WO2017170974A1 - ポリビニルアルコール及びその製造方法 - Google Patents

ポリビニルアルコール及びその製造方法 Download PDF

Info

Publication number
WO2017170974A1
WO2017170974A1 PCT/JP2017/013493 JP2017013493W WO2017170974A1 WO 2017170974 A1 WO2017170974 A1 WO 2017170974A1 JP 2017013493 W JP2017013493 W JP 2017013493W WO 2017170974 A1 WO2017170974 A1 WO 2017170974A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyvinyl alcohol
polymerization
molecular weight
polyvinyl
mass
Prior art date
Application number
PCT/JP2017/013493
Other languages
English (en)
French (fr)
Inventor
拓未 高山
雄介 天野
一彦 前川
デトレンブラー、クリストフ
ドゥビュイニュ、アントワーヌ
ジェローム、クリスティン
Original Assignee
株式会社クラレ
ユニベルシテ ド リエージュ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ, ユニベルシテ ド リエージュ filed Critical 株式会社クラレ
Priority to JP2018509491A priority Critical patent/JP6913907B2/ja
Priority to CN201780026837.5A priority patent/CN109071716B/zh
Priority to EP17775507.1A priority patent/EP3438139B1/en
Priority to US16/089,483 priority patent/US10766978B2/en
Publication of WO2017170974A1 publication Critical patent/WO2017170974A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F16/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical
    • C08F16/02Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical by an alcohol radical
    • C08F16/04Acyclic compounds
    • C08F16/06Polyvinyl alcohol ; Vinyl alcohol
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2204Organic complexes the ligands containing oxygen or sulfur as complexing atoms
    • B01J31/2208Oxygen, e.g. acetylacetonates
    • B01J31/2226Anionic ligands, i.e. the overall ligand carries at least one formal negative charge
    • B01J31/223At least two oxygen atoms present in one at least bidentate or bridging ligand
    • B01J31/2234Beta-dicarbonyl ligands, e.g. acetylacetonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F118/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, of carbonic acid or of a haloformic acid
    • C08F118/02Esters of monocarboxylic acids
    • C08F118/04Vinyl esters
    • C08F118/08Vinyl acetate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F18/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, of carbonic acid or of a haloformic acid
    • C08F18/02Esters of monocarboxylic acids
    • C08F18/04Vinyl esters
    • C08F18/08Vinyl acetate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/38Polymerisation using regulators, e.g. chain terminating agents, e.g. telomerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F6/00Post-polymerisation treatments
    • C08F6/02Neutralisation of the polymerisation mass, e.g. killing the catalyst also removal of catalyst residues
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F6/00Post-polymerisation treatments
    • C08F6/06Treatment of polymer solutions
    • C08F6/08Removal of catalyst residues
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/12Hydrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/02Compositional aspects of complexes used, e.g. polynuclearity
    • B01J2531/0238Complexes comprising multidentate ligands, i.e. more than 2 ionic or coordinative bonds from the central metal to the ligand, the latter having at least two donor atoms, e.g. N, O, S, P
    • B01J2531/0241Rigid ligands, e.g. extended sp2-carbon frameworks or geminal di- or trisubstitution
    • B01J2531/025Ligands with a porphyrin ring system or analogues thereof, e.g. phthalocyanines, corroles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/84Metals of the iron group
    • B01J2531/845Cobalt
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2438/00Living radical polymerisation
    • C08F2438/01Atom Transfer Radical Polymerization [ATRP] or reverse ATRP
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2500/00Characteristics or properties of obtained polyolefins; Use thereof
    • C08F2500/01High molecular weight, e.g. >800,000 Da.
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2500/00Characteristics or properties of obtained polyolefins; Use thereof
    • C08F2500/03Narrow molecular weight distribution, i.e. Mw/Mn < 3
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/04Azo-compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/70Iron group metals, platinum group metals or compounds thereof
    • C08F4/7001Iron group metals, platinum group metals or compounds thereof the metallic compound containing a multidentate ligand, i.e. a ligand capable of donating two or more pairs of electrons to form a coordinate or ionic bond
    • C08F4/7003Bidentate ligand
    • C08F4/7019Monoanionic ligand
    • C08F4/7027OO
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/22Compounds containing nitrogen bound to another nitrogen atom
    • C08K5/23Azo-compounds
    • C08K5/235Diazo and polyazo compounds

Definitions

  • the present invention relates to polyvinyl alcohol having a narrow molecular weight distribution, a high number average molecular weight, and a good hue, and a method for producing the same.
  • Polyvinyl alcohol (hereinafter sometimes abbreviated as PVA) resin is a crystalline water-soluble polymer material that has excellent water solubility and film properties (strength, oil resistance, film-forming properties, oxygen gas barrier properties, etc.). It is widely used in emulsifiers, suspending agents, surfactants, fiber processing agents, various binders, paper processing agents, adhesives, films and the like. Conventional PVAs having different degrees of saponification and polymerization are used depending on the application. Various modified PVAs that have been given special functions by introducing functional groups into PVA have also been proposed.
  • Polyvinyl alcohol is industrially produced by saponifying polyvinyl acetate obtained by radical polymerization of vinyl acetate.
  • radical polymerization reaction of vinyl acetate various side reactions such as chain transfer reaction and recombination termination reaction occur during polymerization, so the molecular weight distribution and terminal structure of the resulting polyvinyl acetate (and polyvinyl alcohol) are precisely controlled. It is generally difficult to do.
  • a polymer having a low content of a low molecular weight polymer that is, a polymer having a high molecular weight and a narrow molecular weight distribution is preferred.
  • Patent Document 1 discloses that the number average molecular weight (Mn) is 92,000 by performing a radical polymerization reaction of vinyl acetate in the presence of a radical polymerization initiator and a control agent comprising an iodine compound.
  • Mn number average molecular weight
  • Mw / Mn distribution
  • an aldehyde group is formed at the polymerization terminal of polyvinyl acetate (see, for example, Non-Patent Document 1).
  • Non-Patent Document 2 discloses that by polymerizing vinyl acetate in the presence of cobalt (II) acetylacetonate, the number average molecular weight (Mn) is 99,000 and the molecular weight distribution (Mw / Mn) is 1.33. An example of the synthesis of polyvinyl acetate has been reported.
  • Non-Patent Document 3 describes that a polyvinyl acetate chain obtained by polymerizing vinyl acetate in the presence of cobalt (II) acetylacetonate is treated with 1-propanethiol.
  • the polyvinyl acetate chain forms a dormant species having a cobalt (III) complex bonded to the terminal.
  • the terminal radical formed by cleavage of the dormant species reacts with 1-propanethiol to react with polyacetic acid.
  • the cobalt complex can be separated from the vinyl chain.
  • the polyvinyl acetate forming the dormant species is green, but it was described that polyvinyl acetate with reduced coloration was obtained by precipitating the separated cobalt complex and then removing it by celite filtration. ing.
  • TEMPO 2,2,6,6-tetramethylpiperidine 1-oxyl
  • TEMPO is bonded to the terminal radical to trap the radical. You can also. Also in this case, it is described that colorless polyvinyl acetate was obtained by removing the cobalt complex by filtering with acidic alumina.
  • Non-Patent Document 3 it is said that polyvinyl acetate with reduced coloring can be obtained.
  • saponification of the polyvinyl acetate thus obtained to obtain polyvinyl alcohol is not described in Non-Patent Document 3.
  • the present inventors experimented it turned out that the polyvinyl alcohol obtained by saponifying the polyvinyl acetate obtained by the nonpatent literature 3 will color.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide polyvinyl alcohol having a narrow molecular weight distribution, a high number average molecular weight, and a good hue, and a method for producing the same. is there.
  • the above-described problem is a polymerization step of polymerizing a vinyl ester monomer by controlled radical polymerization in the presence of a radical initiator and an organic cobalt complex to obtain a polymer solution containing the polyvinyl ester; And a saponification step of obtaining a polyvinyl alcohol by saponifying the polyvinyl ester after the extraction step by contacting with an aqueous solution containing the cobalt complex from the polymer solution. Solved by.
  • the cobalt element content of the polyvinyl ester after the extraction step is preferably 0.01 to 100 ppm. It is also preferable that the cobalt element content of the polyvinyl alcohol after the saponification step is 0.01 to 50 ppm.
  • the water-soluble ligand is preferably an acid having a pKa of 0 to 12 at 25 ° C. It is also preferable that the water-soluble ligand is a carboxylic acid.
  • the above-mentioned problems are that the number average molecular weight (Mn) is 4,400 to 440,000, the molecular weight distribution (Mw / Mn) is 1.05 to 1.70, and the saponification degree is 80 to 99.99 mol%.
  • the problem can also be solved by providing polyvinyl alcohol having a cobalt element content of 0.01 to 50 ppm.
  • the polyvinyl alcohol of the present invention has a narrow molecular weight distribution, a high number average molecular weight, and a good hue. Furthermore, since the polyvinyl alcohol of the present invention has good solubility in water, it can be used in various applications where water solubility is required. In addition, since the yellow index (YI) is small, it can be used for various purposes in which appearance is important. According to the production method of the present invention, such polyvinyl alcohol can be produced.
  • a preferred method for producing the polyvinyl alcohol of the present invention comprises a polymerization step of polymerizing a vinyl ester monomer by controlled radical polymerization in the presence of a radical initiator and an organic cobalt complex to obtain a polymer solution containing the polyvinyl ester; And an aqueous solution containing a water-soluble ligand to extract a cobalt complex from the polymer solution; and a saponification step of saponifying the polyvinyl ester after the extraction step to obtain polyvinyl alcohol.
  • the manufacturing method will be described in detail.
  • a vinyl ester monomer is polymerized by controlled radical polymerization in the presence of a radical initiator and an organic cobalt complex to obtain a polymer solution containing a polyvinyl ester.
  • Controlled radical polymerization is a polymerization reaction in which the reaction proceeds in an equilibrium state with a covalently bonded species (dormant species) in which a growth radical end (active species) is bound to a controlling agent.
  • an organic cobalt complex is used as the control agent.
  • Examples of the vinyl ester monomer used in the present invention include vinyl formate, vinyl acetate, vinyl trifluoroacetate, vinyl propionate, vinyl valenate, vinyl butyrate, vinyl isobutyrate, vinyl pivalate, vinyl caprate, and lauric acid. Examples thereof include vinyl, vinyl stearate, vinyl benzoate, and vinyl versatate, and vinyl acetate is preferably used from the economical viewpoint.
  • the polyvinyl ester produced in the present invention may be one in which a copolymerizable ethylenically unsaturated monomer is copolymerized as long as the effects of the present invention are not impaired.
  • the ethylenically unsaturated monomer include olefins such as ethylene, propylene, 1-butene and isobutene; acrylic acid, methacrylic acid, crotonic acid, (anhydrous) phthalic acid, (anhydrous) maleic acid, (anhydrous) itaconic acid, etc.
  • Examples of the polymerization method of the vinyl ester monomer include known methods such as a bulk polymerization method, a solution polymerization method, a suspension polymerization method, and an emulsion polymerization method.
  • a bulk polymerization method in which polymerization is performed without a solvent or a solution polymerization method in which polymerization is performed in various organic solvents is usually employed.
  • a bulk polymerization method that does not use a solvent or a dispersion medium that may cause a side reaction such as chain transfer is preferable.
  • solution polymerization may be preferable from the standpoints of adjusting the viscosity of the reaction solution and controlling the polymerization rate.
  • organic solvent used as a solvent at the time of solution polymerization examples include esters such as methyl acetate and ethyl acetate; aromatic hydrocarbons such as benzene and toluene; lower alcohols such as methanol and ethanol. Of these, esters and aromatic hydrocarbons are preferably used to prevent chain transfer.
  • the amount of the solvent used may be determined in consideration of the viscosity of the reaction solution in accordance with the number average molecular weight of the target polyvinyl alcohol.
  • the mass ratio (solvent / monomer) is selected from the range of 0.01 to 10.
  • the mass ratio (solvent / monomer) is preferably 0.1 or more, and preferably 5 or less.
  • radical initiator used in the polymerization step conventionally known azo initiators, peroxide initiators, redox initiators and the like are appropriately selected.
  • the azo initiator include 2,2′-azobisisobutyronitrile, 2,2′-azobis (2,4-dimethylvaleronitrile), 2,2′-azobis (4-methoxy-2,4- Dimethyl valeronitrile) ("V-70”) and the like.
  • peroxide initiators include diisopropyl peroxydicarbonate, di-2-ethylhexyl peroxydicarbonate, and diethoxyethyl peroxydicarbonate.
  • Percarbonate compounds such as t-butylperoxyneodecane, ⁇ -cumylperoxyneodecanate, t-butylperoxyneodecanate; acetylcyclohexylsulfonyl peroxide, diisobutyryl peroxide; 2,4 , 4-trimethylpentyl-2-peroxyphenoxyacetate, etc. It is below.
  • the initiator can be combined with potassium persulfate, ammonium persulfate, hydrogen peroxide, or the like to form an initiator.
  • redox initiator examples include a combination of the above-described peroxide and a reducing agent such as sodium hydrogen sulfite, sodium hydrogen carbonate, tartaric acid, L-ascorbic acid, Rongalite and the like.
  • a reducing agent such as sodium hydrogen sulfite, sodium hydrogen carbonate, tartaric acid, L-ascorbic acid, Rongalite and the like.
  • the amount of the initiator used varies depending on the polymerization catalyst and cannot be determined unconditionally, and is arbitrarily selected according to the polymerization rate.
  • the organic cobalt complex used as the control agent in the polymerization step may be any one containing a divalent cobalt atom and an organic ligand.
  • Suitable organic cobalt complexes include, for example, cobalt (II) acetylacetonate [Co (acac) 2 ], cobalt (II) porphyrin complex, and the like.
  • cobalt (II) acetylacetonate is preferable from the viewpoint of production cost.
  • the radical at the end of the growth of a short-chain polymer produced by combining radicals generated by decomposition of the radical initiator with a small number of vinyl esters is an organocobalt (II) complex.
  • organocobalt (II) complex To form a dormant species in which an organocobalt (III) complex is bound by a covalent bond with a polymer end.
  • a short-chain polymer is generated and converted into dormant species, and the degree of polymerization is not substantially increased. This period is called the induction period.
  • the molecular weight of most molecular chains in the reaction system increases in the same way in proportion to the polymerization time. Thereby, a polyvinyl ester having a narrow molecular weight distribution can be obtained.
  • the amount of the organic cobalt complex added to the reaction solution is determined in consideration of the target number average molecular weight and the polymerization rate. Usually, it is preferable to use 0.001 to 1 mol of an organic cobalt complex with respect to 100 mol of the vinyl ester monomer.
  • the polymerization reaction proceeds only by the mechanism by which the Co complex is thermally dissociated from the dormant species, and the polymerization rate becomes extremely small depending on the reaction temperature. End up. Therefore, considering that the radical initiator generates two radicals, the number of moles of the radical initiator used needs to be more than 1/2 times the number of moles of the organic cobalt complex. In general, since the amount of active radicals supplied from the initiator depends on the initiator efficiency, there are actually initiators that are deactivated without being used for dormant formation.
  • the number of moles of the radical initiator used is preferably 1 or more times the number of moles of the organic cobalt complex, and more preferably 1.5 or more times.
  • the number of moles of the generated radicals is larger than the number of moles of the organocobalt complex, the proportion of radical polymerization that is not controlled increases, so that the molecular weight distribution is widened.
  • the number of moles of the radical initiator used is preferably 10 times or less, more preferably 6 times or less the number of moles of the organic cobalt complex.
  • the polymerization temperature is preferably 0 ° C. to 80 ° C., for example.
  • the polymerization temperature is more preferably 10 ° C. or higher, and further preferably 20 ° C. or higher.
  • the polymerization temperature exceeds 80 ° C., the molecular weight distribution of the obtained polyvinyl ester becomes wide. From this point, the polymerization temperature is more preferably 65 ° C. or less, and further preferably 50 ° C. or less.
  • the time required for the polymerization step is usually 3 to 50 hours, including the induction period and the growth period.
  • the polymerization terminator can capture the terminal radical of the polymer chain and stop the polymerization reaction. At that time, the cobalt complex is separated from the polymer chain.
  • the polymerization terminator used in the present invention is not limited as long as it can capture the terminal radical of the polymer chain.
  • Hydroxy aromatic compounds such as p-methoxyphenol, hydroquinone, cresol, t-butylcatechol, p-nitrosophenol; benzoquinone Quinone compounds such as naphthoquinone; conjugated carboxylic acids such as muconic acid and sorbic acid; thioethers such as phenothiazine, distearyl thiodipropionate and dilauryl thiodipropionate; aromatics such as p-phenylenediamine and N-nitrosodiphenylamine Amines; nitroxides such as 2,2,6,6-tetramethylpiperidine 1-oxyl, 4-hydroxy-2,2,6,6-tetramethylpiperidine 1-oxyl; copper acetate, copper dithiocarbamate, manganese acetate, etc. Examples include transition metal salts
  • the number of moles of the added polymerization terminator is preferably 1 to 100 times the number of moles of the added organic cobalt complex. If the number of moles of the proton-donating polymerization terminator is too small, the radicals at the polymer terminals cannot be sufficiently captured, and the color tone of the resulting polyvinyl alcohol may be deteriorated. Therefore, the number of moles of the proton donating polymerization terminator is more preferably 5 times or more the number of moles of the organic cobalt complex. On the other hand, if the number of moles of the proton donating polymerization terminator is too large, the production cost may increase. The number of moles of the proton donating polymerization terminator is more preferably 50 times or less of the number of moles of the organic cobalt complex.
  • the temperature of the reaction solution after adding the polymerization terminator may be any temperature that allows the polymerization terminator to capture radicals, and is preferably 0 ° C. to 80 ° C.
  • the temperature of the reaction solution is less than 0 ° C., the stop process takes too much time and productivity is lowered. From this point, the temperature is more preferably 10 ° C. or higher, and further preferably 20 ° C. or higher.
  • the temperature of the reaction liquid exceeds 80 ° C., unnecessary polymerization of vinyl acetate proceeds and the molecular weight distribution (Mw / Mn) may increase. From this point, the temperature is more preferably 70 ° C. or less, and further preferably 60 ° C. or less.
  • the time required to stop the reaction after adding the polymerization terminator is preferably 10 minutes to 5 hours. In this way, a polymer solution containing a polyvinyl ester can be obtained.
  • the extraction process which extracts the cobalt complex from the said polymer solution by making the obtained polymer solution contact the aqueous solution containing a water-soluble ligand is performed.
  • the aqueous solution and the polyvinyl ester solution that do not dissolve each other are vigorously stirred so that the area of the interface between the two becomes large, and then allowed to stand, and after separating the oil layer and the aqueous layer, the aqueous layer is separated. Exclude the operation. This operation may be repeated a plurality of times.
  • water-soluble means that 1 g or more can be dissolved in 100 g of water at 25 ° C.
  • a ligand having a solubility in water of less than this value is used, the cobalt complex cannot be extracted efficiently.
  • the water-soluble ligand used in the extraction step is preferably an acid having a pKa of 0 to 12 at 25 ° C.
  • the pKa is preferably 1.5 or more, and more preferably 2.5 or more.
  • the pKa is preferably 7 or less.
  • the acid is a polyvalent acid, the first dissociation constant (pKa1) needs to be in the above range.
  • the acid having a pKa of 0 to 12 is preferably a carboxylic acid or phosphoric acid (pKa1 is 2.1), more preferably a carboxylic acid.
  • carboxylic acid examples include acetic acid (pKa is 4.76), propionic acid (pKa is 4.87), lactic acid (pKa is 3.86), citric acid (pKa1 is 3.09), and the like. Of these, acetic acid is particularly preferred.
  • the pH of the aqueous solution containing the water-soluble ligand is preferably 0-5. When the pH is within this range, the cobalt complex can be efficiently extracted.
  • the pH is more preferably 1 or more, and even more preferably 1.5 or more.
  • the pH is more preferably 4 or less, and even more preferably 3 or less.
  • the cobalt element content of the polyvinyl ester after the extraction step is preferably 0.01 to 100 ppm.
  • the cobalt element content is more preferably 90 ppm or less, further preferably 70 ppm or less, particularly preferably 25 ppm or less, and most preferably 15 ppm or less.
  • the cost for the removal operation is excessive and it is not practical from an industrial viewpoint.
  • the polyvinyl ester after the extraction step is saponified to obtain polyvinyl alcohol.
  • the polyvinyl ester produced by the above-described method is saponified in a state where it is dissolved in alcohol or hydrous alcohol to obtain polyvinyl alcohol.
  • the alcohol used for the saponification reaction include lower alcohols such as methanol and ethanol, and methanol is particularly preferably used.
  • the alcohol used for the saponification reaction may contain acetone, an ester such as methyl acetate or ethyl acetate, or a solvent such as toluene.
  • the catalyst used for the saponification reaction examples include alkali metal hydroxides such as potassium hydroxide and sodium hydroxide, alkali catalysts such as sodium methylate, and acid catalysts such as mineral acid.
  • the temperature for the saponification reaction is suitably in the range of 20 to 60 ° C., for example.
  • the product is pulverized at that time, washed and dried to obtain polyvinyl alcohol.
  • the polyvinyl alcohol of the present invention has a number average molecular weight (Mn) of 4,400 to 440,000, a molecular weight distribution (Mw / Mn) of 1.05 to 1.70, and a saponification degree of 80 to 99.99 mol. % And polyvinyl alcohol having a cobalt element content of 0.01 to 50 ppm.
  • the degree of saponification of the polyvinyl alcohol of the present invention is 80 to 99.99 mol%.
  • the degree of saponification is preferably 85 mol% or more, and more preferably 90 mol% or more.
  • the saponification degree is preferably 99.95 mol% or less.
  • the number average molecular weight (Mn) of the polyvinyl alcohol of the present invention is 4,400 to 440,000.
  • an organic cobalt complex as a control agent, a polyvinyl alcohol having a narrow molecular weight distribution and a high number average molecular weight (Mn) can be obtained.
  • the number average molecular weight (Mn) is preferably 11,000 or more, more preferably 22,000 or more, from the viewpoint of obtaining a molded article having high strength.
  • the number average molecular weight (Mn) is too high, the viscosity of the solution becomes too high and handling may be difficult, or the dissolution rate may decrease, so the number average molecular weight (Mn) is 220,000 or less.
  • the number average molecular weight (Mn) and the weight average molecular weight (Mw) in the present invention are values measured with an HFIP column using polymethyl methacrylate as a standard substance by gel permeation chromatography (GPC). The measuring method is as described in the examples.
  • the molecular weight distribution (Mw / Mn) of the polyvinyl alcohol of the present invention is 1.05 to 1.70.
  • Polyvinyl alcohol having a narrow molecular weight distribution can be obtained by polymerization by controlled radical polymerization.
  • the molecular weight distribution is preferably 1.60 or less, and more preferably 1.55 or less.
  • the crystallinity of the obtained polyvinyl alcohol is increased, and the molded product is excellent in gas barrier properties.
  • a molded product having a high elastic modulus and high strength can be obtained.
  • the cobalt element content of the polyvinyl alcohol of the present invention is preferably 0.01 to 50 ppm. If the cobalt element content exceeds 50 ppm, the hue may be deteriorated, and the reaction active terminal may remain, resulting in deterioration of thermal stability or gelation.
  • the cobalt element content is more preferably 20 ppm or less, and even more preferably 10 ppm or less. On the other hand, in order to make the cobalt element content less than 0.01 ppm, the cost for the removal operation is excessive and it is not practical from an industrial viewpoint.
  • the yellow index (YI) of the polyvinyl alcohol of the present invention is preferably 100 or less.
  • the yellow index (YI) is measured according to ASTM D1925.
  • Polyvinyl alcohol excellent in hue with small YI can be obtained by using polyvinyl alcohol having a low cobalt element content as described above.
  • YI is more preferably 70 or less, and even more preferably 60 or less.
  • YI is a sample in which a powder of polyvinyl alcohol resin is spread on a petri dish without using a spectrophotometer (D65 light source, CM-A120 white calibration plate, specular reflection measurement SCE) to hold down the powder. Is obtained by measuring. Specifically, it is a value measured according to the method described in the examples.
  • a method for molding polyvinyl alcohol of the present invention for example, a method of molding from the form of a solution such as water or dimethyl sulfoxide, a method of plasticizing and molding polyvinyl alcohol by heating, for example, an extrusion molding method, an injection molding method, an inflation molding method , Press molding method, blow molding method and the like.
  • a molded product having an arbitrary shape such as a fiber, a film, a sheet, a tube, or a bottle can be obtained.
  • additives can be blended with the polyvinyl alcohol of the present invention as long as the effects of the present invention are not impaired.
  • additives include fillers, processing stabilizers such as copper compounds, weathering stabilizers, colorants, UV absorbers, light stabilizers, antioxidants, antistatic agents, flame retardants, plasticizers, starches, etc.
  • processing stabilizers such as copper compounds, weathering stabilizers, colorants, UV absorbers, light stabilizers, antioxidants, antistatic agents, flame retardants, plasticizers, starches, etc.
  • Other resins, lubricants, fragrances, antifoaming agents, deodorants, extenders, release agents, mold release agents, reinforcing agents, crosslinking agents, fungicides, preservatives, crystallization rate retarders and the like can be mentioned.
  • the polyvinyl alcohol of the present invention can be used for various purposes by utilizing its characteristics.
  • surfactant, paper coating agent, paper internal additive, pigment binder, adhesive, nonwoven fabric binder, paint, fiber processing agent, fiber glue, dispersion stabilizer, film, sheet, bottle, fiber increase It can be used for a sticking agent, a flocculant, a soil modifier, and the like.
  • YI Hue (YI)
  • ASTM D1925 a spectrocolorimeter “CM-3500d” manufactured by Konica Minolta Co., Ltd. (light source: D65, CM-A120 white calibration plate, CM-A126 petri dish) Set use, regular reflection measurement SCE, measurement diameter ⁇ 30 mm). 5 g of the sample was added to the petri dish, and it was shaken by gently tapping the side so that the powder was not pressed down, and the powder was spread evenly. In this state, a total of 10 measurements were performed (the petri dish was shaken once each time and then remeasured), and the average value was determined as the YI of the resin.
  • CM-3500d manufactured by Konica Minolta Co., Ltd.
  • Polymerization Example 2 Vinyl acetate under the same conditions as in Polymerization Example 1 except that 99.77 parts by mass of vinyl acetate, 0.05 part by mass of cobalt (II) acetylacetonate, and 0.18 parts by mass of V-70 as an initiator were added. The polymerization reaction was carried out. When the conversion rate of vinyl acetate reached 30%, the water bath was replaced with ice water, and the internal temperature was rapidly cooled to 10 ° C. or lower.
  • Example 1 The operation of adding 40 parts by mass of an aqueous acetic acid solution (pH 2.0) having a concentration of 25% by mass to 60 parts by mass of the polyvinyl acetate solution PVAc-A, vigorously stirring, and then removing the aqueous layer was repeated 5 times. The cobalt complex was extracted. The obtained organic layer was dried at 30 ° C. and 0.1 atm to obtain polyvinyl acetate (cobalt content 5 ppm) from which volatile components were removed. 240 parts by mass of the obtained polyvinyl acetate was dissolved in methanol so as to have a concentration of 30% by mass and added to the same reactor as in Polymerization Example 1.
  • the water bath was heated and stirred until the internal temperature reached 40 ° C., and 24.9 parts by mass of a sodium hydroxide methanol solution (concentration: 14% by mass) was added thereto, followed by saponification at 40 ° C.
  • the molar ratio of sodium hydroxide to the vinyl acetate monomer unit in the polyvinyl acetate was set to 0.03.
  • the resulting gelled product was pulverized with a pulverizer and further allowed to stand at 40 ° C. for 1 hour to saponify, and then 200 parts by mass of methyl acetate was added to neutralize the remaining alkali.
  • Example 2 40 parts by mass of an acetic acid aqueous solution (pH 2.3) having a concentration of 10% by mass was added to 60 parts by mass of the polyvinyl acetate solution PVAc-B, and the subsequent operations were carried out in the same manner as described in Example 1 to obtain polyacetic acid Vinyl (cobalt content 20 ppm) was obtained.
  • the obtained polyvinyl acetate was saponified in the same manner as in Example 1 to obtain polyvinyl alcohol.
  • Table 2 summarizes the results of evaluating the obtained polyvinyl alcohol in the same manner as in Example 1.
  • Example 3 40 parts by mass of an acetic acid aqueous solution (pH 2.3) having a concentration of 10% by mass was added to 60 parts by mass of the polyvinyl acetate solution PVAc-C, and the subsequent operation was performed in the same manner as in Example 1 to obtain polyvinyl acetate (cobalt content 8 ppm). ) The obtained polyvinyl acetate was saponified in the same manner as in Example 1 to obtain polyvinyl alcohol. Table 2 summarizes the results of evaluating the obtained polyvinyl alcohol in the same manner as in Example 1.
  • Example 4 40 parts by mass of an acetic acid aqueous solution (pH 1.5) having a concentration of 50% by mass was added to 60 parts by mass of the polyvinyl acetate solution PVAc-A. ) 85 parts by mass of the obtained polyvinyl acetate was dissolved in methanol so as to have a concentration of 5% by mass and added to the same reactor as in Polymerization Example 1. The amount of sodium hydroxide methanol solution (concentration: 14% by mass) added to this solution was 3.9 parts by mass, and the molar ratio of sodium hydroxide to the vinyl acetate monomer unit in the polyvinyl acetate was 0.01. Saponification was carried out in the same manner as in Example 1 except that the composition was changed to give polyvinyl alcohol. Table 2 summarizes the results of evaluating the obtained polyvinyl alcohol in the same manner as in Example 1.
  • Example 5 40 parts by mass of an acetic acid aqueous solution (pH 3.5) having a concentration of 0.1% by mass was added to 60 parts by mass of the polyvinyl acetate solution PVAc-B, and the subsequent operations were performed in the same manner as in Example 1 to obtain polyvinyl acetate (containing cobalt). Amount 92 ppm). The obtained polyvinyl acetate was saponified in the same manner as in Example 1 to obtain polyvinyl alcohol. Table 2 summarizes the results of evaluating the obtained polyvinyl alcohol in the same manner as in Example 1.
  • Example 6 40 parts by mass of a phosphoric acid aqueous solution (pH 1.1) having a concentration of 10% by mass was added to 60 parts by mass of the polyvinyl acetate solution PVAc-B, and the subsequent operations were performed in the same manner as in Example 1 to obtain polyvinyl acetate (cobalt content). 76 ppm). The obtained polyvinyl acetate was saponified in the same manner as in Example 1 to obtain polyvinyl alcohol. Table 2 summarizes the results of evaluating the obtained polyvinyl alcohol in the same manner as in Example 1.
  • Example 7 40 parts by mass of a phosphoric acid aqueous solution (pH 0.6) having a concentration of 25% by mass was added to 60 parts by mass of the polyvinyl acetate solution PVAc-B, and the subsequent operations were performed in the same manner as in Example 1 to obtain polyvinyl acetate (cobalt content). 30 ppm). The obtained polyvinyl acetate was saponified in the same manner as in Example 1 to obtain polyvinyl alcohol. Table 2 summarizes the results of evaluating the obtained polyvinyl alcohol in the same manner as in Example 1.
  • Example 8 40 parts by mass of a 10% by mass propionic acid aqueous solution (pH 2.6) was added to 60 parts by mass of the polyvinyl acetate solution PVAc-B, and the subsequent operations were performed in the same manner as in Example 1 to obtain polyvinyl acetate (cobalt content). 29 ppm). The obtained polyvinyl acetate was saponified in the same manner as in Example 1 to obtain polyvinyl alcohol. Table 2 summarizes the results of evaluating the obtained polyvinyl alcohol in the same manner as in Example 1.
  • Example 9 40 parts by mass of 10% by mass lactic acid aqueous solution (pH 2.1) was added to 60 parts by mass of the polyvinyl acetate solution PVAc-B, and the subsequent operations were carried out in the same manner as in Example 1 to obtain polyvinyl acetate (cobalt content: 44 ppm). ) The obtained polyvinyl acetate was saponified in the same manner as in Example 1 to obtain polyvinyl alcohol. Table 2 summarizes the results of evaluating the obtained polyvinyl alcohol in the same manner as in Example 1.
  • Example 10 40 parts by mass of an aqueous citric acid solution (pH 2.0) having a concentration of 10% by mass was added to 60 parts by mass of the polyvinyl acetate solution PVAc-B, and the subsequent operations were carried out in the same manner as in Example 1 to obtain polyvinyl acetate (cobalt content). 49 ppm). The obtained polyvinyl acetate was saponified in the same manner as in Example 1 to obtain polyvinyl alcohol. Table 2 summarizes the results of evaluating the obtained polyvinyl alcohol in the same manner as in Example 1.
  • Example 2 40 parts by mass of ion-exchanged water (pH 6.9) was added to 60 parts by mass of the polyvinyl acetate solution PVAc-B, and the subsequent operations were performed in the same manner as in Example 1 to obtain polyvinyl acetate (cobalt content: 7650 ppm). .
  • the obtained polyvinyl acetate was saponified in the same manner as in Example 1 to obtain polyvinyl alcohol.
  • Table 2 summarizes the results of evaluating the obtained polyvinyl alcohol in the same manner as in Example 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

ラジカル開始剤及び有機コバルト錯体の存在下に制御ラジカル重合によってビニルエステル単量体を重合してポリビニルエステルを含むポリマー溶液を得る重合工程;前記ポリマー溶液を、水溶性配位子を含む水溶液に接触させて、前記ポリマー溶液からコバルト錯体を抽出する抽出工程;及び、前記抽出工程後のポリビニルエステルをけん化してポリビニルアルコールを得るけん化工程;を行って、ポリビニルアルコールを製造する。これにより、分子量分布が狭く、数平均分子量が高く、しかも色相が良好であり、さらに水への溶解性も良好であるポリビニルアルコールの製造方法が提供される。

Description

ポリビニルアルコール及びその製造方法
 本発明は、分子量分布が狭く、数平均分子量が高く、しかも色相の良好なポリビニルアルコール及びその製造方法に関する。
 ポリビニルアルコール(以下、PVAと略すことがある)樹脂は、結晶性の水溶性高分子材料であり、その優れた水溶性や皮膜特性(強度、耐油性、造膜性、酸素ガスバリア性等)を利用して、乳化剤、懸濁剤、界面活性剤、繊維加工剤、各種バインダー、紙加工剤、接着剤、フィルム等に広く利用されている。従来のPVAは、けん化度や重合度の異なるものが、用途に応じて使用されている。また、PVAに官能基を導入することにより、特殊な機能を付与した変性PVAも種々提案されている。
 ポリビニルアルコールは、工業的には酢酸ビニルをラジカル重合して得られるポリ酢酸ビニルをけん化することによって生産されている。酢酸ビニルのラジカル重合反応では、重合中に連鎖移動反応や再結合停止反応等種々の副反応が併発するため、得られるポリ酢酸ビニル(及びポリビニルアルコール)の分子量分布や末端構造等を精密に制御することは一般に困難とされている。ポリビニルアルコールの熱安定性や機械的物性の向上のためには、低分子量の重合体の含有量が少ない重合体、すなわち高分子量でかつ分子量分布が狭い重合体が好ましいとされている。
 近年、いわゆるリビングラジカル重合技術の進歩により、酢酸ビニルのラジカル重合反応を制御する方法がいくつか提案されてきた。例えば、ラジカル重合開始剤と特定の制御剤の存在下で酢酸ビニルのラジカル重合反応を行うことによって、分子量分布が狭いポリ酢酸ビニルを得る方法が提案されている。このような重合反応においては、ポリ酢酸ビニルの分子鎖の生長ラジカル末端が制御剤と共有結合してドーマント種を形成し、当該ドーマント種とそれが解離して生じるラジカル種との間で平衡を形成しながら重合が進行する。このような重合反応は制御ラジカル重合と呼ばれる。
 しかし、これまでの制御ラジカル重合法では分子量の大きいポリ酢酸ビニルを得ることが困難であった。これは、重合中に一定の確率で生成するHead-to-Head結合(酢酸ビニルのアセチル基同士が隣接する結合)の末端に生成したラジカルが熱的に極めて不安定であるため、平衡がドーマント種側に大きく偏り、それ以上重合反応が進行しなくなるためであると考えられている。一方、ドーマント種の熱的解離を促進するために重合温度を上昇させた場合は、反応は進行するものの制御性が悪化してしまう。そのため、制御性を維持したまま高分子量のポリ酢酸ビニルを得ることは極めて困難であった。
 こうした課題に対し、特許文献1には、ラジカル重合開始剤とヨウ素化合物からなる制御剤の存在下で酢酸ビニルのラジカル重合反応を行うことによって、数平均分子量(Mn)が92,000で、分子量分布(Mw/Mn)が1.57のポリ酢酸ビニルを合成し、それをけん化してポリビニルアルコールを製造した例が報告されている。しかしながら、ヨウ素化合物を制御剤に用いた重合方法においては、ポリ酢酸ビニルの重合末端にアルデヒド基が形成されることが知られている(例えば、非特許文献1を参照)。このようなアルデヒド基を末端に有するポリ酢酸ビニルをけん化した場合、複数の炭素-炭素二重結合が共役した共役ポリエン構造が形成され、着色の著しいポリビニルアルコールが得られることが知られている。
 また最近、有機コバルト錯体を制御剤とする制御ラジカル重合によって、分子量分布が狭く、かつ高分子量のポリ酢酸ビニルを合成する手法が提案されている。この重合反応においては、ポリ酢酸ビニルの分子鎖の生長ラジカル末端が有機コバルト錯体のコバルト原子と共有結合してドーマント種を形成し、当該ドーマント種とそれが解離して生じるラジカル種との間で平衡を形成しながら重合が進行する。例えば非特許文献2には、コバルト(II)アセチルアセトナートの存在下に酢酸ビニルを重合させることによって、数平均分子量(Mn)が99,000で、分子量分布(Mw/Mn)が1.33のポリ酢酸ビニルを合成した例が報告されている。
 非特許文献3には、コバルト(II)アセチルアセトナートの存在下に酢酸ビニルを重合させて得られたポリ酢酸ビニル鎖を、1-プロパンチオールで処理することが記載されている。当該ポリ酢酸ビニル鎖は末端にコバルト(III)錯体が結合したドーマント種を形成しているが、当該ドーマント種が開裂して形成される末端ラジカルが1-プロパンチオールと反応することによって、ポリ酢酸ビニル鎖からコバルト錯体を切り離すことができる。ドーマント種を形成しているポリ酢酸ビニルは緑色であるが、切り離されたコバルト錯体を析出させた後にセライト濾過して取り除くことによって、着色の低減されたポリ酢酸ビニルが得られたことが記載されている。また、1-プロパンチオールの代わりに、安定ラジカル化合物であるTEMPO(2,2,6,6-テトラメチルピペリジン1-オキシル)を用いることによって、末端ラジカルにTEMPOを結合させてラジカルを捕捉することもできる。この場合にも、コバルト錯体を酸性アルミナで濾過して取り除くことで、無色のポリ酢酸ビニルが得られたことが記載されている。
 このように、非特許文献3に記載された方法によれば着色の低減されたポリ酢酸ビニルを得ることができるとされている。しかしながら、こうして得られたポリ酢酸ビニルをけん化してポリビニルアルコールを得ることについては、非特許文献3には記載されていない。本発明者らが実験したところ、非特許文献3で得られたポリ酢酸ビニルをけん化して得られたポリビニルアルコールは着色してしまうことがわかった。また、ポリマー溶液に含有されるコバルト錯体を濾過して十分に取り除くためには、溶液の濃度や溶媒の種類を適切に選択してコバルト錯体を析出させる必要がある。しかし、濾過によって効率的にコバルト錯体を析出させるためには多量の溶媒で希釈する必要があるだけでなく、析出物による圧力上昇や、濾過による流速の低下等が発生することから、生産性が低下してしまう。
特開平11-147914号公報
Controlled/Living Radical Polymerization of Vinyl Acetate by Degenerative Transfer with Alkyl Iodides, Macromolecules, 2003, vol.36, p9346-9354 Highly Efficient Cobalt-Mediated Radical Polymerization of Vinyl Acetate, Angewandte Chemie International Edition, 2005, vol.44, p1101-1104 Synthesis of End-Functional Poly(vinyl acetate) by Cobalt-Mediated Radical Polymerization, Macromolecules, 2005, vol.38, p5452-5458
 本発明は、上記課題を解決するためになされたものであり、分子量分布が狭く、数平均分子量が高く、しかも色相が良好であるポリビニルアルコール及びその製造方法を提供することを目的とするものである。
 上記課題は、ラジカル開始剤及び有機コバルト錯体の存在下に制御ラジカル重合によってビニルエステル単量体を重合してポリビニルエステルを含むポリマー溶液を得る重合工程;前記ポリマー溶液を、水溶性配位子を含む水溶液に接触させて、前記ポリマー溶液からコバルト錯体を抽出する抽出工程;及び、前記抽出工程後のポリビニルエステルをけん化してポリビニルアルコールを得るけん化工程;を有するポリビニルアルコールの製造方法を提供することによって解決される。
 このとき、前記抽出工程後のポリビニルエステルのコバルト元素含有量が0.01~100ppmであることが好ましい。前記けん化工程後のポリビニルアルコールのコバルト元素含有量が0.01~50ppmであることも好ましい。前記水溶性配位子が、25℃におけるpKaが0~12の酸であることも好ましい。また、前記水溶性配位子がカルボン酸であることも好ましい。
 また上記課題は、数平均分子量(Mn)が4,400~440,000であり、分子量分布(Mw/Mn)が1.05~1.70であり、けん化度が80~99.99mol%であり、コバルト元素の含有量が0.01~50ppmであるポリビニルアルコールを提供することによっても解決される。
 本発明のポリビニルアルコールは、分子量分布が狭く、数平均分子量が高く、しかも色相が良好である。さらに、本発明のポリビニルアルコールは、水への溶解性が良好であることから、水溶性が要求される様々な用途に用いることができる。また、イエローインデックス(YI)が小さいので、外観が重要となる様々な用途に用いることもできる。本発明の製造方法によれば、そのようなポリビニルアルコールを製造することができる。
 これまで、分子量分布が狭く、数平均分子量が高く、しかも色相が良好であるポリビニルアルコールは知られていなかった。本発明者らは、そのようなポリビニルアルコールを初めて製造する方法を見出した。本発明のポリビニルアルコールの好適な製造方法は、ラジカル開始剤及び有機コバルト錯体の存在下に制御ラジカル重合によってビニルエステル単量体を重合してポリビニルエステルを含むポリマー溶液を得る重合工程;前記ポリマー溶液を、水溶性配位子を含む水溶液に接触させて、前記ポリマー溶液からコバルト錯体を抽出する抽出工程;及び、前記抽出工程後のポリビニルエステルをけん化してポリビニルアルコールを得るけん化工程;を有する。以下、その製造方法を詳細に説明する。
 まず、重合工程について説明する。重合工程では、ラジカル開始剤及び有機コバルト錯体の存在下に制御ラジカル重合によってビニルエステル単量体を重合してポリビニルエステルを含むポリマー溶液を得る。制御ラジカル重合とは、生長ラジカル末端(活性種)が制御剤と結合した共有結合種(ドーマント種)との平衡状態におかれて反応が進行する重合反応のことである。本発明では、制御剤として有機コバルト錯体が用いられる。
 本発明で用いられるビニルエステル単量体としては、例えばギ酸ビニル、酢酸ビニル、トリフルオロ酢酸ビニル、プロピオン酸ビニル、バレリン酸ビニル、酪酸ビニル、イソ酪酸ビニル、ピバリン酸ビニル、カプリン酸ビニル、ラウリン酸ビニル、ステアリン酸ビニル、安息香酸ビニル、バーサチック酸ビニル等が挙げられるが、経済的観点から酢酸ビニルが好ましく用いられる。
 本発明で製造されるポリビニルエステルは、本発明の効果を損なわない範囲で、共重合可能なエチレン性不飽和単量体が共重合されたものでもよい。エチレン性不飽和単量体としては、エチレン、プロピレン、1-ブテン、イソブテン等のオレフィン;アクリル酸、メタクリル酸、クロトン酸、(無水)フタル酸、(無水)マレイン酸、(無水)イタコン酸等の不飽和カルボン酸、その塩、そのモノまたはジアルキル(炭素数1~18)エステルまたはその無水物;アクリルアミド、N-アルキル(炭素数1~18)アクリルアミド、N,N-ジメチルアクリルアミド、2-アクリルアミドプロパンスルホン酸あるいはその塩、アクリルアミドプロピルジメチルアミンあるいはその酸塩あるいはその4級塩等のアクリルアミド;メタクリルアミド、N-アルキル(炭素数1~18)メタクリルアミド、N,N-ジメチルメタクリルアミド、2-メタクリルアミドプロパンスルホン酸あるいはその塩、メタクリルアミドプロピルジメチルアミンあるいはその酸塩あるいはその4級塩等のメタクリルアミド;N-ビニルピロリドン、N-ビニルホルムアミド、N-ビニルアセトアミド等のN-ビニルアミド;アクリロニトリル、メタクリロニトリル等のシアン化ビニル;アルキル(炭素数1~18)ビニルエーテル、ヒドロキシアルキルビニルエーテル、アルコキシアルキルビニルエーテル等のビニルエーテル;塩化ビニル、塩化ビニリデン、フッ化ビニル、フッ化ビニリデン、臭化ビニル等のハロゲン化ビニル;トリメトキシビニルシラン等のビニルシラン、酢酸アリル、塩化アリル、アリルアルコール、ジメチルアリルアルコール、トリメチル-(3-アクリルアミド-3-ジメチルプロピル)-アンモニウムクロリド、アクリルアミド-2-メチルプロパンスルホン酸等が挙げられる。
 ビニルエステル単量体の重合方法としては、塊状重合法、溶液重合法、懸濁重合法、乳化重合法等の公知の方法が挙げられる。その中でも、無溶媒で重合する塊状重合法あるいは種々の有機溶媒中で重合する溶液重合法が通常採用される。分子量分布の狭い重合体を得るためには、連鎖移動等の副反応を起こすおそれのある溶媒や分散媒を使用しない塊状重合法が好ましい。一方、反応液の粘度調整や、重合速度の制御等の面からは、溶液重合が好ましい場合もある。溶液重合時に溶媒として使用される有機溶媒としては、酢酸メチル、酢酸エチル等のエステル;ベンゼン、トルエン等の芳香族炭化水素;メタノール、エタノール等の低級アルコール等が挙げられる。これらのうち、連鎖移動を防ぐためには、エステルや芳香族炭化水素が好ましく用いられる。溶媒の使用量は、目的とするポリビニルアルコールの数平均分子量に合わせ、反応溶液の粘度を考慮して決定すればよい。例えば、質量比(溶媒/単量体)が0.01~10の範囲から選択される。質量比(溶媒/単量体)は好適には0.1以上であり、好適には5以下である。
 重合工程で使用されるラジカル開始剤としては、従来公知のアゾ系開始剤、過酸化物系開始剤、レドックス系開始剤等が適宜選ばれる。アゾ系開始剤としては、2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)(「V-70」)等が挙げられ、過酸化物系開始剤としては、ジイソプロピルパーオキシジカーボネート、ジ-2-エチルヘキシルパーオキシジカーボネート、ジエトキシエチルパーオキシジカーボネート等のパーカーボネート化合物;t-ブチルパーオキシネオデカネート、α-クミルパーオキシネオデカネート、t-ブチルパーオキシネオデカネート等のパーエステル化合物;アセチルシクロヘキシルスルホニルパーオキシド、ジイソブチリルパーオキシド;2,4,4-トリメチルペンチル-2-パーオキシフェノキシアセテート等が挙げられる。さらには、上記開始剤に過硫酸カリウム、過硫酸アンモニウム、過酸化水素等を組み合わせて開始剤とすることができる。また、レドックス系開始剤としては、上記の過酸化物と亜硫酸水素ナトリウム、炭酸水素ナトリウム、酒石酸、L-アスコルビン酸、ロンガリット等の還元剤とを組み合わせたものが挙げられる。開始剤の使用量は、重合触媒により異なり一概には決められず、重合速度に応じて任意に選択される。
 重合工程で制御剤として使用される有機コバルト錯体は、2価のコバルト原子と有機配位子を含むものであればよい。好適な有機コバルト錯体としては、例えばコバルト(II)アセチルアセトナート[Co(acac)]、コバルト(II)ポルフィリン錯体等が挙げられる。中でも、製造コストの観点からコバルト(II)アセチルアセトナートが好適である。
 本発明で用いられる制御ラジカル重合では、まず、ラジカル開始剤が分解して発生したラジカルが少数のビニルエステルと結合して生じた短鎖の重合体の生長末端のラジカルが有機コバルト(II)錯体と結合して、有機コバルト(III)錯体が重合体末端との共有結合によって結合されたドーマント種が生成する。反応開始後の一定期間は、短鎖の重合体が生成してはドーマント種に変換されるだけで、高重合度化は実質的に進行しない。この期間を誘導期という。有機コバルト(II)錯体が消費された後は、高重合度化が進行する成長期に入り、反応系内のほとんどの分子鎖の分子量が重合時間に比例して同じように増加する。これによって、分子量分布の狭いポリビニルエステルを得ることができる。
 上記のように、本発明の制御ラジカル重合では、理論上は、添加する有機コバルト錯体一分子から一つのポリビニルエステル鎖が生成する。したがって、反応液に添加される有機コバルト錯体の量は、目的とする数平均分子量と重合率とを考慮して決定される。通常、ビニルエステル単量体100molに対して、0.001~1molの有機コバルト錯体を使用することが好ましい。
 発生するラジカルのモル数が有機コバルト錯体のモル数よりも多くなければ、重合反応はドーマント種からCo錯体が熱的に解離する機構のみによって進行するため、反応温度によっては重合速度が極めて小さくなってしまう。したがって、ラジカル開始剤が2個のラジカルを発生することを考慮すれば、用いられるラジカル開始剤のモル数は有機コバルト錯体のモル数の1/2倍を超える量である必要がある。一般に開始剤から供給される活性ラジカル量は開始剤効率に依存するので、実際はドーマントの形成に用いられずに失活する開始剤がある。したがって、用いられるラジカル開始剤のモル数は有機コバルト錯体のモル数の1倍以上であることが好ましく、1.5倍以上であることがより好ましい。一方、発生するラジカルのモル数が有機コバルト錯体のモル数よりも多くなりすぎると、制御されないラジカル重合の割合が増えるので分子量分布が広がってしまう。用いられるラジカル開始剤のモル数は有機コバルト錯体のモル数の10倍以下であることが好ましく、6倍以下であることがより好ましい。
 重合温度については、例えば0℃~80℃であることが好ましい。重合温度が0℃未満の場合は重合速度が不十分となり、生産性が低下する。この点からは重合温度は10℃以上であることがより好ましく、20℃以上であることがさらに好ましい。一方、重合温度が80℃を超えると得られるポリビニルエステルの分子量分布が広くなってしまう。この点からは重合温度は65℃以下であることがより好ましく、50℃以下であることがさらに好ましい。重合工程に要する時間は、誘導期と成長期を合わせて、通常3~50時間である。
 前記重合工程において目的とする重合率になったところで、得られたポリマー溶液に重合停止剤を添加することによって重合反応を停止させることが好ましい。重合停止剤は、ポリマー鎖の末端ラジカルを捕捉して重合反応を停止させることができる。そしてその時、コバルト錯体がポリマー鎖から切り離される。本発明で用いられる重合停止剤は、ポリマー鎖の末端ラジカルを捕捉できるものであればよく、p-メトキシフェノール、ヒドロキノン、クレゾール、t-ブチルカテコール、p-ニトロソフェノール等のヒドロキシ芳香族化合物;ベンゾキノン、ナフトキノン等のキノン化合物;ムコン酸、ソルビン酸等の共役カルボン酸;フェノチアジン、ジステアリルチオジプロピオネート、ジラウリルチオジプロピオネート等のチオエーテル;p-フェニレンジアミン、N-ニトロソジフェニルアミン等の芳香族アミン;2,2,6,6-テトラメチルピペリジン1-オキシル、4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン1-オキシル等のニトロキシド;酢酸銅、ジチオカルバミン酸銅、酢酸マンガン等の遷移金属塩等が例示される。
 添加される重合停止剤のモル数は、添加された有機コバルト錯体のモル数の1~100倍であることが好ましい。プロトン供与性重合停止剤のモル数が少なすぎると、ポリマー末端のラジカルを十分に捕捉できず、得られるポリビニルアルコールの色調が悪化するおそれがある。そのため、プロトン供与性重合停止剤のモル数は、有機コバルト錯体のモル数の5倍以上であることがより好ましい。一方、プロトン供与性重合停止剤のモル数が多すぎると生産コストが上昇するおそれがある。プロトン供与性重合停止剤のモル数は、有機コバルト錯体のモル数の50倍以下であることがより好ましい。
 重合停止剤を添加した後の反応液の温度は、重合停止剤がラジカルを捕捉できる温度であればよく、0℃~80℃であることが好ましい。反応液の温度が0℃未満の場合は停止工程に時間がかかり過ぎて生産性が低下する。この点からは温度は10℃以上であることがより好ましく、20℃以上であることがさらに好ましい。一方、反応液の温度が80℃を超えると、不必要な酢酸ビニルの重合が進行して分子量分布(Mw/Mn)が大きくなるおそれがある。この点からは温度は70℃以下であることがより好ましく、60℃以下であることがさらに好ましい。重合停止剤を添加してから、反応を停止させるのに要する時間は、10分~5時間であることが好ましい。このようにして、ポリビニルエステルを含むポリマー溶液を得ることができる。
 得られたポリマー溶液を、水溶性配位子を含む水溶液に接触させて、前記ポリマー溶液からコバルト錯体を抽出する抽出工程を行う。このように、ポリビニルエステル溶液中に含まるコバルト錯体を予め除去してからけん化工程を行なうことによって、色相がよく、ゲル化しにくいポリビニルアルコールを得ることができる。具体的には、相互に溶解しない前記水溶液と前記ポリビニルエステル溶液とを、両者の界面の面積が大きくなるように激しく撹拌してから静置し、油層と水層に分離した後で水層を除く操作を行えばよい。この操作は複数回繰り返してもよい。また、撹拌する代わりにスタティックミキサー等を用いて両者の界面の面積が大きくなるようにしてもよい。ここで、「水溶性」とは、25℃の水100gに1g以上溶解できることをいう。水に対する溶解度がこの値未満である配位子を用いた場合には、コバルト錯体を効率的に抽出することができない。
 抽出工程に用いられる水溶性配位子は、25℃におけるpKaが0~12の酸であることが好ましい。pKaが0未満の強酸を用いた場合、コバルト錯体を効率的に抽出することが困難であり、pKaは1.5以上であることが好ましく、2.5以上であることがより好ましい。またpKaが12を超える弱酸を用いた場合にもコバルト錯体を効率的に抽出することが困難であり、pKaは7以下であることが好ましい。前記酸が多価の酸である場合には、第一解離定数(pKa1)が上記範囲であることが必要である。pKaが0~12の酸がカルボン酸またはリン酸(pKa1は2.1)であることが好ましく、カルボン酸であることがより好ましい。カルボン酸としては、酢酸(pKaは4.76)、プロピオン酸(pKaは4.87)、乳酸(pKaは3.86)、クエン酸(pKa1は3.09)等が挙げられる。中でも酢酸であることが特に好ましい。
 水溶性配位子を含む水溶液のpHは、0~5であることが好ましい。pHがこの範囲に含まれることによって、コバルト錯体を効率的に抽出することができる。pHはより好適には1以上であり、さらに好適には1.5以上である。pHはより好適には4以下であり、さらに好適には3以下である。
 抽出工程後のポリビニルエステルのコバルト元素含有量が0.01~100ppmであることが好ましい。コバルト元素含有量が上記範囲であるとけん化後に得られるポリビニルアルコールの色相が良好になる傾向にあり、熱安定性も向上する傾向にある。コバルト元素含有量は、より好適には90ppm以下であり、さらに好適には70ppm以下であり、特に好適には25ppm以下であり、最も好適には15ppm以下である。一方、コバルト元素含有量を0.01ppm未満とするためには、除去作業にコストがかかり過ぎて工業的には現実的でない。
 けん化工程では、前記抽出工程後のポリビニルエステルをけん化してポリビニルアルコールを得る。具体的には、前述の方法で製造されたポリビニルエステルをアルコールまたは含水アルコールに溶解した状態でけん化してポリビニルアルコールを得る。けん化反応に使用されるアルコールとしては、メタノール、エタノール等の低級アルコールが挙げられ、メタノールが特に好適に使用される。けん化反応に使用されるアルコールは、アセトン、酢酸メチルや酢酸エチル等のエステル、トルエン等の溶剤を含有していてもよい。けん化反応に用いられる触媒としては、例えば水酸化カリウム、水酸化ナトリウム等のアルカリ金属の水酸化物、ナトリウムメチラート等のアルカリ触媒、あるいは鉱酸等の酸触媒が挙げられる。けん化反応の温度については、例えば20~60℃の範囲が適当である。けん化反応の進行に伴って、ゲル状生成物が析出してくる場合には、その時点で生成物を粉砕し、洗浄後、乾燥することにより、ポリビニルアルコールが得られる。
 本発明のポリビニルアルコールは、数平均分子量(Mn)が4,400~440,000であり、分子量分布(Mw/Mn)が1.05~1.70であり、けん化度が80~99.99mol%であり、コバルト元素の含有量が0.01~50ppmであるポリビニルアルコールである。
 本発明のポリビニルアルコールのけん化度は80~99.99mol%である。けん化度が80mol%未満の場合、ポリビニルアルコールの結晶性が著しく低下し、成形体の機械的強度やバリア性等の物性が低下する。けん化度は、好適には85mol%以上であり、より好適には90mol%以上である。一方、けん化度が99.99mol%を超えると、ポリビニルアルコールの製造が困難となり、成形性も劣るおそれがある。けん化度は、好適には99.95mol%以下である。
 本発明のポリビニルアルコールの数平均分子量(Mn)は4,400~440,000である。制御剤として有機コバルト錯体を使用することによって、分子量分布が狭く、数平均分子量(Mn)の高いポリビニルアルコールを得ることができる。数平均分子量(Mn)は高強度の成形品を得る観点から好適には11,000以上であり、より好適には22,000以上である。一方、数平均分子量(Mn)が高すぎると、溶液の粘度が高くなりすぎて取り扱いが困難になる場合や、溶解速度が低下する場合があるため、数平均分子量(Mn)は220,000以下であることが好ましく、190,000以下であることがより好ましい。本発明における数平均分子量(Mn)及び重量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィー(GPC)法により、標準物質にポリメチルメタクリレートを用い、HFIP系カラムで測定した値である。測定方法は実施例に記載した通りである。
 本発明のポリビニルアルコールの分子量分布(Mw/Mn)は、1.05~1.70である。制御ラジカル重合によって重合することで分子量分布の狭いポリビニルアルコールを得ることができる。分子量分布は好適には1.60以下であり、より好適には1.55以下である。分子量分布が上記範囲であると、得られるポリビニルアルコールの結晶性が高まり、その成形品はガスバリア性に優れる。また、分子量分布が上記範囲であり、かつ数平均分子量が上記範囲であることで、高弾性率かつ高強度の成形品を得ることができる。
 本発明のポリビニルアルコールのコバルト元素含有量が0.01~50ppmであることが好ましい。コバルト元素含有量が50ppmを超えると、色相が悪化するおそれがあるとともに、反応活性末端が残存して熱安定性が悪化したりゲル化したりするおそれもある。コバルト元素含有量は、より好適には20ppm以下であり、さらに好適には10ppm以下である。一方、コバルト元素含有量を0.01ppm未満とするためには、除去作業にコストがかかり過ぎて工業的には現実的でない。
 本発明のポリビニルアルコールのイエローインデックス(YI)は100以下であることが好ましい。当該イエローインデックス(YI)は、ASTM D1925にしたがって測定されるものである。上記のようなコバルト元素含有量の少ないポリビニルアルコールであることによってYIの小さい色相に優れたポリビニルアルコールを得ることができる。YIは、より好適には70以下であり、さらに好適には60以下である。ここで、YIは、ポリビニルアルコール樹脂の粉体を分光測色計(D65光源、CM-A120白色校正板、正反射測定SCE)を用いて、粉体を押さえつけないようにしてシャーレに敷き詰めた試料を測定して求められる。具体的には、実施例に記載した方法に従って測定した値である。
 本発明のポリビニルアルコールの成形方法としては、例えば水またはジメチルスルホキシド等の溶液の形態から成形する方法、加熱によりポリビニルアルコールを可塑化して成形する方法、例えば押出成形法、射出成形法、インフレ成形法、プレス成形法、ブロー成形法等が挙げられる。これらの方法により、繊維、フィルム、シート、チューブ、ボトル等の任意形状の成形品が得られる。
 本発明のポリビニルアルコールに対して、本発明の効果を阻害しない範囲で各種の添加剤を配合することができる。添加剤の例としては、充填剤、銅化合物などの加工安定剤、耐候性安定剤、着色剤、紫外線吸収剤、光安定剤、酸化防止剤、帯電防止剤、難燃剤、可塑剤、でんぷんなど他の樹脂、潤滑剤、香料、消泡剤、消臭剤、増量剤、剥離剤、離型剤、補強剤、架橋剤、防かび剤、防腐剤、結晶化速度遅延剤などが挙げられる。
 本発明のポリビニルアルコールは、その特性を利用して各種用途に使用することができる。例えば、界面活性剤、紙用コーティング剤、紙用内添剤、顔料バインダー、接着剤、不織布バインダー、塗料、繊維加工剤、繊維糊剤、分散安定化剤、フィルム、シート、ボトル、繊維、増粘剤、凝集剤、土壌改質剤等に使用できる。
 以下、実施例により本発明をより詳細に説明するが、本発明はこれらの実施例により何ら限定されるものではない。実施例及び比較例中の測定方法及び評価方法は以下の通りである。
[数平均分子量(Mn)及び分子量分布(Mw/Mn)の測定]
 東ソー株式会社製サイズ排除高速液体クロマトグラフィー装置「HLC-8320GPC」を用い、数平均分子量(Mn)及び分子量分布(Mw/Mn)を測定した。測定条件は以下の通りである。
 カラム:東ソー株式会社製HFIP系カラム「GMHHR-H(S)」2本直列接続
 標準試料:ポリメチルメタクリレート
 溶媒及び移動相:トリフルオロ酢酸ナトリウム-HFIP溶液(濃度20mM)
 流量:0.2mL/min
 温度:40℃
 試料溶液濃度:0.1wt%(開口径0.45μmフィルターでろ過)
 注入量:10μL
 検出器:RI
[コバルト元素含有量]
 0.5gの重合体を濃硝酸で加熱溶解した後、イオン交換水で希釈することで、重合体の硝酸溶液20mLを得た。ICP発光分析装置(日本ジャーレルアッシュ製、IRIS-AP)にて測定した当該溶液のコバルト元素濃度(mg/L)から、重合体中のコバルト元素含有量(ppm)を求めた。
[色相(YI)の評価]
 得られたポリビニルアルコールの粉体のYI(ASTM D1925)をコニカミノルタ株式会社製分光測色計「CM-3500d」を用いて測定した(光源:D65、CM-A120白色校正板、CM-A126シャーレセット使用、正反射測定SCE、測定径φ30mm)。シャーレに試料5gを添加し、粉体を押さえつけないようにして軽く側面をたたいて振とうし、まんべんなく均一に粉体を敷き詰めた。この状態で合計10回の測定を行い(各回でシャーレを一度振とうしてから再測定)、その平均値を樹脂のYIとして求めた。
[水への溶解速度の評価]
 ポリビニルアルコールを濃度4質量%になるようにイオン交換水に添加し、100℃で加熱攪拌し溶解した。溶解性能を以下の基準により判断した。
 A:昇温後1時間以内に完全に溶解した。
 B:昇温後1時間~3時間で完全に溶解した。
 C:昇温後3時間~6時間で完全に溶解した。
 D:昇温後6時間~12時間で完全に溶解した。
 E:完全に溶解するまでに昇温後12時間を超える時間を要したか、あるいは曇点が生じる等完溶しなかった。
[重合例1]
 攪拌機、還流冷却管、開始剤の添加口を備えた反応器に、酢酸ビニルを99.83質量部及びコバルト(II)アセチルアセトナートを0.04質量部添加し、反応器内を真空にした後窒素を導入し不活性ガス置換を行った。その後開始剤としてV-70[2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)]を0.13質量部添加し、反応器内を真空にした後窒素を導入し不活性ガス置換を行った。その後反応器を水浴に浸漬し、内温が30℃になるように加熱し撹拌した。適宜サンプリングを行い、その固形分濃度から重合の進行を確認し、酢酸ビニルの転化率が30%に到達したところで水浴を氷水に置換し、内温を10℃以下まで急冷した。ここに重合停止剤としてソルビン酸0.36質量部を濃度10質量%のメタノール溶液として添加した。
 重合停止剤を添加してから、真空ラインに接続し、残留する酢酸ビニルを15℃で減圧留去した。反応器内を目視で確認しながら、粘度が上昇したところで適宜メタノールを添加しながら留去を続け、さらに内温を50℃に昇温して1時間加熱撹拌した。その後30℃まで冷却し、酢酸エチルを添加しながらメタノールを35℃で減圧留去し、ポリ酢酸ビニル溶液PVAc-Aを得た。これらの製造条件を表1にまとめて示す。
[重合例2]
 酢酸ビニルを99.77質量部、コバルト(II)アセチルアセトナートを0.05質量部、開始剤としてV-70を0.18質量部添加したこと以外は重合例1と同様の条件で酢酸ビニルの重合反応を行った。酢酸ビニルの転化率が30%に到達したところで水浴を氷水に置換し、内温を10℃以下まで急冷した。ここに重合停止剤としてソルビン酸0.72質量部を濃度10質量%のメタノール溶液として添加し、以降の操作は重合例1と同様にして、ポリ酢酸ビニル溶液PVAc-Bを得た。これらの製造条件を表1にまとめて示す。
[重合例3]
 酢酸ビニルを79.94質量部、コバルト(II)アセチルアセトナートを0.02質量部添加し、反応器内を真空にした後窒素を導入し不活性ガス置換を行った。その後、脱気及び脱水処理した酢酸メチル19.98質量部と開始剤としてV-70を0.06質量部添加したこと以外は重合例1と同様の条件で酢酸ビニルの重合反応を行った。酢酸ビニルの転化率が20%に到達したところで水浴を氷水に置換し、内温を10℃以下まで急冷した。ここに重合停止剤としてソルビン酸0.23質量部を濃度10質量%のメタノール溶液として添加し、以降の操作は重合例1と同様にして、ポリ酢酸ビニル溶液PVAc-Cを得た。これらの製造条件を表1にまとめて示す。
[実施例1]
 ポリ酢酸ビニル溶液PVAc-A60質量部に対し、濃度25質量%の酢酸水溶液(pH2.0)を40質量部加え、激しく撹拌してから水層を除去する操作を5回繰り返して、有機層からコバルト錯体を抽出した。得られた有機層を30℃、0.1気圧の条件で乾燥して、揮発分が除去されたポリ酢酸ビニル(コバルト含有量5ppm)を得た。得られたポリ酢酸ビニル240質量部を、濃度が30質量%になるようにメタノールに溶解し、重合例1と同様の反応器に添加した。水浴を加熱して内温が40℃になるまで加熱撹拌し、ここに水酸化ナトリウムのメタノール溶液(濃度14質量%)24.9質量部を添加して、40℃でけん化を行った。このとき、ポリ酢酸ビニル中の酢酸ビニル単量体単位に対する水酸化ナトリウムのモル比が0.03になるようにした。生成したゲル化物を粉砕機にて粉砕し、さらに40℃で放置して1時間けん化を進行させた後、酢酸メチル200質量部を加えて残存するアルカリを中和した。フェノールフタレイン指示薬を用いて中和が終了したことを確認した後、濾別することによって固体を得て、これにメタノール500質量部を加えて1時間加熱還流して洗浄した。当該洗浄操作を3回繰り返した後、遠心脱水して得られた固体を真空乾燥機にて、40℃で24時間乾燥させ目的のポリビニルアルコールを得た。得られたポリビニルアルコールのけん化度は99.9mol%であり、数平均分子量(Mn)は108,600、分子量分布(Mw/Mn)は1.5、コバルト含有量は1ppmであった。また、色相(YI)は25.6であり、溶解速度の評価はAであった。これらの評価結果をまとめて表2に示す。
[実施例2]
 ポリ酢酸ビニル溶液PVAc-B60質量部に対し、濃度10質量%の酢酸水溶液(pH2.3)を40質量部加え、以降の操作は実施例1に記載の方法と同様の操作を行い、ポリ酢酸ビニル(コバルト含有量20ppm)を得た。得られたポリ酢酸ビニルを、実施例1と同様にしてけん化して、ポリビニルアルコールを得た。得られたポリビニルアルコールを実施例1と同様に評価した結果をまとめて表2に示す。
[実施例3]
 ポリ酢酸ビニル溶液PVAc-C60質量部に対し、濃度10質量%の酢酸水溶液(pH2.3)を40質量部加え、以降の操作は実施例1と同様にして、ポリ酢酸ビニル(コバルト含有量8ppm)を得た。得られたポリ酢酸ビニルを、実施例1と同様にしてけん化して、ポリビニルアルコールを得た。得られたポリビニルアルコールを実施例1と同様に評価した結果をまとめて表2に示す。
[実施例4]
 ポリ酢酸ビニル溶液PVAc-A60質量部に対し、濃度50質量%の酢酸水溶液(pH1.5)を40質量部加え、以降の操作は実施例1と同様にして、ポリ酢酸ビニル(コバルト含有量4ppm)を得た。得られたポリ酢酸ビニル85質量部を、濃度が5質量%になるようにメタノールに溶解し、重合例1と同様の反応器に添加した。この溶液に添加する水酸化ナトリウムのメタノール溶液(濃度14質量%)の添加量を3.9質量部とし、ポリ酢酸ビニル中の酢酸ビニル単量体単位に対する水酸化ナトリウムのモル比が0.01になるようにしたこと以外は実施例1と同様にしてけん化して、ポリビニルアルコールを得た。得られたポリビニルアルコールを実施例1と同様に評価した結果をまとめて表2に示す。
[実施例5]
 ポリ酢酸ビニル溶液PVAc-B60質量部に対し、濃度0.1質量%の酢酸水溶液(pH3.5)を40質量部加え、以降の操作は実施例1と同様にして、ポリ酢酸ビニル(コバルト含有量92ppm)を得た。得られたポリ酢酸ビニルを、実施例1と同様にしてけん化して、ポリビニルアルコールを得た。得られたポリビニルアルコールを実施例1と同様に評価した結果をまとめて表2に示す。
[実施例6]
 ポリ酢酸ビニル溶液PVAc-B60質量部に対し、濃度10質量%のリン酸水溶液(pH1.1)を40質量部加え、以降の操作は実施例1と同様にして、ポリ酢酸ビニル(コバルト含有量76ppm)を得た。得られたポリ酢酸ビニルを、実施例1と同様にしてけん化して、ポリビニルアルコールを得た。得られたポリビニルアルコールを実施例1と同様に評価した結果をまとめて表2に示す。
[実施例7]
 ポリ酢酸ビニル溶液PVAc-B60質量部に対し、濃度25質量%のリン酸水溶液(pH0.6)を40質量部加え、以降の操作は実施例1と同様にして、ポリ酢酸ビニル(コバルト含有量30ppm)を得た。得られたポリ酢酸ビニルを、実施例1と同様にしてけん化して、ポリビニルアルコールを得た。得られたポリビニルアルコールを実施例1と同様に評価した結果をまとめて表2に示す。
[実施例8]
 ポリ酢酸ビニル溶液PVAc-B60質量部に対し、濃度10質量%のプロピオン酸水溶液(pH2.6)を40質量部加え、以降の操作は実施例1と同様にして、ポリ酢酸ビニル(コバルト含有量29ppm)を得た。得られたポリ酢酸ビニルを、実施例1と同様にしてけん化して、ポリビニルアルコールを得た。得られたポリビニルアルコールを実施例1と同様に評価した結果をまとめて表2に示す。
[実施例9]
 ポリ酢酸ビニル溶液PVAc-B60質量部に対し、濃度10質量%の乳酸水溶液(pH2.1)を40質量部加え、以降の操作は実施例1と同様にして、ポリ酢酸ビニル(コバルト含有量44ppm)を得た。得られたポリ酢酸ビニルを、実施例1と同様にしてけん化して、ポリビニルアルコールを得た。得られたポリビニルアルコールを実施例1と同様に評価した結果をまとめて表2に示す。
[実施例10]
 ポリ酢酸ビニル溶液PVAc-B60質量部に対し、濃度10質量%のクエン酸水溶液(pH2.0)を40質量部加え、以降の操作は実施例1と同様にして、ポリ酢酸ビニル(コバルト含有量49ppm)を得た。得られたポリ酢酸ビニルを、実施例1と同様にしてけん化して、ポリビニルアルコールを得た。得られたポリビニルアルコールを実施例1と同様に評価した結果をまとめて表2に示す。
[比較例1]
 ポリ酢酸ビニル溶液PVAc-Bを30℃、0.1気圧の条件で乾燥して、揮発分が除去されたポリ酢酸ビニル(コバルト含有量10100ppm)を得た。得られたポリ酢酸ビニルを、実施例1と同様にしてけん化して、ポリビニルアルコールを得た。得られたポリビニルアルコールを実施例1と同様に評価した結果をまとめて表2に示す。
[比較例2]
 ポリ酢酸ビニル溶液PVAc-B60質量部に対し、イオン交換水(pH6.9)を40質量部加え、以降の操作は実施例1と同様にして、ポリ酢酸ビニル(コバルト含有量7650ppm)を得た。得られたポリ酢酸ビニルを、実施例1と同様にしてけん化して、ポリビニルアルコールを得た。得られたポリビニルアルコールを実施例1と同様に評価した結果をまとめて表2に示す。
[比較例3]
 ポリ酢酸ビニル溶液PVAc-B60質量部に対し、水溶性配位子ではない濃度0.1質量%の1-プロパンチオール水溶液(pH6.7)を40質量部加え、以降の操作は実施例1と同様にして、ポリ酢酸ビニル(コバルト含有量890ppm)を得た。ここで、1-プロパンチオールは、25℃の水100gに対する溶解量が1g未満である。得られたポリ酢酸ビニルを、実施例1と同様にしてけん化して、ポリビニルアルコールを得た。得られたポリビニルアルコールを実施例1と同様に評価した結果をまとめて表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002

Claims (6)

  1.  ラジカル開始剤及び有機コバルト錯体の存在下に制御ラジカル重合によってビニルエステル単量体を重合してポリビニルエステルを含むポリマー溶液を得る重合工程;
     前記ポリマー溶液を、水溶性配位子を含む水溶液に接触させて、前記ポリマー溶液からコバルト錯体を抽出する抽出工程;及び
     前記抽出工程後のポリビニルエステルをけん化してポリビニルアルコールを得るけん化工程;を有するポリビニルアルコールの製造方法。
  2.  前記抽出工程後のポリビニルエステルのコバルト元素含有量が0.01~100ppmである請求項1に記載のポリビニルアルコールの製造方法。
  3.  前記けん化工程後のポリビニルアルコールのコバルト元素含有量が0.01~50ppmである請求項1または2に記載のポリビニルアルコールの製造方法。
  4.  前記水溶性配位子が、25℃におけるpKaが0~12の酸である請求項1~3のいずれかに記載のポリビニルアルコールの製造方法。
  5.  前記水溶性配位子がカルボン酸である請求項1~4のいずれかに記載のポリビニルアルコールの製造方法。
  6.  数平均分子量(Mn)が4,400~440,000であり、分子量分布(Mw/Mn)が1.05~1.70であり、けん化度が80~99.99mol%であり、コバルト元素の含有量が0.01~50ppmであるポリビニルアルコール。
     
PCT/JP2017/013493 2016-03-31 2017-03-30 ポリビニルアルコール及びその製造方法 WO2017170974A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018509491A JP6913907B2 (ja) 2016-03-31 2017-03-30 ポリビニルアルコールの製造方法
CN201780026837.5A CN109071716B (zh) 2016-03-31 2017-03-30 聚乙烯醇及其制造方法
EP17775507.1A EP3438139B1 (en) 2016-03-31 2017-03-30 Polyvinyl alcohol and method for producing same
US16/089,483 US10766978B2 (en) 2016-03-31 2017-03-30 Polyvinyl alcohol and method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016072465 2016-03-31
JP2016-072465 2016-03-31

Publications (1)

Publication Number Publication Date
WO2017170974A1 true WO2017170974A1 (ja) 2017-10-05

Family

ID=59965953

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/013493 WO2017170974A1 (ja) 2016-03-31 2017-03-30 ポリビニルアルコール及びその製造方法

Country Status (5)

Country Link
US (1) US10766978B2 (ja)
EP (1) EP3438139B1 (ja)
JP (1) JP6913907B2 (ja)
CN (1) CN109071716B (ja)
WO (1) WO2017170974A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019013267A1 (ja) * 2017-07-11 2019-01-17 株式会社クラレ ポリビニルアルコール及びポリビニルアルコールの製造方法
JP2019066533A (ja) * 2017-09-28 2019-04-25 株式会社クラレ 光学フィルム製造用原反フィルム及びそれを用いた光学フィルムの製造方法
WO2020017417A1 (ja) * 2018-07-20 2020-01-23 デンカ株式会社 ポリビニルアルコール系重合体及び、これを用いた成形体
JP2021507978A (ja) * 2017-12-19 2021-02-25 ユニヴェルシテ・ドゥ・リエージュUniversite De Liege コバルト媒介ラジカル重合によるエチレンのブロック共重合
WO2022191288A1 (ja) 2021-03-10 2022-09-15 株式会社クラレ 重合体の製造方法、ラジカル重合用組成物及びラジカル重合制御剤

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109071715B (zh) * 2016-03-31 2021-08-20 株式会社可乐丽 聚乙烯醇
CN113544163A (zh) * 2019-03-08 2021-10-22 三菱化学株式会社 聚乙烯醇系树脂、聚乙烯醇系树脂的制造方法、分散剂及悬浮聚合用分散剂
CN110066353A (zh) * 2019-04-19 2019-07-30 江西阿尔法高科药业有限公司 一种聚乙烯醇的纯化方法
US20220331849A1 (en) * 2021-04-12 2022-10-20 Kuraray Co., Ltd. Method for preventing the diffusion of soil fumigant
CN115894769B (zh) * 2022-11-29 2024-05-17 清华大学 制备乙烯-乙烯醇共聚物的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11147914A (ja) * 1997-11-17 1999-06-02 Sekisui Chem Co Ltd ポリビニルアルコール樹脂
WO2011118598A1 (ja) * 2010-03-24 2011-09-29 日本酢ビ・ポバール株式会社 ポリビニルアルコール系樹脂およびその製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4351807A (en) * 1977-03-09 1982-09-28 Stamicarbon, B.V. Process for selective extraction of metal ions from aqueous solutions and extracting agents suitable for that purpose
IT1129759B (it) * 1980-01-23 1986-06-11 Montedison Spa Metodo per ricuperare in forma attiva i componenti del sistema catalitico della sintesi dell'acido tereftalico
JPH086003B2 (ja) * 1987-09-01 1996-01-24 コニシ株式会社 酢酸ビニル樹脂エマルジョン組成物
RU2265617C2 (ru) * 2002-12-30 2005-12-10 ФГУП ГНЦ РФ Научно-исследовательский физико-химический институт им. Л.Я. Карпова Малоразветвленный высокомолекулярный поливинилацетат, способ его получения и поливиниловый спирт на его основе
JP4087321B2 (ja) * 2003-09-17 2008-05-21 株式会社クラレ ポリビニルアルコール系重合体およびその製造方法
JP4948899B2 (ja) * 2005-05-23 2012-06-06 株式会社クラレ ビニルエステル系モノマー重合用担持型触媒組成物およびそのビニルエステル系モノマーの重合への使用
KR102072254B1 (ko) * 2012-03-28 2020-01-31 주식회사 쿠라레 폴리비닐알코올계 중합체 필름 및 그 제조 방법
CN109071715B (zh) * 2016-03-31 2021-08-20 株式会社可乐丽 聚乙烯醇
JP6713322B2 (ja) * 2016-03-31 2020-06-24 株式会社クラレ ポリビニルエステルの製造方法およびポリビニルアルコールの製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11147914A (ja) * 1997-11-17 1999-06-02 Sekisui Chem Co Ltd ポリビニルアルコール樹脂
WO2011118598A1 (ja) * 2010-03-24 2011-09-29 日本酢ビ・ポバール株式会社 ポリビニルアルコール系樹脂およびその製造方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
BRYASKOVA RAYNA ET AL.: "Copolymerization of Vinyl Acetate with 1-Octene and Ethylene by Cobalt-Mediated Radical Polymerization", J POLYM SCI, vol. 45, no. 12, June 2007 (2007-06-01), pages 2532 - 2542, XP055480203 *
DEBUIGNE ANTOINE ET AL.: "Amphiphilic Poly(vinyl acetate)-b-poly(N-vinyl pyrrolidone) and Novel Double Hydrophilic Poly(vinyl alcohol)-b-poly (N-vinylpyrrolidone) Block Copolymers Prepared by Cobalt-Mediated Radical Polymerization", MACROMOLECULES, vol. 40, no. 20, October 2007 (2007-10-01), pages 7111 - 7118, XP055553054 *
DEBUIGNE ANTOINE ET AL.: "Synthesis of Novel Well-Defined Poly(vinyl acetate)-b-poly (acrylonitrile) and Derivatized Water-Soluble Poly(vinyl alcohol)-b-poly(acrylic acid) Block Copolymers by Cobalt-Mediated Radical Polymerization", MACROMOLECULES, vol. 41, no. 7, April 2008 (2008-04-01), pages 2353 - 2360, XP055553069 *
DETREMBLEUR CHRISTOPHE: "Preparation of Well- Defined PVOH/C60 Nanohybrids by Cobalt-Mediated Polymerization of Vinyl Acetate", MACROMOLECULAR RAPID COMMUNICATIONS, vol. 27, no. 7, April 2006 (2006-04-01), pages 498 - 504, XP055553063 *
See also references of EP3438139A4 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019013267A1 (ja) * 2017-07-11 2019-01-17 株式会社クラレ ポリビニルアルコール及びポリビニルアルコールの製造方法
JPWO2019013267A1 (ja) * 2017-07-11 2020-07-02 株式会社クラレ ポリビニルアルコール及びポリビニルアルコールの製造方法
US11261270B2 (en) 2017-07-11 2022-03-01 Kuraray Co., Ltd. Polyvinyl alcohol and method for producing polyvinyl alcohol
JP7149537B2 (ja) 2017-07-11 2022-10-07 株式会社クラレ ポリビニルアルコール及びポリビニルアルコールの製造方法
JP2019066533A (ja) * 2017-09-28 2019-04-25 株式会社クラレ 光学フィルム製造用原反フィルム及びそれを用いた光学フィルムの製造方法
JP7042583B2 (ja) 2017-09-28 2022-03-28 株式会社クラレ 光学フィルム製造用原反フィルム及びそれを用いた光学フィルムの製造方法
JP2021507978A (ja) * 2017-12-19 2021-02-25 ユニヴェルシテ・ドゥ・リエージュUniversite De Liege コバルト媒介ラジカル重合によるエチレンのブロック共重合
WO2020017417A1 (ja) * 2018-07-20 2020-01-23 デンカ株式会社 ポリビニルアルコール系重合体及び、これを用いた成形体
JPWO2020017417A1 (ja) * 2018-07-20 2021-08-02 デンカ株式会社 ポリビニルアルコール系重合体及び、これを用いた成形体
TWI812760B (zh) * 2018-07-20 2023-08-21 日商電化股份有限公司 聚乙烯醇系聚合物、以及使用有聚乙烯醇系聚合物之成形體
JP7488183B2 (ja) 2018-07-20 2024-05-21 デンカ株式会社 ポリビニルアルコール系重合体及び、これを用いた成形体
WO2022191288A1 (ja) 2021-03-10 2022-09-15 株式会社クラレ 重合体の製造方法、ラジカル重合用組成物及びラジカル重合制御剤

Also Published As

Publication number Publication date
US10766978B2 (en) 2020-09-08
EP3438139A1 (en) 2019-02-06
US20190119414A1 (en) 2019-04-25
EP3438139B1 (en) 2023-06-14
CN109071716A (zh) 2018-12-21
JPWO2017170974A1 (ja) 2019-02-07
CN109071716B (zh) 2021-03-16
JP6913907B2 (ja) 2021-08-04
EP3438139A4 (en) 2019-11-27

Similar Documents

Publication Publication Date Title
WO2017170974A1 (ja) ポリビニルアルコール及びその製造方法
JP7149537B2 (ja) ポリビニルアルコール及びポリビニルアルコールの製造方法
WO2017170938A1 (ja) ポリビニルアルコール
CN106414511B (zh) 悬浮聚合用分散稳定剂、乙烯基系聚合物的制造方法及氯乙烯树脂
KR102188817B1 (ko) 비닐계 중합체의 제조 방법
JP5463348B2 (ja) 新規なポリビニルアルコール系重合体およびその製造方法
JP6713322B2 (ja) ポリビニルエステルの製造方法およびポリビニルアルコールの製造方法
JP6979320B2 (ja) ポリビニルアルコール
JP6875608B1 (ja) ビニルアルコール系ブロック共重合体及びその製造方法
JP2012067145A (ja) ブロック共重合体の製法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018509491

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017775507

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017775507

Country of ref document: EP

Effective date: 20181031

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17775507

Country of ref document: EP

Kind code of ref document: A1