if a lane change of the vehicle 100 is expected, the processor 270 may be changed among the left BSD region and the right BSD region. You can expand the BSD area on the side where lanes exist.
  • the processor 270 may determine whether the type of road on which the vehicle 100 runs is a bottleneck section based on the road information included in the vehicle information.
  • the processor 270 may determine a lane change possibility of the vehicle 100 based on the vehicle state information included in the vehicle information.
  • the processor 270 is based on information on at least one of a steering wheel steering angle, a direction indicator, and a driving route of the vehicle 100 included in the vehicle state information. Therefore, when it is determined that the lane change possibility of the vehicle 100 is determined, the BSD area of the side in which the lane to which the vehicle 100 is to be moved may be enlarged among the left BSD area and the right BSD area.
  • the processor 270 can set the risk level of each of the plurality of BSD regions based on the vehicle information.
  • the processor 270 may provide a signal corresponding to each risk level. For example, when three BSD regions are set, the processor 270 can set the risk levels of the three BSD regions in the order in which the BSD regions are close to the vehicle 100.
  • the processor 270 may set a first BSD region and a second BSD region that is narrower than the first BSD region.
  • the BSD region may include a first BSD region and a second BSD region.
  • the second BSD region may include one region of the first BSD region.
  • the first BSD region may include a second BSD region.
  • the second BSD area may be an area closer to the vehicle 100 than the first BSD area.
  • the processor 270 may provide a first signal corresponding to the first stage alarm.
  • the processor 270 may provide a second signal corresponding to the second stage alarm.
  • the output unit 260 may output a first stage alarm in response to the first signal provided by the processor 270.
  • the output unit 260 may output a second stage alarm in response to the second signal provided by the processor 270.
  • the second stage alarm may be to inform a situation that is more dangerous than the first stage alarm.
  • the processor 270 may perform a first step through the output unit 260. Output an alarm.
  • the processor 270 outputs the second stage alarm through the output unit 260 since the object is gradually approaching the vehicle 100.
  • the second stage alarm may be an alarm for notifying a situation that is more dangerous than the first stage alarm.
  • the processor 270 may change the second BSD region based on the vehicle information.
  • the processor 270 may enlarge the second BSD area when it is determined that the probability of an accident occurring in the vehicle 100 increases based on the vehicle information.
  • the processor 270 may enlarge the second BSD region and advance a time point at which the second stage alarm is output. The driver can recognize a dangerous situation more quickly.
  • the processor 270 may reduce the second BSD area when it is determined that the likelihood of an accident occurring in the vehicle 100 is reduced based on the vehicle information.
  • the processor 270 may delay the time point at which the second stage alarm is output by reducing the second BSD region.
  • the processor 270 may determine whether a time zone in which the vehicle 100 is driving is day or night based on the travel time information. The processor 270 may reduce the second BSD area when the driving time zone is daytime. The processor 270 may enlarge the second BSD area when the driving time zone is night.
  • the processor 270 may reduce the possibility of an accident occurring in the vehicle 100 and reduce the second BSD area.
  • the processor 270 may enlarge the second BSD area by determining that an accident occurrence probability of the vehicle 100 increases when the vehicle 100 is running at night time.
  • the processor 270 may determine whether the type of road on which the vehicle 100 runs is one of a highway, a bottleneck, a ramp, a curve, a mountain, and a construction section based on the driving road information.
  • the processor 270 may enlarge the second BSD area when the road type is a highway or a curved road.
  • the processor 270 may determine that an accident occurrence of the vehicle 100 increases, thereby expanding the second BSD region.
  • the processor 270 may determine that an accident occurrence of the vehicle 100 increases, thereby expanding the second BSD region.
  • the processor 270 may reduce the second BSD area when the road type is a bottleneck.
  • the processor 270 determines that the occurrence of the accident of the vehicle 100 is reduced because the speed of the vehicle 100 and the other vehicle is relatively slow, and thus the second BSD You can reduce the area.
  • the processor 270 may expand the second BSD region to a joining point.
  • the processor 270 may approach another vehicle at a joining point of another road, and thus an accident of the vehicle 100 may occur at the joining point.
  • the second BSD region can be enlarged in the direction in which the confluence point is located.
  • the processor 270 may enlarge the second BSD area when the traffic is smooth.
  • the processor 270 may reduce the second BSD area when the traffic is congested.
  • the processor 270 determines that the accident rate of the vehicle 100 increases because the speeds of the vehicle 100 and other vehicles are relatively fast, and thus the second speed is increased. You can expand the BSD space.
  • the processor 270 determines that the accident rate of the vehicle 100 is reduced because the speed of the vehicle 100 and the other vehicle is relatively slow, and thus the second speed is reduced. You can reduce the BSD space.
  • the processor 270 may reduce the possibility of an accident of the vehicle 100 because the speed of the vehicle 100 and the other vehicle is relatively slow even when the vehicle 100 is driven on the highway, when the surrounding traffic situation is a traffic jam. You can judge that.
  • the processor 270 may reduce the second BSD area even when the vehicle 100 is traveling on the highway, when the surrounding traffic situation is a traffic jam.
  • the processor 270 may cause an accident of the vehicle 100 because the speed of the vehicle 100 and the other vehicles is relatively slow even when the traffic time zone is night, even when the surrounding traffic situation is a traffic jam. We can judge that it decreases.
  • the processor 270 may reduce the second BSD area even when the driving time zone of the vehicle 100 is at night, when the surrounding traffic situation is a traffic jam.
  • the processor 270 may enlarge the second BSD region when the gear state of the vehicle 100 is R.
  • FIG. The processor 270 may determine whether the gear state of the vehicle 100 is R based on the vehicle information.
  • the processor 270 may enlarge the second BSD region.
  • the processor 270 may enlarge the second BSD region and advance a time point at which the second stage alarm is output.
  • the processor 270 may reduce the second BSD region.
  • the processor 270 may enlarge the second BSD region when the speed of the vehicle 100 increases.
  • the processor 270 may reduce the second BSD area when the speed of the vehicle 100 decreases.
  • the processor 270 may determine whether the speed of the vehicle 100 increases or decreases based on the vehicle information.
  • the processor 270 enlarges the second BSD area to speed up the time at which the second stage alarm is output.
  • the processor 270 may reduce the second BSD area.
  • the processor 270 may enlarge the second BSD region when the speed of the vehicle 100 is greater than or equal to a set speed.
  • the processor 270 may reduce the second BSD area when the speed of the vehicle 100 is less than the set speed.
  • the set speed may be a value determined through an experiment and stored in the memory 240.
  • the processor 270 may adjust the amount of change in the second BSD region in response to the difference between the speed of the vehicle 100 and the set speed. For example, if the speed of the vehicle 100 is greater than or equal to the set speed, and the difference between the speed of the vehicle 100 and the set speed is large, the processor 270 may enlarge the second BSD region relatively larger. Can be.
  • the processor 270 may enlarge the second BSD region in a direction corresponding to a steering wheel steering angle or a direction indicator of the vehicle 100.
  • the processor 270 may determine a direction corresponding to the steering wheel steering angle or the direction indication of the vehicle 100 based on the vehicle information.
  • the processor 270 may determine that the vehicle 100 changes lanes in a direction corresponding to a steering wheel steering angle or a direction indicator of the vehicle 100.
  • the processor 270 may enlarge the second BSD area in the lane direction to be moved.
  • the processor 270 determines that the vehicle 100 will change the lane when the set time has elapsed while the steering wheel angle of the vehicle 100 is equal to or greater than the set angle, and the steering wheel angle of the vehicle 100 is inclined. Expand the second BSD area.
  • the setting angle and the setting time may be values determined through experiments and stored in a memory.
  • the processor 270 determines that the vehicle 100 will change lanes when the set time has elapsed while the direction indicator of the vehicle 100 is turned on, so that the second BSD is turned in the direction in which the direction indicator of the vehicle 100 is turned on. Enlarge the area.
  • the set time may be a value determined through an experiment and stored in a memory.
  • the processor 270 may enlarge the second BSD area in the lane direction to be changed when a lane change of the vehicle 100 is expected based on the information on the driving route.
  • the processor 270 may enlarge the second BSD area in the lane direction in which the vehicle 100 is to be moved.
  • the processor 270 may determine a lane change possibility of the vehicle 100 based on the information about the driving route of the vehicle 100 received through the interface unit 250. For example, the processor 270 may change lanes of the vehicle 100 when the driving route of the vehicle 100 is a left turn ahead of 300m ahead and the driving lane of the vehicle 100 is not the first lane. You can judge. If it is determined that there is a possibility of changing the lane of the vehicle 100, the processor 270 may enlarge the second BSD area in the lane direction in which the vehicle 100 moves.
  • the processor 270 When it is determined that the vehicle 100 does not change the lane based on the vehicle information and an object is detected in the second BSD area, the processor 270 provides a first signal corresponding to the first stage alarm. can do.
  • the vehicle information may include information on at least one of a steering wheel steering angle, a direction indicator, and a driving route of the vehicle 100.
  • the processor 270 may determine that the vehicle 100 does not change the lane based on information about at least one of a steering wheel steering angle, a direction indicator, and a driving route of the vehicle 100. For example, when the steering wheel angle of the vehicle 100 does not tilt, the direction indicator does not turn on, or the driving path of the vehicle 100 continues straight, the processor 270 does not change the lane. You can judge that you do not.
  • the processor 270 may provide a first signal corresponding to the first stage alarm when an object is detected in the second BSD region.
  • the output unit 260 outputs a first stage alarm in response to the first signal provided by the processor 270.
  • the processor 270 may output the output unit 260 even if the object is detected in the second BSD region.
  • the first stage alarm may be output through the.
  • the processor 270 may calculate a distance between the detected object and the vehicle 100 based on the object detection signal provided by the sensing unit 210. According to another embodiment of the present invention, when the sensing unit 210 is a device capable of measuring the distance between the detected object, the sensing unit 210 may determine the distance data between the vehicle 100 and the detected object. 270).
  • the processor 270 may provide a first signal when the distance between the detected object and the vehicle 100 increases for more than a predetermined time and the object is detected in the second BSD region.
  • the output unit 260 may output a first stage alarm in response to the first signal provided by the processor 270.
  • the processor 270 determines whether the distance between the vehicle 100 and the detected object increases for more than a set time.
  • the set time may be determined through an experiment and may be a value stored in a memory.
  • the processor 270 When it is determined that the distance between the vehicle 100 and the detected object increases for more than a set time, the processor 270 provides a first signal when the object is detected in the second BSD region.
  • the output unit 260 outputs a first stage alarm in response to the first signal provided by the processor 270.
  • the processor 270 may output the data through the output unit 260 even if the object is detected in the second BSD region.
  • the first stage alarm may be output.
  • the processor 270 may set a first BSD region and a second BSD region that is narrower than the first BSD region. When an object is detected in the first BSD region, the processor 270 may provide a first signal corresponding to the first stage alarm. When an object is detected in the second BSD region, the processor 270 may provide a second signal corresponding to the second stage alarm.
  • the processor 270 may enlarge the second BSD area in the direction of the other vehicle.
  • the processor 270 may receive information about a vehicle type of another vehicle that is driving around the vehicle 100 through the communication unit 220.
  • the processor 270 may enlarge the second BSD region in the direction in which the large vehicle is located, when it is determined that the vehicle model of the other vehicle is the large vehicle based on the received information.
  • the processor 270 When the large vehicle traveling around the vehicle 100 exists in the enlarged second BSD area, the processor 270 outputs the second stage alarm via the output unit 260. Accordingly, the driver can clearly recognize the large vehicle.
  • the processor 270 enlarges the second BSD region in the direction in which the other vehicle is located, based on the positional information of the other vehicle received through the communication unit 220.
  • the processor 270 may enlarge the second BSD region in the direction of the other vehicle when the position of the other vehicle approaches the vehicle 100 for a set time or more.
  • the processor 270 may receive information about a position of another vehicle that is driving around the vehicle 100 through the communication unit 220.
  • the processor 270 may determine a distance between the vehicle 100 and the other vehicle based on the position information of the vehicle 100 received through the interface unit 250 and the position information of the other vehicle received through the communication unit 220. You can judge.
  • the processor 270 may determine that the other vehicle approaches the vehicle 100 when the distance between the vehicle 100 and the other vehicle decreases for more than a predetermined time.
  • the processor 270 may increase the second BSD area in the direction where the other vehicle is located because the risk is high.
  • the processor 270 may enlarge the second BSD region in the direction of the other vehicle.
  • the processor 270 may receive information about the speed of another vehicle that is driving around the vehicle 100 through the communication unit 220.
  • the processor 270 compares the speed information of the vehicle 100 received through the interface unit 250 with the speed information of the other vehicle received through the communication unit 220, so that the speed of the other vehicle is determined by the speed of the vehicle 100. If the speed is higher than the speed, the second BSD region can be enlarged in the direction of the other vehicle.
  • the processor 270 expands the second BSD area in the direction in which the other vehicle exists because the risk is high.
  • the processor 270 may enlarge the second BSD region in the direction of the other vehicle when the steering wheel steering angle or the direction indicator of the other vehicle faces the vehicle 100.
  • the processor 270 may receive information about a steering wheel steering angle or a direction indicator of another vehicle that is driving around the vehicle 100 through the communication unit 220. The processor 270 may determine whether the other vehicle moves toward the vehicle 100 based on the information about the steering angle or the direction indication of the other vehicle.
  • the processor 270 may enlarge the second BSD region in the direction in which the other vehicle is located when the set time has elapsed while the steering wheel angle of the other vehicle is inclined more than the set angle in the direction in which the vehicle 100 is located.
  • the processor 270 may enlarge the second BSD area in the direction in which the other vehicle is located when the direction indicator of the other vehicle is turned on in the direction in which the vehicle 100 is located for more than a predetermined time.
  • the processor 270 may enlarge the second BSD area in the direction of the other vehicle.
  • the processor 270 may receive information about a driving route of another vehicle that is driving around the vehicle 100 through the communication unit 220.
  • the processor 270 is based on the information on the driving route of the other vehicle, the vehicle 100 is located in the driving route of the other vehicle, the other vehicle is not currently located in the driving route of the other vehicle, the other vehicle and the vehicle ( When the distance between the vehicles 100 decreases, it may be determined that the other vehicle approaches the vehicle 100.
  • the processor 270 may enlarge the second BSD area in the direction where the other vehicle is located.
  • the processor 270 determines that another vehicle approaches the vehicle 100 within a set distance when the lane of the vehicle 100 changes, based on the vehicle information received through the interface unit 250 and the communication unit 220.
  • the second signal corresponding to the second stage alarm may be provided.
  • the processor 270 is configured to change lanes of the vehicle 100 based on the information related to the vehicle 100 received through the interface unit 250 and the information related to the other vehicle received through the communication unit 220. The movement of the vehicle and the distance between the other vehicle and the vehicle 100 may be determined. Accordingly, the processor 270 may determine whether another vehicle approaches the vehicle 100 within a set distance when the lane of the vehicle 100 changes. The set distance may be determined by an experiment as a distance required for an alarm on another vehicle, and may be a value stored in the memory 240.
  • the processor 270 may provide a second signal when it is determined that the other vehicle approaches the vehicle 100 within a set distance when the lane of the vehicle 100 changes.
  • the output unit 260 outputs a second stage alarm in response to the second signal.
  • the processor 270 may provide a second signal when it is determined that the other vehicle approaches the vehicle 100 within a set distance when the lane of the vehicle 100 is changed even if the object is not detected in the second BSD region. .
  • the processor 270 controls the steering apparatus and the braking of the vehicle 100 so that the collision between the vehicle 100 and the other vehicle does not occur.
  • a signal may be provided for controlling at least one of the device and the driving device.
  • the processor 270 may determine the lane change intention of the vehicle or the moving path of the other vehicle based on the obtained information, and determine that there is no lane change intention of the vehicle, or that the other vehicle is separated from the vehicle. In this case, the first step alarm may be controlled to be output.
  • the processor 270 may provide the second alarm when it is determined that the other vehicle approaches within a set distance when changing the lane of the vehicle, based on the obtained information.
  • the processor 270 may calculate a change amount of the relative distance and the relative speed between the other vehicle and the vehicle 100 based on the vehicle state information and the other vehicle state information included in the vehicle information.
  • the processor 270 analyzes the movement of the vehicle 100 based on the position, speed, steering angle, and driving path information of the vehicle 100 included in the vehicle state information, and is included in the other vehicle state information.
  • the movement of the other vehicle may be analyzed based on the position, speed, steering angle, and driving path information of the vehicle 100 and the position, speed, steering angle, and driving path information of the other vehicle.
  • the processor 270 may calculate a change amount of the relative distance and the relative speed between the other vehicle and the vehicle 100 by analyzing the movement of the vehicle 100 and the movement of the other vehicle.
  • the processor 270 may calculate a time to collision (TTC) based on a change amount of the relative distance and the relative speed between the other vehicle and the vehicle 100. The processor 270 may determine whether another vehicle collides with the vehicle 100 when the vehicle 100 runs in the same state as the present time, based on the calculated TTC.
  • TTC time to collision
  • the processor 270 calculates a movement of the vehicle 100 so that the vehicle 100 does not collide with the other vehicle.
  • the processor 270 may detect objects existing in front, rear, left, and right of the vehicle 100 through the sensing units 210 and 125.
  • the processor 270 may calculate a movement of the vehicle 100 that may not collide with another vehicle while avoiding an object detected in front, rear, left, and right of the vehicle 100.
  • the processor 270 may provide a signal for controlling at least one of a steering device, a braking device, and a driving device of the vehicle 100 so that the vehicle moves according to the calculated movement.
  • the processor 270 may provide the control signal to the controller 170 or the vehicle driver 150 through the interface unit 250.
  • the controller 170 or the vehicle driver 150 controls the vehicle 100 in response to the control signal.
  • the processor 270 may include application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable gate arrays (FPGAs), processors (processors), and controllers ( It may be implemented using at least one of controllers, micro-controllers, microprocessors, and electrical units for performing other functions.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • processors processors
  • controllers It may be implemented using at least one of controllers, micro-controllers, microprocessors, and electrical units for performing other functions.
  • the input unit 230 may receive a user input for the vehicle driving assistance apparatus 200.
  • the input unit 230 may receive an activation input of the vehicle driving assistance apparatus 200.
  • the vehicle driving assistance apparatus 200 may operate.
  • the input unit 230 may receive an activation input for various functions of the vehicle driving assistance apparatus 200.
  • Functions of the vehicle driving assistance apparatus 200 may include an alarm output means change, a BSD area change, a vehicle avoidance function, and the like.
  • an activation input for a specific function of the vehicle driving assistance apparatus 200 is received through the input unit 230, a specific function corresponding thereto may be activated.
  • the input unit 230 may receive a setting input for an alarm output by the output unit 260.
  • the input unit 230 may include at least one of a mechanical input device, a touch input device, a voice input device, and a wireless input device.
  • the mechanical input device may include a button, a lever, a jog wheel, a switch, and the like.
  • the touch input device may include at least one touch sensor.
  • the touch input device may be configured as a touch screen.
  • the voice input device may convert voice into an electrical signal.
  • the voice input device may include a microphone.
  • the wireless input device may receive a user input wirelessly.
  • the memory 240 may store various data about the operation of the vehicle driving assistance apparatus 200, such as a program for processing or controlling the processor 270.
  • the memory 240 may be various storage devices such as a ROM, a RAM, an EPROM, a flash drive, a hard drive, and the like, in hardware.
  • the memory 240 may be included as a sub configuration of the processor 270 according to an embodiment.
  • the power supply unit 290 may supply power required for the operation of each component under the control of the processor 270.
  • the power supply unit 290 may receive power from a battery inside the vehicle.
  • 4A to 4C are views referred to for explaining the arrangement of the sensing unit and the arrangement of the BSD area of the vehicle driving assistance apparatus according to the embodiment of the present invention.
  • the sensing unit 210 of the vehicle driving assistance apparatus 200 may be disposed in one region of the vehicle 100.
  • the sensing unit 210 may be disposed in at least one of a region of the rear bumper of the vehicle 100 and a side mirror of the vehicle 100.
  • the vehicle driving assistance device 200 may include at least one sensing unit 210.
  • the sensing unit 210 may detect an object located outside the vehicle 100.
  • the sensing unit 210 may have a detection range that is a range in which an object outside the vehicle 100 may be detected.
  • the sensing unit 210 may be one of a camera, a radar, a lidar, an ultrasonic sensor, and an infrared sensor.
  • the sensing unit 210 may be disposed on the right side mirror and the left side mirror of the vehicle 100 one by one.
  • the vehicle driving assistance device 200 may further include an optical output unit 211 and an audio output unit 212.
  • the light output unit 211 and the sound output unit 212 may be disposed in an area inside or outside the vehicle 100.
  • the light output unit 211 and the sound output unit 212 may be divided into left and right sides corresponding to the sensing unit 210 disposed in the side mirror.
  • the light output unit 211 and the sound output unit 212 are divided into left and right sides, the light output unit 211 and the sound output unit 212 on the side where the object detected by the sensing unit 210 is located. The alarm is output.
  • blind spot detection (BSD) regions may be formed on the left and right sides of the vehicle 100.
  • the BSD region may include a left BSD region 301a and a right BSD region 301b.
  • the processor 270 may output an alarm corresponding to each of the left BSD region 301a and the right BSD region 301b through the output unit 260.
  • the processor 270 may include the light output unit 211 and the sound output unit 212 provided on the left side.
  • the alarm may be output through at least one.
  • the sensing unit 210 may be disposed at left and right regions of the rear bumper of the vehicle 100.
  • the sensing unit 210 may be disposed on the left side mirror and the right side mirror of the vehicle 100.
  • the processor 270 may output an alarm through the output unit 260 when the location of the object detected by the sensing unit 210 is in the left BSD region 301a or the right BSD region 301b. For example, when the location of the object detected by the sensing unit 210 is within the left BSD region 301a, the processor 270 may generate an alarm corresponding to the left BSD region 301a through the output unit 260. You can print
  • 5A to 5C are views for explaining a BSD area for outputting an alarm by a vehicle driving assistance apparatus according to an embodiment of the present invention.
  • the processor 270 may set a first BSD region and a second BSD region on the left side and the right side of the vehicle, respectively.
  • the processor 270 receives the left first BSD region 302a, the right first BSD region 302b, and the left second BSD region 303a through the sensing unit 210 disposed on the rear side of the vehicle 100. , And an object located in at least one of the right second BSD regions 303b may be detected.
  • the BSD region may include a left first BSD region 302a, a right first BSD region 302b, a left second BSD region 303a, and a right second BSD region 303b.
  • the left second BSD region 303a may be a region included in the left first BSD region 302a.
  • the right second BSD region 303b may be an area included in the right first BSD region 302b.
  • the processor 270 may output a first stage alarm through the output unit 260.
  • the processor 270 may output a second stage alarm through the output unit 260.
  • the first stage alarm and the second stage alarm may be set differently according to a setting input through the input unit 230.
  • the processor 270 individually separates the left first BSD region 302a, the right first BSD region 302b, the left second BSD region 303a, and the right second BSD region 303b based on the vehicle information. Can be changed.
  • the processor 270 may enlarge the first BSD region of the side in which the object exists based on the vehicle information.
  • the processor 270 may enlarge the second BSD region in which the risk exists in the case where it is determined that the risk is high based on the vehicle information.
  • the processor 270 sets a left first BSD region 302a, a right first BSD region 302b, a left second BSD region 303a, and a right second BSD region 303b.
  • the left BSD area 301a and the right BSD area 301b can be further set.
  • the processor 270 receives the left first BSD region 302a, the right first BSD region 302b, and the left second BSD region 303a through the sensing unit 210 disposed on the rear side of the vehicle 100. , And an object located in at least one of the right second BSD regions 303b may be detected. At the same time, the processor 270 may detect an object located in the left BSD region 301a or the right BSD region 301b through the sensing unit 210 disposed in the side mirror of the vehicle 100.
  • Processor 270 is based on the vehicle information, the first left BSD area 302a, the first right BSD area 302b, the second left BSD area 303a, the second right BSD area 303b, the left side.
  • the BSD area 301a and the right BSD area 301b can be changed separately.
  • the processor 270 may set an alarm that is output when an object is detected in the left BSD region 301a or the right BSD region 301b through the input unit 230.
  • the processor 270 may change at least one of the left BSD area 301a and the right BSD area 301b based on the vehicle information.
  • the processor 270 may enlarge the BSD regions 301a and 301b of both sides when it is determined that the driver needs to recognize the object in advance based on the vehicle information. For example, the processor 270 may increase the speed of the vehicle 100, speed the speed of another vehicle faster than the speed of the vehicle 100, drive the vehicle 100 on the highway, or cause the vehicle 100 to If you are driving at night, you can expand the BSD area. Due to the enlarged BSD areas 305a and 305b, alarms are output relatively quickly.
  • the processor 270 may reduce the BSD regions 301a and 301b on both sides when it is determined that the driver may recognize the object slowly based on the vehicle information. For example, the processor 270 may reduce the speed of the vehicle 100, the speed of another vehicle is slower than the speed of the vehicle 100, the traffic around the vehicle 100 may be congested, or the vehicle 100 may be congested. If you run during the day, you can reduce the BSD area. Due to the reduced BSD regions 304a and 304b, the alarm is output relatively slowly.
  • the processor 270 may enlarge the BSD region of the side on which the object approaching the vehicle 100 is located, among the left and right sides of the vehicle 100.
  • the processor 270 determines the possibility of changing the lane of the vehicle 100 based on the vehicle information, and enlarges the BSD area on the side of the left and right sides of the vehicle 100 in which the vehicle 100 is to be moved. can do.
  • 6A and 6B are views referred to for explaining the change of the BSD area based on the vehicle state information in the vehicle driving assistance apparatus according to the embodiment of the present invention.
  • the processor 270 may change the BSD area based on the vehicle state information.
  • vehicle state information includes information about at least one of a vehicle position, a gear state, a speed, a steering wheel angle, a direction indicator, and a driving route.
  • the processor 270 enlarges the BSD area in the direction in which the vehicle 100 is to be moved among the left BSD area and the right BSD area based on the information about the steering wheel steering angle or the direction indicator of the vehicle. do.
  • the processor 270 can enlarge the BSD region existing in the direction in which the steering wheel steering angle of the vehicle 100 is inclined among the left BSD region and the right BSD region.
  • the processor 270 can enlarge the BSD area existing in the direction in which the direction indicator of the vehicle 100 turns on among the left BSD area and the right BSD area.
  • the processor 270 may be configured to incline the steering wheel steering angle of the vehicle 100. You can enlarge the BSD area on the side of the direction of the turn signal.
  • the processor 270 may enlarge the right BSD region 305b when the steering angle of the vehicle 100 is inclined to the right or when the right turn indicator of the vehicle 100 is turned on. In this case, the processor 270 may not change or reduce the left BSD region 301a.
  • the processor 270 may determine whether to change the lane of the vehicle 100 based on a steering angle or a direction indication of the vehicle 100. If it is determined that the vehicle 100 changes lanes, the processor 270 may enlarge the BSD area of the side where the vehicle 100 moves.
  • the processor 270 determines that the vehicle 100 will change the lane when the set time has elapsed while the steering wheel angle of the vehicle 100 is equal to or greater than the set angle, and thus the steering wheel steering angle of the vehicle 100 is inclined. Expand the side BSD area.
  • the setting angle and the setting time may be values determined through experiments and stored in a memory.
  • the processor 270 determines that the vehicle 100 will change lanes when the set time has elapsed while the direction indicator of the vehicle 100 is turned on, and the side BSD in the direction where the direction indicator of the vehicle 100 is turned on. Enlarge the area.
  • the set time may be a value determined through an experiment and stored in a memory.
  • the processor 270 determines the direction in which the vehicle 100 moves based on the information on the driving route of the vehicle 100, and enlarges the side BSD area in the direction in which the vehicle 100 moves. can do.
  • the processor 270 receives information about a driving route of the vehicle 100 through the interface unit 250.
  • the processor 270 may enlarge the right BSD region 305b when it is expected that the vehicle 100 moves to the right lane based on the information about the driving route of the vehicle 100.
  • FIG. 7A to 7D are views for explaining the change of the second BSD region based on the vehicle state information in the vehicle driving assistance apparatus according to the embodiment of the present invention.
  • the processor 270 can set the BSD regions as the first BSD regions 302a and 302b and the second BSD regions 303a and 303b.
  • the second BSD area may be an area closer to the vehicle 100 than the first BSD area.
  • the processor 270 may provide a first signal corresponding to the first stage alarm.
  • the processor 270 may provide a second signal corresponding to the second stage alarm.
  • the second stage alarm may be a notification of a more dangerous situation than the first stage alarm.
  • the processor 270 includes a second side of a side corresponding to a steering wheel steering angle or direction indicating direction of the vehicle 100 among the second left BSD region 303a and the second right BSD region 307b. You can expand the BSD space.
  • the processor 270 may enlarge the second BSD area on the side where the lane to which the vehicle 100 is to be moved is located. .
  • the processor 270 determines that the vehicle 100 moves to the right lane when the steering angle of the vehicle 100 is inclined to the right or the right turn indicator of the vehicle 100 is turned on.
  • the second BSD area 307b is enlarged. Accordingly, when the driver wants to move to the right lane, the driver may first recognize another vehicle that approaches the right side of the vehicle 100 first.
  • the processor 270 may enlarge the second BSD regions 307a and 307b.
  • the processor 270 may move the left second BSD area 307a and the right second BSD area 307b. Zoom in. Accordingly, when the vehicle 100 reverses the road incorrectly, the driver may increase the awareness of the vehicle approaching the vehicle 100.
  • the processor 270 may have a left side.
  • the second BSD region 307a and the right second BSD region 307b are enlarged. Accordingly, the driver who backs out and leaves the vehicle can increase the recognition possibility of the vehicle approaching from the rear of the vehicle 100.
  • the processor 270 of the left second BSD region 307a and the right second BSD region 303b when a lane change of the vehicle 100 is anticipated based on the information on the driving route, the processor 270 of the left second BSD region 307a and the right second BSD region 303b.
  • the second BSD region in the lane direction toward which the vehicle 100 faces may be enlarged.
  • the processor 270 may determine a lane change possibility of the vehicle 100 based on the information about the driving route of the vehicle 100 received through the interface unit 250.
  • the processor 270 may change lanes of the vehicle 100 when the driving route of the vehicle 100 to reach the destination is two lanes and the driving lane of the vehicle 100 is three lanes. It can be judged that.
  • the processor 270 may enlarge the left second BSD region 307a.
  • FIGS. 8A and 8B are views for explaining a case in which the vehicle driving assistance apparatus outputs a first stage alarm even when an object is detected in the second BSD region according to an embodiment of the present invention.
  • the processor 270 determines that the vehicle 100 does not change a lane based on information on at least one of a steering wheel steering angle, a direction light, and a driving route of the vehicle 100. In this case, even if an object is detected in the second BSD regions 303a and 303b, the first stage alarm may be output through the output unit 260.
  • the processor 270 may determine whether the lane of the vehicle 100 is changed based on information on at least one of a steering wheel steering angle, a direction indicator, and a driving route of the vehicle 100. For example, when the steering wheel angle of the vehicle 100 does not tilt, the direction indicator does not turn on, or the driving path of the vehicle 100 continues straight, the processor 270 does not change the lane. You can judge that you do not.
  • the processor 270 may provide a first signal corresponding to the first stage alarm when an object is detected in the second BSD region.
  • the output unit 260 outputs a first stage alarm in response to the first signal provided by the processor 270. If the vehicle 100 does not change lanes, there is less risk of objects existing in the rear and rear sides of the vehicle 100, so that the processor 270 outputs a low level alarm even when an object in the second BSD area is detected. do.
  • the second processor 270 may change the second lane. Even if an object is detected in the BSD regions 303a and 303b, the first stage alarm may be output through the output unit 260.
  • the processor 270 may determine whether the vehicle 100 moves away from the vehicle 100 based on the driving route information of the vehicle 100 and the driving route information of the other vehicle. When it is determined that the other vehicle is moved away from the vehicle 100, the processor 270 may output a first signal corresponding to the first stage alarm even if an object is detected in the second BSD regions 303a and 303b. to provide. The output unit 260 outputs a first stage alarm in response to the first signal provided by the processor 270. When the distance between the vehicle 100 and the object existing in the BSD area is low, since an accident is unlikely, the processor 270 may output a low level alarm even when an object in the second BSD area is detected.
  • the processor 270 may analyze the movement of the vehicle 100 or the other vehicle by dividing it into x and y axes.
  • the processor 270 may analyze the movement of the vehicle 100 by generating coordinates having an x-axis and a y-axis.
  • the processor 270 may determine whether the lane of the vehicle 100 is changed based on information on at least one of a steering wheel steering angle, a direction indicator, and a driving route of the vehicle 100.
  • the processor 270 may determine a lane to which the vehicle 100 should move based on the driving route information of the vehicle 100, determine a lane to which the vehicle 100 currently travels, and determine a vehicle on the generated coordinates. It is possible to calculate the route that 100 must travel.
  • the processor 270 may analyze the movement of another vehicle by generating coordinates having an x-axis and a y-axis.
  • the processor 270 may move from the vehicle 100 while the other vehicle 300 moves in the direction in which the y coordinate increases in the same manner as the vehicle 100, based on the information about the other vehicle received through the communication unit 220. It may be determined that the distance on the x-axis moves away from each other.
  • the processor 270 may determine that the other vehicle 300 moves in a direction away from the vehicle 100, and may not output a signal corresponding to the alarm or output only a first signal corresponding to the first stage alarm. have.
  • 9A and 9B are views referred to for explaining the change of the BSD area on the basis of other vehicle state information in the vehicle driving assistance apparatus according to the embodiment of the present invention.
  • the other vehicle state information may include information on at least one of a vehicle type, a position, a speed, a steering wheel angle, a direction indicator, and a driving route of the other vehicle received through the communication unit 220.
  • the processor 270 may change the BSD region based on the other vehicle state information.
  • the processor 270 may include a left BSD region 301a and a right BSD region ( The BSD area of the side where other vehicles exist in 301b) can be expanded.
  • the processor 270 may determine whether the other vehicle 300 existing on the left side of the vehicle 100 is a large vehicle or approaches the vehicle 100 based on the other vehicle state information.
  • the processor 270 may use the other vehicle 300.
  • the left BSD area 301a existing in this direction can be enlarged.
  • the processor 270 determines that the other vehicle 300 of the left BSD region 301a and the right BSD region 301b is based on the positional information of the other vehicle 300 received through the communication unit 220. Determine which BSD zones exist in which direction.
  • the processor 270 may include the left second BSD region 307a and the right first vehicle.
  • region 303b can be expanded.
  • the processor 270 may determine whether the vehicle 300 existing on the left side of the vehicle 100 is a large vehicle or approaches the vehicle 100 based on the vehicle state information. 307a can be enlarged.
  • FIG. 10 is a diagram referred to for describing a vehicle driving assistance apparatus outputting a second stage alarm based on vehicle state information and other vehicle state information according to an embodiment of the present invention.
  • the processor 270 based on the vehicle state information and the other vehicle state information received through the interface unit 250 and the communication unit 220, changes the other vehicle when the lane of the vehicle 100 changes.
  • the second signal corresponding to the second stage alarm may be provided.
  • the vehicle state information includes information on at least one of a position, a gear state, a speed, a steering wheel angle, a direction indicator, and a driving path of the vehicle 100, which is received through the interface unit 250.
  • the other vehicle state information includes information on at least one of a vehicle model, a position, a speed, a steering wheel angle, a direction indicator, and a driving route of the other vehicle 300, which are received through the communication unit 220.
  • the processor 270 may determine the movement of the other vehicle 300 when changing the lane of the vehicle 100 based on the vehicle state information and the other vehicle state information. In addition, the processor 270 may calculate a distance between the other vehicle 300 and the vehicle 100 based on the vehicle state information and the other vehicle state information. Accordingly, the processor 270 may determine whether the other vehicle 300 approaches the vehicle 100 within a set distance when the lane of the vehicle 100 changes. The set distance may be determined by an experiment as a distance required for an alarm on another vehicle, and may be a value stored in the memory 240.
  • the processor 270 may output the output unit (even if the other vehicle 300 is not detected in the BSD region).
  • the second stage alarm is output through 260.
  • 11A to 11C are views referred to for explaining that the vehicle driving assistance apparatus according to the embodiment of the present invention changes the BSD area based on the driving environment information.
  • the driving environment information may include driving time information indicating that the driving time zone of the vehicle 100 is night or day, driving road information indicating a type of road on which the vehicle 100 runs, and traffic conditions around the vehicle 100.
  • Traffic state information indicating that the traffic jam may include at least one.
  • the processor 270 may reduce the left BSD region 301a and the right BSD region 301b.
  • the processor 270 may determine whether the surrounding traffic situation of the vehicle 100 is congested or smooth based on the traffic condition information included in the driving environment information.
  • the processor 270 reduces the speed of the BSD area because the speed of the vehicle 100 and other vehicles will decrease when the traffic situation around the vehicle 100 is congested. This is because, when the speed of the vehicle 100 and other vehicles decreases, the driver does not need to recognize an object around the vehicle 100 in advance.
  • the processor 270 may reduce the BSD area even when the vehicle 100 travels on the freeway at night when the traffic situation around the vehicle 100 is congested.
  • the processor 270 may include a BSD area on the side of the left BSD area 301a and the right BSD area 301b where a confluence point exists. You can zoom in.
  • the processor 270 may access another vehicle at a joining point of another road, and thus the left BSD area 301a and the right BSD area 301b.
  • the BSD area on the side where the confluence point is located can be expanded.
  • the driver may recognize in advance the other vehicle entering at the joining point.
  • the processor 270 is based on the driving environment information and the information related to the vehicle 100, and the road type on which the vehicle 100 runs is a bottleneck, and the lane change of the vehicle 100 may be changed. If expected, the BSD area on the side where the lane to be changed exists among the left BSD area 301a and the right BSD area 301b can be enlarged.
  • the processor 270 determines a lane change possibility of the vehicle 100 based on the information related to the vehicle 100.
  • the processor 270 may include the vehicle 100 among the left BSD region 301a and the right BSD region 301b. You can expand the BSD area on the side where the lane you want to move is.
  • FIGS. 12A and 12B are views referred to for explaining that the vehicle driving assistance apparatus according to the embodiment of the present invention changes the second BSD region based on the driving environment information.
  • the processor 270 may generate a second stage alarm for outputting a second stage alarm since the speed of the vehicle 100 and the other vehicle is relatively slow.
  • the BSD areas 303a and 303b can be reduced.
  • the processor 270 may close the second BSD regions 303a and 303b because the speed of the vehicle 100 and other vehicles is relatively slow when the traffic situation is congested. Can be shrunk.
  • the processor 270 may perform relatively slow speeds of the vehicle 100 and other vehicles when the surrounding traffic situation is at night even when the driving time zone of the vehicle 100 is at night, and thus, the second BSD regions 303a and 303b. Can be reduced.
  • the processor 270 may enlarge the second BSD regions 303a and 303b.
  • the processor 270 may enlarge the second BSD regions 303a and 303b because the possibility of an accident and the risk are relatively high. Accordingly, the driver can easily recognize other vehicles around the vehicle 100 when driving on the curve.
  • the present invention described above can be embodied as computer readable codes on a medium in which a program is recorded.
  • the computer-readable medium includes all kinds of recording devices in which data that can be read by a computer system is stored. Examples of computer-readable media include hard disk drives (HDDs), solid state disks (SSDs), silicon disk drives (SDDs), ROMs, RAMs, CD-ROMs, magnetic tapes, floppy disks, optical data storage devices, and the like. This also includes implementations in the form of carrier waves (eg, transmission over the Internet).
  • the computer may include a processor 270 or a controller 170. Accordingly, the above detailed description should not be construed as limiting in all aspects and should be considered as illustrative. The scope of the invention should be determined by reasonable interpretation of the appended claims, and all changes within the equivalent scope of the invention are included in the scope of the invention.

Abstract

본 발명은, 타차량을 감지하는 BSD영역이 상황에 따라 가변적이고, 위험도를 알리는 알람을 출력하기 위하여, 차량 외부에 위치하는 오브젝트를 감지하는 센싱부 및 차량정보에 기초하여 BSD(Blind Spot Detection)영역을 변경하고, 상기 변경된 BSD영역에 기초하여 알람에 대응하는 신호를 제공하는 프로세서를 포함하는 차량용 운전 보조 장치에 관한 것이다.

Description

차량용 운전 보조 장치
본 발명은 차량에 구비되는 차량용 운전 보조 장치에 관한 것이다.
차량은 탑승하는 사용자가 원하는 방향으로 이동시키는 장치이다. 대표적으로 자동차를 예를 들 수 있다.
한편, 차량을 이용하는 사용자의 편의를 위해, 각 종 센서와 전자 장치 등이 구비되고 있는 추세이다. 특히, 사용자의 운전 편의를 위한 다양한 장치 등이 개발되고 있다.
차량에 다양한 전자 장치가 구비되면서, 여러 편의 장치 또는 시스템들이 차량에 장착된다.
한편, 종래에는 차량의 측후방 사각지대에 타차량이 존재하면 알람을 출력하는 BSD(Blind Spot Detection)가 이용된다. 그러나, 타차량을 감지하는 영역이 정해져 있으므로, 운전 중 발생하는 여러가지 상황에 대응할 수 없다. 또한, 운전자는, 알람 출력을 통하여 현재 상황의 위험도를 판단할 수 없다.
따라서, 타차량을 감지하는 BSD영역이 상황에 따라 가변적이고, 위험도를 알리는 알람을 출력하는 차량용 운전 보조 장치가 연구중에 있다.
본 발명의 실시예는 상기한 문제점을 해결하기 위하여, 타차량을 감지하는 BSD영역을 상황에 따라 변경하는 차량용 운전 보조 장치를 제공하는데 목적이 있다.
또한, 본 발명의 실시예는 위험도에 따라서 상이한 단계의 알람을 출력하는 차량용 운전 보조 장치를 제공하는데 목적이 있다.
본 발명의 과제들은 이상에서 언급한 과제들로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
상기 과제를 달성하기 위하여, 본 발명의 실시예에 따른 차량용 운전 보조 장치는, 차량 외부에 위치하는 오브젝트를 감지하는 센싱부 및 차량정보에 기초하여 BSD(Blind Spot Detection)영역을 변경하고, 상기 변경된 BSD영역에 기초하여 알람에 대응하는 신호를 제공하는 프로세서를 포함한다.
기타 실시예들의 구체적인 사항들은 상세한 설명 및 도면들에 포함되어 있다.
본 발명의 실시예에 따르면 다음과 같은 효과가 하나 혹은 그 이상 있다.
첫째, 타차량을 감지하는 BSD영역을 상황에 따라 변경하므로, 운전 중 신경써야할 영역에 대한 사용자의 인지 가능성이 향상되는 효과가 있다.
둘째, 위험도에 따라서 상이한 단계의 알람을 출력하므로 사용자가 현재 상황의 위험한 정도를 빠르게 파악할 수 있는 효과가 있다.
셋째, 현재 상황의 위험한 정도가 낮은 경우, 낮은 단계의 알람이 출력되므로, 불필요한 알람에 대한 불편을 해소할 수 있다.
본 발명의 효과들은 이상에서 언급한 효과들로 제한되지 않으며, 언급되지 않은 또 다른 효과들은 청구범위의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
도 1은 본 발명의 실시예에 따른 차량의 외부를 도시한 도면이다.
도 2은 본 발명의 실시예에 따른 차량을 설명하는데 참조되는 블럭도이다.
도 3는 본 발명의 실시예에 따른 차량용 운전 보조 장치를 설명하는데 참조되는 블록도이다.
도 4a 내지 4c는 본 발명의 실시예에 따른 차량용 운전 보조 장치의 센싱부 배치 및 BSD영역의 배치를 설명하는데 참조되는 도면이다.
도 5a 내지 5c는, 본 발명의 실시예에 따른 차량용 운전 보조 장치가 알람을 출력하기 위한 BSD영역을 설명하는데 참조되는 도면이다.
도 6a 및 6b는, 본 발명의 실시예에 따른 차량용 운전 보조 장치가 차량 상태 정보에 기초하여 BSD영역을 변경하는 것을 설명하는데 참조되는 도면이다.
도 7a 내지 7d은, 본 발명의 실시예에 따른 차량용 운전 보조 장치가 차량 상태 정보에 기초하여 제2 BSD영역을 변경하는 것을 설명하는데 참조되는 도면이다.
도 8a 및 8b는, 본 발명의 실시예에 따른 차량용 운전 보조 장치가 제2 BSD영역에서 오브젝트가 감지되더라도 제1 단계 알람을 출력하는 경우를 설명하는데 참조되는 도면이다.
도 9a 및 9b는, 본 발명의 실시예에 따른 차량용 운전 보조 장치가 타차량 상태 정보에 기초하여 BSD영역을 변경하는 것을 설명하는데 참조되는 도면이다.
도 10은, 본 발명의 실시예에 따른 차량용 운전 보조 장치가 차량 상태 정보 및 타차량 상태 정보에 기초하여 제2 단계 알람을 출력하는 것을 설명하는데 참조되는 도면이다.
도 11a 내지 11c는, 본 발명의 실시예에 따른 차량용 운전 보조 장치가 주행 환경 정보에 기초하여 BSD영역을 변경하는 것을 설명하는데 참조되는 도면이다.
도 12a 및 12b는, 본 발명의 실시예에 따른 차량용 운전 보조 장치가 주행 환경 정보에 기초하여 제2 BSD영역을 변경하는 것을 설명하는데 참조되는 도면이다.
이하, 첨부된 도면을 참조하여 본 명세서에 개시된 실시 예를 상세히 설명하되, 도면 부호에 관계없이 동일하거나 유사한 구성요소는 동일한 참조 번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다. 이하의 설명에서 사용되는 구성요소에 대한 접미사 "모듈" 및 "부"는 명세서 작성의 용이함만이 고려되어 부여되거나 혼용되는 것으로서, 그 자체로 서로 구별되는 의미 또는 역할을 갖는 것은 아니다. 또한, 본 명세서에 개시된 실시 예를 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 명세서에 개시된 실시 예의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다. 또한, 첨부된 도면은 본 명세서에 개시된 실시 예를 쉽게 이해할 수 있도록 하기 위한 것일 뿐, 첨부된 도면에 의해 본 명세서에 개시된 기술적 사상이 제한되지 않으며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
제1, 제2 등과 같이 서수를 포함하는 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되지는 않는다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다.
어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다.
단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.
본 출원에서, "포함한다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
본 명세서에서 기술되는 차량은, 자동차, 오토바이를 포함하는 개념일 수 있다. 이하에서는, 차량에 대해 자동차를 위주로 기술한다.
본 명세서에서 기술되는 차량은, 동력원으로서 엔진을 구비하는 내연기관 차량, 동력원으로서 엔진과 전기 모터를 구비하는 하이브리드 차량, 동력원으로서 전기 모터를 구비하는 전기 차량 등을 모두 포함하는 개념일 수 있다.
이하의 설명에서 차량의 좌측은 차량의 주행 방향의 좌측을 의미하고, 차량의 우측은 차량의 주행 방향의 우측을 의미한다.
도 1은 본 발명의 실시예에 따른 차량의 외부를 도시한 도면이다.
도 1을 참조하면, 차량(100)은 동력원에 의해 회전하는 바퀴, 차량(100)의 진행 방향을 조절하기 위한 조향 입력 장치를 구비할 수 있다.
차량(100)은, 본 발명에 따른 차량용 운전 보조 장치(200)를 구비할 수 있다. 차량용 운전 보조 장치(200)는, 설정된 BSD영역 내에서 오브젝트가 감지되면 알람을 출력할 수 있다.
차량용 운전 보조 장치(200)는, 차량정보에 기초하여 BSD영역을 변경할 수 있다. 차량용 운전 보조 장치(200)는, 변경된 BSD영역 내에서 오브젝트가 감지되면 알람을 출력할 수 있다.
차량용 운전 보조 장치(200)는, BSD영역을 복수 개로 설정할 수 있다. 차량용 운전 보조 장치(200)는, 차량정보에 기초하여 복수 개의 BSD영역을 개별적으로 변경할 수 있다.
차량용 운전 보조 장치(200)는, 복수 개의 BSD영역 각각에 대응하는 위험 레벨을 설정할 수 있다. 차량용 운전 보조 장치(200)는, 복수 개의 BSD영역 중 적어도 하나의 BSD영역 내에서 오브젝트가 감지되면, 오브젝트가 위치하는 BSD영역의 위험 레벨에 대응하는 알람을 출력할 수 있다.
실시예에 따라, 차량(100)은 자율 주행 차량일 수 있다. 자율 주행 차량의 경우, 사용자 입력에 따라 자율 주행 모드 또는 메뉴얼 모드로 전환될 수 있다. 메뉴얼 모드로 전환되는 경우, 자율 주행 차량(100)은 조향 입력 장치를 통해 조향 입력을 수신할 수 있다.
전장(overall length)은 차량(100)의 앞부분에서 뒷부분까지의 길이, 전폭(width)은 차량(100)의 너비, 전고(height)는 바퀴 하부에서 루프까지의 길이를 의미한다. 이하의 설명에서, 전장 방향(L)은 차량(100)의 전장 측정의 기준이 되는 방향, 전폭 방향(W)은 차량(100)의 전폭 측정의 기준이 되는 방향, 전고 방향(H)은 차량(100)의 전고 측정의 기준이 되는 방향을 의미할 수 있다.
도 2은 본 발명의 실시예에 따른 차량을 설명하는데 참조되는 블럭도이다.
도 2을 참조하면, 차량(100)은, 통신부(110), 입력부(120), 센싱부(125), 메모리(130), 출력부(140), 차량 구동부(150), 제어부(170), 인터페이스부(180), 전원 공급부(190) 및 차량용 운전 보조 장치(200)를 포함할 수 있다.
통신부(110)는, 근거리 통신 모듈(113), 위치 정보 모듈(114), 광통신 모듈(115) 및 V2X 통신 모듈(116)을 포함할 수 있다.
근거리 통신 모듈(113)은, 근거리 통신(Short range communication)을 위한 것으로서, 블루투스(Bluetooth™), RFID(Radio Frequency Identification), 적외선 통신(Infrared Data Association; IrDA), UWB(Ultra Wideband), ZigBee, NFC(Near Field Communication), Wi-Fi(Wireless-Fidelity), Wi-Fi Direct, Wireless USB(Wireless Universal Serial Bus) 기술 중 적어도 하나를 이용하여, 근거리 통신을 지원할 수 있다.
이러한, 근거리 통신 모듈(113)은, 근거리 무선 통신망(Wireless Area Networks)을 형성하여, 차량(100)과 적어도 하나의 외부 디바이스 사이의 근거리 통신을 수행할 수 있다. 예를 들면, 근거리 통신 모듈(113)은 이동 단말기와 무선으로 데이터를 교환할 수 있다. 근거리 통신 모듈(113)은 이동 단말기로부터 날씨 정보, 도로의 교통 상황 정보(예를 들면, TPEG(Transport Protocol Expert Group))를 수신할 수 있다. 가령, 사용자가 차량(100)에 탑승한 경우, 사용자의 이동 단말기와 차량(100)은 자동으로 또는 사용자의 애플리케이션 실행에 의해, 서로 페어링을 수행할 수 있다.
위치 정보 모듈(114)은, 차량(100)의 위치를 획득하기 위한 모듈로서, 그의 대표적인 예로는 GPS(Global Positioning System) 모듈이 있다. 예를 들면, 차량은 GPS모듈을 활용하면, GPS 위성에서 보내는 신호를 이용하여 차량의 위치를 획득할 수 있다.
한편, 실시예에 따라, 위치 정보 모듈(114)은 통신부(110)에 포함되는 구성요소가 아닌, 센싱부(125)에 포함되는 구성요소일 수도 있다.
광통신 모듈(115)은, 광발신부 및 광수신부를 포함할 수 있다.
광수신부는, 광(light)신호를 전기 신호로 전환하여, 정보를 수신할 수 있다. 광수신부는 광을 수신하기 위한 포토 다이오드(PD, Photo Diode)를 포함할 수 있다. 포토 다이오드는 빛을 전기 신호로 전환할 수 있다. 예를 들면, 광수신부는 전방 차량에 포함된 광원에서 방출되는 광을 통해, 전방 차량의 정보를 수신할 수 있다.
광발신부는 전기 신호를 광 신호로 전환하기 위한 발광 소자를 적어도 하나 포함할 수 있다. 여기서, 발광 소자는 LED(Light Emitting Diode)인 것이 바람직하다. 광발신부는, 전기 신호를 광 신호로 전환하여, 외부에 발신한다. 예를 들면, 광 발신부는 소정 주파수에 대응하는 발광소자의 점멸을 통해, 광신호를 외부에 방출할 수 있다. 실시예에 따라, 광발신부는 복수의 발광 소자 어레이를 포함할 수 있다. 실시예에 따라, 광발신부는 차량(100)에 구비된 램프와 일체화될 수 있다. 예를 들면, 광발신부는 전조등, 후미등, 제동등, 방향 지시등 및 차폭등 중 적어도 어느 하나일 수 있다. 예를 들면, 광통신 모듈(115)은 광 통신을 통해 타 차량과 데이터를 교환할 수 있다.
V2X 통신 모듈(116)은, 서버 또는 타 차량과의 무선 통신 수행을 위한 모듈이다. V2X 모듈(116)은 차량간 통신(V2V) 또는 차량과 인프라간 통신(V2I) 프로토콜이 구현 가능한 모듈을 포함한다. 차량(100)은 V2X 통신 모듈(116)을 통해, 외부 서버 및 타 차량과 무선 통신을 수행할 수 있다.
입력부(120)는, 운전 조작 장치(121), 마이크로 폰(123) 및 사용자 입력부(124)를 포함할 수 있다.
운전 조작 장치(121)는, 차량(100) 운전을 위한 사용자 입력을 수신한다. 운전 조작 장치(121)는 조향 입력 장치, 쉬프트 입력 장치, 가속 입력 장치, 브레이크 입력 장치를 포함할 수 있다.
조향 입력 장치는, 사용자로부터 차량(100)의 진행 방향 입력을 수신한다. 조향 입력 장치는 회전에 의해 조향 입력이 가능하도록 휠 형태로 형성되는 것이 바람직하다. 실시예에 따라, 조향 입력 장치는 터치 스크린, 터치 패드 또는 버튼으로 형성될 수도 있다.
쉬프트 입력 장치는, 사용자로부터 차량(100)의 주차(P), 전진(D), 중립(N), 후진(R)의 입력을 수신한다. 쉬프트 입력 장치는 레버 형태로 형성되는 것이 바람직하다. 실시예에 따라, 쉬프트 입력 장치는 터치 스크린, 터치 패드 또는 버튼으로 형성될 수도 있다.
가속 입력 장치는, 사용자로부터 차량(100)의 가속을 위한 입력을 수신한다. 브레이크 입력 장치는, 사용자로부터 차량(100)의 감속을 위한 입력을 수신한다. 가속 입력 장치 및 브레이크 입력 장치는 페달 형태로 형성되는 것이 바람직하다. 실시예에 따라, 가속 입력 장치 또는 브레이크 입력 장치는 터치 스크린, 터치 패드 또는 버튼으로 형성될 수도 있다.
마이크로 폰(123)은, 외부의 음향 신호를 전기적인 데이터로 처리할 수 있다. 처리된 데이터는 차량(100)에서 수행 중인 기능에 따라 다양하게 활용될 수 있다. 마이크로 폰(123)은 사용자의 음성 명령을 전기적인 데이터로 전환할 수 있다. 전환된 전기적인 데이터는 제어부(170)에 전달될 수 있다.
한편, 실시예에 따라, 카메라(122) 또는 마이크로 폰(123)은 입력부(120)에 포함되는 구성요소가 아닌, 센싱부(125)에 포함되는 구성요소일 수도 있다.
사용자 입력부(124)는 사용자로부터 정보를 입력받기 위한 것이다. 사용자 입력부(124)를 통해, 정보가 입력되면, 제어부(170)는 입력된 정보에 대응되도록 차량(100)의 동작을 제어할 수 있다. 사용자 입력부(124)는 터치식 입력수단 또는 기계식 입력 수단을 포함할 수 있다. 실시예에 따라, 사용자 입력부(124)는 스티어링 휠의 일 영역에 배치될 수 있다. 이경우, 운전자는 스티어링 휠을 잡은 상태에서, 손가락으로 사용자 입력부(124)를 조작할 수 있다.
센싱부(125)는, 차량(100)의 각종 상황 또는 차량의 외부 상황을 센싱한다. 이를 위해, 센싱부(125)는, 충돌 센서, 휠 센서(wheel sensor), 속도 센서, 경사 센서, 중량 감지 센서, 헤딩 센서(heading sensor), 요 센서(yaw sensor), 자이로 센서(gyro sensor), 포지션 모듈(position module), 차량 전진/후진 센서, 배터리 센서, 연료 센서, 타이어 센서, 핸들 회전에 의한 스티어링 센서, 차량 내부 온도 센서, 차량 내부 습도 센서, 초음파 센서, 조도 센서, 가속 페달 포지션 센서, 브레이크 페달 포지션 센서, 등을 포함할 수 있다.
센싱부(125)는, 차량 충돌 정보, 차량 방향 정보, 차량 위치 정보(GPS 정보), 차량 각도 정보, 차량 속도 정보, 차량 가속도 정보, 차량 기울기 정보, 차량 전진/후진 정보, 배터리 정보, 연료 정보, 타이어 정보, 차량 램프 정보, 차량 내부 온도 정보, 차량 내부 습도 정보, 스티어링 휠 회전 각도, 차량 외부 조도, 가속 페달에 가해지는 압력, 브레이크 페달에 가해지는 압력 등에 대한 센싱 신호를 획득할 수 있다.
센싱부(125)는, 그 외, 가속페달센서, 압력센서, 엔진 회전 속도 센서(engine speed sensor), 공기 유량 센서(AFS), 흡기 온도 센서(ATS), 수온 센서(WTS), 스로틀 위치 센서(TPS), TDC 센서, 크랭크각 센서(CAS), 등을 더 포함할 수 있다.
한편, 위치 정보 모듈(114)은 센싱부(125)의 하위 구성 요소로 분류될 수도 있다.
센싱부(125)는 차량 주변의 오브젝트를 감지할 수 있는 오브젝트 센싱부를 포함할 수 있다. 여기서, 오브젝트 센싱부는, 카메라 모듈, 레이더(Radar), 라이더(Lidar), 초음파 센서를 포함할 수 있다. 이경우, 센싱부(125)는, 카메라 모듈, 레이더(Radar), 라이더(Lidar) 또는 초음파 센서를 통해 차량 전방에 위치하는 전방 오브젝트 또는 차량 후방에 위치하는 후방 오브젝트를 감지할 수 있다.
센싱부(125)는 카메라 모듈을 포함할 수 있다. 카메라 모듈은, 차량 외부를 촬영하는 외부 카메라 모듈 및 차량 내부를 촬영하는 외부 카메라 모듈을 포함할 수 있다.
외부 카메라 모듈은, 차량(100)의 외부를 촬영하는 하나 이상의 카메라를 포함할 수 있다. 외부 카메라 모듈은 AVM(Arond View Monitoring) 장치, 또는 후방 카메라 장치를 포함할 수 있다.
AVM 장치는, 복수의 카메라에서 획득된 복수의 영상을 합성하여, 차량 주변 영상을 사용자에게 제공할 수 있다. AVM 장치는 복수의 영상을 합성하여 사용자가 보기 편한 영상으로 전환하여 표시할 수 있다. 예를 들면, AVM 장치는 복수의 영상을 합성하여 탑뷰 영상으로 전환하여 표시될 수 있다.
예를 들면, AVM 장치는, 제1 내지 제4 카메라를 포함할 수 있다. 이경우, 제1 카메라는, 프런트 범퍼 주변, 라디에이터 그릴 주변, 엠블럼 주변 또는 윈드 쉴드 주변에 배치될 수 있다. 제2 카메라는, 좌측 사이드 미러, 좌측 프런트 도어, 좌측 리어 도어, 좌측 휀더에 배치될 수 있다. 제3 카메라는, 우측 사이드 미러, 우측 프런트 도어, 우측 리어 도어 또는 우측 휀더에 배치될 수 있다. 제4 카메라는, 리어 범퍼 주변, 엠블럼 주변 또는 번호판 주변에 배치될 수 있다.
후방 카메라는, 차량 후방 영상을 획득하는 카메라를 포함할 수 있다.
예를 들면, 후방 카메라는 리어 범퍼 주변, 엠블럼 주변 또는 번호판 주변에 배치될 수 있다.
차량용 운전 보조 장치(200)에 포함되는 센싱부(210) 중 카메라는, 차량(100)에 구비되는 AVM 장치, BSD 장치, 후방 카메라 장치 중 어느 하나에 포함되는 카메라 일 수 있다.
메모리(130)는, 제어부(170)와 전기적으로 연결된다. 메모리(130)는 유닛에 대한 기본데이터, 유닛의 동작제어를 위한 제어데이터, 입출력되는 데이터를 저장할 수 있다. 메모리(130)는, 하드웨어적으로, ROM, RAM, EPROM, 플래시 드라이브, 하드 드라이브 등과 같은 다양한 저장기기 일 수 있다. 메모리(130)는 제어부(170)의 처리 또는 제어를 위한 프로그램 등, 차량(100) 전반의 동작을 위한 다양한 데이터를 저장할 수 있다.
출력부(140)는, 제어부(170)에서 처리된 정보를 출력하기 위한 것으로, 디스플레이 장치(141), 음향 출력부(142) 및 햅틱 출력부(143)를 포함할 수 있다.
디스플레이 장치(141)는 다양한 그래픽 객체를 표시할 수 있다. 예를 들면, 디스플레이 장치(141)는 차량 관련 정보를 표시할 수 있다. 여기서, 차량 관련 정보는, 차량에 대한 직접적인 제어를 위한 차량 제어 정보, 또는 차량 운전자에게 운전 가이드를 위한 차량 운전 보조 정보를 포함할 수 있다. 또한, 차량 관련 정보는, 현재 차량의 상태를 알려주는 차량 상태 정보 또는 차량의 운행과 관련되는 차량 운행 정보를 포함할 수 있다.
디스플레이 장치(141)는 액정 디스플레이(liquid crystal display, LCD), 박막 트랜지스터 액정 디스플레이(thin film transistor-liquid crystal display, TFT LCD), 유기 발광 다이오드(organic light-emitting diode, OLED), 플렉서블 디스플레이(flexible display), 3차원 디스플레이(3D display), 전자잉크 디스플레이(e-ink display) 중에서 적어도 하나를 포함할 수 있다.
디스플레이 장치(141)는 터치 센서와 상호 레이어 구조를 이루거나 일체형으로 형성됨으로써, 터치 스크린을 구현할 수 있다. 이러한 터치 스크린은, 차량(100)과 사용자 사이의 입력 인터페이스를 제공하는 사용자 입력부(724)로써 기능함과 동시에, 차량(100)과 사용자 사이의 출력 인터페이스를 제공할 수 있다. 이경우, 디스플레이 장치(141)는 터치 방식에 의하여 제어 명령을 입력 받을 수 있도록, 디스플레이 장치(141)에 대한 터치를 감지하는 터치센서를 포함할 수 있다. 이를 이용하여, 디스플레이 장치(141)에 대하여 터치가 이루어지면, 터치센서는 상기 터치를 감지하고, 제어부(170)는 이에 근거하여 상기 터치에 대응하는 제어명령을 발생시키도록 이루어질 수 있다. 터치 방식에 의하여 입력되는 내용은 문자 또는 숫자이거나, 각종 모드에서의 지시 또는 지정 가능한 메뉴항목 등일 수 있다.
한편, 디스플레이 장치(141)는 운전자가 운전을 함과 동시에 차량 상태 정보 또는 차량 운행 정보를 확인할 수 있도록 클러스터(cluster)를 포함할 수 있다. 클러스터는 대시보드 위에 위치할 수 있다. 이경우, 운전자는, 시선을 차량 전방에 유지한채로 클러스터에 표시되는 정보를 확인할 수 있다.
한편, 실시예에 따라, 디스플레이 장치(141)는 HUD(Head Up Display)로 구현될 수 있다. 디스플레이 장치(141)가 HUD로 구현되는 경우, 윈드 쉴드에 구비되는 투명 디스플레이를 통해 정보를 출력할 수 있다. 또는, 디스플레이 장치(141)는 투사 모듈을 구비하여 윈드 쉴드에 투사되는 이미지를 통해 정보를 출력할 수 있다.
한편, 실시예에 따라, 디스플레이 장치(141)는, 투명 디스플레이를 포함할 수 있다. 이경우, 투명 디스플레이는 윈드 쉴드에 부착될 수 있다.
투명 디스플레이는 소정의 투명도를 가지면서, 소정의 화면을 표시할 수 있다. 투명 디스플레이는, 투명도를 가지기 위해, 투명 디스플레이는 투명 TFEL(Thin Film Elecroluminescent), 투명 OLED(Organic Light-Emitting Diode), 투명 LCD(Liquid Crystal Display), 투과형 투명디스플레이, 투명 LED(Light Emitting Diode) 디스플레이 중 적어도 하나를 포함할 수 있다. 투명 디스플레이의 투명도는 조절될 수 있다.
음향 출력부(142)는 제어부(170)로부터의 전기 신호를 오디오 신호로 변환하여 출력한다. 이를 위해, 음향 출력부(142)는 스피커 등을 구비할 수 있다. 음향 출력부(142)는, 사용자 입력부(724) 동작에 대응하는, 사운드를 출력하는 것도 가능하다.
햅틱 출력부(143)는 촉각적인 출력을 발생시킨다. 예를 들면, 햅틱 출력부(143)는, 스티어링 휠, 안전 벨트, 시트를 진동시켜, 사용자가 출력을 인지할 수 있게 동작할 수 있다.
차량 구동부(150)는, 차량 각종 장치의 동작을 제어할 수 있다. 차량 구동부(150)는 동력원 구동부(151), 조향 구동부(152), 브레이크 구동부(153), 램프 구동부(154), 공조 구동부(155), 윈도우 구동부(156), 에어백 구동부(157), 썬루프 구동부(158) 및 서스펜션 구동부(159)를 포함할 수 있다.
동력원 구동부(151)는, 차량(100) 내의 동력원에 대한 전자식 제어를 수행할 수 있다.
예를 들면, 화석 연료 기반의 엔진(미도시)이 동력원인 경우, 동력원 구동부(151)는, 엔진에 대한 전자식 제어를 수행할 수 있다. 이에 의해, 엔진의 출력 토크 등을 제어할 수 있다. 동력원 구동부(151)가 엔진인 경우, 제어부(170)의 제어에 따라, 엔진 출력 토크를 제한하여 차량의 속도를 제한할 수 있다.
다른 예로, 전기 기반의 모터(미도시)가 동력원인 경우, 동력원 구동부(151)는, 모터에 대한 제어를 수행할 수 있다. 이에 의해, 모터의 회전 속도, 토크 등을 제어할 수 있다.
조향 구동부(152)는, 차량(100) 내의 조향 장치(steering apparatus)에 대한 전자식 제어를 수행할 수 있다. 이에 의해, 차량의 진행 방향을 변경할 수 있다.
브레이크 구동부(153)는, 차량(100) 내의 브레이크 장치(brake apparatus)(미도시)에 대한 전자식 제어를 수행할 수 있다. 예를 들면, 바퀴에 배치되는 브레이크의 동작을 제어하여, 차량(100)의 속도를 줄일 수 있다. 다른 예로, 좌측 바퀴와 우측 바퀴에 각각 배치되는 브레이크의 동작을 달리하여, 차량(100)의 진행 방향을 좌측, 또는 우측으로 조정할 수 있다.
램프 구동부(154)는, 차량 내, 외부에 배치되는 램프의 턴 온/턴 오프를 제어할 수 있다. 또한, 램프의 빛의 세기, 방향 등을 제어할 수 있다. 예를 들면, 방향 지시 램프, 브레이크 램프 등의 대한 제어를 수행할 수 있다.
공조 구동부(155)는, 차량(100) 내의 공조 장치(air cinditioner)(미도시)에 대한 전자식 제어를 수행할 수 있다. 예를 들면, 차량 내부의 온도가 높은 경우, 공조 장치가 동작하여, 냉기가 차량 내부로 공급되도록 제어할 수 있다.
윈도우 구동부(156)는, 차량(100) 내의 윈도우 장치(window apparatus)에 대한 전자식 제어를 수행할 수 있다. 예를 들면, 차량의 측면의 좌,우 윈도우들에 대한 개방 또는 폐쇄를 제어할 수 있다.
에어백 구동부(157)는, 차량(100) 내의 에어백 장치(airbag apparatus)에 대한 전자식 제어를 수행할 수 있다. 예를 들면, 위험시, 에어백이 터지도록 제어할 수 있다.
썬루프 구동부(158)는, 차량(100) 내의 썬루프 장치(sunroof apparatus)(미도시)에 대한 전자식 제어를 수행할 수 있다. 예를 들면, 썬루프의 개방 또는 폐쇄를 제어할 수 있다.
서스펜션 구동부(159)는, 차량(100) 내의 서스펜션 장치(suspension apparatus)(미도시)에 대한 전자식 제어를 수행할 수 있다. 예를 들면, 도로면에 굴곡이 있는 경우, 서스펜션 장치를 제어하여, 차량(100)의 진동이 저감되도록 제어할 수 있다.
한편, 실시예에 따라, 차량 구동부(150)는 샤시 구동부를 포함할 수 있다. 여기서, 샤시 구동부는 조향 구동부(152), 브레이크 구동부(153) 및 서스펜션 구동부(159)를 포함하는 개념일 수 있다.
제어부(170)는, 차량(100) 내의 각 유닛의 전반적인 동작을 제어할 수 있다. 제어부(170)는 ECU(Electronic Contol Unit)로 명명될 수 있다.
제어부(170)는, 하드웨어적으로, ASICs (application specific integrated circuits), DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays), 프로세서(processors), 제어기(controllers), 마이크로 컨트롤러(micro-controllers), 마이크로 프로세서(microprocessors), 기타 기능 수행을 위한 전기적 유닛 중 적어도 하나를 이용하여 구현될 수 있다.
인터페이스부(180)는, 차량(100)에 연결되는 다양한 종류의 외부 기기와의 통로 역할을 수행할 수 있다. 예를 들면, 인터페이스부(180)는 이동 단말기와 연결 가능한 포트를 구비할 수 있고, 상기 포트를 통해, 이동 단말기와 연결할 수 있다. 이경우, 인터페이스부(180)는 이동 단말기와 데이터를 교환할 수 있다.
한편, 인터페이스부(180)는 연결된 이동 단말기에 전기 에너지를 공급하는 통로 역할을 수행할 수 있다. 이동 단말기가 인터페이스부(180)에 전기적으로 연결되는 경우, 제어부(170)의 제어에 따라, 인터페이스부(180)는 전원 공급부(190)에서 공급되는 전기 에너지를 이동 단말기에 제공할 수 있다.
전원 공급부(190)는, 제어부(170)의 제어에 따라, 각 구성요소들의 동작에 필요한 전원을 공급할 수 있다. 제어부(170)는, 차량 내부의 배터리(미도시) 등으로부터 전원을 공급받을 수 있다.
차량용 운전 보조 장치(200)는, 가변적인 BSD(Blind Spot Detection)영역에서 오브젝트가 감지되면, 알람을 출력한다. 이하에서, 차량용 운전 보조 장치(200)를 중심으로 설명한다.
도 3는 본 발명의 실시예에 따른 차량용 운전 보조 장치를 설명하는데 참조되는 블록도이다.
도 3를 참조하면, 차량용 운전 보조 장치(200)는, 센싱부(210), 통신부(220), 입력부(230), 메모리(240), 인터페이스부(250), 출력부(260), 프로세서(270), 및 전원 공급부(290)를 포함할 수 있다.
센싱부(210)는, 오브젝트를 감지하는 수단을 포함할 수 있다. 센싱부(210)는, 차량(100) 외부에 위치하는 오브젝트를 감지할 수 있다. 예를 들어, 센싱부(210)는, 적어도 하나의 BSD영역에 위치하는 오브젝트를 감지할 수 있다.
센싱부(210)는, 프로세서(270)와 전기적으로 연결될 수 있다. 센싱부(210)는, 오브젝트가 감지되면, 프로세서(270)에 오브젝트 감지 신호를 제공할 수 있다. 프로세서(270)는, 센싱부(210)가 제공하는 오브젝트 감지 신호를 기초로 오브젝트가 감지된 위치가 BSD영역 내인지 판단할 수 있다. 프로세서(270)는, 오브젝트가 감지된 위치가 BSD영역 내로 판단되는 경우, 알람에 대응하는 신호를 출력할 수 있다. 출력부(260)는, 프로세서(270)가 제공하는 신호에 대응하여 알람을 출력할 수 있다.
BSD영역은, 차량 주행시 운전자의 주의가 요구되는 특정 범위 내의 영역일 수 있다. 프로세서(270)는, 운전자의 주의가 요구되는 특정 범위 내의 영역을 BSD영역으로 설정할 수 있다. 프로세서(270)는, 차량(100)을 중심으로 BSD영역을 설정할 수 있다. 예를 들어, 프로세서(270)는, 차량(100)을 중심으로 차량(100)의 측방 및 후방으로 소정 거리 내에 BSD영역을 설정할 수 있다. 예를 들어, 프로세서(270)는, 차량(100)의 후측방 사각지대를 BSD영역으로 설정할 수 있다. BSD영역은, 차량(100)의 후측방 사각지대의 일부를 포함하는 영역일 수 있다.
센싱부(210)는, 차량(100)의 일 영역에 배치될 수 있다. 예를 들어, 센싱부(210)는, 차량(100)의 사이드 미러, 프런트 도어, 리어 도어, 휀더, 및 후방 범퍼 중 적어도 하나에 배치될 수 있다.
센싱부(210)는, 하나 이상일 수 있다. 예를 들어, 센싱부(210)는, 차량(100)의 우측 및 좌측에 적어도 하나씩 배치될 수 있다.
센싱부(210)는, 오브젝트를 감지할 수 있는 다양한 종류의 장치를 포함할 수 있다. 예를 들어, 센싱부(210)는, 카메라, 레이더(Radar), 라이다(Lidar), 초음파 센서, 및 적외선 센서 중 적어도 하나를 포함할 수 있다.
카메라는, 획득되는 영상에 기초하여 오브젝트를 검출할 수 있다. 카메라는 이미지 센서와 이미지 프로세서를 포함할 수 있다. 실시예에 따라, 카메라는 스테레오 카메라일 수 있다.
이미지 프로세서는, 획득된 영상을 처리하여, 오브젝트를 검출할 수 있다. 이미지 프로세서는 검출된 오브젝트를 트래킹할 수 있다.
이미지 프로세서는, 오브젝트와의 거리를 측정할 수 있다. 예를 들면, 이미지 프로세서는, 핀홀, 움직임 벡터, 디스패러티(disparity), 및 오브젝트의 크기 변화 중 적어도 하나를 이용하여 오브젝트와의 거리를 측정할 수 있다.
실시예에 따라, 카메라는 이미지 데이터를 프로세서(270)로 제공할 수 있다. 이 경우, 프로세서(270)는 이미지 처리를 수행할 수 있다.
초음파 센서는, 초음파 송신부, 수신부를 포함할 수 있다. 초음파 센서는, 송신된 초음파가 오브젝트에 반사되는 수신 초음파를 기초로 오브젝트를 감지할 수 있다. 초음파 센서는, 감지된 오브젝트와 차량(100) 간의 거리를 측정할 수 있다. 예를 들어, 센싱부(210)가 초음파 센서인 경우, 센싱부(210)는, 차량(100)과 감지된 오브젝트와의 거리 데이터를 프로세서(270)에 제공할 수 있다.
통신부(220)는, 차량(100) 내부 또는 외부에 위치하는 타 디바이스와 데이터 통신을 수행할 수 있다. 상기 타 디바이스는, 이동 단말기, 서버 또는 타차량을 포함할 수 있다. 통신부(220)는, 타차량과 통신을 수행할 수 있다. 통신부(220)는, 타차량으로부터 타차량의 차종, 위치, 속도, 핸들조향각, 방향지시등, 및 주행경로 중 적어도 하나에 대한 정보를 수신할 수 있다. 프로세서(270)는, 통신부(220)를 통하여, 상기 타차량의 차종 정보, 상기 타차량의 위치 정보, 상기 타차량의 속도 정보, 상기 타차량의 조향 정보, 상기 타차량의 턴 시그널 정보 상기 타차량의 주행 경로 정보 중 적어도 하나를 획득할 수 있다. 프로세서(270)는, 상기 획득한 정보에 기초하여 기 설정된 BSD 영역을 변경할 수 있다.
통신부(220)는, V2X 통신 모듈, 광통신 모듈, 위치 정보 모듈, 및 근거리 통신 모듈 중 적어도 하나를 포함할 수 있다.
V2X 통신 모듈은, 서버 또는 타 차량과의 무선 통신을 수행할 수 있다. V2X 모듈은, 차량간 통신(V2V) 또는 차량과 인프라간 통신(V2I) 프로토콜을 구현할 수 있다. 통신부(220)는, V2X 통신 모듈을 통하여, 타 차량에 관련된 정보를 수신할 수 있다.
광통신 모듈은, 광 발신부 및 광 수신부를 포함할 수 있다. 광 수신부는, 수신되는 광(light)신호를 전기 신호로 전환함으로써, 정보를 수신할 수 있다. 광 수신부는, 광을 수신하기 위한 포토 다이오드(PD, Photo Diode)를 포함할 수 있다. 포토 다이오드는 빛을 전기 신호로 전환할 수 있다. 광 수신부는, 타차량이 방출하는 광을 통해, 타차량에 관련된 정보를 수신할 수 있다.
광 발신부는, 전기 신호를 광 신호로 전환할 수 있다. 광 발신부는, 발광 소자를 적어도 하나 포함할 수 있다. 발광 소자는 LED(Light Emitting Diode)일 수 있다. 광 발신부는, 소정 주파수에 대응하는 발광소자의 점멸을 통해, 광신호를 외부에 방출할 수 있다. 광 발신부는 복수의 발광 소자 어레이를 포함할 수 있다. 광 발신부는 차량(100)에 구비된 램프와 일체화될 수 있다. 광 발신부는 전조등, 후미등, 제동등, 방향 지시등 및 차폭등 중 적어도 하나를 포함할 수 있다.
위치 정보 모듈은, 차량(100)의 위치에 대한 정보를 획득할 수 있다. 위치 정보 모듈은, GPS(Global Positioning System) 모듈일 수 있다. GPS모듈은, GPS 위성에서 보내는 신호에 기초하여 차량(100)의 위치를 획득할 수 있다.
근거리 통신 모듈은, 근거리 통신을 수행할 수 있다. 근거리 통신 모듈은, 근거리 무선 통신망(Wireless Area Networks)을 형성한다. 근거리 통신 모듈은, 근거리 무선 통신망을 통하여, 적어도 하나의 타 디바이스 간의 근거리 통신을 수행할 수 있다. 근거리 통신 모듈은, 이동 단말기와 데이터를 교환할 수 있다. 근거리 통신 모듈은, 이동 단말기로부터 날씨 정보, 도로의 교통 상황 정보(예를 들면, TPEG(Transport Protocol Expert Group))를 수신할 수 있다. 근거리 통신 모듈은, 자동으로 또는 애플리케이션의 실행에 의하여, 이동 단말기와 페어링을 수행할 수 있다.
근거리 통신 모듈은, 블루투스(Bluetooth™), RFID(Radio Frequency Identification), 적외선 통신(Infrared Data Association; IrDA), UWB(Ultra Wideband), ZigBee, NFC(Near Field Communication), Wi-Fi(Wireless-Fidelity), Wi-Fi Direct, Wireless USB(Wireless Universal Serial Bus) 기술 중 적어도 하나를 이용할 수 있다.
통신부(220)는, 프로세서(270)와 전기적으로 연결될 수 있다. 통신부(220)는, 수신된 타차량에 관한 정보를 프로세서(270)에 제공할 수 있다.
인터페이스부(250)는, 차량용 운전 보조 장치(200)와 외부 기기간의 통로 역할을 수행할 수 있다. 인터페이스부(250)는, 외부로부터 각종 신호 또는 정보를 수신하거나, 프로세서(270)가 제공하는 신호 또는 정보를 외부로 전송할 수 있다. 인터페이스부(250)는, 프로세서(270), 차량 구동부(150), 제어부(170), 및 통신부(110)와 연결되어 데이터 통신을 수행할 수 있다.
인터페이스부(250)는, 차량(100)의 위치, 기어상태, 속도, 핸들조향각, 방향지시등, 및 주행경로 중 적어도 하나에 대한 정보를 수신할 수 있다. 인터페이스부(250)는, 차량(100)의 위치, 기어상태, 속도, 핸들조향각, 방향지시등, 및 주행경로 중 적어도 하나에 대한 정보를 프로세서(270)에 제공할 수 있다. 프로세서(270)는, 인터페이스부(250)를 통하여, 차량(100)의 위치 정보, 차량(100)의 기어 포지션 정보, 차량(100)의 속도 정보, 차량(100)의 조향 정보, 차량(100)의 턴 시그널 정보 및 차량(1000의 주행 경로 정보 중 적어도 하나를 획득할 수 있다. 프로세서(270)는, 상기 획득한 정보에 기초하여 기 설정된 BSD 영역을 변경할 수 있다.
인터페이스부(250)는, 제어부(170) 또는 센싱부(125)로부터 센싱 정보를 수신할 수 있다. 상기 센싱 정보는, 차량(100)에 관련된 정보이다. 상기 센싱 정보는, 위치 정보(GPS 정보), 기어상태 정보, 속도 정보, 핸들조향각 정보, 및 방향지시등 정보, 차량 방향 정보, 차량 각도 정보, 가속도 정보, 기울기 정보, 전진/후진 정보, 배터리 정보, 연료 정보, 타이어 정보, 램프 정보, 차량 내부 온도 정보, 차량 내부 습도 정보, 및 비가 오는지에 대한 정보 중 적어도 하나를 포함할 수 있다.
센싱 정보는, 위치 정보를 제공하는 포지션 모듈(position module), 기어 포지션 센서, 속도 센서, 핸들조향각 센서, 방향지시등 센서, 헤딩 센서(heading sensor), 요 센서(yaw sensor), 자이로 센서(gyro sensor), 차량 전진/후진 센서, 휠 센서(wheel sensor), 차체 경사 감지센서, 배터리 센서, 연료 센서, 타이어 센서, 핸들 회전에 의한 스티어링 센서, 차량 내부 온도 센서, 차량 내부 습도 센서, 및 레인 센서에 의하여 획득될 수 있다. 포지션 모듈은, GPS 정보 수신을 위한 GPS 모듈을 포함할 수 있다.
상기 센싱 정보 중, 차량(100)의 위치, 기어상태, 속도, 핸들조향각, 및 방향지시등에 대한 정보는, 차량 상태 정보라 명명할 수 있다.
인터페이스부(250)는, 제어부(170) 또는 별도의 내비게이션 장치와의 데이터 통신에 의해, 차량(100)의 주행경로에 대한 정보를 수신할 수 있다. 상기 주행경로에 대한 정보는, 설정된 목적지 정보, 상기 목적지에 따른 경로 정보, 주행경로와 관련된 맵(map) 정보, 및 차량(100)의 현재 위치 정보 중 적어도 하나를 포함할 수 있다.
인터페이스부(250)는, 제어부(170) 또는 차량 구동부(150)에, 신호를 제공할 수 있다. 상기 신호는 제어 신호일 수 있다. 인터페이스부(250)는, 프로세서(270)가 제공하는 차량(100)의 조향장치, 제동장치, 구동장치 중 적어도 하나를 제어하기 위한 신호를, 제어부(170) 또는 차량 구동부(150)에 제공할 수 있다.
출력부(260)는, 알람을 출력한다. 출력부(260)는, 프로세서(270)가 제공하는 신호에 대응하는 알람을 출력한다.
출력부(260)는, 음향출력부(261), 광출력부(262), 햅틱출력부(263), 및 디스플레이부(264) 중 적어도 하나를 포함할 수 있다.
음향출력부(261)는, 음향으로 알람을 출력한다. 음향출력부(261)는, 스피커를 포함할 수 있다.
광출력부(262)는, 빛으로 알람을 출력한다. 광출력부(262)는, 발광소자를 포함할 수 있다.
햅틱출력부(263)는, 진동으로 알람을 출력한다. 햅틱출력부(263)는, 핸들 또는 운전자 시트에 배치될 수 있다.
디스플레이부(264)는, 알람에 관련된 정보를 표시한다. 디스플레이부(264)는, 인터페이스부(250) 또는 통신부(220)를 통하여 수신되는 각종 차량정보를 표시할 수 있다.
센싱부(210)가 차량(100)의 좌측 및 우측에 배치되고, BSD영역이 차량(100)의 좌측 및 우측에 형성되는 경우, 음향출력부(261), 광출력부(262), 및 햅틱출력부(263)는, 센싱부(210) 또는 BSD영역에 대응하여 좌측 및 우측으로 구비될 수 있다.
예를 들어, 센싱부(210)를 통하여 감지된 오브젝트의 위치가 우측 BSD영역 내인 경우, 프로세서(270)는, 우측으로 구비된 음향출력부(261), 광출력부(262), 및 햅틱출력부(263) 중 적어도 하나를 통하여, 알람을 출력할 수 있다.
프로세서(270)는, 복수 개의 기 설정된 BSD 영역마다 대응하는 알람을 구분할 수 있다. 프로세서(270)는, 센싱부(210)를 통하여 감지된 오브젝트가 위치하는 BSD 영역에 대응하는 알람이 출력되도록 출력부(260)를 제어할 수 있다.
출력부(260)는, 프로세서(270)가 제공하는 신호에 대응하는 위험 레벨의 알람을 출력한다.
상기 위험 레벨은, 프로세서(270)에 의하여 설정된다. 상기 위험 레벨은, 차량(100)이 얼마나 위험한지를 나타낼 수 있다. 상기 위험 레벨은, 여러 단계로 설정될 수 있다.
상기 위험 레벨은 제1 단계 및 제2 단계를 포함할 수 있다. 출력부(260)가 출력하는 알람은, 제1 단계 위험 레벨에 대응하는 제1 단계 알람, 및 제2 단계 위험 레벨에 대응하는 제2 단계 알람이 있을 수 있다.
예를 들어, 광출력부(262)는 제1 단계 알람으로써 빛을 출력할 수 있다. 음향출력부(261) 및 햅틱출력부(263)는, 제2 단계 알람으로써 음향 및 진동을 출력할 수 있다.
상기 위험 레벨은 BSD영역의 종류에 따라 달라질 수 있다. BSD영역은, 제1 BSD영역과 제2 BSD영역을 포함할 수 있다. 제2 BSD영역은, 제1 BSD영역보다 좁은 영역일 수 있다. 제2 BSD영역은, 제1 BSD영역보다 차량(100)에 근접한 영역일 수 있다. 제1 BSD영역에서 오브젝트가 감지되는 경우, 제1 단계 알람이 출력될 수 있다. 제2 BSD영역에서 오브젝트가 감지되는 경우, 제2 단계 알람이 출력될 수 있다.
위험 레벨의 각 단계에 대응하는 알람은, 입력부(230)를 통하여 설정될 수 있다. 예를 들어, 제1 단계 알람은, 입력부(230)를 통하여, 햅틱출력부(263)가 출력하는 진동으로 설정될 수 있다. 제2 단계 알람은, 입력부(230)를 통하여, 음향출력부(261)가 출력하는 음향으로 설정될 수 있다. 입력부(230)를 통하여 설정된 알람은, 메모리(240)에 저장될 수 있다.
프로세서(270)는, 차량용 운전 보조 장치(200)내의 각 유닛의 전반적인 동작을 제어할 수 있다. 프로세서(270)는, 센싱부(210), 통신부(220), 입력부(230), 메모리(240), 인터페이스부(250), 출력부(260), 및 전원 공급부(290)와 전기적으로 연결될 수 있다.
센싱부(210)가 차량(100) 외부의 오브젝트를 감지하여, 프로세서(270)로 오브젝트 감지 신호를 제공하면, 프로세서(270)는, 오브젝트 감지 신호에 기초하여, 센싱부(210)가 감지한 오브젝트가 BSD영역에서 감지된 것인지 판단한다. 프로세서(270)는, 오브젝트가 BSD영역에서 감지된 것으로 판단되는 경우, 알람에 대응되는 신호를 제공할 수 있다. 출력부(260)는, 프로세서(270)가 제공하는 신호에 대응하는 알람을 출력할 수 있다.
BSD영역은, 운전자의 주의가 필요한 특정 범위의 지역일 수 있다. 프로세서(270)는, 운전자의 주의가 필요한 특정 범위의 지역을 BSD영역으로 설정할 수 있다. 예를 들어, 프로세서(270)는, 차량(100)의 후측방 사각지대를 BSD영역으로 설정할 수 있다. BSD영역은, 차량(100)의 후측방 사각지대의 일부를 포함하는 영역일 수 있다.
프로세서(270)는, 획득되는 정보에 기초하여 기 설정된 BSD(Blind Spot Detection) 영역을 변경할 수 있다. 프로세서(270)는, 획득되는 정보인 차량정보에 기초하여 BSD영역을 변경할 수 있다. 프로세서(270)는, 센싱부(210)가 감지한 오브젝트가 변경된 BSD영역에서 감지된 것으로 판단되는 경우, 알람에 대응하는 신호를 제공할 수 있다. 출력부(260)는, 프로세서(270)가 제공하는 신호에 대응하는 알람을 출력할 수 있다.
프로세서(270)가 획득하는 정보는, 차량 정보라고 명명할 수 있다. 상기 차량정보는, 차량 상태 정보, 타차량 상태 정보, 및 주행 환경 정보 중 적어도 하나를 포함할 수 있다.
상기 차량 상태 정보는, 차량(100)의 위치, 기어상태, 속도, 핸들조향각, 방향지시등, 및 주행경로 중 적어도 하나에 대한 정보를 포함할 수 있다. 상기 차량 상태 정보는, 차량(100)의 위치 정보, 차량(100)의 기어상태를 나타내는 기어 포지션 정보, 차량(100)의 속도 정보, 차량(100)의 핸들조향각을 나타내는 조향 정보, 차량(100)의 방향지시등을 나타내는 턴 시그널 정보 및 차량(100)의 주행 경로 정보 중 적어도 하나를 포함할 수 있다.
상기 타차량 상태 정보는, 타차량의 차종, 위치, 속도, 핸들조향각, 방향지시등, 및 주행경로 중 적어도 하나에 대한 정보를 포함할 수 있다. 상기 타차량의 차종 정보, 상기 타차량의 위치 정보, 상기 타차량의 속도 정보, 상기 타차량의 조향 정보, 상기 타차량의 턴 시그널 정보 상기 타차량의 주행 경로 정보 중 적어도 하나를 포함할 수 있다.
상기 주행 환경 정보는, 차량(100)의 주행 시간대가 야간 또는 주간임을 나타내는 주행 시간 정보, 차량(100)이 주행하는 도로 종류를 나타내는 주행 도로 정보, 및 차량(100)의 주변 교통상황이 원활 또는 정체임을 나타내는 교통 상황 정보 중 적어도 하나를 포함할 수 있다.
프로세서(270)는, 상기 차량정보에 기초하여 차량(100)의 사고 발생 가능성을 판단할 수 있다. 프로세서(270)는, 상기 차량정보에 기초하여 차량(100)의 사고 발생 가능성이 증가한다고 판단되는 경우, BSD영역을 확대할 수 있다. 프로세서(270)는, BSD영역이 확대하여, 알람이 출력되는 시점을 앞당길 수 있다. 운전자는, 위험한 상황을 더욱 빠르게 인지할 수 있다. 프로세서(270)는, 상기 차량정보에 기초하여 차량(100)의 사고 발생 가능성이 감소한다고 판단되는 경우, BSD영역을 축소할 수 있다. 프로세서(270)는, BSD영역이 축소하여, 알람이 출력되는 시점을 늦출 수 있다.
프로세서(270)는, 상기 차량정보에 기초하여, 특정 영역에서의 차량(100)의 사고 발생 가능성을 판단할 수 있다. 프로세서(270)는, 상기 차량정보에 기초하여, 특정 영역에서의 차량(100)의 사고 발생 가능성이 증가한다고 판단되는 경우, 상기 특정 영역이 있는 방향으로 BSD영역을 확대할 수 있다. 예를 들어, 프로세서(270)는, 상기 차량정보에 기초하여, 차량(100)의 좌측 후방에서의 차량(100)의 사고 발생 가능성이 증가한다고 판단되는 경우, 차량(100)의 좌측 후방으로 BSD영역을 확대할 수 있다.
프로세서(270)는, BSD영역 변경의 기준이 되는 기준 BSD영역을 설정할 수 있다. 기준 BSD영역은, 메모리(240)에 초기 설정으로써 저장될 수 있다. 프로세서(270)는, 기준 BSD영역을 기준으로 BSD영역을 변경할 수 있다. 예를 들어, 프로세서(270)는, 기준 BSD영역을 기준으로 BSD영역을 확대하거나 축소할 수 있다.
프로세서(270)는, 입력부(230)를 통한 BSD영역 설정 입력에 대응하여, 기준 BSD영역을 변경할 수 있다. 프로세서(270)는, 입력부(230)를 통한 BSD영역 설정 입력에 따라 기준 BSD영역이 변경되는 경우, 변경된 기준 BSD영역을 기준으로 BSD영역을 확대하거나 축소할 수 있다.
프로세서(270)는, 획득되는 정보에 기초하여 기 설정된 BSD(Blind Spot Detection) 영역을 변경하고, 센싱부(210)가 감지하는 오브젝트가 상기 변경된 BSD 영역에 위치하는 경우, 출력부(260)를 통해 알람이 출력되도록 제어할 수 있다.
프로세서(270)는, 주행 시간 정보, 주행 도로 정보, 및 교통 상황 정보 중 적어도 하나를 획득하고, 상기 획득한 정보에 기초하여 상기 기 설정된 BSD 영역을 변경할 수 있다.
프로세서(270)가 획득되는 정보는, 차량(100)의 주행 시간대가 야간 또는 주간임을 나타내는 주행 시간 정보, 차량(100)이 주행하는 도로 종류를 나타내는 주행 도로 정보, 및 차량(100)의 주변 교통상황이 원활 또는 정체임을 나타내는 교통 상황 정보, 중 적어도 하나를 포함할 수 있다.
프로세서(270)는, 상기 주행 시간 정보를 기초로 차량(100)이 주행 중인 시간대가 주간인지 야간인지 판단할 수 있다. 상기 주행 시간 정보는, 현재 시간을 나타내는 정보일 수 있다. 예를 들어, 프로세서(270)는, 현재 시간이 제1 기준 시간 이전이면 주간이고, 제2 기준 시간 이후이면 야간으로 판단할 수 있다. 상기 제1 기준 시간과 상기 제2 기준 시간은, 같은 시간일 수도 있고, 제1 기준 시간이 제2 기준 시간보다 이른 시간일 수도 있다. 예를 들어, 상기 제1 기준 시간이 오후 5시 이고, 상기 제2 기준 시간이 오후 7시이면, 프로세서(270)는, 현재 시간이 오후 5시 이전이면 주행 시간대를 주간으로 판단하고, 현재 시간이 오후 7시 이후이면 주행 시간대를 야간으로 판단할 수 있다. 상기 제1 기준 시간 및 제2 기준 시간은, 사용자가 설정할 수 있다.
프로세서(270)는, 주행 시간대가 주간인 경우, BSD영역을 축소할 수 있다. 프로세서(270)는, 주행 시간대가 야간인 경우, BSD영역을 확대 할 수 있다.
프로세서(270)는, 차량(100)이 주행 중인 시간대가 주간인 경우, 차량(100)의 주변이 야간에 비하여 밝으므로, 차량(100)의 사고 발생 가능성이 감소한다고 판단할 수 있다. 프로세서(270)는, 차량(100)이 주행 중인 시간대가 야간인 경우, 차량(100)의 주변이 주간에 비하여 어두우므로, 운전자의 시야가 좁아지고 차량(100)의 사고 발생 가능성이 증가한다고 판단할 수 있다.
프로세서(270)는, 차량(100)이 주행 중인 시간대가 주간인 경우, 차량(100)의 사고 발생 가능성이 감소한다고 판단하여, BSD영역을 축소할 수 있다. 프로세서(270)는, 차량(100)이 주행 중인 시간대가 야간인 경우, 차량(100)의 사고 발생 가능성이 증가한다고 판단하여, BSD영역을 확대 할 수 있다.
프로세서(270)는, 상기 주행 도로 정보를 기초로 차량(100)이 주행하는 도로 종류가 고속도로, 병목구간, 램프구간, 커브길, 산길, 및 공사구간 중의 하나인지 판단할 수 있다. 상기 주행 도로 정보는, 내비게이션 정보, 카메라 이미지, 도로 교통 정보 중 하나일 수 있다. 상기 주행 도로 정보가 내비게이션 정보인 경우, 프로세서(270)는, 상기 내비게이션 정보를 통하여 차량(100)이 주행하고 있는 도로의 종류를 판단할 수 있다. 상기 주행 도로 정보가 카메라 이미지인 경우, 상기 카메라 이미지는 차량(100)의 주변을 촬영한 이미지일 수 있다. 프로세서(270)는, 차량(100)의 주변을 촬영한 이미지를 분석하여 차량(100)이 주행하고 있는 도로의 종류를 판단할 수 있다. 상기 주행 도로 정보가 도로 교통 정보인 경우, 상기 도로 교통 정보는, 도로 교통 정보를 제공하는 특정 서버로부터, 통신부(220)를 통하여 수신될 수 있다. 상기 도로 교통 정보는, 차량(100)의 위치 정보를 기반으로 판단된 차량(100)이 주행 하고 있는 도로의 종류에 대한 내용이 포함된다.
프로세서(270)는, 도로 종류가 고속도로인 경우, BSD영역을 확대 할 수 있다.
프로세서(270)는, 차량(100)이 주행하는 도로가 고속도로인 경우, 차량(100) 및 타차량의 속도가 상대적으로 빠르므로, 차량(100)의 사고 발생 가능성이 증가한다고 판단할 수 있다. 프로세서(270)는, 차량(100)이 주행하는 도로가 고속도로인 경우, 차량(100)의 사고 발생 가능성이 증가한다고 판단하여, BSD영역을 확대할 수 있다.
프로세서(270)는, 도로 종류가 병목구간인 경우, BSD영역을 축소 할 수 있다.
프로세서(270)는, 차량(100)이 병목구간을 주행하는 경우, 차량(100) 및 타차량의 속도가 상대적으로 느리므로, 차량(100)의 사고 발생 가능성이 감소한다고 판단할 수 있다. 프로세서(270)는, 차량(100)이 병목구간을 주행하는 경우, 차량(100)의 사고 발생 가능성이 감소한다고 판단하여, BSD영역을 축소할 수 있다.
프로세서(270)는, 도로 종류가 램프구간인 경우, 합류 지점으로 상기 BSD영역을 확대 할 수 있다. 상기 램프구간은 다른 도로가 합류되는 구간을 말한다.
프로세서(270)는, 차량(100)이 다른 도로가 합류되는 램프구간을 주행하는 경우, 다른 도로의 합류 지점에서 타차량이 접근할 수 있으므로, 상기 합류 지점에서의 차량(100)의 사고 발생 가능성이 증가한다고 판단할 수 있다. 프로세서(270)는, 차량(100)이 다른 도로가 합류되는 램프구간을 주행하는 경우, 상기 합류 지점에서의 차량(100)의 사고 발생 가능성이 증가한다고 판단하여, 상기 합류 지점이 있는 방향으로 BSD영역을 확대할 수 있다.
프로세서(270)는, 교통 상황 정보를 기초로 차량(100) 주변의 교통 상황이 원활인지 정체인지 판단할 수 있다. 상기 교통 상황 정보는, 내비게이션 정보, 카메라 이미지, 도로 교통 정보 중 하나일 수 있다. 상기 주행 도로 정보가 내비게이션 정보인 경우, 프로세서(270)는, 상기 내비게이션 정보에 포함된 차량(100)이 주행하고 있는 도로의 교통 상황의 혼잡도에 대한 정보를 활용하여 상기 혼잡도가 설정값이상이면 정체이고 이하이면 원활이라고 판단할 수 있다. 상기 주행 도로 정보가 카메라 이미지인 경우, 상기 카메라 이미지는 차량(100)의 주변을 촬영한 이미지일 수 있다. 프로세서(270)는, 차량(100)의 주변을 촬영한 이미지를 분석하고, 차량(100)이 주행하고 있는 도로의 차량의 수를 검출하고, 단위 면적당 검출된 차량의 수를 산출하여, 산출된 값이 설정 값이상인 경우 교통 상황이 정체라고 판단할 수 있다. 상기 주행 도로 정보가 도로 교통 정보인 경우, 상기 도로 교통 정보는, 도로 교통 정보를 제공하는 특정 서버로부터, 통신부(220)를 통하여 수신될 수 있다. 상기 도로 교통 정보는, 차량(100)의 위치 정보를 기반으로 차량(100) 주변의 교통 상황이 원활인지 정체인지 평가한 내용이 포함된다.
프로세서(270)는, 교통상황이 원활인 경우, 상기 BSD영역을 확대 할 수 있다. 프로세서(270)는, 교통상황이 정체인 경우, 상기 BSD영역을 축소 할 수 있다.
프로세서(270)는, 차량(100)의 주변 교통상황이 원활인 경우, 차량(100) 및 타차량의 속도가 상대적으로 빠르므로, 차량(100)의 사고 발생 가능성이 증가한다고 판단할 수 있다. 프로세서(270)는, 차량(100)의 주변 교통상황이 원활인 경우, 차량(100)의 사고 발생 가능성이 증가한다고 판단하여, BSD영역을 확대할 수 있다.
프로세서(270)는, 차량(100)의 주변 교통상황이 정체인 경우, 차량(100) 및 타차량의 속도가 상대적으로 느리므로, 차량(100)의 사고 발생 가능성이 감소한다고 판단할 수 있다. 프로세서(270)는, 차량(100)의 주변 교통상황이 정체인 경우, 차량(100)의 사고 발생 가능성이 감소한다고 판단하여, BSD영역을 축소할 수 있다.
프로세서(270)는, 차량(100)이 주행 중인 도로 종류가 고속도로이고, 차량(100)의 주변 교통상황이 정체인 경우, BSD영역을 축소할 수 있다.
프로세서(270)는, 차량(100)이 고속도로에서 주행하더라도, 주변 교통상황이차량정체인 경우, 차량(100) 및 타차량의 속도가 상대적으로 느리므로, 차량(100)의 사고 발생 가능성이 감소한다고 판단할 수 있다. 프로세서(270)는, 차량(100)이 고속도로에서 주행하더라도, 주변 교통상황이차량정체인 경우, BSD영역을 축소할 수 있다.
프로세서(270)는, 차량(100)의 주행 시간대가 야간이고, 차량(100)의 주변 교통상황이 정체인 경우, BSD영역을 축소할 수 있다.
프로세서(270)는, 차량(100)의 주행시간대가 야간이더라도, 주변 교통상황이차량정체인 경우, 차량(100) 및 타차량의 속도가 상대적으로 느리므로, 차량(100)의 사고 발생 가능성이 감소한다고 판단할 수 있다. 프로세서(270)는, 차량(100)의 주행시간대가 야간이더라도, 주변 교통상황이 정체인 경우, BSD영역을 축소할 수 있다.
상기 차량정보는, 차량(100)의 위치, 기어상태, 속도, 핸들조향각, 방향지시등, 및 주행경로 중 적어도 하나에 대한 정보를 포함할 수 있다.
프로세서(270)는, 인터페이스부(250)를 통해 수신된 차량(100)의 위치, 기어상태, 속도, 핸들조향각, 방향지시등, 및 주행경로 중 적어도 하나에 대한 정보에 기초하여 BSD영역을 변경할 수 있다.
프로세서(270)는, 차량(100)의 기어상태가 R인 경우, BSD영역을 축소할 수 있다. 예를 들어, 차량(100)이 주차 중 후진을 하는 경우 차량(100)에 근접한 오브젝트가 문제되므로, 프로세서(270)는, BSD영역을 축소하여 차량(100)에 근접한 오브젝트에 대한 알람이 출력되도록 한다.
프로세서(270)는, 차량(100)의 속도가 증가하는 경우 BSD영역을 확대할 수 있다. 프로세서(270)는, 차량(100)의 속도가 감소하는 경우 BSD영역을 축소할 수 있다. 차량(100)의 속도가 증가하는 경우, 차량(100)의 운전자가 감지되는 오브젝트에 미리 대응할 수 있도록, 차량(100) 주변의 오브젝트는, 상대적으로 빨리 감지되어야 한다. 프로세서(270)는, 차량(100)의 속도가 증가하는 경우, 차량(100) 주변의 오브젝트가 상대적으로 빨리 감지될 수 있도록, BSD영역을 확대한다.
반면, 차량(100)의 속도가 감소하는 경우, 차량(100) 주변의 오브젝트가 상대적으로 천천히 감지되어도 무방하므로, 프로세서(270)는, BSD영역을 축소할 수 있다.
예를 들어, 프로세서(270)는, 차량(100)의 속도가 설정 속도 이상인 경우, BSD영역을 확대할 수 있다. 프로세서(270)는, 차량(100)의 속도가 상기 설정 속도 미만인 경우, BSD영역을 축소할 수 있다. 상기 설정 속도는, 실험을 통하여 결정되어, 메모리(240)에 저장된 값일 수 있다.
예를 들어, 프로세서(270)는, 차량(100)의 속도와 상기 설정 속도의 차이에 대응하여 BSD영역의 변화량을 조정할 수 있다. 예를 들어, 프로세서(270)는, 차량(100)의 속도가 상기 설정 속도 이상이고, 차량(100)의 속도와 상기 설정 속도의 차이가 큰 경우, BSD영역을 상대적으로 더 크게 확대할 수 있다.
프로세서(270)는, 상기 차량의 조향 정보, 상기 차량의 턴 시그널 정보, 및 상기 차량의 주행 경로 정보 중 적어도 하나를 기초로, 상기 차량의 차선 변경 의도를 판단하고, 상기 차선 변경 의도에 기초하여, 상기 차량이 이동하고자 하는 방향으로 상기 BSD 영역을 확대할 수 있다.
프로세서(270)는, 차량(100)의 핸들조향각이나 방향지시등에 대응하는 방향으로 BSD영역을 확대할 수 있다. 프로세서(270)는, 차량(100)의 핸들조향각이나 방향지시등에 기초하여, 차량(100)의 차선 변경 여부를 판단할 수 있다. 프로세서(270)는, 차량(100)이 차선을 변경하는 것으로 판단되면, 차량(100)이 이동할 차선 방향으로 BSD영역을 확대할 수 있다.
예를 들어, 프로세서(270)는, 차량(100)의 핸들조향각이 설정 각도 이상인 상태로 설정 시간이 경과하는 경우, 차량(100)이 차선을 변경할 것으로 판단하여, 차량(100)의 핸들조향각이 기울어진 방향으로 BSD영역을 확대한다. 상기 설정 각도 및 설정 시간은, 실험을 통하여 결정되어 메모리에 저장된 값일 수 있다.
예를 들어, 프로세서(270)는, 차량(100)의 방향지시등이 켜진 상태로 설정 시간이 경과하는 경우, 차량(100)이 차선을 변경할 것으로 판단하여, 차량(100)의 방향지시등이 켜진 방향으로 BSD영역을 확대한다. 상기 설정 시간은, 실험을 통하여 결정되어, 메모리에 저장된 값일 수 있다.
프로세서(270)는, 주행경로에 대한 정보에 기초하여 차량(100)의 차선 변경이 예상되는 경우, 변경될 차선 방향으로 BSD영역을 확대할 수 있다. 프로세서(270)는, 인터페이스부(250)를 통해 수신된 차량(100)의 주행경로에 대한 정보에 기초하여 차량(100)의 차선 변경 가능성을 판단할 수 있다. 예를 들어, 프로세서(270)는, 차량(100)의 주행경로가 전방 200m 앞 우회전이고, 현재 차량(100)의 주행 차선이 1차선인 경우, 차량(100)의 차선 변경 가능성이 있는 것으로 판단할 수 있다. 프로세서(270)는, 차량(100)의 차선 변경 가능성이 있는 것으로 판단되면, 차량(100)이 이동할 차선 방향으로 BSD영역을 확대할 수 있다.
상기 차량정보는, 타차량의 차종, 위치, 속도, 핸들조향각, 방향지시등, 및 주행경로 중 적어도 하나에 대한 정보를 더 포함할 수 있다.
통신부(220)는 차량(100) 주변에서 주행 중인 타차량으로부터 타차량의 차종, 위치, 속도, 핸들조향각, 방향지시등, 및 주행경로 중 적어도 하나에 대한 정보를 수신한다. 통신부(220)는, 수신된 정보를 프로세서(270)로 제공한다.
프로세서(270)는, 통신부(220)를 통해 수신된 타차량의 차종, 위치, 속도, 핸들조향각, 방향지시등, 및 주행경로 중 적어도 하나에 대한 정보에 기초하여 BSD영역을 변경할 수 있다.
프로세서(270)는, 타차량의 차종이 대형차량인 경우, 타차량의 방향으로 BSD영역을 확대할 수 있다.
프로세서(270)는, 통신부(220)를 통하여 차량(100) 주변에서 주행 중인 타차량의 차종에 대한 정보를 수신할 수 있다.
프로세서(270)는, 수신된 정보에 기초하여, 타차량의 차종이 대형차량으로 판단된 경우, 대형차량이 있는 방향으로 BSD영역을 확대할 수 있다.
차량(100) 주변에서 대형차량이 주행 중인 경우, 프로세서(270)는, 대형차량이 있는 방향으로 BSD영역을 확대하여, 운전자가 대형차량을 미리 인지할 수 있도록 한다.
프로세서(270)는, 통신부(220)를 통해 수신되는 타차량의 위치 정보를 기초로, 타차량이 있는 방향으로 BSD영역을 확대한다.
프로세서(270)는, 타차량의 위치가 설정시간 이상동안 차량(100)에 접근하는 경우, 타차량의 방향으로 BSD영역을 확대할 수 있다.
프로세서(270)는, 통신부(220)를 통하여 차량(100) 주변에서 주행 중인 타차량의 위치에 대한 정보를 수신할 수 있다. 상기 타차량의 정보는 GPS 정보일 수 있다.
프로세서(270)는, 인터페이스부(250)를 통하여 수신된 차량(100)의 위치 정보와 통신부(220)를 통하여 수신된 타차량의 위치 정보에 기초하여, 차량(100)과 타차량 간의 거리를 판단할 수 있다. 프로세서(270)는, 차량(100)과 타차량 간의 거리가 설정시간 이상동안 감소하는 경우, 타차량이 차량(100)에 접근하는 것으로 판단할 수 있다. 상기 설정시간은, 실험을 통하여 결정되어 메모리(240)에 저장된 값일 수 있다.
프로세서(270)는, 타차량이 차량(100)에 접근하는 것으로 판단되는 경우, 타차량이 있는 방향으로 BSD영역을 확대할 수 있다. 이에 다라, 운전자는, 차량(100)에 접근 중인 타차량을 미리 인지할 수 있다.
프로세서(270)는, 타차량의 속도가 차량(100)의 속도 이상인 경우, 타차량의 방향으로 BSD영역을 확대할 수 있다.
프로세서(270)는, 통신부(220)를 통하여 차량(100) 주변에서 주행 중인 타차량의 속도에 대한 정보를 수신할 수 있다.
프로세서(270)는, 인터페이스부(250)를 통하여 수신된 차량(100)의 속도 정보와 통신부(220)를 통하여 수신된 타차량의 속도 정보를 비교하여, 타차량의 속도가 차량(100)의 속도 이상인 경우, 타차량이 있는 방향으로 BSD영역을 확대할 수 있다.
프로세서(270)는, 타차량의 속도가 차량(100)의 속도 이상인 경우, 타차량이 있는 방향으로 BSD영역을 확대하여, 운전자가 타차량을 미리 인지할 수 있도록 한다.
프로세서(270)는, 타차량의 핸들조향각 또는 방향지시등이 차량(100)을 향하는 경우, 타차량의 방향으로 BSD영역을 확대할 수 있다.
프로세서(270)는, 통신부(220)를 통하여 차량(100) 주변에서 주행 중인 타차량의 핸들조향각 또는 방향지시등에 대한 정보를 수신할 수 있다. 프로세서(270)는, 타차량의 핸들조향각 또는 방향지시등에 대한 정보를 기초로 타차량이 차량(100)을 향하여 이동하는지 판단할 수 있다. 프로세서(270)는, 타차량이 차량(100)을 향하여 이동하는 것으로 판단되는 경우, 타차량이 있는 방향으로 BSD영역을 확대한다.
프로세서(270)는, 타차량의 핸들조향각이 차량(100)이 있는 방향으로 설정각도 이상 기울어진 상태로 설정시간이 경과하면, 타차량이 있는 방향으로 BSD영역을 확대할 수 있다.
프로세서(270)는, 타차량의 방향지시등이 차량(100)이 있는 방향으로 켜진 상태가 설정시간 이상 지속되면, 타차량이 있는 방향으로 BSD영역을 확대할 수 있다.
프로세서(270)는, 타차량이 있는 방향으로 BSD영역을 확대하여, 운전자가 차량(100)에 접근하는 타차량을 미리 인지할 수 있도록 한다.
프로세서(270)는, 타차량의 주행경로에 대한 정보에 기초하여 타차량이 차량(100)에 접근하는 것으로 판단되는 경우, 타차량의 방향으로 BSD영역을 확대할 수 있다.
프로세서(270)는, 통신부(220)를 통하여 차량(100) 주변에서 주행 중인 타차량의 주행경로에 대한 정보를 수신할 수 있다. 프로세서(270)는, 타차량의 주행경로에 대한 정보를 기초로 타차량이 차량(100)을 향하여 접근하는지 판단할 수 있다.
프로세서(270)는, 인터페이스부(250)를 통하여 수신된 차량(100)의 위치 및 주행경로 정보와, 통신부(220)를 통하여 수신된 타차량의 위치 및 주행경로 정보를 기초로, 타차량이 차량(100)을 향하여 접근하는지 판단할 수 있다.
프로세서(270)는, 타차량이 차량(100)에 접근하는 것으로 판단되는 경우, 타차량이 있는 방향으로 BSD영역을 확대할 수 있다.
프로세서(270)는, BSD영역을 복수 개로 설정할 수 있다. 예를 들어, 프로세서(270)는, 4개의 BSD영역을 설정할 수 있다. 복수 개의 BSD영역은, 상호간의 중복되는 영역을 포함할 수 있다. 복수 개의 BSD영역은, 상호간의 중복되는 영역을 포함하지 않을 수도 있다.
프로세서(270)는, 상기 차량정보에 기초하여 복수 개의 BSD영역을 개별적으로 변경할 수 있다. 예를 들어, 프로세서(270)는, 상기 차량정보에 기초하여, 대형 차량이 차량(100)에 접근하는 것으로 판단되는 경우, 복수 개의 BSD영역 중, 차량(100)을 중심으로 상기 대형 차량이 있는 방향에 존재하는 BSD영역을 확대할 수 있다. 예를 들어, 프로세서(270)는, 상기 차량정보에 기초하여, 차량(100)이 우측 차선으로 이동하는 것으로 판단되는 경우, 복수 개의 BSD영역 중, 차량(100)의 우측에 존재하는 BSD영역을 확대하면서, 차량(100)의 좌측에 존재하는 BSD영역을 축소할 수 있다.
프로세서(270)는, 좌측 BSD영역 및 우측 BSD영역을 설정할 수 있다. BSD 영역은, 차량(100)의 좌측 BSD영역 및 우측 BSD영역을 포함할 수 있다. 좌측 BSD영역은, 차량(100)의 좌측에 존재하는 영역이다. 우측 BSD영역은, 차량(100)의 우측에 존재하는 영역이다. 예를 들어, 차량(100)의 좌측에 구비된 센싱부(210)는, 좌측 BSD영역에 위치하는 오브젝트를 감지할 수 있다. 예를 들어, 차량(100)의 우측에 구비된 센싱부(210)는, 우측 BSD영역에 위치하는 오브젝트를 감지할 수 있다.
프로세서(270)는, 상기 차량정보에 기초하여, 차량(100)의 좌측 및 우측에서의 차량(100)의 사고 발생 가능성을 판단할 수 있다. 프로세서(270)는, 상기 차량정보에 기초하여, 차량(100)의 좌측 및 우측 중, 차량(100)의 사고 발생 가능성이 증가한다고 판단되는 측면의 BSD영역을 확대할 수 있다. 예를 들어, 프로세서(270)는, 상기 차량정보에 기초하여, 차량(100)의 좌측 후방에서의 차량(100)의 사고 발생 가능성이 증가한다고 판단되는 경우, 좌측 BSD영역을 확대할 수 있다.
프로세서(270)는, 상기 차량의 조향 정보, 상기 차량의 턴 시그널 정보, 및 상기 차량의 주행 경로 정보 중 적어도 하나를 기초로, 상기 차량의 차선 변경 의도를 판단하고, 상기 차선 변경 의도에 기초하여, 상기 좌측 BSD 영역 및 우측 BSD 영역 중, 상기 차량이 이동하고자 하는 측면의 BSD 영역을 확대할 수 있다.
프로세서(270)는, 좌측 BSD영역 및 우측 BSD영역 중, 차량(100)의 핸들조향각이나 방향지시등 방향에 대응하는 측면의 BSD영역을 확대할 수 있다.
프로세서(270)는, 좌측 BSD영역 및 우측 BSD영역 중, 차량(100)의 핸들조향각이 기울어지는 방향에 존재하는 BSD영역을 확대할 수 있다. 프로세서(270)는, 좌측 BSD영역 및 우측 BSD영역 중, 차량(100)의 방향지시등이 켜지는 방향에 존재하는 BSD영역을 확대 할 수 있다.
차량(100)의 핸들조향각이 기울어지는 방향이나 방향지시등이 켜지는 방향은, 차량(100)이 이동하는 방향과 대응할 수 있으므로, 프로세서(270)는, 차량(100)의 핸들조향각이 기울어지는 방향이나 방향지시등이 켜지는 방향에 존재하는 측면의 BSD영역을 확대할 수 있다.
프로세서(270)는, 상기 차량정보에 기초하여 차량(100)의 차선 변경이 예상되는 경우, 좌측 BSD영역 및 우측 BSD영역 중, 변경될 차선에 대응하는 측면의 BSD영역을 확대할 수 있다.
상기 차량정보는, 차량(100)의 핸들조향각, 방향지시등, 및 주행경로 중 적어도 하나에 대한 정보를 포함할 수 있다.
프로세서(270)는, 차량(100)의 핸들조향각, 방향지시등, 및 주행경로 중 적어도 하나에 대한 정보에 기초하여, 차량(100)의 차선 변경 가능성을 판단할 수 있다.
예를 들어, 프로세서(270)는, 차량(100)의 핸들조향각이 설정 각도 이상인 상태로 설정 시간이 경과하는 경우, 차량(100)이 차선을 변경할 것으로 판단할 수 있다.
예를 들어, 프로세서(270)는, 차량(100)의 방향지시등이 켜진 상태로 설정 시간이 경과하는 경우, 차량(100)이 차선을 변경할 것으로 판단할 수 있다. 프로세서(270)는, 차량(100)이 이동할 목적지까지의 주행경로에 대한 정보에 기초하여 차량(100)의 차선 변경 가능성을 판단할 수 있다.
프로세서(270)는, 상기 차량정보에 기초하여 차량(100)이 차선을 변경하는 것으로 판단되면, 좌측 BSD영역 및 우측 BSD영역 중, 차량(100)이 이동할 차선 방향에 존재하는 BSD영역을 확대할 수 있다.
프로세서(270)는, 상기 차량정보에 기초하여 타차량이 차량(100)에 접근하는 것으로 판단되는 경우, 좌측 BSD영역 및 우측 BSD영역 중, 타차량이 존재하는 측면의 BSD영역을 확대할 수 있다.
프로세서(270)는, 통신부(220)를 통하여 타차량의 차종, 위치, 속도, 핸들조향각, 방향지시등, 및 주행경로 중 적어도 하나에 대한 정보를 수신할 수 있다. 프로세서(270)는, 통신부(220)를 통하여 수신된 타차량에 관련된 정보에 기초하여, 타차량이 차량(100)에 접근하는지 판단할 수 있다. 프로세서(270)는, 타차량의 위치, 속도, 핸들조향각, 방향지시등, 및 주행경로에 대한 정보를 종합적으로 분석하여, 타차량이 차량(100)에 접근하는지 판단할 수 있다.
프로세서(270)는, 타차량이 차량(100)에 접근하는 것으로 판단되는 경우, 좌측 BSD영역 및 우측 BSD영역 중, 타차량이 존재하는 측면의 BSD영역을 확대할 수 있다.
프로세서(270)는, 상기 차량정보를 기초로, 차량(100)이 주행하는 도로 종류가 램프구간인 경우, 좌측 BSD영역 및 우측 BSD영역 중, 합류 지점이 존재하는 측면의 BSD영역을 확대할 수 있다.
프로세서(270)는, 차량(100)이 다른 도로가 합류되는 램프구간을 주행하는 경우, 다른 도로의 합류 지점에서 타차량이 접근할 수 있으므로, 상기 합류 지점에서의 차량(100)의 사고 발생 가능성이 증가한다고 판단할 수 있다. 프로세서(270)는, 차량(100)이 다른 도로가 합류되는 램프구간을 주행하는 경우, 상기 합류 지점에서의 차량(100)의 사고 발생 가능성이 증가한다고 판단하여, 좌측 BSD영역 및 우측 BSD영역 중, 상기 합류 지점이 존재하는 측면의 BSD영역을 확대할 수 있다.
프로세서(270)는, 상기 차량정보를 기초로, 차량(100)이 주행하는 도로 종류가 병목구간이고, 차량(100)의 차선 변경이 예상되는 경우, 좌측 BSD영역 및 우측 BSD영역 중, 변경될 차선이 존재하는 측면의 BSD영역을 확대할 수 있다.
프로세서(270)는, 상기 차량정보에 포함된 상기 도로정보를 기초로, 차량(100)이 주행하는 도로 종류가 병목구간인지 판단할 수 있다. 프로세서(270)는, 상기 차량정보에 포함된 상기 차량 상태 정보를 기초로 차량(100)의 차선 변경 가능성을 판단할 수 있다.
차량(100)이 주행하는 도로 종류가 병목구간인 경우, 프로세서(270)는, 상기 차량 상태 정보에 포함된 차량(100)의 핸들조향각, 방향지시등, 및 주행경로 중 적어도 하나에 대한 정보를 기초로, 차량(100)의 차선 변경 가능성을 판단되는 경우, 좌측 BSD영역 및 우측 BSD영역 중, 차량(100)이 이동하고자 하는 차선이 존재하는 측면의 BSD영역을 확대할 수 있다.
BSD영역이 복수 개로 설정된 경우, 프로세서(270)는, 상기 차량정보에 기초하여 복수 개의 BSD영역 각각의 위험 레벨에 설정할 수 있다. 프로세서(270)는, 각각의 위험 레벨에 대응하는 신호를 제공할 수 있다. 예를 들어, BSD영역이 3개로 설정된 경우, 프로세서(270)는, BSD영역이 차량(100)에 근접한 순서대로 3개의 BSD영역의 위험 레벨을 설정할 수 있다.
프로세서(270)는, 제1 BSD영역 및 제1 BSD영역보다 좁은 영역인 제2 BSD영역을 설정할 수 있다. BSD영역은, 제1 BSD영역과 제2 BSD영역을 포함할 수 있다. 예를 들어, 제2 BSD영역은, 제1 BSD영역의 일 영역을 포함할 수 있다. 제1 BSD영역은, 제2 BSD영역을 포함할 수 있다. 제2 BSD영역은, 제1 BSD영역보다 차량(100)에 근접한 영역일 수 있다.
프로세서(270)는, 제1 BSD영역에서 오브젝트가 감지되는 경우, 제1 단계 알람에 대응되는 제1 신호를 제공할 수 있다. 프로세서(270)는, 제2 BSD영역에서 오브젝트가 감지되는 경우, 제2 단계 알람에 대응되는 제2 신호를 제공할 수 있다.
출력부(260)는, 프로세서(270)가 제공하는 제1 신호에 대응하여 제1 단계 알람을 출력할 수 있다. 출력부(260)는, 프로세서(270)가 제공하는 제2 신호에 대응하여 제2 단계 알람을 출력할 수 있다. 예를 들어, 제2 단계 알람은, 제1 단계 알람보다 더 위험한 상황을 알리는 것일 수 있다.
예를 들어, 제2 BSD영역이 제1 BSD영역보다 차량(100)에 근접한 영역인 경우, 프로세서(270)는, 제1 BSD영역에서 오브젝트가 감지되면, 출력부(260)를 통하여 제1 단계 알람을 출력한다. 프로세서(270)는, 제1 단계 알람이 출력된 후 제2 BSD영역에서 오브젝트가 감지되면, 오브젝트가 차량(100)에 점점 접근한 것이므로, 출력부(260)를 통하여 제2 단계 알람을 출력한다. 제2 단계 알람은, 제1 단계 알람보다 더 위험한 상황을 알리는 알람일 수 있다.
본 발명의 일실시예로, 프로세서(270)는, 상기 차량정보에 기초하여, 제2 BSD영역을 변경할 수 있다. 프로세서(270)는, 상기 차량정보에 기초하여 차량(100)의 사고 발생 가능성이 증가한다고 판단되는 경우, 제2 BSD영역을 확대할 수 있다. 프로세서(270)는, 제2 BSD영역이 확대하여, 제2 단계 알람이 출력되는 시점을 앞당길 수 있다. 운전자는, 위험한 상황을 더욱 빠르게 인지할 수 있다. 프로세서(270)는, 상기 차량정보에 기초하여 차량(100)의 사고 발생 가능성이 감소한다고 판단되는 경우, 제2 BSD영역을 축소할 수 있다. 프로세서(270)는, 제2 BSD영역이 축소하여, 제2 단계 알람이 출력되는 시점을 늦출 수 있다.
프로세서(270)는, 상기 주행 시간 정보를 기초로 차량(100)이 주행 중인 시간대가 주간인지 야간인지 판단할 수 있다. 프로세서(270)는, 주행 시간대가 주간인 경우, 제2 BSD영역을 축소할 수 있다. 프로세서(270)는, 주행 시간대가 야간인 경우, 제2 BSD영역을 확대 할 수 있다.
프로세서(270)는, 차량(100)이 주행 중인 시간대가 주간인 경우, 차량(100)의 사고 발생 가능성이 감소한다고 판단하여, 제2 BSD영역을 축소할 수 있다. 프로세서(270)는, 차량(100)이 주행 중인 시간대가 야간인 경우, 차량(100)의 사고 발생 가능성이 증가한다고 판단하여, 제2 BSD영역을 확대 할 수 있다.
프로세서(270)는, 상기 주행 도로 정보를 기초로 차량(100)이 주행하는 도로 종류가 고속도로, 병목구간, 램프구간, 커브길, 산길, 및 공사구간 중의 하나인지 판단할 수 있다.
프로세서(270)는, 도로 종류가 고속도로 또는 커브길인 경우, 제2 BSD영역을 확대 할 수 있다.
프로세서(270)는, 차량(100)이 주행하는 도로가 고속도로인 경우, 차량(100)의 사고 발생 가능성이 증가한다고 판단하여, 제2 BSD영역을 확대할 수 있다. 프로세서(270)는, 차량(100)이 주행하는 도로가 커브길인 경우, 차량(100)의 사고 발생 가능성이 증가한다고 판단하여, 제2 BSD영역을 확대할 수 있다.
프로세서(270)는, 도로 종류가 병목구간인 경우, 제2 BSD영역을 축소 할 수 있다.
프로세서(270)는, 차량(100)이 병목구간을 주행하는 경우, 차량(100) 및 타차량의 속도가 상대적으로 느리므로, 차량(100)의 사고 발생 가능성이 감소한다고 판단하여, 제2 BSD영역을 축소할 수 있다.
프로세서(270)는, 도로 종류가 램프구간인 경우, 합류 지점으로 제2 BSD영역을 확대 할 수 있다.
프로세서(270)는, 차량(100)이 다른 도로가 합류되는 램프구간을 주행하는 경우, 다른 도로의 합류 지점에서 타차량이 접근할 수 있으므로, 상기 합류 지점에서의 차량(100)의 사고 발생 가능성이 증가한다고 판단하여, 상기 합류 지점이 있는 방향으로 제2 BSD영역을 확대할 수 있다.
프로세서(270)는, 교통상황이 원활인 경우, 제2 BSD영역을 확대 할 수 있다. 프로세서(270)는, 교통상황이 정체인 경우, 제2 BSD영역을 축소 할 수 있다.
프로세서(270)는, 차량(100)의 주변 교통상황이 원활인 경우, 차량(100) 및 타차량의 속도가 상대적으로 빠르므로, 차량(100)의 사고 발생 가능성이 증가한다고 판단하여, 제2 BSD영역을 확대할 수 있다.
프로세서(270)는, 차량(100)의 주변 교통상황이 정체인 경우, 차량(100) 및 타차량의 속도가 상대적으로 느리므로, 차량(100)의 사고 발생 가능성이 감소한다고 판단하여, 제2 BSD영역을 축소할 수 있다.
프로세서(270)는, 차량(100)이 고속도로에서 주행하더라도, 주변 교통상황이차량정체인 경우, 차량(100) 및 타차량의 속도가 상대적으로 느리므로, 차량(100)의 사고 발생 가능성이 감소한다고 판단할 수 있다. 프로세서(270)는, 차량(100)이 고속도로에서 주행하더라도, 주변 교통상황이차량정체인 경우, 제2 BSD영역을 축소할 수 있다.
프로세서(270)는, 차량(100)의 주행시간대가 야간이더라도, 주변 교통상황이차량정체인 경우, 차량(100) 및 타차량의 속도가 상대적으로 느리므로, 차량(100)의 사고 발생 가능성이 감소한다고 판단할 수 있다. 프로세서(270)는, 차량(100)의 주행시간대가 야간이더라도, 주변 교통상황이차량정체인 경우, 제2 BSD영역을 축소할 수 있다.
프로세서(270)는, 차량(100)의 기어상태가 R이면 제2 BSD영역을 확대할 수 있다. 프로세서(270)는, 상기 차량정보에 기초하여, 차량(100)의 기어상태가 R인지 판단할 수 있다.
예를 들어, 차량(100)이 후진하는 경우 오브젝트와 충돌할 가능성이 증가하므로, 프로세서(270)는, 제2 BSD영역을 확대할 수 있다. 프로세서(270)는, 제2 BSD영역이 확대하여, 제2 단계 알람이 출력되는 시점을 앞당길 수 있다. 이와 달리, 프로세서(270)는, 차량(100)의 기어상태가 R이면, 제2 BSD영역을 축소할 수도 있다.
프로세서(270)는, 차량(100)의 속도가 증가하면 제2 BSD영역을 확대할 수 있다. 프로세서(270)는, 차량(100)의 속도가 감소하면 제2 BSD영역을 축소할 수 있다. 프로세서(270)는, 상기 차량정보에 기초하여, 차량(100)의 속도가 증가하거나 감소하는지 판단할 수 있다.
차량(100)의 속도가 증가하는 경우, 차량(100)의 사고 발생 가능성이 상대적으로 증가할 수 있다. 프로세서(270)는, 차량(100)의 속도가 증가하는 경우, 제2 BSD영역을 확대하여, 제2 단계 알람이 출력되는 시점을 빠르게 한다.
반면, 차량(100)의 속도가 감소하는 경우, 사고 발생 가능성이 감소하고, 차량(100) 주변의 오브젝트가 천천히 감지되어도 무방하므로, 프로세서(270)는, 제2 BSD영역을 축소할 수 있다.
프로세서(270)는, 차량(100)의 속도가 설정 속도 이상인 경우, 제2 BSD영역을 확대할 수 있다. 프로세서(270)는, 차량(100)의 속도가 상기 설정 속도 미만인 경우, 제2 BSD영역을 축소할 수 있다. 상기 설정 속도는, 실험을 통하여 결정되어, 메모리(240)에 저장된 값일 수 있다.
프로세서(270)는, 차량(100)의 속도와 상기 설정 속도의 차이에 대응하여 제2 BSD영역의 변화량을 조정할 수 있다. 예를 들어, 프로세서(270)는, 차량(100)의 속도가 상기 설정 속도 이상이고, 차량(100)의 속도와 상기 설정 속도의 차이가 큰 경우, 제2 BSD영역을 상대적으로 더 크게 확대할 수 있다.
프로세서(270)는, 차량(100)의 핸들조향각이나 방향지시등에 대응하는 방향으로 제2 BSD영역을 확대할 수 있다. 프로세서(270)는, 상기 차량정보에 기초하여, 차량(100)의 핸들조향각이나 방향지시등에 대응하는 방향을 판단할 수 있다. 프로세서(270)는, 차량(100)의 핸들조향각이나 방향지시등에 대응하는 방향으로 차량(100)이 차선을 변경한다고 판단할 수 있다.
차량(100)이 차선을 변경하는 경우, 이동하려는 차선 방향으로 운전자 주의가 필요하다. 따라서, 프로세서(270)는, 차량(100)이 차선을 변경하는 경우, 이동하려는 차선 방향으로 제2 BSD영역을 확대할 수 있다.
프로세서(270)는, 차량(100)의 핸들조향각이 설정 각도 이상인 상태로 설정 시간이 경과하는 경우, 차량(100)이 차선을 변경할 것으로 판단하여, 차량(100)의 핸들조향각이 기울어진 방향으로 제2 BSD영역을 확대한다. 상기 설정 각도 및 설정 시간은, 실험을 통하여 결정되어 메모리에 저장된 값일 수 있다.
프로세서(270)는, 차량(100)의 방향지시등이 켜진 상태로 설정 시간이 경과하는 경우, 차량(100)이 차선을 변경할 것으로 판단하여, 차량(100)의 방향지시등이 켜진 방향으로 제2 BSD영역을 확대한다. 상기 설정 시간은, 실험을 통하여 결정되어, 메모리에 저장된 값일 수 있다.
프로세서(270)는, 주행경로에 대한 정보에 기초하여 차량(100)의 차선 변경이 예상되는 경우, 변경될 차선 방향으로 제2 BSD영역을 확대할 수 있다.
차량(100)이 차선을 변경하는 경우, 이동하려는 차선 방향으로 운전자 주의가 필요하므로, 프로세서(270)는, 차량(100)이 이동하려는 차선 방향으로 제2 BSD영역을 확대할 수 있다.
프로세서(270)는, 인터페이스부(250)를 통해 수신된 차량(100)의 주행경로에 대한 정보에 기초하여 차량(100)의 차선 변경 가능성을 판단할 수 있다. 예를 들어, 프로세서(270)는, 차량(100)의 주행경로가 전방 300m 앞 좌회전이고, 현재 차량(100)의 주행 차선이 1차선이 아닌 경우, 차량(100)의 차선 변경 가능성이 있는 것으로 판단할 수 있다. 프로세서(270)는, 차량(100)의 차선 변경 가능성이 있는 것으로 판단되면, 차량(100)이 이동할 차선 방향으로 제2 BSD영역을 확대할 수 있다.
프로세서(270)는, 상기 차량정보에 기초하여, 차량(100)이 차선을 변경하지 않는 것으로 판단되고, 제2 BSD영역에서 오브젝트가 감지되는 경우, 제1 단계 알람에 대응하는 제1 신호를 제공할 수 있다. 상기 차량정보는, 차량(100)의 핸들조향각, 방향지시등, 및 주행경로 중 적어도 하나에 대한 정보를 포함할 수 있다.
프로세서(270)는, 차량(100)의 핸들조향각, 방향지시등, 및 주행경로 중 적어도 하나에 대한 정보에 기초하여, 차량(100)이 차선을 변경하지 않는 것을 판단할 수 있다. 예를 들어, 차량(100)의 핸들조향각이 기울어지지 않거나, 방향지시등이 켜지지 않거나, 차량(100)의 주행 경로가 계속 직진인 경우, 프로세서(270)는, 차량(100)이 차선을 변경하지 않는 것으로 판단할 수 있다.
프로세서(270)는, 차량(100)이 차선을 변경하지 않는 것으로 판단된 경우, 제2 BSD영역에서 오브젝트가 감지되면, 제1 단계 알람에 대응하는 제1 신호를 제공할 수 있다. 출력부(260)는, 프로세서(270)가 제공하는 제1 신호에 대응하여 제1 단계 알람을 출력한다.
차량(100)이 차선을 변경하지 않는 경우, 차량(100)의 측후방에 존재하는 오브젝트의 위험도가 적으므로, 프로세서(270)는, 오브젝트가 제2 BSD영역에서 감지되더라도, 출력부(260)를 통하여 제1 단계 알람을 출력할 수 있다.
프로세서(270)는, 센싱부(210)가 제공하는 오브젝트 감지 신호를 기초로, 감지된 오브젝트와 차량(100) 간의 거리를 산출할 수 있다. 본 발명의 다른 실시예로, 센싱부(210)가 감지되는 오브젝트와의 거리를 측정할 수 있는 장치인 경우, 센싱부(210)는, 차량(100)과 감지된 오브젝트 간의 거리 데이터를 프로세서(270)에 제공할 수 있다.
프로세서(270)는, 감지된 오브젝트와 차량(100) 간의 거리가 설정시간 이상동안 증가하고, 제2 BSD영역에서 오브젝트가 감지되는 경우, 제1 신호를 제공할 수 있다. 출력부(260)는, 프로세서(270)가 제공하는 제1 신호에 대응하여 제1 단계 알람을 출력할 수 있다.
프로세서(270)는, 차량(100)과 감지된 오브젝트 간의 거리가 설정시간 이상동안 증가하는지 판단한다. 상기 설정시간은 실험을 통하여 결정되어, 메모리에 저장된 값일 수 있다.
프로세서(270)는, 차량(100)과 감지된 오브젝트 간의 거리가 설정시간 이상동안 증가하는 것으로 판단되는 경우, 제2 BSD영역에서 상기 오브젝트가 감지되면, 제1 신호를 제공한다. 출력부(260)는, 프로세서(270)가 제공하는 제1 신호에 대응하여 제1 단계 알람을 출력한다.
차량(100)과 제2 BSD영역에 존재하는 오브젝트의 거리가 점점 멀어지는 경우, 사고 발생 가능성이 낮으므로, 프로세서(270)는, 오브젝트가 제2 BSD영역에서 감지되더라도, 출력부(260)를 통하여 제1 단계 알람을 출력할 수 있다.
프로세서(270)는, 제1 BSD영역 및 제1 BSD영역보다 좁은 영역인 제2 BSD영역을 설정할 수 있다. 프로세서(270)는, 제1 BSD영역에서 오브젝트가 감지되는 경우, 제1 단계 알람에 대응되는 제1 신호를 제공할 수 있다. 프로세서(270)는, 제2 BSD영역에서 오브젝트가 감지되는 경우, 제2 단계 알람에 대응되는 제2 신호를 제공할 수 있다.
프로세서(270)는, 타차량의 차종이 대형차량인 경우, 타차량의 방향으로 제2 BSD영역을 확대할 수 있다.
프로세서(270)는, 통신부(220)를 통하여 차량(100) 주변에서 주행 중인 타차량의 차종에 대한 정보를 수신할 수 있다. 프로세서(270)는, 수신된 정보에 기초하여, 타차량의 차종이 대형차량으로 판단된 경우, 대형차량이 있는 방향으로 제2 BSD영역을 확대할 수 있다.
차량(100)의 주변에서 주행하는 대형차량이 확대된 제2 BSD영역에 존재하는 경우, 프로세서(270)는, 출력부(260)를 통하여 제2 단계 알람을 출력한다. 이에 따라, 운전자는, 대형차량을 명확하게 인지할 수 있다.
프로세서(270)는, 통신부(220)를 통해 수신되는 타차량의 위치 정보를 기초로, 타차량이 있는 방향으로 제2 BSD영역을 확대한다.
프로세서(270)는, 타차량의 위치가 설정시간 이상동안 차량(100)에 접근하는 경우, 타차량의 방향으로 제2 BSD영역을 확대할 수 있다.
프로세서(270)는, 통신부(220)를 통하여 차량(100) 주변에서 주행 중인 타차량의 위치에 대한 정보를 수신할 수 있다. 프로세서(270)는, 인터페이스부(250)를 통하여 수신된 차량(100)의 위치 정보와 통신부(220)를 통하여 수신된 타차량의 위치 정보에 기초하여, 차량(100)과 타차량 간의 거리를 판단할 수 있다. 프로세서(270)는, 차량(100)과 타차량 간의 거리가 설정시간 이상동안 감소하는 경우, 타차량이 차량(100)에 접근하는 것으로 판단할 수 있다.
프로세서(270)는, 타차량이 차량(100)에 접근하는 것으로 판단되는 경우, 위험도가 높으므로, 타차량이 있는 방향으로 제2 BSD영역을 확대할 수 있다.
프로세서(270)는, 타차량의 속도가 차량(100)의 속도 이상인 경우, 타차량의 방향으로 제2 BSD영역을 확대할 수 있다.
프로세서(270)는, 통신부(220)를 통하여 차량(100) 주변에서 주행 중인 타차량의 속도에 대한 정보를 수신할 수 있다. 프로세서(270)는, 인터페이스부(250)를 통하여 수신된 차량(100)의 속도 정보와 통신부(220)를 통하여 수신된 타차량의 속도 정보를 비교하여, 타차량의 속도가 차량(100)의 속도 이상인 경우, 타차량이 있는 방향으로 제2 BSD영역을 확대할 수 있다.
프로세서(270)는, 타차량의 속도가 차량(100)의 속도 이상인 경우, 위험도가 높으므로, 타차량이 있는 방향으로 제2 BSD영역을 확대한다.
프로세서(270)는, 타차량의 핸들조향각 또는 방향지시등이 차량(100)을 향하는 경우, 타차량의 방향으로 제2 BSD영역을 확대할 수 있다.
프로세서(270)는, 통신부(220)를 통하여 차량(100) 주변에서 주행 중인 타차량의 핸들조향각 또는 방향지시등에 대한 정보를 수신할 수 있다. 프로세서(270)는, 타차량의 핸들조향각 또는 방향지시등에 대한 정보를 기초로 타차량이 차량(100)을 향하여 이동하는지 판단할 수 있다.
프로세서(270)는, 타차량의 핸들조향각이 차량(100)이 있는 방향으로 설정각도 이상 기울어진 상태로 설정시간이 경과하면, 타차량이 있는 방향으로 제2 BSD영역을 확대할 수 있다. 프로세서(270)는, 타차량의 방향지시등이 차량(100)이 있는 방향으로 켜진 상태가 설정시간 이상 지속되면, 타차량이 있는 방향으로 제2 BSD영역을 확대할 수 있다.
프로세서(270)는, 타차량의 주행경로에 대한 정보에 기초하여 타차량이 차량(100)에 접근하는 것으로 판단되는 경우, 타차량의 방향으로 제2 BSD영역을 확대할 수 있다.
프로세서(270)는, 통신부(220)를 통하여 차량(100) 주변에서 주행 중인 타차량의 주행경로에 대한 정보를 수신할 수 있다. 프로세서(270)는, 타차량의 주행경로에 대한 정보를 기초로, 타차량의 주행경로에 차량(100)이 위치하고, 타차량이 현재 타차량의 주행경로에 위치하지 않으며, 타차량과 차량(100) 간의 거리가 감소하는 경우, 타차량이 차량(100)을 향하여 접근할 것으로 판단할 수 있다.
프로세서(270)는, 타차량이 차량(100)에 접근하는 것으로 판단되는 경우, 타차량이 있는 방향으로 제2 BSD영역을 확대할 수 있다.
프로세서(270)는, 인터페이스부(250) 및 통신부(220)를 통해 수신된 차량정보에 기초하여, 차량(100)의 차선 변경시 타차량이 차량(100)에 설정거리 이내로 접근한다고 판단되는 경우, 제2 단계 알람에 대응하는 제2 신호를 제공할 수 있다.
프로세서(270)는, 인터페이스부(250)를 통하여 수신된 차량(100)에 관련된 정보와, 통신부(220)를 통하여 수신된 타차량에 관련된 정보를 기초로, 차량(100)의 차선 변경시 타차량의 움직임, 및 타차량과 차량(100) 간의 거리를 판단할 수 있다. 이에 따라, 프로세서(270)는, 차량(100)의 차선 변경시 타차량이 차량(100)에 설정거리 이내로 접근하는지 판단할 수 있다. 상기 설정거리는, 타차량에 대한 알람이 필요한 거리로 실험에 의해 결정될 수 있고, 메모리(240)에 저장된 값일 수 있다.
프로세서(270)는, 차량(100)의 차선 변경시 타차량이 차량(100)에 설정거리 이내로 접근한다고 판단되는 경우, 제2 신호를 제공할 수 있다. 출력부(260)는, 제2 신호에 대응하여 제2 단계 알람을 출력한다.
프로세서(270)는, 제2 BSD영역에서 오브젝트가 감지되지 않더라도, 차량(100)의 차선 변경시 타차량이 차량(100)에 설정거리 이내로 접근한다고 판단되는 경우, 제2 신호를 제공할 수 있다.
프로세서(270)는, 상기 차량정보에 기초하여 차량(100)과 타차량이 충돌하는 것으로 판단되는 경우, 차량(100)과 타차량의 충돌이 발생하지 않도록, 차량(100)의 조향장치, 제동장치, 구동장치 중 적어도 하나를 제어하기 위한 신호를 제공할 수 있다.
프로세서(270)는, 획득되는 정보에 기초하여, 상기 차량의 차선 변경 의도나 상기 타차량의 이동 경로를 판단하고, 상기 차량의 차선 변경 의도가 없거나, 상기 타차량이 상기 차량으로부터 멀어지는 것으로 판단되는 경우, 상기 제1 단계 알람이 출력되도록 제어할 수 있다.
프로세서(270)는, 획득되는 정보에 기초하여, 상기 차량의 차선 변경시 상기 타차량이 설정거리 이내로 접근한다고 판단되는 경우, 상기 제2 알람을 제공할 수 있다.
프로세서(270)는, 상기 차량정보에 포함된 상기 차량 상태 정보, 및 상기 타차량 상태 정보를 기초로, 타차량과 차량(100) 간의 상대거리 및 상대속도의 변화량을 산출할 수 있다. 프로세서(270)는, 상기 차량 상태 정보에 포함된 차량(100)의 위치, 속도, 핸들조향각, 및 주행경로 정보를 기초로 차량(100)의 움직임을 분석하면서, 상기 타차량 상태 정보에 포함된 차량(100)의 위치, 속도, 핸들조향각, 및 주행경로 정보와, 타차량의 위치, 속도, 핸들조향각, 및 주행경로 정보를 기초로 타차량의 움직임을 분석할 수 있다. 프로세서(270)는, 차량(100)의 움직임과 타차량의 움직임을 분석하여, 타차량과 차량(100) 간의 상대거리 및 상대속도의 변화량을 산출할 수 있다.
프로세서(270)는, 타차량과 차량(100) 간의 상대거리 및 상대속도의 변화량을 기초로, TTC(Time to Collision)를 산출할 수 있다. 프로세서(270)는, 산출된 TTC를 기초로, 차량(100)이 현재와 동일한 상태로 주행하는 경우, 차량(100)과 타차량이 충돌하는지 판단할 수 있다.
프로세서(270)는, 차량(100)과 타차량이 충돌하는 것으로 판단되는 경우, 차량(100)과 타차량이 충돌하지 않기 위한 차량(100)의 움직임을 산출한다. 이 경우, 프로세서(270)는, 센싱부(210, 125)를 통하여 차량(100)의 전후좌우에 존재하는 오브젝트를 감지할 수 있다. 프로세서(270)는, 차량(100)의 전후좌우에서 감지되는 오브젝트를 피하면서, 타차량과 충돌하지 않을 수 있는 차량(100)의 움직임을 산출할 수 있다.
프로세서(270)는, 산출된 움직임에 따라 차량이 움직이도록, 차량(100)의 조향장치, 제동장치, 구동장치 중 적어도 하나를 제어하기 위한 신호를 제공할 수 있다. 프로세서(270)는, 인터페이스부(250)를 통하여, 상기 제어를 위한 신호를 제어부(170) 또는 차량 구동부(150)로 제공할 수 있다. 제어부(170) 또는 차량 구동부(150)는, 상기 제어를 위한 신호에 대응하여 차량(100)을 제어한다.
프로세서(270)는 ASICs (application specific integrated circuits), DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays), 프로세서(processors), 제어기(controllers), 마이크로 컨트롤러(micro-controllers), 마이크로 프로세서(microprocessors), 기타 기능 수행을 위한 전기적 유닛 중 적어도 하나를 이용하여 구현될 수 있다.
입력부(230)는, 차량용 운전 보조 장치(200)에 대한 사용자 입력을 수신할 수 있다. 입력부(230)는, 차량용 운전 보조 장치(200)의 활성화 입력을 수신할 수 있다. 입력부(230)를 통하여, 차량용 운전 보조 장치(200)의 활성화 입력이 수신되는 경우, 차량용 운전 보조 장치(200)가 작동할 수 있다.
입력부(230)는, 차량용 운전 보조 장치(200)의 여러 기능에 대한 활성화 입력을 수신할 수 있다. 차량용 운전 보조 장치(200)의 기능은, 알람 출력 수단 변경, BSD영역 변경, 및 차량 회피 기능 등이 포함할 수 있다. 입력부(230)를 통하여, 차량용 운전 보조 장치(200)의 특정 기능에 대한 활성화 입력이 수신되는 경우, 이에 대응하는 특정 기능이 작동될 수 있다.
입력부(230)는, 출력부(260)가 출력하는 알람에 대한 설정 입력을 수신할 수 있다.
입력부(230)는, 기계식 입력 장치, 터치식 입력 장치, 음성 입력 장치 및 무선 입력 장치 중 적어도 하나를 포함할 수 있다.
기계식 입력 장치는, 버튼, 레버, 조그휠, 스위치 등을 포함할 수 있다. 터치식 입력 장치는, 적어도 하나의 터치 센서를 포함할 수 있다. 터치 입력 장치는 터치 스크린으로 구성될 수 있다. 음성 입력 장치는, 음성을 전기적 신호로 전환할 수 있다. 음성 입력 장치는, 마이크를 포함할 수 있다. 무선 입력 장치는, 무선(wireless)으로 사용자 입력을 수신할 수 있다.
메모리(240)는, 프로세서(270)의 처리 또는 제어를 위한 프로그램 등, 차량용 운전 보조 장치(200)의 동작에 대한 다양한 데이터를 저장할 수 있다.
메모리(240)는, 하드웨어적으로, ROM, RAM, EPROM, 플래시 드라이브, 하드 드라이브 등과 같은 다양한 저장기기 일 수 있다. 메모리(240)는, 실시예에 따라, 프로세서(270)의 하위 구성으로 포함될 수 있다.
전원 공급부(290)는, 프로세서(270)의 제어에 의해, 각 구성요소들의 동작에 필요한 전원을 공급할 수 있다. 전원 공급부(290)는, 차량 내부의 배터리 등으로부터 전원을 공급받을 수 있다.
도 4a 내지 4c는 본 발명의 실시예에 따른 차량용 운전 보조 장치의 센싱부 배치 및 BSD영역의 배치를 설명하는데 참조되는 도면이다.
도 4a 및 4b을 참조하면, 차량용 운전 보조 장치(200)의 센싱부(210)는, 차량(100)의 일 영역에 배치될 수 있다. 예를 들어, 센싱부(210)는, 차량(100)의 후방 범퍼의 일 영역, 및 차량(100)의 사이드 미러 중 적어도 하나에 배치될 수 있다.
차량용 운전 보조 장치(200)는, 적어도 하나의 센싱부(210)를 구비할 수 있다.
센싱부(210)는, 차량(100) 외부에 위치하는 오브젝트를 감지할 수 있다. 예를 들어, 센싱부(210)는, 차량(100) 외부의 오브젝트가 감지될 수 있는 범위인 감지 범위를 가질 수 있다.
센싱부(210)는, 카메라, 레이더(Radar), 라이다(Lidar), 초음파 센서, 및 적외선 센서 중 하나일 수 있다.
도 4b를 참조하면, 본 발명의 일 실시예에 따른 센싱부(210)는, 차량(100)의 우측 사이드 미러와 좌측 사이드 미러에 하나씩 배치될 수도 있다.
차량용 운전 보조 장치(200)는, 광출력부(211) 및 음향출력부(212)를 더 포함할 수 있다.
광출력부(211) 및 음향출력부(212)는, 차량(100) 내부 또는 외부의 일 영역에 배치될 수 있다. 예를 들어, 광출력부(211) 및 음향출력부(212)는, 사이드 미러에 배치된 센싱부(210)에 대응하여 좌측 및 우측으로 구분될 수 있다. 광출력부(211) 및 음향출력부(212)가 좌측 및 우측으로 구분되는 경우, 센싱부(210)를 통해 감지된 오브젝트가 위치하는 측면의 광출력부(211) 및 음향출력부(212)로 알람이 출력된다.
도 4c를 참조하면, 본 발명의 일 실시예에 따른 BSD(Blind Spot Detection)영역은, 차량(100)의 좌측 및 우측에 형성될 수 있다. BSD영역은, 좌측 BSD영역(301a) 및 우측 BSD영역(301b)을 포함할 수 있다.
프로세서(270)는, 출력부(260)를 통하여, 좌측 BSD영역(301a) 및 우측 BSD영역(301b) 각각에 대응하는 알람을 출력할 수 있다. 예를 들어, 프로세서(270)는, 센싱부(210)에 의하여 감지된 오브젝트의 위치가 좌측 BSD영역(301a) 내인 경우, 좌측에 구비된 광출력부(211) 및 음향출력부(212) 중 적어도 하나를 통하여 알람을 출력할 수 있다.
도 4c의 (a)를 참조하면, 본 발명의 일 실시예로, 센싱부(210)는, 차량(100)의 후방 범퍼의 좌측 및 우측 영역에 배치될 수 있다.
도 4c의 (b)는, 본 발명의 일 실시예로, 센싱부(210)는, 차량(100)의 좌측 사이드 미러 및 우측 사이드 미러에 배치될 수 있다.
프로세서(270)는, 센싱부(210)에 의하여 감지된 오브젝트의 위치가 좌측 BSD영역(301a) 또는 우측 BSD영역(301b) 내인 경우, 출력부(260)를 통하여 알람을 출력할 수 있다. 예를 들어, 프로세서(270)는, 센싱부(210)에 의하여 감지된 오브젝트의 위치가 좌측 BSD영역(301a) 내인 경우, 출력부(260)를 통하여 좌측 BSD영역(301a)에 대응하는 알람을 출력할 수 있다.
도 5a 내지 5c는, 본 발명의 실시예에 따른 차량용 운전 보조 장치가 알람을 출력하기 위한 BSD영역을 설명하는데 참조되는 도면이다.
도 5a를 참조하면, 프로세서(270)는, 차량의 좌측 및 우측에 각각 제1 BSD영역 및 제2 BSD영역을 설정할 수 있다.
프로세서(270)는, 차량(100)의 후측방에 배치된 센싱부(210)를 통하여, 좌측 제1 BSD영역(302a), 우측 제1 BSD 영역(302b), 좌측 제2 BSD영역(303a), 및 우측 제2 BSD영역(303b) 중 적어도 하나의 영역에 위치하는 오브젝트를 감지할 수 있다.
이 경우, BSD영역은, 좌측 제1 BSD영역(302a), 우측 제1 BSD 영역(302b), 좌측 제2 BSD영역(303a), 우측 제2 BSD영역(303b)을 포함할 수 있다. 좌측 제2 BSD영역(303a)은, 좌측 제1 BSD영역(302a)에 포함되는 영역일 수 있다. 우측 제2 BSD영역(303b)은, 우측 제1 BSD영역(302b)에 포함되는 영역일 수 있다.
프로세서(270)는, 좌측 제1 BSD영역(302a), 및 우측 제1 BSD 영역(302b)에서 오브젝트가 검출되는 경우, 출력부(260)를 통하여 제1 단계 알람을 출력할 수 있다. 프로세서(270)는, 좌측 제2 BSD영역(303a), 및 우측 제2 BSD 영역(303b)에서 오브젝트가 검출되는 경우, 출력부(260)를 통하여 제2 단계 알람을 출력할 수 있다. 제1 단계 알람 및 제2 단계 알람은, 입력부(230)를 통한 설정 입력에 따라 다르게 설정될 수 있다.
프로세서(270)는, 상기 차량정보를 기초로, 좌측 제1 BSD영역(302a), 우측 제1 BSD 영역(302b), 좌측 제2 BSD영역(303a), 우측 제2 BSD영역(303b)을 개별적으로 변경할 수 있다.
프로세서(270)는, 상기 차량정보를 기초로, 운전자가 오브젝트를 미리 인지해야하는 상황으로 판단되는 경우, 오브젝트가 존재하는 측면의 제1 BSD영역을 확대할 수 있다. 프로세서(270)는, 상기 차량정보를 기초로, 위험도가 높은 상황으로 판단되는 경우, 위험도가 존재하는 측면의 제2 BSD영역을 확대할 수 있다.
도 5b를 참조하면, 프로세서(270)는, 좌측 제1 BSD영역(302a), 우측 제1 BSD 영역(302b), 좌측 제2 BSD영역(303a), 및 우측 제2 BSD영역(303b)을 설정하고, 이와 별도로, 좌측 BSD영역(301a) 및 우측 BSD영역(301b)을 더 설정할 수 있다.
프로세서(270)는, 차량(100)의 후측방에 배치된 센싱부(210)를 통하여, 좌측 제1 BSD영역(302a), 우측 제1 BSD 영역(302b), 좌측 제2 BSD영역(303a), 및 우측 제2 BSD영역(303b) 중 적어도 하나의 영역에 위치하는 오브젝트를 감지할 수 있다. 동시에, 프로세서(270)는, 차량(100)의 사이드미러에 배치된 센싱부(210)를 통하여, 좌측 BSD영역(301a) 또는 우측 BSD영역(301b)에 위치하는 오브젝트를 감지할 수 있다.
프로세서(270)는, 상기 차량정보를 기초로, 좌측 제1 BSD영역(302a), 우측 제1 BSD 영역(302b), 좌측 제2 BSD영역(303a), 우측 제2 BSD영역(303b), 좌측 BSD영역(301a), 및 우측 BSD영역(301b)을 개별적으로 변경할 수 있다.
프로세서(270)는, 입력부(230)를 통하여, 좌측 BSD영역(301a) 또는 우측 BSD영역(301b)에서 오브젝트가 감지되는 경우 출력되는 알람을 설정할 수 있다.
도 5c를 참조하면, 프로세서(270)는, 상기 차량정보를 기초로, 좌측 BSD영역(301a) 및 우측 BSD영역(301b) 중 적어도 하나를 변경할 수 있다.
프로세서(270)는, 상기 차량정보를 기초로, 운전자가 오브젝트를 미리 인지해야하는 상황으로 판단되는 경우, 양측의 BSD영역(301a, 301b)을 확대할 수 있다. 예를 들어, 프로세서(270)는, 차량(100)의 속도가 증가하거나, 타차량의 속도가 차량(100)의 속도보다 빠르거나, 차량(100)이 고속도로에서 주행하거나, 차량(100)이 야간에 주행하는 경우, BSD영역을 확대할 수 있다. 확대된 BSD영역(305a, 305b)으로 인하여, 알람이 상대적으로 빠르게 출력된다.
프로세서(270)는, 상기 차량정보를 기초로, 운전자가 오브젝트를 천천히 인지해도 무방한 것으로 판단되는 경우, 양측의 BSD영역(301a, 301b)을 축소할 수 있다. 예를 들어, 프로세서(270)는, 차량(100)의 속도가 감소하거나, 타차량의 속도가 차량(100)의 속도보다 느리거나, 차량(100)의 주변 교통상황이 정체이거나, 차량(100)이 주간에 주행하는 경우, BSD영역을 축소할 수 있다. 축소된 BSD영역(304a, 304b)으로 인하여, 알람이 상대적으로 느리게 출력된다.
프로세서(270)는, 차량(100)의 좌측 및 우측 중, 차량(100)에 접근하는 오브젝트가 있는 측면의 BSD영역을 확대할 수 있다. 프로세서(270)는, 차량정보를 기초로 차량(100)의 차선 변경 가능성을 판단하여, 차량(100)의 좌측 및 우측 중, 차량(100)이 이동하고자 하는 차선이 있는 측면의 BSD영역을 확대할 수 있다.
도 6a 및 6b는, 본 발명의 실시예에 따른 차량용 운전 보조 장치가 차량 상태 정보에 기초하여 BSD영역을 변경하는 것을 설명하는데 참조되는 도면이다.
프로세서(270)는, 차량 상태 정보에 기초하여 BSD영역을 변경할 수 있다. 상기 차량 상태 정보는, 차량의 위치, 기어상태, 속도, 핸들조향각, 방향지시등, 및 주행경로 중 적어도 하나에 대한 정보를 포함한다.
도 6a를 참조하면, 프로세서(270)는, 차량의 핸들조향각 또는 방향지시등에 대한 정보를 기초로, 좌측 BSD영역 및 우측 BSD영역 중, 차량(100)이 이동하고자 하는 방향에 있는 BSD영역을 확대한다.
프로세서(270)는, 좌측 BSD영역 및 우측 BSD영역 중, 차량(100)의 핸들조향각이 기울어지는 방향에 존재하는 BSD영역을 확대할 수 있다. 프로세서(270)는, 좌측 BSD영역 및 우측 BSD영역 중, 차량(100)의 방향지시등이 켜지는 방향에 존재하는 BSD영역을 확대 할 수 있다.
차량(100)의 핸들조향각이 기울어지는 방향이나 방향지시등이 켜지는 방향은 차량(100)이 이동하는 방향과 대응할 수 있으므로, 프로세서(270)는, 차량(100)의 핸들조향각이 기울어지는 방향이나 방향지시등이 켜지는 방향에 존재하는 측면의 BSD영역을 확대할 수 있다.
예를 들어, 프로세서(270)는, 차량(100)의 핸들조향각이 오른쪽으로 기울어지거나, 차량(100)의 오른쪽 방향지시등이 켜지는 경우, 우측 BSD영역(305b)을 확대할 수 있다. 이 경우, 프로세서(270)는, 좌측 BSD영역(301a)을 변경하지 않거나 축소할 수도 있다.
프로세서(270)는, 차량(100)의 핸들조향각이나 방향지시등에 기초하여, 차량(100)의 차선 변경 여부를 판단할 수 있다. 프로세서(270)는, 차량(100)이 차선을 변경하는 것으로 판단되면, 차량(100)이 이동할 차선이 있는 측면의 BSD영역을 확대할 수 있다.
프로세서(270)는, 차량(100)의 핸들조향각이 설정 각도 이상인 상태로 설정 시간이 경과하는 경우, 차량(100)이 차선을 변경할 것으로 판단하여, 차량(100)의 핸들조향각이 기울어진 방향에 있는 측면 BSD영역을 확대한다. 상기 설정 각도 및 설정 시간은, 실험을 통하여 결정되어 메모리에 저장된 값일 수 있다.
프로세서(270)는, 차량(100)의 방향지시등이 켜진 상태로 설정 시간이 경과하는 경우, 차량(100)이 차선을 변경할 것으로 판단하여, 차량(100)의 방향지시등이 켜진 방향에 있는 측면 BSD영역을 확대한다. 상기 설정 시간은, 실험을 통하여 결정되어, 메모리에 저장된 값일 수 있다.
도 6b를 참조하면, 프로세서(270)는, 차량(100)의 주행경로에 대한 정보를 기초로 차량(100)이 이동할 방향을 판단하여, 차량(100)이 이동할 방향에 있는 측면 BSD영역을 확대할 수 있다.
프로세서(270)는, 인터페이스부(250)를 통하여 차량(100)의 주행경로에 대한 정보를 수신한다. 프로세서(270)는, 차량(100)의 주행경로에 대한 정보를 기초로 차량(100)이 오른쪽 차선으로 이동하는 것이 예상되는 경우, 우측 BSD영역(305b)을 확대할 수 있다.
도 7a 내지 7d은, 본 발명의 실시예에 따른 차량용 운전 보조 장치가 차량 상태 정보에 기초하여 제2 BSD영역을 변경하는 것을 설명하는데 참조되는 도면이다.
프로세서(270)는, BSD영역을 제1 BSD영역(302a, 302b) 및 제2 BSD영역(303a, 303b)으로 설정할 수 있다. 제2 BSD영역은, 제1 BSD영역보다 차량(100)에 근접한 영역일 수 있다.
프로세서(270)는, 제1 BSD영역에서 오브젝트가 감지되는 경우, 제1 단계 알람에 대응되는 제1 신호를 제공할 수 있다. 프로세서(270)는, 제2 BSD영역에서 오브젝트가 감지되는 경우, 제2 단계 알람에 대응되는 제2 신호를 제공할 수 있다. 제2 단계 알람은, 제1 단계 알람보다 더 위험한 상황을 알리는 것일 수 있다. 제2 BSD영역이 확대되면, 제2 단계 알람이 출력되는 시점이 상대적으로 빨라지므로, 운전자는, 위험도가 높은 상황을 더욱 빠르게 인지할 수 있다. 제2 BSD영역이 축소되면, 제2 단계 알람이 출력되는 시점이 상대적으로 느려진다.
도 7a를 참조하면, 프로세서(270)는, 좌측 제2 BSD영역(303a) 및 우측 제2 BSD영역(307b) 중, 차량(100)의 핸들조향각이나 방향지시등의 방향에 대응하는 측면의 제2 BSD영역을 확대할 수 있다.
차량(100)이 차선을 변경하는 경우, 이동하려는 차선 방향으로 운전자 주의가 필요하므로, 프로세서(270)는, 차량(100)이 이동하고자하는 차선이 있는 측면의 제2 BSD영역을 확대할 수 있다.
예를 들어, 프로세서(270)는, 차량(100)의 핸들조향각이 오른쪽으로 기울어지거나, 차량(100)의 오른쪽 방향지시등이 켜지는 경우, 차량(100)이 오른쪽 차선으로 이동한다고 판단하여, 우측 제2 BSD영역(307b)을 확대한다. 이에 따라, 운전자는, 우측 차선으로 이동하고자 하는 경우, 차량(100)의 우측으로 빠르게 접근하는 타차량을 먼저 인지할 수 있다.
도 7b 및 7c를 참조하면, 프로세서(270)는, 차량(100)의 기어상태가 R이면 제2 BSD영역(307a, 307b)을 확대할 수 있다.
예를 들어, 차량(100)이 길을 잘못 들어 후진하는 경우, 오브젝트와 충돌할 위험이 크므로, 프로세서(270)는, 좌측 제2 BSD영역(307a) 및 우측 제2 BSD영역(307b)을 확대한다. 이에 따라, 운전자는, 차량(100)이 길을 잘못 들어 후진하는 경우, 차량(100)에 접근하는 차량에 대한 인지 가능성을 높일 수 있다.
또한, 주차된 차량(100)이 후진하여 출차하고, 주차된 지점의 후방에 도로가 형성되어있는 경우, 차량(100)이 후방의 오브젝트와 충돌할 위험이 크므로, 프로세서(270)는, 좌측 제2 BSD영역(307a) 및 우측 제2 BSD영역(307b)을 확대한다. 이에 따라, 후진하여 출차하는 운전자는, 차량(100)의 후방에서 접근하는 차량에 대한 인지 가능성을 높일 수 있다.
도 7d를 참조하면, 프로세서(270)는, 주행경로에 대한 정보에 기초하여 차량(100)의 차선 변경이 예상되는 경우, 좌측 제2 BSD영역(307a) 및 우측 제2 BSD영역(303b) 중, 차량(100)이 향하는 차선 방향의 제2 BSD영역을 확대할 수 있다.
프로세서(270)는, 인터페이스부(250)를 통해 수신된 차량(100)의 주행경로에 대한 정보에 기초하여 차량(100)의 차선 변경 가능성을 판단할 수 있다.
예를 들어, 프로세서(270)는, 목적지를 가기 위한 차량(100)의 주행경로가 2차선이고, 현재 차량(100)의 주행 차선이 3차선인 경우, 차량(100)의 차선 변경 가능성이 있는 것으로 판단할 수 있다.
차량(100)이 차선을 왼쪽으로 변경하는 경우, 차량(100)의 왼쪽 차선 방향으로 운전자의 주의가 필요하므로, 프로세서(270)는, 좌측 제2 BSD영역(307a)을 확대할 수 있다.
도 8a 및 8b는, 본 발명의 실시예에 따른 차량용 운전 보조 장치가 제2 BSD영역에서 오브젝트가 감지되더라도 제1 단계 알람을 출력하는 경우를 설명하는데 참조되는 도면이다.
도 8a를, 참조하면, 프로세서(270)는, 차량(100)의 핸들조향각, 방향지시등, 및 주행경로 중 적어도 하나에 대한 정보에 기초하여, 차량(100)이 차선을 변경하지 않는 것으로 판단되는 경우, 제2 BSD영역(303a, 303b)에서 오브젝트가 감지되더라도, 출력부(260)를 통하여 제1 단계 알람를 출력할 수 있다.
프로세서(270)는, 차량(100)의 핸들조향각, 방향지시등, 및 주행경로 중 적어도 하나에 대한 정보에 기초하여, 차량(100)의 차선 변경여부를 판단할 수 있다. 예를 들어, 차량(100)의 핸들조향각이 기울어지지 않거나, 방향지시등이 켜지지 않거나, 차량(100)의 주행 경로가 계속 직진인 경우, 프로세서(270)는, 차량(100)이 차선을 변경하지 않는 것으로 판단할 수 있다.
프로세서(270)는, 차량(100)이 차선을 변경하지 않는 것으로 판단된 경우, 제2 BSD영역에서 오브젝트가 감지되면, 제1 단계 알람에 대응하는 제1 신호를 제공할 수 있다. 출력부(260)는, 프로세서(270)가 제공하는 제1 신호에 대응하여 제1 단계 알람을 출력한다. 차량(100)이 차선을 변경하지 않는 경우, 차량(100)의 측후방에 존재하는 오브젝트의 위험도가 적으므로, 프로세서(270)는, 제2 BSD영역 내의 오브젝트가 감지되더라도 낮은 단계의 알람을 출력한다.
또한, 프로세서(270)는, 통신부(220)를 통하여 수신된 타차량의 주행경로에 대한 정보를 기초로, 타차량이 차량(100)과 멀어지는 방향으로 차선을 변경하는 것으로 판단되는 경우, 제2 BSD영역(303a, 303b)에서 오브젝트가 감지되더라도, 출력부(260)를 통하여 제1 단계 알람를 출력할 수 있다.
프로세서(270)는, 차량(100)의 주행경로 정보와 타차량의 주행경로 정보를 기초로 차량(100)과 타차량이 멀어지는 방향으로 이동하는지 판단할 수 있다. 프로세서(270)는, 차량(100)과 타차량이 멀어지는 방향으로 이동하는 것으로 판단되는 경우, 제2 BSD영역(303a, 303b)에서 오브젝트가 감지되더라도, 제1 단계 알람에 대응하는 제1 신호를 제공한다. 출력부(260)는, 프로세서(270)가 제공하는 제1 신호에 대응하여 제1 단계 알람을 출력한다. 차량(100)과 BSD영역에 존재하는 오브젝트의 거리가 멀어지는 경우, 사고 발생 가능성이 낮으므로, 프로세서(270)는, 제2 BSD영역 내의 오브젝트가 감지되더라도 낮은 단계의 알람을 출력할 수 있다.
도 8b를 참조하면, 프로세서(270)는, 차량(100) 또는 타차량의 움직임을 x축과 y축으로 나누어 분석할 수 있다.
도 8b의 (a)를 참조하면, 프로세서(270)는, x축과 y축으로 이루어진 좌표를 생성하여 차량(100)의 움직임을 분석할 수 있다. 프로세서(270)는, 차량(100)의 핸들조향각, 방향지시등, 및 주행경로 중 적어도 하나에 대한 정보에 기초하여, 차량(100)의 차선 변경여부를 판단할 수 있다. 프로세서(270)는, 차량(100)의 주행경로 정보를 기초로, 차량(100)이 이동해야 하는 차선을 판단하고, 현재 차량(100)이 주행하는 차선을 판단하여, 상기 생성된 좌표 상에서 차량(100)이 이동해야하는 경로를 산출할 수 있다.
도 8b의 (b)를 참조하면, 프로세서(270)는, x축과 y축으로 이루어진 좌표를 생성하여 타차량의 움직임을 분석할 수 있다. 프로세서(270)는, 통신부(220)를 통하여 수신된 타차량에 대한 정보를 기초로, 타차량(300)이 차량(100)과 동일하게 y좌표가 증가하는 방향으로 이동하면서 차량(100)으로부터 x축 상의 거리가 멀어지도록 이동하는 것으로 판단할 수 있다. 프로세서(270)는, 타차량(300)이 차량(100)과 멀어지는 방향으로 이동하는 것으로 판단하여, 알람에 대응하는 신호를 출력하지 않거나, 제1 단계 알람에 대응하는 제1 신호만을 출력할 수 있다.
도 9a 및 9b는, 본 발명의 실시예에 따른 차량용 운전 보조 장치가 타차량 상태 정보에 기초하여 BSD영역을 변경하는 것을 설명하는데 참조되는 도면이다.
상기 타차량 상태 정보는, 통신부(220)를 통하여 수신되는 타차량의 차종, 위치, 속도, 핸들조향각, 방향지시등, 및 주행경로 중 적어도 하나에 대한 정보를 포함할 수 있다. 프로세서(270)는, 상기 타차량 상태 정보에 기초하여 BSD영역을 변경할 수 있다.
도 9a를 참조하면, 프로세서(270)는, 타차량(300)의 차종이 대형차량이거나, 타차량(300)이 차량(100)에 접근하는 경우, 좌측 BSD영역(301a) 및 우측 BSD영역(301b) 중 타차량이 존재하는 측면의 BSD영역을 확대할 수 있다.
프로세서(270)는, 상기 타차량 상태 정보에 기초하여, 차량(100)의 좌측에 존재하는 타차량(300)이 대형차량인지 또는 차량(100)에 접근하는지 판단할 수 있다.
타차량(300)의 차종이 대형차량이거나, 타차량(300)이 차량(100)에 접근하는 경우, 운전자가 타차량을 미리 인지할 필요가 있으므로, 프로세서(270)는, 타차량(300)이 있는 방향에 존재하는 좌측 BSD영역(301a)을 확대할 수 있다. 이 경우, 프로세서(270)는, 통신부(220)를 통해 수신되는 타차량(300)의 위치 정보를 기초로, 좌측 BSD영역(301a) 및 우측 BSD영역(301b) 중, 타차량(300)이 있는 방향에 존재하는 BSD영역이 무엇인지 판단한다.
도 9b를 참조하면, 프로세서(270)는, 타차량(300)의 차종이 대형차량이거나, 타차량(300)이 차량(100)에 접근하는 경우, 좌측 제2 BSD영역(307a) 및 우측 제2 BSD영역(303b) 중 타차량이 존재하는 측면의 제2 BSD영역을 확대할 수 있다.
프로세서(270)는, 상기 타차량 상태 정보를 기초로, 차량(100)의 좌측에 존재하는 타차량(300)이 대형차량인지 또는 차량(100)에 접근하는지 판단되는 경우, 좌측 제2 BSD영역(307a)을 확대할 수 있다.
이에 따라, 운전자가 대형차량을 인지할 수 있는 가능성이 높아진다.
도 10은, 본 발명의 실시예에 따른 차량용 운전 보조 장치가 차량 상태 정보 및 타차량 상태 정보에 기초하여 제2 단계 알람을 출력하는 것을 설명하는데 참조되는 도면이다.
도 10을 참도하면, 프로세서(270)는, 인터페이스부(250) 및 통신부(220)를 통해 수신된 차량 상태 정보 및 타차량 상태 정보에 기초하여, 차량(100)의 차선 변경시 타차량(300)이 차량(100)에 설정거리 이내로 접근한다고 판단되는 경우, 제2 단계 알람에 대응하는 제2 신호를 제공할 수 있다.
상기 차량 상태 정보는, 인터페이스부(250)를 통하여 수신되는, 차량(100)의 위치, 기어상태, 속도, 핸들조향각, 방향지시등, 및 주행경로 중 적어도 하나에 대한 정보를 포함한다. 상기 타차량 상태 정보는, 통신부(220)를 통하여 수신되는, 타차량(300)의 차종, 위치, 속도, 핸들조향각, 방향지시등, 및 주행경로 중 적어도 하나에 대한 정보를 포함한다.
프로세서(270)는, 차량 상태 정보 및 타차량 상태 정보를 기초로, 차량(100)의 차선 변경시 타차량(300)의 움직임을 판단할 수 있다. 또한, 프로세서(270)는, 차량 상태 정보 및 타차량 상태 정보를 기초로, 타차량(300)과 차량(100) 간의 거리를 산출할 수 있다. 이에 따라, 프로세서(270)는, 차량(100)의 차선 변경시 타차량(300)이 차량(100)에 설정거리 이내로 접근하는지 판단할 수 있다. 상기 설정거리는, 타차량에 대한 알람이 필요한 거리로 실험에 의해 결정될 수 있고, 메모리(240)에 저장된 값일 수 있다.
프로세서(270)는, 차량(100)의 차선 변경시 타차량(300)이 차량(100)에 설정거리 이내로 접근한다고 판단되는 경우, BSD영역에 타차량(300)이 감지되지 않더라도, 출력부(260)를 통하여 제2 단계 알람을 출력한다.
도 11a 내지 11c는, 본 발명의 실시예에 따른 차량용 운전 보조 장치가 주행 환경 정보에 기초하여 BSD영역을 변경하는 것을 설명하는데 참조되는 도면이다.
상기 주행 환경 정보는, 차량(100)의 주행 시간대가 야간 또는 주간임을 나타내는 주행 시간 정보, 차량(100)이 주행하는 도로 종류를 나타내는 주행 도로 정보, 및 차량(100)의 주변 교통상황이 원활 또는 정체임을 나타내는 교통 상황 정보, 중 적어도 하나를 포함할 수 있다.
도 11a를 참조하면, 프로세서(270)는, 차량(100)의 주변 교통상황이 정체인 경우, 좌측 BSD영역(301a) 및 우측 BSD영역(301b)을 축소할 수 있다.
프로세서(270)는, 주행 환경 정보에 포함된 교통 상황 정보를 기초로, 차량(100)의 주변 교통상황이 정체인지 원활인지 판단할 수 있다.
프로세서(270)는, 차량(100)의 주변 교통상황이 정체인 경우, 차량(100)과 타차량들의 속도가 감소할 것이므로, BSD영역을 축소시킨다. 이는, 차량(100)과 타차량들의 속도가 감소하는 경우, 운전자가 차량(100) 주변의 오브젝트를 미리 인지하지 않아도 무방하기 때문이다.
프로세서(270)는, 차량(100)의 주변 교통상황이 정체인 경우, 차량(100)이 야간에 고속도로를 주행하더라도, BSD영역을 축소시킬 수 있다.
도 11b를 참조하면, 프로세서(270)는, 차량(100)이 주행하는 도로 종류가 램프구간인 경우, 좌측 BSD영역(301a) 및 우측 BSD영역(301b) 중, 합류 지점이 있는 측면의 BSD영역을 확대 할 수 있다.
프로세서(270)는, 차량(100)이 다른 도로가 합류되는 램프구간을 주행하는 경우, 다른 도로의 합류 지점에서 타차량이 접근할 수 있으므로, 좌측 BSD영역(301a) 및 우측 BSD영역(301b) 중, 합류 지점이 있는 측면의 BSD영역을 확대할 수 있다.
이에 따라, 운전자는, 램프구간을 주행하는 경우, 합류 지점에서 진입하는 타차량을 미리 인지할 수 있다.
도 11c를 참조하면, 프로세서(270)는, 상기 주행 환경 정보 및 차량(100)에 관련된 정보를 기초로, 차량(100)이 주행하는 도로 종류가 병목구간이고, 차량(100)의 차선 변경이 예상되는 경우, 좌측 BSD영역(301a) 및 우측 BSD영역(301b) 중, 변경될 차선이 존재하는 측면의 BSD영역을 확대할 수 있다.
차량(100)이 주행하는 도로 종류가 병목구간인 경우, 차량(100)이 차선을 변경해야 하는 경우가 발생할 수 있다. 이에 따라, 프로세서(270)는, 차량(100)이 주행하는 도로 종류가 병목구간인 경우, 차량(100)에 관련된 정보를 기초로, 차량(100)의 차선 변경 가능성을 판단한다. 프로세서(270)는, 차량(100)이 주행하는 도로 종류가 병목구간이고, 차량(100)의 차선 변경이 예상되는 경우, 좌측 BSD영역(301a) 및 우측 BSD영역(301b) 중, 차량(100)이 이동하려는 차선이 있는 측면의 BSD영역을 확대할 수 있다.
도 12a 및 12b는, 본 발명의 실시예에 따른 차량용 운전 보조 장치가 주행 환경 정보에 기초하여 제2 BSD영역을 변경하는 것을 설명하는데 참조되는 도면이다.
도 12a를 참조하면, 프로세서(270)는, 차량(100)의 주변 교통상황이 정체인 경우, 차량(100) 및 타차량의 속도가 상대적으로 느리므로, 제2 단계 알람을 출력하기 위한 제2 BSD영역(303a, 303b)을 축소할 수 있다.
프로세서(270)는, 차량(100)이 고속도로에서 주행하더라도, 주변 교통상황이차량정체인 경우, 차량(100) 및 타차량의 속도가 상대적으로 느리므로, 제2 BSD영역(303a, 303b)을 축소할 수 있다.
프로세서(270)는, 차량(100)의 주행시간대가 야간이더라도, 주변 교통상황이차량정체인 경우, 차량(100) 및 타차량의 속도가 상대적으로 느리므로, 제2 BSD영역(303a, 303b)을 축소할 수 있다.
도 12b를 참조하면, 프로세서(270)는, 도로 종류가 커브길인 경우, 제2 BSD영역(303a, 303b)을 확대 할 수 있다.
프로세서(270)는, 차량(100)이 주행하는 도로가 커브길인 경우, 사고 발생 가능성 및 위험도가 상대적으로 높으므로, 제2 BSD영역(303a, 303b)을 확대할 수 있다. 이에 따라, 운전자는, 커브길 주행시, 차량(100) 주변의 타차량을 용이하게 인지할 수 있다.
전술한 본 발명은, 프로그램이 기록된 매체에 컴퓨터가 읽을 수 있는 코드로서 구현하는 것이 가능하다. 컴퓨터가 읽을 수 있는 매체는, 컴퓨터 시스템에 의하여 읽혀질 수 있는 데이터가 저장되는 모든 종류의 기록장치를 포함한다. 컴퓨터가 읽을 수 있는 매체의 예로는, HDD(Hard Disk Drive), SSD(Solid State Disk), SDD(Silicon Disk Drive), ROM, RAM, CD-ROM, 자기 테이프, 플로피 디스크, 광 데이터 저장 장치 등이 있으며, 또한 캐리어 웨이브(예를 들어, 인터넷을 통한 전송)의 형태로 구현되는 것도 포함한다. 또한, 상기 컴퓨터는 프로세서(270) 또는 제어부(170)를 포함할 수도 있다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.

Claims (20)

  1. 차량 외부에 위치하는 오브젝트를 감지하는 센싱부;
    출력부; 및
    획득되는 정보에 기초하여 기 설정된 BSD(Blind Spot Detection) 영역을 변경하고,
    상기 센싱부가 감지하는 오브젝트가 상기 변경된 BSD 영역에 위치하는 경우,
    상기 출력부를 통해 알람이 출력되도록 제어하는 프로세서;
    를 포함하는 차량용 운전 보조 장치.
  2. 제1항에 있어서,
    상기 프로세서는,
    주행 시간 정보, 주행 도로 정보, 및 교통 상황 정보 중 적어도 하나를 획득하고,
    상기 획득한 정보에 기초하여 상기 기 설정된 BSD 영역을 변경하는 차량용 운전 보조 장치.
  3. 제2항에 있어서,
    상기 프로세서는,
    상기 교통 상황 정보에 기초하여,
    상기 차량 주변의 교통 상황이 정체라고 판단되는 경우, 상기 기 설정된 BSD 영역을 확대하고, 상기 차량 주변의 교통 상황이 원활이라고 판단되는 경우, 상기 기 설정된 BSD 영역을 축소하는 차량용 운전 보조 장치.
  4. 제2항에 있어서,
    상기 기 설정된 BSD 영역은, 좌측 BSD 영역 및 우측 BSD 영역을 포함하고,
    상기 프로세서는,
    상기 주행 도로 정보에 기초하여, 상기 차량이 주행하는 도로가 램프구간인 경우,
    상기 좌측 BSD 영역 및 우측 BSD 영역 중, 합류 지점이 존재하는 측면의 BSD영역을 확대하는 차량용 운전 보조 장치.
  5. 제1항에 있어서,
    인터페이스부; 를 더 포함하고,
    상기 프로세서는,
    상기 인터페이스부를 통하여, 상기 차량의 위치 정보, 상기 차량의 기어 포지션 정보, 상기 차량의 속도 정보, 상기 차량의 조향 정보, 상기 차량의 턴 시그널 정보 및 상기 차량의 주행 경로 정보 중 적어도 하나를 획득하고,
    상기 획득한 정보에 기초하여 상기 기 설정된 BSD 영역을 변경하는 차량용 운전 보조 장치.
  6. 제5항에 있어서,
    상기 프로세서는,
    상기 차량의 조향 정보, 상기 차량의 턴 시그널 정보, 및 상기 차량의 주행 경로 정보 중 적어도 하나를 기초로, 상기 차량의 차선 변경 의도를 판단하고,
    상기 차선 변경 의도에 기초하여, 상기 차량이 이동하고자 하는 방향으로 상기 BSD 영역을 확대하는 차량용 운전 보조 장치.
  7. 제5항에 있어서,
    상기 프로세서는,
    상기 차량의 속도 정보를 기초로,
    상기 차량의 속도가 증가하면, 상기 BSD 영역을 확대하고, 상기 차량의 속도가 감소하면, 상기 BSD 영역을 축소하는 차량용 운전 보조 장치.
  8. 제5항에 있어서,
    상기 기 설정된 BSD 영역은, 좌측 BSD 영역 및 우측 BSD 영역을 포함하고,
    상기 프로세서는,
    상기 차량의 조향 정보, 상기 차량의 턴 시그널 정보, 및 상기 차량의 주행 경로 정보 중 적어도 하나를 기초로, 상기 차량의 차선 변경 의도를 판단하고,
    상기 차선 변경 의도에 기초하여, 상기 좌측 BSD 영역 및 우측 BSD 영역 중, 상기 차량이 이동하고자 하는 측면의 BSD 영역을 확대하는 차량용 운전 보조 장치.
  9. 제1항에 있어서,
    타차량과 통신을 수행하는 통신부; 를 더 포함하고,
    상기 프로세서는,
    상기 통신부를 통하여, 상기 타차량의 차종 정보, 상기 타차량의 위치 정보, 상기 타차량의 속도 정보, 상기 타차량의 조향 정보, 상기 타차량의 턴 시그널 정보 상기 타차량의 주행 경로 정보 중 적어도 하나를 획득하고,
    상기 획득한 정보에 기초하여 상기 기 설정된 BSD 영역을 변경하는 차량용 운전 보조 장치.
  10. 제9항에 있어서,
    상기 프로세서는,
    상기 획득한 정보를 기초로, 상기 타차량이 상기 차량에 접근하는 것으로 판단되는 경우,
    상기 타차량이 있는 방향으로 상기 BSD 영역을 확대하는 차량용 운전 보조 장치.
  11. 제9항에 있어서,
    상기 기 설정된 BSD 영역은, 좌측 BSD 영역 및 우측 BSD 영역을 포함하고,
    상기 프로세서는,
    상기 획득한 정보에 기초하여, 상기 타차량이 상기 차량에 접근하는 것으로 판단되는 경우,
    상기 좌측 BSD 영역 및 우측 BSD 영역 중, 상기 타차량이 있는 측면의 BSD 영역을 확대하는 차량용 운전 보조 장치.
  12. 제1항에 있어서,
    상기 기 설정된 BSD 영역은 복수 개이고,
    상기 프로세서는,
    획득되는 정보에 기초하여 상기 기 설정된 복수의 BSD 영역을 개별적으로 변경하는 차량용 운전 보조 장치.
  13. 제12항에 있어서,
    상기 프로세서는,
    상기 복수 개의 기 설정된 BSD 영역마다 대응하는 알람을 구분하고,
    상기 오브젝트가 위치하는 BSD 영역에 대응하는 알람이 출력되도록 제어하는 차량용 운전 보조 장치.
  14. 제13항에 있어서,
    상기 기 설정된 BSD 영역은, 제1 BSD 영역 및 제2 BSD 영역을 포함하고,
    상기 제2 BSD 영역은, 상기 제1 BSD 영역보다 좁고,
    상기 프로세서는,
    상기 오브젝트가 상기 제1 BSD 영역에 위치하는 경우, 제1 단계 알람이 출력되도록 제어하고, 상기 오브젝트가 상기 제2 BSD 영역에 위치하는 경우, 제2 단계 알람이 출력되도록 제어하는 차량용 운전 보조 장치.
  15. 제14항에 있어서,
    상기 프로세서는,
    주행 시간 정보, 주행 도로 정보, 및 교통 상황 정보 중 적어도 하나를 획득하고,
    상기 획득한 정보에 기초하여 상기 제2 BSD 영역을 변경하는 차량용 운전 보조 장치.
  16. 제14항에 있어서,
    인터페이스부; 를 더 포함하고,
    상기 프로세서는,
    상기 인터페이스부를 통하여, 상기 차량의 위치 정보, 상기 차량의 기어 포지션 정보, 상기 차량의 속도 정보, 상기 차량의 조향 정보, 상기 차량의 턴 시그널 정보 및 상기 차량의 주행 경로 정보 중 적어도 하나를 획득하고,
    상기 획득한 정보에 기초하여 상기 제2 BSD 영역을 변경하는 차량용 운전 보조 장치.
  17. 제14항에 있어서,
    타차량과 통신을 수행하는 통신부; 를 더 포함하고,
    상기 프로세서는,
    상기 통신부를 통하여, 상기 타차량의 차종 정보, 상기 타차량의 위치 정보, 상기 타차량의 속도 정보, 상기 타차량의 조향 정보, 상기 타차량의 턴 시그널 정보 상기 타차량의 주행 경로 정보 중 적어도 하나를 획득하고,
    상기 획득한 정보에 기초하여 상기 제2 BSD 영역을 변경하는 차량용 운전 보조 장치.
  18. 제14항에 있어서,
    인터페이스부; 및 타차량과 통신을 수행하는 통신부; 를 더 포함하고,
    상기 프로세서는,
    상기 인터페이스부를 통하여, 상기 차량에 관련된 정보를 획득하고,
    상기 통신부를 통하여, 상기 타차량에 관련된 획득하고,
    상기 획득한 정보들에 기초하여, 상기 차량의 차선 변경 의도나 상기 타차량의 이동 경로를 판단하고,
    상기 차량의 차선 변경 의도가 없거나, 상기 타차량이 상기 차량으로부터 멀어지는 것으로 판단되는 경우, 상기 제1 단계 알람이 출력되도록 제어하는 차량용 운전 보조 장치.
  19. 제14항에 있어서,
    인터페이스부; 및 타차량과 통신을 수행하는 통신부; 를 더 포함하고,
    상기 프로세서는,
    상기 인터페이스부를 통하여, 상기 차량에 관련된 정보를 획득하고,
    상기 통신부를 통하여, 상기 타차량에 관련된 획득하고,
    상기 획득한 정보들에 기초하여, 상기 차량의 차선 변경시 상기 타차량이 설정거리 이내로 접근한다고 판단되는 경우, 상기 제2 단계 알람을 제공하는 차량용 운전 보조 장치.
  20. 제1항에 있어서,
    상기 프로세서는,
    상기 획득되는 정보에 기초하여, 상기 차량과 상기 오브젝트가 충돌하는 것으로 판단되는 경우,
    상기 차량과 상기 오브젝트의 충돌이 발생하지 않도록, 상기 차량의 조향장치, 제동장치, 구동장치 중 적어도 하나를 제어하기 위한 신호를 제공하는 차량용 운전 보조 장치.
PCT/KR2016/015204 2016-04-21 2016-12-23 차량용 운전 보조 장치 WO2017183797A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0048662 2016-04-21
KR1020160048662A KR101838968B1 (ko) 2016-04-21 2016-04-21 차량용 운전 보조 장치

Publications (1)

Publication Number Publication Date
WO2017183797A1 true WO2017183797A1 (ko) 2017-10-26

Family

ID=60088803

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/015204 WO2017183797A1 (ko) 2016-04-21 2016-12-23 차량용 운전 보조 장치

Country Status (3)

Country Link
US (1) US10611383B2 (ko)
KR (1) KR101838968B1 (ko)
WO (1) WO2017183797A1 (ko)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9499139B2 (en) * 2013-12-05 2016-11-22 Magna Electronics Inc. Vehicle monitoring system
US10528826B2 (en) * 2016-05-06 2020-01-07 GM Global Technology Operations LLC Vehicle guidance system
JP6371329B2 (ja) * 2016-05-16 2018-08-08 トヨタ自動車株式会社 車両の運転支援制御装置
KR20170133743A (ko) * 2016-05-26 2017-12-06 현대자동차주식회사 사용자 입력 기반 차량 제어 시스템 및 그 방법
US11024160B2 (en) * 2016-11-07 2021-06-01 Nio Usa, Inc. Feedback performance control and tracking
JP2018116516A (ja) * 2017-01-19 2018-07-26 トヨタ自動車株式会社 車両の注意喚起装置
US10902728B2 (en) * 2017-04-26 2021-01-26 Ford Global Technologies, Llc Blind spot object detection
JP6744269B2 (ja) * 2017-09-06 2020-08-19 本田技研工業株式会社 運転支援装置および運転支援方法
JP2019089394A (ja) * 2017-11-13 2019-06-13 矢崎総業株式会社 自動運転時情報伝達方法および車両用情報提示装置
KR102441078B1 (ko) * 2017-11-21 2022-09-06 현대자동차주식회사 차량의 주행지원 제어장치 그 방법
US10509410B2 (en) 2017-12-06 2019-12-17 Zoox, Inc. External control of an autonomous vehicle
WO2019131121A1 (ja) * 2017-12-26 2019-07-04 ソニー株式会社 信号処理装置および方法、並びにプログラム
DE102018200820A1 (de) * 2018-01-18 2019-07-18 Volkswagen Aktiengesellschaft Steuerungssystem für ein Kraftfahrzeug, Verfahren zum Betreiben des Steuerungssystems sowie Kraftfahrzeug mit einem derartigen Steuerungssystem
US11017665B1 (en) * 2018-02-25 2021-05-25 Matthew Roy Vehicle-to-vehicle payment system for traffic prioritization in self-driving vehicles
JP7077083B2 (ja) * 2018-03-15 2022-05-30 本田技研工業株式会社 表示システム、表示方法、およびプログラム
US11059421B2 (en) 2018-03-29 2021-07-13 Honda Motor Co., Ltd. Vehicle proximity system using heads-up display augmented reality graphics elements
KR20190134862A (ko) * 2018-04-27 2019-12-05 삼성전자주식회사 전자 장치 및 그 동작 방법
EP3575171A1 (en) * 2018-05-28 2019-12-04 Veoneer Sweden AB Vehicle collision avoidance method and system
KR102040919B1 (ko) * 2018-09-20 2019-11-06 만도헬라일렉트로닉스(주) 사각지대 감지 시스템
JP6859374B2 (ja) * 2019-01-11 2021-04-14 本田技研工業株式会社 予測装置、予測方法、およびプログラム
US11440471B2 (en) * 2019-03-21 2022-09-13 Baidu Usa Llc Automated warning system to detect a front vehicle slips backwards
KR20200130774A (ko) 2019-05-03 2020-11-20 삼성전자주식회사 차량의 주행을 보조하는 전자 장치 및 방법
US11634142B2 (en) * 2019-08-09 2023-04-25 Intel Corporation Blind spot detection
CN110775056B (zh) * 2019-11-25 2021-10-15 苏州智加科技有限公司 基于雷达探测的车辆行驶方法、装置、终端及介质
KR102368441B1 (ko) * 2020-05-28 2022-02-28 쌍용자동차 주식회사 사각지대경고장치를 결합한 사각지대 감시장치 및 방법
KR20220044045A (ko) * 2020-09-29 2022-04-06 현대모비스 주식회사 차량의 도로 진입 시스템 및 방법
EP4358062A1 (en) * 2022-10-19 2024-04-24 Continental Autonomous Mobility Germany GmbH Vehicle object detection system and method for detecting a target object in a detection area located behind a subject vehicle
CN117058885B (zh) * 2023-10-11 2023-12-08 广州扬名信息科技有限公司 一种车况信息反馈共享服务系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060018956A (ko) * 2004-08-26 2006-03-03 주식회사 현대오토넷 자동차의 후방 및 사각지대 물체 적응적 감지 장치 및 방법
KR20110036366A (ko) * 2009-10-01 2011-04-07 카인몰 주식회사 후방차량 접근 감지방법 및 그 방법을 이용한 경고장치
KR20130059702A (ko) * 2011-11-29 2013-06-07 현대자동차주식회사 장애물 감지영역 조절 장치 및 그 방법
JP2013242679A (ja) * 2012-05-21 2013-12-05 Panasonic Corp 障害物検知装置
KR20140073709A (ko) * 2012-12-06 2014-06-17 현대자동차주식회사 차량의 사각지대 감시 시스템 및 방법

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3061675B2 (ja) 1992-01-29 2000-07-10 マツダ株式会社 車両の障害物検出装置
US7852462B2 (en) * 2000-05-08 2010-12-14 Automotive Technologies International, Inc. Vehicular component control methods based on blind spot monitoring
JP2003081035A (ja) * 2001-09-11 2003-03-19 Denso Corp 障害物検知装置
US7038577B2 (en) * 2002-05-03 2006-05-02 Donnelly Corporation Object detection system for vehicle
ES2258399B1 (es) * 2005-02-04 2007-11-16 Fico Mirrors, S.A. Metodo y sistema para mejorar la supervision de un ambiente exterior de un vehiculo automovil.
US7859432B2 (en) * 2007-05-23 2010-12-28 Che Il Electric Wireing Devices Co., Ltd. Collision avoidance system based on detection of obstacles in blind spots of vehicle
EP2473871B1 (en) * 2009-09-01 2015-03-11 Magna Mirrors Of America, Inc. Imaging and display system for vehicle
JP5817270B2 (ja) * 2011-07-12 2015-11-18 日産自動車株式会社 車両制御装置
KR101478135B1 (ko) * 2013-12-02 2014-12-31 현대모비스(주) 프로젝션 유닛을 이용한 증강현실 차선변경 보조 시스템
US9522676B2 (en) * 2014-04-30 2016-12-20 Denso International America, Inc. Situation awareness assistant for vehicle control
JP6507862B2 (ja) * 2015-06-02 2019-05-08 トヨタ自動車株式会社 周辺監視装置及び運転支援装置
JP2017114155A (ja) * 2015-12-21 2017-06-29 三菱自動車工業株式会社 運転支援装置
US9947226B2 (en) * 2016-04-12 2018-04-17 Denso International America, Inc. Methods and systems for blind spot monitoring with dynamic detection range
EP3496969A4 (en) * 2016-08-10 2020-09-16 Xevo Inc. PROCEDURE AND SYSTEM FOR PROVIDING INFORMATION ON COLLECTED AND STORED METADATA WITH A DERIVED ATTENTION MODEL

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060018956A (ko) * 2004-08-26 2006-03-03 주식회사 현대오토넷 자동차의 후방 및 사각지대 물체 적응적 감지 장치 및 방법
KR20110036366A (ko) * 2009-10-01 2011-04-07 카인몰 주식회사 후방차량 접근 감지방법 및 그 방법을 이용한 경고장치
KR20130059702A (ko) * 2011-11-29 2013-06-07 현대자동차주식회사 장애물 감지영역 조절 장치 및 그 방법
JP2013242679A (ja) * 2012-05-21 2013-12-05 Panasonic Corp 障害物検知装置
KR20140073709A (ko) * 2012-12-06 2014-06-17 현대자동차주식회사 차량의 사각지대 감시 시스템 및 방법

Also Published As

Publication number Publication date
US20170305418A1 (en) 2017-10-26
US10611383B2 (en) 2020-04-07
KR20170120334A (ko) 2017-10-31
KR101838968B1 (ko) 2018-04-26

Similar Documents

Publication Publication Date Title
WO2017183797A1 (ko) 차량용 운전 보조 장치
WO2018088615A1 (ko) 차량 주행 제어 장치 및 방법
WO2017138702A1 (ko) 차량용 사용자 인터페이스 장치 및 차량
WO2017200162A1 (ko) 차량 운전 보조 장치 및 차량
WO2019117333A1 (ko) 차량에 구비된 디스플레이 장치 및 디스플레이 장치의 제어방법
WO2018079919A1 (ko) 자율 주행 차량 및 자율 주행 차량의 동작 방법
WO2018088647A1 (en) Vehicle control device mounted on vehicle and method for controlling the vehicle
WO2019098434A1 (ko) 차량에 구비된 차량 제어 장치 및 차량의 제어방법
WO2018230768A1 (ko) 차량에 구비된 차량 제어 장치 및 차량의 제어방법
WO2018056536A1 (ko) 계기판 디스플레이 및 그것을 포함하는 차량
WO2017222299A1 (en) Vehicle control device mounted on vehicle and method for controlling the vehicle
WO2017030240A1 (ko) 차량 보조 장치 및 차량
WO2017209313A1 (ko) 차량용 디스플레이 장치 및 차량
WO2019031851A1 (ko) 지도 제공 장치
WO2019221390A1 (ko) 차량에 구비된 차량 제어 장치 및 차량의 제어방법
WO2019035652A1 (en) DRIVING ASSISTANCE SYSTEM AND VEHICLE COMPRISING THE SAME
EP3475134A1 (en) Vehicle control device mounted on vehicle and method for controlling the vehicle
EP3515736A1 (en) Vehicle control device mounted on vehicle and method for controlling the vehicle
WO2018097465A1 (en) Vehicle control device mounted on vehicle and method for controlling the vehicle
WO2018088614A1 (ko) 차량용 사용자 인터페이스 장치 및 차량
WO2018110789A1 (en) Vehicle controlling technology
WO2018110762A1 (ko) 차량에 구비된 차량 제어 장치 및 차량의 제어방법
WO2018169162A1 (ko) 차량 제어 장치를 구비한 차량 및 차량의 제어방법
WO2018097423A1 (ko) 자율 주행 차량 및 자율 주행 차량의 동작 방법
WO2019066477A1 (en) AUTONOMOUS VEHICLE AND ITS CONTROL METHOD

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16899565

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16899565

Country of ref document: EP

Kind code of ref document: A1