WO2017179239A1 - 吸着部材、液晶セル吸着移動装置、および光学フィルム貼合せライン - Google Patents

吸着部材、液晶セル吸着移動装置、および光学フィルム貼合せライン Download PDF

Info

Publication number
WO2017179239A1
WO2017179239A1 PCT/JP2016/086411 JP2016086411W WO2017179239A1 WO 2017179239 A1 WO2017179239 A1 WO 2017179239A1 JP 2016086411 W JP2016086411 W JP 2016086411W WO 2017179239 A1 WO2017179239 A1 WO 2017179239A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
crystal cell
optical film
adsorption
suction
Prior art date
Application number
PCT/JP2016/086411
Other languages
English (en)
French (fr)
Inventor
和生 北田
公史 西郷
覚 竹田
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to KR1020177014571A priority Critical patent/KR101921437B1/ko
Priority to JP2017516813A priority patent/JP6201082B1/ja
Publication of WO2017179239A1 publication Critical patent/WO2017179239A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J15/00Gripping heads and other end effectors
    • B25J15/06Gripping heads and other end effectors with vacuum or magnetic holding means
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1303Apparatus specially adapted to the manufacture of LCDs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G47/00Article or material-handling devices associated with conveyors; Methods employing such devices
    • B65G47/74Feeding, transfer, or discharging devices of particular kinds or types
    • B65G47/90Devices for picking-up and depositing articles or materials
    • B65G47/901Devices for picking-up and depositing articles or materials provided with drive systems with rectilinear movements only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G47/00Article or material-handling devices associated with conveyors; Methods employing such devices
    • B65G47/74Feeding, transfer, or discharging devices of particular kinds or types
    • B65G47/90Devices for picking-up and depositing articles or materials
    • B65G47/907Devices for picking-up and depositing articles or materials with at least two picking-up heads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G49/00Conveying systems characterised by their application for specified purposes not otherwise provided for
    • B65G49/05Conveying systems characterised by their application for specified purposes not otherwise provided for for fragile or damageable materials or articles
    • B65G49/06Conveying systems characterised by their application for specified purposes not otherwise provided for for fragile or damageable materials or articles for fragile sheets, e.g. glass
    • B65G49/061Lifting, gripping, or carrying means, for one or more sheets forming independent means of transport, e.g. suction cups, transport frames
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G2201/00Indexing codes relating to handling devices, e.g. conveyors, characterised by the type of product or load being conveyed or handled
    • B65G2201/02Articles
    • B65G2201/0214Articles of special size, shape or weigh
    • B65G2201/022Flat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G2249/00Aspects relating to conveying systems for the manufacture of fragile sheets
    • B65G2249/04Arrangements of vacuum systems or suction cups

Definitions

  • the present invention relates to an adsorbing member, a liquid crystal cell adsorbing / moving device equipped with the adsorbing member, and an optical film laminating line equipped with the liquid crystal cell adsorbing / moving device.
  • a liquid crystal cell conveyed in an optical film laminating line for manufacturing a liquid crystal display device is rectangular and has a long side and a short side. And the liquid crystal cell is transported so that the liquid crystal cell is transported so that the long side of the liquid crystal cell is along the liquid crystal cell transport direction, and the liquid crystal cell is transported so that the long side of the liquid crystal cell is perpendicular to the liquid crystal cell transport direction.
  • TD method TD method.
  • liquid crystal cell adsorption and movement devices that can handle different transport methods are already known.
  • the liquid crystal cell adsorption moving device described in Patent Document 1 and Patent Document 2 adsorbs and moves the liquid crystal cell from above.
  • the liquid crystal cell adsorption moving apparatus described in Patent Document 3 is adsorbed and moved while supporting the liquid crystal cell from below.
  • each of the conventional suction moving devices includes a rectangular suction member having the same shape as the liquid crystal cell.
  • the size of the suction member in order for the suction member to support both the MD and TD transport methods, the size of the suction member must be increased so that the short side of the rectangular suction member is longer than the long side of the liquid crystal cell. If it does in this way, an adsorption member and an adsorption movement device will become large, and the ratio of the useless area in an adsorption member will become large.
  • the present invention has been made to solve such a problem, and provides an adsorption member that can cope with both the MD and TD transport methods and that improves the effective work area ratio of the adsorption member. Furthermore, this invention provides an optical film bonding line provided with the said liquid crystal cell adsorption moving apparatus provided with the said adsorption member, and the said liquid crystal cell adsorption moving apparatus.
  • the adsorbing member provided in the first embodiment of the present invention is an adsorbing member for adsorbing the liquid crystal cell, and is provided with a plurality of adsorbing portions that come into contact with the surface of the liquid crystal cell.
  • the placement area of the suction part is “convex”.
  • the suction part is made of an elastic material. In this way, the possibility of scratching the surface of the liquid crystal cell is reduced when the surface of the liquid crystal cell is contacted for adsorption.
  • the suction member of the first or second form is a suction pad having a “convex” shape in a horizontal plane, and the suction part is the suction pad. It is arranged on the lower surface.
  • the suction portion is uniformly disposed on the lower surface of the suction pad.
  • the suction member of the first or second form includes at least one suction arm extending along the liquid crystal cell transport direction, and the liquid crystal cell transport direction.
  • a suction frame composed of a plurality of suction arms extending along a direction perpendicular to the horizontal direction of the suction frame, and the shape of the envelope in the horizontal plane of the suction frame is a "convex" shape, and the suction portion is Located on the bottom surface. In this way, the weight of the adsorption member can be further reduced.
  • the suction portion is uniformly arranged on the suction arm.
  • the suction member in the seventh embodiment of the present invention, includes at least one suction arm extending along the liquid crystal cell transport direction, and the liquid crystal cell transport direction.
  • a suction frame composed of a plurality of suction arms extending along a direction perpendicular to the horizontal direction of the suction frame, and the shape of the envelope in the horizontal plane of the suction frame is a "convex" shape, and the suction portion is Arranged on the top surface. In this way, the weight of the adsorption member can be further reduced.
  • the suction portion is uniformly arranged on the suction arm.
  • suction member of each form described above it is possible to cope with both MD and TD transport methods, and it is possible to improve the effective work area ratio in the suction member and prevent the apparatus from becoming large.
  • the present invention provides, as a ninth embodiment, a liquid crystal cell adsorption movement device that can move while adsorbing a liquid crystal cell, wherein the liquid crystal cell adsorption movement device is located above a liquid crystal cell conveyance path, and the adsorption unit is The adsorbing member according to any one of the first to sixth embodiments, wherein the “convex” -shaped mirror symmetry line is parallel to the liquid crystal cell transport direction, facing the liquid crystal cell toward the liquid crystal cell transport path, and the liquid crystal cell A vacuum pump that generates a negative pressure for adsorbing, an intake passage that communicates the vacuum pump and the adsorbing portion, a vertical moving means that moves the adsorbing member up and down, and a horizontal moving means that moves the adsorbing member horizontally A liquid crystal cell adsorption moving device is provided.
  • the suction member is arranged so that the bottom of the “convex” shape is on the downstream side of the liquid crystal cell conveyance path.
  • the intake passage includes a main intake passage and a plurality of sub intake passages, and one end of the main intake passage is the vacuum pump. , The other end of the main intake passage is branched into the plurality of sub intake passages, each sub intake passage is connected to at least one adsorption portion, and the main intake passage and each sub intake passage are opened and closed independently. Each possible valve is provided.
  • this invention is a liquid crystal cell adsorption movement apparatus which can move in the state which adsorb
  • the said liquid crystal cell adsorption movement apparatus is located under a liquid crystal cell conveyance path, and the said adsorption part is The suction member according to the seventh or eighth embodiment, which is opposed to the liquid crystal cell toward the liquid crystal cell conveyance path, and whose “convex” -shaped mirror symmetry line is parallel to the liquid crystal cell conveyance direction, and negative pressure for adsorbing the liquid crystal cell
  • a suction pump that communicates the vacuum pump and the suction portion, a vertical movement means that moves the suction member up and down through a gap between transport rollers in the liquid crystal cell transport path, and a liquid crystal cell transport path.
  • a liquid crystal cell adsorption movement device comprising: horizontal movement means for moving the adsorption member horizontally along a gap between conveyance rollers.
  • the suction member is disposed such that the bottom of the “convex” shape is on the downstream side of the liquid crystal cell conveyance path.
  • the intake passage is composed of a main intake passage and a plurality of sub intake passages, and one end of the main intake passage is the vacuum pump.
  • the other end of the main intake passage is branched into the plurality of sub intake passages, each sub intake passage is connected to at least one adsorption portion, and the main intake passage and each sub intake passage are opened and closed independently.
  • Each possible valve is provided.
  • this invention is an optical film bonding line as 15th form, Comprising: A liquid crystal cell conveyance path provided with a some conveyance roller and conveying a liquid crystal cell, and an optical film which bonds an optical film on the surface of a liquid crystal cell A bonding device, a liquid crystal cell position sensor for inspecting whether the liquid crystal cell has reached a prescribed position in the liquid crystal cell conveyance path, and a liquid crystal cell that has reached the prescribed position in the liquid crystal cell conveyance path are adsorbed A liquid crystal cell based on an inspection signal from the liquid crystal cell position sensor and the liquid crystal cell adsorption moving device according to any one of the ninth to fourteenth aspects, which is moved and aligned with the work start position of the optical film laminating device A controller that automatically controls the operation of the suction moving device, the rotation of the conveying roller, and the operation of the optical film laminating device to automatically perform the optical film laminating process. Providing combined line lamination optical film.
  • one liquid crystal cell adsorption moving device in the optical film laminating line of the fifteenth aspect, one liquid crystal cell adsorption moving device, one optical film laminating device corresponding thereto, and another liquid crystal cell An adsorption moving device and another optical film laminating device corresponding thereto, wherein the one liquid crystal cell adsorption moving device is the liquid crystal cell adsorption moving device according to any one of the ninth to eleventh embodiments,
  • the one optical film laminating apparatus bonds an optical film to the lower surface of the liquid crystal cell
  • the other liquid crystal cell attracting and moving apparatus is the liquid crystal cell attracting and moving apparatus according to any one of the twelfth to fourteenth embodiments.
  • the another optical film laminating apparatus bonds the optical film to the upper surface of the liquid crystal cell. According to such an optical film bonding line, the optical film can be bonded to both the upper and lower surfaces of the liquid crystal cell without inverting the liquid crystal cell up and down.
  • the liquid crystal cell adsorbing / moving apparatus includes two liquid crystal cell adsorbing / moving apparatuses and two optical film laminating apparatuses corresponding to each of them.
  • the apparatus is a liquid crystal cell adsorption movement device according to any one of the ninth to eleventh embodiments
  • the optical film laminating apparatus bonds an optical film to the lower surface of the liquid crystal cell
  • the optical film laminating line has 2 A reversing means for reversing the liquid crystal cell up and down is further provided between the two optical film laminating apparatuses.
  • the liquid crystal cell attracting / moving apparatus includes two liquid crystal cell attracting / moving apparatuses and two optical film laminating apparatuses corresponding to each of them.
  • the apparatus is a liquid crystal cell adsorption movement device according to any one of the twelfth to fourteenth embodiments
  • the optical film laminating apparatus bonds an optical film to the upper surface of the liquid crystal cell
  • the optical film laminating line has 2 A reversing means for reversing the liquid crystal cell up and down is further provided between the two optical film laminating apparatuses.
  • the optical film can be bonded to both surfaces of the liquid crystal cell also by the optical film bonding lines of the seventeenth and eighteenth embodiments.
  • the specified position inspected by the liquid crystal cell position sensor is adsorbed on one side downstream in the transport direction in the liquid crystal cell. It is provided at a position that protrudes downstream in the transport direction from one side of the member in the transport direction downstream.
  • the optical film can be bonded more accurately by the optical film laminating apparatus.
  • FIG. 1 is a schematic structural view of an optical film laminating line including a liquid crystal cell adsorption moving device according to the present invention.
  • FIG. 2 is a schematic diagram of the structure of the liquid crystal cell adsorption moving device according to the first embodiment.
  • 3A and 3B are plan views of the suction pad according to the first embodiment when viewed from below, FIG. 3A shows a state in the TD transport method, and FIG. 3B shows a state in the MD transport method.
  • 4A to 4F are schematic views showing the suction movement operation of the liquid crystal cell suction movement device according to the first embodiment.
  • 5A and 5B are side views of the liquid crystal cell suction moving device according to the second embodiment.
  • FIG. 1 is a schematic structural view of an optical film laminating line including a liquid crystal cell adsorption moving device according to the present invention.
  • FIG. 2 is a schematic diagram of the structure of the liquid crystal cell adsorption moving device according to the first embodiment.
  • 3A and 3B are plan views
  • FIG. 5A shows a state in which the suction frame is positioned below the liquid crystal cell conveyance path
  • FIG. FIGS. 5C and 5D are plan views of the suction pad according to the second embodiment when viewed from above
  • FIG. 5C shows the state in the TD transport method.
  • 6A to 6F are schematic views showing the suction movement operation of the liquid crystal cell suction movement device according to the second embodiment.
  • front”, “back”, “left”, “right”, “upper”, and “lower” used in the present invention refer to the case where the liquid crystal cell is directed from the upstream side to the downstream side along the transport line. It means the direction of “front”, “back”, “left”, “right”, “up”, “down”.
  • the “liquid crystal cell” is not limited to a liquid crystal panel, but can be understood as an arbitrary substrate-like material for attaching an optical film during the production of a display panel.
  • the “optical film” is an arbitrary film that adjusts optical characteristics of a display panel such as a polarizing film.
  • an optical film laminating line (hereinafter also referred to as “line”) including a liquid crystal cell adsorption and movement device (hereinafter also referred to as “adsorption and movement device”) according to the present invention will be described with reference to FIG.
  • the line includes a liquid crystal cell supply unit A, a liquid crystal cell transport path B, a first optical film transport path C, a second optical film transport path D, and a liquid crystal cell discharge section E.
  • the liquid crystal cell supply unit A, the liquid crystal cell transport path B, and the liquid crystal cell discharge unit E are sequentially connected.
  • the first optical film transport path C and the second optical film transport path D are respectively positioned above or below the liquid crystal cell transport path B.
  • the first optical film conveyance path C is disposed on the most upstream side of the first optical film conveyance path C, and includes a first optical film supply unit CF1 that provides a first optical film laminate, and a first optical film supply unit CF1.
  • a first optical film cutting unit CF2 that is disposed downstream and cuts the first optical film laminate supplied from the first optical film supply unit CF1 into a sheet material having a specified length, and a first optical film cutting unit CF2.
  • the first optical film laminating portion CF3 that is disposed downstream of the liquid crystal cell conveyance path B, and bonds the first optical film to one surface of the liquid crystal cell U, and disposed on the most downstream side of the first optical film conveyance path C, A first carrier film winding unit CF4 for winding the first carrier film after peeling off the first optical film is provided.
  • the second optical film conveyance path D is disposed on the most upstream side of the second optical film conveyance path D, and includes a second optical film supply unit DF1 that provides a second optical film laminate, and a second optical film supply unit DF1.
  • a second optical film cutting unit DF2 that is disposed downstream and cuts the second optical film laminate supplied from the second optical film supply unit DF1 into a sheet material having a specified length, and a second optical film cutting unit DF2
  • the second optical film laminating portion DF3 for laminating the second optical film on one surface of the liquid crystal cell U, and the most downstream side of the second optical film conveyance path D.
  • a second carrier film take-up part DF4 for taking up the second carrier film after peeling off the second optical film is provided.
  • the liquid crystal cell U enters the liquid crystal cell conveyance path B from the liquid crystal cell supply unit A.
  • a first liquid crystal cell U that enters the liquid crystal cell transport path B as necessary is first swung on the liquid crystal cell transport path B from the side of the liquid crystal cell supply section A, and sequentially positioned on the liquid crystal cell transport path B.
  • the liquid crystal cell adsorption swivel BR1 is positioned upstream of the first optical film laminating portion CF3 and the liquid crystal cell U is adsorbed and moved to the work start position of the first optical film laminating portion CF3 for alignment.
  • a first liquid crystal cell position sensor located on the upstream side of the first liquid crystal cell adsorption moving device BT1 and the first optical film laminating portion CF3 and inspecting whether or not the liquid crystal cell U has reached the first specified position.
  • a second liquid crystal cell adsorption swiveling device BR2 that is located after the first optical film laminating portion CF3 and adsorbs and swirls the liquid crystal cell U that has passed through the first optical film laminating portion CF3, if necessary.
  • a second liquid crystal cell adsorbing / moving device BT2 that is positioned upstream of the film laminating unit DF3, adsorbs the liquid crystal cell U, moves to the work start position of the second optical film laminating unit DF3, and aligns it;
  • a second liquid crystal cell position sensor BP2 that is located upstream of the second optical film laminating portion DF3 and inspects whether or not the liquid crystal cell U has reached the second specified position; and a second optical film laminating portion DF3
  • a third liquid crystal cell adsorption swiveling device BR3 that adsorbs and swivels the liquid crystal cell U that has passed through the second optical film laminating part DF3 as necessary.
  • a reversing mechanism for reversing the upper and lower surfaces of the liquid crystal cell is provided at a position near the second liquid crystal cell adsorption swivel device BR2.
  • the liquid crystal cell U to which the optical film has been bonded is discharged from the liquid crystal cell transport path B to the liquid crystal cell discharge portion E and used in the downstream process.
  • the optical film laminating portion is composed of a pair of upper and lower laminating rollers Ru and Rd, and these two laminating rollers Ru and Rd move up and down, so that they are close to each other. Or can be separated.
  • a peeling means SP is provided in front of any one of the laminating rollers Ru and Rd, and the carrier film H that supports the optical film F is peeled off.
  • the two bonding rollers Ru and Rd are close to each other in the vertical direction to move the liquid crystal cell U.
  • the tip of the optical film F sandwiched and extended from the peeling means SP is bonded to the tip surface of the liquid crystal cell U.
  • the laminating rollers Ru and Rd are rotated to convey the liquid crystal cell U downstream.
  • the optical film F from which the carrier film H has been peeled off by the peeling means SP is pressed by the laminating rollers Ru and Rd and bonded to the surface of the moving liquid crystal cell U.
  • the optical film F is bonded to one surface of the liquid crystal cell U.
  • the first and second liquid crystal cell suction moving devices BT1 and BT2 align the liquid crystal cell U with the work start position of the optical film laminating unit.
  • the liquid crystal cell suction moving device BT includes a suction pad BT-B10, a vacuum pump BT-P, an intake passage BT-G, horizontal moving means BT-HT, and vertical moving means BT-ST.
  • the liquid crystal cell adsorption moving device BT is located above the liquid crystal cell conveyance path B.
  • the suction pad BT-B10 is a member that directly contacts the liquid crystal cell U when the liquid crystal cell suction moving device BT sucks the liquid crystal cell U. As shown in FIG. 2, a plurality of suction portions BT-B20 are arranged on the lower surface of the suction pad BT-B10, and the suction portions BT-B20 face the liquid crystal cell U downward. When the suction is not performed, the suction pad BT-B10 is located at an upper position having a certain altitude from the liquid crystal cell transport path B.
  • the adsorbing pad BT-B10 When adsorbing the liquid crystal cell U, the adsorbing pad BT-B10 is lowered by an up-and-down moving means BT-ST, which will be described later, to bring the adsorbing part BT-B20 into contact with the upper surface of the liquid crystal cell U in the liquid crystal cell transport path B.
  • the suction part BT-B20 is preferably a suction nozzle made of an elastic material such as rubber.
  • 3A and 3B are plan views of the suction pad BT-B10 when viewed upward.
  • the shape of the suction pad BT-B10 is a “convex” shape, and the mirror symmetry line L of the “convex” -shaped contour is parallel to the liquid crystal cell transport direction in the liquid crystal cell transport path B. .
  • the suction pad BT-B10 is arranged so that the bottom of the “convex” shape is on the downstream side of the liquid crystal cell conveyance path.
  • the liquid crystal cell transported in the MD direction and the liquid crystal cell transported in the TD direction are referred to each other while referring to the “convex” -shaped bottoms that are the same positions on the suction member.
  • the relative position of can be fixed. Therefore, the liquid crystal cell can be aligned in the same way regardless of whether it is conveyed in the MD or TD direction.
  • the arrangement area of the suction part BR-B20 on the lower surface of the suction pad BT-B10 has a “convex” shape, but preferably, the suction part BT-B20 is uniformly arranged on the lower surface of the suction pad BT-B10. Is done.
  • the suction part BT-B20 is arranged in a “convex” -shaped region, as shown in FIGS. 3A and 3B, any liquid crystal cell during TD and MD conveyance is appropriately sucked by the suction pad.
  • the suction pad BT-B10 of the present embodiment can cope with both TD and MD transport, and the ineffective area proportion is reduced as compared with the conventional rectangular suction pad, thereby preventing an increase in the size of the apparatus.
  • the side on the downstream side in the transport direction of the sucked liquid crystal cell protrudes from the side on the downstream side in the transport direction of the suction pad (that is, the convex bottom).
  • the tip of the liquid crystal cell is sandwiched between the bonding rollers Ru and Rd while the liquid crystal cell is adsorbed and fixed.
  • the laminating can be performed more accurately. That is, in the present invention, the cell may be accommodated within the outline range of the suction pad, but more preferably, the tip of the liquid crystal cell may be slightly protruded and fixed by suction.
  • vacuum pump BT-P a known product may be used as long as it generates a negative pressure for adsorbing the liquid crystal cell U.
  • the intake passage BT-G communicates the vacuum pump BT-P and the suction part BT-B20, and includes a main intake passage BT-G10 and a plurality of sub intake passages BT-G20.
  • One end of the main intake passage BT-G10 communicates with the vacuum pump BT-P, and the other end of the main intake passage BT-G10 is branched into a plurality of sub intake passages BT-G20, and each of the suction portions BT in the suction pad BT-B10 -Communicate with B20.
  • Each sub intake passage BT-G20 may be further branched into a plurality of capillary intake passages, and may be communicated with the suction portion BT-B20 via the capillary intake passages.
  • a main valve BT-V10 is provided in the main intake passage BT-G10, and a sub valve BT-V20 is provided in each sub intake passage BT-G20.
  • the main valve BT-V10 and the sub valves BT-V20 can be opened and closed independently.
  • the suction pad BT-B10 is communicated with or cut off from the vacuum pump BT-P as a whole.
  • the sub-valve BT-V20 is selectively opened and closed, so that the region where the suction force is actually generated within the suction pad BT-B10 placement region is flexible. Can be adjusted. For example, in the case shown in FIG.
  • the sub intake path BT-G20 corresponding to the suction portion BT-B20 in the protruding region (that is, the region other than the liquid crystal cell U) on the left side of the suction pad BT-B10 is a sub valve. It is blocked by BT-V20 and no attracting force is generated in this area.
  • the sub air intake path BT-G20 corresponding to the suction part BT-B20 in the protruding regions (that is, regions other than the liquid crystal cell U) on the upper and lower sides of the suction pad BT-B10 is It is blocked by each sub-valve BT-V20, and no adsorption force is generated in this area.
  • the opening and closing of the main valve BT-V10 and the sub valve BT-V20 may be performed manually or automatically by computer control.
  • the horizontal moving means BT-HT moves the suction pad BT-B10 in the horizontal direction.
  • the horizontal moving means BT-HT includes, for example, a guide rail BT-HT10 provided along the horizontal direction, and a slide portion BT-HT20 that can slide along the guide rail BT-HT10.
  • the horizontal moving means BT-HT may be another known structure, for example, a robot arm driven by an electric motor.
  • the movement in the horizontal direction may be just movement along the liquid crystal cell conveyance direction, and if necessary, it is in-plane movement that combines movement along the liquid crystal cell conveyance direction and the direction perpendicular to the liquid crystal cell conveyance direction. May be.
  • the vertical movement means BT-ST moves the suction pad BT-B10 in the vertical direction.
  • the vertical movement means BT-ST includes, for example, a guide sleeve BT-ST10 provided along the vertical direction and a slide bar BT-ST20 that can slide along the guide sleeve BT-ST10.
  • the vertical movement means BT-ST may have another known structure, similar to the horizontal movement means BT-HT.
  • the vertical movement means BT-ST is connected to the horizontal movement means BT-HT and cooperates to move the suction pad BT-B10 in space.
  • the suction pad BT-B10 can be moved smoothly, there is no particular limitation on the coupling relationship among the suction pad BT-B10, the horizontal movement means BT-HT, and the vertical movement means BR-ST.
  • the slide portion BT-HT20 of the horizontal movement means BT-HT and the guide sleeve BT-ST10 of the vertical movement means BT-ST are connected, and the slide bar BT-ST20 of the vertical movement means BT-ST The suction pad BT-B10 is connected.
  • the liquid crystal cell suction moving device BT is an altitude sensor (see FIG. 5) for inspecting the height of the suction pad BT-B10 relative to the liquid crystal cell transport path B in order to control the distance that the suction pad BT-B10 moves up and down. Abbreviation).
  • the optical film laminating line includes a liquid crystal cell position sensor BP that inspects whether or not the liquid crystal cell U has reached a prescribed position where the liquid crystal cell U should be sucked in the liquid crystal cell transport path B.
  • the specified position to be inspected by the liquid crystal cell position sensor BP is such that the one side on the downstream side in the transport direction in the liquid crystal cell U is in the transport direction than the one side on the downstream side in the transport direction in the suction pad BT-B10. It is provided at a position so as to protrude downstream.
  • the liquid crystal cell U is transported to a defined position in front of the optical film bonding portion in the liquid crystal cell transport path B.
  • the liquid crystal cell position sensor BP detects the transport of the liquid crystal cell U to the specified position, the rotation of the transport roller R at the specified position is stopped and the liquid crystal cell U is stopped at the specified position.
  • the liquid crystal cell position sensor BP sends the detection signal to the control unit of the optical film bonding line. At this time, the two laminating rollers Ru and Rd are in a separated state.
  • the vertical movement means BT-ST is driven to move the suction pad BT-B10 downward until the suction part BT-B20 contacts the upper surface of the liquid crystal cell U.
  • the horizontal movement means BT-HT may appropriately adjust the position of the suction pad BT-B10 in the horizontal plane as necessary. Then, by opening the main valve BT-V10 and selectively opening the sub valve BT-V20, an adsorption force is generated in the adsorption part BT-B20 in contact with the upper surface of the liquid crystal cell U, and the liquid crystal cell U To perform adsorption.
  • one end of the optical film F in the optical film transport path is placed between the two laminating rollers Ru and Rd. Stretch and wait for lamination. Also at this time, the two laminating rollers Ru and Rd are in a separated state.
  • the suction pad BT-B10 by moving the suction pad BT-B10 by the horizontal moving means BT-HT, the liquid crystal cell U sucked by the suction pad BT-B10 is moved, and the tip thereof is moved to two Alignment is performed at a bonding work start position between the bonding rollers Ru and Rd. Also at this time, the two laminating rollers Ru and Rd are in a separated state. Since the liquid crystal cell U is moved by the liquid crystal cell adsorption moving device BT, the alignment accuracy of the liquid crystal cell U can be significantly improved as compared with the case where the liquid crystal cell U is transported by the rotation of the transport roller R in the liquid crystal cell transport path B.
  • the optical film laminating unit detects that the tip of the liquid crystal cell U is aligned with the laminating work start position by a sensor (not shown)
  • the two laminating rollers Ru and Rd Are placed close to each other, and the tip of the liquid crystal cell U is sandwiched with one end of the optical film F extended from the peeling means SP shown in FIG. 4B.
  • the tip of the optical film F is bonded to the tip of the lower surface of the liquid crystal cell U.
  • the main valve BT-V10 is closed to release the suction of the suction part BT-B20.
  • the vertical movement means BT-ST is driven to raise the suction pad BT-B10 and away from the upper surface of the liquid crystal cell U.
  • the horizontal movement means BT-HT is driven to move the suction pad BT-B10 backward to the start position shown in FIG. 4A.
  • the optical film F whose one end is already pasted to the tip of the liquid crystal cell U is subsequently pasted on the lower surface of the liquid crystal cell U. Match.
  • the laminating of the optical film F is completed.
  • the two laminating rollers Ru and Rd are also in a separated state.
  • the vacuum pump and the intake path are the same as those in the first embodiment.
  • the structures of the horizontal moving means and the vertical moving means are the same as those in the first embodiment except that they are located below the liquid crystal cell conveyance path B. Therefore, a duplicate description of these structures is omitted.
  • the liquid crystal cell suction moving device BT As shown in FIGS. 5A and 5B, compared to the first embodiment, the liquid crystal cell suction moving device BT according to the second embodiment is located below the liquid crystal cell transport path B, and the suction member is directed from below to above.
  • the liquid crystal cell U is supported, and the optical film F is bonded to the upper surface of the liquid crystal cell U.
  • the suction member of this embodiment is not a suction pad but a suction frame BT-H10 including a plurality of suction arms BT-H20.
  • the suction arm BT-H20 is disposed so as to intersect with each other along the liquid crystal cell transport direction and the direction perpendicular to the liquid crystal cell transport direction, and has at least one suction arm along the liquid crystal cell transport direction.
  • a plurality of suction arms along the direction perpendicular to the transport direction are provided depending on the shape and size of the liquid crystal cell.
  • the shape of the envelope in the horizontal plane of the suction frame BT-H10 is a “convex” shape.
  • the suction portion BT-H30 is disposed on the upper surface of the suction arm BT-H20 so as to face upward with the suction arm BT-H20, and is opposed to the liquid crystal cell U on the liquid crystal cell transport path B.
  • the adsorbing part BT-H30 may be arranged in a “convex” shape in the horizontal plane.
  • the adsorbing part BT-H30 is uniformly arranged on the adsorbing arm BT-H20.
  • the suction part BT-H30 is a suction nozzle made of an elastic material such as rubber so as not to damage the surface of the liquid crystal cell U.
  • the transport rollers in the liquid crystal cell transport path B have a gap in the liquid crystal cell transport direction and the direction perpendicular to the liquid crystal cell transport direction.
  • the suction arm BT-H20 extending along the liquid crystal cell transport direction and the direction perpendicular to the liquid crystal cell transport direction in the suction frame BT-H10 can smoothly pass through the gap.
  • the suction frame BT-H10 can move from below the liquid crystal cell transport path B to above the liquid crystal cell transport path B. That is, the state shown in FIG. 5A is changed to the state shown in FIG. 5B.
  • the suction frame BT-H10 in the state shown in FIG. 5B can move in the liquid crystal cell transport direction and the direction perpendicular to the liquid crystal cell transport direction along the gap between the transport rollers shown in FIG. 5D.
  • the transport roller forms a gap along the liquid crystal cell transport direction that has a sufficiently large width at the center of the liquid crystal cell transport path B, and the vertical movement means for supporting the suction frame BT-H10 extends along the gap. It can be moved in the liquid crystal cell transport direction.
  • the liquid crystal cell U is transported to a specified position in front of the optical film laminating portion in the liquid crystal cell transport path B.
  • the liquid crystal cell position sensor BP detects the transport of the liquid crystal cell U to the specified position, the rotation of the transport roller at the specified position is stopped and the liquid crystal cell U is stopped at the specified position.
  • the specified position inspected by the liquid crystal cell position sensor BP is such that one side on the downstream side in the transport direction in the liquid crystal cell U is convex in the suction frame BT-H10. It is provided at a position that protrudes downstream in the transport direction from the bottom of the shape.
  • the liquid crystal cell position sensor BP sends the detection signal to the control unit of the optical film laminating line. At this time, the two laminating rollers Ru and Rd are in a separated state.
  • the vertical movement means BT-ST is driven, and the suction frame BT-H10 is moved until the liquid crystal cell U is supported by the suction frame BT-H10 and separated from the transport roller R to some extent upward. Move upward.
  • the suction portion BT-B30 comes into contact with the lower surface of the liquid crystal cell U.
  • the horizontal moving means BT-HT may appropriately adjust the position of the suction frame BT-H10 in the horizontal plane as necessary.
  • the suction frame BT-H10 is moved along the gap between the transport rollers R by the horizontal moving means BT-HT, and is sucked by the suction frame BT-H10.
  • the liquid crystal cell U is moved, and its tip is aligned with the bonding work start position between the two bonding rollers Ru and Rd. Also at this time, the two laminating rollers Ru and Rd are in a separated state. Since the liquid crystal cell U is moved by the liquid crystal cell adsorption moving device BT, the alignment accuracy of the liquid crystal cell U can be significantly improved as compared with the case where the liquid crystal cell U is transported by the rotation of the transport roller R in the liquid crystal cell transport path B.
  • the optical film laminating unit detects that the tip of the liquid crystal cell U is aligned at the laminating work start position by a sensor (not shown), the two laminating rollers Ru and Rd are moved.
  • the tip of the liquid crystal cell U is sandwiched with one end of the optical film F extending from the peeling means SP shown in FIG. 6B.
  • the tip of the optical film F is bonded to the tip of the upper surface of the liquid crystal cell U.
  • the main valve BT-V10 is closed to release the adsorption of the adsorption unit BT-H30.
  • the vertical movement means BT-ST is driven, the suction frame BT-H10 is lowered, the liquid crystal cell U is left in the liquid crystal cell transport path B, and moved below the liquid crystal cell transport path B to move the liquid crystal cell U. Move away from the bottom.
  • the horizontal movement means BT-HT is driven to move the suction frame BT-H10 backward to the start position shown in FIG. 6A.
  • the two laminating rollers Ru and Rd are rotated to convey the liquid crystal cell U to the downstream side, and then the optical film F having one end already bonded to the tip of the liquid crystal cell U is subsequently bonded to the upper surface of the liquid crystal cell U. Match.
  • the laminating of the optical film F is completed.
  • the two laminating rollers Ru and Rd are also in a separated state.
  • the suction frame according to the second embodiment may be applied to the first embodiment. That is, the suction frame sucks the liquid crystal cell U from above and carries it.
  • the suction portion is disposed on the lower surface of the suction frame, and the optical film F is bonded to the lower surface of the liquid crystal cell.
  • the optical film laminating line includes a control unit, and the control unit is configured to operate the liquid crystal cell adsorption moving device, rotate the transport roller, and the optical film laminating unit based on the inspection signal from the liquid crystal cell position sensor.
  • the optical film laminating process is automatically performed by controlling the operation.
  • the optical film laminating line when the optical film F is bonded to only one surface, it is sufficient to provide only one liquid crystal cell adsorption moving device.
  • the liquid crystal cell adsorption moving device is provided. You only need to have two.
  • the different liquid crystal cell adsorption / transfer devices may be combined if necessary.
  • the two liquid crystal cell adsorption moving devices are all positioned above the liquid crystal cell conveyance path B, and the two optical film laminating portions bond the optical film F to the lower surface of the liquid crystal cell U accordingly.
  • inversion means (not shown) for inverting the upper and lower surfaces of the liquid crystal cell is provided between the two optical film laminating portions.
  • the inversion means may adopt any known structure as long as the upper and lower surfaces of the liquid crystal cell can be inverted.
  • the two liquid crystal cell adsorption / movement devices are all located below the liquid crystal cell conveyance path B, and the two optical film laminating portions paste the optical film F on the upper surface of the liquid crystal cell U correspondingly.
  • a reversing means (not shown) for reversing the upper and lower surfaces of the liquid crystal cell is provided between the two optical film laminating portions.
  • the inversion means may adopt any known structure as long as the upper and lower surfaces of the liquid crystal cell can be inverted.
  • the optical film laminating line includes the first liquid crystal cell adsorption / transfer device BT1 and the corresponding first optical film laminating portion CF3, and the second liquid crystal cell adsorption / transfer device BT2 and the corresponding second optical film laminating portion DF3. And comprising.
  • the first liquid crystal cell suction moving device BT1 performs suction from above the liquid crystal cell, and the first optical film laminating portion CF3 bonds the optical film F to the lower surface of the liquid crystal cell U correspondingly.
  • the second liquid crystal cell suction moving device BT2 performs suction from the lower side of the liquid crystal cell U, and the second optical film laminating unit DF3 bonds the optical film F on the upper surface of the liquid crystal cell U correspondingly.
  • the order in which the optical film F is bonded to the upper and lower surfaces is not limited.
  • the optical film F is bonded to one surface of the liquid crystal cell, the optical film F is bonded to the upper and lower surfaces of the liquid crystal cell without turning the liquid crystal cell upside down.

Abstract

本発明は、MDおよびTD搬送のいずれにも対応でき、且つ、吸着部材における有効作業面積比率を向上させる、液晶セルを吸着するための吸着部材を提供する。当該吸着部材(BT-B10)には、液晶セル(U)の表面と接触する複数の吸着部(BT-B20)が設けられ、水平面内における前記吸着部の配置領域は「凸」形になる。また、本発明は、当該吸着部材を備えた液晶セル吸着移動装置、および当該液晶セル吸着移動装置を備えた光学フィルム貼合せラインを提供する。

Description

吸着部材、液晶セル吸着移動装置、および光学フィルム貼合せライン
 本発明は、吸着部材、当該吸着部材を備えた液晶セル吸着移動装置、および当該液晶セル吸着移動装置を備えた光学フィルム貼合せラインに関する。
 通常に、液晶表示装置を製造するための光学フィルム貼合せラインにおいて搬送される液晶セルは矩形であり、長辺と短辺を有する。そして、液晶セルが搬送される方式にも、液晶セルの長辺が液晶セル搬送方向に沿うように搬送されるMD方式と、液晶セルの長辺が液晶セル搬送方向に垂直するように搬送されるTD方式とがある。
 液晶セルに対する製造工程での処理要求によって、同じラインで前記2種の搬送方式のいずれかが行われる。そのため、ラインにおける液晶セル吸着移動装置に対して、前記2種の搬送方式の両方に対応できる要求がある。
 すでに、異なる搬送方式に対応できるさまざまな液晶セル吸着移動装置が知られている。例えば、特許文献1および特許文献2に記載されている液晶セル吸着移動装置は、上から液晶セルを吸着して移動させる。また、特許文献3に記載されている液晶セル吸着移動装置は、下から液晶セルを支持しながら吸着して移動させる。
特開2002-12319号公報 特開2013-107185号公報 特開平08-112793号公報
 だが、前記従来の吸着移動装置は、いずれも液晶セルと同じ形状を有する矩形の吸着部材を備えている。この場合、吸着部材がMD、TD搬送方式のいずれにも対応するには、吸着部材の寸法を増加して、矩形の吸着部材の短辺が液晶セルの長辺よりも長くするしかない。このようにすると、吸着部材および吸着移動装置が大きくなり、且つ、吸着部材における無駄な面積の比率が大きくなる。
 本発明は、このような課題を解決するためになされたものであり、MDおよびTD搬送方式のいずれにも対応でき、且つ、吸着部材における有効作業面積比率を向上させる吸着部材を提供する。さらに、本発明は、前記吸着部材を備える液晶セル吸着移動装置、および、前記液晶セル吸着移動装置を備える光学フィルム貼合せラインを提供する。
 具体的に、本発明の第1形態で提供される吸着部材は、液晶セルを吸着するための吸着部材であって、液晶セルの表面と接触する複数の吸着部が設けられ、水平面内における前記吸着部の配置領域は「凸」形になる。
 また、本発明の第2形態として、前記第1形態の吸着部材において、前記吸着部は弾性材からなる。このようにして、液晶セルの表面に接触して吸着を行う際、液晶セルの表面に傷を与える可能性を減少させる。
 好ましくは、本発明の第3形態として、前記第1または第2形態の吸着部材において、前記吸着部材は水平面内における形状が「凸」形になる吸着パッドであり、前記吸着部が前記吸着パッドの下面に配置される。
 好ましくは、本発明の第4形態として、前記第3形態の吸着部材において、前記吸着部が前記吸着パッドの下面に均一に配置される。
 また、好ましくは、本発明の第5形態として、前記第1または第2形態の吸着部材において、前記吸着部材は、液晶セル搬送方向に沿って延伸する少なくとも1つの吸着アームと、液晶セル搬送方向と垂直する方向に沿って延伸する複数の吸着アームとによって構成される吸着フレームであり、前記吸着フレームの水平面内における包絡線の形状は「凸」形になり、前記吸着部が前記吸着アームの下面に配置される。このようにして、吸着部材の軽量化がさらに図れる。
 好ましくは、本発明の第6形態として、前記第5形態の吸着部材において、前記吸着部が前記吸着アームに均一に配置される。
 また、好ましくは、本発明の第7形態として、前記第1または第2形態の吸着部材において、前記吸着部材は、液晶セル搬送方向に沿って延伸する少なくとも1つの吸着アームと、液晶セル搬送方向と垂直する方向に沿って延伸する複数の吸着アームとによって構成される吸着フレームであり、前記吸着フレームの水平面内における包絡線の形状は「凸」形になり、前記吸着部が前記吸着アームの上面に配置される。このようにして、吸着部材の軽量化がさらに図れる。
 好ましくは、本発明の第8形態として、前記第7形態の吸着部材において、前記吸着部が前記吸着アームに均一に配置される。
 上記各形態の吸着部材によると、MDおよびTD搬送方式のいずれにも対応でき、且つ、吸着部材における有効作業面積比率を向上して、装置の大型化を防止できる。
 さらに、本発明は、第9形態として、液晶セルを吸着した状態で移動できる液晶セル吸着移動装置であって、前記液晶セル吸着移動装置が液晶セル搬送路の上方に位置し、前記吸着部が液晶セル搬送路に向けて前記液晶セルに相対し、「凸」形の鏡面対称線が液晶セル搬送方向と平行する、第1~6形態のいずれか1つに記載の吸着部材と、液晶セルを吸着する負圧を生じる真空ポンプと、前記真空ポンプと前記吸着部を連通する吸気路と、前記吸着部材を上下に移動させる上下移動手段と、前記吸着部材を水平に移動させる水平移動手段と、を備える液晶セル吸着移動装置を提供する。
 また、本発明の第10形態として、前記第9形態の液晶セル吸着移動装置において、前記吸着部材は、前記「凸」形の底辺が液晶セル搬送路の下流側になるように配置される。このようにすることで、MD方向で搬送されてきた液晶セルも、TD方向で搬送されてきた液晶セルも、その前端を吸着部材における同じ位置である「凸」形の底辺を参照しながらお互いの相対位置を固定できる。そのため、液晶セルがMD、TDどちらの向きで搬送されても、同じように位置合わせすることができる。
 また、本発明の第11形態として、前記第9または10形態の液晶セル吸着移動装置において、前記吸気路がメイン吸気路と複数のサブ吸気路からなり、前記メイン吸気路の一端が前記真空ポンプと連通され、前記メイン吸気路の他端が前記複数のサブ吸気路に分岐され、各サブ吸気路が少なくとも1つの吸着部に連通され、メイン吸気路および各サブ吸気路には、独立に開閉できるバルブがそれぞれ設けられている。このようにすることで、液晶セルの異なる寸法および搬送方式によって、吸着部材における実際の吸着領域を柔軟に配置できる。
 また、本発明は、第12形態として、液晶セルを吸着した状態で移動できる液晶セル吸着移動装置であって、前記液晶セル吸着移動装置が液晶セル搬送路の下方に位置し、前記吸着部が液晶セル搬送路に向けて前記液晶セルに相対し、「凸」形の鏡面対称線が液晶セル搬送方向と平行する、第7または8形態に記載の吸着部材と、液晶セルを吸着する負圧を生じる真空ポンプと、前記真空ポンプと前記吸着部を連通する吸気路と、液晶セル搬送路における搬送ローラの間の隙間を通じて前記吸着部材を上下に移動させる上下移動手段と、液晶セル搬送路における搬送ローラの間の隙間に沿って前記吸着部材を水平に移動させる水平移動手段と、を備える液晶セル吸着移動装置を提供する。
 また、本発明の第13形態として、前記第12形態の液晶セル吸着移動装置において、前記吸着部材は、前記「凸」形の底辺が液晶セル搬送路の下流側になるように配置される。このようにすることで、MD方向で搬送されてきた液晶セルも、TD方向で搬送されてきた液晶セルも、その前端を吸着部材における同じ位置である「凸」形の底辺を参照しながらお互いの相対位置を固定できる。そのため、液晶セルがMD、TDどちらの向きで搬送されても、同じように位置合わせすることができる。
 さらに、本発明の第14形態として、前記第12または13形態の液晶セル吸着移動装置において、前記吸気路がメイン吸気路と複数のサブ吸気路からなり、前記メイン吸気路の一端が前記真空ポンプと連通され、前記メイン吸気路の他端が前記複数のサブ吸気路に分岐され、各サブ吸気路が少なくとも1つの吸着部に連通され、メイン吸気路および各サブ吸気路には、独立に開閉できるバルブがそれぞれ設けられている。このようにすることで、液晶セルの異なる寸法および搬送方式によって、吸着部材における実際の吸着領域を柔軟に配置できる。
 また、本発明は、第15形態として、光学フィルム貼合せラインであって、複数の搬送ローラが設けられ液晶セルを搬送する液晶セル搬送路と、液晶セルの表面に光学フィルムを貼り合せる光学フィルム貼合せ装置と、液晶セルが液晶セル搬送路における規定された位置に達したか否かを検査する液晶セル位置センサと、液晶セル搬送路における規定された位置に達した液晶セルを吸着して移動させ、光学フィルム貼合せ装置の作業開始位置にアライメントさせる、第9~14形態のいずれか1つに記載の液晶セル吸着移動装置と、液晶セル位置センサからの検査信号に基づいて、液晶セル吸着移動装置の動作、搬送ローラの回転、および光学フィルム貼合せ装置の動作を制御して光学フィルム貼合せ工程を自動的に行う制御部と、を備える光学フィルム貼合せラインを提供する。
 このような光学フィルム貼合せラインによると、MDおよびTD搬送方式のいずれにも対応でき、且つ、吸着部材における有効作業面積比率を向上して、装置の大型化を防止できる。
 さらに、好ましくは、本発明の第16形態として、前記第15形態の光学フィルム貼合せラインにおいて、1つの液晶セル吸着移動装置およびこれに応じる1つの光学フィルム貼合せ装置と、もう1つの液晶セル吸着移動装置およびこれに応じるもう1つの光学フィルム貼合せ装置と、を備え、前記1つの液晶セル吸着移動装置は第9~11形態のいずれか1つに記載の液晶セル吸着移動装置であり、前記1つの光学フィルム貼合せ装置は光学フィルムを液晶セルの下面に貼り合せ、前記もう1つの液晶セル吸着移動装置は第12~14形態のいずれか1つに記載の液晶セル吸着移動装置であり、前記もう1つの光学フィルム貼合せ装置は光学フィルムを液晶セルの上面に貼り合せる。このような光学フィルム貼合せラインによると、液晶セルを上下に反転しなくても、液晶セルの上下両面に光学フィルムを貼り合せることができる。
 また、本発明の第17形態として、前記第15形態の光学フィルム貼合せラインにおいて、2つの液晶セル吸着移動装置およびこれらのそれぞれに応じる2つの光学フィルム貼合せ装置を備え、前記液晶セル吸着移動装置は第9~11形態のいずれか1つに記載の液晶セル吸着移動装置であり、前記光学フィルム貼合せ装置は光学フィルムを液晶セルの下面に貼り合せ、前記光学フィルム貼合せラインは、2つの光学フィルム貼合せ装置の間に液晶セルを上下に反転する反転手段をさらに備える。
 また、本発明の第18形態として、前記第15形態の光学フィルム貼合せラインにおいて、2つの液晶セル吸着移動装置およびこれらのそれぞれに応じる2つの光学フィルム貼合せ装置を備え、前記液晶セル吸着移動装置は第12~14形態のいずれか1つに記載の液晶セル吸着移動装置であり、前記光学フィルム貼合せ装置は光学フィルムを液晶セルの上面に貼り合せ、前記光学フィルム貼合せラインは、2つの光学フィルム貼合せ装置の間に液晶セルを上下に反転する反転手段をさらに備える。
 前記第17、第18形態の光学フィルム貼合せラインによっても、液晶セルの両面に光学フィルムを貼り合わせることができる。
 また、本発明の第19形態として、前記第15~18形態の光学フィルム貼合せラインにおいて、前記液晶セル位置センサによって検査される規定された位置は、液晶セルにおける搬送方向下流側の一辺が吸着部材における搬送方向下流側の一辺よりも搬送方向下流側に突出するようにする位置に設けられている。
 これで、光学フィルム貼合せ装置によって光学フィルムをよりズレなく貼り合せることができる。
図1は、本発明に係る液晶セル吸着移動装置を備える光学フィルム貼合せラインの構造概略図である。 図2は、第1実施例に係る液晶セル吸着移動装置の構造概略図である。 図3A、3Bは、下方から見た場合の第1実施例に係る吸着パッドの平面図であり、図3AはTD搬送方式での状態を示し、図3BはMD搬送方式での状態を示す。 図4A~4Fは、第1実施例に係る液晶セル吸着移動装置の吸着移動動作を示す概略図である。 図5A、5Bは、第2実施例に係る液晶セル吸着移動装置の側面図であり、図5Aは吸着フレームが液晶セル搬送路の下方に位置する状態を示し、図5Bは吸着フレームが液晶セル搬送路の上方に位置する状態を示し、図5C、5Dは上方から見た場合の第2実施例に係る吸着パッドの平面図であり、図5CはTD搬送方式での状態を示し、図5DはMD搬送方式での状態を示す。 図6A~6Fは、第2実施例に係る液晶セル吸着移動装置の吸着移動動作を示す概略図である。
 以下、図面を参照しながら、本発明の実施例を説明する。以下の実施例は、ただ例示だけであり、本発明に対する制限ではない。また、本明細書で、「第1」、「第2」などは同じ種類に属する異なるものを区分するために用いられる用語であり、搬送方向での順番などの制限的な意味がない。
 本発明で使用される「前」、「後」、「左」、「右」、「上」、「下」とは、液晶セルの搬送ラインに沿って上流側から下流側に向いた場合の「前」、「後」、「左」、「右」、「上」、「下」の方向を意味する。
 また、本明細書において、「液晶セル」とは、液晶パネルに限らなく、ディスプレーパネルの製造中に光学フィルムを貼り合わせるべく任意の基板状の素材と理解できる。本明細書において、「光学フィルム」とは、例えば、偏光フィルムのようなディスプレーパネルの光学特性を調整する任意のフィルムである。
 まず、図1を参照しながら、本発明に係る液晶セル吸着移動装置(以下、「吸着移動装置」とも言う)を備える光学フィルム貼合せライン(以下、「ライン」とも言う)を説明する。
 図1に示すように、ラインは、液晶セル供給部A、液晶セル搬送路B、第1光学フィルム搬送路C、第2光学フィルム搬送路D、および液晶セル排出部Eを含む。
 液晶セル供給部A、液晶セル搬送路B、および液晶セル排出部Eは、順次に連接されている。第1光学フィルム搬送路Cと第2光学フィルム搬送路Dは、それぞれに液晶セル搬送路Bの上方または下方に位置する。
 第1光学フィルム搬送路Cは、第1光学フィルム搬送路Cの最も上流側に配置され、第1光学フィルム積層体を提供する第1光学フィルム供給部CF1と、第1光学フィルム供給部CF1の下流に配置され、第1光学フィルム供給部CF1から供給される第1光学フィルム積層体を規定された長さのシート材に切断する第1光学フィルム切断部CF2と、第1光学フィルム切断部CF2の下流且つ液晶セル搬送路Bに配置され、液晶セルUの一面に第1光学フィルムを貼り合せる第1光学フィルム貼合せ部CF3と、第1光学フィルム搬送路Cの最も下流側に配置され、第1光学フィルムを剥離後の第1キャリアフィルムを巻き取る第1キャリアフィルム巻取部CF4を備える。
 第2光学フィルム搬送路Dは、第2光学フィルム搬送路Dの最も上流側に配置され、第2光学フィルム積層体を提供する第2光学フィルム供給部DF1と、第2光学フィルム供給部DF1の下流に配置され、第2光学フィルム供給部DF1から供給される第2光学フィルム積層体を規定された長さのシート材に切断する第2光学フィルム切断部DF2と、第2光学フィルム切断部DF2の下流且つ液晶セル搬送路Bに配置され、液晶セルUの一面に第2光学フィルムを貼り合せる第2光学フィルム貼合せ部DF3と、第2光学フィルム搬送路Dの最も下流側に配置され、第2光学フィルムを剥離後の第2キャリアフィルムを巻き取る第2キャリアフィルム巻取部DF4を備える。
 液晶セルUは、液晶セル供給部Aから液晶セル搬送路Bに入る。
 液晶セル供給部A側から、液晶セル搬送路B上に順次に、液晶セル供給部Aの後の位置して、必要によって液晶セル搬送路Bに入る液晶セルUを吸着して旋回させる第1液晶セル吸着旋回装置BR1と、第1光学フィルム貼合せ部CF3寄りの上流側に位置して、液晶セルUを吸着して第1光学フィルム貼合せ部CF3の作業開始位置に移動してアライメントさせる第1液晶セル吸着移動装置BT1と、第1光学フィルム貼合せ部CF3寄りの上流側に位置して、液晶セルUが第1規定位置に達したか否かを検査する第1液晶セル位置センサBP1と、第1光学フィルム貼合せ部CF3の後に位置して、必要によって第1光学フィルム貼合せ部CF3を通過した液晶セルUを吸着して旋回させる第2液晶セル吸着旋回装置BR2と、第2光学フィルム貼合せ部DF3寄りの上流側に位置して、液晶セルUを吸着して第2光学フィルム貼合せ部DF3の作業開始位置に移動してアライメントさせる第2液晶セル吸着移動装置BT2と、第2光学フィルム貼合せ部DF3寄りの上流側に位置して、液晶セルUが第2規定位置に達したか否かを検査する第2液晶セル位置センサBP2と、第2光学フィルム貼合せ部DF3の後に位置して、必要によって第2光学フィルム貼合せ部DF3を通過した液晶セルUを吸着して旋回させる第3液晶セル吸着旋回装置BR3と、を備える。また、必要によって、第2液晶セル吸着旋回装置BR2寄りの位置に、液晶セルの上下面を反転させる反転機構を備える。
 光学フィルム貼り合せ済みの液晶セルUは、液晶セル搬送路Bから液晶セル排出部Eに排出され、下流工程に用いられる。
 以下、上記ラインにおいて、光学フィルム貼合せ部の構造をさらに詳しく説明する。
 図4A~4Fに示すように、光学フィルム貼合せ部は、上下一対の貼合せローラRu、Rdから構成され、この2つの貼合せローラRu、Rdはそれぞれ上下に移動することで、お互いに近接または分離することができる。貼合せローラRu、Rd中のいずれか1つの前方に剥離手段SPが設けられ、光学フィルムFを支持するキャリアフィルムHを剥離する。
 液晶セル搬送路Bにおいて、液晶セルUが分離状態にある一対の貼合せローラRu、Rdの間に入ると、2つの貼合せローラRu、Rdは上下方向でお互いに近接して液晶セルUを挟み、剥離手段SPから伸ばしてきた光学フィルムFの先端を液晶セルUの先端表面に貼り合せる。その後、貼合せローラRu、Rdが回転して、挟んだ状態で液晶セルUを下流側に搬送する。この際、剥離手段SPによってキャリアフィルムHが剥離された光学フィルムFが貼合せローラRu、Rdによって押圧され移動中の液晶セルUの表面に貼り合わされる。このように、光学フィルムFが液晶セルUの一面に貼り合わされる。
 上記光学フィルムFの貼合せる時、第1、第2液晶セル吸着移動装置BT1、BT2によって液晶セルUの先端を良好な位置精度で一対の貼合せローラRu、Rdの間に送入する必要がある。つまり、第1、第2液晶セル吸着移動装置BT1、BT2によって、液晶セルUを光学フィルム貼合せ部の作業開始位置にアライメントさせる。
<第1実施例>
 以下、図2を参照しながら、本発明に係る液晶セル吸着移動装置の第1実施例を説明する。
 図2に示すように、液晶セル吸着移動装置BTは、吸着パッドBT-B10、真空ポンプBT-P、吸気路BT-G、水平移動手段BT-HT、および上下移動手段BT-STを含む。本実施例において、液晶セル吸着移動装置BTは、液晶セル搬送路Bの上方に位置する。
 吸着パッドBT-B10は、液晶セル吸着移動装置BTが液晶セルUを吸着する際に、液晶セルUと直接接触する部材である。図2に示すように、吸着パッドBT-B10の下面に複数の吸着部BT-B20が配置され、吸着部BT-B20は下に向けて液晶セルUと対向する。吸着をしない時、吸着パッドBT-B10は、液晶セル搬送路Bから一定の高度を持つ上方の箇所に位置する。液晶セルUを吸着する際、吸着パッドBT-B10は、後述する上下移動手段BT-STによって下がって、吸着部BT-B20を液晶セル搬送路Bにおける液晶セルUの上面に接触する。液晶セルUの表面に対するダメージを防止するために、好ましくは、吸着部BT-B20は、例えば、ゴムのような弾性材からなる吸い込みノズルである。
 図3A、3Bは、上方に向けて見た場合の、吸着パッドBT-B10の平面図である。平面図に示されたように、吸着パッドBT-B10の形状は「凸」形になり、当該「凸」形輪郭の鏡面対称線Lは、液晶セル搬送路Bにおける液晶セル搬送方向と平行する。
 好ましくは、吸着パッドBT-B10は、「凸」形の底辺が液晶セル搬送路の下流側になるように配置される。このようにすることで、MD方向で搬送されてきた液晶セルも、TD方向で搬送されてきた液晶セルも、その前端を吸着部材における同じ位置である「凸」形の底辺を参照しながらお互いの相対位置を固定できる。そのため、液晶セルがMD、TDどちらの向きで搬送されても、同じように位置合わせすることができる。
 また、吸着パッドBT-B10の下面における吸着部BR-B20の配置領域が「凸」形になればよいが、好ましくは、吸着部BT-B20は、吸着パッドBT-B10の下面に均一に配置される。
 吸着部BT-B20が「凸」形の領域に配置されるので、図3A、3Bに示すように、TD、MD搬送中のいずれの液晶セルも吸着パッドによって適切に吸着される。これで、本実施例の吸着パッドBT-B10は、TD、MD搬送両方に対応でき、従来の矩形の吸着パッドに比べて、無効面積比例が減少し、装置の大型化が防止される。
 なお、図3に示すように、吸着された液晶セルの搬送方向下流側の一辺は、吸着パッドの搬送方向下流側の一辺(つまり、凸形の底辺)からはみ出している。この理由は、液晶セルを吸着固定したまま液晶セルの先端を貼合せローラRu、Rdで挟み込むためである。貼合せローラRu、Rdで液晶セルの先端を挟んでから吸着を解除することで、よりズレなく貼合せることができる。つまり、本発明において、吸着パッドの輪郭範囲内にセルを収納してもよいが、より好ましくは、液晶セルの先端を若干突出して吸着固定してもよい。
 真空ポンプBT-Pは、液晶セルUを吸着する負圧を生じるものであれば、周知の製品を用いでもよい。
 吸気路BT-Gは、真空ポンプBT-Pと吸着部BT-B20とを連通し、メイン吸気路BT-G10および複数のサブ吸気路BT-G20を備えている。メイン吸気路BT-G10の一端は真空ポンプBT-Pと連通し、メイン吸気路BT-G10の他端は複数のサブ吸気路BT-G20に分岐されそれぞれに吸着パッドBT-B10における吸着部BT-B20に連通する。なお、各サブ吸気路BT-G20がさらに複数の毛細吸気路に分岐され、この毛細吸気路を介して吸着部BT-B20に連通してもよい。
 図2に示すように、メイン吸気路BT-G10にはメインバルブBT-V10が設けられ、且つ、各サブ吸気路BT-G20にはそれぞれサブバルブBT-V20が設けられている。メインバルブBT-V10および各サブバルブBT-V20は、それぞれ独立に開閉できる。メインバルブBT-V10を開閉することで、吸着パッドBT-B10を全体的に真空ポンプBT-Pと連通または遮断する。また、メインバルブBT-V10を開けた場合、サブバルブBT-V20を選択的に開閉することで、吸着パッドBT-B10における吸着部BT-B20の配置領域内で実際に吸着力を生じる領域を柔軟に調整できる。例えば、図3Aに示された場合、吸着パッドBT-B10の図面左側の突出領域(つまり、液晶セルU以外の領域)中の吸着部BT-B20に応じるサブ吸気路BT-G20はそれぞれのサブバルブBT-V20によって遮断され、当該領域で吸着力が生じない。また、例えば、図3Bに示された場合、吸着パッドBT-B10の図面上下両側の突出領域(つまり、液晶セルU以外の領域)中の吸着部BT-B20に応じるサブ吸気路BT-G20はそれぞれのサブバルブBT-V20によって遮断され、当該領域で吸着力が生じない。
 メインバルブBT-V10およびサブバルブBT-V20の開閉は、手動で行ってもよく、コンピューターの制御で自動で行ってもよい。
 水平移動手段BT-HTは、吸着パッドBT-B10を水平方向で移動させる。水平移動手段BT-HTは、例えば、水平方向に沿って設けられたガイドレールBT-HT10と、ガイドレールBT-HT10に沿ってスライドできるスライド部BT-HT20を備える。
 また、水平移動手段BT-HTは、ほかの周知の構造、例えば、電動モータによって駆動されるロボットアームであってもよい。前記水平方向での移動は、ただ液晶セル搬送方向に沿った移動であってもよく、必要によって、液晶セル搬送方向および液晶セル搬送方向と垂直する方向に沿う移動を合わせた平面内移動であってもよい。
 上下移動手段BT-STは、吸着パッドBT-B10を上下方向で移動させる。上下移動手段BT-STは、例えば、上下方向に沿って設けられたガイドスリーブBT-ST10と、ガイドスリーブBT-ST10に沿ってスライドできるスライドバーBT-ST20を備える。
 また、上下移動手段BT-STは、水平移動手段BT-HTと同じく、ほかの周知の構造であってもよい。上下移動手段BT-STは水平移動手段BT-HTと連結され、協働して吸着パッドBT-B10を空間で移動させる。
 吸着パッドBT-B10の移動を順調に行うことができれば、吸着パッドBT-B10、水平移動手段BT-HT、上下移動手段BR-STの間の結合関係に対して特に制限がない。その一例として、図2では、水平移動手段BT-HTのスライド部BT-HT20と上下移動手段BT-STのガイドスリーブBT-ST10が連結され、上下移動手段BT-STのスライドバーBT-ST20と吸着パッドBT-B10が連結されている。
 また、好ましくは、液晶セル吸着移動装置BTは、吸着パッドBT-B10が上下に移動する距離を制御するために、液晶セル搬送路Bに対する吸着パッドBT-B10の高度を検査する高度センサ(図略)を備える。
 また、光学フィルム貼合せラインは、液晶セルUが液晶セル搬送路Bにおける吸着を行うべき規定された位置に達したか否かを検査する液晶セル位置センサBPを備える。なお、前述したように、この液晶セル位置センサBPによって検査される規定された位置は、液晶セルUにおける搬送方向下流側の一辺が吸着パッドBT-B10における搬送方向下流側の一辺よりも搬送方向下流側に突出するようにする位置に設けられている。
 以下、図4A~4Fを参照しながら、第1実施例に係る液晶セル吸着移動装置BTが行う吸着移動動作を説明する。
 図4Aに示すように、液晶セルUは、液晶セル搬送路Bにおいて光学フィルム貼合せ部前の規定された位置に搬送される。液晶セル位置センサBPが液晶セルUの規定位置までの搬送を検出すると、当該規定位置での搬送ローラRの回転を停止して、液晶セルUを当該規定位置に停止させる。また、液晶セル位置センサBPは、光学フィルム貼合せラインの制御部に当該検出信号を発送する。この際、2つの貼合せローラRu、Rdは分離状態にある。
 続いて、図4Bに示すように、上下移動手段BT-STを駆動して、吸着部BT-B20が液晶セルUの上面に接触するまで、吸着パッドBT-B10を下方へ移動させる。降下する前或いは降下する間に、水平移動手段BT-HTは、必要によって吸着パッドBT-B10の水平面における位置を適切に調整しでもよい。そして、メインバルブBT-V10を開けるとともに、サブバルブBT-V20を選択的に開けることで、液晶セルUの上面と接触している吸着部BT-B20に吸着力を生じて、液晶セルUに対して吸着を行う。
 液晶セル吸着移動装置BTのこの動作に合わせて、光学フィルム搬送路における光学フィルムFは、剥離手段SPによってキャリアフィルムHが剥離された後、2つの貼合せローラRu、Rdの間にその一端を伸ばして、貼合わせを待機する。この際も、2つの貼合せローラRu、Rdは分離状態にある。
 続いて、図4Cに示すように、水平移動手段BT-HTによって吸着パッドBT-B10を移動させることで、吸着パッドBT-B10によって吸着されている液晶セルUを移動させ、その先端を2つの貼合せローラRu、Rdの間にある貼合せ作業開始位置にアライメントさせる。この際も、2つの貼合せローラRu、Rdは分離状態にある。液晶セル吸着移動装置BTによって液晶セルUを移動するため、液晶セル搬送路Bにおける搬送ローラRの回転によって搬送を行うのに比べて、液晶セルUのアライメント精度が大幅に向上できる。
 続いて、図4Dに示すように、光学フィルム貼合せ部は、図略のセンサによって液晶セルUの先端が貼合せ作業開始位置にアライメントされたことを検出すると、2つの貼合せローラRu、Rdをお互いに近接させ、液晶セルUの先端を図4Bに示された剥離手段SPから伸ばした光学フィルムFの一端とともに挟む。これで、光学フィルムFの先端が液晶セルUの下面の先端に貼り合わされる。
 続いて、図4Eに示すように、メインバルブBT-V10を閉じて、吸着部BT-B20の吸着を解除する。そして、上下移動手段BT-STを駆動して、吸着パッドBT―B10を上げて、液晶セルUの上面から離れる。
 続いて、図4Fに示すように、水平移動手段BT-HTを駆動して、吸着パッドBT―B10を後ろに図4Aに示した開始位置まで移動させる。同時に、2つの貼合せローラRu、Rdを回転させ、液晶セルUを下流側に搬送しながら、一端がすでに液晶セルUの先端に貼り合わされた光学フィルムFを続いて液晶セルUの下面に貼り合せる。液晶セルUの後端が2つの貼合せローラRu、Rdの間を通過すると、光学フィルムFの貼り合わせが完了する。そして、2つの貼合せローラRu、Rdは、また、分離状態になる。
<第2実施例>
 以上は、本発明の第1実施例に係る液晶セル吸着移動装置に対する説明である。以下、図5A、5Bを参照しながら、本発明の第2実施例に係る液晶セル吸着移動装置を説明する。
 第2実施例に係る液晶セル吸着移動装置BTにおいて、真空ポンプ、吸気路は第1実施例の場合と同じである。また、液晶セル搬送路Bの下方に位置する点以外、水平移動手段と上下移動手段それぞれの構造は第1実施例と同じである。そのため、これらの構造については、重複する説明を省略する。
 図5A、5Bに示すように、第1実施例に比べて、第2実施例に係る液晶セル吸着移動装置BTは、液晶セル搬送路Bの下方に位置し、吸着部材が下方から上に向けて液晶セルUを支持し、光学フィルムFは液晶セルUの上面に貼り合わされる。
 この動作を実現するために、図5C、5Dに示すように、本実施例の吸着部材は吸着パッドではなく、複数の吸着アームBT-H20からなる吸着フレームBT-H10である。
 具体的に、吸着アームBT-H20は、それぞれ液晶セル搬送方向および液晶セル搬送方向と垂直する方向に沿って交差して配置され、液晶セル搬送方向に沿う吸着アームが少なくとも1つあり、液晶セル搬送方向と垂直する方向に沿う吸着アームが液晶セルの形状、寸法によって複数設けられる。吸着フレームBT-H10の水平面内における包絡線の形状は「凸」形になる。吸着部BT-H30は、吸着アームBT-H20で上に向けて吸着アームBT-H20の上面に配置され、液晶セル搬送路B上の液晶セルUに相対する。吸着部BT-H30の水平面における配置領域が「凸」形になればよいが、好ましくは、吸着部BT-H30が吸着アームBT-H20に均一に配置される。
 また、好ましくは、液晶セルUの表面に損害を与えないように、吸着部BT-H30は、例えばゴムのような弾性材からなる吸い込みノズルである。
 図5C、5Dに示すように、液晶セル搬送路Bにおける搬送ローラは、液晶セル搬送方向、および液晶セル搬送方向と垂直する方向で、お互いに隙間を持っている。上下移動手段BT-STによって、吸着フレームBT-H10における液晶セル搬送方向および液晶セル搬送方向と垂直する方向に沿って延伸する吸着アームBT-H20は、上記隙間をスムーズに通過でき、これにより、吸着フレームBT-H10は液晶セル搬送路Bの下方から液晶セル搬送路Bの上方に移動できる。即ち、図5Aに示す状態から図5Bに示す状態になる。
 また、図5Bに示す状態の吸着フレームBT-H10は、図5Dに示す搬送ローラの間の隙間に沿って、液晶セル搬送方向および液晶セル搬送方向と垂直する方向で移動できる。好ましくは、搬送ローラは、液晶セル搬送路Bの中央で幅が十分に大きい、液晶セル搬送方向を沿う隙間を形成して、吸着フレームBT-H10を支持する上下移動手段が当該隙間に沿って液晶セル搬送方向で移動できるようにする。
 以下、図6A~6Fを参照しながら、第2実施例に係る液晶吸着移動装置BTが行う吸着移動動作を説明する。
 図6Aに示すように、液晶セルUは、液晶セル搬送路Bにおいて光学フィルム貼合せ部前の規定された位置に搬送される。液晶セル位置センサBPが液晶セルUの規定された位置までの搬送を検出すると、当該規定位置での搬送ローラの回転を停止して、液晶セルUを当該規定位置に停止させる。また、例えば、図5C、5Dに示されたように、この液晶セル位置センサBPによって検査される当該規定された位置は、液晶セルUにおける搬送方向下流側の一辺が吸着フレームBT-H10における凸形の底辺よりも搬送方向下流側に突出するようにする位置に設けられている。
 また、液晶セル位置センサBPは、光学フィルム貼合せラインの制御部に当該検出信号を発送する。この際、2つの貼合せローラRu、Rdは分離状態にある。
 続いて、図6Bに示すように、上下移動手段BT-STを駆動して、液晶セルUが吸着フレームBT-H10によって支持され搬送ローラRから上方へある程度離隔するまで、吸着フレームBT-H10を上方へ移動させる。これで、吸着部BT-B30は液晶セルUの下面に接触する。上昇する前或いは上昇する間に、水平移動手段BT-HTは、必要によって吸着フレームBT-H10の水平面における位置を適切に調整してもよい。
 そして、メインバルブBT-V10を開けるとともに、サブバルブBT-V20を選択的に開けることで、液晶セルUの下面と接触している吸着部BT-H30に吸着力を生じて、液晶セルUに対して吸着を行う。
 液晶セル吸着移動装置BTのこの動作に合わせて、光学フィルム搬送路における光学フィルムFは、剥離手段SPによってキャリアフィルムHが剥離された後、2つの貼合せローラRu、Rdの間にその一端を伸ばして、貼合わせを待機する。この際も、2つの貼合せローラRu、Rdは分離状態にある。なお、本実施例で吸着フレームBT-H10が下から液晶セルUを支持するので、剥離手段SPは液晶セル搬送路Bの上方に位置する。
 続いて、図6Cに示すように、水平移動手段BT-HTによって、搬送ローラRの間の隙間に沿って、吸着フレームBT-H10を移動させることで、吸着フレームBT-H10によって吸着されている液晶セルUを移動させ、その先端を2つの貼合せローラRu、Rdの間にある貼り合わせ作業開始位置にアライメントさせる。この際も、2つの貼合せローラRu、Rdは分離状態にある。液晶セル吸着移動装置BTによって液晶セルUを移動するため、液晶セル搬送路Bにおける搬送ローラRの回転によって搬送を行うのに比べて、液晶セルUのアライメント精度が大幅に向上できる。
 続いて、図6Dに示すように、光学フィルム貼合せ部が図略のセンサによって液晶セルUの先端が貼り合わせ作業開始位置にアライメントされたことを検出すると、2つの貼合せローラRu、Rdをお互いに近接させ、液晶セルUの先端を図6Bに示された剥離手段SPから伸ばした光学フィルムFの一端とともに挟む。これで、光学フィルムFの先端が液晶セルUの上面の先端に貼り合わされる。
 続いて、図6Eに示すように、メインバルブBT-V10を閉じて、吸着部BT-H30の吸着を解除する。そして、上下移動手段BT-STを駆動して、吸着フレームBT-H10を下げて、液晶セルUを液晶セル搬送路Bに放置し、液晶セル搬送路Bの下方に移動して液晶セルUの下面から離れる。
 続いて、図6Fに示すように、水平移動手段BT-HTを駆動して、吸着フレームBT―H10を後ろに図6Aに示した開始位置まで移動させる。同時に、2つの貼合せローラRu、Rdを回転させ、液晶セルUを下流側に搬送しながら、一端がすでに液晶セルUの先端に貼り合わされた光学フィルムFを続いて液晶セルUの上面に貼り合せる。液晶セルUの後端が2つの貼合せローラRu、Rdの間を通過すると、光学フィルムFの貼り合わせが完了する。そして、2つの貼合せローラRu、Rdは、また、分離状態になる。
 また、本発明で、ほかの変形を行ってもよい。例えば、第2実施例に係る吸着フレームを第1実施例に適用してもよい。即ち、吸着フレームが上から液晶セルUを吸着して搬送を行う。この場合、吸着部は吸着フレームの下面に配置され、光学フィルムFは液晶セルの下面に貼り合わされる。
 また、光学フィルム貼合せラインが制御部を備え、当該制御部は、液晶セル位置センサからの検査信号に基づいて、液晶セル吸着移動装置の動作、搬送ローラの回転、および光学フィルム貼合せ部の動作を制御して、光学フィルム貼合せ工程を自動的に行う。
 また、光学フィルム貼合せラインにおいて、一面のみに光学フィルムFを張り合わせる場合、ただ1つの液晶セル吸着移動装置を備えればよく、両面に光学フィルムFを張り合わせる場合、液晶セル吸着移動装置を2つ備えればよい。2つの液晶セル吸着移動装置を備える場合、必要によって前記異なる液晶セル吸着移動装置を組み合わせてもよい。
 例えば、2つの液晶セル吸着移動装置が全部液晶セル搬送路Bの上方に位置し、それに応じて、2つの光学フィルム貼合せ部は液晶セルUの下面に光学フィルムFを貼り合わせる。この場合、前述したように、2つの光学フィルム貼合せ部の間には、液晶セルの上下面を反転する反転手段(図略)が設けられる。当該反転手段は、液晶セルの上下面を反転できれば、いずれの周知の構造を採用してもよい。
 また、例えば、2つの液晶セル吸着移動装置が全部液晶セル搬送路Bの下方に位置し、それに対応して、2つの光学フィルム貼合せ部は液晶セルUの上面に光学フィルムFを貼り合わせる。この場合も、前述したように、2つの光学フィルム貼合せ部の間に、液晶セルの上下面を反転する反転手段(図略)が設けられる。当該反転手段は、液晶セルの上下面を反転できれば、いずれの周知の構造を採用してもよい。
 好ましくは、光学フィルム貼合せラインは、第1液晶セル吸着移動装置BT1および対応する第1光学フィルム貼合せ部CF3と、第2液晶セル吸着移動装置BT2および対応する第2光学フィルム貼合せ部DF3と、を備える。第1液晶セル吸着移動装置BT1は液晶セルの上方から吸着を行い、これに対応して、第1光学フィルム貼合せ部CF3は液晶セルUの下面に光学フィルムFを貼り合せる。且つ、第2液晶セル吸着移動装置BT2は液晶セルUの下方から吸着を行い、これに対応して、第2光学フィルム貼合せ部DF3は液晶セルUの上面に光学フィルムFを貼り合せる。もちろん、液晶セルUの搬送方向において、光学フィルムFを上、下面に貼りあわせる順番には制限がない。
 これで、液晶セルの一面に光学フィルムFを貼り合せた後、液晶セルを上下に反転することなく、液晶セルの上下両面に光学フィルムFを貼り合わせる。
 A 液晶セル供給部
 B 液晶セル搬送路
 C 第1光学フィルム搬送路
 D 第2光学フィルム搬送路
 E 液晶セル排出部
 F 光学フィルム
 H キャリアフィルム
 U 液晶セル
 BP1 第1液晶セル位置センサ
 BP2 第2液晶セル位置センサ
 BR1 第1液晶セル吸着旋回装置
 BR2 第2液晶セル吸着旋回装置
 BR3 第3液晶セル吸着旋回装置
 BT 液晶セル吸着移動装置
 BT1 第1液晶セル吸着移動装置
 BT2 第2液晶セル吸着移動装置
 BT-B10 吸着パッド
 BT-B20、30 吸着部
 BT-G 吸気路
 BT-G10 メイン吸気路
 BT-G20 サブ吸気路
 BT-H10 吸着フレーム
 BT-H20 吸着アーム
 BT-H30 吸着部
 BT-HT 水平移動手段
 BT-HT10 ガイドレール
 BT-HT20 スライド部
 BT-P 真空ポンプ
 BT-ST 上下移動手段
 BT-ST10 ガイドスリーブ
 BT-ST20 スライドバー
 BT-V10 メインバルブ
 BT-V20 サブバルブ
 CF1 第1光学フィルム供給部
 CF2 第1光学フィルム切断部
 CF3 第1光学フィルム貼合せ部
 CF4 第1光学フィルム巻取部
 DF1 第2光学フィルム供給部
 DF2 第2光学フィルム切断部
 DF3 第2光学フィルム貼合せ部
 DF4 第2光学フィルム巻取部
 Ru、Rd 貼合せローラ
 SP 剥離手段

Claims (19)

  1.  液晶セルを吸着するための吸着部材であって、
     液晶セルの表面と接触する複数の吸着部が設けられ、水平面内における前記吸着部の配置領域は「凸」形になる吸着部材。
  2.  前記吸着部が弾性材からなる請求項1に記載の吸着部材。
  3.  前記吸着部材は水平面内における形状が「凸」形になる吸着パッドであり、
     前記吸着部が前記吸着パッドの下面に配置される請求項1または2に記載の吸着部材。
  4.  前記吸着部が前記吸着パッドの下面に均一に配置される請求項3に記載の吸着部材。
  5.  前記吸着部材は、液晶セル搬送方向に沿って延伸する少なくとも1つの吸着アームと、液晶セル搬送方向と垂直する方向に沿って延伸する複数の吸着アームとによって構成される吸着フレームであり、
     前記吸着フレームの水平面内における包絡線の形状は「凸」形になり、
     前記吸着部が前記吸着アームの下面に配置される請求項1または2に記載の吸着部材。
  6.  前記吸着部が前記吸着アームに均一に配置される請求項5に記載の吸着部材。
  7.  前記吸着部材は、液晶セル搬送方向に沿って延伸する少なくとも1つの吸着アームと、液晶セル搬送方向と垂直する方向に沿って延伸する複数の吸着アームとによって構成される吸着フレームであり、
     前記吸着フレームの水平面内における包絡線の形状は「凸」形になり、
     前記吸着部が前記吸着アームの上面に配置される請求項1または2に記載の吸着部材。
  8.  前記吸着部が前記吸着アームに均一に配置される請求項7に記載の吸着部材。
  9.  液晶セルを吸着した状態で移動できる液晶セル吸着移動装置であって、
     前記液晶セル吸着移動装置が液晶セル搬送路の上方に位置し、
     前記吸着部が液晶セル搬送路に向けて前記液晶セルに相対し、「凸」形の鏡面対称線が液晶セル搬送方向と平行する、請求項1~6のいずれか1項に記載の吸着部材と、
     液晶セルを吸着する負圧を生じる真空ポンプと、
     前記真空ポンプと前記吸着部を連通する吸気路と、
     前記吸着部材を上下に移動させる上下移動手段と、
     前記吸着部材を水平に移動させる水平移動手段と、
    を備える液晶セル吸着移動装置。
  10.  前記「凸」形の底辺が液晶セル搬送路の下流側になるように前記吸着部材を配置した、請求項9に記載の液晶セル吸着移動装置。
  11.  前記吸気路がメイン吸気路と複数のサブ吸気路からなり、
     前記メイン吸気路の一端が前記真空ポンプと連通され、前記メイン吸気路の他端が前記複数のサブ吸気路に分岐され、
     各サブ吸気路が少なくとも1つの吸着部に連通され、
     メイン吸気路および各サブ吸気路には、独立に開閉できるバルブがそれぞれ設けられている、請求項9または10に記載の液晶セル吸着移動装置。
  12.  液晶セルを吸着した状態で移動できる液晶セル吸着移動装置であって、
     前記液晶セル吸着移動装置が液晶セル搬送路の下方に位置し、
     前記吸着部が液晶セル搬送路に向けて前記液晶セルに相対し、「凸」形の鏡面対称線が液晶セル搬送方向と平行する、請求項7または8に記載の吸着部材と、
     液晶セルを吸着する負圧を生じる真空ポンプと、
     前記真空ポンプと前記吸着部を連通する吸気路と、
     液晶セル搬送路における搬送ローラの間の隙間を通じて前記吸着部材を上下に移動させる上下移動手段と、
     液晶セル搬送路における搬送ローラの間の隙間に沿って前記吸着部材を水平に移動させる水平移動手段と、
    を備える液晶セル吸着移動装置。
  13.  前記「凸」形の底辺が液晶セル搬送路の下流側になるように前記吸着部材を配置した、請求項12に記載の液晶セル吸着移動装置。
  14.  前記吸気路がメイン吸気路と複数のサブ吸気路からなり、
     前記メイン吸気路の一端が前記真空ポンプと連通され、前記メイン吸気路の他端が前記複数のサブ吸気路に分岐され、
     各サブ吸気路が少なくとも1つの吸着部に連通され、
     メイン吸気路および各サブ吸気路には、独立に開閉できるバルブがそれぞれ設けられている、請求項12または13に記載の液晶セル吸着移動装置。
  15.  光学フィルム貼合せラインであって、
     複数の搬送ローラが設けられ液晶セルを搬送する液晶セル搬送路と、
     液晶セルの表面に光学フィルムを貼り合せる光学フィルム貼合せ装置と、
     液晶セルが液晶セル搬送路における規定された位置に達したか否かを検査する液晶セル位置センサと、
     液晶セル搬送路における規定された位置に達した液晶セルを吸着して移動させ、光学フィルム貼合せ装置の作業開始位置にアライメントさせる、請求項9~14のいずれか1項に記載の液晶セル吸着移動装置と、
     液晶セル位置センサからの検査信号に基づいて、液晶セル吸着移動装置の動作、搬送ローラの回転、および光学フィルム貼合せ装置の動作を制御して光学フィルム貼合せ工程を自動的に行う制御部と、
    を備える光学フィルム貼合せライン。
  16.  1つの液晶セル吸着移動装置およびこれに応じる1つの光学フィルム貼合せ装置と、もう1つの液晶セル吸着移動装置およびこれに応じるもう1つの光学フィルム貼合せ装置と、を備え、
     前記1つの液晶セル吸着移動装置は請求項9~11のいずれか1項に記載の液晶セル吸着移動装置であり、前記1つの光学フィルム貼合せ装置は光学フィルムを液晶セルの下面に貼り合せ、
     前記もう1つの液晶セル吸着移動装置は請求項12~14のいずれか1項に記載の液晶セル吸着移動装置であり、前記もう1つの光学フィルム貼合せ装置は光学フィルムを液晶セルの上面に貼り合せる、請求項15に記載の光学フィルム貼合せライン。
  17.  2つの液晶セル吸着移動装置およびこれらのそれぞれに応じる2つの光学フィルム貼合せ装置を備え、
     前記液晶セル吸着移動装置は請求項9~11のいずれか1項に記載の液晶セル吸着移動装置であり、前記光学フィルム貼合せ装置は光学フィルムを液晶セルの下面に貼り合せ、
     前記光学フィルム貼合せラインは、2つの光学フィルム貼合せ装置の間に液晶セルを上下に反転する反転手段をさらに備える、請求項15に記載の光学フィルム貼合せライン。
  18.  2つの液晶セル吸着移動装置およびこれらのそれぞれに応じる2つの光学フィルム貼合せ装置を備え、
     前記液晶セル吸着移動装置は請求項12~14のいずれか1項に記載の液晶セル吸着移動装置であり、前記光学フィルム貼合せ装置は光学フィルムを液晶セルの上面に貼り合せ、
     前記光学フィルム貼合せラインは、2つの光学フィルム貼合せ装置の間に液晶セルを上下に反転する反転手段をさらに備える、請求項15に記載の光学フィルム貼合せライン。
  19.  前記液晶セル位置センサによって検査される規定された位置は、液晶セルにおける搬送方向下流側の一辺が吸着部材における搬送方向下流側の一辺よりも搬送方向下流側に突出するようにする位置に設けられている、請求項15~18のいずれか1項に記載の光学フィルム貼合せライン。
PCT/JP2016/086411 2016-04-14 2016-12-07 吸着部材、液晶セル吸着移動装置、および光学フィルム貼合せライン WO2017179239A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020177014571A KR101921437B1 (ko) 2016-04-14 2016-12-07 흡착 부재, 액정 셀 흡착 이동 장치, 및 광학 필름 첩합 라인
JP2017516813A JP6201082B1 (ja) 2016-04-14 2016-12-07 吸着部材、液晶セル吸着移動装置、および光学フィルム貼合せライン

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201620310941.X 2016-04-14
CN201620310941.XU CN205554727U (zh) 2016-04-14 2016-04-14 吸附部件、液晶单元吸附移动装置、及光学膜贴合生产线

Publications (1)

Publication Number Publication Date
WO2017179239A1 true WO2017179239A1 (ja) 2017-10-19

Family

ID=56810724

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/086411 WO2017179239A1 (ja) 2016-04-14 2016-12-07 吸着部材、液晶セル吸着移動装置、および光学フィルム貼合せライン

Country Status (4)

Country Link
KR (1) KR101921437B1 (ja)
CN (1) CN205554727U (ja)
TW (1) TWI629745B (ja)
WO (1) WO2017179239A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI702146B (zh) * 2018-02-13 2020-08-21 南韓商Lg化學股份有限公司 疊置光學膜之裝置與系統
CN108407274A (zh) * 2018-04-12 2018-08-17 安徽工程大学 一种手机自动贴膜机器
CN110002234A (zh) * 2019-04-01 2019-07-12 常州轻工职业技术学院 一种路沿石自动转运码垛装置及其工作方法
CN110482210A (zh) * 2019-08-13 2019-11-22 苏州富强科技有限公司 一种送料夹爪、一种送料装置
CN114520358B (zh) * 2022-01-14 2024-02-23 江苏氢导智能装备有限公司 边框贴合装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08112793A (ja) * 1994-10-13 1996-05-07 Toshiba Corp 吸着保持装置及び実装装置
JP2002012319A (ja) * 2000-06-29 2002-01-15 Shibaura Mechatronics Corp 基板搬送装置および基板搬送方法
JP2007048998A (ja) * 2005-08-11 2007-02-22 Seiko Epson Corp 吸着装置および描画装置
JP2008251653A (ja) * 2007-03-29 2008-10-16 Sharp Corp 低負荷搬送装置
CN102862818A (zh) * 2011-07-05 2013-01-09 塔工程有限公司 玻璃面板输送装置
JP2013107185A (ja) * 2011-11-24 2013-06-06 Sumitomo Chemical Co Ltd 光学表示部品の吸着装置、光学表示デバイスの生産システム
JP2013182019A (ja) * 2012-02-29 2013-09-12 Nitto Denko Corp 光学表示パネルの製造方法および光学表示パネルの製造システム
JP2015034882A (ja) * 2013-08-08 2015-02-19 住友化学株式会社 光学表示デバイスの生産システム
US20150367517A1 (en) * 2014-06-05 2015-12-24 J. Schmalz Gmbh Holding device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4037386B2 (ja) 2004-05-18 2008-01-23 中村留精密工業株式会社 ワークの側辺加工方法及び装置
WO2006085462A1 (ja) * 2005-02-10 2006-08-17 Matsushita Electric Industrial Co., Ltd. 部品実装装置、及び基板搬送方法
KR100725750B1 (ko) * 2006-06-13 2007-06-08 (주)미래컴퍼니 유리기판 지지용 테이블
TW200926344A (en) * 2007-12-07 2009-06-16 Chroma Ate Inc Glass substrate supporting adsorption apparatus and machine having the previous apparatus
WO2009122711A1 (ja) * 2008-04-01 2009-10-08 パナソニック株式会社 部品実装装置および方法
KR20140063302A (ko) * 2012-11-16 2014-05-27 삼성디스플레이 주식회사 캐리어 기판 제거 장치, 표시장치 제조 시스템, 및 표시장치 제조 방법
KR101265277B1 (ko) * 2013-04-11 2013-05-16 한동희 패널 부착장치

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08112793A (ja) * 1994-10-13 1996-05-07 Toshiba Corp 吸着保持装置及び実装装置
JP2002012319A (ja) * 2000-06-29 2002-01-15 Shibaura Mechatronics Corp 基板搬送装置および基板搬送方法
JP2007048998A (ja) * 2005-08-11 2007-02-22 Seiko Epson Corp 吸着装置および描画装置
JP2008251653A (ja) * 2007-03-29 2008-10-16 Sharp Corp 低負荷搬送装置
CN102862818A (zh) * 2011-07-05 2013-01-09 塔工程有限公司 玻璃面板输送装置
JP2013107185A (ja) * 2011-11-24 2013-06-06 Sumitomo Chemical Co Ltd 光学表示部品の吸着装置、光学表示デバイスの生産システム
JP2013182019A (ja) * 2012-02-29 2013-09-12 Nitto Denko Corp 光学表示パネルの製造方法および光学表示パネルの製造システム
JP2015034882A (ja) * 2013-08-08 2015-02-19 住友化学株式会社 光学表示デバイスの生産システム
US20150367517A1 (en) * 2014-06-05 2015-12-24 J. Schmalz Gmbh Holding device

Also Published As

Publication number Publication date
CN205554727U (zh) 2016-09-07
KR101921437B1 (ko) 2018-11-22
TW201803002A (zh) 2018-01-16
KR20170126437A (ko) 2017-11-17
TWI629745B (zh) 2018-07-11

Similar Documents

Publication Publication Date Title
WO2017179239A1 (ja) 吸着部材、液晶セル吸着移動装置、および光学フィルム貼合せライン
US7426883B2 (en) Substrate-cutting system, substrate-producing apparatus, substrate-scribing method, and substrate-cutting method
TWI500558B (zh) 保護片供給裝置
WO2017179240A1 (ja) 吸着部材および液晶セル吸着回転装置
JP5349881B2 (ja) スクライブ装置および基板分断システム
JP6390848B2 (ja) 光学フィルム連続供給装置及び光学フィルム連続供給方法
KR20110079575A (ko) 유리 기판 곤포 장치 및 그 곤포 방법
KR102490643B1 (ko) 정형 패널에 대한 수지 필름 첩부 시스템
JP5744109B2 (ja) 脆性基板搬送ユニット
JP6280332B2 (ja) 基板反転搬送装置
TWI400203B (zh) 切割裝置、及使用該切割裝置之基板切斷裝置與方法
TW201837000A (zh) 基板加工裝置
JP4340788B2 (ja) 基板への偏光板貼付装置
KR102593614B1 (ko) 기판 절단 장치
JP6201082B1 (ja) 吸着部材、液晶セル吸着移動装置、および光学フィルム貼合せライン
JP2008182256A (ja) 基板重ね合わせ装置
KR102593615B1 (ko) 기판 절단 장치
KR20140058328A (ko) 기판 분단 장치
JP2013056830A (ja) 基板分断システム
JP6201081B1 (ja) 吸着部材および液晶セル吸着回転装置
JP2007237317A (ja) 板材の加工装置とそれを備えた加工設備
KR101561974B1 (ko) 쉬트 라미네이터
JP6236561B1 (ja) ワーク貼り合わせ装置及びワーク貼り合わせ方法
JP6165372B1 (ja) ワーク搬送装置及びワーク搬送方法
JPH0671760A (ja) 粘着フィルムの受渡し搬送装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017516813

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177014571

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16898696

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16898696

Country of ref document: EP

Kind code of ref document: A1