WO2017179365A1 - スラグの分析方法及び溶融鉄の精錬方法 - Google Patents

スラグの分析方法及び溶融鉄の精錬方法 Download PDF

Info

Publication number
WO2017179365A1
WO2017179365A1 PCT/JP2017/011089 JP2017011089W WO2017179365A1 WO 2017179365 A1 WO2017179365 A1 WO 2017179365A1 JP 2017011089 W JP2017011089 W JP 2017011089W WO 2017179365 A1 WO2017179365 A1 WO 2017179365A1
Authority
WO
WIPO (PCT)
Prior art keywords
slag
refining
furnace
molten iron
hot metal
Prior art date
Application number
PCT/JP2017/011089
Other languages
English (en)
French (fr)
Inventor
匡生 猪瀬
智治 石田
哲史 城代
克美 山田
泰志 小笠原
孝彦 前田
直哉 澁田
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to JP2017535942A priority Critical patent/JP6210185B1/ja
Priority to BR112018071126-8A priority patent/BR112018071126B1/pt
Priority to KR1020187028901A priority patent/KR102214879B1/ko
Priority to CN201780022352.9A priority patent/CN109073575B/zh
Publication of WO2017179365A1 publication Critical patent/WO2017179365A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C1/00Refining of pig-iron; Cast iron
    • C21C1/02Dephosphorising or desulfurising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C1/00Refining of pig-iron; Cast iron
    • C21C1/04Removing impurities other than carbon, phosphorus or sulfur
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/223Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material by irradiating the sample with X-rays or gamma-rays and by measuring X-ray fluorescence

Definitions

  • the element to be analyzed is preferably at least two kinds including calcium and silicon, which are essential for the evaluation of basicity.
  • elements to be analyzed other than calcium and silicon include magnesium (Mg), iron (Fe), and titanium. (Ti), manganese (Mn), phosphorus (P), sulfur (S), etc. are mentioned.
  • the collected slag sample piece is porous and has many voids. For this reason, even if the slag surface is smoothed by polishing or the like so as to adopt the direct method, there are fine pores in some places, and the basicity based on the analysis value obtained by analyzing the collected sample is measured. It varies widely depending on the position. Another problem is that the basicity obtained by the direct method has a high measured value. This is considered that the apparent basicity increases because the fluorescent X-ray intensity from silicon belonging to the soft X-ray region is attenuated by the air present in the voids of the slag sample piece.
  • the thickness of the slag particle group in the measurement container is sufficient as long as the bottom of the measurement container is completely hidden.
  • the surface of the slag particle group may be inclined or mountain-shaped, but in such a case, the measurement container may be flattened by applying vibrations. In other words, it is only necessary to secure a portion where the X-ray irradiation part of the hand-held X-ray fluorescence analyzer is brought into contact with no gap. That is, there is no restriction on the filling method as long as a portion that allows the X-ray irradiation part of the handheld X-ray fluorescence analyzer to contact without gaps can be secured.
  • a sample for analysis was prepared using a briquette method and a glass bead method (process analysis method), and slag basicity was measured under the same conditions as described above.
  • Fig. 1 shows the measurement results of slag basicity of each analytical sample.
  • the basicity of slag is about 1.20 in both analytical samples prepared by the briquette method and the glass bead method, and the basicity of slag used for the test is about 1.20.
  • the measured value of the slag basicity of the sample for analysis as collected is about 2.40, which decreases as the particle size of the slag particles becomes smaller, and the particle size of the slag particles becomes 0.1 mm.
  • the thickness was less than 1.2 mm and when the thickness was 1.2 mm or more and less than 2.0 mm, the basicity was almost equal to the analytical sample prepared by the briquette method and the glass bead method.
  • the particle size distribution of the slag particles passing through the sieve is 100% particle size (cumulative mass percentage is 100% in a cumulative particle size distribution curve expressed as mass percentage as a fine curve with zero as the fine particle side.
  • Table 1 shows the measurement results of basicity.
  • the particle size of the slag particles As described above, the attenuation of the fluorescent X-ray intensity of silicon due to the voids is reduced to a negligible level, the analysis accuracy is improved, and the basicity analysis value is determined by the briquette method or glass beads. It became clear that it was almost the same as the analytical value obtained by the law.
  • the time required to crush and screen the slag particles to make an analysis sample is about 30 seconds, and the basicity of the slag can be measured in a short time of about 1 minute when combined with the subsequent analysis time. Met.
  • the slag can be pulverized to the above particle size, there is no restriction on the pulverization method. For example, by adjusting the gap width of the jaw crusher to an appropriate setting value, D 90 ⁇ 2.0 mm is satisfied. Slag particles having a particle size can be obtained.
  • the slag sample With D 90 ⁇ 2.0 mm results almost the same good results as basicity as determined by briquettes method or glass bead method is obtained, of extensive further study, It was found that the analysis accuracy tends to decrease as the content of fine powdered slag particles increases. The reason for this is that the obtained sample is non-uniform as a mixture of fine pulverized slag and granular slag, that is, a portion with a large proportion of granular slag and a portion with a large proportion of fine pulverized slag. In addition, it is considered that there is a bias in the sample.
  • each slag particle group was filled into a cylindrical (petriform) measurement container having an inner diameter of 90 mm to obtain an analysis sample, and the slag basicity was determined by a handheld X-ray fluorescence analyzer (measuring point 6). Point).
  • Table 2 shows the measurement results of basicity.
  • the slag sample for the base measurement it was found to be essential is D 10 ⁇ 0.1 mm and D 90 ⁇ 2.0 mm.
  • the aperture size passes through a 2.0 mm sieve and the aperture size is
  • an analysis sample having a desired particle diameter of 2.0 mm or less and from which fine particles are removed can be obtained.
  • the operation time required for sieving is sufficiently shortened by using a sieve having an opening size of 2.0 mm and a sieve having an opening size of 0.1 mm, which is suitable for rapid analysis. It is.
  • slag is sampled during the intermediate slagging process from the end of the desiliconization process, and the collected slag is converted to the machine side of the converter type refining furnace. Then, a simple sample preparation process of coarse pulverization and sieving is performed, and slag particles satisfying D 10 ⁇ 0.1 mm and D 90 ⁇ 2.0 mm are collected. Thereafter, the collected slag particles are filled into a measurement container to obtain an analysis sample, the composition of the slag is quantitatively analyzed by fluorescent X-ray analysis, and the basicity of the slag is measured from the analysis value.
  • a desiliconization process for desiliconizing the hot metal discharged from the blast furnace, and the desiliconized hot metal was left in the converter-type smelting furnace.
  • An intermediate waste process for discharging the desiliconization slag generated by the desiliconization process in the state from the converter type refining furnace, and a dephosphorization process for removing the phosphorus remaining in the converter type refining furnace A molten iron refining method in which a hot metal process is performed in this order and a hot metal process in which the dephosphorized hot metal is discharged from the converter-type refining furnace in this order, and the hot metal is pretreated.
  • the composition of the slag is quantitatively analyzed by the slag analysis method according to the present invention, and the basicity of the desiliconized slag is obtained based on the analysis result.
  • the slag sample piece used for the analysis sample is not particularly limited as long as it can be collected during the intermediate evacuation process from the end of the desiliconization process.
  • Slag sample pieces can be collected from the converter smelting furnace using a sub lance immediately after the desiliconization process is completed, slag is collected from the tilted furnace port during intermediate discharge, after discharge
  • a method of collecting from the slag in the slag container can be employed.
  • FIG. 2 shows the basicity of desiliconized slag obtained from the basicity of the desiliconized slag obtained by the slag analyzing method according to the present invention and the analytical value of the analytical sample prepared by the briquette method carried out in the analysis room. It is a figure which compares and shows a degree. As shown in FIG. 2, it can be confirmed that there is a good linear relationship between the two. Details regarding FIG. 2 will be described later.
  • a conventional dephosphorization process is performed in which gaseous oxygen or iron oxide is supplied into the furnace as an oxygen source.
  • the target value of slag basicity is set from the target concentration value of hot metal before hot phosphorus removal, hot metal phosphorus temperature, hot metal phosphorus concentration after dephosphorization treatment, etc. and measured by applying the slag analysis method according to the present invention.
  • the addition amount of the CaO-based solvent is determined based on the material balance from the component analysis result of the desiliconized slag and the residual slag amount in the furnace.
  • the molten iron after dephosphorization is tilted in the converter-type smelting furnace and discharged into the hot metal container from the hot water outlet installed in the converter-type smelting furnace, while the slag after dephosphorization (dephosphorization process) Part or all of the slag produced in step 1 is referred to as “dephosphorization slag”) in the converter type refining furnace.
  • dephosphorization slag slag after dephosphorization (dephosphorization process) Part or all of the slag produced in step 1
  • new hot metal hot metal used in the next charge
  • desiliconization processing of the hot metal of the next charge is started. Since the slag of the previous charge remains in the converter type refining furnace after the next charge, the desiliconization treatment can be performed without adding a CaO-based solvent. However, when the slag basicity is lowered, a CaO-based solvent is added.
  • the addition amount of the CaO-based solvent is determined based on the mass balance from the amount of residual slag estimated from the mass measurement value of the slag storage container that stores the dephosphorization slag discharged in the waste disposal process.
  • the generated molten steel is tilted in the converter-type smelting furnace, and the molten steel is discharged from the hot water outlet installed in the converter-type smelting furnace into the molten steel container, and the slag after decarburization treatment (decarburized slag) ) Are left in the converter-type refining furnace.
  • new hot metal hot metal used in the next charge
  • dephosphorization processing for the next charge is started.
  • components other than calcium (Ca) and silicon (Si) in the slag can be analyzed by the same procedure. For example, by measuring and controlling the MgO content in the slag, It is possible to prepare a slag having an appropriate composition that is effective in prolonging life and has little expansion as a roadbed material.
  • an efficient dephosphorization treatment can be performed by measuring and controlling the FeO X content in the slag.
  • FeO X in the slag contributes to the oxidation of phosphorus in the hot metal and the hatching of the slag.
  • For efficient dephosphorization treatment 5 to 15% by mass of slag is contained in the slag. The presence of FeO X is desired. Therefore, in the dephosphorization of hot metal using a converter type refining furnace, an iron oxide-based medium solvent is used as a part of the iron making agent.
  • iron oxide-based medium solvent for controlling the FeO X content in the slag examples include iron ore powder, sintered ore powder that is a mixture of iron ore and quicklime, and dust collection dust in the iron making process.
  • FeO X refers to all iron oxides such as FeO and Fe 2 O 3 .
  • hot metal including desiliconization and dephosphorization
  • hot metal is decarburized using one converter-type smelting furnace.
  • the decarburization process to make molten steel is repeated, after the hot water (steeling), at least a part of the slag remains in the furnace and the molten iron is newly charged into the converter type refining furnace. Refining of molten iron with a charge of may be performed. This is performed in order to utilize the dephosphorization ability which the slag after a process has for the dephosphorization process and decarburization process of the hot metal of the next charge.
  • desiliconization, intermediate waste, and dephosphorization are performed in this order to preliminarily treat the molten iron.
  • desiliconized slag was collected from the converter type refining furnace.
  • Each collected slag was divided into two, and one was used for the slag analysis method (the method of the present invention) according to the present invention, and the other was used for the conventional slag analysis method (conventional method) implemented as a process analysis.
  • the basicity ((mass% CaO) / (mass% SiO 2 )) of desiliconized slag was compared between the method of the present invention and the conventional method. In the method of the present invention, everything from the preparation of the analysis sample to the analysis was performed on the machine side of the converter type refining furnace.
  • sample preparation method for analysis The analytical sample preparation method and analysis conditions in the method of the present invention are as follows.
  • Sample preparation method for analysis The slag is coarsely crushed with a jaw crusher set to a pulverization particle size of 2.0 mm, and further sieved with a sieve having an opening size of 0.1 mm and a sieve having an opening size of 2.0 mm. Then, slag particles of 0.1 mm or more and less than 2.0 mm were collected, and the collected slag particle group was filled in a measurement container to obtain an analysis sample.
  • sample preparation method for analysis A sample for analysis was prepared by the briquette method. Specifically, a sample obtained by pulverizing slag to a particle size of 75 ⁇ m or less, filling the pulverized slag into a dedicated metal container (diameter: 40 mm, thickness: 5 mm) and press-molding it was used as an analysis sample.
  • Analysis conditions Using a wavelength dispersive X-ray fluorescence analyzer (Rigaku Simultix), X-rays were irradiated at an output of 50 kV and 50 mA. The number of measurement points was 1 for each analysis sample, and calcium and silicon were used as elements to be analyzed. The calibration curve method was used as a method for quantifying calcium and silicon.
  • the slag analysis method according to the present invention is used to preliminarily treat the hot metal by performing desiliconization treatment, intermediate waste removal, and dephosphorization treatment in this order by using one converter-type refining furnace having a capacity of 250 tons.
  • the slag composition was analyzed, and refining (Example 1 of the present invention) was performed to determine the addition amount of the CaO-based solvent based on the slag composition analysis result.
  • the slag composition after the desiliconization treatment is analyzed at the time of intermediate discharge, and the basicity of the slag after the desiliconization treatment ((mass% CaO) / (mass% SiO 2 ) based on the slag composition analysis result. )).
  • decarburized slag is used as the CaO-based solvent, and the calculated value (calculated basicity) of the decarburized slag is 1.20 so that the decalcified slag basicity is 1.20. The amount added was adjusted.
  • desiliconization treatment was performed without adding decarburized slag.
  • the oxygen source was supplied according to the silicon concentration in the hot metal.
  • the basicity of the desiliconized slag was calculated by the formula (1) in the comparative example 1, and was calculated by the formula (2) in the present invention example 1.
  • B c, Si1 (n) [W S, P1 (n-1) ⁇ ⁇ 1 ⁇ B c, P1 (n-1) / ⁇ B c, P1 (n-1) +1 ⁇ + W SL, Si1 (n) ⁇ ⁇ 1 ] / [W S, P1 (n-1) ⁇ ⁇ 1 / ⁇ B c, P1 (n-1) +1 ⁇ + W SL, Si1 (n) ⁇ ⁇ 1 + (X Si1 (n) / 100) ⁇ W HM1 (n) ⁇ 60/28 ]...
  • B m, Si1 (n) (% CaO) m, Si1 (n) / (% SiO 2 ) m, Si1 (n)... (2)
  • the respective symbols are as follows.
  • the slag mass at the end of the desiliconization process was calculated using the formula (3) in the comparative example 1, and was calculated using the formula (4) in the present invention example 1.
  • W S, Si1 (n) ⁇ W S, P1 (n-1) ⁇ ⁇ 1 + W SL, Si1 (n) ⁇ ( ⁇ 1 + ⁇ 1 ) + X Si1 (n) / 100 ⁇ W HM1 (n ) ⁇ 60/28 ⁇ / ⁇ 1 ...
  • W S, Si1 (n) ⁇ W S, P1 (n-1) ⁇ ⁇ 1 + W SL, Si1 (n) ⁇ ( ⁇ 1 + ⁇ 1 ) + X Si1 (n) / 100 ⁇ W HM1 (n ) ⁇ 60/28 ⁇ / ⁇ ((% CaO) m, Si1 (n) + (% SiO 2 ) m, Si1 (n)) / 100 ⁇ ...
  • the symbols are as follows.
  • the calculated slag mass at the end of the dephosphorization treatment was calculated using the formula (7) in the comparative example 1, and was calculated using the formula (8) in the present invention example 1.
  • W S, P1 (n) [ ⁇ W S, Si1 (n) -W O, Si1 (n) ⁇ ⁇ ⁇ 1 + W CaO, P1 (n)] / ⁇ 1 ... (7)
  • W S, P1 (n) [ ⁇ W S, Si1 (n) -W O, Si1 (n) ⁇ ⁇ ⁇ (% CaO) m, Si1 (n) + (% SiO 2 ) m, Si1 (n) ⁇ / 100 + W CaO, P1 (n)] / ⁇ 1 ...
  • W S, P1 (n) is a calculated slag mass (t) at the end of the dephosphorization process of the n-th charge preliminary process.
  • the other symbols described in the equations (1) to (6) are as described above.
  • the dephosphorization slag was not discharged, but the entire amount remained in the furnace and carried over to the next charge.
  • Example 1 of the present invention was pretreated, and the phosphorus concentration of the hot metal after the dephosphorization treatment was compared between Example 1 of the present invention and Comparative Example 1.
  • FIG. 3 shows the phosphorus concentration in the hot metal discharged from the hot metal container after the dephosphorization treatment of Invention Example 1 and Comparative Example 1.
  • a numerical value of “0 to 5” on the horizontal axis in FIG. 3 represents “0 or more and less than 5”, and the others are the same.
  • Example 1 of the present invention As shown in FIG. 3, compared with Comparative Example 1 in which the amount of quicklime added was determined based on the composition of desiliconized slag estimated by calculation, in Example 1 of the present invention, the phosphorus concentration of the hot metal after the dephosphorization treatment was The number of charges exceeding 0.050% by mass decreased. As a result, the average phosphorous concentration of the hot metal melted in Example 1 of the present invention was 0.028% by mass, which was significantly lower than the average value of Comparative Example 1 of 0.035% by mass.
  • Example 1 of the present invention since the slag basicity of the dephosphorization process is controlled based on the actual measurement value of the slag basicity, the addition amount of the CaO-based medium solvent for setting the slag basicity to the optimum range is excessive. It can be obtained accurately without lack. Thereby, it is considered that the phosphorus concentration in the hot metal after the dephosphorization treatment was reduced.
  • the above formulas (1) to (8) are calculation formulas corresponding to the operating conditions such as the auxiliary materials used in [Example 2], but the material balance is also taken into consideration in other operating conditions. It is possible to calculate similarly by changing these calculation formulas.
  • a refining method that uses a single converter type refining furnace with a capacity of 250 tons and performs desiliconization treatment, intermediate waste removal, and dephosphorization treatment in this order to pre-treat the molten iron, after desiliconization treatment and dephosphorization treatment Part or all of the subsequent slag is left in the furnace, and the remaining desiliconized slag is utilized for the dephosphorization process of the next process. Further, the remaining dephosphorized slag is desiliconized for the hot metal of the next charge.
  • the refining method using the slag analysis method according to the present invention was implemented when repeatedly performing the desiliconization treatment and the dephosphorization treatment.
  • the composition of desiliconized slag left in the furnace at the time of intermediate discharge is analyzed, and the amount of CaO-based solvent (quick lime) added in the dephosphorization process is determined based on the composition analysis value to remove the slag. Phosphorus treatment was performed.
  • the basicity of the dephosphorization slag is estimated based on the addition amount of the CaO-based solvent (quick lime), and the CaO-based solvent before the next charge desiliconization treatment based on the estimated basicity of the dephosphorization slag.
  • the amount of (decarburized slag) added was determined, and refining was performed to add decarburized slag.
  • the composition of desiliconized slag is analyzed at the time of intermediate waste, and the slag basicity ((mass% CaO) / (mass% SiO 2 )) after desiliconization treatment is obtained, and based on this slag basicity, dephosphorization is performed.
  • the entire amount of the slag after the dephosphorization treatment is left in the furnace so that the slag basicity after the desiliconization treatment of the next charge becomes 1.2.
  • the amount of decarburized slag was adjusted.
  • the oxygen source was supplied according to the silicon concentration of the hot metal.
  • Example 2 of the present invention when the hot metal pretreatment is repeatedly carried out while adjusting the amount of decarburized slag added based on the measured value of the basicity of the desiliconized slag (Example 2 of the present invention), the intermediate waste is separated. In some cases, the analysis of desiliconized slag was not performed, and the pretreatment of hot metal of the next charge was repeatedly performed (Comparative Example 2) based on the basicity of the desiliconized slag obtained by calculation. The slag basicity after the treatment was compared. Invention Example 2 and Comparative Example 2 were each carried out continuously for 8 charges.
  • the method for analyzing the slag composition at the time of intermediate discharge was performed under the same conditions as the method of the present invention of [Example 1] from the preparation of the sample for analysis to the analysis. Further, in the inventive example 2 and the comparative example 2, various parameters represented by the formulas (1) to (8) used in the above [Example 2] were used as necessary.
  • Table 3 shows the slag basicity after the desiliconization treatment when the desiliconization treatment, intermediate waste removal, and dephosphorization treatment were repeatedly performed.
  • Example 2 of the present invention the basicity of the desiliconized slag is 1.21 in terms of the average value of 8 charges, which falls within the range of ⁇ 0.05 with respect to the target of 1.20 for all charges, and the relative standard deviation. It was possible to control the slag basicity with good accuracy of less than 3%.
  • Comparative Example 2 the average value of the desiliconization slag basicity of 8 charges is a slightly higher level of 1.27, and the relative standard deviation is 6% or more. The variation in basicity was large.
  • Example 2 of the present invention the dephosphorization treatment was performed by determining the amount of CaO-based solvent (quick lime) added based on the actual measurement value of the desiliconization slag basicity at the time of intermediate waste. This is thought to be because the basicity of the slag was accurately grasped.
  • Comparative Example 2 for example, the calculated basicity of dephosphorization slag deviates from the actual basicity, and as a result, decarburization slag to be added as a CaO-based solvent before desiliconization treatment of the next charge is performed. It may have become excessive.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Manufacturing & Machinery (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

溶融鉄の精錬で発生したスラグの組成を迅速且つ高精度に測定することのできるスラグの分析方法を提供する。 本発明に係るスラグの分析方法は、溶融鉄の精錬で生成するスラグの分析方法であって、スラグから採取したスラグ試料を粉砕する工程と、粉砕したスラグ粒子から、フルイを通過するスラグ粒子の粒度分布を細かい粒子の側をゼロとして右上がりの曲線として質量百分率で示す累積粒度分布曲線における10%粒径(D10)が0.1mm以上、且つ、90%粒径(D90)が2.0mm以下であるスラグ粒子を採取する工程と、採取したスラグ粒子を測定用容器に充填する工程と、充填されたスラグ粒子群からの蛍光X線強度を測定する工程と、測定された蛍光X線強度からスラグの組成を定量分析する工程と、を有する。

Description

スラグの分析方法及び溶融鉄の精錬方法
 本発明は、溶融鉄の精錬で発生したスラグの組成を迅速且つ高精度に測定するためのスラグの分析方法に関し、及び、この分析方法による組成分析結果に基づいて適切な造滓剤の添加量を決定する、溶融鉄の精錬方法に関する。ここで、溶融鉄とは、溶銑または溶鋼を意味し、溶銑または溶鋼の区別が明確な場合は、溶銑または溶鋼と記載する。
 近年、二酸化炭素ガスの排出規制などの環境への配慮と高い生産性とを両立させる必要性から、様々な溶銑の予備処理技術及び溶銑の脱炭処理技術が開発されている。こうしたなか、新規な溶銑予備処理技術の一つとして、1つの転炉型精錬炉を用いて溶銑の脱珪処理と脱燐処理とを、途中の排滓工程を挟んで連続的に行う溶銑予備処理技術が提案されている。
 例えば、特許文献1には、先ず、スラグの塩基度(塩基度=(質量%CaO)/(質量%SiO))が0.3~1.3の範囲内に入るように、CaO系媒溶剤の添加量を調節して転炉型精錬炉で脱珪処理を行い、その後、転炉型精錬炉を傾動して炉内で生成されたスラグ(脱珪処理で生成するスラグを「脱珪スラグ」という)を炉口から排滓し、次いで、CaO系媒溶剤を添加して炉内に残留させた溶銑の脱燐処理を行う溶銑予備処理技術が提案されている。
 但し、一般的に、脱珪処理時のスラグの塩基度は、脱珪処理によって生成されるSiOによって変化することから、特許文献1では、スラグの塩基度が上記範囲を外れ、途中の排滓時にスラグの排出が困難になる場合が起こり得る。また、特許文献1では、脱燐処理後にスラグを排滓しており、少ないとはいえども炉内には溶銑が残留し、この溶銑もスラグとともに排出されて、鉄歩留まりの低下を招く。
 また、溶銑から溶鋼を溶製する脱炭処理に関しても、1つの転炉型精錬炉を用いて溶銑の脱燐処理と脱炭処理とを、途中の排滓工程を挟んで連続的に行う処理技術が提案されている。
 例えば、特許文献2には、1つの転炉型精錬炉を用い、先ず、溶銑の脱燐処理を行い、次いで、炉体を傾動させて生成したスラグを排滓し、その後、炉内に残留させた溶銑の脱炭処理を行う。溶製した溶鋼の転炉型精錬炉からの出鋼後、脱炭処理で生成したスラグを残留させたまま、次のチャージの溶銑を転炉型精錬炉に装入し、次のチャージの溶銑の脱燐処理及び脱炭処理を、上記の順に行う精錬技術が提案されている。特許文献2によれば、脱炭処理後のスラグを意図的に残留させることにより、CaO系媒溶剤の削減、鉄歩留まりの向上、脱燐処理での低温化及び脱燐処理でのスラグの低塩基度化が実現できるとしている。尚、特許文献1及び特許文献2に開示されるような、1つの転炉型精錬における2つの精錬の間で行われる排滓は、「中間排滓」、「中間排滓工程」とも呼ばれる。
 しかしながら、特許文献1及び特許文献2では、中間排滓工程において、転炉型精錬炉を傾動させることによって炉内のスラグを排出しており、転炉型精錬炉を傾動させるだけでは、スラグの組成によっては、スラグを十分に排出することができない。このため、特許文献1及び特許文献2では、転炉型精錬炉内に残留したスラグの影響により、復燐などの好ましくない現象が生じる可能性がある。ここで、「復燐」とは、スラグに含有されていた燐酸化物(P)が還元されて、燐酸化物中の燐が溶銑や溶鋼に移行し、溶銑や溶鋼の燐濃度が上昇する現象である。
 このような背景のなか、特許文献3には、1つの転炉型精錬炉を用い、脱燐処理、中間排滓工程、脱炭処理を行う際に、途中の中間排滓工程において排滓を十分に行うことを目的として、転炉型精錬炉の炉腹に設置した羽口から不活性ガスを吹き込み、不活性ガスによって、スラグを炉口側へ移動させながら排出する技術が提案されている。
 また、特許文献4には、1つの転炉型精錬炉を用い、溶銑の脱燐処理で生成したスラグの一部を残留させて次のチャージの溶銑の脱燐処理を行う際に、脱燐処理で生成したスラグの所定量を炉内に残留させることを目的として、転炉型精錬炉の傾動角度とスラグの残留量との関係を予め測定しておき、この測定結果に基づいて炉体を傾動して所定量のスラグを残留させる技術が提案されている。
 ところで、スラグの組成を知ることは、溶融鉄の精錬を行う際に欠かせない条件であり、従来、蛍光X線の強度を用いた定量分析が広く行われている。この蛍光X線分析法を用いたスラグ組成の定量方法は、以下のとおりである。スラグの一部を採取し、採取したスラグを分析室へ搬送して分析用試料に調製し、その後、調製した分析用試料にX線(一次X線)を照射し、分析用試料から発生する蛍光X線(二次X線)の強度を各元素ごとに測定し、予め作成された各元素ごとの検量線を用いて蛍光X線強度の測定値から各元素の含有量を求めるという方法である。
 蛍光X線分析法において、高い精度で定量するためには、分析用試料の測定面を平滑にする必要がある。そのための分析用試料の調製方法として、ガラスビード法、ブリケット法、直接法の3種類が、主に行われている。
 ガラスビード法は、採取したスラグをNaやLiなどの融剤で溶融してガラス化し、ガラス化したものを分析用試料とする方法である。ガラスビード法による分析用試料は、均質性に富み、高精度に分析が可能である。しかし、分析値が判明するまでには、1時間程度の長時間を要するので、操業へのフィードバックはできない。
 ブリケット法は、粉砕したスラグを少量の澱粉やセルロースなどの有機系バインダーと混合し、ディスク状に加圧成型する試料調製方法である。ブリケット法による分析は、ガラスビード法よりも分析精度では劣るものの、試料調製時間を約半分に短縮できるという利点がある。
 特許文献5は、ブリケット法において、分析精度を落とさずに分析時間を短縮することを目的として、ジェットミルを用いてスラグを平均粒径10μm以下まで超微粒子化し、この超微粒子をバインダーレスでディスク状に加圧成型して分析する方法を提案している。特許文献5の実施例には、平均分析時間は10分間である旨が記載されている。
 直接法は、採取したスラグ試料片を、そのままの状態で蛍光X線分析法に供する方法であり、数分間程度の短時間の分析が可能である。但し、蛍光X線分析法では平滑な測定面が必要であり、そこで、平滑な測定面を得るために、特許文献6及び特許文献7は、溶融したスラグ中にサンプラーを押し込み、サンプラーでスラグを急冷して、平滑面を有するスラグ試料片を採取する方法を提案している。
特開平10-152714号公報 特開平4-72007号公報 特開平5-140627号公報 特開平6-200311号公報 特開平11-23496号公報 特開平9-166589号公報 特開平11-304675号公報
 本発明者らは、スラグの一部を残留させた転炉型精錬炉を用いて、炉内に残留させた溶融鉄の次工程の精錬または炉内に新たに装入した溶銑を用いた次のチャージの溶融鉄の精錬を実施する場合に、次工程の精錬または次のチャージの精錬では、スラグの塩基度((質量%CaO)/(質量%SiO))の制御が容易でないことを確認している。つまり、適正量のCaO系媒溶剤を添加することは容易でないことを確認している。一般的に、スラグの塩基度を1.20程度に制御することにより、溶銑に対して適正な脱燐処理を行うことが可能であるが、必要量以上のCaO系媒溶剤を添加することはコスト増加に繋がる。
 即ち、これまでに提案されている溶融鉄の上記精錬方法において、更なるコスト低減のためには、CaO系媒溶剤などの造滓剤の添加量を必要最低限な量に抑えることが必要である。そして、これを実現するためには、造滓剤を添加する前の炉内のスラグの組成及び残留量を正確に把握することが必要となる。例えば、特許文献1において、脱珪処理後の排滓後にCaO系媒溶剤を添加する場合、適正なCaO系媒溶剤の添加量を計算するためには、炉内に残留するスラグの塩基度とスラグの残留量とを把握する必要がある。
 特許文献4は、炉内に所定量のスラグを残留させているが、炉内に溶銑が存在しないときの傾動角度とスラグ残留量との関係からスラグ残留量を求めている。特許文献1や特許文献2の中間排滓工程のように、炉内に溶銑が存在する場合には、炉内の溶銑量自体が変化することから、特許文献4の技術を用いても、炉内のスラグ残留量を正確に把握することはできない。
 一方、炉内残留スラグの組成を正確に評価する方法として、特許文献5に開示される方法は、加圧成型が可能なレベルまでの粉砕を行う必要があるために、中間排滓工程終了までに分析用試料の調製を済ませることは困難である。また、特許文献6、7に開示される方法は、スラグを急冷するので分析用試料に偏析が生じやすく、分析精度に問題がある。以上述べたように、炉内残留スラグの組成を正確に分析する方法については、特許文献1~7を含めて過去の特許文献には、詳細な記載は見当たらない。
 そこで、スラグ組成を計算によって見積もる方法が一般的に行われている。しかし、生成したスラグの一部または全部を炉内に残留させたまま次工程の精錬または次のチャージの溶融鉄の精錬を行うことから、計算による方法の場合には、見積られるスラグ組成やスラグ量の精度が低下する。このため、実際のスラグ組成と計算値との乖離が大きくなって、溶銑予備処理を連続的に行うことが困難な状況に陥る可能性がある。
 また、塩基度以外でもスラグ組成を迅速に知るニーズは多岐にわたる。例えばスラグ中のMgO濃度は炉体の耐火物寿命と密接に関係する。これは、スラグ中のMgO濃度が低すぎると、炉壁耐火物の損傷が顕著となるためである。一方でスラグ中のMgO濃度が高すぎると、廃棄スラグを路盤材などに利用する場合に膨張などの懸念が生じることから、好ましくない。したがって、スラグ中のMgO濃度は適正な範囲があり、迅速なスラグ組成の分析が望まれている。精錬工程において迅速にスラグ中MgO濃度の評価ができれば、適切なMgO濃度の制御を通じて炉体寿命の延長が図れるだけでなく、仮に高濃度側に振れてしまった場合に、利材化可能なスラグとの仕分けを通じて生産性の向上に繋げることが可能となる。
 本発明は上記事情に鑑みてなされたもので、その目的とするところは、溶融鉄の精錬で発生したスラグの組成を迅速且つ高精度に測定することのできるスラグの分析方法を提供することであり、また、このスラグの分析方法による分析結果に基づいて適切な造滓剤の添加量を決定する、溶融鉄の精錬方法を提供することである。
 上記課題を解決するための本発明の要旨は以下のとおりである。
[1]溶融鉄の精錬で生成するスラグの分析方法であって、
 スラグから採取したスラグ試料を粉砕する工程と、
 粉砕したスラグ粒子から、フルイを通過するスラグ粒子の粒度分布を細かい粒子の側をゼロとして右上がりの曲線として質量百分率で示す累積粒度分布曲線における10%粒径(D10)が0.1mm以上、且つ、90%粒径(D90)が2.0mm以下であるスラグ粒子を採取する工程と、
 採取したスラグ粒子を測定用容器に充填する工程と、
 充填されたスラグ粒子群からの蛍光X線強度を測定する工程と、
 測定された蛍光X線強度からスラグの組成を定量分析する工程と、
を有する、スラグの分析方法。
[2]前記蛍光X線強度を測定する工程で、カルシウム(Ca)及び珪素(Si)を含む2種類以上の元素の蛍光X線強度を測定する、上記[1]に記載のスラグの分析方法。
[3]転炉型精錬炉における溶融鉄の精錬で発生したスラグの一部を前記転炉型精錬炉に残留させたまま、前記転炉型精錬炉に残留させた溶融鉄の次工程の精錬、または、前記転炉型精錬炉に新たに装入した溶銑を用いた次のチャージの溶融鉄の精錬を行う、溶融鉄の精錬方法であって、
 溶融鉄の精錬で発生した前記スラグの組成を、上記[1]または上記[2]に記載のスラグの分析方法によって定量分析し、
 その分析結果に基づいて、スラグを残留させた前記転炉型精錬炉で行う、炉内に残留させた溶融鉄の次工程の精錬または炉内に新たに装入した溶銑を用いた次のチャージの溶融鉄の精錬における精錬前及び/または精錬中に添加する造滓剤の量を決定する、溶融鉄の精錬方法。
[4]前記溶融鉄の精錬が、1つの転炉型精錬炉を用いて溶銑に対して複数の精錬工程を行い、該複数の精錬工程の間で、溶銑及びスラグの一部を前記転炉型精錬炉に残留させたまま、スラグの残部を排出して行う、溶銑の予備処理であり、
 前記スラグの残部の排出時に前記スラグの組成を分析し、
 その分析結果に基づいて、次工程の精錬工程において添加する造滓剤の量を決定する、上記[3]に記載の溶融鉄の精錬方法。
[5]前記溶融鉄の精錬が、1つの転炉型精錬炉を用いて溶銑に対して予備処理を行う精錬であって、
 発生したスラグの一部または全部を前記転炉型精錬炉に残留させたまま予備処理後の溶銑を出湯し、炉内に新たに溶銑を装入して次のチャージの予備処理を施す、溶銑の予備処理であり、
 前記スラグの一部または全部を前記転炉型精錬炉に残留させる時に、残留させるスラグの組成を分析し、
 その分析結果に基づいて、次のチャージの予備処理において添加する造滓剤の量を決定する、上記[3]に記載の溶融鉄の精錬方法。
[6]高炉から出銑された溶銑を脱珪処理する脱珪処理工程と、
 脱珪処理した溶銑を前記転炉型精錬炉内に残留させた状態で前記脱珪処理工程によって生成された脱珪スラグを前記転炉型精錬炉から排滓する中間排滓工程と、
 前記転炉型精錬炉に残留させた溶銑を脱燐処理する脱燐処理工程と、
 脱燐処理された溶銑を前記転炉型精錬炉から出湯する出湯工程と、
を有し、
 1つの転炉型精錬炉を用いて前記工程を、上記の順に行って溶銑に予備処理を施す溶融鉄の精錬方法であって、
 前記中間排滓工程中に、脱珪スラグの組成を上記[2]に記載のスラグの分析方法によって定量分析し、
 その分析結果に基づいて脱珪スラグの塩基度((質量%CaO)/(質量%SiO))を求め、
 求めた塩基度((質量%CaO)/(質量%SiO))に基づいて前記脱燐処理工程において添加する造滓剤の量を決定する、溶融鉄の精錬方法。
[7]前記造滓剤がCaO系媒溶剤である、上記[3]から上記[6]のいずれか1項に記載の溶融鉄の精錬方法。
[8]前記造滓剤の一部としてMgO系媒溶剤を使用し、
 前記スラグの分析結果がスラグ中のMgO含有量を含み、
 前記スラグの分析結果に基づいて前記MgO系媒溶剤の添加量を決定する、上記[3]から上記[7]のいずれか1項に記載の溶融鉄の精錬方法。
[9]前記造滓剤の一部として酸化鉄系媒溶剤を使用し、
 前記スラグの分析結果がスラグ中の酸化鉄含有量を含み、
 前記スラグの分析結果に基づいて前記酸化鉄系媒溶剤の添加量を決定する、上記[3]から上記[8]のいずれか1項に記載の溶融鉄の精錬方法。
 本発明によれば、累積粒度分布曲線における10%粒径(D10)が0.1mm以上、且つ、90%粒径(D90)が2.0mm以下である粒径のスラグ粒子を測定用容器に充填したものを、蛍光X線分析法における分析用試料として使用するので、溶融鉄の精錬で生成するスラグの組成を迅速且つ高精度に定量分析することができる。また、溶融鉄の精錬で発生したスラグの一部または全部を転炉型精錬炉に残留させた状態のまま、この転炉型精錬炉を用いて、溶融鉄の次工程の精錬または次のチャージの溶融鉄の精錬を行う際には、本発明に係るスラグの分析方法による分析結果に基づいて造滓剤の添加量を決定することで、造滓剤の適切な添加量を決定することが可能となる。
図1は、スラグ粒子の粒径とスラグ塩基度測定値との関係を示す図である。 図2は、本発明に係るスラグ分析方法によって求められた脱珪スラグの塩基度と、ブリケット法によって調製された分析用試料の分析値から求められた脱珪スラグの塩基度とを比較して示す図である。 図3は、脱燐処理後に溶銑収容容器に出湯した溶銑中の燐濃度を、本発明例1と比較例1とで比較して示す図である。
 本発明者らは、上記課題を解決するべく、スラグの分析時間の短縮化を検討し、更に、溶融鉄の精錬によって生成したスラグを意図的に残留させ、残留させたスラグを次工程の精錬または次のチャージの溶融鉄の精錬に活用する工程を含む溶融銑の精錬工程について、その特徴や環境を精査した。その結果、上記課題を解決する手段として、溶融鉄の精錬によって生成したスラグの組成を転炉型精錬炉の機側にて迅速に定量分析する方法を見出した。ここで、「スラグを意図的に残留させる」とは、転炉型精錬炉の炉口を真下に向けて転炉型精錬炉を倒立させる排滓操作を行わずに、転炉型精錬炉の傾動角度を調節してスラグを排出し、炉内にスラグを残留させることである。
 即ち、例えば、特許文献1に開示されるように、溶銑予備処理における脱珪処理終了後には、転炉型精錬炉を傾動させることによってスラグを炉口から排出する中間排滓工程が存在する。脱珪処理終了時点から中間排滓工程の期間中に、炉内または排滓中若しくは排滓後のスラグを採取し、転炉型精錬炉の機側で分析することで、中間排滓工程時間内に、スラグの組成を分析することができ、この分析結果を次工程の脱燐処理工程に適用できることを見出した。
 以下に、本発明について詳細に説明する。先ず、スラグ組成の分析方法について説明する。
 スラグ組成の中でも、スラグの塩基度((質量%CaO)/(質量%SiO))は精錬中のスラグ粘性や脱燐効率などに大きな影響を与えるので、分析ニーズが大きい。転炉型精錬炉の機側でスラグの塩基度を迅速且つ定量的に評価することが可能になり、これにより、添加する造滓剤を必要最低限としたうえで効率的な脱燐処理などが行えることから、工業的な意義が大きい。
 スラグの塩基度を定量的に評価するためには、スラグのCaO含有量及びSiO含有量を定量分析する必要がある。通常、排滓時のスラグ中では、カルシウム(Ca)及び珪素(Si)は酸化物(CaO及びSiO)の形態で存在し、排滓時のスラグ中にはカルシウム及び珪素の酸化物以外の別形態は存在しない。つまり、スラグ中のカルシウム及び珪素の元素組成を定量化すれば、スラグのCaO含有量及びSiO含有量を定量分析することができる。この観点から、スラグの定量分析方法としては、蛍光X線分析法が好適である。また、蛍光X線分析法は、安定性、操作性、迅速性にも優れており、この点からも、転炉型精錬炉などの機側での分析手段として好適である。
 蛍光X線分析装置は、検出系として、エネルギー分散型と波長分散型とが存在し、いずれの方式であってもスラグ組成の測定は可能である。エネルギー分散型の検出器は、波長分散型の検出器のように分光結晶を走査する必要がないので、より短時間での測定が可能である。したがって、測定時間の迅速性の観点から、検出系はエネルギー分散型であることがより好適である。更に、転炉型精錬炉の機側での分析を考慮すると、冷却水や液体窒素などを使用しないポータブル型など、簡単な構成の蛍光X線分析装置であることが望ましい。
 分析対象の元素は、塩基度の評価に必須となるカルシウム及び珪素を含む2種類以上とすることが好ましく、カルシウム及び珪素以外の分析対象元素としては、マグネシウム(Mg)、鉄(Fe)、チタン(Ti)、マンガン(Mn)、燐(P)、硫黄(S)などが挙げられる。
 スラグの塩基度を評価するためには、スラグ中のCaO含有量及びSiO含有量を測定する必要がある。蛍光X線分析法で分析する場合、共存元素の影響をキャンセルするために、目的のスラグと同等の成分系で作製された標準スラグサンプルを用いて予め検量線を作成しておき、カルシウム、珪素などの定量値を酸化物換算することによって、スラグ中のCaO含有量及びSiO含有量を求めることができる(「検量線法」という)。また、X線吸収係数や一次X線の強度分布などの物理定数から理論強度式に基づいて定量を行うファンダメンタルパラメーター法でも、スラグ中のCaO含有量及びSiO含有量を求めることができ、塩基度の評価が可能である。本発明では、検量線法及びファンダメンタルパラメーター法のいずれも使用することができる。
 次に、分析用試料の調製方法について説明する。
 溶銑の脱珪処理工程や脱燐処理工程などの精錬時にはガスが多量に発生するので、採取したスラグ試料片はポーラス状で空隙が多い。このために、直接法を採用するべく、研磨などによってスラグ表面を平滑化しても、ところどころに微細な孔が存在しており、採取したままの試料を分析した分析値に基づく塩基度は、測定位置によって大きくばらつく。また、直接法によって求めた塩基度は、測定値が高値になるという問題もある。これは、軟X線領域に属する珪素からの蛍光X線強度がスラグ試料片の空隙に存在する空気によって減衰するために、見掛上の塩基度が高くなると考えられる。
 本発明者らは、スラグ試料片の空隙に存在する空気による珪素の蛍光X線強度の減衰を防止することを検討し、そのためには、珪素からの蛍光X線強度の減衰が無視できるサイズまでスラグ粒子を粉砕する必要があると考え、検討実験を行った。
 検討実験は、スラグ試料片を粗粉砕し、粗粉砕したものをフルイで篩い分けし、スラグ粒子径が塩基度測定値に与える影響を調査した。篩い分けは、
(1);採取したままのスラグ粒子、
(2);粒径9.5mm以上、
(3);粒径4.8mm以上9.5mm未満、
(4);粒径2.0mm以上4.8mm未満、
(5);粒径1.2mm以上2.0mm未満、
(6);粒径0.1mm以上1.2mm未満、
の6水準とした。
 ここで、例えば、スラグ粒子の粒径が0.1mm以上とは、目開き寸法が0.1mmのフルイに残る粒子であり、スラグ粒子の粒径が2.0mm未満とは、目開き寸法が2.0mmのフルイを通過する粒子である。つまり、スラグ粒子の粒径は、フルイによる篩い分けによって決まる粒径である。
 篩い分けした各スラグ粒子群を内径90mmの円柱状(シャーレ状)の測定用容器に充填して分析用試料とし、この測定用容器内のスラグ粒子群に、ハンドヘルド蛍光X線分析装置(オリンパス製 DELTA)によってX線(一次X線)を照射し、分析用試料からのカルシウム及び珪素の蛍光X線(二次X線)の強度を測定し、ファンダメンタルパラメーター法を用いてスラグ塩基度を求めた。X線源の出力は、管電圧50kV、管電流0.2mAで、1点あたりの蛍光X線計数時間を25秒とした。測定点数は各分析用試料ともに6点とし、測定値のばらつき(標準偏差σ)も評価した。
 尚、測定用容器内のスラグ粒子群の厚みは、測定用容器の底部が完全に隠れる厚みであれば十分である。また、測定用容器への充填の際、スラグ粒子群の表面が傾斜したり、山形になったりする場合もあるが、このような場合には、測定用容器に振動を与えるなどして、平坦な状態に均し、ハンドヘルド蛍光X線分析装置のX線照射部位を隙間なく接触させる部分が確保できるようにすればよい。つまり、ハンドヘルド蛍光X線分析装置のX線照射部位を隙間なく接触させる部分が確保できる限り、充填方法に制約はない。
 比較として、ブリケット法及びガラスビード法(工程分析方法)を用いて分析用試料を調製し、上記と同一条件でスラグ塩基度を測定した。
 図1に各分析用試料のスラグ塩基度の測定結果を示す。図1に示すように、ブリケット法及びガラスビード法で調製した分析用試料のいずれにおいてもスラグの塩基度は約1.20であり、試験に供したスラグの塩基度は約1.20であることがわかる。これに対し、採取したままの分析用試料のスラグ塩基度の測定値は、約2.40であり、スラグ粒子の粒径が小さくなるに伴って減少し、スラグ粒子の粒径が0.1mm以上1.2mm未満の場合、及び、1.2mm以上2.0mm未満の場合に、ブリケット法及びガラスビード法により調製した分析用試料とほぼ等しい塩基度となった。また、塩基度の測定値のばらつきについても、粒径が0.1mm以上1.2mm未満の場合、及び、粒径が1.2mm以上2.0mm未満の場合に、分析精度を示す標準偏差σが0.1以下(変動係数Cv:10%以下)と良好な結果であった。
 以上の実験から、スラグ粒子の粒径を2.0mm以下程度に調製することで、空隙による珪素の蛍光X線強度の減衰が無視できるレベルまで減少して分析精度が向上し、これによって、塩基度の分析値がブリケット法やガラスビード法によって求めた分析値とほぼ同等になることが明らかになった。
 更に、粒径が2.0mmよりも大きいスラグ粒子の影響を調査するために、次に示す検討実験を行った。
 同一スラグを粉砕し、篩い分け操作により、スラグ粒子径として、
(1);フルイを通過するスラグ粒子の粒度分布を、細かい粒子の側をゼロとして右上がりの曲線として、質量百分率で示す累積粒度分布曲線における100%粒径(累積質量百分率が100%となる粒径であり、「D100」とも記す)、つまり、フルイ下の累積質量百分率が100%となる粒径が2.0mmである試料(試料A)、
(2);質量百分率で示す累積粒度分布曲線における95%粒径(累積質量百分率が95%となる粒径であり、「D95」とも記す)、つまり、フルイ下の累積質量百分率が95%となる粒径が2.0mmである試料(試料B)、
(3);質量百分率で示す累積粒度分布曲線における90%粒径(累積質量百分率が90%となる粒径であり、「D90」とも記す)、つまり、フルイ下の累積質量百分率が90%となる粒径が2.0mmである試料(試料C)、
(4);質量百分率で示す累積粒度分布曲線における85%粒径(累積質量百分率が85%となる粒径であり、「D85」とも記す)、つまり、フルイ下の累積質量百分率が85%となる粒径が2.0mmである試料(試料D)、
(5);質量百分率で示す累積粒度分布曲線における80%粒径(累積質量百分率が80%となる粒径であり、「D80」とも記す)、つまり、フルイ下の累積質量百分率が80%となる粒径が2.0mmである試料(試料E)、
の5水準の試料を調製した。
 調製した各スラグ粒子群を前述の実験と同様に、内径90mmの円柱状(シャーレ状)の測定用容器に充填して分析用試料とし、ハンドヘルド蛍光X線分析装置によってスラグの塩基度を測定し(測定点6点)、評価した。
 表1に塩基度の測定結果を示す。
Figure JPOXMLDOC01-appb-T000001
 ガラスビード法で測定されたスラグの塩基度は1.18であり、試料A、B、C、Dの分析値は、ガラスビード法で測定された塩基度とおおむね同等であった。試料Eでは測定された塩基度が1.24であり、ガラスビード法に比較してやや高値を示した。分析精度については、試料A、B、Cでは、標準偏差σがいずれも0.05以下であったのに対して、試料D、Eでは、いずれも標準偏差σがおよそ0.1であった。
 この結果は、試料Dでは、6点分析による塩基度の平均値はガラスビード法による分析値に近いものの、分析値のばらつきが大きく、必ずしも正しい塩基度が得られない可能性があることを示している。また、試料Eでは、測定された塩基度はガラスビード法に対して高値であるうえにばらつきも大きく、塩基度の分析には不適であることを示している。
 この理由としては、試料D、Eは、いずれも、分析試料中に2.0mmよりも大きいスラグ粒子を15質量%以上含んでおり、その結果、2.0mmよりも大きいスラグ粒子によって生じる空隙や凹凸が分析値に影響を及ぼしているものと考えられる。つまり、精度良く、且つ、正しい塩基度を測定するためには、塩基度測定対象のスラグ試料は、2.0mm以上のスラグ粒子を、10質量%を超える範囲で含んではならないことを示している。即ち、塩基度を測定するためのスラグ試料は、90%粒径つまりD90を2.0mm以下とする必要のあることがわかった。
 上記のようにスラグ粒子の粒径を調製することで、空隙による珪素の蛍光X線強度の減衰が無視できるレベルまで減少し、分析精度が向上し、塩基度の分析値がブリケット法やガラスビード法によって求めた分析値とほぼ同等になることが明らかになった。スラグ粒子を粉砕して篩い分けを行い分析試料とするまでに要する時間は、30秒程度であり、その後の分析時間と合わせても約1分間という短時間でスラグの塩基度を測定できることが可能であった。
 上記の粒径にスラグを粉砕することができる限り、粉砕方法に制約はなく、例えば、ジョークラッシャーのギャップ幅を適切な設定値に調節して粉砕することにより、D90≦2.0mmを満たす粒径のスラグ粒子を得ることができる。
 尚、上述の通り、スラグ試料をD90≦2.0mmとすることで、ブリケット法やガラスビード法によって求めた塩基度とほぼ同等の良好な結果が得られるが、更に検討を重ねた結果、微粉状のスラグ粒子の含有量が多くなると、分析精度が低下する傾向であることがわかった。この理由は、得られた試料が、微粉状のスラグと粒状のスラグとの混合物として不均一となっていること、即ち、粒状のスラグの割合が多い部分と微粉状のスラグの割合が多い部分とに、試料中で偏りが存在していることによるものと考えられる。
 また、粒径0.1mm以下程度の微粉状のスラグ粒子は、舞い上がりやすく、試料の取扱いが煩雑になり、かえって操作に時間を費やし、迅速分析に適用する際は好ましくない。そこで、次に示す検討実験を行い、微粉状のスラグ粒子の影響について調査した。
 同一スラグを粉砕し、篩い分け操作により、スラグ粒子径として、
(1);D90=2.0mmの試料(試料I)、
(2);D90=2.0mm且つD=0.1mmの試料(試料II)、
(3);D90=2.0mm且つD10=0.1mmの試料(試料III)、
(4);D90=2.0mm且つD15=0.1mmの試料(試料IV)、
(5);D90=2.0mm且つD20=0.1mmの試料(試料V)、
(6);D100=0.1mmの試料(試料VI)、
の6水準の試料を調製した。
 各スラグ粒子群を前述の実験と同様に、内径90mmの円柱状(シャーレ状)の測定用容器に充填して分析用試料とし、ハンドヘルド蛍光X線分析装置によってスラグ塩基度を求め(測定点6点)、評価した。
 表2に塩基度の測定結果を示す。
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、全ての分析用試料で、測定された塩基度は、ガラスビード法で測定された塩基度と良く一致していた。しかしながら、試料IV及び試料Vでは、分析精度を示す標準偏差σが0.05を上回っており、他の試料と比較して、劣位となっていることがわかった。一方、試料VIでは、正確さ及び分析精度ともに優れるものの、D100=0.1mmの試料に調製するだけでも7分間程度必要とした。そのうえ、試料の取り回しが煩雑で、蛍光X線分析装置の測定部位に微粉状スラグが付着するなどといった操作上の弊害により、塩基度の測定終了までに12分間以上を要した。
 これらの結果は、0.1mm以下のスラグ粒子が10%を超えると、分析精度が低下する可能性があるだけでなく、スラグ粒子を全て0.1mm以下の微粉状とすることは、迅速性を損なう要因となることを示している。以上から、塩基度を測定するためのスラグ試料は、D10を0.1mm以上とする必要のあることがわかった。
 以上の実験結果から、塩基度測定用のスラグ試料は、D10≧0.1mm且つD90≦2.0mmであることが必須であることがわかった。
 以上の結果を受け、例えば、目開き寸法が0.1mmのフルイと、目開き寸法が2.0mmのフルイとを用いて、目開き寸法が2.0mmのフルイを通過し、目開き寸法が0.1mmのフルイを通過しないスラグ粒子を分析用試料として用いるなどとすることで、2.0mm以下で且つ微粉状の粒子を取り除いた所望の粒径の分析試料を得ることができる。尚、その際、目開き寸法が2.0mmのフルイと目開き寸法が0.1mmのフルイとを重ね合わせて使用することで、篩い分けに要する操作時間は十分に短くなり、迅速分析に好適である。
 以下、中間排滓工程を挟んで溶銑を予備処理する精錬工程を含む本発明の一実施形態について説明する。
 中間排滓工程を挟んで脱珪処理及び脱燐処理を行う溶銑予備処理では、過不足のない適切なCaO系媒溶剤の添加量を決定するためには、脱燐処理前の時点で炉内に残留するスラグの組成及び質量を把握しておくことが必要である。尚、スラグ中のCaO含有量を制御するためのCaO系媒溶剤としては、生石灰(CaO)、石灰石(CaCO)、消石灰(Ca(OH))、ドロマイト(MgO-CaO)、溶銑の脱炭処理時に生成する脱炭スラグ(「転炉滓」ともいう)などが挙げられる。
 そこで、本発明の一実施形態では、スラグ組成を迅速に分析するために、脱珪処理終了時以降から中間排滓工程中にスラグを採取し、採取したスラグを転炉型精錬炉の機側で粗粉砕及び篩い分けの簡単な試料調製処理を施し、D10≧0.1mm且つD90≦2.0mmを満たすスラグ粒子を採取する。その後、採取したスラグ粒子を測定用容器に充填して分析試料とし、蛍光X線分析法によってスラグの組成を定量分析し、この分析値からスラグの塩基度を測定する。
 具体的には、1つの転炉型精錬炉を用い、高炉から出銑された溶銑を脱珪処理する脱珪処理工程と、脱珪処理した溶銑を前記転炉型精錬炉内に残留させた状態で前記脱珪処理工程によって生成された脱珪スラグを前記転炉型精錬炉から排滓する中間排滓工程と、前記転炉型精錬炉に残留させた溶銑を脱燐処理する脱燐処理工程と、脱燐処理された溶銑を前記転炉型精錬炉から出湯する出湯工程と、をこの順に行って溶銑に予備処理を施す溶融鉄の精錬方法において、中間排滓工程中に、脱珪スラグの組成を上記の本発明に係るスラグ分析方法によって定量分析し、その分析結果に基づいて脱珪スラグの塩基度を求める。
 つまり、転炉型精錬炉内の溶銑に対して、CaO系媒溶剤、及び、気体酸素や酸化鉄を酸素源として供給して実施する、従来行っている脱珪処理を行った後、転炉型精錬炉を出湯時とは反対側に、つまり出湯口が設置されている側の反対側に転炉型精錬炉を傾動させて、炉口を介してスラグを排出(中間排滓)する。この中間排滓工程中に、スラグ組成の分析を実施する。
 分析用試料に供するスラグ試料片は、脱珪処理終了時以降から中間排滓工程中に採取できれば、特に限定することはない。スラグ試料片の採取方法としては、脱珪処理終了直後にサブランスを利用して転炉型精錬炉内から採取する方法、中間排滓時に傾動している炉口からスラグを採取する方法、排出後のスラグ収容容器内のスラグから採取する方法などを採用することができる。
 採取した脱珪スラグの塩基度の測定は、転炉型精錬炉の機側に、蛍光X線分析装置、粉砕機、フルイ及び測定用容器を持ち込み、その場で粗粉砕及び試料調製を行って、D10≧0.1mm且つD90≦2.0mmを満たすスラグ粒子を採取する。採取したスラグ粒子を測定用容器へ充填して分析用試料とし、この分析用試料からの、カルシウム及び珪素を含む2種類以上の元素の蛍光X線強度を測定する。次いで、検量線法やファンダメンタルパラメーター法を用いてスラグ組成の定量を行い、スラグの塩基度を算出する。
 粗粉砕の試料調製を含めてスラグ試料片の採取から塩基度測定まで、1分析用試料の1ヶ所あたり約1分間程度で、スラグの定量分析が可能である。本発明に係るスラグの分析方法は、ばらつきが少ないことが長所であるので、1分析用試料につき1ヶ所で分析を実施すれば十分である。もちろん、1分析用試料につき複数ヶ所を分析し、それらの平均値を用いることも可能であるが、分析時間が長くなるので、その必要性は低い。
 図2は、本発明に係るスラグ分析方法によって求められた脱珪スラグの塩基度と、分析室で実施した、ブリケット法によって調製された分析用試料の分析値から求められた脱珪スラグの塩基度とを比較して示す図である。図2に示すように、両者の間には良好な直線関係があることが確認できる。図2に関する詳細は後述する。
 中間排滓工程に続く脱燐処理工程において、本発明に係る分析方法によって求めた脱珪スラグの塩基度と転炉型精錬炉内の残留スラグ量とを用いて、該炉内の溶銑の脱燐処理に必要なスラグ塩基度となるように、添加するCaO系媒溶剤の量を算出し、この算出結果に基づいてCaO系媒溶剤を炉内に添加して脱燐処理を行う。転炉型精錬炉内の残留スラグ量は、中間排滓前の該炉内のスラグの質量推定値と、中間排滓によって排出されたスラグを収納したスラグ収容容器の質量測定値から推定したスラグ排出量と、の差分として算出する。
 脱燐処理工程については、気体酸素や酸化鉄を酸素源として炉内に供給して実施する、従来行っている脱燐処理方法を実施する。脱燐処理前の溶銑の燐濃度や溶銑温度、脱燐処理後の溶銑の燐濃度の目標値などから、スラグ塩基度の目標値を設定し、本発明に係るスラグ分析方法を適用して測定した脱珪スラグの成分分析結果と、炉内の残留スラグ量とから、物質収支に基づいてCaO系媒溶剤の添加量を決定する。尚、各チャージで脱燐処理前のスラグを採取しておき、後に、ガラスビード法やブリケット法で分析用試料を調製し、この分析用試料を蛍光X線分析法などの分析方法で組成を確認すれば、実際に脱燐処理前のスラグの塩基度がどの程度であったかを確認することができる。
 脱燐処理後の溶銑は、転炉型精錬炉を傾動させて、転炉型精錬炉に設置された出湯口から溶銑収容容器に出湯し、一方、脱燐処理後のスラグ(脱燐処理工程で生成するスラグを「脱燐スラグ」という)の一部または全部を転炉型精錬炉に残留させる。その後、新たな溶銑(次のチャージで使用する溶銑)を転炉型精錬炉に装入し、次のチャージの溶銑の脱珪処理を開始する。次のチャージ以降では、転炉型精錬炉内に前チャージのスラグが残留しているので、CaO系媒溶剤を添加しなくても、脱珪処理を行うことができる。但し、スラグ塩基度が低くなる場合には、CaO系媒溶剤を添加する。
 上記説明から明らかなように、中間排滓工程を挟んで溶銑を予備処理する精錬工程を含む本発明の一実施形態によれば、中間排滓工程におけるスラグ塩基度を精度良く把握することができ、これにより、脱燐処理に適したCaO系媒溶剤の添加量を決定することが可能となる。その結果、CaO系媒溶剤の添加量を最小限にすることが可能となり、生産性を低下させることなく、低コストで溶銑予備処理を行うことが実現される。
 上記説明では、中間排滓工程を挟んで脱珪処理及び脱燐処理を行う溶銑予備処理の場合について説明したが、溶銑から溶鋼を溶製する場合にも、上記の溶銑予備処理と類似した以下の手順により、本発明を適用可能である。
 即ち、転炉型精錬炉内にCaO系媒溶剤及び酸素源を供給して転炉型精錬炉内の溶銑に対して脱燐処理(この脱燐処理では脱珪反応も起こるので「脱珪脱燐処理」ともいう)を行った後、転炉型精錬炉を傾動させて排滓を行う。この中間排滓工程において、本発明に係るスラグ分析方法を適用してスラグ組成を分析する。次工程の脱炭処理工程については、炉内にCaO系媒溶剤及び酸素源を供給して実施する、従来行っている脱炭処理方法を実施する。脱炭処理後の溶鋼温度及び溶鋼の燐濃度の目標値などからスラグ塩基度の目標値を設定し、本発明に係るスラグ分析方法を適用して測定した脱燐スラグの成分分析結果と、中間排滓工程で排出された脱燐スラグを収容するスラグ収容容器の質量測定値から推定される残留スラグ量とから、物質収支に基づいてCaO系媒溶剤の添加量を決定する。
 脱炭処理後、生成した溶鋼を、転炉型精錬炉を傾動させて、転炉型精錬炉に設置された出湯口から溶鋼収容容器に出鋼し、脱炭処理後のスラグ(脱炭スラグ)の一部または全部を転炉型精錬炉に残留させる。その後、新たな溶銑(次のチャージで使用する溶銑)を転炉型精錬炉に装入し、次のチャージの脱燐処理を開始する。
 尚、同様の手順によってスラグ中のカルシウム(Ca)及び珪素(Si)以外の成分も分析できることは明らかであり、例えば、スラグ中のMgO含有率を測定し且つ制御することにより、炉体寿命の延命に効果的で且つ路盤材として膨張の少ない適正な組成のスラグに調製することができる。炉体寿命がスラグ中のMgO含有率に影響する理由は、転炉型精錬炉の内張耐火物はMgO系耐火物で形成されており、スラグ中のMgO含有量が低下すると、内張耐火物であるMgO系耐火物からMgOの溶出が起こり、MgO系耐火物の寿命が低下するからである。このため、転炉型精錬炉を用いた溶銑の脱燐処理及び脱炭処理では、造滓剤の一部としてMgO系媒溶剤が使用されている。スラグ中のMgO含有率を制御するためのMgO系媒溶剤としては、ドロマイト、MgO系煉瓦の破砕品、及びマグネシアクリンカなどが挙げられる。
 また、溶銑の脱燐処理では、スラグ中のFeO含有量を測定し、且つ、制御することにより、効率的な脱燐処理を行うことができる。溶銑の脱燐処理において、スラグ中のFeOは溶銑中の燐の酸化及びスラグの滓化に寄与しており、効率的な脱燐処理のためには、スラグ中に5~15質量%のFeOが存在することが望まれる。したがって、転炉型精錬炉を用いた溶銑の脱燐処理では、造滓剤の一部として酸化鉄系媒溶剤が使用されている。スラグ中のFeO含有量を制御するための酸化鉄系媒溶剤としては、鉄鉱石粉、鉄鉱石と生石灰との混合体である焼結鉱粉、製鉄工程における集塵ダストなどが挙げられる。尚、FeOとは、FeOやFeなどの鉄酸化物の全てを指す。
 本発明に係るスラグ分析方法は、スラグを意図的に転炉型精錬炉内に残留させ、残留させたスラグを次のチャージの溶銑の処理に活用する精錬工程においても適用可能である。
 例えば、1つの転炉型精錬炉を用いて溶銑の脱燐処理(脱珪・脱燐処理を含む)を繰り返して行う場合、或いは、1つの転炉型精錬炉を用いて溶銑を脱炭して溶鋼とする脱炭処理を繰り返して行う場合に、出湯(出鋼)後、スラグの少なくとも一部を炉内に残留させたまま、転炉型精錬炉に新たに溶銑を装入して次のチャージの溶融鉄の精錬を行うことがある。これは、処理後のスラグが残有する脱燐能を次のチャージの溶銑の脱燐処理及び脱炭処理に活用するために行われる。この場合に、本発明に係るスラグ分析方法を適用して処理後のスラグ成分を分析して評価することで、スラグの脱燐能などを評価し、スラグの残留量を調節したり、次のチャージの精錬用の造滓剤添加量を調節したりすることが可能となる。
 容量250トンの1基の転炉型精錬炉を用い、脱珪処理、中間排滓、脱燐処理を、この順に行って溶銑に予備処理を施す際に、45チャージの予備処理において、脱珪処理終了後、転炉型精錬炉から脱珪スラグを採取した。採取した各スラグを2分割し、一方を、本発明に係るスラグ分析方法(本発明方法)に供し、他方を、工程分析として実施している従来のスラグ分析方法(従来方法)に供した。本発明方法と従来方法とで、脱珪スラグの塩基度((質量%CaO)/(質量%SiO))を比較した。本発明方法では、分析用試料の調製から分析までを全て転炉型精錬炉の機側で行った。
 本発明方法における分析用試料の調製方法及び分析条件は以下のとおりである。
[分析用試料調製方法]:粉砕粒度2.0mmに設定したジョークラッシャーでスラグを粗粉砕し、更に、目開き寸法が0.1mmのフルイ及び目開き寸法が2.0mmのフルイで篩い分けして、0.1mm以上2.0mm未満のスラグ粒子を採取し、採取したスラグ粒子群を測定用容器に充填して、分析用試料とした。
[分析条件]:エネルギー分散型ハンドヘルド蛍光X線分析装置(オリンパス製 DELTA)を用い、50kV、0.2mAの出力でX線を照射した。測定点数は各分析用試料で1点とし、カルシウム及び珪素を分析対象元素とした。カルシウム及び珪素の定量方法は、ファンダメンタルパラメーター法を用いた。
 一方、従来方法における分析用試料の調製方法及び分析条件は以下のとおりである。
[分析用試料調製方法]:ブリケット法によって分析用試料を調製した。具体的には、スラグを粒径75μm以下に粉砕し、粉砕したスラグを専用の金属製容器(直径;40mm、厚み;5mm)に詰めて加圧成型した試料を分析用試料とした。
[分析条件]:波長分散型蛍光X線分析装置(Rigaku Simultix)を用い、50kV、50mAの出力でX線を照射した。測定点数は各分析用試料で1点とし、カルシウム及び珪素を分析対象元素とした。カルシウム及び珪素の定量方法は、検量線法を用いた。
 図2は、本発明方法及び従来方法によって求めた脱珪スラグの塩基度を比較して示す図である。本発明方法の正確さを従来方法からの誤差(ずれの標準偏差σd)で評価すると、σd=0.04であり、両者の間には、図2に示すように良好な直線関係のあることが確認された。尚、1試料あたりの分析時間を比較すると、本発明方法では1分間、従来方法では25分間であった。
 この結果から、本発明に係るスラグ分析方法を適用することで、正確且つ迅速なスラグの組成分析が可能であることが確認できた。
 容量250トンの1基の転炉型精錬炉を用い、脱珪処理、中間排滓、脱燐処理を、この順に行って溶銑に予備処理を施す際に、本発明に係るスラグ分析方法を用いてスラグ組成を分析し、このスラグ組成分析結果に基づいてCaO系媒溶剤の添加量を決定する精錬(本発明例1)を行った。具体的には、中間排滓時に脱珪処理後のスラグ組成を分析し、このスラグ組成分析結果に基づいて、脱珪処理後のスラグの塩基度((質量%CaO)/(質量%SiO))を求めた。求めた塩基度に基づいて、次工程の脱燐処理におけるCaO系媒溶剤の添加量を算出し、算出された量のCaO系媒溶剤を添加した。中間排滓時のスラグ組成の分析方法は、分析用試料の調製から分析まで、上記の[実施例1]の本発明方法と同じ条件で行った。
 これとは別に、脱珪処理後にスラグ組成を分析せずに、脱珪処理後のスラグの塩基度を計算によって見積もり、見積もった塩基度に基づいて、次工程の脱燐処理におけるCaO系媒溶剤の添加量を算出し、算出された量のCaO系媒溶剤を添加する、従来の溶銑予備処理(比較例1)も行った。
 本発明例1及び比較例1のいずれについても、脱燐処理終了時の溶銑の燐濃度の目標値(上限値)を0.030質量%とし、脱燐処理後のスラグを排滓せずに炉内に残留させたまま、次のチャージの溶銑を装入し、引き続き脱珪処理を行った後、中間排滓を挟んで脱燐処理を行う、一連の溶銑の予備処理を連続して100チャージ(n=1~100)実施した。
 上記の脱珪処理工程では、CaO系媒溶剤として脱炭スラグを使用し、脱珪処理後のスラグの塩基度の計算値(計算塩基度)が1.20となるように、脱炭スラグの添加量を調節した。脱炭スラグを添加しなくても計算塩基度が上記目標値(1.20)を確保できる場合には、脱炭スラグを添加せずに脱珪処理を行った。酸素源は溶銑中の珪素濃度に応じて供給した。
 脱珪スラグの塩基度は、比較例1においては(1)式によって計算し、本発明例1においては(2)式によって計算した。
 Bc,Si1(n)=[WS,P1(n-1)×α1×Bc,P1(n-1)/{Bc,P1(n-1)+1}+WSL,Si1(n)×β1]/[WS,P1(n-1)×α1/{Bc,P1(n-1)+1}+WSL,Si1(n)×γ1+(XSi1(n)/100)×WHM1(n)×60/28]…(1)
 Bm,Si1(n)=(%CaO)m,Si1(n)/(%SiO2)m,Si1(n)…(2)
 但し、(1)式、(2)式において、各符号は以下のとおりである。
 Bc,Si1(n):nチャージ目の予備処理の脱珪処理終了時のスラグの計算塩基度
 Bc,P1(n-1):n-1チャージ目の予備処理の脱燐処理終了時のスラグの計算塩基度
 WS,P1(n-1):n-1チャージ目の予備処理の脱燐処理終了時の計算スラグ質量(t)
 WSL,Si1(n):nチャージ目の予備処理の脱珪処理工程における脱炭スラグの添加量(t)
 XSi1(n):nチャージ目の予備処理の脱珪処理前の溶銑中の珪素濃度(質量%)
 WHM1(n):nチャージ目の予備処理の脱珪処理前の溶銑質量(t)
 Bm,Si1(n):nチャージ目の予備処理の脱珪処理終了後のスラグの、本発明に係るスラグ分析方法によって求められた塩基度
 (%CaO)m,Si1(n):nチャージ目の予備処理の脱珪処理終了後のスラグの、本発明に係るスラグ分析方法によって定量されたCaO濃度(質量%)
 (%SiO2)m,Si1(n):nチャージ目の予備処理の脱珪処理終了後のスラグの、本発明に係るスラグ分析方法によって定量されたSiO濃度(質量%)
 α:脱燐処理後のスラグ中のCaO及びSiOの質量比率の平均値の和
 β:脱珪処理中に添加する脱炭スラグ中のCaOの質量比率の平均値
 γ:脱珪処理中に添加する脱炭スラグ中のSiOの質量比率の平均値
 尚、本実施例2では、α=0.6、β=0.4、γ=0.1とした。また、Bc,P1(n-1)及びWS,P1(n-1)の算出方法については後述するが、1チャージ目の予備処理においては、Bc,P1(0)は0(ゼロ)でない定数とし、WS,P1(0)=0とした。
 脱珪処理終了時のスラグ質量は、比較例1においては(3)式を用いて計算し、本発明例1においては(4)式を用いて計算した。
 WS,Si1(n)={WS,P1(n-1)×α1+WSL,Si1(n)×(β11)+XSi1(n)/100×WHM1(n)×60/28}/δ1…(3)
 WS,Si1(n)={WS,P1(n-1)×α1+WSL,Si1(n)×(β11)+XSi1(n)/100×WHM1(n)×60/28}/{((%CaO)m,Si1(n)+(%SiO2)m,Si1(n))/100}…(4)
 但し、(3)式、(4)式において、各符号は以下のとおりである。
 WS,Si1(n):nチャージ目の予備処理の脱珪処理終了時の計算スラグ質量(t)
 δ:脱珪処理後のスラグ中のCaO及びSiOの質量比率の平均値の和
 上記以外の(1)式及び(2)式で説明した符号は、上記説明のとおりである。尚、本実施例2では、δ=0.5とした。
 中間排滓工程では、脱珪処理終了時の計算スラグ質量(WS,Si1(n))に対する排滓量が50質量%以上となるように、排滓されるスラグの秤量値を確認しながら中間排滓を行った。排滓されるスラグの秤量は、該スラグを収容する容器を積載する移動台車に設置した秤量器を用いた。
 ここで、中間排滓では、大きな排滓速度を得ようとしたり、脱珪スラグのフォーミングが低位な場合に炉内のスラグ残留量を低減しようとしたりして、転炉型精錬炉の傾動角度を大きくすると、脱珪スラグとともに溶銑がスラグ中に混入して炉口から或る程度排出される。この場合、溶銑の排出量は必ずしも一定ではない。しかし、多くの場合に、脱珪スラグ中に混入する溶銑の質量比率は、比較的低位で且つ安定したレベルであることを確認している。したがって、排出された脱珪スラグの分析試料から求めた銑鉄の質量比率などを代表値として用い、排出物の秤量値に基づいて、排出した脱珪スラグの質量を算出しても、多くの場合には問題がない。そこで、本実施例2では、中間排滓における排出物の秤量値の0.9倍を脱珪処理後に排滓されたスラグ質量(=WO,Si1(n))として算出した。
 脱燐処理工程では、CaO系媒溶剤として生石灰を使用し、脱燐処理後のスラグの計算塩基度が2.00以上となるように、生石灰の使用量を調節した。気体酸素の使用量は、いずれのチャージにおいても一定量とした。
 脱燐処理後のスラグ(脱燐スラグ)の計算塩基度は、比較例1においては(5)式を用いて計算し、本発明例1においては(6)式を用いて計算した。
 Bc,P1(n)=[{WS,Si1(n)-WO,Si1(n)}×δ1×Bc,Si1(n)/{Bc,Si1(n)+1}+WCaO,P1(n)]/[{WS,Si1(n)-WO,Si1(n)}×δ1/{Bc,Si1(n)+1}]…(5)
 Bc,P1(n)=[{WS,Si1(n)-WO,Si1(n)}×(%CaO)m,Si1(n)/100+WCaO,P1(n)]/[{WS,Si1(n)-WO,Si1(n)}×(%SiO2)m,Si1(n)/100]…(6)
 但し、(5)式、(6)式において、各符号は以下のとおりである。
 Bc,P1(n):nチャージ目の予備処理の脱燐処理後のスラグの計算塩基度
 WO,Si1(n):nチャージ目の予備処理の脱珪処理後に排滓されるスラグ質量(t)
 WCaO,P1(n):nチャージ目の予備処理の脱燐処理工程における生石灰の添加量(t)
 上記以外の(1)式~(4)式で説明した符号は、上記説明のとおりである。
 脱燐処理終了時の計算スラグ質量は、比較例1においては(7)式を用いて計算し、本発明例1においては(8)式を用いて計算した。
 WS,P1(n)=[{WS,Si1(n)-WO,Si1(n)}×δ1+WCaO,P1(n)]/α1…(7)
 WS,P1(n)=[{WS,Si1(n)-WO,Si1(n)}×{(%CaO)m,Si1(n)+(%SiO2)m,Si1(n)}/100+WCaO,P1(n)]/α1…(8)
 但し、(7)式、(8)式において、WS,P1(n)は、nチャージ目の予備処理の脱燐処理終了時の計算スラグ質量(t)である。それ以外の(1)式~(6)式で説明した符号は、上記説明のとおりである。
 脱燐処理後の溶銑を出湯した後、脱燐スラグを排滓せずに、全量を炉内に残留させたまま次のチャージに持ち越した。
 このようにして、溶銑に対して予備処理を施し、脱燐処理後の溶銑の燐濃度を、本発明例1と比較例1とで比較した。
 図3に、本発明例1と比較例1の脱燐処理後に溶銑収容容器に出湯した溶銑中の燐濃度を示す。図3の横軸の例えば「0~5」の数値は、「0以上5未満」を表しており、その他も同一である。
 図3に示すように、計算により見積もった脱珪スラグの組成に基づいて生石灰の添加量を決定した比較例1に比較して、本発明例1では、脱燐処理後の溶銑の燐濃度が0.050質量%を超えるチャージ数が減少した。その結果、本発明例1によって溶製した溶銑の燐濃度の平均値は0.028質量%であり、比較例1の平均値の0.035質量%に対して大幅に低下した。
 脱燐処理工程においてスラグの塩基度が適正な範囲に入っていない場合、脱燐処理が適切に進行せず、脱燐処理後の溶銑の燐濃度は目標値より高くなる。即ち、比較例1では、計算で求めたスラグ塩基度が実際のスラグ塩基度から乖離していた可能性がある。
 一方、本発明例1では、スラグ塩基度の実測値に基づいて脱燐処理工程のスラグ塩基度を制御するので、スラグ塩基度を最適な範囲とするためのCaO系媒溶剤の添加量を過不足なく正確に求めることができる。これにより、脱燐処理後の溶銑の燐濃度が低減したと考えられる。
 尚、上記(1)式~(8)式は、[実施例2]で用いた副原料などの操業条件に対応する計算式であるが、他の操業条件においても、物質収支を考慮してこれらの計算式を変更することによって、同様に算出することが可能である。
 容量250トンの1基の転炉型精錬炉を用い、脱珪処理、中間排滓、脱燐処理を、この順に行って溶銑に予備処理を施す精錬方法において、脱珪処理後及び脱燐処理後のスラグの一部または全部を炉内に残留させ、残留させた脱珪スラグを次工程の脱燐処理に活用し、更に、残留させた脱燐スラグを次のチャージの溶銑の脱珪処理に活用することで、繰り返し脱珪処理及び脱燐処理を行う際に、本発明に係るスラグ分析法を用いた精錬方法を実施した。
 具体的には、中間排滓時に炉内に残留させた脱珪スラグの組成を分析し、その組成分析値に基づいて脱燐処理におけるCaO系媒溶剤(生石灰)の添加量を決定して脱燐処理を行った。次いで、このCaO系媒溶剤(生石灰)の添加量に基づいて脱燐スラグの塩基度を見積もり、見積もった脱燐スラグの塩基度に基づいて、次のチャージの脱珪処理前にCaO系媒溶剤(脱炭スラグ)の添加量を決定し、脱炭スラグを添加する精錬を行った。
 つまり、中間排滓時に脱珪スラグの組成を分析し、脱珪処理後のスラグ塩基度((質量%CaO)/(質量%SiO))を求め、このスラグ塩基度に基づいて、脱燐処理後の脱燐スラグの塩基度を予測したうえで、脱燐処理後のスラグの全量を炉内に残留させ、次のチャージの脱珪処理後のスラグ塩基度が1.2となるように、脱炭スラグの添加量を調節した。酸素源は、溶銑の珪素濃度に応じて供給した。
 上記のように、脱珪スラグの塩基度の実測値に基づいて脱炭スラグの添加量を調節しながら溶銑の予備処理を繰り返し実施した場合(本発明例2)と、それとは別に中間排滓時に脱珪スラグの分析を行わず、計算によって求めた脱珪スラグの塩基度に基づいて、次のチャージの溶銑の予備処理を繰り返し実施した場合(比較例2)とを実施し、それぞれ脱珪処理後のスラグ塩基度を比較した。本発明例2及び比較例2は、それぞれ8チャージずつ連続して実施した。
 本発明例2において、中間排滓時のスラグ組成の分析方法は、分析用試料の調製から分析まで、上記の[実施例1]の本発明方法と同じ条件で行った。また、本発明例2及び比較例2において、上記の[実施例2]で用いた(1)式~(8)式で示される各種パラメータを必要に応じて利用した。
 表3に、脱珪処理、中間排滓、脱燐処理を繰り返し実施した際の、脱珪処理後のスラグ塩基度を示す。
Figure JPOXMLDOC01-appb-T000003
 本発明例2では、脱珪スラグの塩基度は、8チャージの平均値で1.21であり、全てのチャージで目標の1.20に対して±0.05の範囲に収まり、相対標準偏差3%未満の良好な精度でスラグ塩基度を制御することが可能であった。一方、比較例2では、8チャージの脱珪スラグ塩基度の平均値は1.27とやや高めの水準となり、相対標準偏差は6%以上となり、本発明例2よりも脱珪処理後のスラグ塩基度のばらつきが大きかった。
 この理由は、本発明例2では、中間排滓時の脱珪スラグ塩基度の実測値に基づいてCaO系媒溶剤(生石灰)の添加量を決定して脱燐処理を行ったので、脱燐スラグの塩基度が精度良く把握できたためであると考えられる。これに対して、比較例2では、例えば脱燐スラグの計算塩基度が実際の塩基度から乖離し、その結果、次のチャージの脱珪処理前にCaO系媒溶剤として添加する脱炭スラグが過剰になった可能性がある。
 以上の結果から、本発明によれば、次のチャージの脱珪処理工程についても、より効率的に精錬を実施できることが確認できた。

Claims (9)

  1.  溶融鉄の精錬で生成するスラグの分析方法であって、
     スラグから採取したスラグ試料を粉砕する工程と、
     粉砕したスラグ粒子から、フルイを通過するスラグ粒子の粒度分布を細かい粒子の側をゼロとして右上がりの曲線として質量百分率で示す累積粒度分布曲線における10%粒径(D10)が0.1mm以上、且つ、90%粒径(D90)が2.0mm以下であるスラグ粒子を採取する工程と、
     採取したスラグ粒子を測定用容器に充填する工程と、
     充填されたスラグ粒子群からの蛍光X線強度を測定する工程と、
     測定された蛍光X線強度からスラグの組成を定量分析する工程と、
    を有する、スラグの分析方法。
  2.  前記蛍光X線強度を測定する工程で、カルシウム(Ca)及び珪素(Si)を含む2種類以上の元素の蛍光X線強度を測定する、請求項1に記載のスラグの分析方法。
  3.  転炉型精錬炉における溶融鉄の精錬で発生したスラグの一部を前記転炉型精錬炉に残留させたまま、前記転炉型精錬炉に残留させた溶融鉄の次工程の精錬、または、前記転炉型精錬炉に新たに装入した溶銑を用いた次のチャージの溶融鉄の精錬を行う、溶融鉄の精錬方法であって、
     溶融鉄の精錬で発生した前記スラグの組成を、請求項1または請求項2に記載のスラグの分析方法によって定量分析し、
     その分析結果に基づいて、スラグを残留させた前記転炉型精錬炉で行う、炉内に残留させた溶融鉄の次工程の精錬または炉内に新たに装入した溶銑を用いた次のチャージの溶融鉄の精錬における精錬前及び/または精錬中に添加する造滓剤の量を決定する、溶融鉄の精錬方法。
  4.  前記溶融鉄の精錬が、1つの転炉型精錬炉を用いて溶銑に対して複数の精錬工程を行い、該複数の精錬工程の間で、溶銑及びスラグの一部を前記転炉型精錬炉に残留させたまま、スラグの残部を排出して行う、溶銑の予備処理であり、
     前記スラグの残部の排出時に前記スラグの組成を分析し、
     その分析結果に基づいて、次工程の精錬工程において添加する造滓剤の量を決定する、請求項3に記載の溶融鉄の精錬方法。
  5.  前記溶融鉄の精錬が、1つの転炉型精錬炉を用いて溶銑に対して予備処理を行う精錬であって、
     発生したスラグの一部または全部を前記転炉型精錬炉に残留させたまま予備処理後の溶銑を出湯し、炉内に新たに溶銑を装入して次のチャージの予備処理を施す、溶銑の予備処理であり、
     前記スラグの一部または全部を前記転炉型精錬炉に残留させる時に、残留させるスラグの組成を分析し、
     その分析結果に基づいて、次のチャージの予備処理において添加する造滓剤の量を決定する、請求項3に記載の溶融鉄の精錬方法。
  6.  高炉から出銑された溶銑を脱珪処理する脱珪処理工程と、
     脱珪処理した溶銑を前記転炉型精錬炉内に残留させた状態で前記脱珪処理工程によって生成された脱珪スラグを前記転炉型精錬炉から排滓する中間排滓工程と、
     前記転炉型精錬炉に残留させた溶銑を脱燐処理する脱燐処理工程と、
     脱燐処理された溶銑を前記転炉型精錬炉から出湯する出湯工程と、
    を有し、
     1つの転炉型精錬炉を用いて前記工程を、上記の順に行って溶銑に予備処理を施す溶融鉄の精錬方法であって、
     前記中間排滓工程中に、脱珪スラグの組成を請求項2に記載のスラグの分析方法によって定量分析し、
     その分析結果に基づいて脱珪スラグの塩基度((質量%CaO)/(質量%SiO))を求め、
     求めた塩基度((質量%CaO)/(質量%SiO))に基づいて前記脱燐処理工程において添加する造滓剤の量を決定する、溶融鉄の精錬方法。
  7.  前記造滓剤がCaO系媒溶剤である、請求項3から請求項6のいずれか1項に記載の溶融鉄の精錬方法。
  8.  前記造滓剤の一部としてMgO系媒溶剤を使用し、
     前記スラグの分析結果がスラグ中のMgO含有量を含み、
     前記スラグの分析結果に基づいて前記MgO系媒溶剤の添加量を決定する、請求項3から請求項7のいずれか1項に記載の溶融鉄の精錬方法。
  9.  前記造滓剤の一部として酸化鉄系媒溶剤を使用し、
     前記スラグの分析結果がスラグ中の酸化鉄含有量を含み、
     前記スラグの分析結果に基づいて前記酸化鉄系媒溶剤の添加量を決定する、請求項3から請求項8のいずれか1項に記載の溶融鉄の精錬方法。
PCT/JP2017/011089 2016-04-13 2017-03-21 スラグの分析方法及び溶融鉄の精錬方法 WO2017179365A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017535942A JP6210185B1 (ja) 2016-04-13 2017-03-21 スラグの分析方法及び溶融鉄の精錬方法
BR112018071126-8A BR112018071126B1 (pt) 2016-04-13 2017-03-21 Método para analisar escória e método para refinar ferro derretido
KR1020187028901A KR102214879B1 (ko) 2016-04-13 2017-03-21 슬래그의 분석 방법 및 용융 철의 정련 방법
CN201780022352.9A CN109073575B (zh) 2016-04-13 2017-03-21 炉渣的分析方法和熔融铁的精炼方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016079966 2016-04-13
JP2016-079966 2016-04-13

Publications (1)

Publication Number Publication Date
WO2017179365A1 true WO2017179365A1 (ja) 2017-10-19

Family

ID=60041736

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/011089 WO2017179365A1 (ja) 2016-04-13 2017-03-21 スラグの分析方法及び溶融鉄の精錬方法

Country Status (5)

Country Link
KR (1) KR102214879B1 (ja)
CN (1) CN109073575B (ja)
BR (1) BR112018071126B1 (ja)
TW (1) TWI631328B (ja)
WO (1) WO2017179365A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108918356A (zh) * 2018-05-18 2018-11-30 中建材(合肥)粉体科技装备有限公司 一种混合物料挤压粉碎后的粒度预测方法及系统

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6607333B2 (ja) * 2017-12-15 2019-11-20 Jfeスチール株式会社 溶鉄の精錬方法
KR102535289B1 (ko) * 2018-11-27 2023-05-26 제이에프이 스틸 가부시키가이샤 강의 제조 방법 및 슬래그의 염기도 저감 방법
TWI745186B (zh) * 2020-12-01 2021-11-01 中國鋼鐵股份有限公司 廢棄耐火材料之回收再利用方法
WO2022244408A1 (ja) * 2021-05-17 2022-11-24 Jfeスチール株式会社 スラグの成分分析法、スラグの塩基度分析法および溶融鉄の精錬方法
TWI839266B (zh) * 2023-07-11 2024-04-11 中國鋼鐵股份有限公司 一種鋼渣接取方法及系統

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0341342A (ja) * 1989-07-10 1991-02-21 Topy Ind Ltd スラグの螢光x線分析方法
JPH1123496A (ja) * 1997-07-08 1999-01-29 Nippon Steel Corp 焼結鉱、溶銑スラグ、溶鋼スラグの分析方法
JP2004315924A (ja) * 2003-04-18 2004-11-11 Aisin Takaoka Ltd 脱硫化水素剤及びその製造方法
JP2010126790A (ja) * 2008-11-28 2010-06-10 Nippon Steel Corp 転炉の精錬方法
JP2014189826A (ja) * 2013-03-27 2014-10-06 Nippon Yakin Kogyo Co Ltd 表面性状に優れるFe−Ni−Cr系合金とその製造方法
JP2015231937A (ja) * 2014-05-15 2015-12-24 新日鐵住金株式会社 陸域用途の土木用資材の製造方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0472007A (ja) 1990-07-10 1992-03-06 Nippon Steel Corp 溶鋼製造法
JP2582692B2 (ja) 1991-11-16 1997-02-19 新日本製鐵株式会社 転炉製鋼法
JPH06200311A (ja) 1993-01-05 1994-07-19 Nkk Corp 溶銑の脱燐方法
JP3288800B2 (ja) * 1993-05-18 2002-06-04 日新製鋼株式会社 製鋼スラグに含まれている被還元酸化物の酸素定量方法
JPH09137213A (ja) * 1995-11-09 1997-05-27 Nisshin Steel Co Ltd 電気アーク炉におけるスラグ塩基度の調整方法
JPH09159629A (ja) * 1995-12-06 1997-06-20 Nippon Steel Corp 鋼中介在物の迅速評価方法および装置
JPH09166589A (ja) 1995-12-15 1997-06-24 Nkk Corp 鉄鋼スラグの迅速分析方法
JPH10152714A (ja) 1996-11-25 1998-06-09 Nippon Steel Corp 溶銑の精錬方法
JPH10170411A (ja) * 1996-12-05 1998-06-26 Nkk Corp 鉄鋼スラグの迅速分析方法
CN1276862A (zh) * 1997-10-20 2000-12-13 日本钢管株式会社 冶金炉的构造及该冶金炉的操作方法
JPH11229020A (ja) * 1998-02-13 1999-08-24 Nippon Steel Corp 金属精錬・溶解用窯炉の内張り耐火物保護方法
JP3900713B2 (ja) 1998-02-23 2007-04-04 Jfeスチール株式会社 蛍光x線分析用スラグサンプルの調整方法およびサンプラ
JP5089341B2 (ja) * 2007-11-05 2012-12-05 株式会社神戸製鋼所 スラグ分別方法
TW200938509A (en) * 2007-12-07 2009-09-16 Krosaki Harima Corp Aluminum compound-bonded brick for furnace hearth
JP6360654B2 (ja) * 2012-01-17 2018-07-18 Jx金属株式会社 フレキシブルプリント配線板用圧延銅箔
JP5408369B2 (ja) * 2012-01-19 2014-02-05 Jfeスチール株式会社 溶銑の予備処理方法
CN103234994B (zh) * 2013-03-25 2015-07-15 中华人民共和国山东出入境检验检疫局 一种利用x射线荧光光谱分析高钛渣中元素含量的方法
JP6331577B2 (ja) * 2014-03-28 2018-05-30 株式会社ジェイ・エム・エス 濾過フィルタ用ホルダ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0341342A (ja) * 1989-07-10 1991-02-21 Topy Ind Ltd スラグの螢光x線分析方法
JPH1123496A (ja) * 1997-07-08 1999-01-29 Nippon Steel Corp 焼結鉱、溶銑スラグ、溶鋼スラグの分析方法
JP2004315924A (ja) * 2003-04-18 2004-11-11 Aisin Takaoka Ltd 脱硫化水素剤及びその製造方法
JP2010126790A (ja) * 2008-11-28 2010-06-10 Nippon Steel Corp 転炉の精錬方法
JP2014189826A (ja) * 2013-03-27 2014-10-06 Nippon Yakin Kogyo Co Ltd 表面性状に優れるFe−Ni−Cr系合金とその製造方法
JP2015231937A (ja) * 2014-05-15 2015-12-24 新日鐵住金株式会社 陸域用途の土木用資材の製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108918356A (zh) * 2018-05-18 2018-11-30 中建材(合肥)粉体科技装备有限公司 一种混合物料挤压粉碎后的粒度预测方法及系统
CN108918356B (zh) * 2018-05-18 2021-07-09 中建材(合肥)粉体科技装备有限公司 一种混合物料挤压粉碎后的粒度预测方法及系统

Also Published As

Publication number Publication date
CN109073575B (zh) 2021-05-28
KR102214879B1 (ko) 2021-02-09
TWI631328B (zh) 2018-08-01
CN109073575A (zh) 2018-12-21
BR112018071126A2 (pt) 2019-04-24
TW201741657A (zh) 2017-12-01
KR20180119664A (ko) 2018-11-02
BR112018071126B1 (pt) 2022-12-27

Similar Documents

Publication Publication Date Title
WO2017179365A1 (ja) スラグの分析方法及び溶融鉄の精錬方法
JP6685260B2 (ja) 溶鉄の精錬方法及びスラグの組成分析方法
US11035014B2 (en) Molten steel desulfurization method, molten steel secondary refining method, and molten steel manufacturing method
Williams Control and analysis in iron and steelmaking
JP6011248B2 (ja) 転炉における溶銑の予備処理方法
JP6210185B1 (ja) スラグの分析方法及び溶融鉄の精錬方法
JPWO2018151024A1 (ja) 焼結鉱の製造方法
Teguri et al. Manganese ore pre-reduction using a rotary kiln to manufacture super-low-phosphorus ferromanganese
JP6052191B2 (ja) 製鋼スラグの資源化方法
TW201812025A (zh) 熔鋼的製造方法
EP2743683B1 (en) Molten iron desulfurization method
Makkonen et al. Characterization and sulfuric acid leaching of ferrochrome converter (CRC) dust
JP2015189643A (ja) 製鋼スラグの選別方法、製鋼スラグおよび製鋼スラグの選別装置
Umadevi et al. Effect of olivine as MgO-bearing flux on low-and high-alumina iron ore pellets
JP7047815B2 (ja) 低リン鋼の製造方法
Huang et al. Novel direct steelmaking by combining microwave, electric arc, and exothermal heating technologies
Lu et al. Chemical analysis of powdered metallurgical slags by X-ray fluorescence spectrometry
JP7047816B2 (ja) 低リン鋼の製造方法
JP6658246B2 (ja) 耐火物を用いたスラグの希釈方法
JP5673485B2 (ja) 溶銑の脱炭吹錬方法
JPH09118911A (ja) 顆粒状複合精錬材
Scheibera et al. Static dissolution evaluation of dolomite-based materials in EAF-type slag
Lachmund et al. New lime based slag conditioners to improve the dephosphorization in the BOF process of dillinger
WO2013190591A1 (ja) 精錬方法及び溶鋼の製造方法
JP2021004381A (ja) 低リン鋼の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017535942

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187028901

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112018071126

Country of ref document: BR

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17782183

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 112018071126

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20181011

122 Ep: pct application non-entry in european phase

Ref document number: 17782183

Country of ref document: EP

Kind code of ref document: A1