WO2017183698A1 - 回転電機の制御装置 - Google Patents

回転電機の制御装置 Download PDF

Info

Publication number
WO2017183698A1
WO2017183698A1 PCT/JP2017/015935 JP2017015935W WO2017183698A1 WO 2017183698 A1 WO2017183698 A1 WO 2017183698A1 JP 2017015935 W JP2017015935 W JP 2017015935W WO 2017183698 A1 WO2017183698 A1 WO 2017183698A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
rotating electrical
electrical machine
output
battery
Prior art date
Application number
PCT/JP2017/015935
Other languages
English (en)
French (fr)
Inventor
信介 川津
加藤 章
崇 千田
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to US16/095,395 priority Critical patent/US11135922B2/en
Priority to DE112017002116.2T priority patent/DE112017002116T5/de
Priority to CN201780024777.3A priority patent/CN109075731B/zh
Publication of WO2017183698A1 publication Critical patent/WO2017183698A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/51Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/12Dynamic electric regenerative braking for vehicles propelled by dc motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/18Controlling the braking effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/60Controlling or determining the temperature of the motor or of the drive
    • H02P29/68Controlling or determining the temperature of the motor or of the drive based on the temperature of a drive component or a semiconductor component
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/04Control effected upon non-electric prime mover and dependent upon electric output value of the generator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present disclosure relates to a control device that controls a rotating electrical machine.
  • a constant field winding of the rotor The energization period per period is changed.
  • the ratio of the energization period to the field winding is called a duty value, and this duty value is variably set according to the amount of power generation required for the rotating electrical machine.
  • control device described in Patent Document 1 that changes the duty value of the field winding.
  • switching between short-time rated operation with a large duty value for the field winding and continuous rated operation with a small duty value is possible.
  • a temperature detector is provided in the vicinity of the power transistor that controls energization of the field winding. If the temperature detected by the temperature detection unit indicates an overheated state, the short-time rated operation is prohibited.
  • An object of the present invention is to provide a control device for a rotating electrical machine.
  • This disclosure employs the following means in order to solve the above problems.
  • the first means is applied to a system including a rotating electrical machine, a battery connected to the rotating electrical machine by wiring, and an upper limit setting unit that sets an output upper limit value that is an upper limit of an output command of the rotating electrical machine.
  • An allowable value calculation unit that calculates an output allowable value that is an upper limit that allows the command, and a transmission unit that transmits the output allowable value calculated by the allowable value calculation unit to the upper limit value setting unit.
  • the rotating electrical machine and the battery are connected by wiring, and the output upper limit value that is the upper limit of the output command of the rotating electrical machine is set by the upper limit value setting unit.
  • the allowable value calculation unit calculates an output allowable value that is an upper limit for allowing the output command of the rotating electrical machine based on the temperature acquired by the temperature acquisition unit. For this reason, the allowable output value of the rotating electrical machine can be calculated in consideration of at least one temperature of the battery and the wiring.
  • the output allowable value of the rotating electrical machine it is possible to employ generated power, driving power, generated current, driving current, driving torque, braking torque, and the like of the rotating electrical machine.
  • the upper limit value setting unit can set the output upper limit value of the rotating electrical machine using an output allowable value considering at least one temperature of the battery and the wiring. Therefore, it is possible to set the output upper limit value so as to improve the output of the rotating electrical machine while suppressing an excessive increase in the temperature of the battery or the wiring. As a result, it is possible to improve the substantial output of the rotating electrical machine while suppressing an excessive increase in battery and wiring capabilities.
  • the permissible value calculation unit calculates the permissible output value of the rotating electrical machine based further on the duration of power input / output between the rotating electrical machine and the battery.
  • the output allowable value of the rotating electrical machine is calculated based on the duration of power input / output between the rotating electrical machine and the battery. For this reason, the output allowable value of a rotary electric machine can be calculated more appropriately.
  • the temperature acquisition unit calculates the temperature of the wiring based on the current acquisition unit that acquires the current flowing in the wiring, the current acquired by the current acquisition unit, and the resistance of the wiring.
  • a temperature estimation unit for estimation is
  • the current flowing through the wiring is acquired by the current acquisition unit, and the temperature of the wiring is estimated based on the acquired current and the resistance of the wiring. For this reason, the temperature sensor which detects the temperature of wiring can be omitted.
  • the temperature estimation unit includes a voltage drop acquisition unit that acquires a voltage drop in the wiring, and the current acquired by the current acquisition unit and the voltage acquired by the voltage drop acquisition unit. Based on the drop, the resistance of the wiring is calculated.
  • the resistance of the wiring is calculated based on the current flowing in the acquired wiring and the voltage drop in the acquired wiring. For this reason, the resistance of the wiring can be accurately calculated, and the temperature of the wiring can be accurately estimated. As a result, the allowable output value of the rotating electrical machine can be calculated appropriately, and the output upper limit value of the rotating electrical machine can be appropriately set using the allowable output value.
  • the allowable value calculation unit predicts the future value of the temperature acquired by the temperature acquisition unit, and corrects the output allowable value based on the future value.
  • the future value of the temperature acquired by the temperature acquisition unit is predicted by the allowable value calculation unit. Since the allowable output value is corrected based on the future temperature value, the allowable output value can be calculated more appropriately in consideration of the future temperature value.
  • the allowable value calculation unit corrects the parameter for predicting the future value based on the predicted future value and the temperature acquired by the temperature acquisition unit.
  • the parameter for predicting the future value of temperature is not appropriate, the prediction accuracy of the future value may be reduced.
  • the parameter for predicting the future value is corrected based on the predicted future value and the temperature acquired by the temperature acquisition unit. For this reason, when the predicted future value is different from the actual temperature, the parameter for predicting the future value can be corrected to improve the prediction accuracy of the future value.
  • the allowable value calculation unit calculates the output allowable value so that the predicted future value is lower than the target temperature.
  • the output allowable value is calculated so that the predicted future value of the temperature is lower than the target temperature. For this reason, when it is desired to keep the target temperature lower than the target temperature, the output allowable value can be calculated so as to realize it.
  • the allowable value calculation unit includes a deterioration state acquisition unit that acquires a deterioration state of a target from which the temperature is acquired, and the output is based on the deterioration state acquired by the deterioration state acquisition unit. Correct the tolerance.
  • the output allowable value can be appropriately corrected in consideration of the deterioration state of the target whose temperature is to be acquired.
  • the temperature acquisition unit acquires the temperature of the battery
  • the allowable value calculation unit outputs the output when the temperature of the battery acquired by the temperature acquisition unit is lower than a predetermined temperature.
  • the allowable value is calculated to be larger than the predetermined allowable value.
  • the battery performance may not be fully exhibited.
  • the output allowable value is calculated to be larger than the predetermined allowable value. For this reason, the electric power input / output by the rotating electrical machine and the battery can be increased, and the temperature rise of the battery can be promoted. Therefore, the battery performance can be secured early.
  • the allowable value calculation unit calculates the efficiency of inputting / outputting electric power between the rotating electric machine and the battery after a predetermined time, and corrects the output allowable value so that the efficiency becomes maximum.
  • the efficiency of inputting / outputting electric power between the rotating electrical machine and the battery varies depending on the state of the rotating electrical machine and the battery.
  • energy can be used more effectively by maximizing the efficiency after a predetermined time than by temporarily maximizing the output.
  • the efficiency of inputting / outputting electric power between the rotating electrical machine and the battery after a predetermined time is calculated, and the allowable output value is corrected so that this efficiency is maximized. For this reason, not only can the substantial output of the rotating electrical machine be improved, but also energy can be used effectively.
  • FIG. 1 is a schematic diagram showing an in-vehicle system.
  • FIG. 2 is a flowchart for explaining the processing procedure of the regeneration control.
  • FIG. 3 is a flowchart showing a procedure for calculating the battery input allowable value.
  • FIG. 4 is a map showing the relationship between the charging duration, the battery temperature, and the input allowable power
  • FIG. 5 is a map showing the relationship between the power generation duration, the rotating electrical machine temperature, and the output allowable power
  • FIG. 6 is a flowchart showing a processing procedure for harness temperature estimation, FIG.
  • FIG. 7 is a flowchart showing a procedure for calculating the power generation command upper limit value of the first embodiment.
  • FIG. 8 is a flowchart showing a procedure for calculating the power generation command upper limit value of the second embodiment and the third embodiment.
  • FIG. 9 is a flowchart showing a procedure for calculating the power generation command upper limit value of the fourth embodiment.
  • FIG. 10 is a map showing the relationship between the temperature rise, energization time, and output allowable power
  • FIG. 11 is a flowchart showing a procedure for calculating the power generation command upper limit value of the fifth embodiment.
  • FIG. 12 is a map showing the relationship between vehicle speed, gradient, and regeneration duration
  • FIG. 13 is a schematic diagram showing a modification example of the in-vehicle system.
  • FIG. 14 is a schematic diagram illustrating another modification of the in-vehicle system.
  • the in-vehicle system 100 (corresponding to a system), when the rotating electrical machine 12 functions as an alternator (generator), the AC output current is rectified by an inverter 14 to supply power to the battery 10. Do. On the other hand, when the rotating electrical machine 12 is caused to function as a motor (electric motor), the electric power supplied from the battery 10 is converted into an alternating current by the inverter 14.
  • the battery 10 (corresponding to a battery) is, for example, a lead battery having a voltage between terminals of about 12V.
  • the inverter 14 includes a U-phase module 20u, a V-phase module 20v, and a W-phase module 20w.
  • Each phase module 20u, 20v, 20w of the inverter 14 is connected to a U-phase winding 31u, a V-phase winding 31v, and a W-phase winding 31w wound around the stator 30 of the rotating electrical machine 12, respectively.
  • a U-phase upper arm switching element 21u and a U-phase lower arm switching element 22u which are MOSFETs, are mounted on the U-phase module 20u.
  • the source of the U-phase upper arm switching element 21u and the drain of the U-phase lower arm switching element 22u are connected, and the first end of the U-phase winding 31u is connected to the connection point.
  • the second end of the U-phase winding 31 u is connected to the neutral point 32.
  • the drain of the U-phase upper arm switching element 21u is connected to the positive electrode of the battery 10, and the source of the U-phase lower arm switching element 22u is grounded.
  • a U-phase upper arm diode 23u and a U-phase lower arm diode 24u are connected in parallel in the opposite direction to the U-phase upper arm switching element 21u and the U-phase lower arm switching element 22u, respectively.
  • the U-phase upper arm switching element 21u and the U-phase lower arm switching element 22u are controlled to be opened and closed by a U-phase drive circuit 25u.
  • a U-phase upper arm temperature sensing diode 26u and a U-phase lower arm temperature sensing diode 27u are mounted on the U-phase module 20u.
  • the U-phase upper arm temperature sensing diode 26u is mounted in the vicinity of the U-phase upper arm switching element 21u, and can detect a temperature change caused by heat generation of the U-phase upper arm switching element 21u.
  • the U-phase lower arm temperature sensing diode 27u is mounted in the vicinity of the U-phase lower arm switching element 22u, and can detect a temperature change caused by heat generation of the U-phase lower arm switching element 22u.
  • the output values of the U-phase upper arm temperature sensing diode 26u and the U-phase lower arm temperature sensing diode 27u are input to the U-phase drive circuit 25u.
  • the configurations of the V-phase module 20v and the W-phase module 20w are the same as those of the U-phase module 20u, and the connection state of the V-phase winding 31v and the W-phase winding 31w is the same as that of the U-phase winding 31u. The description is omitted.
  • the rotating electrical machine 12 and the battery 10 are connected by a harness 16 (corresponding to wiring).
  • the harness 16 is connected to a current sensor 51 (corresponding to a current acquisition unit) that detects a current I flowing through the harness 16 (the rotating electrical machine 12 and the battery 10).
  • the harness 16 is connected to a voltage sensor 52 that detects the voltage at the input / output terminal of the inverter 14 and a voltage sensor 53 that detects the voltage at the input / output terminal of the battery 10.
  • the voltage sensors 52 and 53 constitute a voltage drop acquisition unit that acquires the voltage drop ⁇ V in the harness 16.
  • a temperature sensor 54 that detects the temperature of the battery 10 is attached to the battery 10.
  • the U-phase module 20u is provided with a U-phase connection terminal 28u for communicating with the V-phase module 20v and the W-phase module 20w.
  • the V-phase module 20v and the W-phase module 20w are provided with a V-phase connection terminal 28v and a W-phase connection terminal 28w, respectively.
  • the U-phase drive circuit 25u, the V-phase drive circuit 25v, and the W-phase drive circuit 25w are communicably connected via a U-phase connection terminal 28u, a V-phase connection terminal 28v, and a W-phase connection terminal 28w, respectively.
  • the W-phase module 20w is provided with a regulator connection terminal 29w, and the W-phase drive circuit 25w is connected to the regulator 40 via the regulator connection terminal 29w.
  • the regulator 40 includes a field switching element 41, a diode 42, and a control unit 43.
  • the regulator 40 controls the energization state of the rotor field winding 50.
  • the field switching element 41 is, for example, a power MOSFET, the drain is connected to the positive electrode of the battery 10, and the source is connected to the cathode of the diode 42.
  • the anode of the diode 42 is grounded.
  • One end of the field winding 50 is connected to a connection point between the field switching element 41 and the diode 42, and the other end of the field winding 50 is grounded.
  • the open / close state of the field switching element 41 is controlled by a control unit 43 (corresponding to a rotating electrical machine control unit). Specifically, the control unit 43 changes the duty value indicating the ratio of the energization period in one control cycle (a constant period) of the field switching element 41.
  • the control unit 43 is connected to the regulator connection terminal 29w of the W-phase module 20w via the module connection terminal 44, and communicates with the W-phase drive circuit 25w.
  • the control unit 43 transmits drive commands for the switching elements 21u, 22u, 21v, 22v, 21w, and 22w to the W-phase drive circuit 25w.
  • the current value of the winding of each phase is input to the control unit 43, and each of the switching elements 21u, 22u, 21v, 22v, 21w, and 22w of each phase is either the upper arm or the lower arm. Whether to turn on.
  • the W-phase drive circuit 25w drives the W-phase upper arm switching element 21w and the W-phase lower arm switching element 22w based on the drive command.
  • the drive command is transmitted to the U-phase module 20u and the V-phase module 20v.
  • the drive circuits 25u, 25v, and 25w for each phase may execute the determination of which of the upper arm switching elements 21u, 21v, and 21w and the lower arm switching elements 22u, 22v, and 22w is turned on. Good.
  • the W-phase drive circuit 25w acquires the detection values of the temperature sensitive diodes 26u, 27u, 26v, 27v, 26w, and 27w and outputs them to the control unit 43.
  • the control unit 43 transmits and receives signals to and from the ECU 60 that is a higher-level control unit.
  • the ECU 60 is an engine ECU that controls the vehicle engine or a power management ECU that comprehensively controls the electric energy of the vehicle.
  • the ECU 60 determines whether or not there is a request to perform regenerative power generation based on the state of the vehicle and a request for charging the battery 10 (S11). If it is determined that there is no request to perform regenerative power generation (S11: NO), this series of processing is terminated once (END).
  • the ECU 60 calculates a power generation command value based on a braking torque request, a request for charging the battery 10, a state of an electric load, and the like ( S12).
  • control unit 43 acquires the input allowable value of the battery 10 (S13).
  • the process of S13 is executed by the control unit 43 according to the procedure shown in the flowchart of FIG.
  • the temperature of the battery 10 is detected by the temperature sensor 54 (corresponding to a temperature acquisition unit) (S131). Based on the detected temperature of the battery 10, a battery input allowable value that is an upper limit allowed as an input of the battery 10 is calculated (S132). Specifically, the input allowable power of the battery 10 (basic value of the input allowable power) as the battery input allowable value is applied to the map shown in FIG. 4 by applying the charging duration time of the battery 10 by the regenerative control and the temperature of the battery 10. Is calculated. In the map of FIG. 4, the input allowable power decreases as the charging duration time increases, and the input allowable power decreases as the temperature of the battery 10 increases.
  • the allowable battery input value is corrected based on the temperature prediction of the battery 10 (S133). Specifically, a future value of the temperature of the battery 10 is predicted by applying the current temperature of the battery 10, the ambient temperature around the battery 10, the charging current to the battery 10 and the like to a map or a calculation formula. Then, based on the future value, the battery input allowable value is corrected. For example, the battery input allowable value is corrected to a smaller value as the predicted future value is higher.
  • parameters for predicting the future value are corrected based on the predicted future value and the temperature detected by the temperature sensor 54. Specifically, when the predicted future value and the actual temperature detected after that have deviated, the parameters are corrected so as to suppress the deviation.
  • the battery 10 determines whether or not the battery 10 has deteriorated (S134). Specifically, it is determined whether or not the battery 10 is deteriorated by a known deterioration determination method based on the internal resistance of the battery 10 (S134). If it is determined that the battery 10 is deteriorated (S134: YES), the battery input allowable value is corrected based on the deterioration state (S135). For example, when the output of the rotating electrical machine 12 is improved when the battery 10 is deteriorating, the deterioration may further progress. Therefore, the battery input allowable value is corrected to a smaller value as the deterioration of the battery 10 progresses.
  • the temperature of the battery 10 is lower than a predetermined temperature (S136). For example, when the temperature of the battery 10 is lower than a predetermined temperature (0 ° C. or the like), there is a possibility that the performance of the battery 10 cannot be exhibited sufficiently. Therefore, when the temperature of the battery 10 detected by the temperature sensor 54 is lower than a predetermined temperature, an output allowable value that is an upper limit allowed as the output of the battery 10 is calculated to be larger than the predetermined allowable value.
  • the predetermined allowable value may be a value calculated based on a map that defines the relationship between the temperature of the battery 10 and the correction value, or may be a fixed value set in advance to increase the temperature of the battery 10 early. Good. Thereafter, this series of processing is temporarily terminated (END). Note that the process of S131 corresponds to a process as a temperature acquisition unit, and the process of S134 corresponds to a process as a deterioration state acquisition unit.
  • the control unit 43 acquires an output allowable value that is an upper limit allowed as an output of the rotating electrical machine 12 (S14).
  • the allowable output power as the allowable output value of the rotating electrical machine 12 is calculated by applying the power generation duration of the rotating electrical machine 12 by the regeneration control and the temperature of the rotating electrical machine 12 to the map shown in FIG. In the map of FIG. 5, the allowable output power decreases as the power generation duration time increases, and the allowable output power decreases as the temperature of the rotating electrical machine 12 increases.
  • detection values of the temperature sensitive diodes 26u, 27u, 26v, 27v, 26w, and 27w may be used, or the temperature of the stator 30 and the like may be detected by a temperature sensor.
  • an energization allowable value that is an upper limit allowed as an input of the harness 16 is acquired (S15).
  • the energization allowable power as the allowable energization value of the harness 16 is calculated by applying the energization continuation time of the harness 16 by the regeneration control and the temperature of the harness 16 to the same map as in FIGS.
  • the energization allowable power may be calculated in consideration of the capacity of the fuse.
  • the current I flowing through the harness 16 is acquired (S151). Specifically, the current I flowing through the harness 16 is detected by the current sensor 51.
  • the heat generation amount Q [J] of the harness 16 is calculated (S152).
  • the voltage drop ⁇ V is the difference between the voltage at the input / output terminal of the inverter 14 detected by the voltage sensor 52 and the voltage at the input / output terminal of the battery 10 detected by the voltage sensor 53.
  • the current temperature of the harness 16 is estimated based on the initial temperature of the harness 16, the amount of heat generated Q, and the ambient temperature (S153).
  • the initial temperature of the harness 16 the ambient temperature around the harness 16 is used.
  • the current temperature of the harness 16 is estimated by a known temperature estimation method based on the heat conduction equation. It should be noted that the accuracy of estimating the temperature of the harness 16 is improved by taking into account the influence of the wind of the vehicle and the fan. Thereafter, this series of processing is temporarily terminated (END).
  • the processing of S13 to S15 corresponds to processing as an allowable value calculation unit
  • the processing of S151 to S153 corresponds to processing as a temperature estimation unit (temperature acquisition unit).
  • the temperature of the harness 16 can be detected by a temperature sensor.
  • the ECU 60 calculates a power generation command upper limit value that is an upper limit of the power generation command based on the allowable values of the battery 10, the rotating electrical machine 12, and the harness 16 (S16).
  • the permissible values of the battery 10, the rotating electrical machine 12, and the harness 16 are transmitted to the ECU 60 by the control unit 43.
  • This transmission process corresponds to a process as a transmission unit.
  • the process of S16 is executed by the ECU 60 in the procedure shown in the flowchart of FIG.
  • the power generation allowable power [W] is calculated based on the output allowable value [W] of the rotating electrical machine 12, the input allowable value [W] of the battery 10 and the energization allowable value [W] of the harness 16 (S161). Specifically, the minimum value among the allowable output value [W] of the rotating electrical machine 12, the allowable input value [W] of the battery 10, and the allowable energization value [W] of the harness 16 is set as the allowable power generation [W] (output upper limit value). Equivalent).
  • the output upper limit value is set based on an output allowable value (input allowable value) that is an upper limit accepted as a command receiving side, and in this embodiment, an allowable value ( The lowest allowable value (equivalent to the output allowable value) is set as the output upper limit value.
  • a power generation torque upper limit value as a power generation command upper limit value is calculated based on the calculated power generation allowable power [W] (S162).
  • the rotation speed [rad / s] is the rotation speed of the rotating electrical machine 12.
  • the power generation efficiency [%] is the efficiency with which the rotating electrical machine 12 converts kinetic energy into electric energy when performing regenerative power generation.
  • the map etc. which convert not only the said formula but power generation allowable power [W] into power generation torque upper limit [Nm] may be used. Thereafter, this series of processing is temporarily ended (END).
  • the process of S16 corresponds to the process as the upper limit setting unit.
  • the ECU 60 limits the power generation command value with the power generation command upper limit value (S17). Specifically, the minimum value among the power generation command value and the power generation command upper limit value is set as a new power generation command value. Subsequently, the ECU 60 causes the rotating electrical machine 12 to perform regenerative power generation based on the set power generation command value (S18). Specifically, the duty value for controlling the energization state of the field winding 50 is changed by the control unit 43 so that the rotating electrical machine 12 generates power with the power generation command value.
  • the power generation command value is not limited to the power generation torque, and a power generation voltage, a power generation current, a field current, a field duty, or the like can be used. Thereafter, this series of processing is temporarily terminated (END).
  • the temperatures of the rotating electrical machine 12, the battery 10, and the harness 16 are acquired. Then, based on the acquired temperature, the output allowable value of the rotating electrical machine 12 is calculated for each target whose temperature is to be acquired. For this reason, the output allowable value of the rotating electrical machine 12 can be calculated in consideration of the temperatures of the rotating electrical machine 12, the battery 10, and the harness 16.
  • the output allowable value for each target calculated by the control unit 43 is transmitted to the ECU 60. Therefore, the ECU 60 can set the output upper limit value (power generation allowable power) of the rotating electrical machine 12 using the output allowable values of the rotating electrical machine 12, the battery 10, and the harness 16. Therefore, the output upper limit value can be set so as to improve the output of the rotating electrical machine 12 while suppressing the temperature of the rotating electrical machine 12, the battery 10, and the harness 16 from excessively rising.
  • the ECU 60 can set the output upper limit value (power generation allowable power) of the rotating electrical machine 12 using the output allowable values of the rotating electrical machine 12, the battery 10, and the harness 16. Therefore, the output upper limit value can be set so as to improve the output of the rotating electrical machine 12 while suppressing the temperature of the rotating electrical machine 12, the battery 10, and the harness 16 from excessively rising.
  • the output upper limit value of the rotating electrical machine 12 can be optimally set for the entire in-vehicle system 100 in consideration of the output allowable values of the rotating electrical machine 12, the battery 10, and the harness 16. As a result, it is possible to improve the substantial output of the rotating electrical machine 12 while suppressing an excessive increase in the capabilities of the rotating electrical machine 12, the battery 10, and the harness 16.
  • the output allowable value of the rotating electrical machine 12 is calculated based on the duration of power input / output between the rotating electrical machine 12 and the battery 10. For this reason, the output allowable value of the rotary electric machine 12 can be calculated more appropriately.
  • the current flowing through the harness 16 is acquired by the current sensor 51, and the temperature of the harness 16 is estimated based on the acquired current and the resistance of the harness 16. For this reason, the temperature sensor which detects the temperature of the harness 16 can be omitted.
  • the resistance of the harness 16 is calculated based on the current flowing through the acquired harness 16 and the acquired voltage drop in the harness 16. For this reason, the resistance of the harness 16 can be accurately calculated, and the temperature of the harness 16 can be accurately estimated. As a result, the output allowable value of the rotary electric machine 12 can be calculated appropriately, and the output upper limit value of the rotary electric machine 12 can be set appropriately using this output allowable value.
  • the future value of the temperature of the battery 10 is predicted by applying the current temperature of the battery 10, the ambient temperature around the battery 10, the charging current to the battery 10, and the like to a map or a calculation formula. Since the allowable output value is corrected based on the future temperature value, the allowable output value can be calculated more appropriately in consideration of the future temperature value.
  • the parameter for predicting the future value is corrected based on the predicted future value and the temperature acquired by the temperature sensor 54. For this reason, when the predicted future value is different from the actual temperature, the parameter for predicting the future value can be corrected to improve the prediction accuracy of the future value.
  • the deterioration state of the object for example, battery 10) from which the temperature is acquired is acquired. Then, the allowable output value can be appropriately corrected in consideration of the deterioration state of the object whose temperature is to be acquired.
  • the output allowable value is calculated to be larger than the predetermined allowable value. For this reason, the electric power input / output by the rotary electric machine 12 and the battery 10 can be increased, and the temperature rise of the battery 10 can be promoted. Therefore, the performance of the battery 10 can be secured early.
  • the lowest output allowable value among the output allowable values for each target is set as the output upper limit value. For this reason, it can suppress that temperature rises excessively in all the object.
  • the control unit 43 may calculate the allowable input value of the battery 10 so that the predicted future value of the temperature of the battery 10 is lower than the target temperature. According to such a configuration, when it is desired to keep the temperature of the battery 10 lower than the target temperature, the input allowable value can be calculated so as to realize it. In addition to the battery 10, the target allowable value may be calculated so that the predicted future temperature of the target temperature is lower than the target temperature.
  • the efficiency of inputting / outputting electric power between the rotating electrical machine 12 and the battery 10 varies depending on the state of the rotating electrical machine 12 and the battery 10.
  • the control unit 43 may calculate the efficiency of inputting / outputting electric power between the rotating electrical machine 12 and the battery 10 after a predetermined time, and correct the allowable value so that the efficiency becomes maximum.
  • the temperature rise of the battery 10 when the regenerative power generation continues for a predetermined time is predicted, and the allowable value is corrected so that the power conversion efficiency of the battery 10 becomes maximum after the predetermined time.
  • the allowable value can be corrected so that the output of the battery 10 becomes maximum after a predetermined time.
  • the process of correcting the parameter for predicting the future value based on the predicted future value and the temperature detected by the temperature sensor 54 can be omitted. Further, the process of S133 can be omitted.
  • the ECU 60 may set the output allowable value of the target whose acquired temperature is closest to the temperature upper limit value for each target as the output upper limit value. According to such a configuration, even if the temperature is the closest target to the upper limit value, it is possible to suppress the temperature from rising excessively.
  • the allowable output value of each object can be calculated based on the temperature of each object without considering the charging continuation time and the power generation continuation time.
  • the temperatures of the rotating electrical machine 12, the battery 10, and the harness 16 are acquired, and the output allowable value of the rotating electrical machine 12 is calculated for each target based on these temperatures.
  • at least one temperature of the battery 10 and the harness 16 may be acquired, and the output allowable value of the rotating electrical machine 12 may be calculated based on the temperature.
  • at least two temperatures of the rotating electrical machine 12, the battery 10, and the harness 16 may be acquired, and an output allowable value of the rotating electrical machine 12 may be calculated based on the temperatures.
  • a preset fixed value can also be used as the resistance R of the harness 16.
  • the battery 10 not only a lead battery but a Li ion battery etc. can also be employ
  • the drive command upper limit value in the drive control of the rotating electrical machine 12 can also be calculated.
  • power generation may be replaced with driving, and input / output between the rotating electrical machine 12 and the battery 10 may be reversed, and processing according to the above embodiment may be executed.
  • a generator, an electric motor, an ISG (Integrated Starter Generator), an MG (Motor Generator), or the like can be used as the rotating electrical machine 12.
  • the power generation allowable power [W] is calculated based on the output allowable value [W] of the rotating electrical machine 12, the input allowable value [W] of the battery 10 and the energization allowable value [W] of the harness 16 (S161A).
  • each tolerance value is weighted by multiplying each tolerance value by a coefficient ⁇ , ⁇ , ⁇ .
  • the control unit 43 predicts future values of the temperatures of the rotating electrical machine 12, the battery 10, and the harness 16, respectively. This process corresponds to a process as a temperature prediction unit. Then, the ECU 60 calculates an integrated value for inputting / outputting electric power continuously for a predetermined time between the rotating electrical machine 12 and the battery 10 based on the allowable output value for each target and the future value of the temperature for each target, and the integrated value
  • the coefficients ⁇ , ⁇ , and ⁇ are set so that becomes the maximum. For example, the coefficient of the target whose decrease in the allowable value due to the temperature rise is large is set smaller than the coefficient of the target whose decrease in the allowable value due to the temperature increase is small.
  • the minimum value among the allowable values thus weighted is defined as the allowable power generation [W] (corresponding to the output upper limit value).
  • a power generation torque upper limit value as a power generation command upper limit value is calculated based on the calculated power generation allowable power [W] (S162A).
  • the process of S162A is the same as the process of S162. Thereafter, this series of processing is temporarily ended (END). Note that the processing in S161A corresponds to processing as an upper limit setting unit.
  • the future value of the temperature for each target is predicted for each target. Based on the output allowable value for each target and the future value of the temperature for each target, an integrated value for inputting and outputting power continuously for a predetermined time is calculated between the rotating electrical machine 12 and the battery 10, and this integrated value is the maximum.
  • the output allowable value is set so that For this reason, when electric power is continuously input / output between the rotating electrical machine 12 and the battery 10 for a predetermined time, the energy can be utilized to the maximum extent.
  • the ECU 60 has the highest efficiency in inputting and outputting electric power between the rotating electrical machine 12 and the battery 10 after a predetermined time based on the output allowable value for each target and the future value of the temperature for each target.
  • the coefficients ⁇ , ⁇ , and ⁇ are set in. For example, the coefficient of the target whose efficiency decrease due to temperature rise is large is set smaller than the coefficient of the target whose efficiency decrease due to temperature increase is small.
  • a decrease in the allowable value due to a temperature rise corresponds to a decrease in efficiency.
  • the minimum value among the allowable values thus weighted is defined as the allowable power generation [W] (corresponding to the output upper limit value).
  • the future value of the temperature for each target is predicted for each target. Then, based on the allowable output value for each target and the future value of the temperature for each target, the efficiency of inputting / outputting power between the rotating electrical machine 12 and the battery 10 after a predetermined time is calculated, and this efficiency is maximized. Is set to the output allowable value. For this reason, not only the substantial output of the rotating electrical machine 12 can be improved, but also energy can be used effectively.
  • the control unit 43 acquires the current temperature of the rotating electrical machine 12 (S141).
  • the current temperature is subtracted from the allowable temperature (corresponding to the target temperature) of the rotating electrical machine 12 to calculate a temperature rise limit value (S142).
  • the allowable output power [W] of the rotating electrical machine 12 is calculated (S143).
  • the output allowable power as the output allowable value of the rotating electrical machine 12 is calculated so that the temperature rise does not exceed the temperature rise limit value.
  • the energization time uses an estimated value based on the vehicle speed or the driver's operation. In the map of FIG. 10, the temperature increase increases as the output allowable power increases, and the temperature increase increases as the energization time increases.
  • the allowable value [W] is similarly calculated for the battery 10 and the harness 16 (S160).
  • the processing of S161 and S162 is the same as that in FIG. Note that the processing of S141 to S160 corresponds to processing as an allowable value calculation unit.
  • the output upper limit value is set so that the future value is lower than the allowable temperature for each target. For this reason, when it is desired to keep the temperature for each target lower than the allowable temperature for each target, the output allowable value can be calculated so as to realize it.
  • vehicle travel information is acquired (S161B).
  • the travel information the vehicle speed and the gradient of the travel path are acquired.
  • a gradient can be acquired based on a detection value by a gradient sensor, information from a car navigation system, or the like.
  • the regeneration duration is calculated based on the vehicle speed and the gradient (S162B). Specifically, the regeneration speed is calculated by applying the vehicle speed and the gradient to the map shown in FIG. In the map of FIG. 12, the regeneration duration is longer as the vehicle speed is higher, and the regeneration duration is longer as the gradient is steeper.
  • the power generation command upper limit value is calculated giving priority to the output efficiency of the rotating electrical machine 12 (S164B).
  • the coefficients ⁇ , ⁇ , and ⁇ are set so that the efficiency of inputting and outputting power between the rotating electrical machine 12 and the battery 10 after a predetermined time is maximized.
  • the power generation command upper limit value is calculated by giving priority to the output magnitude of the rotating electrical machine 12 (S165B).
  • the coefficients ⁇ , ⁇ , and ⁇ are set so that the integrated value for continuously inputting and outputting power between the rotating electrical machine 12 and the battery 10 is maximized.
  • a power generation torque upper limit value as a power generation command upper limit value is calculated.
  • the processing from S161B to S165B corresponds to the processing as the upper limit setting unit.
  • the duration time during which power input / output is continued between the rotating electrical machine 12 and the battery 10 is short, the temperature rise of each part is small, so it is effective to increase the output of the rotating electrical machine 12.
  • the duration time during which power input / output is continued between the rotating electrical machine 12 and the battery 10 is long, it is effective to continue the output of the rotating electrical machine 12 for a long time while the output efficiency of the rotating electrical machine 12 is high.
  • the output upper limit value when the predicted duration time is shorter than the threshold value, the output upper limit value is set by giving priority to the output magnitude of the rotating electrical machine 12, and when the predicted duration time is longer than the threshold value.
  • the output upper limit value is set giving priority to the output efficiency of the rotating electrical machine 12. For this reason, the output upper limit value of the rotating electrical machine 12 can be appropriately set according to the length of the duration in which the electric power is continuously input and output between the rotating electrical machine 12 and the battery 10.
  • the in-vehicle system 100 includes a fan 17 that cools the rotating electrical machine 12, and the control unit 43 (ECU) may control driving of the fan 17 (cooling control by the cooling control unit). .
  • the ECU 60 (corresponding to a cooling input unit) inputs a cooling control state from the control unit 43. Then, the ECU 60 may set the output upper limit value further based on the input state of the cooling control. According to such a configuration, the output upper limit value can be appropriately set in consideration of the state of cooling control, and as a result, the substantial output of the rotating electrical machine 12 can be further improved.
  • the cooling control is not limited to the rotating electrical machine 12 and may be executed for the battery 10 and the harness 16.
  • the cooling water temperature or the like may be considered as the state of cooling control.
  • the ECU 60 may transmit a command to increase the output of the cooling control to the control unit 43 when setting an output upper limit value that exceeds the output allowable value for each target. According to such a structure, when there exists a possibility that the temperature of each part may rise excessively, the output of cooling control can be raised and temperature rise can be suppressed.
  • the in-vehicle system 100 includes the brake system 18, and the ECU 60 (corresponding to a brake input unit) may input a braking request from the brake system 18.
  • the braking request is a request for generating a braking torque by the rotating electrical machine 12.
  • the ECU 60 may forcibly set the braking output upper limit value to the output upper limit value when a braking request is input. According to such a configuration, when it is necessary to generate braking torque by the rotating electrical machine 12 for vehicle safety, the output upper limit value of the rotating electrical machine 12 can be set with the highest priority.
  • the ECU 60 calculates the short-term output upper limit value and the long-term output upper limit value as the output upper limit value, and forcibly sets the short-term output upper limit value to the output upper limit value when a braking request is input. May be.
  • the short-term output upper limit value can be set larger than the long-term output upper limit value.
  • the period for inputting the braking request from the brake system 18 is a relatively short period until the vehicle is decelerated. Therefore, when a braking request is input, the short-term output upper limit value is forcibly set to the output upper limit value of the rotating electrical machine 12. For this reason, when it is necessary to generate braking torque by the rotating electrical machine 12 for vehicle safety, the output upper limit value of the rotating electrical machine 12 can be set with the highest priority.
  • the allowable value calculation unit and the transmission unit are provided in the control unit 43 that controls the rotating electrical machine 12, but are provided in the battery ECU 46 (corresponding to the battery control unit) that controls the battery 10. May be.
  • the battery ECU 46 can realize the functions of the allowable value calculation unit and the transmission unit described above.
  • an allowable value calculation unit, a transmission unit, and an upper limit value setting unit may be provided in the control unit 43 or the battery ECU.
  • the control part 43 or battery ECU should just receive required information from ECU60, and can improve the control responsiveness about the process which does not require communication.
  • the control unit 43 may perform relay.
  • the battery ECU 46 may relay.
  • the efficiency of inputting / outputting the electric power that changes depending on the state of the rotating electrical machine 12 or the battery 10 is not limited to the one that maximizes the efficiency after a predetermined time, and when the regenerative power generation by the rotating electrical machine 12 continues, The kinetic energy can be used more effectively simply by increasing the efficiency after a predetermined time than the output of. Therefore, the control unit 43 may calculate the efficiency of inputting / outputting electric power between the rotating electrical machine 12 and the battery 10 after a predetermined time and correct the allowable value so that the efficiency is higher than the current time. According to such a configuration, not only the substantial output of the rotating electrical machine 12 can be improved, but also energy can be used effectively. In addition, the allowable value can be corrected so that the output of the battery 10 becomes higher than the current time after a predetermined time.
  • the output upper limit value may be set so that the input / output efficiency of the battery 10 is higher than the present value after a predetermined time.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Control Of Eletrric Generators (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

システム(100)は、回転電機(12)と、回転電機に配線(16)により接続された電池(10)と、回転電機の出力指令の上限である出力上限値を設定する上限値設定部(43、46、60)と、を備える。回転電機を制御する制御装置は、電池及び配線の少なくとも1つの温度を取得する温度取得部(43、46、51~53、54)と、温度取得部により取得された温度に基づいて、回転電機の出力指令を許容する上限である出力許容値を算出する許容値算出部(43、46)と、許容値算出部により算出された出力許容値を、上限値設定部へ送信する送信部(43、46)と、を備える。

Description

回転電機の制御装置 関連出願の相互参照
 本出願は、2016年4月21日に出願された日本出願番号2016-085380号に基づくもので、ここにその記載内容を援用する。
 本開示は、回転電機を制御する制御装置に関する。
 従来、多相巻線と界磁巻線とを備え、多相巻線から出力される交流出力電流を複数の整流素子もしくはスイッチング素子により整流する回転電機において、回転子の界磁巻線の一定期間あたりの通電期間を変化させることが行われている。この界磁巻線への通電期間の割合をDuty値と呼び、このDuty値は、回転電機に要求される発電量等に応じて可変に設定される。
 前記界磁巻線のDuty値を変更するものとして、特許文献1に記載の制御装置がある。特許文献1に記載の制御装置では、界磁巻線についてのDuty値が大きい短時間定格運転と、Duty値が小さい連続定格運転とで切り替え可能としている。加えて、界磁巻線への通電を制御するパワートランジスタの近傍に温度検出部を設けている。そして、温度検出部が検出した温度が過熱状態を示していれば、短時間定格運転を禁止している。
特開2013-219965号公報
 ところで、特許文献1に記載の制御装置では、パワートランジスタの近傍の温度が過熱状態を示す場合に、短時間定格運転を禁止している。しかしながら、回転電機を制御する際には、パワートランジスタや回転電機以外にも温度上昇が問題となる部分が生じる。この部分の体格を大きくする等、各部分の能力を上げて温度上昇を抑制すると、装置の小型化や低コスト化が難しくなる。一方、この部分の温度上昇を抑制するために回転電機の出力を制限すると、回転電機の出力を大きくする制御が実質的に制限されることとなる。
 本開示は、上記課題を解決するためになされたものであり、その主たる目的は、装置の各部分の能力を過剰に上げることを抑制しつつ、回転電機の実質的な出力を向上させることのできる回転電機の制御装置を提供することにある。
 本開示は、上記課題を解決するために、以下の手段を採用した。
 第1の手段は、回転電機と、前記回転電機に配線により接続された電池と、前記回転電機の出力指令の上限である出力上限値を設定する上限値設定部と、を備えるシステムに適用され、前記回転電機を制御する制御装置であって、前記電池及び前記配線の少なくとも1つの温度を取得する温度取得部と、前記温度取得部により取得された前記温度に基づいて、前記回転電機の出力指令を許容する上限である出力許容値を算出する許容値算出部と、前記許容値算出部により算出された前記出力許容値を、前記上限値設定部へ送信する送信部と、を備える。
 上記構成によれば、回転電機と電池とが配線により接続されており、上限値設定部により、回転電機の出力指令の上限である出力上限値が設定される。
 ここで、温度取得部により、電池及び配線の少なくとも1つの温度が取得される。そして、許容値算出部によって、温度取得部により取得された温度に基づいて、回転電機の出力指令を許容する上限である出力許容値が算出される。このため、電池及び配線の少なくとも1つの温度を考慮して、回転電機の出力許容値を算出することができる。なお、回転電機の出力許容値としては、回転電機の発電電力、駆動電力、発電電流、駆動電流、駆動トルク、制動トルク等を採用することができる。これらの出力許容値は、電池の入力許容値や出力許容値に相当し、配線の通電許容値に相当する。
 そして、送信部によって、許容値算出部により算出された出力許容値が、上限値設定部へ送信される。このため、上限値設定部は、電池及び配線の少なくとも1つの温度を考慮した出力許容値を用いて、回転電機の出力上限値を設定することができる。したがって、電池や配線の温度が過度に上昇することを抑制しつつ、回転電機の出力を向上させるように出力上限値を設定することができる。その結果、電池や配線の能力を過剰に上げることを抑制しつつ、回転電機の実質的な出力を向上させることができる。
 第2の手段では、前記許容値算出部は、前記回転電機と前記電池とにおける電力の入出力の継続時間にさらに基づいて、前記回転電機の出力許容値を算出する。
 回転電機と電池とにおける電力の入出力の継続時間が長いほど、電池や配線の温度が上昇する。この点、上記構成によれば、回転電機と電池とにおける電力の入出力の継続時間にさらに基づいて、回転電機の出力許容値が算出される。このため、回転電機の出力許容値をより適切に算出することができる。
 第3の手段では、前記温度取得部は、前記配線に流れる電流を取得する電流取得部と、前記電流取得部により取得された前記電流と前記配線の抵抗とに基づいて、前記配線の温度を推定する温度推定部と、を備える。
 上記構成によれば、配線に流れる電流が電流取得部により取得され、取得された電流と配線の抵抗とに基づいて配線の温度が推定される。このため、配線の温度を検出する温度センサを省略することができる。
 第4の手段では、前記温度推定部は、前記配線における電圧降下を取得する電圧降下取得部を備え、前記電流取得部により取得された前記電流と、前記電圧降下取得部により取得された前記電圧降下とに基づいて、前記配線の抵抗を算出する。
 上記構成によれば、取得された配線に流れる電流と、取得された配線における電圧降下とに基づいて、配線の抵抗が算出される。このため、配線の抵抗を正確に算出することができ、配線の温度を正確に推定することができる。ひいては、回転電機の出力許容値を適切に算出することができ、この出力許容値を用いて回転電機の出力上限値を適切に設定することができる。
 第5の手段では、前記許容値算出部は、前記温度取得部により取得された前記温度の将来値を予測し、前記将来値に基づいて前記出力許容値を補正する。
 上記構成によれば、許容値算出部によって、温度取得部により取得された温度の将来値が予測される。そして、温度の将来値に基づいて出力許容値が補正されるため、温度の将来値を考慮して出力許容値をより適切に算出することができる。
 第6の手段では、前記許容値算出部は、予測した前記将来値と、前記温度取得部により取得された前記温度とに基づいて、前記将来値を予測するパラメータを補正する。
 温度の将来値を予測するパラメータが適切でない場合は、将来値の予測精度が低下するおそれがある。この点、上記構成によれば、予測した将来値と、温度取得部により取得された温度とに基づいて、将来値を予測するパラメータが補正される。このため、予測した将来値と実際の温度とがずれている場合は、将来値を予測するパラメータを補正して、将来値の予測精度を向上させることができる。
 第7の手段では、前記許容値算出部は、予測した前記将来値が目標温度よりも低くなるように、前記出力許容値を算出する。
 上記構成によれば、予測した温度の将来値が目標温度よりも低くなるように、出力許容値が算出される。このため、対象の温度を目標温度よりも低く抑えたい場合に、それを実現するように出力許容値を算出することができる。
 第8の手段では、前記許容値算出部は、前記温度を取得する対象の劣化状態を取得する劣化状態取得部を備え、前記劣化状態取得部により取得された前記劣化状態に基づいて、前記出力許容値を補正する。
 温度を取得する対象の劣化が進行している場合に回転電機の出力を向上させると、劣化が更に進行するおそれがある。この点、上記構成によれば、温度を取得する対象の劣化状態を考慮して、出力許容値を適切に補正することができる。
 第9の手段では、前記温度取得部は、前記電池の温度を取得し、前記許容値算出部は、前記温度取得部により取得された前記電池の温度が所定温度よりも低い場合に、前記出力許容値を所定許容値よりも大きく算出する。
 電池の温度が所定温度よりも低い場合は、電池の性能を十分に発揮できないおそれがある。この点、上記構成によれば、電池の温度が所定温度よりも低い場合に、出力許容値が所定許容値よりも大きく算出される。このため、回転電機と電池とで入出力される電力を増加させることができ、電池の温度上昇を促進することができる。したがって、電池の性能を早期に確保することができる。
 第10の手段では、前記許容値算出部は、所定時間後における前記回転電機と前記電池とで電力を入出力する効率を算出し、前記効率が最高となるように前記出力許容値を補正する。
 回転電機と電池とで電力を入出力する効率は、回転電機や電池の状態に応じて変化する。回転電機による発電や駆動が継続する場合は、出力を一時的に最高にするよりも、所定時間後における効率を最高にする方が、エネルギを有効に利用することができる。この点、上記構成によれば、所定時間後における回転電機と電池とで電力を入出力する効率が算出され、この効率が最高となるように出力許容値が補正される。このため、回転電機の実質的な出力を向上させるだけでなく、エネルギを有効に利用することができる。
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、車載システムを示す概略図であり、 図2は、回生制御の処理手順を説明するフローチャートであり、 図3は、電池入力許容値を算出する手順を示すフローチャートであり、 図4は、充電継続時間と電池温度と入力許容電力との関係を示すマップであり、 図5は、発電継続時間と回転電機温度と出力許容電力との関係を示すマップであり、 図6は、ハーネス温度推定の処理手順を示すフローチャートであり、 図7は、第1実施形態の発電指令上限値を算出する手順を示すフローチャートであり、 図8は、第2実施形態及び第3実施形態の発電指令上限値を算出する手順を示すフローチャートであり、 図9は、第4実施形態の発電指令上限値を算出する手順を示すフローチャートであり、 図10は、温度上昇と通電時間と出力許容電力との関係を示すマップであり、 図11は、第5実施形態の発電指令上限値を算出する手順を示すフローチャートであり、 図12は、車速と勾配と回生継続時間との関係を示すマップであり、 図13は、車載システムの変更例を示す概略図であり、 図14は、車載システムの他の変更例を示す概略図である。
 (第1実施形態)
 以下、回転電機及びバッテリを含む車載システムに適用される制御装置に具現化した第1実施形態を、図面を参照しながら説明する。
 図1に示すように、車載システム100(システムに相当)において、回転電機12をオルタネータ(発電機)として機能させる場合には、交流出力電流をインバータ14により整流し、バッテリ10へ電力の供給を行う。一方、回転電機12をモータ(電動機)として機能させる場合には、バッテリ10から供給される電力をインバータ14により交流電流へと変換する。なお、バッテリ10(電池に相当)は、例えば、端子間電圧が約12Vである鉛バッテリである。
 インバータ14は、U相モジュール20uと、V相モジュール20vと、W相モジュール20wとにより構成されている。このインバータ14の各相モジュール20u,20v,20wは、回転電機12の固定子30に巻かれたU相巻線31u、V相巻線31v、W相巻線31wにそれぞれ接続されている。
 U相モジュール20uには、MOSFETであるU相上アームスイッチング素子21uとU相下アームスイッチング素子22uとが実装されている。U相上アームスイッチング素子21uのソースとU相下アームスイッチング素子22uのドレインとが接続されており、その接続点にはU相巻線31uの第1端が接続されている。一方、U相巻線31uの第2端は中性点32に接続されている。加えて、U相上アームスイッチング素子21uのドレインはバッテリ10の正極に接続されており、U相下アームスイッチング素子22uのソースは接地されている。U相上アームスイッチング素子21u及びU相下アームスイッチング素子22uには、それぞれ、U相上アームダイオード23u及びU相下アームダイオード24uが逆方向に並列接続されている。これらU相上アームスイッチング素子21u及びU相下アームスイッチング素子22uは、U相駆動回路25uにより、開閉状態が制御される。
 U相モジュール20uには、加えて、U相上アーム感温ダイオード26uとU相下アーム感温ダイオード27uが実装されている。U相上アーム感温ダイオード26uは、U相上アームスイッチング素子21uの近傍に実装されており、U相上アームスイッチング素子21uの発熱に起因する温度変化を検出することができる。同様に、U相下アーム感温ダイオード27uは、U相下アームスイッチング素子22uの近傍に実装されており、U相下アームスイッチング素子22uの発熱に起因する温度変化を検出することができる。これらU相上アーム感温ダイオード26u及びU相下アーム感温ダイオード27uの出力値は、U相駆動回路25uに入力される。
 V相モジュール20v及びW相モジュール20wの構成については、U相モジュール20uと同様の構成であり、V相巻線31v及びW相巻線31wの接続様態もU相巻線31uと同様であるため、その説明を省略する。要するに、回転電機12とバッテリ10とはハーネス16(配線に相当)により接続されている。ハーネス16には、ハーネス16(回転電機12、バッテリ10)に流れる電流Iを検出する電流センサ51(電流取得部に相当)が接続されている。また、ハーネス16には、インバータ14の入出力端子の電圧を検出する電圧センサ52と、バッテリ10の入出力端子の電圧を検出する電圧センサ53とが接続されている。電圧センサ52,53により、ハーネス16における電圧降下ΔVを取得する電圧降下取得部が構成されている。バッテリ10には、バッテリ10の温度を検出する温度センサ54が取り付けられている。
 U相モジュール20uには、V相モジュール20v及びW相モジュール20wと通信するためのU相接続端子28uが設けられている。同様に、V相モジュール20v及びW相モジュール20wには、それぞれ、V相接続端子28v及びW相接続端子28wが設けられている。U相駆動回路25u、V相駆動回路25v及びW相駆動回路25wは、それぞれ、U相接続端子28u、V相接続端子28v及びW相接続端子28wを介して通信可能に接続されている。W相モジュール20wには、加えて、レギュレータ接続端子29wが設けられており、W相駆動回路25wはこのレギュレータ接続端子29wを介して、レギュレータ40と通信可能に接続されている。
 レギュレータ40は、界磁スイッチング素子41、ダイオード42及び制御部43を含んで構成されている。このレギュレータ40は、回転子の界磁巻線50への通電状態を制御する。界磁スイッチング素子41は、例えばパワーMOSFETであり、ドレインはバッテリ10の正極に接続されており、ソースはダイオード42のカソードに接続されている。ダイオード42のアノードは接地されている。界磁スイッチング素子41とダイオード42との接続点には、界磁巻線50の一端が接続されており、界磁巻線50の他端は接地されている。この界磁スイッチング素子41の開閉状態は、制御部43(回転電機制御部に相当)により制御される。具体的には、制御部43は、界磁スイッチング素子41の1制御周期(一定期間)における通電期間の割合を示すDuty値を変化させる。
 制御部43は、モジュール接続端子44を介してW相モジュール20wのレギュレータ接続端子29wに接続されており、W相駆動回路25wと通信する。制御部43はW相駆動回路25wへ各スイッチング素子21u,22u,21v,22v,21w,22wの駆動指令を送信する。具体的には、制御部43へは各相の巻線の電流値が入力され各相の各スイッチング素子21u,22u,21v,22v,21w,22wについて、それぞれ、上アームと下アームとのいずれをONとするかを求める。W相駆動回路25wは、駆動指令に基づいてW相上アームスイッチング素子21w及びW相下アームスイッチング素子22wを駆動する。加えて、その駆動指令をU相モジュール20u及びV相モジュール20vへと送信する。なお、各上アームスイッチング素子21u,21v,21w及び各下アームスイッチング素子22u,22v,22wのいずれをONとするかの判定を、各相の駆動回路25u,25v,25wが実行するものとしてもよい。
 加えて、W相駆動回路25wは、各感温ダイオード26u,27u,26v,27v,26w,27wの検出値を取得し、制御部43へ出力する。制御部43は、上位の制御部であるECU60と信号の送受信を行う。ECU60は、車両のエンジンを制御するエンジンECUや、車両の電気エネルギを総合的に制御するパワマネECUである。
 次に、図2のフローチャートを参照して、車載システム100により実行される回生制御を説明する。この一連の処理は、所定周期で繰り返し実行される。
 まず、ECU60は、車両の状態及びバッテリ10への充電要求に基づいて、回生発電を実施する要求があるか否か判定する(S11)。回生発電を実施する要求がないと判定した場合(S11:NO)、この一連の処理を一端終了する(END)。
 一方、回生発電を実施する要求があると判定した場合(S11:YES)、ECU60は、制動トルク要求、バッテリ10への充電要求、電気負荷の状態等に基づいて、発電指令値を算出する(S12)。
 続いて、制御部43は、バッテリ10の入力許容値を取得する(S13)。このS13の処理は、制御部43により図3のフローチャートに示す手順で実行される。
 図3に示すように、まず、温度センサ54(温度取得部に相当)によりバッテリ10の温度を検出させる(S131)。検出されたバッテリ10の温度に基づいて、バッテリ10の入力として許容する上限である電池入力許容値を算出する(S132)。詳しくは、図4に示すマップに、回生制御によるバッテリ10の充電継続時間とバッテリ10の温度とを適用して、電池入力許容値としてのバッテリ10の入力許容電力(入力許容電力の基本値)を算出する。図4のマップにおいて、充電継続時間が長いほど入力許容電力は小さくなっており、バッテリ10の温度が高いほど入力許容電力は小さくなっている。
 続いて、バッテリ10の温度予測に基づいて、電池入力許容値を補正する(S133)。詳しくは、バッテリ10の現在温度、バッテリ10の周囲の雰囲気温度、バッテリ10への充電電流等をマップや計算式に適用して、バッテリ10の温度の将来値を予測する。そして、この将来値に基づいて、電池入力許容値を補正する。例えば、予測された将来値が高いほど、電池入力許容値を小さい値に補正する。
 なお、温度の将来値を予測するパラメータが適切でない場合は、将来値の予測精度が低下するおそれがある。そこで、予測した将来値と、温度センサ54により検出された温度とに基づいて、将来値を予測するパラメータ(マップや、計算式の係数等)を補正する。詳しくは、予測した将来値とその後に検出した実際の温度とがずれていた場合は、そのずれを抑制するようにパラメータを補正する。
 続いて、バッテリ10の劣化があるか否か判定する(S134)。具体的には、バッテリ10の内部抵抗に基づく周知の劣化判定方法等により、バッテリ10の劣化があるか否か判定する(S134)。バッテリ10の劣化があると判定した場合(S134:YES)、劣化状態に基づいて電池入力許容値を補正する(S135)。例えば、バッテリ10の劣化が進行している場合に回転電機12の出力を向上させると、劣化が更に進行するおそれがある。そこで、バッテリ10の劣化が進行しているほど、電池入力許容値を小さい値に補正する。
 続いて、バッテリ10の温度が所定温度よりも低いか否か判定する(S136)。例えば、バッテリ10の温度が所定温度(0℃等)よりも低い場合は、バッテリ10の性能を十分に発揮できないおそれがある。そこで、温度センサ54により検出されたバッテリ10の温度が所定温度よりも低い場合に、バッテリ10の出力として許容する上限である出力許容値を所定許容値よりも大きく算出する。所定許容値は、バッテリ10の温度と補正値との関係を規定したマップに基づき算出される値でもよいし、バッテリ10の温度を早期に上昇させるために予め設定された固定値であってもよい。その後、この一連の処理を一旦終了する(END)。なお、S131の処理が温度取得部としての処理に相当し、S134の処理が劣化状態取得部としての処理に相当する。
 図2に戻り、続いて制御部43は、回転電機12の出力として許容する上限である出力許容値を取得する(S14)。詳しくは、図5に示すマップに、回生制御による回転電機12の発電継続時間と回転電機12の温度とを適用して、回転電機12の出力許容値としての出力許容電力を算出する。図5のマップにおいて、発電継続時間が長いほど出力許容電力は小さくなっており、回転電機12の温度が高いほど出力許容電力は小さくなっている。回転電機12の温度として、感温ダイオード26u,27u,26v,27v,26w,27wの検出値を用いてもよいし、温度センサにより固定子30等の温度を検出してもよい。
 続いて、ハーネス16の入力として許容する上限である通電許容値を取得する(S15)。詳しくは、図4,5と同様のマップに、回生制御によるハーネス16の通電継続時間とハーネス16の温度とを適用して、ハーネス16の通電許容値としての通電許容電力を算出する。なお、ハーネス16がヒューズにより中継されている場合は、ヒューズの容量も考慮して通電許容電力を算出してもよい。
 ここで、図6のフローチャートを参照して、ハーネス16の温度を推定する手順を説明する。この一連の処理は、制御部43により所定の周期で繰り返し実行される。
 まず、ハーネス16を流れる電流Iを取得する(S151)。詳しくは、電流センサ51により、ハーネス16を流れる電流Iを検出させる。
 続いて、検出した電流Iとハーネス16の抵抗Rとに基づいて、ハーネス16の発熱量Q[J]を算出する(S152)。詳しくは、発熱量Q=抵抗R×電流I^2×時間tの式により、発熱量Qを算出する(「電流I^2」は電流Iの2乗を表す)。抵抗Rは、ハーネス16を流れる電流Iと、ハーネス16における電圧降下ΔVとに基づいて算出する。すなわち、抵抗R=電圧降下ΔV/電流Iの式により、抵抗Rを算出する。電圧降下ΔVは、電圧センサ52により検出したインバータ14の入出力端子の電圧と、電圧センサ53により検出したバッテリ10の入出力端子の電圧との差である。
 続いて、ハーネス16の初期温度と発熱量Qと雰囲気温度とに基づいて、現在のハーネス16の温度を推定する(S153)。ハーネス16の初期温度として、ハーネス16の周囲の雰囲気温度を用いる。具体的には、熱伝導方程式に基づく周知の温度推定方法等により、現在のハーネス16の温度を推定する。なお、車両の走行や、ファン等による風の影響を考慮することで、ハーネス16の温度を推定する精度が向上する。その後、この一連の処理を一旦終了する(END)。なお、S13~S15の処理が許容値算出部としての処理に相当し、S151~S153の処理が温度推定部(温度取得部)としての処理に相当する。また、温度センサによりハーネス16の温度を検出することもできる。
 図2に戻り、続いてECU60は、バッテリ10、回転電機12、及びハーネス16の各許容値に基づいて、発電指令の上限である発電指令上限値を算出する(S16)。バッテリ10、回転電機12、及びハーネス16の各許容値は、制御部43によりECU60へ送信される。この送信処理が送信部としての処理に相当する。このS16の処理は、ECU60により図7のフローチャートに示す手順で実行される。
 まず、回転電機12の出力許容値[W]とバッテリ10の入力許容値[W]とハーネス16の通電許容値[W]とに基づいて、発電許容電力[W]を算出する(S161)。詳しくは、回転電機12の出力許容値[W]、バッテリ10の入力許容値[W]、及びハーネス16の通電許容値[W]のうち最小値を、発電許容電力[W](出力上限値に相当)とする。すなわち、出力上限値は、指令を受ける側として受け入れられる上限である出力許容値(入力許容値)に基づいて設定されるものであり、本実施形態では、温度を取得する対象毎の許容値(出力許容値に相当)のうち最低の許容値を、出力上限値に設定する。
 続いて、算出した発電許容電力[W]に基づいて、発電指令上限値としての発電トルク上限値を算出する(S162)。詳しくは、発電トルク上限値[Nm]=発電許容電力[W]/回転速度[rad/s]×発電効率[%]の式により、発電トルク上限値[Nm]を算出する。回転速度[rad/s]は、回転電機12の回転速度である。発電効率[%]は、回生発電を行う際に回転電機12が運動エネルギを電気エネルギに変換する効率である。なお、上記式に限らず、発電許容電力[W]を発電トルク上限値[Nm]に変換するマップ等を用いてもよい。その後、この一連の処理を一旦終了する(END)。なお、S16の処理が上限値設定部としての処理に相当する。
 図2に戻り、続いてECU60は、発電指令値を発電指令上限値で制限する(S17)。具体的には、発電指令値及び発電指令上限値のうち最小値を、新たな発電指令値として設定する。続いてECU60は、設定された発電指令値に基づいて、回転電機12により回生発電を実施させる(S18)。具体的には、回転電機12が発電指令値で発電するように、制御部43により界磁巻線50への通電状態を制御するDuty値を変化させる。なお、発電指令値としては、発電トルクに限らず、発電電圧、発電電流、界磁電流、界磁デューティ等を用いることもできる。その後、この一連の処理を一旦終了する(END)。
 以上詳述した本実施形態は、以下の利点を有する。
 ・回転電機12、バッテリ10、及びハーネス16の温度が取得される。そして、取得された温度に基づいて、温度を取得する対象毎に回転電機12の出力許容値が算出される。このため、回転電機12、バッテリ10、及びハーネス16の温度を考慮して、回転電機12の出力許容値を算出することができる。
 ・制御部43によって、算出された対象毎の出力許容値が、ECU60へ送信される。このため、ECU60は、回転電機12、バッテリ10、及びハーネス16の出力許容値を用いて、回転電機12の出力上限値(発電許容電力)を設定することができる。したがって、回転電機12や、バッテリ10、ハーネス16の温度が過度に上昇することを抑制しつつ、回転電機12の出力を向上させるように出力上限値を設定することができる。
 ・回転電機12、バッテリ10、及びハーネス16の出力許容値を考慮して、車載システム100全体として回転電機12の出力上限値を最適に設定することができる。その結果、回転電機12や、バッテリ10、ハーネス16の能力を過剰に上げることを抑制しつつ、回転電機12の実質的な出力を向上させることができる。
 ・回転電機12とバッテリ10とにおける電力の入出力の継続時間にさらに基づいて、回転電機12の出力許容値が算出される。このため、回転電機12の出力許容値をより適切に算出することができる。
 ・ハーネス16に流れる電流が電流センサ51により取得され、取得された電流とハーネス16の抵抗とに基づいてハーネス16の温度が推定される。このため、ハーネス16の温度を検出する温度センサを省略することができる。
 ・取得されたハーネス16に流れる電流と、取得されたハーネス16における電圧降下とに基づいて、ハーネス16の抵抗が算出される。このため、ハーネス16の抵抗を正確に算出することができ、ハーネス16の温度を正確に推定することができる。ひいては、回転電機12の出力許容値を適切に算出することができ、この出力許容値を用いて回転電機12の出力上限値を適切に設定することができる。
 ・バッテリ10の現在温度、バッテリ10の周囲の雰囲気温度、バッテリ10への充電電流等をマップや計算式に適用して、バッテリ10の温度の将来値が予測される。そして、温度の将来値に基づいて出力許容値が補正されるため、温度の将来値を考慮して出力許容値をより適切に算出することができる。
 ・予測した将来値と、温度センサ54により取得された温度とに基づいて、将来値を予測するパラメータが補正される。このため、予測した将来値と実際の温度とがずれている場合は、将来値を予測するパラメータを補正して、将来値の予測精度を向上させることができる。
 ・温度を取得する対象(例えばバッテリ10)の劣化状態が取得される。そして、温度を取得する対象の劣化状態を考慮して、出力許容値を適切に補正することができる。
 ・バッテリ10の温度が所定温度よりも低い場合に、出力許容値が所定許容値よりも大きく算出される。このため、回転電機12とバッテリ10とで入出力される電力を増加させることができ、バッテリ10の温度上昇を促進することができる。したがって、バッテリ10の性能を早期に確保することができる。
 ・対象毎の出力許容値のうち最低の出力許容値が、出力上限値に設定される。このため、対象の全てにおいて、温度が過度に上昇することを抑制することができる。
 なお、上記実施形態を、以下のように変更して実施することもできる。
 ・制御部43は、予測したバッテリ10の温度の将来値が目標温度よりも低くなるように、バッテリ10の入力許容値を算出してもよい。こうした構成によれば、バッテリ10の温度を目標温度よりも低く抑えたい場合に、それを実現するように入力許容値を算出することができる。また、バッテリ10に限らず、予測した対象の温度の将来値が目標温度よりも低くなるように、対象の許容値を算出してもよい。
 ・回転電機12とバッテリ10とで電力を入出力する効率は、回転電機12やバッテリ10の状態に応じて変化する。回転電機12による回生発電が継続する場合は、出力を一時的に最高にするよりも、所定時間後における効率を最高にする方が、運動エネルギを有効に利用することができる。そこで、制御部43は、所定時間後における回転電機12とバッテリ10とで電力を入出力する効率を算出し、効率が最高となるように許容値を補正してもよい。例えば、回生発電が所定時間継続する場合のバッテリ10の温度上昇を予測して、所定時間後にバッテリ10の電力変換効率が最高となるように許容値を補正する。こうした構成によれば、回転電機12の実質的な出力を向上させるだけでなく、エネルギを有効に利用することができる。また、所定時間後においてバッテリ10の出力が最高となるように許容値を補正することもできる。
 ・予測した将来値と、温度センサ54により検出された温度とに基づいて、将来値を予測するパラメータを補正する処理を省略することもできる。また、S133の処理を省略することもできる。
 ・S134,S135の処理を省略することもできる。また、S136,S137の処理を省略することもできる。
 ・ECU60は、取得された温度が対象毎の温度上限値に最も近い対象の出力許容値を、出力上限値に設定してもよい。こうした構成によれば、温度が上限値に最も近い対象であっても、温度が過度に上昇することを抑制することができる。
 ・充電継続時間や発電継続時間としては、実際に継続した時間に限らず、継続すると予測される時間を用いることもできる(継続時間予測部)。また、充電継続時間や発電継続時間を考慮せず、各対象の温度に基づいて各対象の出力許容値を算出することもできる。
 ・上記実施形態では、回転電機12、バッテリ10、及びハーネス16の温度を取得し、これらの温度に基づいて対象毎に回転電機12の出力許容値を算出した。しかしながら、バッテリ10及びハーネス16の少なくとも1つの温度を取得し、その温度に基づいて回転電機12の出力許容値を算出してもよい。また、回転電機12、バッテリ10、及びハーネス16の少なくとも2つの温度を取得し、その温度に基づいて回転電機12の出力許容値を算出してもよい。
 ・ハーネス16の抵抗Rとして、予め設定された固定値を用いることもできる。
 ・バッテリ10として、鉛バッテリに限らず、Liイオンバッテリ等を採用することもできる。
 ・図2の回生制御における発電指令上限値の算出に代えて、回転電機12の駆動制御における駆動指令上限値の算出を行うこともできる。この場合、発電を駆動に代えるとともに、回転電機12とバッテリ10との入出力を逆にして、上記実施形態に準じた処理を実行すればよい。また、回転電機12として、発電機、電動機、ISG(Integrated Starter Generator)、MG(Motor Generator)等を採用することができる。
 (第2実施形態)
 図8のフローチャートを参照して、第2実施形態の発電指令上限値を算出する手順を、第1実施形態との相違点を中心に説明する。この一連の処理は、図7の発電指令上限値を算出する処理を変更したものであり、ECU60により実行される。
 まず、回転電機12の出力許容値[W]とバッテリ10の入力許容値[W]とハーネス16の通電許容値[W]とに基づいて、発電許容電力[W]を算出する(S161A)。ここで、各許容値に係数α,β,γをそれぞれ掛けることにより、各許容値の重み付けを行う。
 詳しくは、制御部43は、回転電機12、バッテリ10、及びハーネス16の温度の将来値をそれぞれ予測する。この処理が温度予測部としての処理に相当する。そして、ECU60は、対象毎の出力許容値と対象毎の温度の将来値とに基づいて、回転電機12とバッテリ10とで所定時間継続して電力を入出力する積算値を算出し、積算値が最大となるように係数α,β,γを設定する。例えば、温度上昇による許容値の減少が大きい対象の係数を、温度上昇による許容値の減少が小さい対象の係数よりも小さく設定する。このように重み付けを行った許容値のうち最小値を、発電許容電力[W](出力上限値に相当)とする。
 続いて、算出した発電許容電力[W]に基づいて、発電指令上限値としての発電トルク上限値を算出する(S162A)。S162Aの処理はS162の処理と同一である。その後、この一連の処理を一旦終了する(END)。なお、S161Aの処理が上限値設定部としての処理に相当する。
 本実施形態によれば、対象毎の温度の将来値が対象毎に予測される。そして、対象毎の出力許容値と対象毎の温度の将来値とに基づいて、回転電機12とバッテリ10とで所定時間継続して電力を入出力する積算値が算出され、この積算値が最大となるように出力許容値が設定される。このため、回転電機12とバッテリ10とで所定時間継続して電力を入出力する場合に、エネルギを最大限利用することができる。
 (第3実施形態)
 第3実施形態の発電指令上限値を算出する手順を、第2実施形態との相違点を中心に説明する。
 本実施形態では、ECU60は、対象毎の出力許容値と対象毎の温度の将来値とに基づいて、所定時間後における回転電機12とバッテリ10とで電力を入出力する効率が最高となるように係数α,β,γを設定する。例えば、温度上昇による効率の低下が大きい対象の係数を、温度上昇による効率の低下が小さい対象の係数よりも小さく設定する。ハーネス16では、温度上昇による許容値の減少が効率の低下に相当する。このように重み付けを行った許容値のうち最小値を、発電許容電力[W](出力上限値に相当)とする。
 本実施形態によれば、対象毎の温度の将来値が対象毎に予測される。そして、対象毎の出力許容値と対象毎の温度の将来値とに基づいて、所定時間後における回転電機12とバッテリ10とで電力を入出力する効率が算出され、この効率が最高となるように出力許容値が設定される。このため、回転電機12の実質的な出力を向上させるだけでなく、エネルギを有効に利用することができる。
 (第4実施形態)
 図9のフローチャートを参照して、第4実施形態の発電指令上限値を算出する手順を、第1実施形態との相違点を中心に説明する。この一連の処理は、図2のS13~S15の処理、及び図7の発電指令上限値を算出する処理を変更したものである。第1実施形態と同一の処理については同一のステップ番号を付すことにより説明を省略する。
 まず、制御部43は、回転電機12の現在の温度を取得する(S141)。回転電機12の許容温度(目標温度に相当)から現在の温度を引いて、温度上昇制限値を算出する(S142)。温度上昇制限値、通電時間、及びこれらと出力許容電力との関係に基づいて、回転電機12の出力許容電力[W]を算出する(S143)。詳しくは、図10に示すマップに、温度上昇制限値と通電時間とを適用して、温度上昇が温度上昇制限値を超えないように、回転電機12の出力許容値としての出力許容電力を算出する。通電時間は、車速やドライバの操作に基づく推定値等を用いる。図10のマップにおいて、出力許容電力が大きいほど温度上昇が大きくなっており、通電時間が長いほど温度上昇が大きくなっている。
 続いて、バッテリ10及びハーネス16についても、同様に許容値[W]を算出する(S160)。S161及びS162の処理は、図7と同一である。なお、S141~S160の処理が許容値算出部としての処理に相当する。
 本実施形態によれば、対象毎の出力許容値と対象毎の温度の将来値とに基づいて、回転電機12とバッテリ10とで所定時間継続して電力を入出力する場合に、対象毎の将来値が対象毎の許容温度よりも低くなるように出力上限値が設定される。このため、対象毎の温度を対象毎の許容温度よりも低く抑えたい場合に、それを実現するように出力許容値を算出することができる。
 (第5実施形態)
 第5実施形態の発電指令上限値を算出する手順を、図11のフローチャートを参照して、第2実施形態との相違点を中心に説明する。相違点は図8の発電指令上限値を算出する処理におけるS161Aで参照される係数α,β,γの算出方法であり、この一連の処理は、ECU60により実行される。
 まず、車両の走行情報を取得する(S161B)。走行情報としては、車速と走行路の勾配を取得する。勾配センサによる検出値や、カーナビからの情報等に基づいて、勾配を取得することができる。
 続いて、車速と勾配とに基づいて、回生継続時間を算出する(S162B)。詳しくは、図12に示すマップに、車速と勾配とを適用して、回生継続時間を算出する。図12のマップにおいて、車速が高いほど回生継続時間が長くなっており、勾配が急なほど回生継続時間が長くなっている。
 続いて、回生継続時間が所定値(閾値に相当)よりも長いか否か判定する(S163B)。回生継続時間が所定値よりも長いと判定した場合(S163B:YES)、回転電機12の出力効率を優先して発電指令上限値を算出する(S164B)。具体的には、第3実施形態と同様に、所定時間後における回転電機12とバッテリ10とで電力を入出力する効率が最高となるように係数α,β,γを設定する。
 一方、回生継続時間が所定値よりも長くないと判定した場合(S163B:NO)、回転電機12の出力の大きさを優先して発電指令上限値を算出する(S165B)。具体的には、第2実施形態と同様に、回転電機12とバッテリ10とで所定時間継続して電力を入出力する積算値が最大となるように係数α,β,γを設定する。そして、算出した発電許容電力[W]に基づいて、発電指令上限値としての発電トルク上限値を算出する。なお、S161B~S165Bの処理が上限値設定部としての処理に相当する。
 回転電機12とバッテリ10とで電力の入出力を継続する継続時間が短い場合は、各部の温度上昇が小さいため、回転電機12の出力を大きくすることが有効である。一方、回転電機12とバッテリ10とで電力の入出力を継続する継続時間が長い場合は、回転電機12の出力効率が高い状態で回転電機12の出力を長く継続することが有効である。
 本実施形態によれば、予測された継続時間が閾値よりも短い場合に回転電機12の出力の大きさを優先して出力上限値が設定され、予測された継続時間が閾値よりも長い場合に回転電機12の出力効率を優先して出力上限値が設定される。このため、回転電機12とバッテリ10とで電力の入出力を継続する継続時間の長さに応じて、回転電機12の出力上限値を適切に設定することができる。
 上記の各実施形態を、以下のように変更して実施することもできる。
 ・図13に示すように、車載システム100が回転電機12を冷却するファン17を備えており、制御部43(ECU)がファン17の駆動を制御してもよい(冷却制御部による冷却制御)。ECU60(冷却入力部に相当)は、制御部43から冷却制御の状態を入力する。そして、ECU60は、入力した冷却制御の状態にさらに基づいて、出力上限値を設定してもよい。こうした構成によれば、冷却制御の状態を考慮して、出力上限値を適切に設定することができ、ひいては回転電機12の実質的な出力をさらに向上させることができる。なお、冷却制御は、回転電機12に限らず、バッテリ10やハーネス16を対象に実行してもよい。冷却制御の状態として、冷却水温等を考慮してもよい。
 ・また、ECU60は、対象毎の出力許容値を超える出力上限値を設定する場合に、上記冷却制御の出力を上昇させる指令を制御部43へ送信してもよい。こうした構成によれば、各部の温度が過剰に上昇するおそれがある場合は、冷却制御の出力を上昇させて温度上昇を抑制することができる。
 ・図13に示すように、車載システム100がブレーキシステム18を備えており、ECU60(制動入力部に相当)がブレーキシステム18から制動要求を入力してもよい。制動要求は、回転電機12により制動トルクを発生させる要求である。そして、ECU60は、制動要求を入力した場合に、制動用出力上限値を出力上限値に強制的に設定してもよい。こうした構成によれば、車両の安全のために回転電機12により制動トルクを発生させる必要がある場合は、それを最優先して回転電機12の出力上限値を設定することができる。
 ・あるいは、ECU60は、出力上限値として短期用出力上限値と長期用出力上限値とを算出し、制動要求を入力した場合に、短期用出力上限値を前記出力上限値に強制的に設定してもよい。回転電機12の出力が短期間の場合は各部の温度上昇が小さくなるため、短期用出力上限値は長期用出力上限値よりも大きく設定することができる。また、ブレーキシステム18から制動要求を入力する期間は、車両を減速させるまでの比較的短期間になる。そこで、制動要求を入力した場合に、短期用出力上限値が回転電機12の出力上限値に強制的に設定される。このため、車両の安全のために回転電機12により制動トルクを発生させる必要がある場合は、それを最優先して回転電機12の出力上限値を設定することができる。
 ・上記各実施形態では、許容値算出部及び送信部は、回転電機12を制御する制御部43に設けられていたが、バッテリ10を制御する電池ECU46(電池制御部に相当)に設けられていてもよい。こうした構成によれば、電池ECU46により、上述した許容値算出部及び送信部の各機能を実現することができる。また、許容値算出部、送信部、及び上限値設定部が、制御部43又は電池ECUに設けられていてもよい。その場合は、制御部43又は電池ECUは、ECU60から必要な情報を受信すればよく、通信が必要ない処理については制御の応答性を向上させることができる。なお、図14に示すように、例えばECU60と電池ECU46とで必要な情報を送受信する際に、制御部43が中継を行ってもよい。同様に、電池ECU46が中継を行ってもよい。
 また、回転電機12やバッテリ10の状態に応じて変化する電力を入出力する効率は、所定時間後における効率を最高にするものには限られず、回転電機12による回生発電が継続する場合、現時点の出力よりも、所定時間後における効率を高くするだけでも、運動エネルギをより有効に利用することができる。そこで、制御部43は、所定時間後における回転電機12とバッテリ10とで電力を入出力する効率を算出し、効率が現時点より高くなるように許容値を補正してもよい。こうした構成によれば、回転電機12の実質的な出力を向上させるだけでなく、エネルギを有効に利用することができる。また、所定時間後においてバッテリ10の出力が現時点より高くなるように許容値を補正することもできる。
 同様に、バッテリ10の入出力効率についても所定時間後において現在よりも高くなるように出力上限値を設定してもいい。
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。

Claims (10)

  1.  回転電機(12)と、前記回転電機に配線(16)により接続された電池(10)と、前記回転電機の出力指令の上限である出力上限値を設定する上限値設定部(43、46、60)と、を備えるシステム(100)に適用され、前記回転電機を制御する制御装置であって、
     前記電池及び前記配線の少なくとも1つの温度を取得する温度取得部(43、46、51~53、54)と、
     前記温度取得部により取得された前記温度に基づいて、前記回転電機の出力指令を許容する上限である出力許容値を算出する許容値算出部(43、46)と、
     前記許容値算出部により算出された前記出力許容値を、前記上限値設定部へ送信する送信部(43、46)と、
    を備える回転電機の制御装置。
  2.  前記許容値算出部は、前記回転電機と前記電池とにおける電力の入出力の継続時間にさらに基づいて、前記回転電機の出力許容値を算出する請求項1に記載の回転電機の制御装置。
  3.  前記温度取得部(43、46、51~53)は、
     前記配線に流れる電流を取得する電流取得部(51)と、
     前記電流取得部により取得された前記電流と前記配線の抵抗とに基づいて、前記配線の温度を推定する温度推定部(43、46、52,53)と、
    を備える請求項1又は2に記載の回転電機の制御装置。
  4.  前記温度推定部(43、46)は、
     前記配線における電圧降下を取得する電圧降下取得部(52,53)を備え、
     前記電流取得部により取得された前記電流と、前記電圧降下取得部により取得された前記電圧降下とに基づいて、前記配線の抵抗を算出する請求項3に記載の回転電機の制御装置。
  5.  前記許容値算出部は、前記温度取得部により取得された前記温度の将来値を予測し、前記将来値に基づいて前記出力許容値を補正する請求項1~4のいずれか1項に記載の回転電機の制御装置。
  6.  前記許容値算出部は、予測した前記将来値と、前記温度取得部により取得された前記温度とに基づいて、前記将来値を予測するパラメータを補正する請求項5に記載の回転電機の制御装置。
  7.  前記許容値算出部は、予測した前記将来値が目標温度よりも低くなるように、前記出力許容値を算出する請求項5又は6に記載の回転電機の制御装置。
  8.  前記許容値算出部は、
     前記温度を取得する対象の劣化状態を取得する劣化状態取得部(43、46)を備え、
     前記劣化状態取得部により取得された前記劣化状態に基づいて、前記出力許容値を補正する請求項1~7のいずれか1項に記載の回転電機の制御装置。
  9.  前記温度取得部(54)は、前記電池の温度を取得し、
     前記許容値算出部は、前記温度取得部により取得された前記電池の温度が所定温度よりも低い場合に、前記出力許容値を所定許容値よりも大きく算出する請求項1~8のいずれか1項に記載の回転電機の制御装置。
  10.  前記許容値算出部は、所定時間後における前記回転電機と前記電池とで電力を入出力する効率を算出し、前記効率が最高となるように前記出力許容値を補正する請求項1~9のいずれか1項に記載の回転電機の制御装置。
PCT/JP2017/015935 2016-04-21 2017-04-20 回転電機の制御装置 WO2017183698A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/095,395 US11135922B2 (en) 2016-04-21 2017-04-20 Control apparatus for rotary electric machine
DE112017002116.2T DE112017002116T5 (de) 2016-04-21 2017-04-20 Steuerungsgerät für eine rotierende elektrische Maschine
CN201780024777.3A CN109075731B (zh) 2016-04-21 2017-04-20 旋转电机的控制装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016085380A JP6531705B2 (ja) 2016-04-21 2016-04-21 回転電機の制御装置
JP2016-085380 2016-04-21

Publications (1)

Publication Number Publication Date
WO2017183698A1 true WO2017183698A1 (ja) 2017-10-26

Family

ID=60116845

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/015935 WO2017183698A1 (ja) 2016-04-21 2017-04-20 回転電機の制御装置

Country Status (5)

Country Link
US (1) US11135922B2 (ja)
JP (1) JP6531705B2 (ja)
CN (1) CN109075731B (ja)
DE (1) DE112017002116T5 (ja)
WO (1) WO2017183698A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7295661B2 (ja) * 2019-03-07 2023-06-21 株式会社Subaru 電動車両の制御装置

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08182185A (ja) * 1994-12-21 1996-07-12 Yamaha Motor Co Ltd モータ過熱防止装置
US6184661B1 (en) * 1999-06-22 2001-02-06 C. E. Niehoff & Co. Regulator with alternator output current and input drive power control
JP2009033895A (ja) * 2007-07-27 2009-02-12 Kito Corp 巻上機の電動機巻線温度測定方法、電動機制御装置
JP2011091960A (ja) * 2009-10-23 2011-05-06 Toyota Central R&D Labs Inc Dcdcコンバータシステム
JP2012100435A (ja) * 2010-11-02 2012-05-24 Toyota Motor Corp 回転電機制御装置
WO2012086459A1 (ja) * 2010-12-22 2012-06-28 マイクロスペース株式会社 モータ駆動制御装置
WO2012114902A1 (ja) * 2011-02-25 2012-08-30 Ntn株式会社 電気自動車
CN103023117A (zh) * 2013-01-15 2013-04-03 广西电网公司电力科学研究院 高电能质量电动汽车充电系统
JP2013099177A (ja) * 2011-11-02 2013-05-20 Toyota Motor Corp 駆動装置
JP2013187983A (ja) * 2012-03-07 2013-09-19 Hitachi Automotive Systems Ltd 回転電機制御装置
CN103856141A (zh) * 2012-12-06 2014-06-11 现代摩比斯株式会社 温度传感器故障时降低电动机输出的调节装置及方法

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3760820B2 (ja) * 2000-11-14 2006-03-29 トヨタ自動車株式会社 自動車およびその電力系統制御装置
JP4232789B2 (ja) * 2006-04-24 2009-03-04 トヨタ自動車株式会社 内燃機関の停止制御装置および停止制御方法
CN101162849A (zh) 2007-09-14 2008-04-16 东莞市翔龙能源科技有限公司 一种汽车用环境温度调控输出电压发电机
DE102008034531A1 (de) * 2008-02-20 2009-08-27 Repower Systems Ag Windenergieanlage mit doppelt gespeistem Asynchrongenerator und Umrichterregelung
JP4479830B2 (ja) * 2008-05-23 2010-06-09 トヨタ自動車株式会社 動力出力装置及びこれを搭載する車両並びに動力出力装置の制御方法
JP4849421B2 (ja) 2008-09-26 2012-01-11 三菱電機株式会社 発電電動機制御装置およびそれを備える車両システム
JP4793426B2 (ja) * 2008-11-10 2011-10-12 パナソニック電工株式会社 充電式電動工具
JP5331493B2 (ja) * 2009-01-13 2013-10-30 日立ビークルエナジー株式会社 電池制御装置
JP4651719B2 (ja) 2009-01-30 2011-03-16 三菱電機株式会社 車輌用回転電機の発電制御装置
JP2010234972A (ja) * 2009-03-31 2010-10-21 Toyota Motor Corp ハイブリッド車両
JP2012029545A (ja) * 2009-09-29 2012-02-09 Auto Network Gijutsu Kenkyusho:Kk 過電流遮断装置及び過電流遮断装置に用いられる過電流検出用素子
FR2977986B1 (fr) * 2011-07-13 2014-04-25 Commissariat Energie Atomique Batterie avec architecture en briques disposees en serie ou en parallele
JP5825904B2 (ja) * 2011-07-27 2015-12-02 矢崎総業株式会社 電池状態通知ユニット、バスバモジュール、組電池、及び、電池状態監視システム
JP5893361B2 (ja) * 2011-11-24 2016-03-23 Ntn株式会社 モータの制御装置
JP5718833B2 (ja) * 2012-01-31 2015-05-13 住友電装株式会社 電線保護装置
JP5452654B2 (ja) 2012-04-11 2014-03-26 三菱電機株式会社 車両用交流発電機の制御装置
CN202906823U (zh) 2012-11-12 2013-04-24 上海通用汽车有限公司 一种用于控制发电机输出电压的控制装置
GB2528290A (en) * 2014-07-16 2016-01-20 John Leslie Gordon Hardy Battery management
JP6252681B2 (ja) * 2014-07-23 2017-12-27 日産自動車株式会社 モータ制御装置及びモータ制御方法
JP2016085380A (ja) 2014-10-27 2016-05-19 キヤノン株式会社 制御装置、制御方法、及び、プログラム
JP6476915B2 (ja) * 2015-01-27 2019-03-06 株式会社デンソー 電池パック
JP6304072B2 (ja) * 2015-02-27 2018-04-04 株式会社オートネットワーク技術研究所 遮断装置、遮断方法及びコンピュータプログラム
JP6531706B2 (ja) * 2016-04-21 2019-06-19 株式会社デンソー 回転電機の制御装置
JP7052302B2 (ja) * 2017-11-09 2022-04-12 株式会社デンソー 電池パック

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08182185A (ja) * 1994-12-21 1996-07-12 Yamaha Motor Co Ltd モータ過熱防止装置
US6184661B1 (en) * 1999-06-22 2001-02-06 C. E. Niehoff & Co. Regulator with alternator output current and input drive power control
JP2009033895A (ja) * 2007-07-27 2009-02-12 Kito Corp 巻上機の電動機巻線温度測定方法、電動機制御装置
JP2011091960A (ja) * 2009-10-23 2011-05-06 Toyota Central R&D Labs Inc Dcdcコンバータシステム
JP2012100435A (ja) * 2010-11-02 2012-05-24 Toyota Motor Corp 回転電機制御装置
WO2012086459A1 (ja) * 2010-12-22 2012-06-28 マイクロスペース株式会社 モータ駆動制御装置
WO2012114902A1 (ja) * 2011-02-25 2012-08-30 Ntn株式会社 電気自動車
JP2013099177A (ja) * 2011-11-02 2013-05-20 Toyota Motor Corp 駆動装置
JP2013187983A (ja) * 2012-03-07 2013-09-19 Hitachi Automotive Systems Ltd 回転電機制御装置
CN103856141A (zh) * 2012-12-06 2014-06-11 现代摩比斯株式会社 温度传感器故障时降低电动机输出的调节装置及方法
CN103023117A (zh) * 2013-01-15 2013-04-03 广西电网公司电力科学研究院 高电能质量电动汽车充电系统

Also Published As

Publication number Publication date
US20190135114A1 (en) 2019-05-09
JP2017195719A (ja) 2017-10-26
CN109075731B (zh) 2022-05-10
DE112017002116T5 (de) 2019-01-03
JP6531705B2 (ja) 2019-06-19
US11135922B2 (en) 2021-10-05
CN109075731A (zh) 2018-12-21

Similar Documents

Publication Publication Date Title
US8736234B2 (en) Power converter control apparatus
WO2017183699A1 (ja) 回転電機の制御装置
CN102969965B (zh) 发电机的输出控制装置
US11329592B2 (en) Motor control device
US9450525B2 (en) Electric motor control system
US20150015168A1 (en) Vehicular driving system
US20140076259A1 (en) Vehicle starting apparatus
JP6756277B2 (ja) 回転電機ユニット
US10014813B2 (en) Methods for switching on and for switching off an N-phase electric machine in a motor vehicle
WO2017183698A1 (ja) 回転電機の制御装置
US8736235B2 (en) Power generation motor control system
JP4938517B2 (ja) ブラシレスモータの制御装置
US9148082B2 (en) Control device and control method
JP6053788B2 (ja) 車両用交流発電機の制御装置
JP5594306B2 (ja) 車両用回転電機
JP7142719B2 (ja) モータ制御装置
JP6443268B2 (ja) 回転電機の制御装置
JP5971663B1 (ja) 車両用発電電動機の制御装置
US11296535B2 (en) Control device for electric motor
US8779703B2 (en) Method for operating a polyphase machine having a pulse-width-modulated inverter
JP5828404B2 (ja) 車両用回転電機
WO2018123538A1 (ja) 回転電機の回転上昇異常検出装置、回転電機ユニット

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17786035

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17786035

Country of ref document: EP

Kind code of ref document: A1