WO2017183313A1 - ガス供給装置、成膜装置、ガス供給方法、炭素膜の作製方法及び磁気記録媒体の製造方法 - Google Patents

ガス供給装置、成膜装置、ガス供給方法、炭素膜の作製方法及び磁気記録媒体の製造方法 Download PDF

Info

Publication number
WO2017183313A1
WO2017183313A1 PCT/JP2017/007857 JP2017007857W WO2017183313A1 WO 2017183313 A1 WO2017183313 A1 WO 2017183313A1 JP 2017007857 W JP2017007857 W JP 2017007857W WO 2017183313 A1 WO2017183313 A1 WO 2017183313A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
gas
vacuum chamber
gas supply
carbon film
Prior art date
Application number
PCT/JP2017/007857
Other languages
English (en)
French (fr)
Inventor
川邉 丈晴
健一 高野
裕康 関野
阿部 浩二
Original Assignee
株式会社ユーテック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ユーテック filed Critical 株式会社ユーテック
Publication of WO2017183313A1 publication Critical patent/WO2017183313A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/72Protective coatings, e.g. anti-static or antifriction
    • G11B5/727Inorganic carbon protective coating, e.g. graphite, diamond like carbon or doped carbon
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/72Protective coatings, e.g. anti-static or antifriction
    • G11B5/725Protective coatings, e.g. anti-static or antifriction containing a lubricant, e.g. organic compounds
    • G11B5/7253Fluorocarbon lubricant
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/32Carbides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • C23C16/509Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges using internal electrodes
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers

Definitions

  • the present invention relates to a gas supply apparatus, a film forming apparatus, a gas supply method, a carbon film manufacturing method, and a magnetic recording medium manufacturing method.
  • HDD Hard Disk Drive
  • the carbon protective film By developing a carbon protective film with high density and low hydrogen concentration, the carbon protective film can be further thinned. Therefore, it was considered to use a solid sublimable organic compound such as fullerene as a raw material for the carbon protective film. However, it is difficult to gasify a sublimable raw material having a large molecular weight such as fullerene and supply it to the vacuum chamber.
  • An object of one embodiment of the present invention is to provide a gas supply device or a gas supply method for supplying a solid sublimable organic compound having a high molecular weight into a vacuum chamber. Another object of one embodiment of the present invention is to provide a film formation apparatus using the above gas supply apparatus. Another object of one embodiment of the present invention is to provide a method for manufacturing a carbon film with high density and low hydrogen concentration. Another object of one embodiment of the present invention is to provide a method for manufacturing a magnetic recording medium using a carbon film having a high density and a low hydrogen concentration.
  • a gas supply device for supplying gas to a vacuum chamber, A container connected to the vacuum chamber by a first pipe; A first heating mechanism for heating the container; A solid sublimable organic compound contained in the container; A carrier gas supply source connected to the container by a second pipe;
  • a gas supply apparatus comprising:
  • the carrier gas includes at least one gas selected from the group consisting of He, N 2 , F, Ne, Ar, Kr, and Xe.
  • the organic compound is one of adamantane, diamantane, triamantane and tetramantane,
  • a gas supply apparatus comprising a heat exchanger disposed between the carrier gas supply source and the container for increasing the temperature of the carrier gas supplied from the carrier gas supply source.
  • a gas supply apparatus comprising a second heating mechanism for heating the first pipe.
  • the gas supply device according to any one of [1] to [5], The vacuum chamber; A holding unit that is disposed in the vacuum chamber and holds a deposition target substrate; An electrode disposed in the vacuum chamber and facing the deposition target substrate held by the holding unit; A power source for supplying power to one of the holding unit or the electrode; A ground potential electrically connected to the other of the holding part or the electrode;
  • a film forming apparatus comprising:
  • the power source is a high frequency power source with a pulse function
  • the high frequency power supply with a pulse function supplies a high frequency output of 10 kHz or more and 30 MHz or less to one of the holding unit or the electrode in a pulse shape with a duty ratio of 0% to less than 100% in a period of 1/100 ms to 1 ms.
  • a film forming apparatus characterized by that.
  • the power supply is a DC power supply with a pulse function
  • the direct current power supply with a pulse function is more than 0% and less than 100% (preferably 25% or more and 90% or less, more preferably 25% or more and 75% or less) at a cycle of 5 kHz to 350 kHz on one of the holding part or the electrode. And more preferably 25% to 60%, and still more preferably 25% to 45%) in a pulse form with a DUTY ratio.
  • the gas supply device according to any one of [1] to [5], The vacuum chamber; An anode disposed in the vacuum chamber; A cathode disposed in the vacuum chamber; A holding unit that is disposed in the vacuum chamber and holds a deposition target substrate disposed to face the cathode and the anode; A first DC power supply electrically connected to the anode; An AC power source electrically connected to the cathode; A second DC power source electrically connected to the film formation substrate held by the holding unit; A film forming apparatus comprising:
  • the second DC power supply is controlled so that a first voltage is applied to the deposition target substrate held by the holding unit in a pulse shape having a duty ratio of 10% to 95% in a cycle of 1 sec or less.
  • a film forming apparatus having a control unit.
  • a gas supply method for supplying gas to a vacuum chamber comprising heating a solid sublimable organic compound to sublimate, and supplying the sublimated gaseous organic compound together with a carrier gas to the vacuum chamber.
  • the carrier gas includes at least one gas selected from the group consisting of He, N 2 , F, Ne, Ar, Kr, and Xe.
  • the organic compound is one of adamantane, diamantane, triamantane and tetramantane,
  • the fullerene is heated and sublimated, the sublimated gas fullerene is supplied into a vacuum chamber together with a carrier gas, and the fullerene is brought into a plasma state in the vacuum chamber, whereby a carbon film is formed on the deposition target substrate.
  • a carbon film forming method for forming The carbon film has a density of 2.0 g / cm 3 or more (preferably 2.1 g / cm 3 or more, more preferably 2.2 g / cm 3 or more), A method for producing a carbon film, wherein a hydrogen concentration of the carbon film is 20 atom% or less (preferably 15 atom% or less, more preferably 10 atom% or less).
  • the carbon film has a density of 2.0 g / cm 3 or more (preferably 2.1 g / cm 3 or more, more preferably 2.2 g / cm 3 or more), A method for producing a magnetic recording medium, wherein the hydrogen concentration of the carbon film is 20 atomic% or less (preferably 15 atomic% or less, more preferably 10 atomic% or less).
  • the fluorinated organic film includes a C a F b film, a C a F b N c film, a C a F b H d film, a C a F b O e film, a C a F b O e H d film, and a C a F b N c O e film and C a F b N c O e H method of manufacturing a magnetic recording medium, characterized in that d membrane is any membrane.
  • a, b, c, d, and e are natural numbers.
  • the C a F b N c O e H d film is an amorphous film.
  • a, b, c, d, and e are natural numbers.
  • the organic gas for forming the C a F b film on the carbon film is C 3 F 6 , C 4 F 6 , C 6 F 6 , C 6 F 12 , C 6 F 14 , C 7 F 8.
  • the organic gas when the C a F b N c film is formed on the carbon film is C 3 F 3 N 3 , C 3 F 9 N, C 5 F 5 N, C 6 F 4 N 2 , C 6 F 9 N 3 , C 6 F 12 N 2 , C 6 F 15 N, C 7 F 5 N, C 8 F 4 N 2 , C 9 F 21 N, C 12 F 4 N 4 , C 12 F 27 N , C 14 F 8 N 2 , C 15 F 33 N, C 24 F 45 N 3 , and triheptafluoropropylamine,
  • the organic gas used when the C a F b O d film is formed on the carbon film is C 3 F 6 O, C 4 F 6 O 3 , C 4 F 8 O, C
  • the nonmagnetic substrate is held in a holding portion, an electrode facing the nonmagnetic substrate held in the holding portion is disposed, and power is supplied to one of the holding portion and the electrode.
  • the method of manufacturing a magnetic recording medium is characterized in that a direct current voltage when forming direct current plasma by supplying a DC voltage or a direct current voltage component when forming high frequency plasma is set to + 150V to -150V.
  • a gas supply device or a gas supply method for supplying a solid sublimable organic compound having a high molecular weight into a vacuum chamber can be provided.
  • a film formation apparatus using the above gas supply apparatus can be provided.
  • a method for manufacturing a carbon film having a high density and a low hydrogen concentration can be provided.
  • a method for manufacturing a magnetic recording medium using a carbon film having a high density and a low hydrogen concentration can be provided.
  • FIG. 1 is a configuration diagram schematically illustrating a film forming apparatus including a gas supply device according to one embodiment of the present invention.
  • This film forming apparatus is a plasma CVD apparatus.
  • the gas supply device shown in FIG. 1 is a device that supplies gas to the vacuum chamber 21.
  • the apparatus has a container 16 connected to a vacuum chamber 21 by a first pipe 19.
  • a solid sublimable organic compound 17 is accommodated in the container 16.
  • the organic compound 17 is composed of fullerene (C 60 , C 70 , C 72 , C 74 , C 76 , C 78 , C 80 , C 82 , C 84 , C 86 , C 88 , C 90 , C 3996 ), adamantane (C 3 10 H 16 ), diamantane (C 14 H 20 ), triamantane (C 18 H 24 ), and tetramantane (C 22 H 28 ).
  • the container 16 is connected to the heat exchanger 15 by the second pipe 18.
  • a heating mechanism 20 such as a heater for heating the container 16 is disposed around the container 16.
  • the heating mechanism 20 only needs to be able to heat at least the container 16, but may be configured to heat the first pipe 19 and the second pipe 18.
  • the heating mechanism 20 that heats the container 16 and the first pipe 19 is disposed.
  • the first heating mechanism that heats the container 16 and the second heating mechanism that heats the first pipe are provided. They may be arranged separately.
  • the heat exchanger 15 is connected to the second valve 14 via a pipe, the second valve 14 is connected to the mass flow controller 12, and the mass flow controller 12 is connected to the first valve 13.
  • the first valve 13 is connected to a carrier gas supply source 11 such as a gas cylinder through a pipe.
  • the container 16 only needs to be connected to the carrier gas supply source 11 by at least the second pipe 18.
  • the heat exchanger 15 is arranged between the carrier gas supply source 11 and the container 16 and increases the temperature of the carrier gas supplied from the carrier gas supply source 11.
  • the carrier gas supplied from the carrier gas supply source 11 may be a gas having at least one gas selected from the group consisting of H 2 , He, N 2 , F, Ne, Ar, Kr, and Xe.
  • H 2 is not used for the carrier gas. That is, when fullerene is used as the organic compound 17, a gas having at least one gas selected from the group consisting of He, N 2 , F, Ne, Ar, Kr, and Xe may be used as the carrier gas.
  • H 2 may be used for the carrier gas.
  • the amount of hydrogen remaining in the raw material such as adamantane can be reduced by using hydrogen gas as a carrier gas. That is, the hydrogen gas can act as an etching to remove the hydrogen in the adamantane from the formed carbon film.
  • the carrier gas was selected from the group of H 2 , He, N 2 , F, Ne, Ar, Kr and Xe.
  • a gas having at least one gas may be used.
  • This film forming apparatus includes the gas supply device and the vacuum chamber 21 described above, and a holding electrode 23 as a holding unit for holding the film formation substrate 25 is disposed in the vacuum chamber 21.
  • a cooling mechanism (not shown) for cooling the film formation substrate 25 is provided inside the holding electrode 23.
  • the holding electrode 23 is electrically connected to a high frequency power source 26 having a frequency of 13.56 MHz, for example, and the holding electrode 23 also functions as an RF application electrode.
  • the periphery and the lower part of the holding electrode 23 are shielded by an earth shield 24.
  • the high frequency power supply 26 is electrically connected to the ground potential 27.
  • the high frequency power supply 26 is used, but another power supply, for example, a DC power supply or a microwave power supply may be used.
  • the high frequency power supply 26 is used, but a high frequency power supply with a pulse function may be used. That is, the high frequency power supply with a pulse function outputs a high frequency output of 10 kHz or more and 30 MHz or less (preferably 50 kHz or more and 30 MHz or less) to the holding electrode 23 in a period of 1/100 ms or more and 1 ms or less (1 kHz or more and 100 kHz or less). Less than 25% (preferably 25% or more and 90% or less, more preferably 25% or more and 75% or less, more preferably 25% or more and 60% or less, and even more preferably 25% or more and 45% or less) in a pulse shape To supply. By supplying the pulse in this way, it can be expected that the film forming speed is improved and the film quality is improved.
  • the DUTY ratio is a ratio of a period during which a high frequency output is applied to the holding electrode 23 during one cycle.
  • a period of 25% of one cycle is a period during which a high-frequency output is applied to the holding electrode 23 (high-frequency output on period)
  • a period of 75% of one cycle is the holding electrode 23 This is a period during which no high frequency output is applied (high frequency output off period).
  • a period of 1/4 ms that is 25% of 1 ms (1 period) is a period during which the high-frequency output is on, and 1 ms (1 period)
  • a period of 3/4 ms, which is 75% of the above, is a period in which the high-frequency output is off.
  • FIG. 2 shows the case of a DUTY ratio of 100 S / T%, where one period of 100 S / T% is a high-frequency output on period, and the remaining period of 100 N / T% is one period.
  • the high frequency output is off.
  • a gas shower electrode 22 is disposed in a parallel position facing the holding electrode 23. These are a pair of parallel plate electrodes.
  • the gas shower electrode is positioned so as to face the film formation substrate 25 held by the holding electrode 23.
  • the gas shower electrode 22 is electrically connected to the ground potential.
  • a power source is connected to the holding electrode 23 and a ground potential is connected to the gas shower electrode 22.
  • a ground potential is connected to the holding electrode 23 and a power source is connected to the gas shower electrode 22. Also good.
  • a plurality of supply ports (not shown) for supplying the raw material gas supplied by the gas supply device into the vacuum chamber 21 in a shower shape are formed on the lower surface of the gas shower electrode 22.
  • the plurality of supply ports are connected to a gas introduction path (not shown) inside the gas shower electrode 22, and the gas introduction path is connected to the first pipe 19.
  • the gas shower electrode 22 provided with the electrode and the supply path for supplying the source gas is used.
  • the present invention is not limited thereto, and the supply path and the supply port for supplying the source gas and the electrode are separately provided. It may be configured.
  • the vacuum chamber 21 is provided with an exhaust port for evacuating the inside of the vacuum chamber 21. This exhaust port is connected to an exhaust pump (not shown).
  • the film forming apparatus includes a control unit (not shown) that controls the high-frequency power source 26, the mass flow controller 12, the heat exchanger 15, the heating mechanism 20, the exhaust pump, and the like.
  • the film forming apparatus is controlled so as to perform film processing.
  • the heat exchanger 15, the mass flow controller 12, and the first and second valves 13 and 14 are arranged between the container 16 and the carrier gas supply source 11, but the present invention is not limited to this, and the container 16 may be connected to the carrier gas supply source 11 by at least the second pipe 18.
  • FIG. 3 is a cross-sectional view for explaining the method of manufacturing the magnetic recording medium according to one aspect of the present invention.
  • a film formation substrate 25 having at least a magnetic layer 25b formed on a nonmagnetic substrate 25a is prepared.
  • the film formation substrate 25 is, for example, a bird disk substrate or a media head.
  • a carbon film 41 having a film thickness of 2 nm or less (preferably 1 nm or less, more preferably 0.5 nm or less) is formed on the magnetic layer 25b using the film forming apparatus shown in FIG.
  • the deposition target substrate 25 is inserted into the vacuum chamber 21 shown in FIG. 1, and the deposition target substrate 25 is held on the holding electrode 23 in the vacuum chamber 21.
  • a shower-like source gas is introduced from the supply port of the gas shower electrode 22 into the vacuum chamber 21 by the gas supply device of FIG.
  • the solid sublimable organic compound in the container 16 is heated by the heating mechanism 20 to be sublimated.
  • the first and second valves 13 and 14 are opened, the carrier gas from the carrier gas supply source 11 is introduced into the heat exchanger 15 through the mass flow controller 12 and the piping, and the carrier gas is supplied to the predetermined temperature (for example, 100 ° C. or higher).
  • the heated carrier gas is introduced into the container 16 through the second pipe 18.
  • the gaseous organic compound sublimated in the container 16 is supplied to the vacuum chamber 21 from the supply port through the gas introduction path inside the first pipe 19 and the gas shower electrode 22 together with the carrier gas.
  • the second piping 18 and the first piping 19 are heated to a predetermined temperature by the heating mechanism 20, it is possible to suppress the temperature of the carrier gas and the gaseous organic compound from being lowered.
  • the carrier gas heated to a predetermined temperature is introduced into the container 16, but the carrier gas may be introduced into the container 16 without being heated.
  • any of fullerene, adamantane, diamantane, triamantane, and tetramantane can be used.
  • a gas having at least one gas selected from the group consisting of He, N 2 , F, Ne, Ar, Kr, and Xe can be used.
  • the organic compound when any one of adamantane, diamantane, triamantane, and tetramantane is used as the organic compound, it is preferable to use a gas having H 2 gas or H 2 gas as the carrier gas.
  • the hydrogen gas can act as an etching to remove hydrogen in adamantane and the like from the formed carbon film.
  • the raw material gas (gaseous organic compound and carrier gas) supplied to the surface of the deposition target substrate 25 in the vacuum chamber 21 passes between the holding electrode 23 and the earth shield 24 and is vacuum chamber 21. It is exhausted to the outside by an exhaust pump. Then, the inside of the vacuum chamber 21 is made a source gas atmosphere by controlling the source gas supply amount and the exhaust gas to a predetermined pressure and source gas flow rate, and a high frequency (RF) of 13.56 MHz, for example, is applied by the high frequency power source 26. Then, plasma is generated to bring the source gas into a plasma state. Thereby, the carbon film 41 is formed on the magnetic layer 25 b of the deposition target substrate 25. At this time, the temperature of the film formation substrate 25 is preferably set to 100 ° C. or lower by cooling the film formation substrate 25 by a cooling mechanism inside the holding electrode 23.
  • the density of the carbon film 41 thus formed on the deposition target substrate 25 is 2.0 g / cm 3 or more (preferably 2.1 g / cm 3 or more, more preferably 2.2 g / cm 3 or more).
  • the hydrogen concentration of the carbon film 41 is preferably 20 atomic% or less (preferably 15 atomic% or less, more preferably 10 atomic% or less).
  • the carbon film 41 is dipped in fluorine-based fomblin oil, so that the fomblin oil is applied on the carbon film 41.
  • the film-formed substrate 25 is annealed at a temperature of 150 ° C. for 1 hour to form a 4 nm-thick fluorinated organic film 42 that functions as a solid lubricant on the carbon film 41.
  • the solid sublimable organic compound in the container 16 is heated and sublimated, and the sublimated gaseous organic compound is supplied to the vacuum chamber 21 together with the carrier gas. It becomes possible to supply a large solid sublimable organic compound as a raw material gas into the vacuum chamber.
  • the carbon film 41 is formed on the deposition target substrate 25 by the plasma CVD method using a sublimable organic compound having a large molecular weight such as fullerene as a source gas, the high density and low A carbon film having a hydrogen concentration can be produced. Moreover, the heat resistance of the carbon film can be improved by setting the hydrogen concentration in the carbon film 41 to 20 atomic% or less.
  • the carbon film 41 having a density of 2.0 g / cm 3 or more and a hydrogen concentration of 20 atomic% or less is formed on the low temperature deposition substrate 25 having a temperature of 100 ° C. or less. be able to. That is, in the present embodiment, the carbon film 41 having a high density and a low hydrogen concentration can be formed on the low temperature deposition substrate 25.
  • the carbon film 41 having a high density and a low hydrogen concentration is used as the carbon protective film of the magnetic recording medium, it is possible to expect a further reduction in the thickness of the carbon protective film.
  • the fluorinated organic film 42 shown in FIG. 3 is formed by a method different from that of the first embodiment, and the others are the same as those of the first embodiment. Therefore, only differences will be described below. .
  • the apparatus for forming a fluorinated organic film according to the present embodiment is a plasma CVD apparatus in which the gas supply apparatus in the film forming apparatus shown in FIG. 1 is changed to an apparatus for supplying a raw material gas for the fluorinated organic film.
  • the source gas one having an organic source gas containing carbon and fluorine can be used. This organic source gas preferably contains three or more carbons.
  • a, b, c, d, and e are natural numbers.
  • the deposition target substrate 25 is inserted into the vacuum chamber 21 shown in FIG. 3, and the deposition target substrate 25 is held on the holding electrode 23 in the vacuum chamber 21.
  • the inside of the vacuum chamber 21 is evacuated by an exhaust pump.
  • a shower-like source gas is introduced from the supply port of the gas shower electrode 22 into the vacuum chamber 21 and supplied to the surface of the deposition target substrate 25.
  • the supplied source gas passes between the holding electrode 23 and the earth shield 24 and is exhausted to the outside of the vacuum chamber 21 by an exhaust pump.
  • the inside of the vacuum chamber 21 is made a source gas atmosphere by controlling the source gas supply amount and the exhaust gas to a predetermined pressure and source gas flow rate, and a high frequency (RF) of 13.56 MHz, for example, is applied by the high frequency power source 26.
  • RF high frequency
  • the film forming conditions are such that the pressure is 0.01 Pa to atmospheric pressure, the processing temperature is room temperature, and the DC voltage component when forming the high frequency plasma is +150 V to ⁇ 150 V (more preferably +50 V to ⁇ 50 V). It is preferable to carry out with. By suppressing the DC voltage component in this way, plasma damage to the film below the fluorinated organic film 42 can be suppressed.
  • the organic material gas for forming the C a F b film as the fluorinated organic film is C 3 F 6 , C 4 F 6 , C 6 F 6 , C 6 F 12 , C 6 F 14 , C 7 F 8. , C 7 F 14, C 7 F 16, C 8 F 16, C 8 F 18, C 9 F 18, C 9 F 20, C 10 F 8, C 10 F 18, C 11 F 20, C 12 F 10 , C 13 F 28 , C 15 F 32 , C 20 F 42 , and C 24 F 50 .
  • Organic material gases for forming a C a F b N c film as the fluorinated organic film are C 3 F 3 N 3 , C 3 F 9 N, C 5 F 5 N, C 6 F 4 N 2 , C 6 F 9 N 3 , C 6 F 12 N 2 , C 6 F 15 N, C 7 F 5 N, C 8 F 4 N 2 , C 9 F 21 N, C 12 F 4 N 4 , C 12 F 27 N , C 14 F 8 N 2 , C 15 F 33 N, C 24 F 45 N 3 , and triheptafluoropropylamine.
  • the organic material gas for forming the C a F b O d film as the fluorinated organic film is C 3 F 6 O, C 4 F 6 O 3 , C 4 F 8 O, C 5 F 6 O 3 , C 6 F 4 O 2 , C 6 F 10 O 3 , C 8 F 4 O 3 , C 8 F 8 O, C 8 F 8 O 2 , C 8 F 14 O 3 , C 13 F 10 O, C 13 F 10 It has at least one of O 3 and C 2 F 6 O (C 3 F 6 O) n (CF 2 O) m.
  • the organic material gas in the case of forming a C a F b N c O d film as the fluorinated organic film has C 7 F 5 NO.
  • perfluoroamines such as triheptafluoropropylamine (tertiary amines) can be used.
  • the high frequency power supply 26 is used, but a DC power supply or a microwave power supply may be used.
  • the DC voltage at the time of forming DC plasma by using a DC power source is preferably +150 V to ⁇ 150 V (more preferably +50 V to ⁇ 50 V).
  • This film is preferably an amorphous film.
  • the Young's modulus of this film is preferably 0.1 to 30 GPa.
  • FIG. 4 is a configuration diagram schematically illustrating a film forming apparatus including a gas supply device according to one embodiment of the present invention.
  • the same parts as those in FIG. 1 are denoted by the same reference numerals, and only different parts will be described.
  • the holding electrode 23 is electrically connected to a DC power source (DC power source) 113 with a pulse function, and the DC power source 113 with a pulse function is electrically connected to a ground potential 27.
  • DC power source DC power source
  • the DC power supply 113 with a pulse function applies a DC voltage to the holding electrode 23 in a period of 1/350 ms to 1/5 ms (5 kHz to 350 kHz), more than 0% and less than 100% (preferably 25% to 90%, more It is preferably supplied in the form of a pulse having a DUTY ratio of 25% to 75%, more preferably 25% to 60%, and still more preferably 25% to 45%.
  • the DUTY ratio is a ratio of a period during which a DC voltage is applied to the film formation substrate 25 during one cycle.
  • a period of 25% of one cycle is a period in which a DC voltage is applied to the film formation substrate 25 (a DC voltage ON period), and a period of 75% of one cycle is covered. This is a period during which no DC voltage is applied to the film formation substrate 25 (DC voltage OFF period).
  • a period of 1/4 sec of 25% of 1 sec (1 period) becomes a DC voltage on period, and 1 sec (1 period) A period of 3/4 sec of 75% of the DC voltage is off.
  • FIG. 5 is a configuration diagram schematically illustrating a film forming apparatus including a gas supply device according to one embodiment of the present invention, and the same portions as those in FIG. 1 are denoted by the same reference numerals.
  • the gas supply apparatus shown in FIG. 5 is the same as the gas supply apparatus shown in FIG.
  • This plasma CVD apparatus has a symmetrical structure with respect to a film formation substrate (for example, a disk substrate) 1 and can form films on both surfaces of the film formation substrate 1 simultaneously. Only shows.
  • the plasma CVD apparatus has a vacuum chamber 102, and a filamentary cathode electrode (cathode filament) 103 made of, for example, tantalum is formed in the vacuum chamber 102. Both ends of the cathode filament 103 are electrically connected to a cathode power source (AC power source) 105 located outside the vacuum chamber 102, and the cathode power source 105 is arranged in an insulated state with respect to the vacuum chamber 102.
  • the cathode power source 105 is controlled by a control unit (not shown). Thereby, the voltage applied to the cathode filament 103 is controlled.
  • a power source of 0 to 50 V, 10 to 50 A (ampere) can be used.
  • One end of the cathode power source 105 is electrically connected to the ground potential 106.
  • an anode electrode (anode cone) 104 having a funnel shape is disposed so as to surround each of the cathode filaments 103, and the anode cone 104 is shaped like a speaker.
  • An inner shield 108 made of a conductor is provided on the deposition cone 1 side of the anode cone 104, and the inner shield 108 is formed separately from the anode cone 104.
  • the inner shield 108 is formed so as to cover the space between the cathode filament 103 and the anode cone 104 and the film formation substrate 1.
  • the inner shield 108 has a cylindrical shape or a polygonal shape.
  • the anode cone 104 is electrically connected to an anode power source (DC (direct current) power source) 107, and the DC power source 107 is disposed in an insulated state with respect to the vacuum chamber 102.
  • the positive potential side of the DC power source 107 is electrically connected to the anode cone 104, and the negative potential side of the DC power source 107 is electrically connected to the ground potential 106.
  • the DC power source 107 is controlled by the control unit. Thereby, the voltage applied to the anode cone 104 is controlled.
  • the DC power source 107 for example, a power source of 0 to 500V, 0 to 7.5A (ampere) can be used.
  • a film thickness correction plate 118 is provided at the end of the inner shield 108 on the film formation substrate 1 side.
  • the film thickness correction plate 118 is formed integrally with the inner shield 108.
  • the film thickness correction plate 118 can control the thickness of the film formed on the outer peripheral portion of the deposition target substrate 1.
  • the film thickness correcting plate 118 is formed integrally with the inner shield 108. However, if the film thickness correcting plate 118 is electrically connected to the inner shield 108, the film thickness correcting plate is used as the inner shield. It may be formed separately.
  • the deposition target substrate 1 is disposed in the vacuum chamber 102, and the deposition target substrate 1 is disposed to face the cathode filament 103 and the anode cone 104. Specifically, the cathode filament 103 is surrounded in the vicinity of the central portion of the inner peripheral surface of the anode cone 104, and the anode cone 104 is arranged with the maximum inner diameter side facing the deposition target substrate 1.
  • the deposition target substrate 1 is sequentially supplied to the positions shown by a holder (holding unit) not shown and a transfer device (handling robot or rotary index table) not shown.
  • the deposition target substrate 1 is electrically connected to a bias power source (DC power source, DC power source) 112 as an ion acceleration power source, and the DC power source 112 is disposed in an insulated state from the vacuum chamber 102. Yes.
  • the negative potential side of the DC power source 112 is electrically connected to the deposition target substrate 1, and the positive potential side of the DC power source 112 is electrically connected to the ground potential 106.
  • the DC power source 112 is controlled by the control unit. Thereby, the voltage applied to the deposition target substrate 1 is controlled.
  • the DC power source 112 for example, a power source of 0 to 1500 V and 0 to 100 mA (milliampere) can be used.
  • the film forming apparatus may include a pulse control unit 130 that controls the DC power source 112 in a pulsed manner.
  • the voltage applied to the deposition target substrate 1 is controlled as follows.
  • the DC power source 112 applies a DC voltage to the film formation substrate 1 of 10% or more and 95% or less (preferably 30% or more and 75% or less) with a period of 1/100 sec to 1 sec (frequency of 1 Hz to 100 Hz). It is controlled to be applied in the form of a pulse of a ratio. Thereby, the DC voltage is supplied to the deposition target substrate 1.
  • the pulse control unit 130 may have a sequencer, and the DC power source 112 may be controlled so that the sequencer applies the pulse shape. In this embodiment, a DC voltage is supplied from the DC power source 112 to the deposition target substrate 1, but a DC voltage may be directly supplied to the deposition target substrate 1 by the DC power source 112.
  • the DUTY ratio is a ratio of a period during which a DC voltage is applied to the deposition target substrate 1 during one cycle.
  • a period of 25% of one cycle is a period in which a DC voltage is applied to the deposition target substrate 1 (DC voltage on period), and a period of 75% of one cycle is covered. This is a period during which no DC voltage is applied to the film formation substrate 1 (DC voltage OFF period).
  • a period of 1/4 sec of 25% of 1 sec (1 period) becomes a DC voltage on period, and 1 sec (1 period) A period of 3/4 sec of 75% of the DC voltage is off.
  • FIG. 6 shows a case of a DUTY ratio of 100 S / T%, and a period of 100 S / T% in one cycle becomes a period in which the DC voltage (250 V) is on, and the remaining 100 N / T% in one cycle. This period is the DC voltage off period.
  • T is 0.2 sec, and S and N are each 0.1 sec.
  • the pulse shape when a DC voltage is applied to the deposition target substrate 1 by the DC power source 112 in a pulse shape has a period of 1/100 sec to 1 sec (frequency of 1 Hz to 100 Hz).
  • the DUTY ratio is 10% or more and 95% or less, but if the pulse shape has a DUTY ratio of 10% or more and 95% or less with a period (frequency of 1 Hz or more) of at least 1 sec or less, it is less than 1/100 sec (over 100 Hz). Frequency) may be used.
  • the reason why the DUTY ratio is set to 10% or more is that when the DUTY ratio is set to 10% or less, the film formation rate (film deposition speed) becomes too slow.
  • the reason for setting the DUTY ratio to 95% or less is that if the DUTY ratio is 95% or more, the effect of increasing the film thickness of the outer peripheral portion is lost.
  • the DUTY ratio is set to 10% to 95%, and a period in which one cycle is 10% to 95% is a period in which a DC voltage is applied to the deposition target substrate 1 (DC voltage ON period).
  • the remaining period of one cycle is a period in which a DC voltage is not applied to the deposition target substrate 1 (a DC voltage off period), but a period of 10% or more and 95% or less of one cycle is applied to the deposition target substrate 1
  • the period during which the first DC voltage is applied may be the period during which the second DC voltage is applied to the deposition target substrate 1.
  • the second DC voltage may be a voltage value of 0% to 50% (preferably 10% to 30%) of the first DC voltage.
  • the following effects can be obtained by applying a DC voltage to the film formation substrate 1 in a pulsed manner as described above.
  • the film thickness of the central portion can be reduced while ensuring the film thickness of the outer peripheral portion of the protective film mainly composed of carbon deposited on the deposition target substrate 1.
  • the outer shield 90 made of a conductor or an insulator is disposed outside the inner shield 108 so as to cover the inner shield 108, and the outer shield 90 has a cylindrical shape or a polygonal shape.
  • the outer shield 90 is electrically connected to a float potential or a ground potential.
  • the outer shield 90 has a role of preventing discharge between the vacuum chamber 102 and the inner shield 108.
  • a neodymium magnet 109 is disposed outside the vacuum chamber 102.
  • the neodymium magnet 109 has, for example, a cylindrical shape or a polygonal shape, and the center of the cylindrical or polygonal inner diameter becomes the magnet center, and the magnet center is the approximate center of the cathode filament 103 and the approximate center of the film formation substrate 1, respectively. It is located to face.
  • the neodymium magnet 109 preferably has a magnetic force at the center of the magnet of 50G (Gauss) or more and 200G or less, and more preferably 50G or more and 150G or less.
  • the reason why the magnetic force at the magnet center is set to 200 G or less is that in the case of a neodymium magnet, it is a manufacturing limit to increase the magnetic force at the magnet center to 200 G.
  • the reason why the magnetic force at the center of the magnet is preferably 150 G or less is that if the magnetic force at the center of the magnet exceeds 150 G, the cost of making the magnet increases.
  • the plasma CVD apparatus has an evacuation mechanism (not shown) for evacuating the vacuum chamber 102.
  • the gas introduction part 102 a is connected to the first pipe 19.
  • a film formation substrate 1 having at least a magnetic layer formed on a nonmagnetic substrate is prepared.
  • the film formation substrate 1 is, for example, a bird disk substrate or a media head.
  • a carbon film having a film thickness of 2 nm or less (preferably 1 nm or less, more preferably 0.5 nm or less) is formed on the magnetic layer of the deposition target substrate 1 using the film forming apparatus shown in FIG.
  • the vacuum evacuation mechanism is activated, the inside of the vacuum chamber 102 is brought into a predetermined vacuum state, and a raw material gas is introduced into the inside of the vacuum chamber 102 from the gas introduction unit 102a by the gas supply device.
  • the method for supplying the source gas to the vacuum chamber 102 is the same as in the first embodiment.
  • the cathode filament 103 is heated by supplying an alternating current to the cathode filament 103 from the cathode power source 105.
  • a direct current is supplied to the film formation substrate 1 by a DC power source 112. Further, a direct current is supplied to the anode cone 104 by a DC power source 107.
  • the cathode filament 103 By heating the cathode filament 103, a large amount of electrons are emitted from the cathode filament 103 toward the anode cone 104, and glow discharge is started between the cathode filament 103 and the anode cone 104.
  • the raw material gas inside the vacuum chamber 102 is ionized by a large amount of electrons to be in a plasma state.
  • the plasma can be densified by this magnetic field, and ionization efficiency can be improved. Can do.
  • the deposition raw material molecules in the plasma state are directly accelerated by the negative potential of the deposition target substrate 1, fly toward the deposition target substrate 1, and adhere to the surface of the deposition target substrate 1. Is done. Thereby, a carbon film is formed on the deposition target substrate 1.
  • the density of the carbon film thus formed on the deposition target substrate 1 is 2.0 g / cm 3 or more (preferably 2.1 g / cm 3 or more, more preferably 2.2 g / cm 3 or more).
  • the hydrogen concentration of the carbon film is preferably 20 atomic% or less (preferably 15 atomic% or less, more preferably 10 atomic% or less).
  • fomblin oil is applied onto the carbon film by dipping the carbon film into fluorine-based fomblin oil.
  • the film formation substrate 1 is annealed at a temperature of 150 ° C. for 1 hour, whereby a 4 nm-thick fluorinated organic film functioning as a solid lubricant is formed on the carbon film.
  • This substrate is a ⁇ 6 inch silicon wafer.
  • the heating temperature of the carrier gas heat exchanger 15 is 500 ° C.
  • the temperature at which the fullerene in the container 16 is heated by the mantle heater is 650 ° C.
  • the first and second pipes 18 and 19 are heated.
  • the temperature was 600 ° C.
  • the substrate temperature was kept below 100 ° C. by cooling the holding electrode 23.
  • the frequency of the high frequency power supply 26 is 13.56 MHz.
  • FIG. 7 shows the relationship between the deposition rate of the carbon films on these three substrates and the RF power.
  • FIG. 8 shows the relationship between the film density and the RF power of the carbon films of the three substrates of these comparative examples and the carbon film of the three substrates of Example 1, and the relationship between the hydrogen concentration in the carbon film and the RF power. Is shown in FIG.
  • the carbon film of Example 1 As shown in FIG. 8, the carbon film of Example 1, the film density than the carbon film of Comparative Example is very high as 2.25g / cm 3 ⁇ 2.3g / cm 3, a dense film is deposited It has been confirmed. Moreover, as shown in FIG. 9, it was confirmed that the carbon film of Example 1 has an extremely low hydrogen concentration of 10 atomic% or less as compared with the carbon film of the comparative example.
  • a carbon film can be formed on a substrate by plasma CVD using fullerene (C 60 ), which is a sublimable organic compound having a large molecular weight, as a source gas.
  • the density was confirmed to be low hydrogen concentration.
  • This substrate is a ⁇ 4 inch silicon wafer.
  • the heating temperature of the carrier gas heat exchanger 15 is 500 ° C.
  • the temperature at which the fullerene in the container 16 is heated by the mantle heater is 650 ° C.
  • the first and second pipes 18 and 19 are heated.
  • the temperature was 600 ° C.
  • FIG. 10B shows the relationship between the deposition rate of the carbon films on the seven substrates and the DC voltage.
  • FIG. 10A shows the relationship between the deposition rate of the carbon film and the Ar gas flow rate.
  • fullerene (C 60 ) which is a sublimable organic compound having a large molecular weight, is used as a source gas, a DC voltage is applied to the holding electrode 23 at a period of 1/350 ms (frequency of 350 kHz). It was confirmed that a carbon film can be formed on the substrate by a plasma CVD method applied in a pulse form with a DUTY ratio of%.
  • Substrate to be deposited 11 Carrier gas supply source 12 Mass flow controller (MFC) DESCRIPTION OF SYMBOLS 13 1st valve 14 2nd valve 15 Heat exchanger 16 Container 17 Sublimable organic compound 18 2nd piping 19 1st piping 20 Heating mechanism 21 Vacuum chamber 22 Gas shower electrode 23 Holding electrode (holding part) 24 Earth shield 25 Substrate for deposition 25a Non-magnetic substrate 25b Magnetic layer 26 High frequency power supply (RF) 27 Ground potential 41 Carbon film 42 Fluorinated organic film 90 Outer shield 102 Vacuum chamber 103 Cathode electrode (cathode filament) 104 Anode electrode (anode cone) 105 Cathode power supply (AC power supply) 106 Ground potential 107 Anode power supply (DC (direct current) power supply) 108 Inner shield 109 Neodymium magnet 112 Bias power supply (DC power supply, DC power supply) 113 DC power supply with pulse function (DC power supply) 118 Film Thickness Correction Plate 130 Pulse Control Unit

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Vapour Deposition (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

【課題】分子量の大きい固体の昇華性の有機化合物を真空チャンバー内に供給するガス供給装置を提供する。 【解決手段】本発明の一態様は、真空チャンバー21にガスを供給するガス供給装置であって、前記真空チャンバーに第1の配管19によって接続された容器16と、前記容器を加熱する加熱機構20と、前記容器内に収容された固体の昇華性の有機化合物17と、前記容器に第2の配管18によって接続されたキャリアガス供給源11と、を具備するガス供給装置である。

Description

ガス供給装置、成膜装置、ガス供給方法、炭素膜の作製方法及び磁気記録媒体の製造方法
 本発明は、ガス供給装置、成膜装置、ガス供給方法、炭素膜の作製方法及び磁気記録媒体の製造方法に関する。
 現在、世界のHDD(Hard Disk Drive)出荷台数は年間約6億台であり、市場規模は370億ドルに上る。2020年には、人類が扱うデータの総量が2010年の50倍に急増し、年間で40Zbに達するとの見通しが示されている。このことからも今後のHDDの高記録密度化のため、HDDのメディア用カーボン保護膜の更なる薄膜化が望まれている。
 高密度で低水素濃度のカーボン保護膜を開発することで、カーボン保護膜の更なる薄膜化が可能となる。そのために、フラーレン等の固体の昇華性の有機化合物をカーボン保護膜の原料として用いることを考えた。しかし、フラーレン等の分子量の大きい昇華性の原料をガス化して真空チャンバー内に供給するのは難しい。
 本発明の一態様は、分子量の大きい固体の昇華性の有機化合物を真空チャンバー内に供給するガス供給装置またはガス供給方法を提供することを課題とする。
 また、本発明の一態様は、上記のガス供給装置を用いた成膜装置を提供することを課題とする。
 また、本発明の一態様は、高密度で低水素濃度の炭素膜の作製方法を提供することを課題とする。
 また、本発明の一態様は、高密度で低水素濃度の炭素膜を用いた磁気記録媒体の製造方法を提供することを課題とする。
 以下に、本発明の種々の態様について説明する。
[1]真空チャンバーにガスを供給するガス供給装置であって、
 前記真空チャンバーに第1の配管によって接続された容器と、
 前記容器を加熱する第1の加熱機構と、
 前記容器内に収容された固体の昇華性の有機化合物と、
 前記容器に第2の配管によって接続されたキャリアガス供給源と、
を具備することを特徴とするガス供給装置。
[2]上記[1]において、
 前記有機化合物は、フラーレン、アダマンタン、ジアマンタン、トリアマンタン及びテトラマンタンのいずれかであることを特徴とするガス供給装置。
[3]上記[1]または[2]において、
 前記キャリアガスは、He、N、F、Ne、Ar、Kr及びXeの群から選択された少なくとも一つのガスを有することを特徴とするガス供給装置。
[4]上記[1]において、
 前記有機化合物は、アダマンタン、ジアマンタン、トリアマンタン及びテトラマンタンのいずれかであり、
 前記キャリアガスは、Hガスを有することを特徴とするガス供給装置。
[5]上記[1]乃至[4]のいずれか一項において、
 前記キャリアガス供給源と前記容器との間に配置され、前記キャリアガス供給源から供給されるキャリアガスの温度を上昇させるための熱交換器を有することを特徴とするガス供給装置。
[6]上記[1]乃至[5]のいずれか一項において、
 前記第1の配管を加熱する第2の加熱機構を有することを特徴とするガス供給装置。
[7]上記[1]乃至[5]のいずれか一項に記載のガス供給装置と、
 前記真空チャンバーと、
 前記真空チャンバー内に配置され、被成膜基板を保持する保持部と、
 前記真空チャンバー内に配置され、前記保持部に保持された前記被成膜基板に対向する電極と、
 前記保持部または前記電極の一方に電力を供給する電源と、
 前記保持部または前記電極の他方に電気的に接続する接地電位と、
を具備することを特徴とする成膜装置。
[8]上記[7]において、
 前記電源はパルス機能付高周波電源であり、
 前記パルス機能付高周波電源は、前記保持部または前記電極の一方に、10kHz以上30MHz以下の高周波出力を、1/100ms以上1ms以下の周期で0%超100%未満のDUTY比のパルス状に供給するものであることを特徴とする成膜装置。
[9]上記[7]において、
 前記電源はパルス機能付直流電源であり、
 前記パルス機能付直流電源は、前記保持部または前記電極の一方に、5kHz以上350kHz以下の周期で0%超100%未満(好ましくは25%以上90%以下、より好ましくは25%以上75%以下、更に好ましくは25%以上60%以下、より更に好ましくは25%以上45%以下)のDUTY比のパルス状に供給するものであることを特徴とする成膜装置。
[10]上記[1]乃至[5]のいずれか一項に記載のガス供給装置と、
 前記真空チャンバーと、
 前記真空チャンバー内に配置されたアノードと、
 前記真空チャンバー内に配置されたカソードと、
 前記真空チャンバー内に配置され、前記カソード及び前記アノードに対向するように配置される被成膜基板を保持する保持部と、
 前記アノードに電気的に接続された第1の直流電源と、
 前記カソードに電気的に接続された交流電源と、
 前記保持部に保持された前記被成膜基板に電気的に接続された第2の直流電源と、
を具備することを特徴とする成膜装置。
[11]上記[10]において、
 前記保持部に保持された前記被成膜基板に第1の電圧を、1sec以下の周期で10%以上95%以下のDUTY比のパルス状に印加するように前記第2の直流電源を制御する制御部を有することを特徴とする成膜装置。
[12]真空チャンバーにガスを供給するガス供給方法であって、
 固体の昇華性の有機化合物を加熱して昇華させ、その昇華した気体の有機化合物をキャリアガスとともに前記真空チャンバーに供給することを特徴とするガス供給方法。
[13]上記[12]において、
 前記有機化合物は、フラーレン、アダマンタン、ジアマンタン、トリアマンタン及びテトラマンタンのいずれかであることを特徴とするガス供給方法。
[14]上記[12]または[13]において、
 前記キャリアガスは、He、N、F、Ne、Ar、Kr及びXeの群から選択された少なくとも一つのガスを有することを特徴とするガス供給方法。
[15]上記[12]において、
 前記有機化合物は、アダマンタン、ジアマンタン、トリアマンタン及びテトラマンタンのいずれかであり、
 前記キャリアガスは、Hガスを有することを特徴とするガス供給方法。
[16]フラーレンを加熱して昇華させ、その昇華した気体のフラーレンをキャリアガスとともに真空チャンバー内に供給し、前記真空チャンバー内で前記フラーレンをプラズマ状態とすることで被成膜基板上に炭素膜を形成する炭素膜の作製方法であり、
 前記炭素膜の密度が2.0g/cm以上(好ましくは2.1g/cm以上、より好ましくは2.2g/cm以上)であり、
 前記炭素膜の水素濃度が20原子%以下(好ましくは15原子%以下、より好ましくは10原子%以下)であることを特徴とする炭素膜の作製方法。
[17]上記[16]において、
 前記キャリアガスの温度は100℃以上であることを特徴とする炭素膜の作製方法。
[18]上記[16]または[17]において、
 前記被成膜基板の温度は100℃以下であることを特徴とする炭素膜の作製方法。
[19]非磁性基板上に磁性層を形成し、
 前記磁性層上に炭素膜を形成し、
 前記炭素膜上にフッ化有機膜を形成する磁気記録媒体の製造方法であり、
 前記炭素膜は、フラーレンを加熱して昇華させ、その昇華した気体のフラーレンをキャリアガスとともに真空チャンバー内に供給し、前記真空チャンバー内で前記フラーレンをプラズマ状態とすることで形成されることを特徴とする磁気記録媒体の製造方法。
[20]上記[19]において、
 前記炭素膜の密度が2.0g/cm以上(好ましくは2.1g/cm以上、より好ましくは2.2g/cm以上)であり、
 前記炭素膜の水素濃度が20原子%以下(好ましくは15原子%以下、より好ましくは10原子%以下)であることを特徴とする磁気記録媒体の製造方法。
[21]上記[19]または[20]において、
 前記フッ化有機膜は、C膜、C膜、C膜、C膜、C膜、C膜及びC膜のいずれかの膜であることを特徴とする磁気記録媒体の製造方法。
 ただし、a,b,c,d,eは、自然数である。
[22]上記[21]において、
 前記C膜、C膜、C膜、C膜、C膜、C膜及びC膜それぞれはアモルファス膜であることを特徴とする磁気記録媒体の製造方法。
 ただし、a,b,c,d,eは、自然数である。
[23]上記[21]または[22]において、
 前記フッ化有機膜の厚さは3nm以下であることを特徴とする磁気記録媒体の製造方法。
[24]上記[21]乃至[23]のいずれか一項において、
 前記フッ化有機膜は、炭素とフッ素を含む有機物ガスを有する原料ガスを用いたCVD法により形成されることを特徴とする磁気記録媒体の製造方法。
[25]上記[24]において、
 前記有機物ガスが3個以上の炭素を含むことを特徴とする磁気記録媒体の製造方法。
[26]上記[21]乃至[25]のいずれか一項において、
 前記炭素膜上に前記C膜を形成する場合の前記有機物ガスは、C、C、C、C12、C14、C、C14、C16、C16、C18、C18、C20、C10、C1018、C1120、C1210、C1328、C1532、C2042、及びC2450の少なくとも一つを有し、
 前記炭素膜上に前記C膜を形成する場合の前記有機物ガスは、C、CN、CN、C、C、C12、C15N、CN、C、C21N、C12、C1227N、C14、C1533N、C2445、及びトリヘプタフルオロプロピルアミンの少なくとも一つを有し、
 前記炭素膜上に前記C膜を形成する場合の前記有機物ガスは、CO、C、CO、C、C、C10、C、CO、C、C14、C1310O、C1310、及びCO(CO)n(CFO)mの少なくとも一つを有し、
 前記炭素膜上に前記C膜を形成する場合の前記有機物ガスは、CNOを有することを特徴とする磁気記録媒体の製造方法。
[27]上記[24]または[25]において、
 前記有機物ガスとしてパーフルオロアミン類を用いることを特徴とする磁気記録媒体の製造方法。
[28]上記[24]、[25]及び[27]のいずれか一項において、
 前記原料ガスを用いたCVD法は、前記非磁性基板を保持部に保持し、前記保持部に保持された前記非磁性基板に対向する電極を配置し、前記保持部および前記電極の一方に電力を供給して直流プラズマを形成する際の直流電圧または高周波プラズマを形成する際の直流電圧成分を+150V~-150Vとすることを特徴とする磁気記録媒体の製造方法。
 本発明の一態様によれば、分子量の大きい固体の昇華性の有機化合物を真空チャンバー内に供給するガス供給装置またはガス供給方法を提供することができる。
 また、本発明の一態様によれば、上記のガス供給装置を用いた成膜装置を提供することができる。
 また、本発明の一態様によれば、高密度で低水素濃度の炭素膜の作製方法を提供することができる。
 また、本発明の一態様によれば、高密度で低水素濃度の炭素膜を用いた磁気記録媒体の製造方法を提供することができる。
本発明の一態様に係るガス供給装置を備えた成膜装置を概略的に示す構成図である。 100S/T%のDUTY比の場合を説明する図である。 本発明の一態様に係る磁気記録媒体の製造方法を説明するための断面図である。 本発明の一態様に係るガス供給装置を備えた成膜装置を概略的に示す構成図である。 本発明の一態様に係るガス供給装置を備えた成膜装置を概略的に示す構成図である。 パルス状に印加する電圧値と時間の関係を示す図である。 実施例の炭素膜の成膜レートとRFパワーの関係を示す図である。 実施例の炭素膜及び比較例の炭素膜それぞれの膜密度とRFパワーの関係を示す図である。 実施例の炭素膜及び比較例の炭素膜それぞれの膜中の水素濃度とRFパワーの関係を示す図である。 (A)は炭素膜の成膜レートとArガス流量の関係を示す図、(B)は炭素膜の成膜レートとDC電圧の関係を示す図である。
 以下では、本発明の実施形態及び実施例について図面を用いて詳細に説明する。ただし、本発明は以下の説明に限定されず、本発明の趣旨及びその範囲から逸脱することなくその形態及び詳細を様々に変更し得ることは、当業者であれば容易に理解される。従って、本発明は以下に示す実施形態の記載内容及び実施例に限定して解釈されるものではない。
[第1の実施形態]
 図1は、本発明の一態様に係るガス供給装置を備えた成膜装置を概略的に示す構成図である。この成膜装置はプラズマCVD装置である。
 <ガス供給装置>
 図1に示すガス供給装置は真空チャンバー21にガスを供給する装置である。その装置は、真空チャンバー21に第1の配管19によって接続された容器16を有する。容器16内には固体の昇華性の有機化合物17が収容されている。有機化合物17は、フラーレン(C60、C70、C72、C74、C76、C78、C80、C82、C84、C86、C88、C90、C3996)、アダマンタン(C1016)、ジアマンタン(C1420)、トリアマンタン(C1824)及びテトラマンタン(C2228)のいずれかであるとよい。
 容器16は第2の配管18によって熱交換器15と接続されている。容器16の周囲には容器16を加熱するヒーター等の加熱機構20が配置されている。この加熱機構20は少なくとも容器16を加熱できればよいが、第1の配管19及び第2の配管18も加熱できる構成とするとよい。なお、本実施形態では、容器16及び第1の配管19を加熱する加熱機構20を配置するが、容器16を加熱する第1の加熱機構と第1の配管を加熱する第2の加熱機構を別々に配置してもよい。
 熱交換器15は配管を介して第2のバルブ14に接続されており、第2のバルブ14はマスフローコントローラー12に接続されており、マスフローコントローラー12は第1のバルブ13に接続されている。第1のバルブ13は配管を介してガスボンベ等のキャリアガス供給源11に接続されている。なお、容器16は少なくとも第2の配管18によってキャリアガス供給源11に接続されていればよい。また、熱交換器15は、キャリアガス供給源11と容器16との間に配置され、キャリアガス供給源11から供給されるキャリアガスの温度を上昇させるものである。
 キャリアガス供給源11により供給されるキャリアガスは、H、He、N、F、Ne、Ar、Kr及びXeの群から選択された少なくとも一つのガスを有するガスであるとよい。ただし、昇華性の有機化合物17にフラーレンを用いた場合はキャリアガスにHを用いない。つまり、有機化合物17にフラーレンを用いた場合は、キャリアガスにHe、N、F、Ne、Ar、Kr及びXeの群から選択された少なくとも一つのガスを有するガスを用いるとよい。フラーレンを原料として使用する場合は、炭素膜中の水素を減らすために水素ガスをキャリアガスとして用いない方が好ましい。
 一方、有機化合物17にアダマンタン、ジアマンタン、トリアマンタン及びテトラマンタンのいずれかを用いた場合は、キャリアガスにHを用いてもよい。その理由は、アダマンタン等を原料として使用する場合は、キャリアガスとして水素ガスを用いることで、アダマンタン等を原料中に含まれる水素が炭素膜に残存する量を減らすことができるからである。つまり、水素ガスがエッチングの作用をして、アダマンタン中の水素を成膜された炭素膜から除去することができるからである。
 なお、有機化合物17にアダマンタン、ジアマンタン、トリアマンタン及びテトラマンタンのいずれかを用いた場合は、キャリアガスにH、He、N、F、Ne、Ar、Kr及びXeの群から選択された少なくとも一つのガスを有するガスを用いてもよい。
 <成膜装置>
 次に、図1に示す成膜装置(プラズマCVD装置)について説明する。
 この成膜装置は、前述したガス供給装置及び真空チャンバー21を有し、真空チャンバー21内には被成膜基板25を保持する保持部としての保持電極23が配置されている。保持電極23の内部には被成膜基板25を冷却する冷却機構(図示せず)が設けられている。
 保持電極23は例えば周波数13.56MHzの高周波電源26に電気的に接続されており、保持電極23はRF印加電極としても作用する。保持電極23の周囲及び下部はアースシールド24によってシールドされている。高周波電源26は接地電位27に電気的に接続されている。なお、本実施形態では、高周波電源26を用いているが、他の電源、例えば直流電源又はマイクロ波電源を用いても良い。
 また、本実施形態では、高周波電源26を用いているが、パルス機能付高周波電源を用いてもよい。つまり、パルス機能付高周波電源は、保持電極23に、10kHz以上30MHz以下(好ましくは50kHz以上30MHz以下)の高周波出力を、1/100ms以上1ms以下の周期(1kHz以上100kHz以下)で0%超100%未満(好ましくは25%以上90%以下、より好ましくは25%以上75%以下、更に好ましくは25%以上60%以下、より更に好ましくは25%以上45%以下)のDUTY比のパルス状に供給するものである。このようにパルス状に供給することで、成膜速度が向上したり、膜質が向上することが期待できる。
 DUTY比は、1周期の間で保持電極23に高周波出力が印加される期間の比率である。例えば、25%のDUTY比の場合は、1周期の25%の期間が保持電極23に高周波出力が印加される期間(高周波出力オンの期間)となり、1周期の75%の期間が保持電極23に高周波出力が印加されない期間(高周波出力オフの期間)となる。詳細には、例えば1msの周期(1kHzの周波数)で25%のDUTY比の場合は、1ms(1周期)の25%の1/4msの期間が高周波出力オンの期間となり、1ms(1周期)の75%の3/4msの期間が高周波出力オフの期間となる。
 また、例えば図2は、100S/T%のDUTY比の場合を示しており、1周期の100S/T%の期間が高周波出力オンの期間となり、1周期の残りの100N/T%の期間が高周波出力オフの期間となる。
 真空チャンバー21内には、保持電極23に対向して平行の位置にガスシャワー電極22が配置されている。これらは一対の平行平板型電極である。ガスシャワー電極は保持電極23に保持された被成膜基板25に対向するように位置する。ガスシャワー電極22は接地電位に電気的に接続されている。
 なお、本実施形態では、保持電極23に電源を接続し、ガスシャワー電極22に接地電位を接続しているが、保持電極23に接地電位を接続し、ガスシャワー電極22に電源を接続しても良い。
 ガスシャワー電極22の下面には、ガス供給装置によって供給される原料ガスを真空チャンバー21内にシャワー状に供給する複数の供給口(図示せず)が形成されている。複数の供給口はガスシャワー電極22の内部のガス導入経路(図示せず)に接続されており、ガス導入経路は第1の配管19に接続されている。なお、本実施形態では、原料ガスを供給する経路及び供給口を電極に備えたガスシャワー電極22を用いているが、これに限られず、原料ガスを供給する経路及び供給口と電極を別々に構成してもよい。
 真空チャンバー  21には、真空チャンバー21の内部を真空排気する排気口が設けられている。この排気口は排気ポンプ(図示せず)に接続されている。
 また、成膜装置は、高周波電源26、マスフローコントローラー12、熱交換器15、加熱機構20及び排気ポンプなどを制御する制御部(図示せず)を有しており、この制御部は後述する成膜処理を行うように成膜装置を制御するものである。
 なお、本実施形態では、容器16とキャリアガス供給源11との間に熱交換器15、マスフローコントローラー12、第1及び第2のバルブ13,14を配置するが、これに限定されず、容器16が少なくとも第2の配管18によってキャリアガス供給源11に接続されていればよい。
 <磁気記録媒体の製造方法>
 図3は、本発明の一態様に係る磁気記録媒体の製造方法を説明するための断面図である。
 まず、図3に示すように、非磁性基板25aの上に少なくとも磁性層25bを形成した被成膜基板25を用意する。なお、被成膜基板25は、例えばバードディスク基板、メディアヘッドなどである。
 次に、磁性層25bの上に膜厚2nm以下(好ましくは1nm以下、さらに好ましくは0.5nm以下)の炭素膜41を図1に示す成膜装置を用いて成膜する。
 以下に炭素膜41の成膜方法について詳細に説明する。
 被成膜基板25を図1に示す真空チャンバー21内に挿入し、この真空チャンバー21内の保持電極23上に被成膜基板25を保持する。
 次に、排気ポンプによって真空チャンバー21内を真空排気する。次いで、ガスシャワー電極22の供給口からシャワー状の原料ガスを、図1のガス供給装置によって真空チャンバー21内に導入して被成膜基板25の表面に供給する。
 以下に原料ガスの真空チャンバー21への供給方法について詳細に説明する。
 容器16内の固体の昇華性の有機化合物を加熱機構20によって加熱して昇華させる。次いで、第1及び第2のバルブ13,14を開き、キャリアガス供給源11からキャリアガスをマスフローコントローラー12及び配管を通して熱交換器15に導入し、熱交換器15によってキャリアガスを所定の温度(例えば100℃以上)に加熱する。次いで、その加熱されたキャリアガスを第2の配管18を通して容器16内に導入する。そして、容器内16で昇華した気体の有機化合物をキャリアガスとともに第1の配管19及びガスシャワー電極22の内部のガス導入経路を通して供給口から真空チャンバー21に供給する。この際、加熱機構20によって第2の配管18及び第1の配管19を所定の温度に加熱しているため、キャリアガス及び気体の有機化合物の温度が低下するのを抑制できる。
 なお、本実施形態では、所定の温度に加熱したキャリアガスを容器16に導入しているが、キャリアガスを加熱せずに容器16に導入してもよい。
 有機化合物17は、フラーレン、アダマンタン、ジアマンタン、トリアマンタン及びテトラマンタンのいずれかを用いることができる。キャリアガスは、He、N、F、Ne、Ar、Kr及びXeの群から選択された少なくとも一つのガスを有するガスを用いることができる。
 ただし、有機化合物に、アダマンタン、ジアマンタン、トリアマンタン及びテトラマンタンのいずれかを用いた場合は、キャリアガスにHガスまたはHガスを有するガスを用いることが好ましい。その理由は、前述したように水素ガスがエッチングの作用をして、アダマンタン等の中の水素を成膜された炭素膜から除去することができるからである。
 上述したように、真空チャンバー21内の被成膜基板25の表面に供給された原料ガス(気体の有機化合物とキャリアガス)は、保持電極23とアースシールド24との間を通って真空チャンバー21の外側へ排気ポンプによって排気される。そして、原料ガスの供給量と排気のバランスにより、所定の圧力、原料ガス流量に制御することにより真空チャンバー21内を原料ガス雰囲気とし、高周波電源26により例えば13.56MHzの高周波(RF)を印加し、プラズマを発生させて原料ガスをプラズマ状態とする。これにより、被成膜基板25の磁性層25bの上に炭素膜41を成膜する。この際、被成膜基板25を保持電極23の内部の冷却機構により冷却することで、被成膜基板25の温度を100℃以下とするとよい。
 次いで、高周波電源26からの電力供給を停止し、ガスシャワー電極22の供給口からの原料ガスの供給を停止し、成膜処理を終了する。このようして被成膜基板25上に形成された炭素膜41の密度は2.0g/cm以上(好ましくは2.1g/cm以上、より好ましくは2.2g/cm以上)であるとよく、また炭素膜41の水素濃度は20原子%以下(好ましくは15原子%以下、より好ましくは10原子%以下)であるとよい。
 この後、炭素膜41をフッ素系のフォンブリン油にディッピングすることにより、炭素膜41の上にはフォンブリン油が塗布される。次に、被成膜基板25を150℃の温度で1時間アニールすることにより、炭素膜41上には固体潤滑剤として機能する膜厚4nmのフッ化有機膜42が形成される。なお、フッ化有機膜42の作製方法として蒸着法を用いても良く、その場合の蒸着温度は110℃である。
 本実施形態のガス供給装置によれば、容器16内の固体の昇華性の有機化合物を加熱して昇華させ、その昇華した気体の有機化合物をキャリアガスとともに真空チャンバー21に供給するため、分子量の大きい固体の昇華性の有機化合物を原料ガスとして真空チャンバー内に供給することが可能となる。
 また、本実施形態によれば、フラーレン等の分子量の大きい昇華性の有機化合物を原料ガスとして用いたプラズマCVD法により炭素膜41を被成膜基板25上に成膜するため、高密度で低水素濃度の炭素膜を作製することが可能となる。また、炭素膜41中の水素濃度を20原子%以下とすることで、炭素膜の耐熱性を向上させることができる。
 また、本実施形態によれば、密度が2.0g/cm以上で水素濃度が20原子%以下の炭素膜41を、温度が100℃以下の低温の被成膜基板25上に成膜することができる。つまり、本実施形態では、高密度で低水素濃度の炭素膜41を低温の被成膜基板25上に成膜することが可能である。
 また、本実施形態によれば、高密度で低水素濃度の炭素膜41を磁気記録媒体のカーボン保護膜として用いるため、カーボン保護膜の更なる薄膜化が期待できる。
[第2の実施形態]
 本実施形態は、図3に示すフッ化有機膜42を第1の実施形態とは異なる方法で形成し、その他については第1の実施形態と同一であるので、以下に異なる点についてのみ説明する。
 本実施形態によるフッ化有機膜を成膜する装置は、図1に示す成膜装置においてガス供給装置をフッ化有機膜の原料ガスを供給する装置に変更したプラズマCVD装置である。原料ガスとしては、炭素とフッ素を含む有機物原料ガスを有するものを用いることができる。この有機物原料ガスは3個以上の炭素を含むことが好ましい。
 次に、上述したプラズマCVD装置を用いて図3に示す炭素膜41の上にフッ化有機膜を形成する工程について説明する。
 本実施形態では、C膜、C膜、C膜、C膜、C膜、C膜及びC膜のいずれかの膜を用いる。ただし、a,b,c,d,eは、自然数である。
 以下にC膜、C膜、C膜、C膜、C膜、C膜及びC膜のいずれかの膜の成膜について詳細に説明する。
 被成膜基板25を図3に示す真空チャンバー21内に挿入し、この真空チャンバー21内の保持電極23上に被成膜基板25を保持する。
 次に、排気ポンプによって真空チャンバー21内を真空排気する。次いで、ガスシャワー電極22の供給口からシャワー状の原料ガスを、真空チャンバー21内に導入して被成膜基板25の表面に供給する。この供給された原料ガスは、保持電極23とアースシールド24との間を通って真空チャンバー21の外側へ排気ポンプによって排気される。そして、原料ガスの供給量と排気のバランスにより、所定の圧力、原料ガス流量に制御することにより真空チャンバー21内を原料ガス雰囲気とし、高周波電源26により例えば13.56MHzの高周波(RF)を印加し、プラズマを発生させることにより被成膜基板25の炭素膜41の上にフッ化有機膜42を成膜する。この際の成膜条件は、圧力が0.01Pa~大気圧、処理温度が常温で、高周波プラズマを形成する際の直流電圧成分が+150V~-150V(より好ましくは+50V~-50V)である条件で行うことが好ましい。このように直流電圧成分を低く抑えることにより、フッ化有機膜42より下層の膜へのプラズマダメージを抑制することができる。
 次いで、高周波電源26からの電力供給を停止し、ガスシャワー電極22の供給口からの原料ガスの供給を停止し、成膜処理を終了する。
 上記の原料ガスとしては、炭素とフッ素を含む有機物原料ガスを有するものを用いることが好ましい。
 有機物原料ガスの具体例は、以下のとおりである。
 フッ化有機膜としてC膜を成膜する場合の有機物原料ガスは、C、C、C、C12、C14、C、C14、C16、C16、C18、C18、C20、C10、C1018、C1120、C1210、C1328、C1532、C2042、及びC2450の少なくとも一つを有するものである。
 フッ化有機膜としてC膜を成膜する場合の有機物原料ガスは、C、CN、CN、C、C、C12、C15N、CN、C、C21N、C12、C1227N、C14、C1533N、C2445、及びトリヘプタフルオロプロピルアミンの少なくとも一つを有するものである。
 フッ化有機膜としてC膜を成膜する場合の有機物原料ガスは、CO、C、CO、C、C、C10、C、CO、C、C14、C1310O、C1310、及びCO(CO)n(CFO)mの少なくとも一つを有するものである。
 フッ化有機膜としてC膜を成膜する場合の有機物原料ガスは、CNOを有するものである。
 また、有機物原料ガスとしては、パーフルオロアミン類のトリヘプタフルオロプロピルアミン(第3級アミン類)を用いることができる。
Figure JPOXMLDOC01-appb-C000001
 なお、本実施形態では、高周波電源26を用いているが、直流電源またはマイクロ波電源を用いても良い。このように直流電源を用いることで直流プラズマを形成する際の直流電圧は、+150V~-150V(より好ましくは+50V~-50V)であることが好ましい。
 このようにして被成膜基板25の炭素膜41の上に成膜されたC膜、C膜、C膜、C膜、C膜、C膜及びC膜のいずれかの膜は、その膜厚が3nm以下(より好ましくは1nm以下)であり、水の接触角が大きく撥水性であり、固体潤滑剤として機能する。この膜はアモルファス膜であることが好ましい。また、この膜のヤング率は0.1~30GPaであることが好ましい。
[第3の実施形態]
 図4は、本発明の一態様に係るガス供給装置を備えた成膜装置を概略的に示す構成図であり、図1と同一部分には同一符号を付し、異なる部分についてのみ説明する。
 図4に示すように、保持電極23はパルス機能付DC電源(直流電源)113に電気的に接続されており、パルス機能付DC電源113は接地電位27に電気的に接続されている。
1/100ms以上1ms以下の周期(1kHz以上100kHz以下)
 パルス機能付DC電源113は、保持電極23に直流電圧を、1/350ms以上1/5ms以下の周期(5kHz以上350kHz以下)で0%超100%未満(好ましくは25%以上90%以下、より好ましくは25%以上75%以下、更に好ましくは25%以上60%以下、より更に好ましくは25%以上45%以下)のDUTY比のパルス状に供給するものである。
 DUTY比は、1周期の間で被成膜基板25に直流電圧が印加される期間の比率である。例えば、25%のDUTY比の場合は、1周期の25%の期間が被成膜基板25に直流電圧が印加される期間(直流電圧オンの期間)となり、1周期の75%の期間が被成膜基板25に直流電圧が印加されない期間(直流電圧オフの期間)となる。詳細には、例えば1secの周期(1Hzの周波数)で25%のDUTY比の場合は、1sec(1周期)の25%の1/4secの期間が直流電圧オンの期間となり、1sec(1周期)の75%の3/4secの期間が直流電圧オフの期間となる。
[第4の実施形態]
 図5は、本発明の一態様に係るガス供給装置を備えた成膜装置を概略的に示す構成図であり、図1と同一部分には同一符号を付す。
 <ガス供給装置>
 図5に示すガス供給装置は、図1に示すガス供給装置と同様である。
 <成膜装置>
 次に、図5に示す成膜装置(プラズマCVD装置)について説明する。
 このプラズマCVD装置は被成膜基板(例えばディスク基板)1に対して左右対称の構造を有しており、被成膜基板1の両面に同時に成膜可能な装置であるが、図1では左側のみを示している。
 プラズマCVD装置は真空チャンバー102を有しており、この真空チャンバー102内には、例えばタンタルからなるフィラメント状のカソード電極(カソードフィラメント)103が形成されている。カソードフィラメント103の両端は真空チャンバー102の外部に位置するカソード電源(交流電源)105に電気的に接続されており、カソード電源105は真空チャンバー102に対して絶縁された状態で配置されている。
 カソード電源105は、図示せぬ制御部によって制御される。これにより、カソードフィラメント103に印加される電圧が制御される。なお、カソード電源105としては例えば0~50V、10~50A(アンペア)の電源を用いることができる。カソード電源105の一端は接地電位106に電気的に接続されている。
 真空チャンバー102内には、カソードフィラメント103それぞれの周囲を囲むようにロート状の形状を有するアノード電極(アノードコーン)104が配置されており、アノードコーン104はスピーカーのような形状とされている。
 アノードコーン104の被成膜基板1側には導電体からなるインナーシールド108が設けられており、インナーシールド108はアノードコーン104と分離して形成されている。インナーシールド108は、カソードフィラメント103及びアノードコーン104それぞれと被成膜基板1との間の空間を覆うように形成されている。また、インナーシールド108は円筒形状又は多角形状を有している。
 アノードコーン104はアノード電源(DC(直流)電源)107に電気的に接続されており、DC電源107は真空チャンバー102に対して絶縁された状態で配置されている。DC電源107のプラス電位側がアノードコーン104に電気的に接続されており、DC電源107のマイナス電位側が接地電位106に電気的に接続されている。
 DC電源107は、制御部によって制御される。これにより、アノードコーン104に印加される電圧が制御される。なお、DC電源107としては例えば0~500V、0~7.5A(アンペア)の電源を用いることができる。
 インナーシールド108の被成膜基板1側の端部には膜厚補正板118が設けられている。膜厚補正板118はインナーシールド108と一体的に形成されている。膜厚補正板118により被成膜基板1の外周部分に成膜される膜の厚さを制御することができる。なお、図1では膜厚補正板118をインナーシールド108と一体的に形成しているが、膜厚補正板118がインナーシールド108に電気的に接続されていれば膜厚補正板をインナーシールドと分離して形成してもよい。
 真空チャンバー102内には被成膜基板1が配置されており、この被成膜基板1はカソードフィラメント103及びアノードコーン104に対向するように配置されている。詳細には、カソードフィラメント103はアノードコーン104の内周面の中央部付近で包囲されており、アノードコーン104は、その最大内径側を被成膜基板1に向けて配置されている。
 被成膜基板1は、図示しないホルダー(保持部)および図示しないトランスファー装置(ハンドリングロボットあるいはロータリインデックスデーブル)により、図示の位置に、順次供給されるようになっている。
 被成膜基板1はイオン加速用電源としてのバイアス電源(DC電源,直流電源)112に電気的に接続されており、このDC電源112は真空チャンバー102に対して絶縁された状態で配置されている。このDC電源112のマイナス電位側が被成膜基板1に電気的に接続されており、DC電源112のプラス電位側が接地電位106に電気的に接続されている。
 DC電源112は、前記制御部によって制御される。これにより、被成膜基板1に印加される電圧が制御される。なお、DC電源112としては例えば0~1500V、0~100mA(ミリアンペア)の電源を用いることができる。
 なお、本成膜装置は、DC電源112をパルス制御するパルス制御部130を有していてもよい。その場合、被成膜基板1に印加される電圧が次のように制御される。DC電源112は、被成膜基板1に直流電圧を、1/100sec以上1sec以下の周期(1Hz以上100Hz以下の周波数)で10%以上95%以下(好ましくは30%以上75%以下)のDUTY比のパルス状に印加するように制御される。これにより、上記の直流電圧が被成膜基板1に供給される。パルス制御部130はシーケンサを有しているとよく、そのシーケンサが上記のパルス状に印加するようにDC電源112を制御するとよい。なお、本実施形態では、DC電源112により直流電圧を被成膜基板1に供給するが、DC電源112により直流電圧を被成膜基板1に直接供給してもよい。
 DUTY比は、1周期の間で被成膜基板1に直流電圧が印加される期間の比率である。例えば、25%のDUTY比の場合は、1周期の25%の期間が被成膜基板1に直流電圧が印加される期間(直流電圧オンの期間)となり、1周期の75%の期間が被成膜基板1に直流電圧が印加されない期間(直流電圧オフの期間)となる。詳細には、例えば1secの周期(1Hzの周波数)で25%のDUTY比の場合は、1sec(1周期)の25%の1/4secの期間が直流電圧オンの期間となり、1sec(1周期)の75%の3/4secの期間が直流電圧オフの期間となる。
 また、例えば図6は、100S/T%のDUTY比の場合を示しており、1周期の100S/T%の期間が直流電圧(250V)オンの期間となり、1周期の残りの100N/T%の期間が直流電圧オフの期間となる。なお、図6では、Tが0.2secであり、S及びNそれぞれが0.1secである。
 また、本実施の形態では、DC電源112によって被成膜基板1に直流電圧をパルス状に印加する際の当該パルス状を、1/100sec以上1sec以下の周期(1Hz以上100Hz以下の周波数)で10%以上95%以下のDUTY比としているが、当該パルス状を少なくとも1sec以下の周期(1Hz以上の周波数)で10%以上95%以下のDUTY比であれば、1/100sec未満(100Hz超の周波数)の周期を用いてもよい。
 DUTY比を10%以上とする理由は、DUTY比を10%以下にすると、成膜レート(膜の堆積スピード)が遅くなりすぎるためである。DUTY比を95%以下とする理由は、DUTY比を95%以上にすると、外周部の膜厚を厚くする効果がなくなるためである。
 また、本実施形態では、DUTY比を10%以上95%以下とし、1周期の10%以上95%以下の期間を被成膜基板1に直流電圧が印加される期間(直流電圧オンの期間)とし、1周期の残りの期間を被成膜基板1に直流電圧が印加されない期間(直流電圧オフの期間)としているが、1周期の10%以上95%以下の期間を被成膜基板1に第1の直流電圧が印加される期間とし、1周期の残りの期間を被成膜基板1に第2の直流電圧が印加される期間としてもよい。この場合、第2の直流電圧は第1の直流電圧の0%以上50%以下(好ましくは10%以上30%以下)の電圧値であるとよい。
 上記のようにパルス状に被成膜基板1に直流電圧を印加することで次のような効果が得られる。被成膜基板1上に成膜される炭素が主成分である保護膜の外周部の膜厚を確保しつつ中央部の膜厚を薄くできる。
 インナーシールド108の外側には、インナーシールド108を覆うように導電体または絶縁体からなるアウターシールド90が配置されており、このアウターシールド90は円筒形状又は多角形状を有している。また、アウターシールド90は、フロート電位または接地電位に電気的に接続されている。アウターシールド90は、真空チャンバー102とインナーシールド108の間の放電を防止する役割を有する。
 真空チャンバー102の外側にはネオジウム磁石109が配置されている。ネオジウム磁石109は例えば円筒形状又は多角形状を有しており、円筒形又は多角形の内径の中心は磁石中心となり、この磁石中心はカソードフィラメント103の略中心及び被成膜基板1の略中心それぞれと対向するように位置している。ネオジウム磁石109は、その磁石中心の磁力が50G(ガウス)以上200G以下であることが好ましく、より好ましくは50G以上150G以下である。磁石中心の磁力を200G以下とする理由は、ネオジウム磁石では磁石中心の磁力を200Gまで高めるのが製造上の限界であるからである。また、磁石中心の磁力を150G以下とするのがより好ましい理由は、磁石中心の磁力を150G超とすると磁石を作るコストが増大するからである。
 また、プラズマCVD装置は真空チャンバー102内を真空排気する真空排気機構(図示せず)を有している。また、ガス導入部102aは第1の配管19に接続されている。
 <磁気記録媒体の製造方法>
 まず、非磁性基板の上に少なくとも磁性層を形成した被成膜基板1を用意する。なお、被成膜基板1は、例えばバードディスク基板、メディアヘッドなどである。
 次に、被成膜基板1の磁性層の上に膜厚2nm以下(好ましくは1nm以下、さらに好ましくは0.5nm以下)の炭素膜を図5に示す成膜装置を用いて成膜する。
 この炭素膜の成膜方法について以下に詳細に説明する。
 まず、前記真空排気機構を起動させ、真空チャンバー102の内部を所定の真空状態とし、ガス導入部102aから真空チャンバー102の内部にガス供給装置によって原料ガスを導入する。原料ガスの真空チャンバー102への供給方法は第1の実施形態と同様である。真空チャンバー102内が所定の圧力になった後、カソードフィラメント103にカソード電源105によって交流電流を供給することによりカソードフィラメント103が加熱される。
 また、被成膜基板1にDC電源112によって直流電流を供給する。また、アノードコーン104にDC電源107によって直流電流を供給する。
 カソードフィラメント103の加熱によって、カソードフィラメント103からアノードコーン104に向けて多量の電子が放出され、カソードフィラメント103とアノードコーン104との間でグロー放電が開始される。多量の電子によって真空チャンバー102の内部の原料ガスがイオン化され、プラズマ状態とされる。この際、ネオジウム磁石109によってカソードフィラメント103の近傍に位置する原料ガスをプラズマ化する領域に磁場が発生されているので、この磁場によってプラズマを高密度化することができ、イオン化効率を向上させることができる。そして、プラズマ状態の成膜原料分子は、被成膜基板1のマイナス電位によって直接に加速されて、被成膜基板1の方向に向かって飛走して、被成膜基板1の表面に付着される。これにより、被成膜基板1には炭素膜が形成される。
 このようして被成膜基板1上に形成された炭素膜の密度は2.0g/cm以上(好ましくは2.1g/cm以上、より好ましくは2.2g/cm以上)であるとよく、また炭素膜の水素濃度は20原子%以下(好ましくは15原子%以下、より好ましくは10原子%以下)であるとよい。
 この後、炭素膜をフッ素系のフォンブリン油にディッピングすることにより、炭素膜の上にはフォンブリン油が塗布される。次に、被成膜基板1を150℃の温度で1時間アニールすることにより、炭素膜上には固体潤滑剤として機能する膜厚4nmのフッ化有機膜が形成される。なお、フッ化有機膜42の作製方法として蒸着法を用いても良く、その場合の蒸着温度は110℃である。
 本実施形態においても第1の実施形態と同様の効果を得ることができる。
 また、第1乃至第4の実施形態を互いに適宜組み合わせて実施することも可能である。
 まず、基板を用意した。この基板は、φ6インチシリコンウェハである。
Figure JPOXMLDOC01-appb-T000002
 次に、図1に示すプラズマCVD装置を用いて表1に示す成膜条件で基板上に炭素膜を成膜した。この際、キャリアガスの熱交換器15による加熱温度は500℃であり、容器16内のフラーレンをマントルヒーターによって加熱する温度は650℃であり、第1及び第2の配管18,19を加熱する温度は600℃であった。なお、基板温度は保持電極23を冷却することで100℃以下に保持した。高周波電源26の周波数は13.56MHzである。
 本実施例では、表1に示すLow、Middle、Highの3種類のRFパワーそれぞれを用いて、3枚の基板に炭素膜を成膜した。この3枚の基板上の炭素膜の成膜レートとRFパワーの関係を図7に示す。
 図7に示すように、3枚の基板それぞれに炭素膜が成膜されたことが確認され、RFパワーが大きいほど成膜レートが速いことが確認された。
 また、比較例として原料ガスをフラーレンからトルエン(C)に変更し、その他の条件は全て同一として3枚の基板に炭素膜を成膜したサンプルを作製した。これらの比較例の3枚の基板の炭素膜及び実施例1の3枚の基板の炭素膜それぞれの膜密度とRFパワーの関係を図8に示し、炭素膜中の水素濃度とRFパワーの関係を図9に示す。
 図8に示すように、実施例1の炭素膜は、比較例の炭素膜に比べて膜密度が2.25g/cm~2.3g/cmと非常に高く、緻密な膜が成膜されていることが確認された。また、図9に示すように、実施例1の炭素膜は、比較例の炭素膜に比べて膜中の水素濃度が10原子%以下と非常に低いことが確認された。
 本実施例によれば、分子量の大きい昇華性の有機化合物であるフラーレン(C60)を原料ガスとして用いたプラズマCVD法により炭素膜を基板上に成膜できることが確認され、その炭素膜が高密度で低水素濃度であることが確認された。
 まず、基板を用意した。この基板は、φ4インチシリコンウェハである。
Figure JPOXMLDOC01-appb-T000003
 次に、図4に示すプラズマCVD装置を用いて表2に示す成膜条件で基板上に炭素膜を成膜した。この際、キャリアガスの熱交換器15による加熱温度は500℃であり、容器16内のフラーレンをマントルヒーターによって加熱する温度は650℃であり、第1及び第2の配管18,19を加熱する温度は600℃であった。
 本実施例では、表2に示すDC電圧を用いて、7枚の基板に炭素膜を成膜した。この7枚の基板上の炭素膜の成膜レートとDC電圧の関係を図10(B)に示す。また、炭素膜の成膜レートとArガス流量の関係を図10(A)に示す。
 図10(B)に示すように、7枚の基板それぞれに炭素膜が成膜されたことが確認された。
 本実施例によれば、分子量の大きい昇華性の有機化合物であるフラーレン(C60)を原料ガスとして用い、保持電極23に直流電圧を、1/350msの周期(350kHzの周波数)で38.5%のDUTY比のパルス状に印加するプラズマCVD法により炭素膜を基板上に成膜できることが確認された。
  1  被成膜基板
 11  キャリアガス供給源
 12  マスフローコントローラー(MFC)
 13  第1のバルブ
 14  第2のバルブ
 15  熱交換器
 16  容器
 17  昇華性の有機化合物
 18  第2の配管
 19  第1の配管
 20  加熱機構
 21  真空チャンバー
 22  ガスシャワー電極
 23  保持電極(保持部)
 24  アースシールド
 25  被成膜基板
 25a 非磁性基板
 25b 磁性層
 26  高周波電源(RF)
 27  接地電位
 41  炭素膜
 42  フッ化有機膜
 90  アウターシールド
102  真空チャンバー
103  カソード電極(カソードフィラメント)
104  アノード電極(アノードコーン)
105  カソード電源(交流電源)
106  接地電位
107  アノード電源(DC(直流)電源)
108  インナーシールド
109  ネオジウム磁石
112  バイアス電源(DC電源,直流電源)
113  パルス機能付DC電源(直流電源)
118  膜厚補正板
130  パルス制御部

Claims (28)

  1.  真空チャンバーにガスを供給するガス供給装置であって、
     前記真空チャンバーに第1の配管によって接続された容器と、
     前記容器を加熱する第1の加熱機構と、
     前記容器内に収容された固体の昇華性の有機化合物と、
     前記容器に第2の配管によって接続されたキャリアガス供給源と、
    を具備することを特徴とするガス供給装置。
  2.  請求項1において、
     前記有機化合物は、フラーレン、アダマンタン、ジアマンタン、トリアマンタン及びテトラマンタンのいずれかであることを特徴とするガス供給装置。
  3.  請求項1または2において、
     前記キャリアガスは、He、N、F、Ne、Ar、Kr及びXeの群から選択された少なくとも一つのガスを有することを特徴とするガス供給装置。
  4.  請求項1において、
     前記有機化合物は、アダマンタン、ジアマンタン、トリアマンタン及びテトラマンタンのいずれかであり、
     前記キャリアガスは、Hガスを有することを特徴とするガス供給装置。
  5.  請求項1乃至4のいずれか一項において、
     前記キャリアガス供給源と前記容器との間に配置され、前記キャリアガス供給源から供給されるキャリアガスの温度を上昇させるための熱交換器を有することを特徴とするガス供給装置。
  6.  請求項1乃至5のいずれか一項において、
     前記第1の配管を加熱する第2の加熱機構を有することを特徴とするガス供給装置。
  7.  請求項1乃至5のいずれか一項に記載のガス供給装置と、
     前記真空チャンバーと、
     前記真空チャンバー内に配置され、被成膜基板を保持する保持部と、
     前記真空チャンバー内に配置され、前記保持部に保持された前記被成膜基板に対向する電極と、
     前記保持部または前記電極の一方に電力を供給する電源と、
     前記保持部または前記電極の他方に電気的に接続する接地電位と、
    を具備することを特徴とする成膜装置。
  8.  請求項7において、
     前記電源はパルス機能付高周波電源であり、
     前記パルス機能付高周波電源は、前記保持部または前記電極の一方に、10kHz以上30MHz以下の高周波出力を、1/100ms以上1ms以下の周期で0%超100%未満のDUTY比のパルス状に供給するものであることを特徴とする成膜装置。
  9.  請求項7において、
     前記電源はパルス機能付直流電源であり、
     前記パルス機能付直流電源は、前記保持部または前記電極の一方に、1/350ms以上1/5ms以下の周期で0%超100%未満のDUTY比のパルス状に供給するものであることを特徴とする成膜装置。
  10.  請求項1乃至5のいずれか一項に記載のガス供給装置と、
     前記真空チャンバーと、
     前記真空チャンバー内に配置されたアノードと、
     前記真空チャンバー内に配置されたカソードと、
     前記真空チャンバー内に配置され、前記カソード及び前記アノードに対向するように配置される被成膜基板を保持する保持部と、
     前記アノードに電気的に接続された第1の直流電源と、
     前記カソードに電気的に接続された交流電源と、
     前記保持部に保持された前記被成膜基板に電気的に接続された第2の直流電源と、
    を具備することを特徴とする成膜装置。
  11.  請求項10において、
     前記保持部に保持された前記被成膜基板に第1の電圧を、1sec以下の周期で10%以上95%以下のDUTY比のパルス状に印加するように前記第2の直流電源を制御する制御部を有することを特徴とする成膜装置。
  12.  真空チャンバーにガスを供給するガス供給方法であって、
     固体の昇華性の有機化合物を加熱して昇華させ、その昇華した気体の有機化合物をキャリアガスとともに前記真空チャンバーに供給することを特徴とするガス供給方法。
  13.  請求項12において、
     前記有機化合物は、フラーレン、アダマンタン、ジアマンタン、トリアマンタン及びテトラマンタンのいずれかであることを特徴とするガス供給方法。
  14.  請求項12または13において、
     前記キャリアガスは、He、N、F、Ne、Ar、Kr及びXeの群から選択された少なくとも一つのガスを有することを特徴とするガス供給方法。
  15.  請求項12において、
     前記有機化合物は、アダマンタン、ジアマンタン、トリアマンタン及びテトラマンタンのいずれかであり、
     前記キャリアガスは、Hガスを有することを特徴とするガス供給方法。
  16.  フラーレンを加熱して昇華させ、その昇華した気体のフラーレンをキャリアガスとともに真空チャンバー内に供給し、前記真空チャンバー内で前記フラーレンをプラズマ状態とすることで被成膜基板上に炭素膜を形成する炭素膜の作製方法であり、
     前記炭素膜の密度が2.0g/cm以上であり、
     前記炭素膜の水素濃度が20原子%以下であることを特徴とする炭素膜の作製方法。
  17.  請求項16において、
     前記キャリアガスの温度は100℃以上であることを特徴とする炭素膜の作製方法。
  18.  請求項16または17において、
     前記被成膜基板の温度は100℃以下であることを特徴とする炭素膜の作製方法。
  19.  非磁性基板上に磁性層を形成し、
     前記磁性層上に炭素膜を形成し、
     前記炭素膜上にフッ化有機膜を形成する磁気記録媒体の製造方法であり、
     前記炭素膜は、フラーレンを加熱して昇華させ、その昇華した気体のフラーレンをキャリアガスとともに真空チャンバー内に供給し、前記真空チャンバー内で前記フラーレンをプラズマ状態とすることで形成されることを特徴とする磁気記録媒体の製造方法。
  20.  請求項19において、
     前記炭素膜の密度が2.0g/cm以上であり、
     前記炭素膜の水素濃度が20原子%以下であることを特徴とする磁気記録媒体の製造方法。
  21.  請求項19または20において、
     前記フッ化有機膜は、C膜、C膜、C膜、C膜、C膜、C膜及びC膜のいずれかの膜であることを特徴とする磁気記録媒体の製造方法。
     ただし、a,b,c,d,eは、自然数である。
  22.  請求項21において、
     前記C膜、C膜、C膜、C膜、C膜、C膜及びC膜それぞれはアモルファス膜であることを特徴とする磁気記録媒体の製造方法。
     ただし、a,b,c,d,eは、自然数である。
  23.  請求項21または22において、
     前記フッ化有機膜の厚さは3nm以下であることを特徴とする磁気記録媒体の製造方法。
  24.  請求項21乃至23のいずれか一項において、
     前記フッ化有機膜は、炭素とフッ素を含む有機物ガスを有する原料ガスを用いたCVD法により形成されることを特徴とする磁気記録媒体の製造方法。
  25.  請求項24において、
     前記有機物ガスが3個以上の炭素を含むことを特徴とする磁気記録媒体の製造方法。
  26.  請求項21乃至25のいずれか一項において、
     前記炭素膜上に前記C膜を形成する場合の前記有機物ガスは、C、C、C、C12、C14、C、C14、C16、C16、C18、C18、C20、C10、C1018、C1120、C1210、C1328、C1532、C2042、及びC2450の少なくとも一つを有し、
     前記炭素膜上に前記C膜を形成する場合の前記有機物ガスは、C、CN、CN、C、C、C12、C15N、CN、C、C21N、C12、C1227N、C14、C1533N、C2445、及びトリヘプタフルオロプロピルアミンの少なくとも一つを有し、
     前記炭素膜上に前記C膜を形成する場合の前記有機物ガスは、CO、C、CO、C、C、C10、C、CO、C、C14、C1310O、C1310、及びCO(CO)n(CFO)mの少なくとも一つを有し、
     前記炭素膜上に前記C膜を形成する場合の前記有機物ガスは、CNOを有することを特徴とする磁気記録媒体の製造方法。
  27.  請求項24または25において、
     前記有機物ガスとしてパーフルオロアミン類を用いることを特徴とする磁気記録媒体の製造方法。
  28.  請求項24、25及び27のいずれか一項において、
     前記原料ガスを用いたCVD法は、前記非磁性基板を保持部に保持し、前記保持部に保持された前記非磁性基板に対向する電極を配置し、前記保持部および前記電極の一方に電力を供給して直流プラズマを形成する際の直流電圧または高周波プラズマを形成する際の直流電圧成分を+150V~-150Vとすることを特徴とする磁気記録媒体の製造方法。
PCT/JP2017/007857 2016-04-22 2017-02-28 ガス供給装置、成膜装置、ガス供給方法、炭素膜の作製方法及び磁気記録媒体の製造方法 WO2017183313A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-086356 2016-04-22
JP2016086356 2016-04-22

Publications (1)

Publication Number Publication Date
WO2017183313A1 true WO2017183313A1 (ja) 2017-10-26

Family

ID=60116747

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/007857 WO2017183313A1 (ja) 2016-04-22 2017-02-28 ガス供給装置、成膜装置、ガス供給方法、炭素膜の作製方法及び磁気記録媒体の製造方法

Country Status (2)

Country Link
TW (1) TW201802799A (ja)
WO (1) WO2017183313A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210082692A1 (en) * 2019-09-17 2021-03-18 Asm Ip Holding B.V. Method of forming a carbon-containing layer and structure including the layer

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0644558A (ja) * 1992-07-24 1994-02-18 Matsushita Electric Ind Co Ltd 磁気記録媒体
JP2000123348A (ja) * 1992-11-19 2000-04-28 Semiconductor Energy Lab Co Ltd 保護膜
JP2004300486A (ja) * 2003-03-28 2004-10-28 Fujitsu Ltd カーボン保護膜及びその形成方法、並びにそのカーボン保護膜を備えた磁気記録媒体、磁気ヘッド、及び磁気記憶装置
JP2006069889A (ja) * 2005-11-07 2006-03-16 Nissin Electric Co Ltd 炭素膜片製造方法及び膜片製造装置
WO2006134781A1 (ja) * 2005-06-16 2006-12-21 Kyocera Corporation 堆積膜形成方法、堆積膜形成装置、堆積膜およびこれを用いた感光体
JP2008140880A (ja) * 2006-11-30 2008-06-19 Tokyo Electron Ltd 薄膜の形成方法、成膜装置及び記憶媒体
JP2010531932A (ja) * 2007-06-28 2010-09-30 サブ−ワン テクノロジー, インコーポレイテッド ダイアモンドイド前駆体を用いた外面上の非晶質炭素被膜の作製方法
JP2011054789A (ja) * 2009-09-02 2011-03-17 Hitachi Kokusai Electric Inc 基板処理装置
WO2013061398A1 (ja) * 2011-10-24 2013-05-02 株式会社ユーテック CxNyHz膜、成膜方法、磁気記録媒体およびその製造方法
JP2014025116A (ja) * 2012-07-27 2014-02-06 Yuutekku:Kk プラズマcvd装置及び磁気記録媒体の製造方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0644558A (ja) * 1992-07-24 1994-02-18 Matsushita Electric Ind Co Ltd 磁気記録媒体
JP2000123348A (ja) * 1992-11-19 2000-04-28 Semiconductor Energy Lab Co Ltd 保護膜
JP2004300486A (ja) * 2003-03-28 2004-10-28 Fujitsu Ltd カーボン保護膜及びその形成方法、並びにそのカーボン保護膜を備えた磁気記録媒体、磁気ヘッド、及び磁気記憶装置
WO2006134781A1 (ja) * 2005-06-16 2006-12-21 Kyocera Corporation 堆積膜形成方法、堆積膜形成装置、堆積膜およびこれを用いた感光体
JP2006069889A (ja) * 2005-11-07 2006-03-16 Nissin Electric Co Ltd 炭素膜片製造方法及び膜片製造装置
JP2008140880A (ja) * 2006-11-30 2008-06-19 Tokyo Electron Ltd 薄膜の形成方法、成膜装置及び記憶媒体
JP2010531932A (ja) * 2007-06-28 2010-09-30 サブ−ワン テクノロジー, インコーポレイテッド ダイアモンドイド前駆体を用いた外面上の非晶質炭素被膜の作製方法
JP2011054789A (ja) * 2009-09-02 2011-03-17 Hitachi Kokusai Electric Inc 基板処理装置
WO2013061398A1 (ja) * 2011-10-24 2013-05-02 株式会社ユーテック CxNyHz膜、成膜方法、磁気記録媒体およびその製造方法
JP2014025116A (ja) * 2012-07-27 2014-02-06 Yuutekku:Kk プラズマcvd装置及び磁気記録媒体の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210082692A1 (en) * 2019-09-17 2021-03-18 Asm Ip Holding B.V. Method of forming a carbon-containing layer and structure including the layer

Also Published As

Publication number Publication date
TW201802799A (zh) 2018-01-16

Similar Documents

Publication Publication Date Title
JP6673903B2 (ja) 高密度高Sp3含有層を実現するための高電力インパルスマグネトロンスパッタリング処理
JP6311963B2 (ja) 成膜方法及び磁気記録媒体の製造方法
JP5095524B2 (ja) プラズマcvd装置及び磁気記録媒体の製造方法
WO2017183313A1 (ja) ガス供給装置、成膜装置、ガス供給方法、炭素膜の作製方法及び磁気記録媒体の製造方法
JP3836991B2 (ja) 製膜方法および磁気記録媒体の製造方法
JP7129083B2 (ja) BxNyCzOw膜の成膜方法、磁気記録媒体およびその製造方法
WO2016208094A1 (ja) 真空アーク成膜装置および成膜方法
JP6007380B2 (ja) プラズマcvd装置及び磁気記録媒体の製造方法
JP6044042B2 (ja) プラズマcvd装置及び磁気記録媒体の製造方法
JP6055575B2 (ja) 真空処理装置及び真空処理方法
JP2018048410A (ja) CxNyHz膜、成膜方法、磁気記録媒体およびその製造方法
JP5982678B2 (ja) プラズマcvd装置及び磁気記録媒体の製造方法
JP7219941B2 (ja) プラズマcvd装置、磁気記録媒体の製造方法及び成膜方法
JP3930184B2 (ja) Cvd装置および磁気記録媒体の製造方法
JP6713623B2 (ja) プラズマcvd装置、磁気記録媒体の製造方法及び成膜方法
JP3305654B2 (ja) プラズマcvd装置および記録媒体
JP5997417B1 (ja) 真空アーク成膜装置および成膜方法
JP3930181B2 (ja) Cvd装置および製膜方法ならびに磁気記録媒体の製造方法
US20200294773A1 (en) Plasma processing method and plasma processing apparatus
JP3930185B2 (ja) 製膜方法および磁気記録媒体の製造方法
JPH04314864A (ja) 基体表面のプラズマクリーニング方法
JP2007262480A (ja) 真空成膜装置および成膜方法
JP2000226658A (ja) Cvd装置および磁気記録媒体の製造方法
JP2000226657A (ja) 製膜方法および磁気記録媒体の製造方法
JP2003239062A (ja) カソーディックアーク成膜方法、保護膜および成膜装置

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17785658

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17785658

Country of ref document: EP

Kind code of ref document: A1