WO2017175713A1 - 超伝導線及び超伝導コイル - Google Patents

超伝導線及び超伝導コイル Download PDF

Info

Publication number
WO2017175713A1
WO2017175713A1 PCT/JP2017/013929 JP2017013929W WO2017175713A1 WO 2017175713 A1 WO2017175713 A1 WO 2017175713A1 JP 2017013929 W JP2017013929 W JP 2017013929W WO 2017175713 A1 WO2017175713 A1 WO 2017175713A1
Authority
WO
WIPO (PCT)
Prior art keywords
superconducting
content
less
ppm
mass ppm
Prior art date
Application number
PCT/JP2017/013929
Other languages
English (en)
French (fr)
Inventor
航世 福岡
優樹 伊藤
牧 一誠
Original Assignee
三菱マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱マテリアル株式会社 filed Critical 三菱マテリアル株式会社
Priority to EP17779091.2A priority Critical patent/EP3441486B1/en
Priority to KR1020187025175A priority patent/KR102291887B1/ko
Priority to CN201780009231.0A priority patent/CN108603251B/zh
Priority to US16/091,011 priority patent/US10971278B2/en
Publication of WO2017175713A1 publication Critical patent/WO2017175713A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • H01B1/026Alloys based on copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B12/00Superconductive or hyperconductive conductors, cables, or transmission lines
    • H01B12/02Superconductive or hyperconductive conductors, cables, or transmission lines characterised by their form
    • H01B12/04Single wire
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B12/00Superconductive or hyperconductive conductors, cables, or transmission lines
    • H01B12/02Superconductive or hyperconductive conductors, cables, or transmission lines characterised by their form
    • H01B12/08Stranded or braided wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B12/00Superconductive or hyperconductive conductors, cables, or transmission lines
    • H01B12/16Superconductive or hyperconductive conductors, cables, or transmission lines characterised by cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/06Coils, e.g. winding, insulating, terminating or casing arrangements therefor
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/20Permanent superconducting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/80Constructional details
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0128Manufacture or treatment of composite superconductor filaments
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Definitions

  • the present invention relates to a superconducting wire comprising a strand made of a superconductor and a superconducting stabilizer disposed in contact with the strand, and a superconducting coil comprising the superconducting wire. It is.
  • This application claims priority based on Japanese Patent Application No. 2016-076900 filed in Japan on April 6, 2016, the contents of which are incorporated herein by reference.
  • the above-mentioned superconducting wire is used in fields such as MRI, NMR, particle accelerator, linear motor car, and power storage device.
  • This superconducting wire has a multi-core structure in which a plurality of strands made of a superconductor such as Nb—Ti and Nb 3 Sn are bundled with a superconducting stabilizer interposed.
  • a tape-shaped superconducting wire in which a superconductor and a superconducting stabilizer are laminated is also provided.
  • a superconducting wire having a channel member made of pure copper is also provided.
  • a superconducting stabilizer having a relatively low resistance such as copper is disposed so as to be in contact with the superconductor (element wire). If the superconducting state is partially broken, the current flowing through the superconductor is temporarily diverted to the superconducting stabilizer, and the superconductor is cooled and returned to the superconducting state during that time. It has a structure that allows
  • the structure of the superconducting wire here refers to a superconducting wire that is processed so that a wire containing a superconductor represented by Nb—Ti, Nb 3 Sn and a superconducting stabilizer made of copper are in contact with each other. It is a wire that has been processed so that a plurality of strands including the body and the superconducting stabilizer become one structure. This processing includes extrusion, rolling, wire drawing, drawing, and twisting.
  • the above-described superconducting stabilizer is required to have a sufficiently low resistance at extremely low temperatures in order to efficiently bypass current.
  • Residual resistance ratio (RRR) is widely used as an index indicating electric resistance at extremely low temperatures.
  • the residual resistance ratio (RRR) is located ratio ⁇ 293K / ⁇ 4.2K with electrical resistivity [rho 4.2 K at room temperature electrical resistivity [rho 293 K and the liquid helium temperature at (293K) (4.2K)
  • Patent Documents 1 to 3 propose Cu materials having a high residual resistance ratio (RRR).
  • a copper material having a high residual resistance ratio (RRR) is obtained by heating a copper material having a purity of 99.999% or more in an inert gas atmosphere at a temperature of 650 to 800 ° C. for at least 30 minutes. It is described to obtain.
  • Patent Document 2 proposes high-purity copper in which the content of specific elements (Fe, P, Al, As, Sn, and S) is regulated and the impurity concentration is very low.
  • Patent Document 3 proposes a Cu alloy in which a small amount of Zr is added to high-purity copper having a low oxygen concentration.
  • Patent Document 1 shows a method of manufacturing pure copper or a copper alloy having a high residual resistance ratio (RRR) using pure copper having a purity of 99.999% or more, but 99.999% By using the above pure copper as a raw material, there has been a problem that the manufacturing cost is significantly increased.
  • the present invention has been made in view of the above-described circumstances, and can be manufactured at a relatively simple and inexpensive manufacturing process, and includes a superconducting stabilizer that has a sufficiently high residual resistance ratio (RRR). It is an object to provide a superconducting wire that can be used and a superconducting coil comprising the superconducting wire.
  • RRR residual resistance ratio
  • a superconducting wire according to an aspect of the present invention is a superconducting wire comprising a strand made of a superconductor and a superconducting stabilizer disposed in contact with the strand, wherein
  • the conductive stabilizer contains one or more additive elements selected from Ca, Sr, Ba, and rare earth elements (RE) within a total range of 3 ppm to 400 ppm by mass, with the balance being Cu and unavoidable impurities, and a total of concentrations of the unavoidable impurities excluding O, H, C, N, and S, which are gas components, are made of a copper material having a mass of 5 mass ppm to 100 mass ppm.
  • RE rare earth elements
  • rare earth elements (RE) are La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Sc, and Y. is there.
  • (RE) S and (RE) 2 SO 2 are compounds containing rare earth elements (RE) and S.
  • the superconducting wire may have a plurality of strands made of a superconductor. The strand may be composed only of a superconductor.
  • the superconducting stabilizer has a total concentration of inevitable impurities excluding O, H, C, N, and S, which are gas components, of 5 ppm to 100 ppm.
  • the superconducting stabilizer since the superconducting stabilizer is in electrical contact with the strand made of the superconductor, the superconductor can be used even when the superconducting state is broken in a part of the superconductor. Since the flowing current can be diverted to the superconducting stabilizer, the entire superconducting wire can be prevented from transitioning to the normal state (the normal state is propagated to the entire superconductor). The superconducting wire can be used stably.
  • copper In the superconducting stabilizer, copper is used in which the total concentration of inevitable impurities excluding O, H, C, N, and S, which are gas components, is 5 mass ppm or more and 100 mass ppm or less. Therefore, it is not necessary to increase the purity of copper excessively, the manufacturing process is simplified, and the manufacturing cost can be reduced.
  • the superconducting stabilizer is selected from CaS, CaSO 4 , SrS, SrSO 4 , BaS, BaSO 4 , (RE) S, (RE) 2 SO 2 inside the matrix. Therefore, S, Se, Te present in copper is reliably fixed, and the residual resistance ratio (RRR) can be improved. Moreover, since the above-mentioned compound has high thermal stability, even when heat-treated in a wide temperature range, it can stably maintain a high residual resistance ratio (RRR).
  • the compound includes CaS, CaSO 4 , SrS, SrSO 4 , BaS, BaSO 4 , (RE) S, and (RE) 2 SO 2 , wherein a part of S is Te or Se. Includes substituted ones.
  • the superconducting stabilizer has an Fe content of 10 ppm by mass or less, an Ni content of 10 ppm by mass or less, and the As. Content is 5 mass ppm or less, Ag content is 50 mass ppm or less, Sn content is 4 mass ppm or less, Sb content is 4 mass ppm or less, Pb content is 6 mass ppm or less, Bi It is preferable that it consists of the said copper material whose content of P is 2 mass ppm or less and whose content of P is 3 mass ppm or less.
  • elements of specific impurities such as Fe, Ni, As, Ag, Sn, Sb, Pb, Bi, and P have an action of reducing the residual resistance ratio (RRR). Therefore, by defining the contents of these elements as described above, it is possible to reliably improve the residual resistance ratio (RRR) of the superconducting stabilizer.
  • the superconducting stabilizer includes a total content of S, Se, and Te (X mass ppm), Ca, Sr, Ba, and a rare earth element (RE).
  • the ratio Y / X to the total content (Y mass ppm) of one or more additive elements selected from the above is made of the copper material in the range of 0.5 ⁇ Y / X ⁇ 100 Is preferred.
  • the total content of S, Se, Te (X mass ppm) and the total content of one or more additive elements selected from Ca, Sr, Ba, and rare earth elements (RE) (Y mass) Since the ratio Y / X with respect to (ppm) is within the above-mentioned range, S, Se, Te in copper is replaced with CaS, CaSO 4 , SrS, SrSO 4 , BaS, BaSO 4 , (RE) S, ( RE) 2 SO 2 can be reliably fixed as a compound containing one or more selected from 2 SO 2, and a decrease in the residual resistance ratio (RRR) due to S, Se, Te can be reliably suppressed.
  • RRR residual resistance ratio
  • a residual resistance ratio (RRR) of the superconducting stabilizer is 250 or more.
  • the resistance value at a very low temperature is sufficiently low, and the current flows when the superconducting state of the superconductor is broken. Can be sufficiently bypassed, and the normal state can be prevented from propagating throughout the superconductor.
  • the superconducting coil which concerns on 1 aspect of this invention has the structure provided with the coil
  • the superconducting wire provided with the superconducting stabilizer having a high residual resistance ratio (RRR) is used, so that it can be used stably. .
  • a superconducting material that can be manufactured stably with a superconducting stabilizer that has a relatively high residual resistance ratio (RRR) that can be manufactured at a relatively simple and inexpensive manufacturing process. It is possible to provide a superconducting coil comprising a wire and the superconducting wire.
  • superconducting wire 10 which is one embodiment of the present invention is explained with reference to the attached drawings.
  • the superconducting wire 10 in the present embodiment is disposed on a core portion 11, a plurality of filaments 12 disposed on the outer peripheral side of the core portion 11, and an outer peripheral side of the plurality of filaments 12. And an outer shell portion 13.
  • the filament 12 described above has a structure in which a strand 15 made of a superconductor is covered with a superconducting stabilizer 20 while being in electrical contact, as shown in FIGS. 1 and 2. Yes. That is, the filament 12 includes the strand 15 and the superconducting stabilizing material 20 that covers the strand 15 while being in electrical contact with the strand 15.
  • the strand 15 made of a superconductor and the superconducting stabilizer 20 are in a state where electricity can be conducted.
  • FIG. 2 when the superconducting state is broken and a normal conduction region A is generated in a part of the strand 15 made of superconductor, the superconducting stabilizer 20 is formed from the superconductor. The current I flowing through the element wire 15 is temporarily bypassed.
  • the superconducting stabilizer 20 is composed of one or more additive elements selected from Ca, Sr, Ba, and rare earth elements (RE) in a total of 3 mass ppm to 400 mass ppm. It is contained within the following range, the balance is Cu and inevitable impurities, and the total concentration of inevitable impurities excluding O, H, C, N, and S, which are gas components, is 5 mass ppm to 100 mass ppm. (The superconducting stabilizer 20 is made of only the copper material).
  • RE rare earth elements
  • copper material which constitutes the superconducting stabilizing material 20 the interior matrix, CaS, CaSO 4, SrS, SrSO 4, BaS, BaSO 4, (RE) S, (RE) 2 SO compounds containing one or more selected from 2 exists. That is, one or more selected from the above compounds are present in the matrix.
  • CaS, CaSO 4 , SrS, SrSO 4 , BaS, BaSO 4 , (RE) S, and (RE) 2 SO 2 a part of S may be replaced with Te or Se. Since Te and Se have a small content compared to S, Te and Se rarely form a compound with Ca, Sr, Ba, rare earth elements (RE), etc. A compound is formed in a state in which a part of is substituted.
  • the copper material constituting the superconducting stabilizer 20 has a content of Fe, which is an inevitable impurity, of 10 ppm by mass or less, a content of Ni of 10 ppm by mass or less, and a content of As of 5 Mass ppm or less, Ag content is 50 mass ppm or less, Sn content is 4 mass ppm or less, Sb content is 4 mass ppm or less, Pb content is 6 mass ppm or less, Bi content is 2 The mass ppm or less and the P content are 3 mass ppm or less.
  • the copper material constituting the superconducting stabilizer 20 is selected from the total content of S, Se, Te (X mass ppm), Ca, Sr, Ba, and rare earth elements (RE).
  • the ratio Y / X to the total content (Y mass ppm) of one or more additive elements is within the range of 0.5 ⁇ Y / X ⁇ 100.
  • the superconducting stabilizer 20 has a residual resistance ratio (RRR) of 250 or more.
  • one or more additive elements selected from Ca, Sr, Ba, and rare earth elements (RE) are elements that are highly reactive with S, Se, and Te. When the additive element generates a compound with S, Se, Te, it is possible to suppress the solid solution of these S, Se, Te in copper. Thereby, the residual resistance ratio (RRR) of the superconducting stabilizer 20 can be sufficiently improved.
  • One or more additive elements selected from Ca, Sr, Ba, and rare earth elements (RE) are elements that are difficult to dissolve in copper, and even if they are dissolved in copper, the residual resistance ratio The effect of reducing (RRR) is small. For this reason, even if it is a case where said additive element is added excessively with respect to content of S, Se, and Te, the residual resistance ratio (RRR) of the superconductor stabilization material 20 does not fall large.
  • the total content of one or more additive elements selected from Ca, Sr, Ba, and rare earth elements (RE) is less than 3 ppm by mass, the effect of fixing S, Se, and Te is obtained. There is a risk that it will not be successful enough.
  • the total content of one or more additive elements selected from Ca, Sr, Ba, and rare earth elements (RE) exceeds 400 ppm by mass, coarse precipitates of these additive elements, etc. There is a possibility that the processability may deteriorate due to the generation. From the above, in this embodiment, the total content of one or more additive elements selected from Ca, Sr, Ba, and rare earth elements (RE) is in the range of 3 ppm to 400 ppm by mass. It is prescribed in.
  • the lower limit of the total content of one or more additive elements selected from Ca, Sr, Ba, and rare earth elements (RE) is set to 3.
  • the content is preferably 5 ppm by mass or more, and more preferably 4.0 ppm by mass or more.
  • the upper limit of the total content of one or more additive elements selected from Ca, Sr, Ba, and rare earth elements (RE) is set to 300 mass ppm. It is preferable to make it below, and it is more preferable to set it as 100 mass ppm or less.
  • the concentration of inevitable impurities excluding gas components (O, H, C, N, S) is set in a range of 5 mass ppm to 100 mass ppm in total.
  • the raw material has a purity of 99 to 99.999 mass%.
  • High-purity copper or oxygen-free copper (C10100, C10200) can be used.
  • the O concentration is preferably 20 ppm by mass or less, and the O concentration is more preferably It is 10 mass ppm or less, and most preferably 5 mass ppm or less.
  • the lower limit of inevitable impurities that do not include O, H, C, N, and S, which are gas components, is set to 7 mass ppm or more. Is preferable, and it is more preferable to set it as more than 10 mass ppm.
  • the total concentration of the inevitable impurities including the gas components O, H, C, N, and S is preferably 10 masses. More than 15 ppm, more preferably 15 ppm by mass or more, and most preferably 20 ppm by mass or more.
  • the upper limit of inevitable impurities not including gas components O, H, C, N, and S is 90 mass ppm or less. It is preferable to set it to 80 mass ppm or less. Moreover, it is preferable that the upper limit of inevitable impurities containing O, H, C, N, and S as gas components is 110 mass ppm or less.
  • inevitable impurities excluding gas components in the present embodiment are Fe, Ni, As, Ag, Sn, Sb, Pb, Bi, P, Li, Be, B, F, Na, Mg, Al, Si, Cl. , K, Ti, V, Cr, Mn, Nb, Co, Zn, Ga, Ge, Br, Rb, Zr, Mo, Ru, Pd, Cd, In, I, Cs, Hf, Ta, W, Re, Os , Ir, Pt, Au, Hg, Tl, Th, U.
  • Compound present in the matrix As described above, one or two or more additive elements selected from Ca, Sr, Ba, and rare earth elements (RE) are produced by forming compounds such as S, Se, and Te with S, Se, and Te. The element such as Te is prevented from dissolving in copper. Therefore, a compound containing one or more kinds selected from CaS, CaSO 4 , SrS, SrSO 4 , BaS, BaSO 4 , (RE) S, and (RE) 2 SO 2 in the matrix (one of S S, Se, and Te are fixed, and the residual resistance ratio (RRR) can be reliably improved.
  • RRR residual resistance ratio
  • a compound containing one or more selected from CaS, CaSO 4 , SrS, SrSO 4 , BaS, BaSO 4 , (RE) S, and (RE) 2 SO 2 has high thermal stability. It can exist stably even at high temperatures. Although these compounds are produced during melt casting, they are stably present after processing and after heat treatment due to the aforementioned characteristics. Therefore, even if heat treatment is performed in a wide temperature range, S, Se, and Te are fixed as compounds, and it is possible to stably have a high residual resistance ratio (RRR).
  • RRR residual resistance ratio
  • the residual resistance ratio (RRR) can be reliably improved.
  • the number density of the compounds is preferably 0.005 / ⁇ m 2 or more.
  • the number density of the compound is more preferably 0.007 / ⁇ m 2 or more.
  • the number density described above is intended for compounds having a particle size of 0.1 ⁇ m or more.
  • the upper limit of the number density of the above-described compound is 0.1 / ⁇ m 2. Or less, preferably 0.09 / ⁇ m 2 or less, more preferably 0.08 / ⁇ m 2 or less.
  • the Fe content is 10 mass ppm or less
  • the Ni content is 10 mass ppm or less
  • the As content is 5 mass ppm or less
  • the Ag content is 50 mass ppm or less
  • the Sn content is The amount is 4 mass ppm or less
  • the Sb content is 4 mass ppm or less
  • the Pb content is 6 mass ppm or less
  • the Bi content is 2 mass ppm or less
  • the P content is 3 mass ppm or less.
  • Fe content is 4.5 mass ppm or less
  • Ni content is 3 mass ppm or less
  • As 3 mass ppm or less Ag content 38 mass ppm or less
  • Sn content 3 mass ppm or less Sb content 1.5 mass ppm or less
  • Pb content 4.5 mass Preferably, the content of Bi is defined as 1.5 ppm by mass or less
  • the content of P is defined as 1.5 ppm by mass or less
  • the content of Fe is 3.3 ppm by mass or less.
  • the content is 2.2 mass ppm or less, the As content is 2.2 mass ppm or less, the Ag content is 28 mass ppm or less, the Sn content is 2.2 mass ppm or less, and the Sb content is 1 .1 mass ppm or less, Pb content is 3.3 mass pm or less, the content of Bi 1.1 mass ppm or less, it is preferable to define the content of P below 1.1 mass ppm.
  • the lower limit of content of Fe, Ni, As, Ag, Sn, Sb, Pb, Bi, and P is 0 mass ppm.
  • the Fe content is 0.1 mass ppm or more
  • the Ni content is 0.1 mass ppm or more
  • the As content is 0.1 mass ppm or more
  • Ag content is 0.1 mass ppm or more
  • Sn content is 0.1 mass ppm or more
  • Sb content is 0.1 mass ppm or more
  • Pb content is 0.00. It is preferable that the content is 1 mass ppm or more, the Bi content is 0.1 mass ppm or more, and the P content is 0.1 mass ppm or more, but is not limited thereto.
  • one or more additive elements selected from Ca, Sr, Ba, and rare earth elements (RE) form compounds with elements such as S, Se, and Te.
  • RE rare earth elements
  • the ratio Y / X of the total content of S, Se, Te (X mass ppm) and the total content of additive elements (Y mass ppm) is less than 0.5, the content of additive elements is insufficient. , S, Se, Te may not be sufficiently fixed.
  • the ratio Y / X between the total content (X) of S, Se, and Te and the total content (Y) of the additive elements is defined within the range of 0.5 to 100. is doing.
  • the lower limit of the ratio Y / X between the total content of S, Se, and Te and the total content of additive elements is 0.75 or more. It is preferable to set it to 1.0 or more.
  • the upper limit of the ratio Y / X of the total content of S, Se, and Te to the total content of additive elements is preferably 75 or less, and 50 or less. More preferably.
  • the lower limit value of the total content (X) of S, Se, and Te in the superconducting stabilizer 20 is preferably more than 0 ppm by mass, more preferably 0.1 ppm by mass or more, and more preferably 0. It is 5 mass ppm or more, and most preferably 1 mass ppm or more.
  • the upper limit of the total content (X) of S, Se, and Te is preferably 25 ppm by mass or less, and more preferably 15 ppm by mass or less.
  • the lower limit value and the upper limit value of the total content (X) of S, Se, and Te are not limited to this.
  • the residual resistance ratio (RRR) is set to 250 or more, so that the resistance value is low and current can be well bypassed at an extremely low temperature.
  • the residual resistance ratio (RRR) is preferably 280 or more, and more preferably 300 or more. More preferably, it is 400 or more.
  • the upper limit of the residual resistance ratio (RRR) is preferably 10,000 or less, more preferably 5000 or less, more preferably 3000 or less, and 2000 or less in order to reliably suppress an increase in manufacturing cost. Although it is most preferable, it is not limited to this.
  • the above-described superconducting stabilizer 20 is manufactured by a manufacturing process including a melt casting process, a plastic working process, and a heat treatment process.
  • the superconducting stabilizer 20 may be manufactured by manufacturing a rough drawn copper wire having the composition shown in the present embodiment by a continuous casting and rolling method (for example, SCR method) or the like.
  • a continuous casting and rolling method for example, SCR method
  • the continuous casting and rolling method used here refers to, for example, manufacturing copper roughing wire using a continuous casting and rolling facility equipped with a belt-wheel type continuous casting machine and a continuous rolling device, and using this copper roughing wire as a raw material, It is a process of manufacturing a wire.
  • the superconducting stabilizer 20 is made of copper having a total concentration of inevitable impurities excluding O, H, C, N, and S, which are gas components, of 5 ppm to 100 ppm. It is made of a copper material containing one or more additive elements selected from Ca, Sr, Ba, and rare earth elements (RE) within a total range of 3 ppm to 400 ppm by mass. For this reason, S, Se, and Te in copper are fixed as a compound, and it becomes possible to improve the residual resistance ratio (RRR) of the superconducting stabilizer 20.
  • RRR residual resistance ratio
  • the superconducting stabilizer 20 is in electrical contact with the strand 15 made of superconductor, a normal conduction region A in which the superconducting state is broken is generated in the strand 15 made of superconductor. Even in this case, the current can be reliably diverted to the superconducting stabilizer 20. Therefore, it can suppress that the whole superconducting wire 10 changes to a normal conduction state, and can use the superconducting wire 10 which is this embodiment stably. Furthermore, since the total concentration of unavoidable impurities excluding O, H, C, N, and S, which are gas components, is used, the copper is made to be 5 mass ppm to 100 mass ppm. Therefore, the manufacturing process is simplified, and the manufacturing cost of the superconducting stabilizer 20 can be reduced.
  • the superconducting wire 10 in the present embodiment, the inner matrix of the copper material forming the superconducting stabilizer 20, CaS, CaSO 4, SrS , SrSO 4, BaS, BaSO 4, (RE) S , (RE) 2 SO 2 includes one or more compounds selected from two or more. For this reason, S, Se, and Te existing in the copper are securely fixed, and the residual resistance ratio (RRR) of the superconducting stabilizer 20 can be improved. Moreover, since the above-mentioned compound has high thermal stability, the superconducting stabilizer 20 having a stable high residual resistance ratio (RRR) can be obtained even when heat-treated in a wide temperature range.
  • the number density of the above-mentioned compound having a particle size of 0.1 ⁇ m or more is set to 0.001 / ⁇ m 2 or more, S, Se, Te can be reliably fixed as a compound, and superconductivity
  • the residual resistance ratio (RRR) of the stabilizing material 20 can be sufficiently improved.
  • the Fe content is 10 mass ppm or less for the content of Fe, Ni, As, Ag, Sn, Sb, Pb, Bi, and P affecting the residual resistance ratio (RRR).
  • the content is 10 mass ppm or less, the As content is 5 mass ppm or less, the Ag content is 50 mass ppm or less, the Sn content is 4 mass ppm or less, the Sb content is 4 mass ppm or less, and Pb
  • the content is specified to be 6 mass ppm or less, the Bi content is 2 mass ppm or less, and the P content is 3 mass ppm or less. For this reason, it becomes possible to improve the residual resistance ratio (RRR) of the superconducting stabilizer 20 reliably.
  • the ratio Y / X to the amount (Y mass ppm) is in the range of 0.5 ⁇ Y / X ⁇ 100.
  • the residual resistance ratio (RRR) of the superconducting stabilizer 20 is relatively high at 250 or more, the resistance value at an extremely low temperature is sufficiently low. Therefore, even when the normal conduction region A in which the superconducting state is broken occurs in the strand 15 made of a superconductor, the current can be reliably bypassed to the superconducting stabilizer 20.
  • the superconducting coil of the present embodiment includes a winding frame and a winding part, and the winding part is the superconducting wire of the present embodiment wound around the peripheral surface of the winding frame.
  • the core part 11 and the outer shell part 13 constituting the superconducting wire 10 may also be made of a copper material having the same composition as that of the superconducting stabilizer 20 according to the present embodiment.
  • the filament 12 is disposed on the outer peripheral side of the core portion 11 in a state of being in electrical contact with the core portion 11.
  • the outer shell portion 13 is disposed on the outer peripheral side of the filament 12 while being in electrical contact with the filament 12.
  • the core part 11 and the superconducting stabilizer 20 of the filament 12 that contacts the core part 11 may be integrated.
  • the outer shell 13 and the superconducting stabilizer 20 of the filament 12 that contacts the outer shell 13 may be integrated.
  • the core part 11 and the outer shell part 13 are made of a copper material having the same composition as the superconducting stabilizer 20 and the core part 11 and the outer shell part 13 are in electrical contact with the filament 12, the core part 11 and the outer shell portion 13 function so as to exhibit the same action as the superconducting stabilizer 20 in the filament 12.
  • the superconducting wire 10 having a structure in which a plurality of filaments 12 are bundled is described as an example.
  • the present invention is not limited to this.
  • a superconducting wire 110 having a structure in which a superconductor 115 and a superconducting stabilizer 120 are stacked on a tape-like base material 113 may be used. That is, the superconducting wire 110 may include a tape-like base material 113, a superconductor 115 and a superconducting stabilizer 120 stacked on the base material 113.
  • the superconducting stabilizer 120 is laminated on or covers the superconductor 115 while in electrical contact with the superconductor 115.
  • the form of the superconductor 115 of FIG. 3 is a sheet (plate)
  • the form of the superconductor 115 may be a strip, a wire, or a bar.
  • a superconducting wire 210 having a structure in which a plurality of filaments 12 are bundled and then incorporated into a channel member 220 made of pure copper may be used. That is, the superconducting wire 210 may include a channel member 220 having a recess and a bundle of a plurality of filaments 12 incorporated in the recess.
  • the bundle of the plurality of filaments 12 may be, for example, the superconducting wire 10 shown in FIG.
  • high-purity copper is melted in an inert gas atmosphere of Ar using an electric furnace, and thereafter, various additive elements and impurity mother alloys are added to prepare a predetermined concentration and cast into a predetermined mold.
  • an ingot having a diameter of 65 mm and a length of 145 mm was obtained.
  • a square member having a cross-sectional dimension of 23 mm ⁇ 23 mm was cut out and subjected to hot rolling at 800 ° C. to obtain a hot rolled wire with a diameter of 8 mm.
  • a thin wire having a diameter of 2.0 mm was formed from the hot-rolled wire by cold drawing, and a heat treatment was performed by holding the wire at a temperature shown in Table 2 for 1 hour, thereby producing an evaluation wire.
  • contamination of impurity elements was also observed during the melt casting process. Using these evaluation wires, the following items were evaluated.
  • Composition analysis Using the sample whose residual resistance ratio (RRR) was measured, component analysis was performed as follows. For elements other than gas components, glow discharge mass spectrometry was used when the content was less than 10 ppm by mass, and inductively coupled plasma emission spectroscopy was used when the content was 10 ppm by mass or more. Moreover, the infrared absorption method was used for the analysis of S. The concentration of O was all 10 ppm by mass or less. For the analysis of O, an infrared absorption method was used.
  • the major axis of the intermetallic compound (the length of the straight line that can be drawn the longest in the grain without contact with the grain boundary in the middle) and the minor axis (in the direction perpendicular to the major axis, the grain in the middle The average value of the length of the straight line that can be drawn the longest under conditions that do not contact the boundary).
  • a composition is analyzed using EDX (energy dispersive X-ray spectroscopy), and it is a compound containing Ca, Sr, Ba, rare earth elements (RE), and S. confirmed.
  • Evaluation results are shown in Table 2. Moreover, the SEM observation result, the analysis result, and the electron beam diffraction result of the compound of this invention example 4 are shown in FIG. 5, The SEM observation result, the analysis result, and the electron beam diffraction result of the compound of this invention example 10 are shown in FIG.
  • Comparative Example 1 one or more additive elements selected from Ca, Sr, Ba, and rare earth elements (RE) were not added, and CaS, CaSO 4 , SrS, There was no compound containing one or more selected from SrSO 4 , BaS, BaSO 4 , (RE) S, and (RE) 2 SO 2 , and the residual resistance ratio (RRR) was as low as 152.
  • the total content of one or more additive elements selected from Ca, Sr, Ba, and rare earth elements (RE) is 886 mass ppm, which exceeds the range of the present embodiment, and is plastically processed. Cracks occurred inside. For this reason, residual resistance ratio (RRR) and structure
  • the residual resistance ratio (RRR) is 250 or more, confirming that it is particularly suitable as a superconducting stabilizer. It was. Further, as shown in FIG. 5, when Ca was added, a compound containing CaS having a NaCl-type crystal structure was observed. Furthermore, as shown in FIG. 6, when Sr was added, a compound containing SrS having a NaCl-type crystal structure was observed. From the above, according to the present invention, it has been confirmed that a superconducting wire provided with a superconducting stabilizer having a sufficiently high residual resistance ratio (RRR) can be provided according to the present invention. It was.
  • the superconducting wire of the present invention includes a superconducting stabilizer, and this superconducting stabilizer can be manufactured at a relatively simple and inexpensive manufacturing process, and has a sufficiently high residual resistance ratio (RRR).
  • RRR residual resistance ratio
  • the superconducting wire and superconducting coil of the present invention are suitably used in MRI, NMR, particle accelerator, linear motor car, power storage device and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Power Engineering (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

この超伝導線は、超伝導体からなる素線と、この素線に接触して配置される超伝導安定化材と、を備え、超伝導安定化材は、Ca,Sr,Ba,希土類元素(RE)から選択される1種以上の添加元素を合計で3質量ppm以上400質量ppm以下の範囲内で含有し、残部がCu及び不可避不純物であり、ガス成分であるO,H,C,N,Sを除く不可避不純物の濃度の総計が5質量ppm以上100質量ppm以下である銅材からなり、母相内部に、CaS,CaSO,SrS,SrSO,BaS,BaSO,(RE)S,(RE)SOから選択される1種以上を含む化合物が存在する。

Description

超伝導線及び超伝導コイル
 本発明は、超伝導体からなる素線と、この素線に接触して配置される超伝導安定化材と、を備えた超伝導線、及び、この超伝導線からなる超伝導コイルに関するものである。
 本願は、2016年4月6日に、日本に出願された特願2016-076900号に基づき優先権を主張し、その内容をここに援用する。
 上述の超伝導線は、例えばMRI、NMR、粒子加速器、リニアモーターカー、さらに電力貯蔵装置などの分野で使用されている。
 この超伝導線は、Nb-Ti、NbSnなどの超伝導体からなる複数の素線を、超伝導安定化材を介在させて束ねた多芯構造を有している。また、超伝導体と超伝導安定化材とを積層したテープ状の超伝導線も提供されている。さらに安定性と安全性を高めるために、純銅からなるチャンネル部材を備えた超伝導線も提供される。
 ここで、上述の超伝導線においては、超伝導体の一部において超伝導状態が破れた場合には、抵抗が部分的に大きく上昇して超伝導体の温度が上昇してしまい、超伝導体全体が臨界温度以上になって常伝導状態に転移してしまうおそれがある。そこで、超伝導線においては、銅などの比較的抵抗の低い超伝導安定化材を、超伝導体(素線)に接触するように配置している。超伝導状態が部分的に破れた場合には、超伝導体を流れていた電流を超伝導安定化材に一時的に迂回させておき、その間に超伝導体を冷却して超伝導状態に復帰させるような構造とされている。
 ここでいう超伝導線の構造とは、Nb-Ti、NbSnに代表される超伝導体を含む素線と銅材からなる超伝導安定化材とが接触するように加工され、超伝導体を含む複数の素線と超伝導安定化材とが1つの構造体となる様に加工を施した線のことである。なお、この加工は押出し、圧延、伸線、引抜き、及びツイストを含む。
 上述の超伝導安定化材においては、電流を効率良く迂回させるために、極低温での抵抗が十分に低いことが求められている。極低温での電気抵抗を示す指標としては、残留抵抗比(RRR)が広く用いられている。この残留抵抗比(RRR)は、常温(293K)での電気比抵抗ρ293Kと液体ヘリウム温度(4.2K)での電気比抵抗ρ4.2Kとの比ρ293K/ρ4.2Kであり、この残留抵抗比(RRR)が高いほど超伝導安定化材として優れた性能を発揮する。
 そこで、例えば特許文献1~3には、高い残留抵抗比(RRR)を有するCu材料が提案されている。
 特許文献1においては、99.999%以上の純度を有する銅材を温度650~800℃、不活性ガス雰囲気中で少なくとも30分以上加熱することにより、高い残留抵抗比(RRR)の銅材を得ることが記載されている。
 特許文献2においては、特定の元素(Fe,P,Al,As,Sn及びS)の含有量が規定され不純物濃度が非常に低い高純度銅が提案されている。
 また、特許文献3においては、酸素濃度の低い高純度銅にZrを微量添加したCu合金が提案されている。
 ところで、不純物元素を極限まで低減した超高純度銅においては、残留抵抗比(RRR)が十分に高くなることは知られている。しかし、銅を高純度化するためには、製造プロセスが非常に複雑となり、製造コストが大幅に上昇してしまうといった問題があった。
 ここで、特許文献1においては、99.999%以上の純度を有する純銅を用いて、高い残留抵抗比(RRR)を有する純銅又は銅合金を製造する方法を示しているが、99.999%以上の純銅を原料として用いることで、製造コストが大幅に上昇してしまうといった問題点があった。
 また、特許文献2においては、特定の元素(Fe,P,Al,As,Sn及びS)の含有量を0.1ppm未満に限定しているが、これらの元素を0.1ppm未満にまで低減することは容易ではなく、やはり製造プロセスが複雑となるといった問題があった。
 さらに、特許文献3においては、酸素及びZrの含有量を規定しているが、酸素及びZrの含有量を制御することは難しく、高い残留抵抗比(RRR)を有する銅合金を安定して製造することが困難であるといった問題があった。
 さらに、最近では、従来にも増して高い残留抵抗比(RRR)を有する超伝導安定化材を備えた超伝導線が要求されている。
特開平04-224662号公報 特開2011-236484号公報 特開平05-025565号公報
 この発明は、前述した事情に鑑みてなされたものであって、製造プロセスが比較的簡単で廉価で製造でき、残留抵抗比(RRR)が十分に高い超伝導安定化材を備え、安定して使用することが可能な超伝導線、及び、この超伝導線からなる超伝導コイルを提供することを目的とする。
 この課題を解決するために、本発明者らは鋭意研究を行った結果、不可避不純物の中でもS,Se,Teが特に残留抵抗比(RRR)に対して悪影響を及ぼすことを確認した。純銅にCa,Sr,Ba,希土類元素(RE)を微量添加してS,Se,Teを特定の化合物として固定することにより、広い温度範囲で熱処理した場合でも、高い残留抵抗比(RRR)を有する超伝導安定化材が製造可能であるとの知見を得た。
 本発明は、上述の知見に基づいてなされたものである。
 本発明の一態様に係る超伝導線は、超伝導体からなる素線と、この素線に接触して配置される超伝導安定化材と、を備えた超伝導線であって、前記超伝導安定化材は、Ca,Sr,Ba,希土類元素(RE)から選択される1種又は2種以上の添加元素を合計で3質量ppm以上400質量ppm以下の範囲内で含有し、残部がCu及び不可避不純物であるとともに、ガス成分であるO,H,C,N,Sを除く前記不可避不純物の濃度の総計が5質量ppm以上100質量ppm以下である銅材からなり、母相内部に、CaS,CaSO,SrS,SrSO,BaS,BaSO,(RE)S,(RE)SOから選択される1種又は2種以上を含む化合物が存在することを特徴としている。
 なお、本発明の一態様において希土類元素(RE)とは、La,Ce,Pr,Nd,Pm,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Lu,Sc,Yである。また、(RE)S,(RE)SOは、希土類元素(RE)とSを含む化合物である。超伝導線は、超伝導体からなる素線を複数本有してもよい。素線は、超伝導体のみからなってもよい。
 上述の構成の超伝導線によれば、前記超伝導安定化材が、ガス成分であるO,H,C,N,Sを除く不可避不純物の濃度の総計が5質量ppm以上100質量ppm以下とされた銅に、Ca,Sr,Ba,希土類元素(RE)から選択される1種又は2種以上の添加元素を合計で3質量ppm以上400質量ppm以下の範囲内で含有させた銅材からなる。このため、銅中のS,Se,Teが化合物として固定されることになり、前記超伝導安定化材の残留抵抗比(RRR)を向上させることが可能となる。また、前記超伝導安定化材が超伝導体からなる素線に電気的に接触していることによって、超伝導体の一部で超伝導状態が破れた場合であっても、超伝導体を流れる電流を超伝導安定化材へと迂回させることができ、超伝導線全体が常伝導状態に転移してしまうこと(超伝導体全体に常伝導状態が伝播してしまうこと)を抑制できるため、超伝導線を安定して使用することができる。
 また、前記超伝導安定化材においては、ガス成分であるO,H,C,N,Sを除く不可避不純物の濃度の総計が5質量ppm以上100質量ppm以下とされた銅を用いているので、過度に銅の高純度化を図る必要がなく、製造プロセスが簡易となり、製造コストを低減することができる。
 そして、本発明の一態様では、前記超伝導安定化材の母相内部に、CaS,CaSO,SrS,SrSO,BaS,BaSO,(RE)S,(RE)SOから選択される1種又は2種以上を含む化合物が存在しているので、銅中に存在するS,Se,Teが確実に固定されており、残留抵抗比(RRR)を向上させることが可能となる。また、上述の化合物は、熱的安定性が高いことから、広い温度範囲で熱処理した場合にも、安定的に高い残留抵抗比(RRR)を維持することができる。
 なお、本発明の一態様において、上記の化合物は、CaS,CaSO,SrS,SrSO,BaS,BaSO,(RE)S,(RE)SOのSの一部がTe,Seに置換されたものも含む。
 ここで、本発明の一態様に係る超伝導線においては、前記超伝導安定化材は、前記不可避不純物であるFeの含有量が10質量ppm以下、Niの含有量が10質量ppm以下、Asの含有量が5質量ppm以下、Agの含有量が50質量ppm以下、Snの含有量が4質量ppm以下、Sbの含有量が4質量ppm以下、Pbの含有量が6質量ppm以下、Biの含有量が2質量ppm以下、Pの含有量が3質量ppm以下である前記銅材からなることが好ましい。
 不可避不純物の中でも、Fe,Ni,As,Ag,Sn,Sb,Pb,Bi,Pといった特定不純物の元素は、残留抵抗比(RRR)を低下させる作用を有している。そこで、これらの元素の含有量を上述のように規定することで、確実に前記超伝導安定化材の残留抵抗比(RRR)を向上させることが可能となる。
 また、本発明の一態様に係る超伝導線においては、前記超伝導安定化材は、S,Se,Teの合計含有量(X質量ppm)と、Ca,Sr,Ba,希土類元素(RE)から選択される1種又は2種以上の添加元素の合計含有量(Y質量ppm)との比Y/Xが、0.5≦Y/X≦100の範囲内である前記銅材からなることが好ましい。
 この場合、S,Se,Teの合計含有量(X質量ppm)と、Ca,Sr,Ba,希土類元素(RE)から選択される1種又は2種以上の添加元素の合計含有量(Y質量ppm)との比Y/Xが上述の範囲内とされているので、銅中のS,Se,Teを、CaS,CaSO,SrS,SrSO,BaS,BaSO,(RE)S,(RE)SOから選択される1種又は2種以上を含む化合物として確実に固定することができ、S,Se,Teによる残留抵抗比(RRR)の低下を確実に抑制することができる。
 また、本発明の一態様に係る超伝導線においては、前記超伝導安定化材の残留抵抗比(RRR)が250以上であることが好ましい。
 この場合、前記超伝導安定化材の残留抵抗比(RRR)が250以上と比較的高いことから、極低温での抵抗値が十分に低く、超伝導体の超伝導状態が破れた際に電流を十分に迂回させることができ、超伝導体全体に常伝導状態が伝播してしまうことを抑制できる。
 本発明の一態様に係る超伝導コイルは、上述の超伝導線が巻枠の周面に巻回されてなる巻線部を備えた構造を有することを特徴としている。
 この構成の超伝導コイルにおいては、上述のように、高い残留抵抗比(RRR)を有する超伝導安定化材を備えた超伝導線を用いているので、安定して使用することが可能となる。
 本発明の一態様によれば、製造プロセスが比較的簡単で廉価で製造でき、残留抵抗比(RRR)が十分に高い超伝導安定化材を備え、安定して使用することが可能な超伝導線、及び、この超伝導線からなる超伝導コイルを提供することができる。
本発明の一実施形態である超伝導線の横断面模式図である。 図1に示す超伝導線に用いられるフィラメントの縦断面模式図である。 本発明の他の実施形態である超伝導線の模式図である。 本発明の他の実施形態である超伝導線の模式図である。 実施例における本発明例4の超伝導安定化材のSEM観察結果、化合物の分析結果及び電子線回折結果を示す図である。 実施例における本発明例10の超伝導安定化材のSEM観察結果、化合物の分析結果及び電子線回折結果を示す図である。
 以下に、本発明の一実施形態である超伝導線10について、添付した図面を参照して説明する。
 図1に示すように、本実施形態における超伝導線10は、コア部11と、このコア部11の外周側に配置された複数のフィラメント12と、これら複数のフィラメント12の外周側に配置される外殻部13と、を備えている。
 本実施形態では、上述のフィラメント12は、図1及び図2に示すように、超伝導体からなる素線15を超伝導安定化材20によって電気的に接触した状態で被覆した構造とされている。つまり、フィラメント12は、素線15と、素線15と電気的に接触した状態で素線15を被覆する超伝導安定化材20と、を備えている。超伝導体からなる素線15と超伝導安定化材20とは、電気が導通できる状態となっている。
 ここで、図2に示すように、超伝導体からなる素線15の一部において超伝導状態が破れて常伝導領域Aが発生した場合に、超伝導安定化材20は、超伝導体からなる素線15を流れる電流Iを一時的に迂回させる。
 そして、本実施形態においては、超伝導安定化材20は、Ca,Sr,Ba,希土類元素(RE)から選択される1種又は2種以上の添加元素を合計で3質量ppm以上400質量ppm以下の範囲内で含有し、残部がCu及び不可避不純物とされるとともに、ガス成分であるO,H,C,N,Sを除く不可避不純物の濃度の総計が5質量ppm以上100質量ppm以下とされた銅材によって構成されている(超伝導安定化材20は前記銅材のみからなる)。
 そして、本実施形態では、超伝導安定化材20を構成する銅材は、母相内部に、CaS,CaSO,SrS,SrSO,BaS,BaSO,(RE)S,(RE)SOから選択される1種又は2種以上を含む化合物が存在している。すなわち、母相内部に、前記化合物から選択される1種以上が存在する。
 なお、上述のCaS,CaSO,SrS,SrSO,BaS,BaSO,(RE)S,(RE)SOにおいては、Sの一部がTe,Seに置換されていてもよい。Te,Seは、Sに比べて含有量が少量であることから、Te、Seが単独でCa,Sr,Ba,希土類元素(RE)等と化合物を形成することが少なく、上述の化合物のSの一部を置換した状態で化合物を形成することになる。
 また、本実施形態では、超伝導安定化材20を構成する銅材は、不可避不純物であるFeの含有量が10質量ppm以下、Niの含有量が10質量ppm以下、Asの含有量が5質量ppm以下、Agの含有量が50質量ppm以下、Snの含有量が4質量ppm以下、Sbの含有量が4質量ppm以下、Pbの含有量が6質量ppm以下、Biの含有量が2質量ppm以下、Pの含有量が3質量ppm以下とされている。
 さらに、本実施形態では、超伝導安定化材20を構成する銅材は、S,Se,Teの合計含有量(X質量ppm)と、Ca,Sr,Ba,希土類元素(RE)から選択される1種又は2種以上の添加元素の合計含有量(Y質量ppm)との比Y/Xが、0.5≦Y/X≦100の範囲内とされている。
 また、本実施形態においては、超伝導安定化材20は、残留抵抗比(RRR)が250以上とされている。
 ここで、上述のように、超伝導安定化材20の成分組成、化合物の有無、残留抵抗比(RRR)を規定した理由について以下に説明する。
(Ca,Sr,Ba,希土類元素(RE)から選択される1種又は2種以上の添加元素)
 銅に含まれる不可避不純物のうちS,Se,Teは、銅中に固溶することによって残留抵抗比(RRR)を大きく低下させる元素である。このため、残留抵抗比(RRR)を向上させるためには、これらS,Se,Teの影響を排除する必要がある。
 ここで、Ca,Sr,Ba,希土類元素(RE)から選択される1種又は2種以上の添加元素は、S,Se,Teと反応性が高い元素である。上記の添加元素が、S,Se,Teと化合物を生成することによって、これらS,Se,Teが銅中に固溶することを抑制することが可能となる。これにより、超伝導安定化材20の残留抵抗比(RRR)を十分に向上させることができる。
 なお、Ca,Sr,Ba,希土類元素(RE)から選択される1種又は2種以上の添加元素は、銅中に固溶しにくい元素であり、さらに銅に固溶しても残留抵抗比(RRR)を低下させる作用が小さい。このため、S,Se,Teの含有量に対して上記の添加元素を過剰に添加した場合であっても、超伝導安定化材20の残留抵抗比(RRR)が大きく低下することはない。
 ここで、Ca,Sr,Ba,希土類元素(RE)から選択される1種又は2種以上の添加元素の含有量の合計が3質量ppm未満では、S,Se,Teを固定する作用効果を十分に奏功せしめることができないおそれがある。一方、Ca,Sr,Ba,希土類元素(RE)から選択される1種又は2種以上の添加元素の含有量の合計が400質量ppmを超えると、これらの添加元素の粗大な析出物等が生成して加工性が劣化するおそれがある。以上のことから、本実施形態では、Ca,Sr,Ba,希土類元素(RE)から選択される1種又は2種以上の添加元素の含有量の合計を3質量ppm以上400質量ppm以下の範囲内に規定している。
 なお、S,Se,Teを確実に固定するためには、Ca,Sr,Ba,希土類元素(RE)から選択される1種又は2種以上の添加元素の含有量の合計の下限を3.5質量ppm以上とすることが好ましく、4.0質量ppm以上とすることがさらに好ましい。一方、加工性の低下を確実に抑制するためには、Ca,Sr,Ba,希土類元素(RE)から選択される1種又は2種以上の添加元素の含有量の合計の上限を300質量ppm以下にすることが好ましく、100質量ppm以下とすることがさらに好ましい。
(ガス成分を除く不可避不純物元素)
 ガス成分(O,H,C,N,S)を除く不可避不純物については、その濃度を低くすることで残留抵抗比(RRR)が向上することになる。一方、不可避不純物の濃度を必要以上に低減しようとすると、製造プロセスが複雑となって製造コストが大幅に上昇してしまう。そこで、本実施形態では、ガス成分(O,H,C,N,S)を除く不可避不純物の濃度を総計で5質量ppm以上100質量ppm以下の範囲内に設定している。
 ガス成分(O,H,C,N,S)を除く不可避不純物の濃度を総計で5質量ppm以上100質量ppm以下の範囲内とするために、原料としては、純度99~99.999質量%の高純度銅や無酸素銅(C10100,C10200)を用いることができる。ただし、Oが高濃度にあると、Ca,Sr,Ba,希土類元素(RE)がOと反応してしまうため、O濃度を20質量ppm以下とすることが好ましく、O濃度は、更に好ましくは10質量ppm以下であり、最も好ましくは5質量ppm以下である。
 なお、超伝導安定化材20の製造コストの上昇を確実に抑制するためには、ガス成分であるO,H,C,N,Sを含まない不可避不純物の下限を7質量ppm以上とすることが好ましく、10質量ppm超とすることがさらに好ましい。また、ガス成分であるO,H,C,N,Sを不可避不純物に加算した場合、ガス成分であるO,H,C,N,Sを含む不可避不純物の濃度の総計は、好ましくは10質量ppm超であり、更に好ましくは15質量ppm以上であり、最も好ましくは20質量ppm以上である。一方、超伝導安定化材20の残留抵抗比(RRR)を確実に向上させるためには、ガス成分であるO,H,C,N,Sを含まない不可避不純物の上限を90質量ppm以下とすることが好ましく、80質量ppm以下とすることがさらに好ましい。また、ガス成分であるO,H,C,N,Sを含む不可避不純物の上限を110質量ppm以下とすることが好ましい。
 ここで、本実施形態におけるガス成分を除く不可避不純物は、Fe,Ni,As,Ag,Sn,Sb,Pb,Bi,P,Li,Be,B,F,Na,Mg,Al,Si,Cl,K,Ti,V,Cr,Mn,Nb,Co,Zn,Ga,Ge,Br,Rb,Zr,Mo,Ru,Pd,Cd,In,I,Cs,Hf,Ta,W,Re,Os,Ir,Pt,Au,Hg,Tl,Th、Uである。
(母相内部に存在する化合物)
 上述のように、Ca,Sr,Ba,希土類元素(RE)から選択される1種又は2種以上の添加元素は、S,Se,Teといった元素と化合物を生成することにより、S,Se,Teといった元素が銅中に固溶することを抑制している。
 よって、母相内部に、CaS,CaSO,SrS,SrSO,BaS,BaSO,(RE)S,(RE)SOから選択される1種又は2種以上を含む化合物(Sの一部がTe、Seに置換されたものを含む)が存在することにより、S、Se、Teが固定され、残留抵抗比(RRR)を確実に向上させることが可能となる。
 ここで、CaS,CaSO,SrS,SrSO,BaS,BaSO,(RE)S,(RE)SOから選択される1種又は2種以上を含む化合物は、熱的安定性が高く、高温でも安定に存在することができる。これらの化合物は、溶解鋳造時に生成することになるが、前述の特性により、加工後や熱処理後においても安定して存在する。よって、広い温度範囲で熱処理しても、S、Se、Teが化合物として固定されることになり、安定的に高い残留抵抗比(RRR)を有することが可能となる。
 また、CaS,CaSO,SrS,SrSO,BaS,BaSO,(RE)S,(RE)SOから選択される1種又は2種以上を含む化合物が0.001個/μm以上の個数密度で存在することにより、確実に残留抵抗比(RRR)を向上させることが可能となる。また、残留抵抗比(RRR)をさらに向上させるためには、化合物の個数密度を0.005個/μm以上とすることが好ましい。化合物の個数密度は、より好ましくは0.007個/μm以上である。本実施形態においては、上述の個数密度は粒径0.1μm以上の化合物を対象とする。
 なお、本実施形態においては、S,Se,Teといった元素の含有量が十分に少ないことから、上述の化合物(粒径0.1μm以上)の個数密度の上限は、0.1個/μm以下となり、好ましくは0.09個/μm以下であり、より好ましくは0.08個/μm以下である。
(Fe,Ni,As,Ag,Sn,Sb,Pb,Bi,P)
 不可避不純物のうちFe,Ni,As,Ag,Sn,Sb,Pb,Bi,Pといった特定不純物の元素は、超伝導安定化材20の残留抵抗比(RRR)を低下させる作用を有することから、これらの元素の含有量をそれぞれ規定することで、超伝導安定化材20の残留抵抗比(RRR)の低下を確実に抑制することが可能となる。そこで、本実施形態では、Feの含有量を10質量ppm以下、Niの含有量を10質量ppm以下、Asの含有量を5質量ppm以下、Agの含有量を50質量ppm以下、Snの含有量を4質量ppm以下、Sbの含有量を4質量ppm以下、Pbの含有量を6質量ppm以下、Biの含有量を2質量ppm以下、Pの含有量を3質量ppm以下に規定している。
 なお、超伝導安定化材20の残留抵抗比(RRR)の低下をさらに確実に抑制するためには、Feの含有量を4.5質量ppm以下、Niの含有量を3質量ppm以下、Asの含有量を3質量ppm以下、Agの含有量を38質量ppm以下、Snの含有量を3質量ppm以下、Sbの含有量を1.5質量ppm以下、Pbの含有量を4.5質量ppm以下、Biの含有量を1.5質量ppm以下、Pの含有量を1.5質量ppm以下に規定することが好ましく、さらには、Feの含有量を3.3質量ppm以下、Niの含有量を2.2質量ppm以下、Asの含有量を2.2質量ppm以下、Agの含有量を28質量ppm以下、Snの含有量を2.2質量ppm以下、Sbの含有量を1.1質量ppm以下、Pbの含有量を3.3質量ppm以下、Biの含有量を1.1質量ppm以下、Pの含有量を1.1質量ppm以下に規定することが好ましい。なお、Fe,Ni,As,Ag,Sn,Sb,Pb,Bi,Pの含有量の下限値は0質量ppmである。また、これらを過度に低減することは製造コストの増加を招くおそれがあるので、Feの含有量を0.1質量ppm以上、Niの含有量を0.1質量ppm以上、Asの含有量を0.1質量ppm以上、Agの含有量を0.1質量ppm以上、Snの含有量を0.1質量ppm以上、Sbの含有量を0.1質量ppm以上、Pbの含有量を0.1質量ppm以上、Biの含有量を0.1質量ppm以上、Pの含有量を0.1質量ppm以上とすることが好ましいが、これに限定されない。
(S,Se,Teの合計含有量と添加元素の合計含有量との比Y/X)
 上述のように、Ca,Sr,Ba,希土類元素(RE)から選択される1種又は2種以上の添加元素は、S,Se,Teといった元素と化合物を生成することになる。ここで、S,Se,Teの合計含有量(X質量ppm)と添加元素の合計含有量(Y質量ppm)との比Y/Xが0.5未満では、添加元素の含有量が不足し、S,Se,Teといった元素を十分に固定できなくなるおそれがある。一方、S,Se,Teの合計含有量と添加元素の合計含有量との比Y/Xが100を超えると、S,Se,Teと反応しない余剰の添加元素が多く存在することになり、加工性が低下してしまうおそれがある。
 以上のことから、本実施形態では、S,Se,Teの合計含有量(X)と添加元素の合計含有量(Y)との比Y/Xを0.5以上100以下の範囲内に規定している。
 なお、S,Se,Teといった元素を化合物として確実に固定するためには、S,Se,Teの合計含有量と添加元素の合計含有量との比Y/Xの下限を0.75以上とすることが好ましく、1.0以上とすることがさらに好ましい。また、加工性の低下を確実に抑制するためには、S,Se,Teの合計含有量と添加元素の合計含有量との比Y/Xの上限を75以下とすることが好ましく、50以下とすることがさらに好ましい。
 超伝導安定化材20におけるS,Se,Teの合計含有量(X)の下限値は、好ましくは0質量ppm超であり、さらに好ましくは0.1質量ppm以上であり、より好ましくは0.5質量ppm以上であり、最も好ましくは1質量ppm以上である。S,Se,Teの合計含有量(X)の上限値は、好ましくは25質量ppm以下であり、さらに好ましくは15質量ppm以下である。しかし、S,Se,Teの合計含有量(X)の下限値及び上限値は、これに限定されない。
(残留抵抗比(RRR))
 本実施形態における超伝導安定化材20においては、残留抵抗比(RRR)が250以上とされていることから、極低温において、抵抗値が低く電流を良好に迂回させることが可能となる。残留抵抗比(RRR)は、280以上であることが好ましく、300以上であることがさらに好ましい。より好ましくは400以上である。残留抵抗比(RRR)の上限値は、好ましくは10000以下であり、さらに好ましくは5000以下であり、より好ましくは3000以下であり、製造コストの上昇を確実に抑制するためには2000以下とすることが最も好ましいが、これに限定されない。
 ここで、上述の超伝導安定化材20は、溶解鋳造工程、塑性加工工程、熱処理工程を含む製造工程によって製造される。
 なお、連続鋳造圧延法(例えばSCR法)等によって、本実施形態で示した組成の荒引銅線を製造し、これを素材として超伝導安定化材20を製造してもよい。この場合、超伝導安定化材20の生産効率が向上し、製造コストを大幅に低減することが可能となる。ここでいう連続鋳造圧延法とは、例えばベルト・ホイール式連続鋳造機と連続圧延装置とを備えた連続鋳造圧延設備を用いて、銅荒引線を製造し、この銅荒引線を素材として引抜銅線を製造する工程のことである。
 以上のような構成とされた本実施形態である超伝導線10によれば、超伝導体からなる素線15と、この素線15に接触して配置される超伝導安定化材20と、を備えており、この超伝導安定化材20が、ガス成分であるO,H,C,N,Sを除く不可避不純物の濃度の総計が5質量ppm以上100質量ppm以下とされた銅に、Ca,Sr,Ba,希土類元素(RE)から選択される1種又は2種以上の添加元素を合計で3質量ppm以上400質量ppm以下の範囲内で含有させた銅材によって構成されている。このため、銅中のS、Se、Teが化合物として固定され、超伝導安定化材20の残留抵抗比(RRR)を向上させることが可能となる。
 また、超伝導安定化材20が超伝導体からなる素線15に電気的に接触していることによって、超伝導体からなる素線15において超伝導状態が破れた常伝導領域Aが発生した場合であっても、電流を超伝導安定化材20に確実に迂回させることができる。よって、超伝導線10全体が常伝導状態に転移することを抑制でき、本実施形態である超伝導線10を安定して使用することができる。
 さらに、ガス成分であるO,H,C,N,Sを除く不可避不純物の濃度の総計が5質量ppm以上100質量ppm以下とされた銅を用いているので、過度に銅の高純度化を図る必要がなく、製造プロセスが簡易となり、超伝導安定化材20の製造コストを低減することができる。
 そして、本実施形態である超伝導線10においては、超伝導安定化材20を構成する銅材の母相内部に、CaS,CaSO,SrS,SrSO,BaS,BaSO,(RE)S,(RE)SOから選択される1種又は2種以上を含む化合物が存在している。このため、銅中に存在するS,Se,Teが確実に固定されており、超伝導安定化材20の残留抵抗比(RRR)を向上させることが可能となる。また、上述の化合物は、熱的安定性が高いことから、広い温度範囲で熱処理しても安定的に高い残留抵抗比(RRR)を有する超伝導安定化材20を得ることができる。
 特に、本実施形態では、粒径0.1μm以上の上述の化合物の個数密度が0.001個/μm以上とされているので、S,Se,Teを確実に化合物として固定でき、超伝導安定化材20の残留抵抗比(RRR)を十分に向上させることができる。
 さらに、本実施形態では、残留抵抗比(RRR)に影響するFe,Ni,As,Ag,Sn,Sb,Pb,Bi,Pの含有量について、Feの含有量を10質量ppm以下、Niの含有量を10質量ppm以下、Asの含有量を5質量ppm以下、Agの含有量を50質量ppm以下、Snの含有量を4質量ppm以下、Sbの含有量を4質量ppm以下、Pbの含有量を6質量ppm以下、Biの含有量を2質量ppm以下、Pの含有量を3質量ppm以下に規定している。このため、確実に超伝導安定化材20の残留抵抗比(RRR)を向上させることが可能となる。
 また、本実施形態では、S,Se,Teの合計含有量(X質量ppm)と、Ca,Sr,Ba,希土類元素(RE)から選択される1種又は2種以上の添加元素の合計含有量(Y質量ppm)との比Y/Xが、0.5≦Y/X≦100の範囲内とされている。このため、銅中のS,Se,Teを添加元素との化合物として確実に固定することができ、残留抵抗比(RRR)の低下を確実に抑制することができる。また、S,Se,Teと反応しない余剰の添加元素が多く存在せず、超伝導安定化材20の加工性を確保することができる。
 また、本実施形態においては、超伝導安定化材20の残留抵抗比(RRR)が250以上と比較的高いことから、極低温での抵抗値が十分に低くなる。よって、超伝導体からなる素線15において超伝導状態が破れた常伝導領域Aが発生した場合であっても、電流を超伝導安定化材20に確実に迂回させることができる。
 本実施形態の超伝導コイルは、巻枠と、巻線部を備え、巻線部は、巻枠の周面に巻回された本実施形態の超伝導線である。
 以上、本発明の実施形態である超伝導線及び超伝導コイルについて説明したが、本発明はこれに限定されることはなく、その発明の技術的要件の範囲内で適宜変更可能である。
 例えば、超伝導線10を構成するコア部11及び外殻部13についても、本実施形態である超伝導安定化材20と同様の組成の銅材によって構成してもよい。この場合、コア部11と電気的に接触した状態で、コア部11の外周側にフィラメント12が配置される。また、フィラメント12と電気的に接触した状態で、フィラメント12の外周側に外殻部13が配置される。例えば、コア部11と、コア部11に接触するフィラメント12の超伝導安定化材20とが一体となってもよい。また、外殻部13と、外殻部13に接触するフィラメント12の超伝導安定化材20とが一体となってもよい。
 コア部11及び外殻部13が超伝導安定化材20と同様の組成の銅材からなり、かつコア部11及び外殻部13がフィラメント12と電気的に接触した状態である場合、コア部11及び外殻部13は、フィラメント12における超伝導安定化材20と同様の作用を発揮するように機能する。
 また、上述の実施形態では、図1に示すように、複数のフィラメント12を束ねた構造の超伝導線10を例に挙げて説明したが、これに限定されることはない。
 例えば図3に示すように、テープ状の基材113の上に超伝導体115及び超伝導安定化材120を積層配置した構造の超伝導線110であってもよい。すなわち、超伝導線110は、テープ状の基材113と、基材113上に積層された超伝導体115及び超伝導安定化材120と、を備えてもよい。超伝導安定化材120は、超伝導体115と電気的に接触した状態で、超伝導体115上に積層されるか又は超伝導体115を被覆している。図3の超伝導体115の形態は板(sheet、plate)であるが、超伝導体115の形態は、条(strip)、線(wire)、又は棒(bar)であってもよい。
 さらに、図4に示すように、複数のフィラメント12を束ねた後、純銅からなるチャンネル部材220に組み込んだ構造の超伝導線210であってもよい。すなわち、超伝導線210は、窪み部を有するチャンネル部材220と、窪み部に組み込まれた複数のフィラメント12の束と、を備えてもよい。複数のフィラメント12の束は、例えば、図1に示された超伝導線10でもよい。
 以下に、本発明の効果を確認すべく行った確認実験の結果について説明する。
 本実施例では、研究室実験として、純度99.9質量%以上99.9999質量%以下の高純度銅及びCa,Sr,Ba,希土類元素(RE)の母合金を原料として用いて、表1に記載の組成となるように調整した。また、Fe,Ni,As,Ag,Sn,Sb,Pb,Bi,P及びその他の不純物については、純度99.9質量%以上のFe,Ni,As,Ag,Sn,Sb,Pb,Bi,Pと純度99.99質量%の純銅とから各々の元素の母合金を作成し、その母合金を用いて組成を調整した。なお、本発明例18においては、希土類元素(RE)としてミッシュメタル(MM)を添加した。
 まず、高純度銅をArの不活性ガス雰囲気中で電気炉を用いて溶解し、その後、各種の添加元素及び不純物の母合金を添加して所定濃度に調製し、所定の鋳型に鋳造することにより、直径:65mm×長さ:145mmのインゴットを得た。このインゴットから、断面寸法:23mm×23mmの角材を切り出し、これに800℃で熱間圧延を施して直径8mmの熱延線材とした。この熱延線材から冷間引抜きにより直径2.0mmの細線を成形し、これに表2に示す温度でそれぞれ1時間保持する熱処理を施すことにより、評価用線材を製造した。
 なお、本実施例では、溶解鋳造の過程において不純物元素の混入も認められた。
 これらの評価用線材を用いて、以下の項目について評価した。
(残留抵抗比(RRR))
 四端子法にて、293Kでの電気比抵抗(ρ293K)および液体ヘリウム温度(4.2K)での電気比抵抗(ρ4.2K)を測定し、RRR=ρ293K/ρ4.2Kを算出した。なお、端子間距離が100mmの条件で測定を行った。
(組成分析)
 残留抵抗比(RRR)を測定したサンプルを用いて、成分分析を以下のようにして実施した。ガス成分を除く元素について、含有量が10質量ppm未満の場合はグロー放電質量分析法を用い、含有量が10質量ppm以上の場合は誘導結合プラズマ発光分光分析法を用いた。また、Sの分析には赤外線吸収法を用いた。Oの濃度は全て10質量ppm以下であった。なお、Oの分析は赤外線吸収法を用いた。
(化合物粒子観察)
 SEM(走査型電子顕微鏡)を用いて粒子を観察し、EDX(エネルギー分散型X線分光法)を実施した。化合物の分散状態が特異ではない領域について20,000倍(観察視野:20μm)で観察した。50視野(観察視野:1000μm)の撮影を行った。
 金属間化合物の粒径については、金属間化合物の長径(途中で粒界に接しない条件で粒内に最も長く引ける直線の長さ)と短径(長径と直角に交わる方向で、途中で粒界に接しない条件で最も長く引ける直線の長さ)の平均値とした。そして、粒径0.1μm以上の化合物について、EDX(エネルギー分散型X線分光法)を用いて組成を分析し、Ca,Sr,Ba,希土類元素(RE)とSを含む化合物であることを確認した。
 さらに、透過型電子顕微鏡(TEM)を用いて電子線回折を行い、CaS,CaSO,SrS,SrSO,BaS,BaSO,(RE)S,(RE)SO化合物を同定した。これらの化合物の内CaS,SrS,BaS,(RE)SはNaCl型、CaSOはCePO型、SrSO,BaSOはBaSO型、(RE)SOはCeSO型の結晶構造を有することを確認した。
 なお、表2の「化合物の有無」の欄においては、上述の観察の結果、CaS,CaSO,SrS,SrSO,BaS,BaSO,(RE)S,(RE)SOの化合物が確認された場合を「○」、確認されなかった場合を「×」と表記した。
 評価結果を表2に示す。また、本発明例4の化合物のSEM観察結果、分析結果及び電子線回折結果を図5に示し、本発明例10の化合物のSEM観察結果、分析結果及び電子線回折結果を図6に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 比較例1は、Ca,Sr,Ba,希土類元素(RE)から選択される1種又は2種以上の添加元素を添加しなかったものであり、母相内部に、CaS,CaSO,SrS,SrSO,BaS,BaSO,(RE)S,(RE)SOから選択される1種又は2種以上を含む化合物が存在せず、残留抵抗比(RRR)が152と低かった。
 比較例2は、Ca,Sr,Ba,希土類元素(RE)から選択される1種又は2種以上の添加元素の合計含有量が886質量ppmと本実施形態の範囲を超えており、塑性加工中に割れが生じた。このため、残留抵抗比(RRR)及び組織観察を実施しなかった。
 これに対して、本発明例1~22においては、広い温度範囲で熱処理した場合でも、残留抵抗比(RRR)が250以上となっており、超伝導安定材として特に適していることが確認された。
 また、図5に示すように、Caを添加した場合には、NaCl型の結晶構造を有するCaSを含む化合物が観察された。
 さらに、図6に示すように、Srを添加した場合には、NaCl型の結晶構造を有するSrSを含む化合物が観察された。
 以上のことから、本発明によれば、製造プロセスが比較的簡単で廉価で製造でき、残留抵抗比(RRR)が十分に高い超伝導安定化材を備えた超伝導線を提供できることが確認された。
 本発明の超伝導線は、超伝導安定化材を備え、この超伝導安定化材は、製造プロセスが比較的簡単で廉価で製造でき、残留抵抗比(RRR)が十分に高い。このため、本発明の超伝導線や超伝導コイルは、MRI、NMR、粒子加速器、リニアモーターカー、電力貯蔵装置などで好適に使用される。
10、110、210 超伝導線
20、120 超伝導安定化材

Claims (5)

  1.  超伝導体からなる素線と、この素線に接触して配置される超伝導安定化材と、を備えた超伝導線であって、
     前記超伝導安定化材は、Ca,Sr,Ba,希土類元素(RE)から選択される1種又は2種以上の添加元素を合計で3質量ppm以上400質量ppm以下の範囲内で含有し、残部がCu及び不可避不純物であるとともに、ガス成分であるO,H,C,N,Sを除く前記不可避不純物の濃度の総計が5質量ppm以上100質量ppm以下である銅材からなり、母相内部に、CaS,CaSO,SrS,SrSO,BaS,BaSO,(RE)S,(RE)SOから選択される1種又は2種以上を含む化合物が存在することを特徴とする超伝導線。
  2.  前記超伝導安定化材は、前記不可避不純物であるFeの含有量が10質量ppm以下、Niの含有量が10質量ppm以下、Asの含有量が5質量ppm以下、Agの含有量が50質量ppm以下、Snの含有量が4質量ppm以下、Sbの含有量が4質量ppm以下、Pbの含有量が6質量ppm以下、Biの含有量が2質量ppm以下、Pの含有量が3質量ppm以下である前記銅材からなることを特徴とする請求項1に記載の超伝導線。
  3.  前記超伝導安定化材は、S,Se,Teの合計含有量(X質量ppm)と、Ca,Sr,Ba,希土類元素(RE)から選択される1種又は2種以上の添加元素の合計含有量(Y質量ppm)との比Y/Xが、0.5≦Y/X≦100の範囲内である前記銅材からなることを特徴とする請求項1又は請求項2に記載の超伝導線。
  4.  前記超伝導安定化材の残留抵抗比(RRR)が250以上であることを特徴とする請求項1から請求項3のいずれか一項に記載の超伝導線。
  5.  請求項1から請求項4のいずれか一項に記載の超伝導線が巻枠の周面に巻回されてなる巻線部を備えた構造を有することを特徴とする超伝導コイル。
PCT/JP2017/013929 2016-04-06 2017-04-03 超伝導線及び超伝導コイル WO2017175713A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP17779091.2A EP3441486B1 (en) 2016-04-06 2017-04-03 Superconducting wire and superconducting coil
KR1020187025175A KR102291887B1 (ko) 2016-04-06 2017-04-03 초전도선 및 초전도 코일
CN201780009231.0A CN108603251B (zh) 2016-04-06 2017-04-03 超导线以及超导线圈
US16/091,011 US10971278B2 (en) 2016-04-06 2017-04-03 Superconducting wire and superconducting coil

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016076900A JP6299803B2 (ja) 2016-04-06 2016-04-06 超伝導線、及び、超伝導コイル
JP2016-076900 2016-04-06

Publications (1)

Publication Number Publication Date
WO2017175713A1 true WO2017175713A1 (ja) 2017-10-12

Family

ID=60000422

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/013929 WO2017175713A1 (ja) 2016-04-06 2017-04-03 超伝導線及び超伝導コイル

Country Status (7)

Country Link
US (1) US10971278B2 (ja)
EP (1) EP3441486B1 (ja)
JP (1) JP6299803B2 (ja)
KR (1) KR102291887B1 (ja)
CN (1) CN108603251B (ja)
TW (1) TWI749003B (ja)
WO (1) WO2017175713A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019088080A1 (ja) * 2017-10-30 2019-05-09 三菱マテリアル株式会社 超伝導安定化材、超伝導線及び超伝導コイル

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6056877B2 (ja) 2015-01-07 2017-01-11 三菱マテリアル株式会社 超伝導線、及び、超伝導コイル
JP6056876B2 (ja) 2015-01-07 2017-01-11 三菱マテリアル株式会社 超伝導安定化材
JP6299802B2 (ja) * 2016-04-06 2018-03-28 三菱マテリアル株式会社 超伝導安定化材、超伝導線及び超伝導コイル
JP6299803B2 (ja) 2016-04-06 2018-03-28 三菱マテリアル株式会社 超伝導線、及び、超伝導コイル
EP3950981A4 (en) * 2019-03-29 2023-04-26 Mitsubishi Materials Corporation COPPER MATERIAL AND HEAT-DISSIPTING ELEMENT
CN113277481A (zh) * 2021-05-10 2021-08-20 中山大学 一种具有多重量子态和多样晶体结构的新型过渡金属碲化物及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5497528A (en) * 1978-01-20 1979-08-01 Sumitomo Electric Ind Ltd Copperr alloy soft conductor and method of making same
JPH04224662A (ja) 1990-12-26 1992-08-13 Hitachi Cable Ltd 高残留抵抗比銅材の製造方法
JPH0525565A (ja) 1991-07-23 1993-02-02 Mitsubishi Materials Corp 高い残留抵抗比を有する超電導安定化材用高純度Cu合金
CN1080779A (zh) * 1993-05-05 1994-01-12 北京有色金属研究总院 极细多芯低温超导线带用的铜合金
JP2004035940A (ja) * 2002-07-02 2004-02-05 Kobe Steel Ltd Nb3Sn系超電導線材用ブロンズ材およびこれを用いた超電導線材用複合材、並びに超電導線材
JP2011236484A (ja) 2010-05-12 2011-11-24 Mitsubishi Materials Corp 粒子加速器用銅材料、粒子加速器用銅管及び粒子加速器用銅管の製造方法、並びに、粒子加速器
JP2016076900A (ja) 2014-10-09 2016-05-12 国立大学法人東北大学 無線ネットワーク統合システムおよび無線ネットワーク統合方法
JP2016125114A (ja) * 2015-01-07 2016-07-11 三菱マテリアル株式会社 超伝導安定化材、超伝導線及び超伝導コイル

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4233067A (en) 1978-01-19 1980-11-11 Sumitomo Electric Industries, Ltd. Soft copper alloy conductors
JPS6062009A (ja) 1983-09-14 1985-04-10 日立電線株式会社 Ag入り無酸素銅により安定化された複合超電導体
US4623862A (en) * 1984-12-27 1986-11-18 Ga Technologies Inc. Thermally stabilized superconductors
JPS6365036A (ja) * 1986-09-05 1988-03-23 Furukawa Electric Co Ltd:The 銅細線とその製造方法
JPS63140052A (ja) 1986-12-01 1988-06-11 Hitachi Cable Ltd 低温軟化性を有する無酸素銅ベ−ス希薄合金及びその用途
JPS63235440A (ja) * 1987-03-23 1988-09-30 Furukawa Electric Co Ltd:The 銅細線及びその製造方法
JPH02145737A (ja) 1988-11-24 1990-06-05 Dowa Mining Co Ltd 高強度高導電性銅基合金
US6777331B2 (en) 2000-03-07 2004-08-17 Simplus Systems Corporation Multilayered copper structure for improving adhesion property
US6745059B2 (en) 2001-11-28 2004-06-01 American Superconductor Corporation Superconductor cables and magnetic devices
US20040266628A1 (en) 2003-06-27 2004-12-30 Superpower, Inc. Novel superconducting articles, and methods for forming and using same
US7774035B2 (en) * 2003-06-27 2010-08-10 Superpower, Inc. Superconducting articles having dual sided structures
JP4519775B2 (ja) 2004-01-29 2010-08-04 日鉱金属株式会社 超高純度銅及びその製造方法
AT7491U1 (de) 2004-07-15 2005-04-25 Plansee Ag Werkstoff für leitbahnen aus kupferlegierung
JP4750112B2 (ja) 2005-06-15 2011-08-17 Jx日鉱日石金属株式会社 超高純度銅及びその製造方法並びに超高純度銅からなるボンディングワイヤ
US7752734B2 (en) * 2005-11-08 2010-07-13 Supramagnetics, Inc. Method for manufacturing superconductors
JP4538813B2 (ja) 2006-05-29 2010-09-08 Dowaホールディングス株式会社 銅基合金材を用いたコネクタ及び充電用ソケット
JP5402518B2 (ja) * 2009-10-20 2014-01-29 住友電気工業株式会社 酸化物超電導コイル、酸化物超電導コイル体および回転機
JP5589753B2 (ja) 2010-10-20 2014-09-17 日立金属株式会社 溶接部材、及びその製造方法
WO2013015154A1 (ja) * 2011-07-22 2013-01-31 三菱マテリアル株式会社 ボンディングワイヤ用銅素線及びボンディングワイヤ用銅素線の製造方法
TWI571518B (zh) 2011-08-29 2017-02-21 Furukawa Electric Co Ltd Copper alloy material and manufacturing method thereof
JP2013049893A (ja) * 2011-08-31 2013-03-14 Mitsubishi Materials Corp 太陽電池インターコネクタ用導体及び太陽電池用インターコネクタ
SG190482A1 (en) * 2011-12-01 2013-06-28 Heraeus Materials Tech Gmbh Doped 4n copper wire for bonding in microelectronics device
TWI403596B (zh) 2012-10-29 2013-08-01 Truan Sheng Lui 半導體封裝用之銅合金線
JP6101491B2 (ja) 2012-11-30 2017-03-22 株式会社フジクラ 酸化物超電導線材及びその製造方法
JP5752736B2 (ja) 2013-04-08 2015-07-22 三菱マテリアル株式会社 スパッタリング用ターゲット
JP5866411B2 (ja) 2013-08-09 2016-02-17 三菱マテリアル株式会社 銅合金薄板および銅合金薄板の製造方法
JP6056877B2 (ja) 2015-01-07 2017-01-11 三菱マテリアル株式会社 超伝導線、及び、超伝導コイル
JP6299803B2 (ja) 2016-04-06 2018-03-28 三菱マテリアル株式会社 超伝導線、及び、超伝導コイル

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5497528A (en) * 1978-01-20 1979-08-01 Sumitomo Electric Ind Ltd Copperr alloy soft conductor and method of making same
JPH04224662A (ja) 1990-12-26 1992-08-13 Hitachi Cable Ltd 高残留抵抗比銅材の製造方法
JPH0525565A (ja) 1991-07-23 1993-02-02 Mitsubishi Materials Corp 高い残留抵抗比を有する超電導安定化材用高純度Cu合金
CN1080779A (zh) * 1993-05-05 1994-01-12 北京有色金属研究总院 极细多芯低温超导线带用的铜合金
JP2004035940A (ja) * 2002-07-02 2004-02-05 Kobe Steel Ltd Nb3Sn系超電導線材用ブロンズ材およびこれを用いた超電導線材用複合材、並びに超電導線材
JP2011236484A (ja) 2010-05-12 2011-11-24 Mitsubishi Materials Corp 粒子加速器用銅材料、粒子加速器用銅管及び粒子加速器用銅管の製造方法、並びに、粒子加速器
JP2016076900A (ja) 2014-10-09 2016-05-12 国立大学法人東北大学 無線ネットワーク統合システムおよび無線ネットワーク統合方法
JP2016125114A (ja) * 2015-01-07 2016-07-11 三菱マテリアル株式会社 超伝導安定化材、超伝導線及び超伝導コイル

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3441486A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019088080A1 (ja) * 2017-10-30 2019-05-09 三菱マテリアル株式会社 超伝導安定化材、超伝導線及び超伝導コイル
JPWO2019088080A1 (ja) * 2017-10-30 2019-11-14 三菱マテリアル株式会社 超伝導安定化材、超伝導線及び超伝導コイル
CN111279002A (zh) * 2017-10-30 2020-06-12 三菱综合材料株式会社 超导稳定化材料、超导线及超导线圈
TWI775976B (zh) * 2017-10-30 2022-09-01 日商三菱綜合材料股份有限公司 超導穩定化材料、超導線及超導線圈
US11613794B2 (en) 2017-10-30 2023-03-28 Mitsubishi Materials Corporation Superconductivity stabilizing material, superconducting wire and superconducting coil

Also Published As

Publication number Publication date
TWI749003B (zh) 2021-12-11
US10971278B2 (en) 2021-04-06
JP6299803B2 (ja) 2018-03-28
EP3441486A4 (en) 2019-11-20
JP2017186622A (ja) 2017-10-12
EP3441486A1 (en) 2019-02-13
US20190066865A1 (en) 2019-02-28
CN108603251B (zh) 2021-07-30
CN108603251A (zh) 2018-09-28
KR102291887B1 (ko) 2021-08-19
EP3441486B1 (en) 2020-11-25
TW201809301A (zh) 2018-03-16
KR20180127331A (ko) 2018-11-28

Similar Documents

Publication Publication Date Title
US20210225560A1 (en) Superconducting wire and superconducting coil
WO2017175713A1 (ja) 超伝導線及び超伝導コイル
WO2017175711A1 (ja) 超伝導安定化材、超伝導線及び超伝導コイル
US10964453B2 (en) Superconducting stabilization material, superconducting wire, and superconducting coil
JP6668899B2 (ja) 超伝導安定化材、超伝導線及び超伝導コイル
WO2017175710A1 (ja) 超伝導安定化材
JP6057007B2 (ja) 超伝導安定化材、超伝導線及び超伝導コイル
JP6057008B2 (ja) 超伝導線、及び、超伝導コイル
TW201928073A (zh) 超導穩定化材料、超導線及超導線圈

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20187025175

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017779091

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017779091

Country of ref document: EP

Effective date: 20181106

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17779091

Country of ref document: EP

Kind code of ref document: A1