WO2017170376A1 - クラミジア・トラコマティス検出用プライマーセット及びこれを用いたクラミジア・トラコマティス検出方法、並びにそのための試薬キット - Google Patents

クラミジア・トラコマティス検出用プライマーセット及びこれを用いたクラミジア・トラコマティス検出方法、並びにそのための試薬キット Download PDF

Info

Publication number
WO2017170376A1
WO2017170376A1 PCT/JP2017/012348 JP2017012348W WO2017170376A1 WO 2017170376 A1 WO2017170376 A1 WO 2017170376A1 JP 2017012348 W JP2017012348 W JP 2017012348W WO 2017170376 A1 WO2017170376 A1 WO 2017170376A1
Authority
WO
WIPO (PCT)
Prior art keywords
primer
present
primer pair
nucleic acid
chlamydia trachomatis
Prior art date
Application number
PCT/JP2017/012348
Other languages
English (en)
French (fr)
Inventor
竜也 中村
基夫 渡邊
Original Assignee
和光純薬工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 和光純薬工業株式会社 filed Critical 和光純薬工業株式会社
Priority to US16/088,711 priority Critical patent/US10900092B2/en
Priority to JP2018507974A priority patent/JP6844613B2/ja
Priority to KR1020187019029A priority patent/KR102259445B1/ko
Priority to CN201780020744.1A priority patent/CN109072314A/zh
Priority to EP17774913.2A priority patent/EP3438258B1/en
Publication of WO2017170376A1 publication Critical patent/WO2017170376A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/689Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for bacteria
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/6853Nucleic acid amplification reactions using modified primers or templates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/686Polymerase chain reaction [PCR]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6869Methods for sequencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2565/00Nucleic acid analysis characterised by mode or means of detection
    • C12Q2565/10Detection mode being characterised by the assay principle
    • C12Q2565/125Electrophoretic separation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/112Disease subtyping, staging or classification

Definitions

  • the present invention relates to a primer set for detecting Chlamydia trachomatis (hereinafter sometimes abbreviated as CT), a method for detecting Chlamydia trachomatis using the same, and a method for carrying out the method It relates to a reagent kit.
  • CT Chlamydia trachomatis
  • Chlamydia trachomatis which infects human eyes, urethra, cervix and pharynx and causes various inflammations.
  • serotypes AK, Ba, L1-L3, etc.
  • Patent Document 1 Non-Patent Document 1
  • Reference 1 a method of detecting a latent plasmid specific for Chlamydia trachomatis using a nucleic acid amplification reaction is mainly used.
  • Chlamydia trachomatis clinical samples be collected from urine, pharynx and cervix.
  • samples derived from urine, pharynx and cervix contain human genomic DNA, and it has been found that this human genomic DNA inhibits the target nucleic acid amplification reaction. Therefore, it is necessary to specifically amplify Chlamydia trachomatis even in the presence of human genomic DNA.
  • Non-Patent Document 1 when a nucleic acid amplification reaction is performed in the presence of contaminating DNA such as human genomic DNA, many nonspecific nucleic acids are amplified. As a result, when detecting Chlamydia trachomatis using samples derived from urine, pharynx and cervix, false positives may occur. Moreover, since the detection method disclosed in Non-Patent Document 1 cannot detect a plurality of serotypes of Chlamydia trachomatis, false negatives may occur. That is, the conventional detection method for Chlamydia trachomatis using a nucleic acid amplification reaction has a problem that erroneous determination such as false negative or false positive occurs.
  • the present invention has been made in view of the situation as described above, and provides a primer set for detecting Chlamydia trachomatis that has a low probability of causing false determinations such as false negatives and false positives and is excellent in sensitivity and specificity. Let it be an issue.
  • the present invention has been made for the purpose of solving the above-described problems, and has the following configuration.
  • a primer set for detecting Chlamydia trachomatis comprising a first primer pair comprising a combination of a forward primer comprising the base sequence represented by SEQ ID NO: 5 and a reverse primer represented by SEQ ID NO: 6.
  • a method for detecting Chlamydia trachomatis which comprises using the primer set of (1) above, carrying out a nucleic acid amplification reaction using a nucleic acid in a sample as a template, and detecting the obtained nucleic acid amplification product.
  • a reagent kit for detecting Chlamydia trachomatis comprising the primer set of (1) above.
  • amplification of non-specific nucleic acid can be suppressed even in the presence of contaminating DNA such as human genomic DNA. It is also possible to detect multiple serotypes of Chlamydia trachomatis that can infect humans.
  • the method of the present invention using the primer set for detecting Chlamydia trachomatis of the present invention reduces false positives such as false negatives and false positives that occur in the conventional method, and has high sensitivity and specific accuracy for Chlamydia trachomatis. Can be detected well.
  • FIG. 5 is an electrophoretogram obtained by separating and detecting PCR amplification products obtained by using various primer pairs from the samples containing human genomic DNA obtained in Example 2, Comparative Example 1 and Comparative Example 2 by capillary electrophoresis.
  • FIG. It is a figure showing the nucleic acid density
  • Primer set for detecting Chlamydia trachomatis of the present invention (hereinafter sometimes abbreviated as the primer set of the present invention) is represented by SEQ ID NO: 5.
  • 1st primer pair (it may abbreviate as 1st primer pair which concerns on this invention hereafter) which consists of a forward primer which consists of a base sequence, and the reverse primer which consists of a base sequence represented by sequence number 6 is included. It is characterized by.
  • the forward primer composed of the base sequence represented by SEQ ID NO: 5 and the reverse primer composed of the base sequence represented by SEQ ID NO: 6 may be abbreviated as Chlamydia trachomatis latent plasmid pLGV440 (hereinafter abbreviated as latent plasmid in some cases). ).
  • Nucleic acid amplification reaction using the first primer pair according to the present invention consisting of a combination of these primers and the entire nucleotide sequence of the latent plasmid (SEQ ID NO: 1, GenBank ID: HE603323.1, base numbers 1 to 7492) Is amplified, the region (148 base pairs) of base numbers 4770 to 4917 having the base sequence represented by SEQ ID NO: 2 out of the entire base sequence of the latent plasmid.
  • the primer set of the present invention further includes a forward primer and a reverse primer that anneal to Chlamydia trachomatis genomic DNA (hereinafter sometimes abbreviated as CT genomic DNA).
  • a second primer pair (hereinafter, may be abbreviated as a second primer pair according to the present invention) consisting of the above-mentioned combinations.
  • the second primer pair according to the present invention may be any as long as it anneals with CT genomic DNA.
  • the entire base sequence of CT genomic DNA is disclosed in GenBank ID: HE601796.2. Further, the second primer pair according to the present invention has a base sequence different from that of the first primer pair according to the present invention.
  • the second primer pair according to the present invention may be designed according to a method known per se.
  • a primer may be designed using primer design software (for example, Primer 3) generally used for primer design.
  • primer design software for example, Primer 3
  • the number of bases of the forward primer and the reverse primer in the second primer pair according to the present invention is 10 to 50 bases, which are considered to be necessary for maintaining the specificity as a normal primer sequence, respectively. 10 to 35 bases are preferable, 15 to 35 bases are more preferable, and 18 to 30 bases are particularly preferable.
  • Specific examples of the second primer pair according to the present invention include a combination of a forward primer composed of the base sequence represented by any of SEQ ID NOs: 7 to 9 and a reverse primer composed of the base sequence represented by SEQ ID NO: 10. The thing which becomes.
  • a forward primer consisting of the base sequence represented by SEQ ID NO: 7 and a reverse primer consisting of the base sequence represented by SEQ ID NO: 10 are used for nucleic acid amplification reaction (PCR or the like). Then, of the total base sequence of the CT genomic DNA, the region of base numbers 78264 to 784436 (SEQ ID NO: 3: 173 base pairs) is amplified.
  • nucleic acid amplification reaction PCR or the like
  • a forward primer composed of the base sequence represented by SEQ ID NO: 8
  • a reverse primer composed of the base sequence represented by SEQ ID NO: 10
  • all the bases of CT genomic DNA Of the sequence, the region of base numbers 78264 to 784436 (SEQ ID NO: 173 base pairs) is amplified.
  • the second primer pair according to the present invention is preferably composed of a combination of a forward primer composed of the base sequence represented by SEQ ID NO: 7 or 8 and a reverse primer composed of the base sequence represented by SEQ ID NO: 10, What consists of a combination of the forward primer which consists of a base sequence represented by sequence number 7, and the reverse primer which consists of a base sequence represented by sequence number 10 is more preferable.
  • the nucleic acid can be amplified and detected.
  • the method for obtaining the primer constituting the first primer pair according to the present invention and the second primer pair according to the present invention is not particularly limited, but itself Examples thereof include a method prepared by a known chemical synthesis method and a method obtained by a gene manipulation method using a vector or the like. Among them, the chemical synthesis method is preferable because it is possible to obtain a primer of a certain quality easily, in large quantities and at low cost. For example, if an oligonucleotide is synthesized by a normal phosphoramidite method using a DNA synthesizer and purified by anion column chromatography, the target primer according to the present invention can be obtained.
  • At least one of the primers according to the present invention may be labeled with a labeling substance.
  • the primer according to the present invention labeled with a labeling substance and using only the first primer pair according to the present invention, it is sufficient that at least one of the forward primer and the reverse primer is labeled with the labeling substance. .
  • the present invention when using the primer according to the present invention labeled with a labeling substance and using two primer pairs, the first primer pair according to the present invention and the second primer pair according to the present invention, the present invention It suffices that at least one of the forward primer and the reverse primer of the first primer pair and at least one of the forward primer and the reverse primer of the second primer pair according to the present invention are respectively labeled with a labeling substance.
  • the labeling substance used for labeling the primer according to the present invention with a labeling substance includes known labeling substances such as a fluorescent substance, a radioisotope, an enzyme, and a luminescent substance, and a fluorescent substance is preferred.
  • Examples of the fluorescent substance include TAMRA TM (manufactured by Sigma Aldrich), Alexa 555, Alexa 647 (manufactured by Thermo Fisher Scientific), Cyane Dye-based Cy3, Cy5 (manufactured by GE Healthcare), fluorescein, and the like. TAMRA TM (manufactured by Sigmadrich Co., Ltd.) is preferable.
  • Examples of the radioisotope include 32 P, 33 P, 35 S, and the like.
  • Examples of the enzyme include alkaline phosphatase and horseradish peroxidase.
  • the chemiluminescent reagent containing Acridinium Ester etc. are mentioned, for example.
  • the primer according to the present invention labeled with a labeling substance may be bound directly to the primer or via a linker.
  • the linker may be any linker that is usually used in this field, and may be a nucleic acid having 1 to 3 bases.
  • an oligonucleotide labeling method usually performed in this field may be used, and a method may be appropriately selected for each labeling substance.
  • Examples of the method for labeling the primer according to the present invention with a fluorescent substance include a method for incorporating a fluorescein-labeled nucleotide into a primer according to a method known per se.
  • nucleotides can be labeled with a fluorescent substance by a method of substituting a nucleotide having a linker arm into an oligonucleotide of a sequence (Nucleic Acids Res., 1986, Vol. 14, p. 6115).
  • uridine having a linker arm at the 5-position is chemically synthesized from deoxyuridine by the synthesis method disclosed in JP-A-60-500717, and an oligonucleotide containing the deoxyuridine is synthesized, and then the oligonucleotide chain There is a method of introducing a fluorescent substance into the above (Japanese Patent Laid-Open No. 60-500717).
  • a method of labeling the primer according to the present invention with a radioisotope for example, when synthesizing a primer, a method of labeling a primer by incorporating a nucleotide labeled with a radioisotope, or a primer was synthesized. Thereafter, a method of labeling with a radioisotope is mentioned. Specific examples include a generally used random primer method, nick translation, 5 'end labeling method using T4 polynucleotide kinase, 3' end labeling method using terminal deoxynucleotidyl transferase, and the like.
  • Examples of the method for labeling the primer according to the present invention with an enzyme include direct labeling methods such as direct covalent binding of enzyme molecules such as alkaline phosphatase and horseradish peroxidase to the primer to be labeled.
  • Examples of a method for labeling the primer according to the present invention with a luminescent substance include a method for labeling a nucleotide with luminescence according to a method known per se.
  • the labeling substance may be bound to the primer according to the present invention according to a detection system using a biotin-avidin reaction.
  • a biotin-avidin reaction E.I. P. Diamandis, T .; K. Christopoulos, Clinical Chemistry 1991, 37, p. p.
  • the method described in 625-636 may be performed.
  • Chlamydia trachomatis detection method of the present invention (hereinafter sometimes abbreviated as CT detection method of the present invention) is based on the nucleotide sequence represented by SEQ ID NO: 5.
  • Samples used in the CT detection method of the present invention include, for example, urine, urethral swab suspension, vaginal swab suspension, cervical swab suspension, gargle, oral swab suspension, pharyngeal swab suspension, etc. And various clinical samples and cultured cells. Prior to the CT detection of the present invention, these samples may be pretreated by operations such as concentration and separation of bacteria existing in the sample, extraction of DNA from the cells, and purification. Examples of the method include treatment with an enzyme, a surfactant, an alkali, and heat.
  • Extraction and purification of DNA from the above sample may be performed according to a method known per se. Specifically, after the chlamydia cell wall is destroyed, the DNA may be extracted and purified.
  • a method of destroying the cell wall of chlamydia in the above sample a method of destroying chlamydia membrane structure by treating cells with a surfactant such as SDS or a protein denaturant such as guanidine thiocyanate (GTC), or glass Examples include a method of physically crushing with beads.
  • Extraction and purification of the DNA may be carried out by a method of extracting and purifying using phenol and chloroform, a method of extracting and purifying using ethanol, isopropanol or the like after destroying the cell wall of Chlamydia. Further, DNA extraction and purification may be performed using a commercially available kit [for example, Genomic-tip (manufactured by Qiagen)].
  • the second primer pair according to the present invention may be further used.
  • a first primer pair comprising a combination of a forward primer comprising the base sequence represented by SEQ ID NO: 5 and a reverse primer comprising the base sequence represented by SEQ ID NO: 6, and any one of SEQ ID NOs: 7-9
  • a primer set comprising a second primer pair comprising a combination of a forward primer composed of the base sequence represented by (5) and a reverse primer composed of the base sequence represented by SEQ ID NO: 10, and the nucleic acid in the sample as a template
  • the amplification reaction is performed and the obtained nucleic acid amplification product is detected.
  • the combination of the first primer pair and the second primer pair according to the present invention when the first primer pair and the second primer pair according to the present invention are used is shown in Table 1 below ( 1) or (2) is preferable, and (1) is more preferable.
  • At least one of the primers according to the present invention may be labeled with a labeling substance.
  • the forward primer and the reverse primer it is sufficient that at least one of these is labeled with a labeling substance.
  • the primer according to the present invention labeled with a labeling substance is used, and two of the first primer pair according to the present invention and the second primer pair according to the present invention are used as CT detection primers.
  • two primer pairs are used, at least one of the forward primer and the reverse primer of the first primer pair according to the present invention and at least one of the forward primer and the reverse primer of the second primer pair according to the present invention are respectively labeled with a labeling substance. It only has to be.
  • gonococcus is often infected simultaneously with Chlamydia trachomatis, but it is different from the case where the therapeutic agent is Chlamydia trachomatis. Therefore, simultaneous detection of Chlamydia trachomatis and Neisseria gonorrhoeae is highly clinically significant.
  • a nucleic acid amplification reaction is performed using the primer set of the present invention and the primer pair for detecting Neisseria gonorrhoeae, and the nucleic acid amplification product derived from Chlamydia trachomatis and Neisseria gonorrhoeae are derived. It is sufficient to detect the nucleic acid amplification product.
  • an appropriate bacterium is selected as an internal control, a nucleic acid derived from the bacterium and a primer pair for detecting the bacterium are added, and a nucleic acid amplification reaction using the primer set of the present invention is performed, and Chlamydia trachomatis is performed. It may be confirmed whether or not the nucleic acid amplification reaction has been performed correctly by detecting the nucleic acid amplification product derived from the nucleic acid and the nucleic acid amplification product derived from the bacterium.
  • the bacteria selected as the internal control are, for example, bacteria other than Chlamydia trachomatis when only Chlamydia trachomatis is detected.
  • the fungus are, for example, bacteria other than Chlamydia trachomatis when only Chlamydia trachomatis is detected. The fungus.
  • the primers constituting the gonococcal detection primer pair and the internal control detection primer pair may each be labeled with a labeling substance.
  • the CT detection method of the present invention when a gonococcal detection primer pair labeled with a labeling substance is used, it is sufficient that at least one of the forward primer and the reverse primer of the gonococcal detection primer pair is labeled with a labeling substance.
  • the CT detection method of the present invention when using an internal control detection primer pair labeled with a labeling substance, at least one of the forward primer and the reverse primer of the internal control detection primer pair is labeled with a labeling substance, respectively. Good.
  • the CT detection method of the present invention when a gonococcal detection primer pair and an internal control detection primer pair labeled with a labeling substance are used, at least one of the forward primer and reverse primer of the gonococcal detection primer pair and internal control detection It is sufficient that at least one of the forward primer and the reverse primer of the primer pair is labeled with a labeling substance.
  • the nucleic acid amplification reaction performed using the primer set of the present invention in the CT detection method of the present invention is not particularly limited, and is performed according to a method known per se. Just do it. Specifically, for example, a PCR (Polymerase Chain Reaction) method, a TMA (Transscription-mediated amplification) method, an SDA (Strand Displacement Amplification) method, and the like are mentioned, and the PCR method is preferable.
  • the target in the nucleic acid amplification reaction according to the present invention is usually DNA, but even if the target is RNA, complementary DNA (cDNA) can be synthesized by reverse transcription and used as a target.
  • cDNA complementary DNA
  • Examples of the method include a TRC (Transscription-Reverse Transcribing Concerted Reaction) method.
  • Nucleic acid synthesizing enzymes such as Taq DNA polymerase [for example, KOD Exo ( ⁇ ) (manufactured by Toyobo Co., Ltd.)] and nucleic acid synthesis substrates such as dNTPs (dATP, dCTP, dGTP, dGTTP) used in the nucleic acid amplification reaction according to the present invention May be those normally used in this field.
  • Taq DNA polymerase for example, KOD Exo ( ⁇ ) (manufactured by Toyobo Co., Ltd.)
  • nucleic acid synthesis substrates such as dNTPs (dATP, dCTP, dGTP, dGTTP) used in the nucleic acid amplification reaction according to the present invention May be those normally used in this field.
  • a buffer solution such as Tris-HCl and K 2 HPO 4 , a salt such as MgCl 2 , KCl, (NH 4 ) 2 SO 4 , polyethylene glycol, Triton (Dow) Chemical Company Co., Ltd.), Nonidet (Shell Chemical Co., Ltd.), CHAPS (Dojin Chemical Co., Ltd.) and other surfactants, Procrine 300 (Sigma Aldrich Co., Ltd.) and other preservatives, BSA (Bovine Serum Albumin), etc.
  • the polypeptide may be included.
  • other arbitrary components may be included as long as the nucleic acid amplification reaction is not inhibited.
  • the method for detecting an amplification product in the CT detection method of the present invention may be performed based on a method known per se usually performed in this field. Specifically, for example, (a) a method for detection by electrophoresis, (b) a method for detection by real-time method, and the like are mentioned, and (a) a method for detection by electrophoresis is preferable.
  • the method of detecting by electrophoresis is a method in which amplification products obtained by the nucleic acid amplification reaction according to the present invention using the primer pair according to the present invention are separated by electrophoresis and detected.
  • Specific methods include (a-1) labeled primer method, (a-2) intercalator method, and (a-3) labeled probe method.
  • the labeled primer method refers to “a primer pair including a labeled primer obtained by labeling at least one of the primers according to the present invention with a labeling substance, and using the nucleic acid in a test sample as a template in the present invention. Such nucleic acid amplification reaction is performed. Subsequently, the obtained amplification products are separated by electrophoresis, and the label in the amplification products is detected. As a result, when the label of the amplified product can be detected by the number of base pairs of the product amplified by the primer pair according to the present invention, it is determined that “the test sample is positive for Chlamydia trachomatis”. Is the method.
  • “detecting the label” means directly or indirectly measuring the labeling substance based on the property of the labeling substance.
  • Primer set for detecting Chlamydia trachomatis of the present invention The details of the primer, primer pair, labeling substance, and labeling method in the labeling primer method are as described in ⁇ 1> Primer set for detecting Chlamydia trachomatis of the present invention.
  • Electrophoresis in the labeled primer method may be based on a method that moves at different speeds or moves at different distances depending on the charge intensity of the substance.
  • capillary electrophoresis examples include electrophoresis, polyacrylamide gel electrophoresis (slab electrophoresis), starch gel electrophoresis, isoelectric focusing, and the like.
  • Agarose gel electrophoresis and capillary electrophoresis are preferable, and capillary electrophoresis is more preferable.
  • when performing said capillary electrophoresis what is necessary is just to follow per se well-known method as described in WO2007 / 027495, WO2011 / 118496, WO2008 / 0775520, etc.
  • (A-1-1) When using the first primer pair according to the present invention
  • at least one of the primers in the first primer pair according to the present invention is labeled with a labeling substance.
  • the nucleic acid amplification reaction according to the present invention is performed using the first primer pair according to the present invention including the primer labeled with the labeling substance and using the nucleic acid in the sample as a template.
  • the obtained amplification products are separated by electrophoresis, and the label in the amplification products is detected.
  • the test sample is Chlamydia trachomatis positive. To do.
  • At least one of the primers in the two primer pairs is labeled with a labeling substance.
  • the nucleic acid according to the present invention using the nucleic acid in the sample as a template. Perform an amplification reaction.
  • the amplification product (first amplification product) obtained by the nucleic acid amplification reaction according to the present invention using the first primer pair according to the present invention and the nucleic acid amplification according to the present invention using the second primer pair according to the present invention Each amplification product (second amplification product) obtained by the reaction is separated by electrophoresis, and the label in the first amplification product and the second amplification product is detected.
  • the label of the first amplification product can be detected by the number of base pairs of the product amplified by the first primer pair according to the present invention, or the label of the second amplification product is detected by the second primer pair according to the present invention. If it is detected by the number of base pairs of the product amplified in step 1, it is determined that “the test sample is positive for Chlamydia trachomatis”.
  • the second primer pair according to the present invention include a forward primer composed of the base sequence represented by any of SEQ ID NOs: 7 to 9 and a reverse primer composed of the base sequence represented by SEQ ID NO: 10.
  • a combination consisting of a combination of a forward primer composed of the base sequence represented by SEQ ID NO: 7 or 8 and a reverse primer composed of the base sequence represented by SEQ ID NO: 10 is preferred. It is more preferable to use a combination of a forward primer consisting of a base sequence and a reverse primer consisting of a base sequence represented by SEQ ID NO: 10.
  • Neisseria gonorrhoeae and fungi selected as an internal control in addition to the primer pair according to the present invention for detecting Chlamydia trachomatis, Neisseria gonorrhoeae labeled with a labeling substance and internal control
  • a nucleic acid amplification reaction may be performed in the same manner as described above using a primer pair for detecting fungi such as the fungus selected as above, and a detection method may be performed.
  • the intercalator method means that “the primer pair according to the present invention is used, the nucleic acid amplification reaction according to the present invention is performed using the nucleic acid in the test sample as a template, and the resulting amplification product is electrically Separate by electrophoresis. Next, the amplification product is stained with an intercalator to detect fluorescence derived from the intercalator. As a result, when the fluorescence derived from the intercalator can be detected, the method “determines that the test sample is positive for Chlamydia trachomatis”.
  • primer pair in the intercalator method Details of the primer pair in the intercalator method are as described in ⁇ 1> Primer set for detecting Chlamydia trachomatis of the present invention.
  • electrophoresis in the intercalator method examples include the same as in the (a-1) labeled primer method, and preferable ones are also the same.
  • any intercalator generally used in this field may be used.
  • Specific examples thereof include the following intercalators (1) to (5) and the following intercalator-like substances (6) and (7).
  • ethidium compound eg, ethidium bromide, ethidium homodimer 1 (EthD-1), ethidium homodimer 2 (EthD-2), ethidium bromide monoazide (EMA), dihydroethidium, etc.
  • acridine dye for example, acridine orange
  • Iodine compounds propidium iodide, hexidinium iodide, etc.
  • cyanine dimer dyes for example, POPO-1, BOBO-1, YOYO-1, TOTO-1, JOJO-1, POPO-3, LOLO-1 , BOBO-3, YOYO-3, TOTO-3 (all manufactured by Thermo Fisher Scientific Co., Ltd.)]
  • the labeled probe method means that “the primer pair according to the present invention is used, the nucleic acid amplification reaction according to the present invention is carried out using the nucleic acid in the test sample as a template, and the obtained amplification product is electrolyzed. Separate by electrophoresis. Next, the amplification product is subjected to heat treatment to make a single strand. Subsequently, a hybrid having a base sequence complementary to the base sequence of the amplification product labeled with a labeling substance is hybridized to obtain a hybrid, and the label in the hybrid is detected. As a result, when the label in the hybrid can be detected, the method “determines that the test sample is positive for Chlamydia trachomatis”.
  • Examples of electrophoresis in the labeled probe method include the same (a-1) labeled primer method, and preferable ones are also the same.
  • the method of detecting by real-time method is a method for detecting in real time the amplification product obtained by the nucleic acid amplification reaction according to the present invention using the primer pair according to the present invention.
  • Typical methods include (b-1) TaqMan TM probe method and (b-2) intercalator method.
  • TaqMan TM probe method refers to “a nucleic acid amplification reaction according to the present invention using a primer pair and a fluorescently labeled probe according to the present invention and a nucleic acid in a test sample as a template (for example, real time PCR is performed, and when the fluorescence derived from the probe can be detected, the method “determines that the test sample is positive for Chlamydia trachomatis”.
  • the fluorescently labeled probe in the TaqMan TM probe method is designed to hybridize to the region amplified when the nucleic acid amplification reaction according to the present invention is performed using the primer pair according to the present invention, and its 5 ′ end. Is labeled with a fluorescent dye (reporter fluorescent dye), and the 3 ′ end is labeled with, for example, a quencher dye.
  • a fluorescent dye reporter fluorescent dye
  • the nucleic acid amplification reaction according to the present invention is performed using the first primer pair according to the present invention and the first primer pair according to the present invention.
  • a labeled probe in which the 5 ′ end of a probe designed to hybridize to the region to be amplified is labeled with a reporter fluorescent dye and the 3 ′ end is labeled with a quencher dye is used.
  • the nucleic acid amplification reaction according to the present invention is performed using the nucleic acid in the sample as a template.
  • the fluorescence derived from the reporter fluorescent dye released from the first labeled probe is detected, it is determined that “the sample is positive for Chlamydia trachomatis”.
  • the first primer pair according to the present invention and the first primer pair according to the present invention are labeled with a reporter fluorescent dye and labeled with a quencher dye at the 3 'end Designed to hybridize to the region amplified when the nucleic acid amplification reaction according to the present invention is performed with the probe (first labeled probe), the second primer pair according to the present invention, and the second primer pair according to the present invention.
  • the nucleic acid in the sample is Performing a nucleic acid amplification reaction according to the present invention as a mold.
  • the sample is chlamydia.
  • It is positive for trachomatis.
  • the reporter of the first labeled probe and the reporter of the second labeled probe may have different fluorescence wavelengths.
  • the base sequences of the first labeled probe and the second labeled probe are different from each other.
  • a specific example of the second primer pair according to the present invention is a combination of a forward primer composed of the base sequence represented by any of SEQ ID NOs: 7 to 9 and a reverse primer composed of the base sequence represented by SEQ ID NO: 10. And is preferably composed of a combination of a forward primer composed of the base sequence represented by SEQ ID NO: 7 or 8 and a reverse primer composed of the base sequence represented by SEQ ID NO: 10, represented by SEQ ID NO: 7. More preferred is a combination of a forward primer composed of a base sequence and a reverse primer composed of a base sequence represented by SEQ ID NO: 10.
  • the nucleic acid amplification reaction according to the present invention may be performed by adding the above primer pair. These fungi may be similarly detected using the TaqMan TM probe method or may be detected by a method known per se.
  • the intercalator method refers to “a nucleic acid amplification reaction (for example, real-time PCR) according to the present invention using a primer pair and an intercalator according to the present invention and a nucleic acid in a test sample as a template. Do. Next, fluorescence derived from an intercalator that intercalates in correlation with the amplification amount of the obtained amplification product is detected. As a result, when the fluorescence derived from the intercalator can be detected, the method “determines that the test sample is positive for Chlamydia trachomatis”.
  • primer pair in the intercalator method Details of the primer pair in the intercalator method are as described in ⁇ 1> Primer set for detecting Chlamydia trachomatis of the present invention.
  • Examples of the intercalator in the intercalator method include (a-2) the same as the intercalator method.
  • Chlamydia trachomatis detection method of the present invention are divided into the cases where (a′-1) labeled primer method and (b′-1) TaqMan TM probe method are used as methods for detecting amplification products.
  • (a′-1) labeled primer method and (b′-1) TaqMan TM probe method are used as methods for detecting amplification products.
  • purified DNA is obtained from a sample for detecting Chlamydia trachomatis according to a method known per se.
  • the first primer pair according to the present invention (that is, the forward primer consisting of the base sequence represented by SEQ ID NO: 5 and the base sequence represented by SEQ ID NO: 6) by the phosphoramidide method Reverse primer).
  • a labeling substance for example, a fluorescent substance
  • a nucleic acid amplification reaction according to the present invention (for example, PCR) is performed on purified DNA obtained from a sample as described below. )I do.
  • each primer constituting the first primer pair according to the present invention 0.1 to 2 ⁇ M of each primer constituting the first primer pair according to the present invention, 1.0 to 4.0 mM salt (eg, MgCl 2 ), 80 to 150 ⁇ g / mL polypeptide (eg, BSA) ), 0.8-1.5% surfactant (eg, polyethylene glycol), 0.1-0.5% preservative (eg, Procrine 300), 0.2-0.3 mM nucleic acid synthesis, respectively.
  • 1.0 to 4.0 mM salt eg, MgCl 2
  • 80 to 150 ⁇ g / mL polypeptide eg, BSA
  • 0.8-1.5% surfactant eg, polyethylene glycol
  • 0.1-0.5% preservative eg, Procrine 300
  • 0.2-0.3 mM nucleic acid synthesis respectively.
  • a reaction solution for nucleic acid amplification reaction 10 mM buffer of PH7-9 (eg Tris-HCl buffer) containing substrate (eg dATP, dCTP, dGTP, dTTP) and 10-80 units / ml nucleic acid synthase (eg Taq DNA polymerase)
  • substrate eg dATP, dCTP, dGTP, dTTP
  • 10-80 units / ml nucleic acid synthase eg Taq DNA polymerase
  • the nucleic acid amplification reaction (for example, PCR) according to the present invention is performed using the nucleic acid amplification reaction sample according to the present invention and a nucleic acid amplification apparatus such as a thermal cycler.
  • a nucleic acid amplification apparatus such as a thermal cycler.
  • the obtained nucleic acid amplification product is subjected to electrophoresis (for example, capillary electrophoresis), and then the label in the amplification product is detected.
  • electrophoresis for example, capillary electrophoresis
  • the sample is positive for Chlamydia trachomatis. Is determined.
  • the horizontal axis represents the electrophoresis time and the vertical axis represents fluorescence. Expressed in intensity.
  • the electrophoresis time on the horizontal axis can be converted to the size of DNA or the like from the electrophoresis time of the molecular weight marker. Therefore, the length (number of base pairs) of the nucleic acid amplification product obtained by the nucleic acid amplification reaction according to the present invention using the first primer pair according to the present invention is calculated in advance, and “the obtained nucleic acid amplification product is calculated. It may be confirmed whether it corresponds to a nucleic acid amplification product.
  • the nucleic acid amplification reaction for example, PCR
  • the nucleic acid amplification reaction is performed in the same manner as described above, using at least one of the first primer pairs according to the present invention labeled with a fluorescent substance.
  • the length (number of base pairs) of the nucleic acid amplification product amplified by the nucleic acid amplification reaction (for example, PCR) according to the present invention using the first primer pair according to the present invention is calculated.
  • the first primer pair according to the present invention it is predicted that a 148 base pair nucleic acid consisting of the base sequence represented by SEQ ID NO: 2 will be amplified among all the base sequences of the latent plasmid.
  • the obtained nucleic acid amplification product is subjected to capillary electrophoresis using a fully automatic microchip capillary electrophoresis apparatus such as 2100 Bioanalyzer (manufactured by Agilent Technologies). Then, the sample data obtained by capillary electrophoresis is converted into a gel image by the software of the instrument.
  • a fully automatic microchip capillary electrophoresis apparatus such as 2100 Bioanalyzer (manufactured by Agilent Technologies).
  • the length (number of base pairs) of the obtained nucleic acid amplification product is the same as the nucleic acid amplification product of 148 base pairs, it is determined that “the sample is positive for Chlamydia trachomatis”.
  • the first primer pair according to the present invention that is, the forward primer consisting of the base sequence represented by SEQ ID NO: 5 and the base sequence represented by SEQ ID NO: 6) by the phosphoramidide method Reverse primer
  • a second primer pair according to the present invention for example, a forward primer composed of the base sequence represented by SEQ ID NO: 7 and a reverse primer composed of the base sequence represented by SEQ ID NO: 10
  • a labeling substance for example, a fluorescent substance
  • the purified DNA obtained from the sample is treated as follows.
  • a nucleic acid amplification reaction for example, multiplex PCR
  • each of the primers constituting the first primer pair according to the present invention 0.1 to 2 ⁇ M each of the primers constituting the second primer pair according to the present invention, 1.0 to 4.0 mM Salt (eg, MgCl 2 ), 80-150 ⁇ g / mL polypeptide (eg, BSA), 0.8-1.5% surfactant (eg, polyethylene glycol), 0.1-0.5% Preservatives (eg, Procrine 300), 0.2-0.3 mM nucleic acid synthesis substrates (eg, dATP, dCTP, dGTP, dTTP) and 10-80 units / ml of nucleic acid synthase (eg, Taq DNA polymerase)
  • a 10 mM buffer solution for example, Tris-HCl buffer solution
  • PH 7 to 9 containing is prepared as a reaction solution for nucleic acid amplification reaction according to the present invention.
  • 1 to 100 ng of a purified DNA sample of Chlamydia trachomatis is added to 20 to 30 ⁇ L of the reaction solution for nucleic acid amplification reaction according to the present invention to obtain a sample for nucleic acid amplification reaction according to the present invention.
  • the nucleic acid amplification reaction according to the present invention (for example, multiplex PCR) is performed using the nucleic acid amplification reaction sample according to the present invention and a nucleic acid amplification apparatus such as a thermal cycler.
  • a nucleic acid amplification apparatus such as a thermal cycler.
  • each of the obtained nucleic acid amplification products is subjected to electrophoresis (for example, capillary electrophoresis), and then a label in the amplification product is detected.
  • electrophoresis for example, capillary electrophoresis
  • the label in the obtained nucleic acid amplification product can be detected by the number of base pairs (148 bases) of the product amplified by the first primer pair according to the present invention, or the label in the obtained nucleic acid amplification product is In the case where the product is detected by the number of base pairs (173 bases) of the product amplified by the second primer pair according to the present invention, if it is at least any one of them, “the sample is positive for Chlamydia trachomatis”. judge.
  • the horizontal axis represents the electrophoresis time and the vertical axis represents fluorescence. Expressed in intensity.
  • the electrophoresis time on the horizontal axis can be converted to the size of DNA or the like from the electrophoresis time of the molecular weight marker.
  • the length (number of base pairs) of the nucleic acid amplification product obtained by the nucleic acid amplification reaction according to the present invention using the first primer pair according to the present invention and the nucleic acid according to the present invention using the second primer pair according to the present invention The length (number of base pairs) of the nucleic acid amplification product obtained by the amplification reaction may be calculated in advance, and “whether or not the obtained nucleic acid amplification product corresponds to the calculated nucleic acid amplification product” may be confirmed.
  • the nucleic acid amplification reaction according to the present invention (for example, multiplex PCR) using at least one of the first primer pair according to the present invention and at least one of the second primer pair according to the present invention labeled with a fluorescent substance. )I do.
  • the first primer pair according to the present invention it is predicted that a 148 base pair nucleic acid consisting of the base sequence represented by SEQ ID NO: 2 will be amplified among all the base sequences of the latent plasmid.
  • a 173 base pair nucleic acid consisting of the base sequence represented by SEQ ID NO: 3 is expected to be amplified out of the total base sequence of CT genomic DNA. .
  • the obtained nucleic acid amplification product is subjected to capillary electrophoresis using a fully automatic microchip capillary electrophoresis apparatus such as 2100 Bioanalyzer (manufactured by Agilent Technologies). Then, the sample data obtained by capillary electrophoresis is converted into a gel image by the software of the instrument.
  • a fully automatic microchip capillary electrophoresis apparatus such as 2100 Bioanalyzer (manufactured by Agilent Technologies).
  • the obtained nucleic acid amplification product is the same as at least one of a 148 base pair nucleic acid amplification product and a 173 base pair nucleic acid amplification product, “the sample is positive for Chlamydia trachomatis” Is determined.
  • a purified DNA sample is obtained from a sample for detecting Chlamydia trachomatis according to a method known per se.
  • the first primer pair according to the present invention ie, the forward primer consisting of the base sequence represented by SEQ ID NO: 5 and the base sequence represented by SEQ ID NO: 6) by the phosphoramidite method.
  • a reverse primer the first primer pair according to the present invention
  • a sequence for use as a probe is designed from the base sequence amplified by the nucleic acid amplification reaction (for example, PCR) according to the present invention using the first primer pair according to the present invention, and an oligo having this base sequence is designed. Synthesize nucleotides.
  • the FAM of the reporter fluorescent dye is bound to the 5 'end of the oligonucleotide and the quencher dye TAMRA is bound to the 3' end by a method known per se to obtain a fluorescently labeled probe (first labeled probe).
  • the nucleic acid amplification reaction for example, real-time PCR
  • the nucleic acid amplification reaction for example, real-time PCR
  • each primer constituting the first primer pair according to the present invention 0.1 to 1 ⁇ M of the first labeled probe, 1.0 to 4.0 mM salt (for example, MgCl 2 ), 50 ⁇ 100 mM salt (eg, KCl), 300-600 ⁇ g / mL polypeptide (eg, BSA), 0.05-2% detergent (eg, sodium cholate), 0.1-0.3 mM each 10 mM buffer (for example, Tris-HCl) containing 10 to 80 units / mL of nucleic acid synthase (for example, Taq DNA polymerase), a nucleic acid synthesis substrate (for example, dATP, dCTP, dGTP, dTTP).
  • a nucleic acid synthesis substrate for example, dATP, dCTP, dGTP, dTTP.
  • Buffer solution is prepared and used as a reaction solution for nucleic acid amplification reaction according to the present invention.
  • a purified DNA sample of 1 to 100 ng of Chlamydia trachomatis is added to 20 to 25 ⁇ L of the reaction solution for nucleic acid amplification reaction according to the present invention to obtain a sample for nucleic acid amplification reaction according to the present invention.
  • the nucleic acid amplification reaction for example, real-time PCR
  • the nucleic acid amplification reaction is performed using a thermal cycler or the like.
  • the number of Chlamydia trachomatis in a sample can be calculated by preparing a calibration curve by a method known per se.
  • the first primer pair according to the present invention ie, the forward primer consisting of the base sequence represented by SEQ ID NO: 5 and the base sequence represented by SEQ ID NO: 6
  • a second primer pair according to the present invention for example, a forward primer composed of the base sequence represented by SEQ ID NO: 7 and a reverse primer composed of the base sequence represented by SEQ ID NO: 10
  • a sequence for use as a probe is designed from the base sequence amplified by the nucleic acid amplification reaction (for example, PCR) according to the present invention using the first primer pair according to the present invention, and an oligo having this base sequence is designed. Synthesize nucleotides. Further, a reporter fluorescent dye FAM is bound to the 5 'end of the oligonucleotide and a quencher dye TAMRA is bound to the 3' end by a method known per se to obtain a fluorescently labeled probe (first labeled probe).
  • the nucleic acid amplification according to the present invention using the second primer pair according to the present invention (for example, a forward primer composed of the base sequence represented by SEQ ID NO: 7 and a reverse primer composed of the base sequence represented by SEQ ID NO: 10)
  • a sequence for use as a probe is designed from a base sequence amplified by a reaction (for example, PCR), and an oligonucleotide having this base sequence is synthesized.
  • a reporter fluorescent dye HEX is bound to the 5 'end of the oligonucleotide and a quencher dye TAMRA is bound to the 3' end by a method known per se to obtain a fluorescently labeled probe (second labeled probe).
  • the nucleic acid amplification reaction for example, real-time PCR
  • 0.1 to 2 ⁇ M each of the primers constituting the first primer pair according to the present invention 0.1 to 2 ⁇ M each of the primers constituting the second primer pair according to the present invention, 0.1 to 1 ⁇ M of the first primer pair constituting the first primer pair Labeled probe, 0.1-1 ⁇ M second labeled probe, 1.0-4.0 mM salt (eg, MgCl 2 ), 50-100 mM salt (eg, KCl), 300-600 ⁇ g / mL polypeptide ( For example, BSA), 0.05-2% surfactant (eg, sodium cholate), 0.1-0.3 mM nucleic acid synthesis substrate (eg, dATP, dCTP, dGTP, dTTP), 10-80
  • a 10 mM buffer solution for example, Tris-HCl buffer solution having a pH of 8 to 9 containing unit / mL nucleic acid synthase (for example, Taq DNA polymerase) is prepared, and the
  • the amplification reaction the reaction solution.
  • a purified DNA sample of 1 to 100 ng of Chlamydia trachomatis is added to 20 to 25 ⁇ L of the reaction solution for nucleic acid amplification reaction according to the present invention to obtain a sample for nucleic acid amplification reaction according to the present invention.
  • the nucleic acid amplification reaction for example, real-time PCR
  • the nucleic acid amplification reaction is performed using a thermal cycler or the like.
  • the number of Chlamydia trachomatis in a sample can be calculated by creating a calibration curve by a method known per se.
  • the reagent kit for detection of Chlamydia trachomatis of the present invention (hereinafter sometimes abbreviated as the reagent kit of the present invention) is represented by SEQ ID NO: 5. It comprises a first primer pair comprising a combination of a forward primer comprising a base sequence and a reverse primer comprising a base sequence represented by SEQ ID NO: 6.
  • the second primer pair according to the present invention may be further used. Specifically, a first primer pair comprising a combination of a forward primer comprising the base sequence represented by SEQ ID NO: 5 and a reverse primer comprising the base sequence represented by SEQ ID NO: 6, and any one of SEQ ID NOs: 7-9 And a primer set comprising a second primer pair comprising a combination of a forward primer comprising the base sequence represented by the above and a reverse primer comprising the base sequence represented by SEQ ID NO: 10.
  • (1) or (2) in Table 2 shown below is preferable, and (1) is more preferable.
  • At least one of the primers according to the present invention may be labeled with a labeling substance.
  • the reagent kit of the present invention includes the primer according to the present invention labeled with a labeling substance and includes only the first primer pair according to the present invention as a CT detection primer
  • the forward primer And at least one of the reverse primers may be labeled with a labeling substance.
  • the primer according to the present invention labeled with a labeling substance when the primer according to the present invention labeled with a labeling substance is included, two primer pairs of the first primer pair according to the present invention and the second primer pair according to the present invention When at least one of the forward primer and the reverse primer of the first primer pair according to the present invention and at least one of the forward primer and the reverse primer of the second primer pair according to the present invention are respectively labeled with a labeling substance. That's fine.
  • a primer pair for detecting Neisseria gonorrhoeae or a nucleic acid derived from the bacterium selected as an internal control, and the A primer pair for detecting bacteria may be included.
  • the primers constituting the gonococcal detection primer pair and the internal control detection primer pair may be labeled with a labeling substance, respectively.
  • the reagent kit of the present invention when a gonococcal detection primer pair labeled with a labeling substance is included, at least one of the forward primer and the reverse primer of the gonococcal detection primer pair is labeled with a labeling substance, respectively. Good.
  • the reagent kit of the present invention when an internal control detection primer pair labeled with a labeling substance is included, at least one of the forward primer and the reverse primer of the internal control detection primer pair is labeled with a labeling substance. Just do it.
  • the reagent kit of the present invention when a gonococcal detection primer pair and an internal control detection primer pair labeled with a labeling substance are included, at least one of the forward primer and reverse primer of the gonococcal detection primer pair and the internal control It is sufficient that at least one of the forward primer and the reverse primer of the detection primer pair is labeled with a labeling substance.
  • reagents usually used in this field such as buffers, stabilizers, preservatives, etc., which do not inhibit the stability of coexisting reagents and the like, and amplify nucleic acids such as PCR Those that do not inhibit the reaction or hybridization reaction can be included.
  • concentration may be appropriately selected from a concentration range usually used in this field.
  • the buffer solution include, for example, when performing a normal nucleic acid amplification reaction or hybridization reaction such as Tris buffer solution, phosphate buffer solution, veronal buffer solution, borate buffer solution, Good buffer solution, etc. All the buffer solutions used in the above are mentioned, and the pH is not particularly limited, but the range of 5 to 9 is usually preferable.
  • a nucleic acid synthase eg, Taq DNA polymerase
  • a nucleic acid synthesis substrate eg, dATP, dCTP, dGTP, dTTP, etc.
  • an intercalator eg, ethidium bromide, SYBR TM Green I, etc.
  • a label Substances eg, FAM, TAMRA, etc.
  • fluorescently labeled probes eg, gels
  • DNA markers eg.g, DNA markers, etc.
  • the reagent kit of the present invention may contain a method for detecting Chlamydia trachomatis of the present invention, instructions for judging the presence or absence of Chlamydia trachomatis, and the like.
  • the “instructions” means instruction manuals, attached texts, pamphlets, etc. of the kit in which the features, principles, operation procedures, judgment procedures, etc. of the method are substantially described by text or diagrams. .
  • the bacteria used in the examples are all clinical isolates, and the bacterial species have already been differentiated after culturing by the shape of colonies and various conventional biochemical tests.
  • Primer pair (first primer pair according to the present invention)
  • a forward primer (CT1P1F-2) and a reverse primer (CT1P1R-9) having the base sequences shown in Table 3 below were used.
  • the forward primer (CT1P1F-2)
  • the 5 ′ end of the sequence was labeled with a fluorescent substance TAMRA.
  • the first primer pair (CT1P1F-2 and CT1P1R-9) according to the present invention is a region (SEQ ID NO: 4770) to 4917 of the entire base sequence (GenBankID: HE6033230.1) of the latent plasmid. 2: 148 base pairs) is a target sequence.
  • Chlamydia ( Chlamydia trachomatis , Chlamydophila caviae itself , Chlamydophila pneumoniae , Chlamydophila , and Chlamydophila pneumoniae )
  • Purified genomic DNA was obtained using a purification method.
  • the copy number of each of the obtained purified DNAs was calculated using a SYBR TM Premix Ex Taq TM II (manufactured by Takara Bio Inc.) with a real-time PCR apparatus [StepOnePlus TM (manufactured by Thermo Fisher Scientific Inc.)].
  • the purified DNA was prepared to 10 5 copy / ⁇ L using TE buffer (pH 8.0) (manufactured by Nippon Gene Co., Ltd.) and used as chlamydia DNA.
  • TE buffer pH 8.0
  • the bacterial strains used were all provided by the laboratory of Prof. Hiroaki Kobun, graduate School of Biomedical Sciences, Okayama University.
  • the obtained nucleic acid amplification product is subjected to capillary electrophoresis using a fully automatic microchip type capillary electrophoresis apparatus 2100 Bioanalyzer (manufactured by Agilent Technologies) according to the protocol attached to the instrument, thereby obtaining the nucleic acid obtained. Amplification products were separated and detected.
  • Results The results of capillary electrophoresis are summarized in Table 5 below.
  • Table 5 a positive result indicates that a target 148 base pair nucleic acid amplification product was detected.
  • a negative result indicates that the target nucleic acid amplification product was not detected.
  • the target nucleic acid amplification product was confirmed only when PCR was performed using the first primer pair according to the present invention and a DNA sample derived from each strain of Chlamydia trachomatis as a template. These samples were determined to be positive for Chlamydia trachomatis. On the other hand, when PCR was performed using a DNA sample derived from bacteria other than Chlamydia trachomatis as a template, the target target nucleic acid amplification product was not confirmed, and these samples could be judged to be negative for Chlamydia trachomatis. It was.
  • Chlamydia trachomatis can be specifically detected by performing a nucleic acid amplification reaction using the first primer pair according to the present invention.
  • Example 2 Comparative Examples 1 and 2 Influence of human genomic DNA on PCR using various primer pairs
  • Primer pair / first primer pair according to the present invention (Example 2) The same primer pair as in Example 1 was used.
  • -Primer pair of Patent Document 1 (Comparative Example 1)
  • a primer pair disclosed in Patent Document 1 Japanese Patent No. 5811086
  • a forward primer (IshikFw) and a reverse primer (IshikRv) having the base sequences shown in Table 6 below were used.
  • the reverse primer (IshikRv) used what labeled 5 'terminal of the arrangement
  • Non-Patent Document 1 (Comparative Example 2) As a primer pair disclosed in Non-Patent Document 1 (Moller, JK, et al., Journal of Clinical Microbiology, 2008, 46, p. 3892-3895), forward consisting of the base sequences shown in Table 6 below A primer (MollarFw) and a reverse primer (MollarRv) were used. As the forward primer (MollarFw), the 5 ′ end of the sequence labeled with the fluorescent substance TAMRA was used. Each primer pair used is summarized in Table 6 below.
  • Example 3 and Comparative Example 3 Detection of Chlamydia trachomatis in the presence of human genomic DNA
  • Example 3 The same primer pair as in Example 1 was used.
  • -Primer pair of Non-Patent Document 1 The same primer pair as in Comparative Example 2 was used.
  • Each primer pair used is summarized in Table 8 below.
  • the first primer pair according to the present invention is a region of base numbers 4770 to 4917 (148 base pairs: SEQ ID NO.) Of the entire base sequence (GenBankID: HE6033230.1) of the latent plasmid.
  • the base sequence consisting of 2) is taken as the target sequence.
  • the primer pair of Non-Patent Document 1 is a base sequence consisting of the region of base numbers 4770 to 4886 (117 base pairs: SEQ ID NO: 20) in the entire base sequence (GenBankID: HE6033230.1) of the latent plasmid. Is the target array.
  • (3) Preparation of Chlamydia DNA Each C.I. prepared in Example 1 (3). Chlamydia DNA purified from a trachomatis strain (A, B, Ba, C, D, E, F, G, H, I, J, K, L1, L2, L3) was used.
  • PCR reaction solutions were prepared by the same method as in Example 1 (4), except that the first primer pair according to the present invention and the primer pair of Non-Patent Document 1 were used as the primer pair.
  • -PCR reaction solution containing the first primer pair according to the present invention -PCR reaction solution containing the primer pair of Non-Patent Document 1 1 ⁇ L of each chlamydia DNA and 1 ⁇ L of human genomic DNA prepared in (3) and (4) above, Each of the two PCR reaction solutions was suspended in 25 ⁇ L to prepare a PCR sample. Using these various PCR samples, PCR and capillary electrophoresis were performed in the same manner as in Example 1 (4) to separate and detect nucleic acid amplification products.
  • FIG. 2 shows the results of capillary electrophoresis.
  • the relationship between each lane in FIG. 2 and the primer pair and chlamydia DNA used for amplification is shown in Table 9 below.
  • the band indicates that a nucleic acid amplification product has been detected.
  • the target sequence is 117 base pairs, so if a band is detected near 117 base pairs, the target Chlamydia trachomatis is determined. It can be said that it was detected.
  • Example 4 Detection of Chlamydia trachomatis using the first primer pair according to the present invention and the second primer pair according to the present invention
  • Primer pair / first primer pair according to the present invention The same primer pair as in Example 1 was used.
  • Second primer pair according to the present invention A forward primer (CT2F-4) and a reverse primer (CT2_8) having the base sequences shown in Table 10 below were used.
  • CT2_8 the 5 ′ end of the sequence was labeled with a fluorescent substance TAMRA.
  • the reverse primer (CT2_8) is disclosed in SeqID 92 of WO93 / 00447.
  • -Primer pair for gonococci detection The forward primer (NG21F) and reverse primer (NG24R) which consist of a base sequence shown in following Table 10 were used.
  • the reverse primer As the reverse primer (NG24R), the 5 ′ end of the sequence labeled with the fluorescent substance TAMRA was used.
  • the forward primer (NG21F) is obtained by cutting 5 bases of the sequence disclosed in SeqID12 of WO96 / 12824 and adding 2 bases to the 3 ′ terminal.
  • the reverse primer (NG24R) is disclosed in SeqID108 of WO93 / 00447. Whether or not the gonococcal detection primer pair can detect Chlamydia trachomatis using a primer set including the first primer pair according to the present invention and the second primer pair according to the present invention even if the primer pair exists. Used to verify. Each primer pair used is summarized in Table 10 below.
  • the first primer pair according to the present invention is a base consisting of the region of base numbers 4770 to 4917 (148 base pairs: SEQ ID NO: 2) in the entire base sequence (GenBankID: HE6033230.1) of the latent plasmid. Let the array be the target array.
  • the second primer pair according to the present invention is a base sequence consisting of the region of base numbers 78264 to 784436 (173 base pairs: SEQ ID NO: 3) in the total base sequence of CT genomic DNA (GenBankID: HE601796.2).
  • a 10 mM Tris-HCl buffer solution (PH 8.0) containing KOD Exo (-) (manufactured by Toyobo Co., Ltd.) was prepared and used as a reaction solution for multiplex PCR.
  • nucleic acid amplification product was obtained by performing capillary electrophoresis according to the protocol attached to the instrument using a fully automatic microchip capillary electrophoresis apparatus 2100 bioanalyzer (manufactured by Agilent Technologies). Nucleic acid amplification products were separated and detected.
  • Results The results of capillary electrophoresis are summarized in Table 11 below.
  • Table 11 a positive result indicates that at least one of a target 148 base pair nucleic acid amplification product or a target 173 base pair nucleic acid amplification product was detected.
  • a negative result indicates that the target nucleic acid amplification product was not detected in the entire target nucleotide sequence of the latent plasmid, and the target nucleic acid amplification product was detected in the CT genomic DNA base sequence.
  • PCR was performed using a primer set including the first primer pair according to the present invention and the second primer pair according to the present invention, and using DNA samples derived from each strain of Chlamydia trachomatis as a template.
  • the target nucleic acid amplification products were confirmed only when the test was performed, and these samples could be determined to be positive for Chlamydia trachomatis.
  • multiplex PCR was similarly performed using a DNA sample derived from bacteria other than Chlamydia trachomatis as a template and using a primer set including the first primer pair according to the present invention and the second primer pair according to the present invention.
  • the target target nucleic acid amplification product was not confirmed, and these samples could be judged to be Chlamydia trachomatis negative.
  • chlamydia trachomatis is specifically detected using a primer set including the first primer pair according to the present invention and the second primer pair according to the present invention. I was able to.
  • Chlamydia trachomatis can be specifically detected using a primer set including the first primer pair according to the present invention and the second primer pair according to the present invention.
  • Primer pair / first primer pair according to the present invention The same primer pair as in Example 1 was used.
  • Second primer pair (a) according to the present invention The same primer pair as in Example 4 was used.
  • Second primer pair (b) according to the present invention A forward primer (CT2F-5) and a reverse primer (CT2_8) having the base sequences shown in Table 12 below were used.
  • CT2_8 the reverse primer (CT2_8), the 5 ′ end of the sequence was labeled with a fluorescent substance TAMRA.
  • the second primer pair (c) according to the invention A forward primer (CT2F-6) and a reverse primer (CT2_8) having the base sequences shown in Table 12 below were used.
  • CT2_8 As the reverse primer (CT2_8), the 5 ′ end of the sequence was labeled with a fluorescent substance TAMRA.
  • CT2_8 A known primer pair targeting CT genomic DNA
  • CT2_8 the 5 ′ end of the sequence was labeled with a fluorescent substance TAMRA.
  • a forward primer (CT2_7) constituting a known primer pair targeting CT genomic DNA is described in SeqID2 of US5573907.
  • the reverse primer (CT2_8) is described in SeqID 92 of WO93 / 00447.
  • -Primer pair for detecting Neisseria gonorrhoeae The same primer pair as in Example 4 was used. Each primer pair used is summarized in Table 12 below.
  • results of capillary electrophoresis are shown in FIG.
  • the primer pairs used in each lane of FIG. 3 are shown in Table 13 below.
  • the band indicates that the nucleic acid amplification product was detected. Since the sample for multiplex PCR does not contain Chlamydia trachomatis DNA, when a band indicating a nucleic acid amplification product is detected, the band indicates that the nucleic acid is amplified nonspecifically (nonspecific nucleic acid). An amplification product was obtained).
  • nucleic acid amplification products between 140 and 200 base pairs have high fluorescence intensity and are close to 145 base pairs that are the target sequence of the latent plasmid and 164 base pairs that are the target sequence of the CT genomic DNA. It was found that there was a high probability of being positive.
  • Example 6 and Comparative Example 5 Detection of Chlamydia trachomatis in the presence of human genomic DNA
  • Primer pair / first primer pair according to the present invention The same primer pair as in Example 1 was used.
  • Second primer pair (a) according to the present invention The same primer pair as in Example 4 was used.
  • Second primer pair (b) according to the present invention The same primer pair as in Example 5 was used.
  • -The primer pair of patent document 1 The same primer pair as the comparative example 1 was used.
  • -Primer pair for CT genomic DNA The same primer pair as Comparative Example 4 was used.
  • -Primer pair for detecting Neisseria gonorrhoeae The same primer pair as in Example 4 was used.
  • Each primer pair used is summarized in Table 14 below.
  • the first primer pair according to the present invention is a base consisting of the region of base numbers 4770 to 4917 (148 base pairs: SEQ ID NO: 2) in the entire base sequence (GenBankID: HE6033230.1) of the latent plasmid. Let the array be the target array.
  • the second primer pair (a) according to the present invention is a base sequence consisting of the region of base numbers 782264 to 784436 (173 base pairs: SEQ ID NO: 3) in the total base sequence (GenBankID: HE601796.2) of CT genomic DNA. Is the target array.
  • the second primer pair (b) comprises a nucleotide sequence consisting of a region of nucleotide numbers 782264 to 784436 (173 nucleotide pairs: SEQ ID NO: 3) in the entire nucleotide sequence (GenBankID: HE601796.2) of CT genomic DNA. Is the target array.
  • the primer pair of Patent Document 1 has a base sequence consisting of a region of base numbers 4771 to 4915 (145 base pairs: SEQ ID NO: 19) in the entire base sequence (GenBankID: HE6033230.1) of the latent plasmid as a target sequence.
  • the target pair of the CT genomic DNA target primer pair is the base sequence consisting of the region of base numbers 78264 to 784427 (164 base pairs: SEQ ID NO: 20) in the total base sequence of CT genomic DNA (GenBankID: HE6011796.2). To do.
  • nucleic acid amplification products were separated and detected by multiplex PCR and capillary electrophoresis in the same manner as in Example 4 (4). Furthermore, the nucleic acid concentration of the amplified latent plasmid was calculated from the fluorescence intensity (darkness) of the target sequence band of the obtained latent plasmid.
  • FIGS. 4 and 5 Results The results of capillary electrophoresis are shown in FIGS.
  • the primer pairs used in each lane of FIGS. 4 and 5 are shown in Table 15 below.
  • the band indicates that the nucleic acid was amplified.
  • a primer set including the first primer pair according to the present invention and the second primer pair (a) according to the present invention was used (Example 6-1)
  • the first primer pair according to the present invention and the present invention When the primer set including the second primer pair (b) according to (Example 6-2) is used, since the target sequence is 148 base pairs and 173 base pairs, either 148 base pairs or near 173 base pairs If a band is detected on either side, it can be said that the target Chlamydia trachomatis was detected.
  • FIG. 5 is a graph showing the nucleic acid concentration calculated from the fluorescence intensity (darkness) of the band of the target sequence of the latent plasmid in FIG.
  • a primer set including the first primer pair according to the present invention and the second primer pair according to the present invention can suppress amplification of non-specific nucleic acid, and thus may be false positive. It was found to be extremely low. Moreover, since Chlamydia trachomatis can be detected with high sensitivity, it was found that the possibility of false negatives is extremely low. On the other hand, it was found that when a primer set including the primer pair of Patent Document 1 and a primer pair for CT genomic DNA was used, amplification of non-specific nucleic acids could not be suppressed, and thus there was a high possibility of false positives. Moreover, since Chlamydia trachomatis cannot be detected with high sensitivity, it was found that the possibility of false negatives is extremely high.
  • Chlamydia trachomatis using the primer set of the present invention, even when a sample derived from urine, pharynx, cervix, which is highly likely to contain human genomic DNA, is diagnostic. It is possible to reduce erroneous determination, and Chlamydia trachomatis can be detected with high sensitivity and specific accuracy compared to the conventional method.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本発明の課題は、偽陰性や偽陽性といった誤判定が生じる確率が低く、感度および特異性に優れた、クラミジア・トラコマティスの検出方法を提供することにある。 本発明は、「配列番号5で表される塩基配列からなるフォワードプライマーと配列番号6で表される塩基配列からなるリバースプライマーからなる第1プライマー対を含む、クラミジア・トラコマティス検出用プライマーセット及び該プライマーセットを用いるクラミジア・トラコマティス検出方法、並びにそのための試薬キット」に関する。

Description

クラミジア・トラコマティス検出用プライマーセット及びこれを用いたクラミジア・トラコマティス検出方法、並びにそのための試薬キット
 本発明は、クラミジア・トラコマティス(Chlamydia trachomatis)(以下、CTと略記する場合がある。)を検出するためのプライマーセット及びこれを用いたクラミジア・トラコマティスの検出方法、該方法を実施するための試薬キットに関する。
 今日、性風俗の多様化や若者を中心とする性行動様式の変化に伴い、クラミジア感染症の増加が著しい。
 クラミジア感染症の原因菌は、クラミジア・トラコマティスであり、ヒトの目や尿道、子宮頸管や咽頭に感染し、様々な炎症を引き起こす。また、クラミジア・トラコマティスには、ヒトに感染し得る15種類程度の血清型(A-K,Ba,L1-L3等)が知られている。そのため、複数の血清型のクラミジア・トラコマティスを検出する必要がある。
 現在、クラミジア・トラコマティスの検出方法としては、核酸増幅反応を利用した、クラミジア・トラコマティスに特異的な潜在プラスミド(Cryptic plasmid)を検出する方法が主流となっている(特許文献1、非特許文献1)。
 また、クラミジア・トラコマティスの臨床試料は、尿、咽頭、子宮頸管から採取することが推奨されている。しかし、尿、咽頭、子宮頸管由来の試料には、ヒトゲノムDNAが含まれており、このヒトゲノムDNAは、目的の核酸増幅反応を阻害してしまうことがわかっている。そのため、ヒトゲノムDNA存在下であっても、特異的にクラミジア・トラコマティスを増幅させる必要がある。
特許第5811086号公報
Moller,J.K., et al.,Journal of Clinical Microbiology,2008,46,p.3892-3895
 しかし、特許文献1及び非特許文献1において開示された検出方法では、ヒトゲノムDNA等の夾雑DNA存在下で核酸増幅反応を行うと、非特異的な核酸が多数増幅されてしまう。その結果、尿、咽頭、子宮頸管由来の試料を用いたクラミジア・トラコマティスの検出を行うと、偽陽性が生じてしまうことがあった。
 また、非特許文献1において開示された検出方法では、クラミジア・トラコマティスの複数の血清型を検出することができないため、偽陰性が生じてしまうこともあった。
 つまり、核酸増幅反応を利用した、従来のクラミジア・トラコマティスの検出方法では、偽陰性や偽陽性といった誤判定が生じてしまうという問題を有していた。
 本発明は、上記した如き状況に鑑みてなされたものであって、偽陰性や偽陽性といった誤判定が生じる確率が低く、感度および特異性に優れたクラミジア・トラコマティス検出用プライマーセットの提供を課題とする。
 本発明は、上記課題を解決する目的で成されたもので、以下の構成よりなる。
(1)配列番号5で表される塩基配列からなるフォワードプライマーと配列番号6で表されるリバースプライマーの組み合わせからなる第1プライマー対を含む、クラミジア・トラコマティス検出用プライマーセット。
(2)上記(1)のプライマーセットを用い、試料中の核酸を鋳型として核酸増幅反応を行い、得られた核酸増幅産物を検出することを特徴とする、クラミジア・トラコマティスの検出方法。
(3)上記(1)のプライマーセットを含んでなる、クラミジア・トラコマティス検出用試薬キット。
 本発明のクラミジア・トラコマティス検出用プライマーセットによれば、ヒトゲノムDNA等の夾雑DNA存在下であっても、非特異的な核酸の増幅を抑えることができる。また、ヒトに感染し得るクラミジア・トラコマティスの複数の血清型を検出することもできる。
 更に、本発明のクラミジア・トラコマティス検出用プライマーセットを用いる本発明の方法は、従来法で発生する偽陰性や偽陽性といった誤判定を軽減し、クラミジア・トラコマティスを高感度で特異的に精度よく検出することができる。
実施例2、比較例1及び比較例2で得られた、ヒトゲノムDNA含有試料に対して、各種プライマー対を用いて得られたPCR増幅産物をキャピラリー電気泳動により、分離、検出した泳動図である。 実施例3及び比較例3で得られた、クラミジア・トラコマティスDNAおよびヒトゲノムDNA含有試料に対して、各種プライマー対を用いて得られたPCR増幅産物をキャピラリー電気泳動により、分離、検出した泳動図である。 実施例5及び比較例4で得られた、ヒトゲノムDNA含有試料に対して、各種プライマー対を用いて得られたマルチプレックスPCR増幅産物をキャピラリー電気泳動により、分離、検出した泳動図である。 実施例6及び比較例5で得られた、クラミジア・トラコマティスDNAおよびヒトゲノムDNA含有試料に対して、各種プライマー対を用いて得られたマルチプレックスPCR増幅産物をキャピラリー電気泳動により、分離、検出した泳動図である。 実施例6及び比較例5で得られた、泳動図におけるクラミジア・トラコマティス潜在プラスミドに対応するバンドの蛍光強度(濃さ)から算出した、クラミジア・トラコマティス潜在プラスミドの核酸濃度を表す図である。
 <1>本発明のクラミジア・トラコマティス検出用プライマーセット
 本発明のクラミジア・トラコマティス検出用プライマーセット(以下、本発明のプライマーセットと略記する場合がある。)は、配列番号5で表される塩基配列からなるフォワードプライマーと配列番号6で表される塩基配列からなるリバースプライマーの組み合わせからなる第1プライマー対(以下、本発明に係る第1プライマー対と略記する場合がある。)を含むことを特徴とする。
 上記配列番号5で表される塩基配列からなるフォワードプライマーと配列番号6で表される塩基配列からなるリバースプライマーは、クラミジア・トラコマティスの潜在プラスミドpLGV440(以下、潜在プラスミドと略記する場合がある。)にアニーリングするものである。これらプライマーの組み合わせからなる本発明に係る第1プライマー対と、潜在プラスミドの全塩基配列(配列番号1、GenBankID:HE603230.1、塩基番号1~7492)とを用いて核酸増幅反応(PCR等)に付すと、潜在プラスミドの全塩基配列のうち、配列番号2で表される塩基配列を持つ塩基番号4770~4917の領域(148塩基対)が増幅される。
 本発明のプライマーセットは、本発明に係る第1プライマー対に加えて、更に、クラミジア・トラコマティスのゲノムDNA(以下、CTゲノムDNAと略記する場合がある。)とアニーリングするフォワードプライマーとリバースプライマーの組み合わせからなる第2プライマー対(以下、本発明に係る第2プライマー対と略記する場合がある。)を含んでいてもよい。
 本発明に係る第2プライマー対は、CTゲノムDNAとアニーリングするものであれば何れでもよい。尚、CTゲノムDNAの全塩基配列は、GenBankID:HE601796.2に開示されている。
 また、本発明に係る第2プライマー対は、本発明に係る第1プライマー対とは異なる塩基配列である。
 本発明に係る第2プライマー対は、自体公知の方法に従って設計されればよい。
 例えば、プライマー設計のために一般的に用いられているプライマーデザイン用のソフト(例えば、Primer3)等)を用いてプライマーを設計すればよい。
 その際、本発明に係る第2プライマー対におけるフォワードプライマーとリバースプライマーの塩基数は、それぞれ通常プライマー配列としての特異性を維持するために必要な塩基数と考えられている10~50塩基であり、10~35塩基が好ましく、15~35塩基がより好ましく、18~30塩基が特に好ましい。
 本発明に係る第2プライマー対の具体例としては、配列番号7~9の何れかで表される塩基配列からなるフォワードプライマーと配列番号10で表される塩基配列からなるリバースプライマーとの組み合わせからなるものが挙げられる。
 本発明に係る第2プライマー対として、配列番号7で表される塩基配列からなるフォワードプライマー、及び配列番号10で表される塩基配列からなるリバースプライマーを用いて核酸増幅反応(PCR等)に付すと、CTゲノムDNAの全塩基配列のうち、塩基番号782264~782436の領域(配列番号3:173塩基対)が増幅される。
 また、配列番号8で表される塩基配列からなるフォワードプライマー、及び配列番号10で表される塩基配列からなるリバースプライマーを用いて核酸増幅反応(PCR等)に付すと、CTゲノムDNAの全塩基配列のうち、塩基番号782264~782436の領域(配列番号3:173塩基対)が増幅される。
 更に、配列番号9で表される塩基配列からなるフォワードプライマー、及び配列番号10で表される塩基配列からなるリバースプライマーを用いて核酸増幅反応(PCR等)に付すと、CTゲノムDNAの全塩基配列のうち、塩基番号782264~782437の領域(配列番号4:174塩基対)が増幅される。
 中でも、本発明に係る第2プライマー対としては、配列番号7または8で表される塩基配列からなるフォワードプライマーと配列番号10で表される塩基配列からなるリバースプライマーの組み合わせからなるものが好ましく、配列番号7で表される塩基配列からなるフォワードプライマーと配列番号10で表される塩基配列からなるリバースプライマーの組み合わせからなるものがより好ましい。
 潜在プラスミドを対象とする本発明に係る第1プライマー対に、CTゲノムDNAを対象とする本発明に係る第2プライマー対を加えた本発明のプライマーセットを用いた場合、近年報告されている潜在プラスミドが欠損したクラミジア・トラコマティス変異株(An,Q., et al.,Journal of Clinical Microbiology,1992,30,p.2814-2821)であっても、その核酸を増幅、検出することができる。
 本発明に係る第1プライマー対及び本発明に係る第2プライマー対を構成するプライマー(以下、本発明に係るプライマーと略記する場合がある。)を得る方法としては、特に限定はされないが、自体公知の化学合成法により調製する方法、ベクター等を用いる遺伝子操作法により得る方法が挙げられる。中でも、容易・大量かつ安価に一定品質のプライマーを得ることが可能なことから、化学合成法が好ましい。
 例えば、DNAシンセサイザーを用い、通常のホスホアミダイト法にてオリゴヌクレオチドを合成し、陰イオンカラムクロマトグラフィーにより精製すれば、目的とする本発明に係るプライマーを得ることができる。
 尚、プライマーの合成を行う委託業者から購入してもよい。
 本発明に係るプライマーの少なくとも1つは、標識物質で標識されたものであってもよい。
 標識物質で標識された本発明に係るプライマーを用いる場合であって、本発明に係る第1プライマー対のみを用いる場合は、フォワードプライマーとリバースプライマーの少なくとも一方が標識物質で標識されていればよい。
 また、標識物質で標識された本発明に係るプライマーを用いる場合であって、本発明に係る第1プライマー対と本発明に係る第2プライマー対の2つのプライマー対を用いる場合は、本発明に係る第1プライマー対のフォワードプライマーとリバースプライマーの少なくとも一方および本発明に係る第2プライマー対のフォワードプライマーとリバースプライマーの少なくとも一方がそれぞれ標識物質で標識されていればよい。
 本発明に係るプライマーを標識物質で標識するために用いられる標識物質としては、蛍光物質、放射性同位体や酵素、発光物質など公知の標識物質が挙げられ、蛍光物質が好ましい。
 上記蛍光物質としては、例えば、TAMRATM(シグマアルドリッチ株式会社製)、Alexa555、Alexa647(サーモフィッシャーサイエンティフィック株式会社製)、Cyanine Dye系のCy3、Cy5(GEヘルスケア株式会社製)、フルオレセイン等が挙げられ、TAMRATM(シグマルドリッチ株式会社製)が好ましい。
 上記放射性同位体としては、例えば、32P、33P、35S等が挙げられる。
 上記酵素としては、例えば、アルカリホスファターゼ、西洋ワサビペルオキシダーゼ等が挙げられる。
 上記発光物質としては、例えば、Acridinium Esterを含む化学発光試薬等が挙げられる。
 尚、標識物質で標識された本発明に係るプライマーは、直接標識物質がプライマーに結合していても、リンカーを介して結合していてもよい。該リンカーとしては、この分野で通常用いられるものであればよく、1~3塩基の核酸であってもよい。
 本発明に係るプライマーを標識物質で標識する方法としては、この分野で通常行われているオリゴヌクレオチドの標識方法が挙げられ、標識物質毎に適宜方法を選択すればよい。
 本発明に係るプライマーを蛍光物質で標識する方法としては、例えば、フルオレセイン標識したヌクレオチドを自体公知の方法に従って、プライマーに取り込ませる方法が挙げられる。
 また、リンカーアームを有するヌクレオチドを配列のオリゴヌクレオチド中に置換する方法(Nucleic Acids Res.,1986年、第14巻、p.6115)でもヌクレオチドを蛍光物質で標識することができる。例えば、5位にリンカーアームを有するウリジンを特開昭60-500717号公報に開示された合成法によりデオキシウリジンから化学合成し、そのデオキシウリジンを含有するオリゴヌクレオチドを合成し、次いでそのオリゴヌクレオチド鎖に蛍光物質を導入する方法がある(特開昭60-500717号公報)。
 本発明に係るプライマーを放射性同位体で標識する方法としては、例えば、プライマーを合成する際に、放射性同位体で標識されたヌクレオチドを取り込ませることによって、プライマーを標識する方法や、プライマーを合成した後、放射性同位体で標識する方法等が挙げられる。具体的には、一般的に用いられるランダムプライマー法、ニックトランスレーション、T4ポリヌクレオチドキナーゼによる5’末端標識法、ターミナルデオキシヌクレオチジルトランスフェラーゼを用いた3’末端標識法等が挙げられる。
 本発明に係るプライマーを酵素で標識する方法としては、例えば、アルカリホスファターゼ、西洋ワサビペルオキシダーゼ等の酵素分子を、標識するプライマーに直接共有結合させる等の直接標識法が挙げられる。
 本発明に係るプライマーを発光物質で標識する方法としては、自体公知の方法に従って、ヌクレオチドを発光標識する方法が挙げられる。
 また、ビオチン-アビジン反応を利用した検出システムに従って、上記の標識物質を本発明に係るプライマーに結合させてもよい。
 その際には、E.P.Diamandis,T.K.Christopoulos,Clinical Chemistry 1991,37,p.p.625-636に記載の手法に従って行えばよい。
 <2>本発明のクラミジア・トラコマティス検出方法
 本発明のクラミジア・トラコマティス検出方法(以下、本発明のCT検出方法と略記する場合がある。)は、配列番号5で表される塩基配列からなるフォワードプライマーと配列番号6で表される塩基配列からなるリバースプライマーとの組み合わせからなる第1プライマー対を含むプライマーセットを用い、試料中の核酸を鋳型として核酸増幅反応を行い、得られた核酸増幅産物を検出することによりなされる。
 本発明のCT検出方法に用いられる試料としては、例えば尿、尿道スワブ懸濁液、膣スワブ懸濁液、子宮頸管スワブ懸濁液、うがい液、口腔スワブ懸濁液、咽頭スワブ懸濁液等の各種臨床試料や培養菌体等が挙げられる。これらの試料は、本発明のCT検出の前に、予め試料中に存在する菌の濃縮、分離や、菌体からのDNAの抽出、精製などの操作を前処理として行ってもよい。その方法としては、酵素、界面活性剤、アルカリ、熱による処理などがある。
 上記試料からDNAを抽出及び精製するには、自体公知の方法に従って行えばよく、具体的には、クラミジアの細胞壁を破壊した後、DNAの抽出及び精製を行えばよい。
 上記試料中のクラミジアの細胞壁を破壊する方法としては、SDS等の界面活性剤や、グアニジンチオシアネート(GTC)等の蛋白変性剤で菌体を処理してクラミジアの膜構造を破壊する方法、又はガラスビーズ等によって物理的に破砕する方法等が挙げられる。
 上記DNAの抽出及び精製は、クラミジアの細胞壁を破壊した後、フェノール及びクロロホルムを用いて抽出及び精製する方法、エタノール、イソプロパノール等を用いて抽出及び精製する方法等によりなされればよい。
 また、DNAの抽出及び精製は、市販のキット[例えば、Genomic-tip(株式会社キアゲン製)]を用いて実施してもよい。
 本発明のCT検出方法には、更に、本発明に係る第2プライマー対を用いてもよい。具体的には、配列番号5で表される塩基配列からなるフォワードプライマーと配列番号6で表される塩基配列からなるリバースプライマーとの組み合わせからなる第1プライマー対と、配列番号7~9の何れかで表される塩基配列からなるフォワードプライマーと配列番号10で表される塩基配列からなるリバースプライマーとの組み合わせからなる第2プライマー対とを含むプライマーセットを用い、試料中の核酸を鋳型として核酸増幅反応を行い、得られた核酸増幅産物を検出することによりなされる。
 本発明のCT検出方法において、本発明に係る第1プライマー対及び第2プライマー対を用いる場合の本発明に係る第1プライマー対と第2プライマー対の組み合わせとしては、以下に示す表1の(1)又は(2)が好ましく、(1)がより好ましい。
Figure JPOXMLDOC01-appb-T000001
 本発明のCT検出方法において、本発明に係るプライマーの少なくとも一つは標識物質で標識されたものを用いてもよい。
 本発明のCT検出方法において、標識物質で標識された本発明に係るプライマーを用いる場合であって、CT検出用プライマーとして本発明に係る第1プライマー対のみを用いる場合は、フォワードプライマーとリバースプライマーの少なくとも一方が標識物質で標識されていればよい。
 本発明のCT検出方法において、標識物質で標識された本発明に係るプライマーを用いる場合であって、CT検出用プライマーとして本発明に係る第1プライマー対と本発明に係る第2プライマー対の2つのプライマー対を用いる場合は、本発明に係る第1プライマー対のフォワードプライマーとリバースプライマーの少なくとも一方および本発明に係る第2プライマー対のフォワードプライマーとリバースプライマーの少なくとも一方がそれぞれ標識物質で標識されていればよい。
 また、淋菌は、クラミジア・トラコマティスと同時に感染することが多いが、治療薬がクラミジア・トラコマティスの場合とは異なる。そのため、クラミジア・トラコマティスと淋菌とを同時に検出することは、臨床的意義が高い。そこで、クラミジア・トラコマティスと淋菌とを同時に検出する場合は、本発明のプライマーセットと淋菌を検出するプライマー対とを用いて核酸増幅反応を行い、クラミジア・トラコマティス由来の核酸増幅産物と淋菌由来の核酸増幅産物とを検出すればよい。
 更に、内部コントロールとして適当な菌を選択し、当該菌由来の核酸、及び当該菌を検出するためのプライマー対を加えて、本発明のプライマーセットを用いた核酸増幅反応を行い、クラミジア・トラコマティス由来の核酸増幅産物と当該菌由来の核酸増幅産物を検出することにより、核酸増幅反応が正しく行えたか否かを確認してもよい。
 尚、内部コントロールとして選択する菌は、例えば、クラミジア・トラコマティスのみを検出する場合、クラミジア・トラコマティス以外の菌であり、クラミジア・トラコマティス及び淋菌を検出する場合、クラミジア・トラコマティス及び淋菌以外の菌である。
 尚、本発明のCT検出方法において、淋菌検出用プライマー対及び内部コントロール検出用プライマー対を構成するプライマーは、それぞれ標識物質で標識されたものを用いてもよい。
 本発明のCT検出方法において、標識物質で標識された淋菌検出用プライマー対を用いる場合は、淋菌検出用プライマー対のフォワードプライマーとリバースプライマーの少なくとも一方がそれぞれ標識物質で標識されていればよい。
 本発明のCT検出方法において、標識物質で標識された内部コントロール検出用プライマー対を用いる場合は、内部コントロール検出用プライマー対のフォワードプライマーとリバースプライマーの少なくとも一方がそれぞれ標識物質で標識されていればよい。
 本発明のCT検出方法において、標識物質で標識された淋菌検出用プライマー対及び内部コントロール検出用プライマー対を用いる場合は、淋菌検出用プライマー対のフォワードプライマーとリバースプライマーの少なくとも一方及び内部コントロール検出用プライマー対のフォワードプライマーとリバースプライマーの少なくとも一方がそれぞれ標識物質で標識されていればよい。
 本発明のCT検出方法に用いるプライマー、プライマー対、プライマーセット、標識物質及び標識物質で標識する方法の詳細については、<1>本発明のクラミジア・トラコマティス検出用プライマーセットにおいて記載した通りである。
 本発明のCT検出方法における本発明のプライマーセットを用いて行う核酸増幅反応(以下、本発明に係る核酸増幅反応と略記する場合がある。)は、特に制限されず、自体公知の方法に従って行えばよい。具体的には、例えば、PCR(Polymerase Chain Reaction)法、TMA(Transcription-mediated amplfication)法、SDA(Strand Displacement Amplification)法等が挙げられ、PCR法が好ましい。
 また、本発明に係る核酸増幅反応におけるターゲットは通常DNAであるが、ターゲットがRNAであっても逆転写により相補的DNA(cDNA)を合成して、ターゲットとすることができる。その方法としては、例えば、TRC(Transcription-Reverse Transcription Concerted Reaction)法等が挙げられる。
 本発明に係る核酸増幅反応において用いられる、TaqDNAポリメラーゼ[例えば、KOD Exo(-)(東洋紡株式会社製)]等の核酸合成酵素や、dNTP(dATP、dCTP、dGTP、dGTTP)等の核酸合成基質は、通常この分野で用いられるものであればよい。
 更に、本発明に係る核酸増幅反応における反応液中に、Tris-HCl、KHPO等の緩衝液、MgCl、KCl、(NHSO等の塩、ポリエチレングリコール、Triton(ダウケミカルカンパニー株式会社製)、Nonidet(シェルケミカル株式会社製)、CHAPS(株式会社同仁化学製)等の界面活性剤、プロクリン300(シグマアルドリッチ株式会社)等の防腐剤、BSA(ウシ血清アルブミン)等のポリペプチドが含まれていてもよい。また、上記成分に加えて、核酸増幅反応が阻害されない限り、他の任意の成分が含まれていてもよい。
 本発明のCT検出方法における、増幅産物を検出する方法は、通常この分野で行われている自体公知の方法に基づいてなされればよい。具体的には、例えば、(a)電気泳動により検出する方法、(b)リアルタイム法により検出する方法等が挙げられ、(a)電気泳動により検出する方法が好ましい。
 以下に、夫々の方法について、説明する。
(a)電気泳動により検出する方法
 電気泳動により検出する方法とは、本発明に係るプライマー対を用いた本発明に係る核酸増幅反応により得られた増幅産物を、電気泳動により分離し、検出する手法であり、具体的な方法としては、(a-1)標識プライマー法、(a-2)インターカレーター法及び(a-3)標識プローブ法が挙げられる。
(a-1)標識プライマー法
 標識プライマー法とは、『本発明に係るプライマーの少なくとも一方を標識物質で標識した標識プライマーを含むプライマー対を用い、被検試料中の核酸を鋳型として本発明に係る核酸増幅反応を行う。次いで、得られた増幅産物を電気泳動により分離し、該増幅産物中の標識を検出する。その結果、該増幅産物の標識が本発明に係るプライマー対で増幅される産物の塩基対数で検出できた場合に、「その被検試料は、クラミジア・トラコマティス陽性である。」と判定する』方法である。
 尚、本明細書において、「標識を検出する」とは、標識物質の性質に基づいて標識物質を直接又は間接的に測定することを意味する。
 標識プライマー法における、プライマー、プライマー対、標識物質および標識物質で標識する方法の詳細については、<1>本発明のクラミジア・トラコマティス検出用プライマーセットに記載した通りである。
 標識プライマー法における電気泳動としては、物質の荷電強度に依存して異なる速度で移動又は異なる距離を移動する方法に基づくものであればよく、具体的には、例えば、キャピラリー電気泳動、アガロースゲル電気泳動、ポリアクリルアミドゲル電気泳動(スラブ電気泳動)、デンプンゲル電気泳動、等電点電気泳動等が挙げられ、アガロースゲル電気泳動、キャピラリー電気泳動が好ましく、キャピラリー電気泳動がより好ましい。
 尚、上記キャピラリー電気泳動を行う場合は、WO2007/027495、WO2011/118496、WO2008/075520等に記載の自体公知の方法に従って行えばよい。
 標識プライマー法について、(a-1-1)本発明に係る第1プライマー対を用いる場合及び(a-1-2)本発明に係る第1プライマー対及び本発明に係る第2プライマー対を用いる場合に分けて、以下に、具体的に説明する。
(a-1-1)本発明に係る第1プライマー対を用いる場合
 例えば、まず、本発明に係る第1プライマー対におけるプライマーの少なくとも一方を標識物質で標識する。次いで、この標識物質で標識されたプライマーを含む本発明に係る第1プライマー対を用い、試料中の核酸を鋳型として本発明に係る核酸増幅反応を行う。次いで、得られた増幅産物を電気泳動により分離し、該増幅産物中の標識を検出する。
 その結果、該増幅産物の標識が本発明に係る第1プライマー対で増幅される産物の塩基対数で検出できた場合に、「その被検試料は、クラミジア・トラコマティス陽性である。」と判定する。
(a-1-2)本発明に係る第1プライマー対及び本発明に係る第2プライマー対を用いる場合
 例えば、まず、本発明に係る第1プライマー対におけるプライマーの少なくとも一方および本発明に係る第2プライマー対におけるプライマーの少なくとも一方を標識物質で標識する。次いで、これら標識物質で標識された本発明に係る第1プライマー対および標識物質で標識されたプライマーを含む本発明に係る第2プライマー対を用い、試料中の核酸を鋳型として本発明に係る核酸増幅反応を行う。次いで、本発明に係る第1プライマー対を用いた本発明に係る核酸増幅反応により得られた増幅産物(第1増幅産物)および本発明に係る第2プライマー対を用いた本発明に係る核酸増幅反応により得られた増幅産物(第2増幅産物)それぞれを電気泳動により分離し、該第1増幅産物および該第2増幅産物中の標識を検出する。
 その結果、該第1増幅産物の標識が本発明に係る第1プライマー対で増幅される産物の塩基対数で検出できた場合、又は該第2増幅産物の標識が本発明に係る第2プライマー対で増幅される産物の塩基対数で検出できた場合、の少なくとも何れか一方である場合、「その被検試料は、クラミジア・トラコマティス陽性である。」と判定する。
 尚、上記本発明に係る第2プライマー対の具体例としては、配列番号7~9の何れかで表される塩基配列からなるフォワードプライマーと配列番号10で表される塩基配列からなるリバースプライマーの組み合わせからなるものが挙げられ、配列番号7または8で表される塩基配列からなるフォワードプライマーと配列番号10で表される塩基配列からなるリバースプライマーの組み合わせからなるものが好ましく、配列番号7で表される塩基配列からなるフォワードプライマーと配列番号10で表される塩基配列からなるリバースプライマーの組み合わせからなるものがより好ましい。
 また、淋菌や内部コントロールとして選択した菌等の菌類を同時に検出する場合には、クラミジア・トラコマティスを検出するための本発明に係るプライマー対に加えて、標識物質で標識された淋菌や内部コントロールとして選択した菌等の菌類を検出するためのプライマー対を用いて上記と同様に核酸増幅反応を行い、検出方法を行えばよい。
(a-2)インターカレーター法
 インターカレーター法とは、『本発明に係るプライマー対を用い、被検試料中の核酸を鋳型として本発明に係る核酸増幅反応を行い、得られた増幅産物を電気泳動により分離する。次いで、該増幅産物をインターカレーターで染色し、該インターカレーター由来の蛍光を検出する。その結果、該インターカレーター由来の蛍光を検出できた場合に、「その被検試料は、クラミジア・トラコマティス陽性である。」と判定する』方法である。
 インターカレーター法におけるプライマー対の詳細については、<1>本発明のクラミジア・トラコマティス検出用プライマーセットに記載した通りである。
 インターカレーター法における電気泳動としては、(a-1)標識プライマー法と同じものが挙げられ、好ましいものも同じである。
 また、インターカレーター法におけるインターカレーターとしては、通常、この分野で用いられているインターカレーターであれば何でもよい。その具体例は、下記(1)~(5)のインターカレーター並びに下記(6)及び(7)のインターカレーター類似物質が挙げられる。
 即ち、(1)エチジウム化合物[例えば、エチジウムブロマイド、エチジウムホモダイマー1(EthD-1)、エチジウムホモダイマー2(EthD-2)、臭化エチジウムモノアジド(EMA)、ジヒドロエチジウム等]、
(2)アクリジン色素(例えば、アクリジンオレンジ等)、
(3)ヨウ素化合物(ヨウ素化プロピジウム、ヨウ素化ヘキシジウム等)、シアニンダイマー系色素[例えば、POPO-1、BOBO-1、YOYO-1、TOTO-1、JOJO-1、POPO-3、LOLO-1、BOBO-3、YOYO-3、TOTO-3(何れもサーモフィッシャーサイエンティフィック株式会社製)等]、
(4)シアニンモノマー系色素[例えば、PO-PRO-1、BO-PRO-1、YO-PRO-1、TO-PRO-1、JO-PRO-1、PO-PRO-3、LO-PRO-1、BO-PRO-3、YO-PRO-3、TO-PRO-3、TO-PRO-5(何れもサーモフィッシャーサイエンティフィック株式会社製)等]、
(5)SYTOX系色素[例えば、SYTOX Green、SYTOX Blue、SYTOX Orange(何れもサーモフィッシャーサイエンティフィック株式会社製)等]、SYBR系色素[例えば、SYBR Gold、SYBR Green I、SYBR Green II(何れもサーモフィッシャーサイエンティフィック株式会社製)]、GelRed系色素[例えば、GelRed(和光純薬工業株式会社製)等]、
(6)DNA二重らせんのマイナーグルーブに結合するもの[例えば、4’,6-ジアミジノ-2-フェニルインドール(DAPI)(サーモフィッシャーサイエンティフィック株式会社製)等]、
(7)アデニン-チミン(A-T)配列に特異的に結合するもの[例えば、ペンタハイドレ-ト(ビス-ベンズイミド)(Hoechst 33258)(サーモフィッシャーサイエンティフィック)、トリヒドロクロライド(Hoechst 33342)(サーモフィッシャーサイエンティフィック株式会社製)、ビスベンズイミド色素(Hoechst 34580)(サーモフィッシャーサイエンティフィック株式会社製)等]、が挙げられる。
(a-3)標識プローブ法
 標識プローブ法とは、『本発明に係るプライマー対を用い、被検試料中の核酸を鋳型として本発明に係る核酸増幅反応を行い、得られた増幅産物を電気泳動により分離する。次いで、該増幅産物を熱処理に付すことにより、一本鎖にする。次いで、標識物質で標識された、該増幅産物の塩基配列と相補的な塩基配列を有するプローブをハイブリダイズさせることで、ハイブリッド体を得て、該ハイブリッド体中の標識を検出する。その結果、該ハイブリッド体中の標識を検出できた場合に、「その被検試料は、クラミジア・トラコマティス陽性である。」と判定する』方法である。
 標識プローブ法における、プライマー対及び標識物質、標識物質で標識する方法の詳細については、<1>本発明のクラミジア・トラコマティス検出用プライマーセットに記載した通りである。
 標識プローブ法における電気泳動としては、(a-1)標識プライマー法と同じものが挙げられ、好ましいものも同じである。
(b)リアルタイム法により検出する方法
 リアルタイム法により検出する方法とは、本発明に係るプライマー対を用いた本発明に係る核酸増幅反応により得られる増幅産物を、リアルタイムに検出する方法であり、具体的な方法としては、(b-1)TaqManTMプローブ法及び(b-2)インターカレーター法が挙げられる。
(b-1)TaqManTMプローブ法
 TaqManTMプローブ法とは、『本発明に係るプライマー対及び蛍光標識プローブを用い、被検試料中の核酸を鋳型として本発明に係る核酸増幅反応(例えば、リアルタイムPCR)を行い、該プローブ由来の蛍光を検出できた場合に、「その被検試料は、クラミジア・トラコマティス陽性である。」と判定する』方法である。
 TaqManTMプローブ法におけるプライマー対の詳細については、<1>本発明のクラミジア・トラコマティス検出用プライマーセットに記載した通りである。
 TaqManTMプローブ法における蛍光標識プローブとは、本発明に係るプライマー対を用い、本発明に係る核酸増幅反応を行った場合に増幅される領域にハイブリダイズするよう設計され、且つ、その5’末端を例えば、蛍光色素(レポーター蛍光色素)で、3’末端を例えば、クエンチャー色素で標識したものである。
 TaqManTMプローブ法について、(b-1-1)本発明に係る第1プライマー対を用いる場合及び(b-1-2)本発明に係る第1プライマー対及び本発明に係る第2プライマー対を用いる場合に分けて、より具体的に説明する。
 (b-1-1)本発明に係る第1プライマー対を用いる場合
 例えば、まず、本発明に係る第1プライマー対、及び本発明に係る第1プライマー対で本発明に係る核酸増幅反応を行った場合に増幅される領域にハイブリダイズするように設計されたプローブの5’末端がレポーター蛍光色素で標識され、3’末端がクエンチャー色素で標識された標識プローブ(第1標識プローブ)を用いて、試料中の核酸を鋳型として本発明に係る核酸増幅反応を行う。
 その結果、該第1標識プローブから遊離されたレポーター蛍光色素由来の蛍光が検出された場合、「その試料は、クラミジア・トラコマティス陽性である。」と判定する。
 (b-1-2)本発明に係る第1プライマー対及び本発明に係る第2プライマー対を用いる場合
 例えば、まず、本発明に係る第1プライマー対、及び本発明に係る第1プライマー対で本発明に係る核酸増幅反応を行った場合に増幅される領域にハイブリダイズするように設計されたプローブの5’末端がレポーター蛍光色素で標識され、3’末端がクエンチャー色素で標識された標識プローブ(第1標識プローブ)、本発明に係る第2プライマー対、及び本発明に係る第2プライマー対で本発明に係る核酸増幅反応を行った場合に増幅される領域にハイブリダイズするように設計されたプローブの5’末端がレポーター蛍光色素で標識され、3’末端がクエンチャー色素で標識された標識プローブ(第2標識プローブ)を用いて、試料中の核酸を鋳型として本発明に係る核酸増幅反応を行う。
 その結果、該第1標識プローブから遊離されたレポーター蛍光色素由来の蛍光又は該第1標識プローブから遊離されたレポーター蛍光色素由来の蛍光の少なくとも一方が検出された場合、「その試料は、クラミジア・トラコマティス陽性である。」と判定する。
 上記方法における、第1標識プローブのレポーターと第2標識プローブのレポーターはそれぞれ異なる蛍光波長を有していてもよい。
 尚、第1標識プローブと第2標識プローブの塩基配列は互いに異なるものである。
 尚、本発明に係る第2プライマー対の具体例としては、配列番号7~9の何れかで表される塩基配列からなるフォワードプライマーと配列番号10で表される塩基配列からなるリバースプライマーの組み合わせからなるものが挙げられ、配列番号7または8で表される塩基配列からなるフォワードプライマーと配列番号10で表される塩基配列からなるリバースプライマーの組み合わせからなるものが好ましく、配列番号7で表される塩基配列からなるフォワードプライマーと配列番号10で表される塩基配列からなるリバースプライマーの組み合わせからなるものがより好ましい。
 上記(b-1-1)及び(b-1-2)におけるTaqManTMプローブ法においては、さらに、本発明に係るプライマー対以外に、淋菌や内部コントロールとして選択した菌等の菌類を検出するためのプライマー対を加えて、本発明に係る核酸増幅反応を行ってもよい。これら菌類は、同様にTaqManTMプローブ法を用いて検出しても、自体公知の方法により検出してもよい。
(b-2)インターカレーター法
インターカレーター法とは、『本発明に係るプライマー対及びインターカレーターを用い、被検試料中の核酸を鋳型として本発明に係る核酸増幅反応(例えば、リアルタイムPCR)を行う。次いで、得られた増幅産物の増幅量と相関してインターカレーションするインターカレーター由来の蛍光を検出する。その結果、該インターカレーター由来の蛍光を検出できた場合に、「その被検試料は、クラミジア・トラコマティス陽性である。」と判定する』方法である。
 インターカレーター法におけるプライマー対の詳細については、<1>本発明のクラミジア・トラコマティス検出用プライマーセットに記載した通りである。
 インターカレーター法におけるインターカレーターとしては、(a-2)インターカレーター法と同じものが挙げられる。
 本発明のクラミジア・トラコマティス検出方法の好ましい具体例を、増幅産物を検出する方法として、(a’-1)標識プライマー法、(b’-1)TaqManTMプローブ法を用いる場合に分けて以下に説明する。
 (a’-1)標識プライマー法
 標識プライマー法を用いる場合の本発明のクラミジア・トラコマティス検出方法の具体例を、(a’-1-1)本発明に係る第1プライマー対を用いる場合、(a’-1-2)本発明に係る第1プライマー対及び本発明に係る第2プライマー対を用いる場合に分けて、以下に説明する。
(a’-1-1)本発明に係る第1プライマー対を用いる場合
 まず、クラミジア・トラコマティスを検出する試料中から、自体公知の方法に従って、精製DNAを得る。
 一方、例えば、DNAシンセサイザーを用い、ホスホアミダイド法にて、本発明に係る第1プライマー対(即ち、配列番号5で表される塩基配列からなるフォワードプライマーおよび配列番号6で表される塩基配列からなるリバースプライマー)を合成する。次いで、自体公知の方法により、本発明に係る第1プライマー対の少なくとも一方を標識物質(例えば、蛍光物質)で標識する。
 標識物質で標識されたプライマーを含む本発明に係る第1プライマー対を増幅用プライマーとして用い、試料から得られた精製DNAに対して、下記のように本発明に係る核酸増幅反応(例えば、PCR)を行う。
 即ち、各0.1~2μMの本発明に係る第1プライマー対を構成するプライマー、1.0~4.0mMの塩(例えば、MgCl)、80~150μg/mLのポリペプチド(例えば、BSA)、0.8~1.5%の界面活性剤(例えば、ポリエチレングリコール)、0.1~0.5%の防腐剤(例えば、プロクリン300)、夫々0.2~0.3mMの核酸合成基質(例えば、dATP、dCTP、dGTP、dTTP)及び10~80単位/mlの核酸合成酵素(例えば、Taq DNAポリメラーゼ)を含有するPH7~9の10mMの緩衝液(例えば、Tris-HCl緩衝液)を調整し、本発明に係る核酸増幅反応用反応液とする。この本発明に係る核酸増幅反応用反応液20~30μLに、精製DNAを1~100ng加え、本発明に係る核酸増幅反応用試料を得る。
 この本発明に係る核酸増幅反応用試料を用い、サーマルサイクラー等の核酸増幅装置を用いて、本発明に係る核酸増幅反応(例えば、PCR)を行う。
 即ち、93℃~98℃、1~10分加熱した後、(1)93℃~98℃、10~30秒→(2)50℃~70℃、10~30秒→(3)68~72℃、30秒~5分を1サイクルとして、30~45サイクル行う。
 次いで、得られた核酸増幅産物について、電気泳動(例えば、キャピラリー電気泳動)を行った後、該増幅産物中の標識を検出する。
 その結果、得られた核酸増幅産物中の標識が本発明に係る第1プライマー対で増幅される産物の塩基対数(148塩基対)で検出できた場合、「その試料は、クラミジア・トラコマティス陽性である。」と判定する。
 尚、2100バイオアナライザー(アジレントテクノロジー株式会社製)等の全自動マイクロチップ型キャピラリー電気泳動装置を用いてキャピラリー電気泳動を行った場合、得られるデータは、横軸が電気泳動時間、縦軸が蛍光強度で表される。横軸の電気泳動時間は、分子量マーカーの電気泳動時間からDNA等のサイズに換算することができる。そのため、本発明に係る第1プライマー対を用いた本発明に係る核酸増幅反応により得られる核酸増幅産物の長さ(塩基対数)を予め算出しておき、「得られた核酸増幅産物が算出された核酸増幅産物に該当するか否か」を確認してもよい。
 即ち、本発明に係る第1プライマー対の少なくとも一方が蛍光物質で標識されたものを用いて、上記と同様に本発明に係る核酸増幅反応(例えば、PCR)を行う。
 一方、本発明に係る第1プライマー対を用いた本発明に係る核酸増幅反応(例えば、PCR)で増幅される核酸増幅産物の長さ(塩基対数)を算出しておく。
 本発明に係る第1プライマー対を用いた場合、潜在プラスミドの全塩基配列のうち、配列番号2で表される塩基配列からなる148塩基対の核酸が増幅されると予測される。
 次いで、得られた核酸増幅産物を、例えば、2100バイオアナライザー(アジレントテクノロジー株式会社製)等の全自動マイクロチップ型キャピラリー電気泳動装置を用いて、キャピラリー電気泳動に付す。そして、キャピラリー電気泳動により得られたサンプルのデータを、機器のソフトでゲルイメージに換算する。
 その結果、得られた核酸増幅産物の長さ(塩基対数)が、148塩基対の核酸増幅産物と同じ場合、「その試料は、クラミジア・トラコマティス陽性である。」と判定する。
(a’-1-2)本発明に係る第1プライマー対及び本発明に係る第2プライマー対を用いる場合
 まず、クラミジア・トラコマティスを検出する試料中から、自体公知の方法に従って、精製DNAを得る。
 一方、例えば、DNAシンセサイザーを用い、ホスホアミダイド法にて、本発明に係る第1プライマー対(即ち、配列番号5で表される塩基配列からなるフォワードプライマーおよび配列番号6で表される塩基配列からなるリバースプライマー)及び本発明に係る第2プライマー対(例えば、配列番号7で表される塩基配列からなるフォワードプライマーおよび配列番号10で表される塩基配列からなるリバースプライマー)を合成する。次いで、本発明に係る第1プライマー対の少なくとも一方および本発明に係る第2プライマー対の少なくとも一方を標識物質(例えば、蛍光物質)で標識する。
 標識物質で標識されたプライマーを含む、本発明に係る第1プライマー対及び本発明に係る第2プライマー対を増幅用プライマーとして用い、試料から得られた精製DNAに対して、下記のように本発明に係る核酸増幅反応(例えば、マルチプレックスPCR)を行う。
 即ち、各0.1~2μMの本発明に係る第1プライマー対を構成するプライマー、各0.1~2μMの本発明に係る第2プライマー対を構成するプライマー、1.0~4.0mMの塩(例えば、MgCl)、80~150μg/mLのポリペプチド(例えば、BSA)、0.8~1.5%の界面活性剤(例えば、ポリエチレングリコール)、0.1~0.5%の防腐剤(例えば、プロクリン300)、夫々0.2~0.3mMの核酸合成基質(例えば、dATP、dCTP、dGTP、dTTP)及び10~80単位/mlの核酸合成酵素(例えば、Taq DNAポリメラーゼ)を含有するPH7~9の10mMの緩衝液(例えば、Tris-HCl緩衝液)を調整し、本発明に係る核酸増幅反応用反応液とする。この本発明に係る核酸増幅反応用反応液20~30μLに、クラミジア・トラコマティスの精製DNA試料を1~100ng加え、本発明に係る核酸増幅反応用試料を得る。
 この本発明に係る核酸増幅反応用試料を用い、サーマルサイクラー等の核酸増幅装置を用いて、本発明に係る核酸増幅反応(例えば、マルチプレックスPCR)を行う。
 即ち、93℃~98℃、1~10分加熱した後、(1)93℃~98℃、10~30秒→(2)50℃~70℃、10~30秒→(3)68~72℃、30秒~5分を1サイクルとして、30~45サイクル行う。
 次いで、得られた核酸増幅産物それぞれについて、電気泳動(例えば、キャピラリー電気泳動)を行った後、該増幅産物中の標識を検出する。
 その結果、得られた核酸増幅産物中の標識が本発明に係る第1プライマー対で増幅される産物の塩基対数(148塩基)で検出できた場合、または得られた核酸増幅産物中の標識が本発明に係る第2プライマー対で増幅される産物の塩基対数(173塩基)で検出できた場合、の少なくとも何れか一方である場合、「その試料は、クラミジア・トラコマティス陽性である。」と判定する。
 尚、2100バイオアナライザー(アジレントテクノロジー株式会社製)等の全自動マイクロチップ型キャピラリー電気泳動装置を用いてキャピラリー電気泳動を行った場合、得られるデータは、横軸が電気泳動時間、縦軸が蛍光強度で表される。横軸の電気泳動時間は、分子量マーカーの電気泳動時間からDNA等のサイズに換算することができる。そのため、本発明に係る第1プライマー対を用いた本発明に係る核酸増幅反応により得られる核酸増幅産物の長さ(塩基対数)及び本発明に係る第2プライマー対を用いた本発明に係る核酸増幅反応により得られる核酸増幅産物の長さ(塩基対数)を予め算出しておき、「得られた核酸増幅産物が算出された核酸増幅産物に該当するか否か」を確認してもよい。
 即ち、本発明に係る第1プライマー対の少なくとも一方および本発明に係る第2プライマー対の少なくとも一方が蛍光物質で標識されたものを用いて、本発明に係る核酸増幅反応(例えば、マルチプレックスPCR)を行う。
 一方、本発明に係る第1プライマー対を用いた本発明に係る核酸増幅反応(例えば、PCR)で増幅される核酸増幅産物の長さ(塩基対数)及び本発明に係る第2プライマー対(例えば、配列番号7で表される塩基配列からなるフォワードプライマーおよび配列番号10で表される塩基配列からなるリバースプライマー)を用いた本発明に係る核酸増幅反応(例えば、PCR)で増幅される核酸増幅産物の長さ(塩基対数)を算出しておく。
 本発明に係る第1プライマー対を用いた場合、潜在プラスミドの全塩基配列のうち、配列番号2で表される塩基配列からなる148塩基対の核酸が増幅されると予測される。
 一方、上記本発明に係る第2プライマー対を用いた場合、CTゲノムDNAの全塩基配列のうち、配列番号3で表される塩基配列からなる173塩基対の核酸が増幅されると予測される。
 次いで、得られた核酸増幅産物を、例えば、2100バイオアナライザー(アジレントテクノロジー株式会社製)等の全自動マイクロチップ型キャピラリー電気泳動装置を用いて、キャピラリー電気泳動に付す。そして、キャピラリー電気泳動により得られたサンプルのデータを、機器のソフトでゲルイメージに換算する。
 その結果、得られた核酸増幅産物が、148塩基対の核酸増幅産物、または173塩基対の核酸増幅産物の少なくとも何れか一方と同じである場合、「その試料は、クラミジア・トラコマティス陽性である。」と判定する。
(b’-1)TaqManTMプローブ法
 TaqManTMプローブ法を用いる場合の本発明のクラミジア・トラコマティス検出方法の具体例を(b’-1-1)本発明に係る第1プライマー対を用いる場合を、(b’-1-2)本発明に係る第1プライマー対及び本発明に係る第2プライマー対を用いる場合に分けて、以下に説明する。
(b’-1-1)本発明に係る第1プライマー対を用いる場合
 まず、自体公知の方法に従って、クラミジア・トラコマティスを検出する試料中から精製DNA試料を得る。
 一方、例えば、DNAシンセサイザーを用い、ホスホアミダイト法にて、本発明に係る第1プライマー対(即ち、配列番号5で表される塩基配列からなるフォワードプライマーおよび配列番号6で表される塩基配列からなるリバースプライマー)を合成する。
 また、本発明に係る第1プライマー対を用いた本発明に係る核酸増幅反応(例えば、PCR)で増幅される塩基配列から、プローブとして利用するための配列を設計し、この塩基配列を持つオリゴヌクレオチドを合成する。このオリゴヌクレオチドの5’末端にレポーター蛍光色素のFAMを、3’末端にクエンチャー色素のTAMRAを自体公知の方法により結合し、蛍光標識プローブ(第1標識プローブ)を得る。
 上記で合成した本発明に係る第1プライマー対を増幅用プライマーとして用い、例えば下記のように本発明に係る核酸増幅反応(例えば、リアルタイムPCR)を行う。
 即ち、各 0.1~2μMの本発明に係る第1プライマー対を構成するプライマー、0.1~1μMの第1標識プローブ、1.0~4.0mMの塩(例えば、MgCl)、50~100mMの塩(例えば、KCl)、300~600μg/mLのポリペプチド(例えば、BSA)、0.05~2%の界面活性剤(例えば、コール酸ナトリウム)、夫々0.1~0.3mMの核酸合成基質(例えば、dATP、dCTP、dGTP、dTTP)、10~80単位/mLの核酸合成酵素(例えば、Taq DNA ポリメラーゼ)を含有するpH8~9の10mMの緩衝液(例えば、Tris-HCl緩衝液)を調製し、本発明に係る核酸増幅反応用反応液とする。この本発明に係る核酸増幅反応用反応液20~25μLにクラミジア・トラコマティスの精製DNA試料1~100ngを加え、本発明に係る核酸増幅反応用試料を得る。
 この本発明に係る核酸増幅反応用試料を用い、サーマルサイクラー等を用いて本発明に係る核酸増幅反応(例えば、リアルタイムPCR)を行う。
 即ち、93℃~98℃、5~15分加熱した後、(1)93℃~98℃、10~30秒→(2)50~70℃、30~90秒を1サイクルとして、30~55サイクル行い、1サイクル毎にレポーター蛍光色素由来の蛍光強度量を測定する。
 この場合、レポーター蛍光色素由来の蛍光が測定された場合に、クラミジア・トラコマティス陽性と判定される。
 更に、自体公知の方法により検量線を作成することによって、試料中のクラミジア・トラコマティスの数を計算することもできる。
(b’-1-2)本発明に係る第1プライマー対及び本発明に係る第2プライマー対を用いる場合
 まず、自体公知の方法に従って、クラミジア・トラコマティスを検出する試料中から精製DNA試料を得る。
 別に、例えば、DNAシンセサイザーを用い、ホスホアミダイト法にて、本発明に係る第1プライマー対(即ち、配列番号5で表される塩基配列からなるフォワードプライマーおよび配列番号6で表される塩基配列からなるリバースプライマー)及び本発明に係る第2プライマー対(例えば、配列番号7で表される塩基配列からなるフォワードプライマーおよび配列番号10で表される塩基配列からなるリバースプライマー)を合成する。
 次いで、本発明に係る第1プライマー対を用いた本発明に係る核酸増幅反応(例えば、PCR)で増幅される塩基配列から、プローブとして利用するための配列を設計し、この塩基配列を持つオリゴヌクレオチドを合成する。さらに、このオリゴヌクレオチドの5’末端にレポーター蛍光色素のFAMを、3’末端にクエンチャー色素のTAMRAを自体公知の方法により結合し、蛍光標識プローブ(第1標識プローブ)を得る。
 また、本発明に係る第2プライマー対(例えば、配列番号7で表される塩基配列からなるフォワードプライマーおよび配列番号10で表される塩基配列からなるリバースプライマー)を用いた本発明に係る核酸増幅反応(例えば、PCR)で増幅される塩基配列から、プローブとして利用するための配列を設計し、この塩基配列を持つオリゴヌクレオチドを合成する。さらに、このオリゴヌクレオチドの5’末端にレポーター蛍光色素のHEXを、3’末端にクエンチャー色素のTAMRAを自体公知の方法により結合し、蛍光標識プローブ(第2標識プローブ)を得る。
 上記で合成した本発明に係る第1プライマー対及び本発明に係る第2プライマー対を増幅用プライマーとして用い、例えば下記の通り本発明に係る核酸増幅反応(例えば、リアルタイムPCR)を行う。
 即ち、各 0.1~2μMの本発明に係る第1プライマー対を構成するプライマー、各 0.1~2μMの本発明に係る第2プライマー対を構成するプライマー、0.1~1μMの第1標識プローブ、0.1~1μMの第2標識プローブ、1.0~4.0mMの塩(例えば、MgCl)、50~100mMの塩(例えば、KCl)、300~600μg/mLのポリペプチド(例えば、BSA)、0.05~2%の界面活性剤(例えば、コール酸ナトリウム)、夫々0.1~0.3mMの核酸合成基質(例えば、dATP、dCTP、dGTP、dTTP)、10~80単位/mLの核酸合成酵素(例えば、Taq DNA ポリメラーゼ)を含有するpH8~9の10mMの緩衝液(例えば、Tris-HCl緩衝液)を調製し、本発明に係る核酸増幅反応用反応液とする。この本発明に係る核酸増幅反応用反応液20~25μLにクラミジア・トラコマティスの精製DNA試料1~100ngを加え、本発明に係る核酸増幅反応用試料を得る。
 この本発明に係る核酸増幅反応用試料を用い、サーマルサイクラー等を用いて本発明に係る核酸増幅反応(例えば、リアルタイムPCR)を行う。
 即ち、93℃~98℃、5~15分加熱した後、(1)93℃~98℃、10~30秒→(2)50~70℃、30~90秒を1サイクルとして、30~55サイクル行い、1サイクル毎にレポーター蛍光色素由来の蛍光強度量を測定する。
 その結果、第1標識プローブ由来の蛍光、または第2標識プローブ由来の蛍光の少なくともいずれか一方が検出された場合、「その試料は、クラミジア・トラコマティス陽性である。」と判定する。
 更に、自体公知の方法で検量線を作成することによって、試料中のクラミジア・トラコマティスの数を計算することもできる。
 <3>本発明のクラミジア・トラコマティス検出用試薬キット
 本発明のクラミジア・トラコマティス検出用試薬キット(以下、本発明の試薬キットと略記する場合がある。)は、配列番号5で表される塩基配列からなるフォワードプライマーと配列番号6で表される塩基配列からなるリバースプライマーの組み合わせからなる第1プライマー対を含むことを特徴とするものである。
 本発明の試薬キットには、更に、本発明に係る第2プライマー対を用いてもよい。具体的には、配列番号5で表される塩基配列からなるフォワードプライマーと配列番号6で表される塩基配列からなるリバースプライマーとの組み合わせからなる第1プライマー対と、配列番号7~9の何れかで表される塩基配列からなるフォワードプライマーと配列番号10で表される塩基配列からなるリバースプライマーとの組み合わせからなる第2プライマー対とを含むプライマーセットを含んでなるものが挙げられる。
 本発明の試薬キットにおいて、本発明に係る第1プライマー対及び第2プライマー対を含ませる場合には、以下に示す表2の(1)又は(2)が好ましく、(1)がより好ましい。
Figure JPOXMLDOC01-appb-T000002
 本発明の試薬キットにおいて、本発明に係るプライマーの少なくとも一つは標識物質で標識されたものであってもよい。
 例えば、本発明の試薬キットにおいて、標識物質で標識された本発明に係るプライマーを含ませる場合であって、CT検出用プライマーとして本発明に係る第1プライマー対のみを含ませる場合は、フォワードプライマーとリバースプライマーの少なくとも一方が標識物質で標識されていればよい。
 例えば、本発明の試薬キットにおいて、標識物質で標識された本発明に係るプライマーを含ませる場合であって、本発明に係る第1プライマー対と本発明に係る第2プライマー対の2つのプライマー対を含ませる場合は、本発明に係る第1プライマー対のフォワードプライマーとリバースプライマーの少なくとも一方および本発明に係る第2プライマー対のフォワードプライマーとリバースプライマーの少なくとも一方がそれぞれ標識物質で標識されていればよい。
 本発明の試薬キットに含まれる、プライマー、プライマー対、プライマーセット、標識物質及びプライマーを標識物質で標識する方法の詳細については、<1>本発明のクラミジア・トラコマティス検出用プライマーセットにおいて記載した通りである。
 本発明の試薬キットにおいて、クラミジア・トラコマティスを検出するための本発明に係るプライマー対に加えて、淋菌を検出するためのプライマー対や内部コントロールとして選択した菌又は当該菌由来の核酸、及び当該菌を検出するためのプライマー対を含ませてもよい。
 尚、本発明の試薬キットにおいて、淋菌検出用プライマー対及び内部コントロール検出用プライマー対を構成するプライマーは、それぞれ標識物質で標識されていればよい。
 例えば、本発明の試薬キットにおいて、標識物質で標識された淋菌検出用プライマー対を含ませる場合は、淋菌検出用プライマー対のフォワードプライマーとリバースプライマーの少なくとも一方がそれぞれ標識物質で標識されていればよい。
 例えば、本発明の試薬キットにおいて、標識物質で標識された内部コントロール検出用プライマー対を含ませる場合は、内部コントロール検出用プライマー対のフォワードプライマーとリバースプライマーの少なくとも一方がそれぞれ標識物質で標識されていればよい。
 例えば、本発明の試薬キットにおいて、標識物質で標識された淋菌検出用プライマー対及び内部コントロール検出用プライマー対を含ませる場合は、淋菌検出用プライマー対のフォワードプライマーとリバースプライマーの少なくとも一方及び内部コントロール検出用プライマー対のフォワードプライマーとリバースプライマーの少なくとも一方がそれぞれ標識物質で標識されていればよい。
 本発明の試薬キット中において、通常この分野で用いられる試薬類、例えば、緩衝液、安定化剤、防腐剤等であって、共存する試薬等の安定性を阻害せず、PCR等の核酸増幅反応やハイブリダイゼーション反応を阻害しないものを含ませることができる。また、その濃度も、通常この分野で用いられる濃度範囲から適宜選択すればよい。
 緩衝液の具体例を挙げると、例えば、トリス緩衝液、リン酸緩衝液、ベロナール緩衝液、ホウ酸緩衝液、グッド緩衝液等、通常のPCR等の核酸増幅反応やハイブリダイゼーション反応を実施する場合に用いられている緩衝液は全て挙げられ、そのpHも特に限定されないが、通常5~9の範囲が好ましい。
 また、必要に応じて核酸合成酵素(例えば、Taq DNAポリメラーゼ等)、核酸合成基質(例えば、dATP、dCTP、dGTP、dTTP等)、インターカレーター(例えば、エチジウムブロマイド、SYBRTM Green I等)、標識物質(例えば、FAM、TAMRA等)、蛍光標識プローブ、電気泳動用試薬(例えば、ゲル)、DNAマーカー等を含ませることができる。
 さらに、本発明の試薬キットには、本発明のクラミジア・トラコマティスを検出する方法、クラミジア・トラコマティスの有無を判断するための説明書等を含ませておいてもよい。当該「説明書」とは、当該方法における特徴、原理、操作手順、判定手順等が文章又は図表等により実質的に記載されている当該キットの取り扱い説明書、添付文章、あるいはパンフレット等を意味する。
 以下、実施例に基づいて本発明を具体的に説明するが、本発明はこれら実施例によって何ら限定されるものではない。
 実施例で用いられる細菌は、いずれも臨床分離株であり、培養後、コロニーの形状や従来の各種生化学的試験などによって菌種が既に鑑別されているものである。
実施例1 本発明に係る第1プライマー対を用いたクラミジア・トラコマティスの検出
(1)プライマー対(本発明に係る第1プライマー対)
 下記表3に示す塩基配列からなるフォワードプライマー(CT1P1F-2)とリバースプライマー(CT1P1R-9)とを用いた。尚、フォワードプライマー(CT1P1F-2)は、その配列の5’末端を蛍光物質TAMRAで標識したものを用いた。
Figure JPOXMLDOC01-appb-T000003
(2)ターゲット配列
 本発明に係る第1プライマー対(CT1P1F-2及びCT1P1R-9)は、潜在プラスミドの全塩基配列(GenBankID:HE603230.1)のうち、塩基番号4770~4917の領域(配列番号2:148塩基対)からなる塩基配列をターゲット配列とする。
(3)クラミジアDNAの調製
 下記表4に示す各クラミジア(クラミジア属:Chlamydia trachomatis、クラミドフィラ属:Chlamydophila caviaeChlamydophila pneumoniaeChlamydophila psittaci, Chlamydophila pecorum)を自体公知の方法に従って培養した後、自体公知の核酸精製法を用いて精製ゲノムDNAを取得した。各々の得られた精製DNAのコピー数はSYBRTM Premix Ex TaqTM II (タカラバイオ株式会社製)を用い、リアルタイムPCR装置[StepOnePlusTM (サーモフィッシャーサイエンティフィック株式会社製)]で算出した。該精製DNAはTE緩衝液(pH8.0)(株式会社ニッポンジーン製)を用い、10copy/μLに調製し、クラミジアDNAとした。
 尚、用いた細菌株は、すべて岡山大学大学院医歯薬学総合研究科 公文裕巳教授の研究室から供与されたものである。
Figure JPOXMLDOC01-appb-T000004
(4)PCR
 上記(1)の各0.8μMのプライマー(CT1P1F-2及びCT1P1R-9)、1.2mMのMgCl、100μg/mLのBSA、1%のポリエチレングリコール、0.2%のプロクリン300(シグマアルドリッチ株式会社製)、夫々0.25mMのdATP、dCTP、dGTP、dTTP(東洋紡株式会社製)並びに60単位/mLのKOD Exo(-)(東洋紡株式会社製)を含有する10mM Tris-HCl緩衝液(PH8.0)を調製し、これをPCR用反応液とした。
 上記(3)で調製した各クラミジアDNA 1μLを、得られたPCR用反応液25μLに懸濁し、これをPCR用試料とした。
 このPCR用試料を96 well plate(サーモフィッシャーサイエンティフィック株式会社製)に入れ、StepOnePlusTM(サーモフィッシャーサイエンティフィック株式会社製)を用いて、PCRを行った。反応は95℃で2分加熱した後、(1)97℃で10秒→(2)65.5℃で20秒→(3)71.5℃で30秒を1サイクルとして、40サイクルを行った。
 その後、得られた核酸増幅産物を、全自動マイクロチップ型キャピラリー電気泳動装置2100バイオアナライザー(アジレントテクノロジー株式会社製)を用いて、機器に添付のプロトコルに従ってキャピラリー電気泳動することで、得られた核酸増幅産物の分離・検出を行った。
(5)結果
 キャピラリー電気泳動の結果を、下記表5にまとめた。表5において、結果が陽性とは、ターゲットの148塩基対の核酸増幅産物が検出されたことを示す。結果が陰性とは、ターゲットの核酸増幅産物が検出されなかったことを示す。
Figure JPOXMLDOC01-appb-T000005
 表5の結果より明らかな通り、本発明に係る第1プライマー対を用い、クラミジア・トラコマティスの各々の株に由来するDNA試料を鋳型としてPCRを行った場合のみ、ターゲットの核酸増幅産物が確認され、これらの試料はクラミジア・トラコマティス陽性と判定できた。
 一方、クラミジア・トラコマティス以外の菌に由来するDNA試料を鋳型としてPCRを行った場合には、該当するターゲットの核酸増幅産物は確認されず、これらの試料は、クラミジア・トラコマティス陰性と判定できた。
 以上のことより、本発明に係る第1プライマー対を用いて、核酸増幅反応を行うことで、クラミジア・トラコマティスを特異的に検出可能であることがわかった。
実施例2、比較例1および2 各種プライマー対を用いたPCRに対するヒトゲノムDNAの影響
(1)プライマー対
・本発明に係る第1プライマー対(実施例2)
 実施例1と同じプライマー対を用いた。
・特許文献1のプライマー対(比較例1)
 特許文献1(特許第5811086号公報)に開示されているプライマー対として、下記表6に示す塩基配列からなるフォワードプライマー(IshikFw)とリバースプライマー(IshikRv)とを用いた。
 尚、リバースプライマー(IshikRv)は、その配列の5’末端を蛍光物質TAMRAで標識したものを用いた。
・非特許文献1のプライマー対(比較例2)
 非特許文献1(Moller,J.K., et al.,Journal of Clinical Microbiology,2008,46,p.3892-3895)に開示されているプライマー対として、下記表6に示す塩基配列からなるフォワードプライマー(MollarFw)とリバースプライマー(MollarRv)とを用いた。
 尚、フォワードプライマー(MollarFw)は、その配列の5’末端を蛍光物質TAMRAで標識したものを用いた。
 使用した各プライマー対を、下記表6にまとめた。
Figure JPOXMLDOC01-appb-T000006
(2)ヒトゲノムDNAの調製
 健常者(クラミジア・トラコマティス非感染者)のヒト全血からDNAを、NucleoSpinTMBlood XLキット(マッハライナーゲル株式会社製)にて精製した。次いで、Etachinmate(株式会社ニッポンジーン製)にて濃縮し、TE緩衝液(pH8.0)(株式会社ニッポンジーン製)を用い、1mg/mLに調製し、これをヒトゲノムDNAとした。
(3)PCR
 プライマー対として、本発明に係る第1プライマー対、特許文献1のプライマー対、並びに非特許文献1のプライマー対を用いた以外は、実施例1(4)と同様の方法により、以下のPCR用反応液をそれぞれ調製した。
・本発明に係る第1プライマー対を含むPCR用反応液
・特許文献1のプライマー対を含むPCR用反応液
・非特許文献1のプライマー対を含むPCR用反応液
 上記(2)で調製したヒトゲノムDNA 1μLを、3種のPCR用反応液25μLにそれぞれ懸濁添加し、これをPCR用試料とした。
 このPCR用試料を用い、実施例1(4)と同様の方法によりPCRを行い、次いで、キャピラリー電気泳動することで、核酸増幅産物の分離、検出を行った。
(4)結果
 キャピラリー電気泳動の結果を、図1に示す。図1の各レーンにおいて使用したプライマー対を下記表7に示す。
 また、図1において、バンドは、核酸増幅産物が検出されたことを示す。尚、PCR用試料は、クラミジア・トラコマティスDNAを含まないので、核酸増幅産物を示すバンドが検出された場合、そのバンドは非特異的に核酸が増幅されていること(非特異的核酸増幅産物が得られたこと)を示す。
Figure JPOXMLDOC01-appb-T000007
 図1の結果から明らかな通り、本発明に係る第1プライマー対を用いてPCRを行った場合(レーン3:実施例2)、ヒトゲノムDNA存在下であっても、核酸増幅産物の増幅を示すバンドは検出されなかった。即ち、非特異的に核酸が増幅されていないことがわかった。
 一方、特許文献1に開示のプライマー対を用いてPCRを行った場合(レーン2:比較例1)、及び非特許文献1に開示のプライマー対を用いてPCRを行った場合(レーン1:比較例2)、ヒトゲノムDNA存在下において、核酸増幅産物を示すバンドが多数検出された。即ち、非特異的に核酸が増幅されていることがわかった。
 特に、150塩基対付近のバンド(レーン2:比較例1)は、特許文献1に開示のプライマー対の潜在プラスミドのターゲット配列である145塩基対に極めて近いため、偽陽性となる可能性が極めて高いことがわかった。
 以上の結果より、本発明に係る第1プライマー対を用いると、非特異的な核酸の増幅を抑制することができるため、偽陽性となる可能性が極めて低いことがわかった。
 一方、特許文献1に開示のプライマー対、及び非特許文献1に開示のプライマー対を用いると、非特異的な核酸の増幅を抑制できないため、偽陽性となる可能性が高いことがわかった。
実施例3および比較例3 ヒトゲノムDNA存在下におけるクラミジア・トラコマティスの検出
(1)プライマー対
・本発明に係る第1プライマー対(実施例3)
 実施例1と同じプライマー対を用いた。
・非特許文献1のプライマー対(比較例3)
 比較例2と同じプライマー対を用いた。
 使用した各プライマー対を、下記表8にまとめた。
Figure JPOXMLDOC01-appb-T000008
(2)ターゲット配列
 本発明に係る第1プライマー対(実施例3)は、潜在プラスミドの全塩基配列(GenBankID:HE603230.1)のうち、塩基番号4770~4917の領域(148塩基対:配列番号2)からなる塩基配列をターゲット配列とする。
 非特許文献1のプライマー対(比較例3)は、潜在プラスミドの全塩基配列(GenBankID:HE603230.1)のうち、塩基番号4770~4886の領域(117塩基対:配列番号20)からなる塩基配列をターゲット配列とする。
(3)クラミジアDNAの調製
 実施例1(3)で調製した、各C.trachomatis株(A、B、Ba、C、D、E、F、G、H、I、J、K、L1、L2、L3)から精製したクラミジアDNAを用いた。
(4)ヒトゲノムDNAの調製
 実施例2(2)で調製したヒトゲノムDNAを用いた。
(5)PCR
 プライマー対として、本発明に係る第1プライマー対、並びに非特許文献1のプライマー対を用いた以外は、実施例1(4)と同様の方法により、以下のPCR用反応液をそれぞれ調製した。
・本発明に係る第1プライマー対を含むPCR用反応液
・非特許文献1のプライマー対を含むPCR用反応液
 上記(3)及び(4)で調製した各クラミジアDNA 1μL及びヒトゲノムDNA 1μLを、2種のPCR用反応液25μLにそれぞれ懸濁添加し、PCR用試料を調製した。
 これら各種PCR用試料を用い、実施例1(4)と同様の方法により、PCR、キャピラリー電気泳動をすることで、核酸増幅産物の分離、検出を行った。
(6)結果
 キャピラリー電気泳動の結果を図2に示す。図2の各レーンと増幅に用いたプライマー対及びクラミジアDNAとの関係を下記表9に示す。
 また、図2において、バンドは核酸増幅産物が検出されたことを示す。
 尚、本発明に係る第1プライマー対を用いた場合(実施例3)は、ターゲット配列が148塩基対であるので、148塩基対付近にバンドが検出されれば、ターゲットであるクラミジア・トラコマティスを検出できたと言える。
 また、非特許文献1のプライマー対(比較例3)を用いた場合は、ターゲット配列が117塩基対であるので、117塩基対付近にバンドが検出されれば、ターゲットであるクラミジア・トラコマティスを検出できたと言える。
Figure JPOXMLDOC01-appb-T000009
 図2の結果から明らかな通り、本発明に係る第1プライマー対を用いてPCRを行った場合(レーン1~15:実施例3)、すべての血清型のクラミジア・トラコマティスで148塩基対付近にバンドが検出され、クラミジア・トラコマティスの複数血清型を検出することができた。さらに、非特異的な核酸の増幅を示すバンド、即ち148塩基対付近以外のバンドは検出されなかった。
 一方、非特許文献1のプライマー対を用いてPCRを行った場合(レーン16~30:比較例3)、血清型D(レーン20)および血清型H(レーン24)については、117塩基対付近に薄くバンドが認められたが、これら以外についてはバンドが認められず、すべての血清型を検出することはできなかった。また、150~1000塩基対の間に、非特異的な核酸の増幅を示すバンドが多数確認された。
 以上の結果より、本発明に係る第1プライマー対を用いると、全ての血清型を検出することができ、偽陰性となる可能性が極めて低いことがわかった。また、偽陽性の原因となる非特異的な核酸の増幅を抑制することができることもわかった。
 一方、非特許文献1のプライマー対を用いると、クラミジア・トラコマティスの全ての血清型を検出することはできないことがわかった。更に、偽陽性の原因となる非特異的な核酸の増幅を抑制できないこともわかった。
実施例4 本発明に係る第1プライマー対及び本発明に係る第2プライマー対を用いたクラミジア・トラコマティスの検出
(1)プライマー対
・本発明に係る第1プライマー対
 実施例1と同じプライマー対を用いた。
・本発明に係る第2プライマー対
 下記表10に示す塩基配列からなるフォワードプライマー(CT2F-4)とリバースプライマー(CT2_8)とを用いた。
 尚、リバースプライマー(CT2_8)は、その配列の5’末端を蛍光物質TAMRAで標識したものを用いた。
 リバースプライマー(CT2_8)は、WO93/00447のSeqID92に開示されているものである。
・淋菌検出用プライマー対
 下記表10に示す塩基配列からなるフォワードプライマー(NG21F)とリバースプライマー(NG24R)とを用いた。
 尚、リバースプライマー(NG24R)は、その配列の5’末端を蛍光物質TAMRAで標識したものを用いた。
 フォワードプライマー(NG21F)は、WO96/12824のSeqID12に開示されている配列の5’末端を5塩基削り、3’末端に2塩基付加したものである。リバースプライマー(NG24R)は、WO93/00447のSeqID108に開示されているものである。
 淋菌検出用プライマー対は、このプライマー対が存在していても、本発明に係る第1プライマー対及び本発明に係る第2プライマー対を含むプライマーセットを用いてクラミジア・トラコマティスを検出できるか否かを検証するために用いた。
 使用した各プライマー対を、下記表10にまとめた。
Figure JPOXMLDOC01-appb-T000010
(2)ターゲット配列
 本発明に係る第1プライマー対は、潜在プラスミドの全塩基配列(GenBankID:HE603230.1)のうち、塩基番号4770~4917の領域(148塩基対:配列番号2)からなる塩基配列をターゲット配列とする。
 本発明に係る第2プライマー対は、CTゲノムDNAの全塩基配列(GenBankID:HE601796.2)のうち、塩基番号782264~782436の領域(173塩基対:配列番号3)からなる塩基配列をターゲット配列とする。
(3)クラミジアDNAの調製
 実施例1(3)で調製した、各クラミジア株から精製したクラミジアDNAを用いた。
(4)マルチプレックスPCR
 各0.8μMのプライマー(CT1P1F-2及びCT1P1R-9)、各0.4μMのプライマー(CT2F-4及びCT2_8)、各0.15μMのプライマー(NG21F及びNG24R)、1.2mMのMgCl、100μg/mLのBSA、1%のポリエチレングリコール、0.2%のプロクリン300(シグマアルドリッチ株式会社製)、夫々0.25mMのdATP、dCTP、dGTP、dTTP(東洋紡株式会社製)並びに60単位/mLのKOD Exo(-)(東洋紡株式会社製)を含有する10mM Tris-HCl緩衝液(PH8.0)を調製し、これをマルチプレックスPCR用反応液とした。
 上記(3)で調製した各クラミジアDNA 1μLを、マルチプレックスPCR用反応液25μLに懸濁添加し、これをマルチプレックスPCR用試料とした。
 このマルチプレックスPCR用試料を96 well plate (サーモフィッシャーサイエンティフィック株式会社製)に入れ、サーマルサイクラー[StepOnePlusTM(サーモフィッシャーサイエンティフィック株式会社製)]を用いて、マルチプレックスPCRを行った。
 反応は95℃で2分加熱した後、(1)97℃で10秒→(2)65.5℃で20秒→(3)71.5℃で30秒を1サイクルとして、40サイクルを行った。
 その後、得られた核酸増幅産物を、全自動マイクロチップ型キャピラリー電気泳動装置2100バイオアナライザー(アジレントテクノロジー株式会社製)を用いて、機器に添付のプロトコルに従ってキャピラリー電気泳動をすることで、得られた核酸増幅産物の分離・検出を行った。
(5)結果
 キャピラリー電気泳動の結果を、下記表11にまとめた。表11において、結果が陽性とは、ターゲットの148塩基対の核酸増幅産物、またはターゲットの173塩基対の核酸増幅産物の少なくとも何れか一方が検出されたことを示す。結果が陰性とは、ターゲットである、潜在プラスミドの全塩基配列のうち目的の核酸増幅産物、及びCTゲノムDNAの全塩基配列のうち目的の核酸増幅産物が検出されなかったことを示す。
Figure JPOXMLDOC01-appb-T000011
 表11の結果より明らかな通り、本発明に係る第1プライマー対及び本発明に係る第2プライマー対を含むプライマーセットを用い、クラミジア・トラコマティスの各々の株に由来するDNA試料を鋳型としてPCRを行った場合のみ、ターゲットの核酸増幅産物が確認され、これらの試料はクラミジア・トラコマティス陽性と判定できた。
 一方、クラミジア・トラコマティス以外の菌に由来するDNA試料を鋳型として、本発明に係る第1プライマー対及び本発明に係る第2プライマー対を含むプライマーセットを用いて同様にマルチプレックスPCRを行った場合には、該当するターゲットの核酸増幅産物は確認されず、これらの試料は、クラミジア・トラコマティス陰性と判定できた。
 また、淋菌検出用プライマー対が存在していても、本発明に係る第1プライマー対及び本発明に係る第2プライマー対を含むプライマーセットを用いて、クラミジア・トラコマティスを特異的に検出することができた。
 以上のことより、本発明に係る第1プライマー対及び本発明に係る第2プライマー対を含むプライマーセットを用いて、クラミジア・トラコマティスを特異的に検出可能であることがわかった。
実施例5および比較例4 各種プライマー対を用いたPCRに対するヒトゲノムDNAの影響
(1)プライマー対
・本発明に係る第1プライマー対
 実施例1と同じプライマー対を用いた。
・本発明に係る第2プライマー対(a)
 実施例4と同じプライマー対を用いた。
・本発明に係る第2プライマー対(b)
 下記表12に示す塩基配列からなるフォワードプライマー(CT2F-5)とリバースプライマー(CT2_8)とを用いた。
 尚、リバースプライマー(CT2_8)は、その配列の5’末端を蛍光物質TAMRAで標識したものを用いた。
・本発明に係る第2プライマー対(c)
 下記表12に示す塩基配列からなるフォワードプライマー(CT2F-6)とリバースプライマー(CT2_8)とを用いた。
 尚、リバースプライマー(CT2_8)は、その配列の5’末端を蛍光物質TAMRAで標識したものを用いた。
・特許文献1のプライマー対
 比較例1と同じプライマー対を用いた。
・CTゲノムDNAを対象とする公知プライマー対
 下記表12に示す塩基配列からなるフォワードプライマー(CT2_7)とリバースプライマー(CT2_8)とを用いた。
 尚、リバースプライマー(CT2_8)は、その配列の5’末端を蛍光物質TAMRAで標識したものを用いた。
 CTゲノムDNAを対象とする公知プライマー対を構成するフォワードプライマー(CT2_7)は、US5573907のSeqID2に記載されている。リバースプライマー(CT2_8)は、WO93/00447のSeqID92に記載されている。
・淋菌検出用プライマー対
 実施例4と同じプライマー対を用いた。
 使用した各プライマー対を、下記表12にまとめた。
Figure JPOXMLDOC01-appb-T000012
(2)ヒトゲノムDNAの調製
 実施例2(2)で調製したヒトゲノムDNAを用いた。
(3)マルチプレックスPCR
 プライマー対として、上記(1)を用いた以外は、実施例4(4)と同様の方法により、以下のマルチプレックスPCR用反応液をそれぞれ調製した。
・本発明に係る第1プライマー対、本発明に係る第2プライマー対(a)、淋菌検出用プライマー対を含むマルチプレックスPCR用反応液
・本発明に係る第1プライマー対、本発明に係る第2プライマー対(b)、淋菌検出用プライマー対を含むマルチプレックスPCR用反応液
・本発明に係る第1プライマー対、本発明に係る第2プライマー対(c)、淋菌検出用プライマー対を含むマルチプレックスPCR用反応液
・特許文献1のプライマー対、CTゲノムDNA対象のプライマー対、淋菌検出用プライマー対を含むマルチプレックスPCR用反応液
 上記(2)で調製したヒトゲノムDNA 1μLを、4種のマルチプレックスPCR用反応液25μLにそれぞれに懸濁添加し、これをマルチプレックスPCR用試料とした。
 このマルチプレックスPCR用試料を用い、実施例4(4)と同様の方法により、マルチプレックスPCR、キャピラリー電気泳動をすることで、核酸増幅産物の分離、検出を行った。
 (4)結果
 キャピラリー電気泳動の結果を、図3に示す。図3の各レーンにおいて使用したプライマー対を、下記表13に示す。
 また、図3において、バンドは、核酸増幅産物が検出されたことを示す。尚、マルチプレックスPCR用試料は、クラミジア・トラコマティスDNAを含まないので、核酸増幅産物を示すバンドが検出された場合、そのバンドは非特異的に核酸が増幅されていること(非特異的核酸増幅産物が得られたこと)を示す。
Figure JPOXMLDOC01-appb-T000013
 図3の結果から明らかな通り、特許文献1のプライマー対およびCTゲノムDNA対象のプライマー対を含むプライマーセットを用いて、マルチプレックスPCRを行った場合(レーン4:比較例4)、非特異的な核酸の増幅を示す蛍光強度の高い(濃い)バンドが多数検出された。
 特に、140~200塩基対の間の核酸増幅産物(バンド)は、蛍光強度が高く、潜在プラスミドのターゲット配列である145塩基対およびCTゲノムDNAのターゲット配列である164塩基対に近いため、偽陽性となる可能性が高いことがわかった。
 一方、本発明に係る第1プライマー対及び本発明に係る第2プライマー対(a)を含むプライマーセットを用いて、マルチプレックスPCRを行った場合(レーン1:実施例5-1)、本発明に係る第1プライマー対及び本発明に係る第2プライマー対(b)を含むプライマーセットを用いて、マルチプレックスPCRを行った場合(レーン2:実施例5-2)、本発明に係る第1プライマー対及び本発明に係る第2プライマー対(c)を含むプライマーセットを用いて、マルチプレックスPCRを行った場合(レーン3:実施例5-3)は、ヒトゲノムDNA存在下であっても、非特異的な核酸の増幅を示すバンドは少なく、バンドの蛍光強度も低い(薄い)ものであった。
 また、潜在プラスミドのターゲット配列である148塩基対及びCTゲノムDNAのターゲット配列である173塩基対、174塩基対付近にはバンドが認められないため、偽陽性となる可能性が極めて低いことがわかった。
 以上の結果より、本発明に係る第1プライマー対及び本発明に係る第2プライマー対を含むプライマーセットを用いると、非特異的な核酸の増幅が抑制され、偽陽性となる可能性が極めて低いことがわかった。
 一方、特許文献1のプライマー対およびCTゲノムDNA対象のプライマー対を含むプライマーセットを用いると、非特異的な核酸の増幅は抑制されず、偽陽性となる可能性が高いことがわかった。
実施例6および比較例5 ヒトゲノムDNA存在下におけるクラミジア・トラコマティスの検出
(1)プライマー対
・本発明に係る第1プライマー対
 実施例1と同じプライマー対を用いた。
・本発明に係る第2プライマー対(a)
 実施例4と同じプライマー対を用いた。
・本発明に係る第2プライマー対(b)
 実施例5と同じプライマー対を用いた。
・特許文献1のプライマー対
 比較例1と同じプライマー対を用いた。
・CTゲノムDNA対象のプライマー対
 比較例4と同じプライマー対を用いた。
・淋菌検出用プライマー対
 実施例4と同じプライマー対を用いた。
 使用した各プライマー対を、下記表14にまとめた。
Figure JPOXMLDOC01-appb-T000014
(2)ターゲット配列
 本発明に係る第1プライマー対は、潜在プラスミドの全塩基配列(GenBankID:HE603230.1)のうち、塩基番号4770~4917の領域(148塩基対:配列番号2)からなる塩基配列をターゲット配列とする。
 本発明に係る第2プライマー対(a)は、CTゲノムDNAの全塩基配列(GenBankID:HE601796.2)のうち、塩基番号782264~782436の領域(173塩基対:配列番号3)からなる塩基配列をターゲット配列とする。
 本発明に係る第2プライマー対(b)は、CTゲノムDNAの全塩基配列(GenBankID:HE601796.2)のうち、塩基番号782264~782436の領域(173塩基対:配列番号3)からなる塩基配列をターゲット配列とする。
 特許文献1のプライマー対は、潜在プラスミドの全塩基配列(GenBankID:HE603230.1)のうち、塩基番号4771~4915の領域(145塩基対:配列番号19)からなる塩基配列をターゲット配列とする。
 CTゲノムDNA対象のプライマー対は、CTゲノムDNAの全塩基配列(GenBankID:HE601796.2)のうち、塩基番号782264~782427の領域(164塩基対:配列番号20)からなる塩基配列をターゲット配列とする。
(3)クラミジアDNAの調製
 実施例1(3)で調製した、C.trachomatis株(D)から精製したクラミジアDNAを用いた。
(4)ヒトゲノムDNAの調製
 実施例2(2)で調製したヒトゲノムDNAを用いた。
(5)マルチプレックスPCR
 プライマー対として、上記(1)を選択した以外は、実施例4(4)と同様の方法により、以下のマルチプレックスPCR用反応液をそれぞれ調製した。
・本発明に係る第1プライマー対、本発明に係る第2プライマー対(a)、淋菌検出用プライマー対を含むマルチプレックスPCR用反応液
・本発明に係る第1プライマー対、本発明に係る第2プライマー対(b)、淋菌検出用プライマー対を含むマルチプレックスPCR用反応液
・特許文献1のプライマー対、CTゲノムDNA対象のプライマー対、淋菌検出用プライマー対を含むマルチプレックスPCR用反応液
 上記で調製したクラミジアDNA 1μL及びヒトゲノムDNA 1μLを、3種のマルチプレックスPCR用反応液25μLそれぞれに懸濁添加し、これをマルチプレックスPCR用試料とした。
 このマルチプレックスPCR用試料を用い、実施例4(4)と同様の方法により、マルチプレックスPCR、キャピラリー電気泳動をすることで、核酸増幅産物の分離、検出を行った。
 さらに得られた潜在プラスミドのターゲット配列のバンドの蛍光強度(濃さ)から、増幅された潜在プラスミドの核酸濃度を算出した。
(6)結果
 キャピラリー電気泳動の結果を図4及び図5に示す。図4及び図5の各レーンにおいて使用したプライマー対を下記表15に示す。
 また、図4において、バンドは核酸が増幅されたことを示す。
 尚、本発明に係る第1プライマー対および本発明に係る第2プライマー対(a)を含むプライマーセットを用いた場合(実施例6-1)並びに、本発明に係る第1プライマー対および本発明に係る第2プライマー対(b)を含むプライマーセットを用いた場合(実施例6-2)はターゲット配列が148塩基対および173塩基対であるので、148塩基対、または173塩基対付近の何れか一方にバンドが検出された場合、ターゲットであるクラミジア・トラコマティスを検出できたと言える。
 特許文献1のプライマー対およびCTゲノムDNA対象のプライマー対を含むプライマーセット用いた場合(比較例5)は、ターゲット配列が145塩基対および164塩基対であるので、145塩基対付近、または164塩基対付近の何れか一方にバンドが検出された場合、ターゲットであるクラミジア・トラコマティスを検出できたと言える。
 また、図5は、図4における潜在プラスミドのターゲット配列のバンドの蛍光強度(濃さ)から、核酸濃度を算出し、グラフ化したものである。
Figure JPOXMLDOC01-appb-T000015
 図4の結果から明らかな通り、特許文献1のプライマー対およびCTゲノムDNA対象のプライマー対を含むプライマーセットを用いてマルチプレックスPCRを行った場合(レーン1:比較例5)、145塩基対および164塩基対付近にバンドが検出され、クラミジア・トラコマティスを検出することができたものの、130~400塩基対付近に、非特異的な核酸の増幅を示す蛍光強度の高い(濃い)バンドが多数確認された。
 特に、130~200塩基対の間の核酸増幅産物(バンド)は、蛍光強度が高く、潜在プラスミドのターゲット配列である145塩基対およびCTゲノムDNAのターゲット配列である164塩基対に近いため、偽陽性となる可能性が極めて高いことがわかった。
 一方、本発明に係る第1プライマー対及び本発明に係る第2プライマー対(a)を含むプライマーセットを用いてマルチプレックスPCRを行った場合(レーン2:実施例6-1)、本発明に係る第1プライマー対及び本発明に係る第2プライマー対(b)を含むプライマーセットを用いてマルチプレクスPCRを行った場合(レーン3:実施例6-2)、148塩基対及び173塩基対付近にバンドが検出され、クラミジア・トラコマティスを検出することができた。
 また、非特異的な核酸の増幅を示すバンドは少なく、そのバンドの蛍光強度は低い(薄い)ものであった。
 また、図5の結果から明らかな通り、本発明に係る第1プライマー対及び本発明に係る第2プライマー対(a)を含むプライマーセットを用いてマルチプレックスPCRを行った場合(レーン2:実施例6-1)、本発明に係る第1プライマー対及び本発明に係る第2プライマー対(b)を含むプライマーセットを用いてマルチプレックスPCRを行った場合(レーン3:実施例6-2)、その中でも特に本発明に係る第1プライマー対及び本発明に係る第2プライマー対(a)を含むプライマーセットを用いてマルチプレックスPCRを行った場合は、特許文献1のプライマー対及びCTゲノムDNA対象のプライマー対を含むプライマーセットを用いてマルチプレックスPCRを行った場合(レーン1:比較例5)と比較して、潜在プラスミドのターゲット配列の核酸濃度が高いことがわかった。
 以上の結果より、本発明に係る第1プライマー対及び本発明に係る第2プライマー対を含むプライマーセットを用いると、非特異的な核酸の増幅を抑制することができるため、偽陽性となる可能性が極めて低いことがわかった。また、クラミジア・トラコマティスを高感度に検出することができることから、偽陰性となる可能性も極めて低いことがわかった。
 一方、特許文献1のプライマー対及びCTゲノムDNA対象のプライマー対を含むプライマーセットを用いると、非特異的な核酸の増幅を抑制できないため、偽陽性となる可能性が高いことがわかった。また、クラミジア・トラコマティスを高感度に検出することができないことから、偽陰性となる可能性も極めて高いこともわかった。
 本発明のプライマーセットを用いたクラミジア・トラコマティスの検出方法によれば、ヒトゲノムDNAが混在する可能性が高い、尿、咽頭、子宮頸管由来の試料を用いた場合であっても、診断上の誤判定を軽減することが可能となり、従来法と比較して、クラミジア・トラコマティスを高感度で特異的に精度よく検出することができる。

Claims (11)

  1. 配列番号5で表される塩基配列からなるフォワードプライマーと配列番号6で表される塩基配列からなるリバースプライマーの組み合わせからなる第1プライマー対を含む、クラミジア・トラコマティス検出用プライマーセット。
  2. さらに、配列番号7~9の何れかで表される塩基配列からなるフォワードプライマーと配列番号10で表される塩基配列からなるリバースプライマーの組み合わせからなる第2プライマー対を含む、請求項1に記載のプライマーセット。
  3. 第2プライマー対が、配列番号7で表される塩基配列からなるフォワードプライマーと配列番号10で表される塩基配列からなるリバースプライマーの組み合わせからなるものである、請求項2に記載のプライマーセット。
  4. 少なくとも1つのプライマーが標識物質で標識されたものである、請求項1~3の何れかに記載のプライマーセット。
  5. 標識物質が蛍光物質、放射性同位体、酵素、発光物質から選択されるものである、請求項4に記載のプライマーセット。
  6. 請求項1~5の何れかに記載のプライマーセットを用い、試料中の核酸を鋳型として核酸増幅反応を行い、得られた核酸増幅産物を検出することを特徴とする、クラミジア・トラコマティスの検出方法。
  7. 下記工程を含有することを特徴とする、請求項6に記載の検出方法
    (1)請求項1~5の何れかに記載のプライマーセットを用い、試料中の核酸を鋳型として核酸増幅反応を行う、
    (2)(1)の核酸増幅反応で得られた核酸増幅産物について電気泳動を行い、その結果に基づいてクラミジア・トラコマティスの有無を判定する。
  8. 核酸増幅反応がPCRである、請求項6又は7に記載の検出方法。
  9. 電気泳動がキャピラリー電気泳動である、請求項7又は8に記載の検出方法。
  10. 請求項1~5の何れかに記載のプライマーセットを含んでなる、クラミジア・トラコマティス検出用試薬キット。
  11. 少なくとも1つのプライマーが標識物質で標識されたものであるプライマーセットを含んでなる、請求項10に記載の試薬キット。
PCT/JP2017/012348 2016-03-30 2017-03-27 クラミジア・トラコマティス検出用プライマーセット及びこれを用いたクラミジア・トラコマティス検出方法、並びにそのための試薬キット WO2017170376A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US16/088,711 US10900092B2 (en) 2016-03-30 2017-03-27 Chlamydia trachomatis detecting primer set, Chlamydia trachomatis detecting method using same, and reagent kit therefor
JP2018507974A JP6844613B2 (ja) 2016-03-30 2017-03-27 クラミジア・トラコマティス検出用プライマーセット及びこれを用いたクラミジア・トラコマティス検出方法、並びにそのための試薬キット
KR1020187019029A KR102259445B1 (ko) 2016-03-30 2017-03-27 클라미디아 트라코마티스 검출용 프라이머 세트 및 이것을 사용한 클라미디아 트라코마티스 검출 방법, 그리고 그것을 위한 시약 키트
CN201780020744.1A CN109072314A (zh) 2016-03-30 2017-03-27 沙眼衣原体检测用引物组、使用其的沙眼衣原体检测方法、以及用于该检测的试剂盒
EP17774913.2A EP3438258B1 (en) 2016-03-30 2017-03-27 Chlamydia trachomatis detecting primer set, chlamydia trachomatis detecting method using same, and reagent kit therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-069163 2016-03-30
JP2016069163 2016-03-30

Publications (1)

Publication Number Publication Date
WO2017170376A1 true WO2017170376A1 (ja) 2017-10-05

Family

ID=59964542

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/012348 WO2017170376A1 (ja) 2016-03-30 2017-03-27 クラミジア・トラコマティス検出用プライマーセット及びこれを用いたクラミジア・トラコマティス検出方法、並びにそのための試薬キット

Country Status (6)

Country Link
US (1) US10900092B2 (ja)
EP (1) EP3438258B1 (ja)
JP (1) JP6844613B2 (ja)
KR (1) KR102259445B1 (ja)
CN (1) CN109072314A (ja)
WO (1) WO2017170376A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111088406A (zh) * 2020-02-17 2020-05-01 深圳麦科田生物医疗技术有限公司 基于双重环介导恒温扩增技术检测新型冠状病毒的探针、引物、试剂盒及检测方法
WO2021039540A1 (ja) 2019-08-23 2021-03-04 富士フイルム和光純薬株式会社 ニューモシスチス・イロベチイ検出用プライマー対、これを用いたニューモシスチス・イロベチイの検出方法及びそのための試薬キット
WO2021124960A1 (ja) 2019-12-18 2021-06-24 富士フイルム和光純薬株式会社 マイコバクテリウム・ツベルクローシス、マイコバクテリウム・アビウム及びマイコバクテリウム・イントラセルラーを検出するためのプライマーセット及びこれを用いた方法、並びにそのための試薬キット

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110308145A (zh) * 2019-07-10 2019-10-08 迪瑞医疗科技股份有限公司 一种沙眼衣原体糖原检测试剂、沙眼衣原体糖原检测试纸条及其制备方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5811086B2 (ja) 1976-02-25 1983-03-01 株式会社日立製作所 コイル
JPS60500717A (ja) 1982-09-30 1985-05-16 シンジーン,インコーポレイテッド リポ−タ−グル−プを含んでいる一定配列の1本鎖オリゴヌクレオチド、およびその化学的合成法
WO1993000447A1 (en) 1991-06-28 1993-01-07 Abbott Laboratories Amplification of target nucleic acids using gap filling ligase chain reaction
JPH05317097A (ja) * 1992-05-21 1993-12-03 Fuso Yakuhin Kogyo Kk クラミジアの検出法
WO1996012824A2 (en) 1994-10-21 1996-05-02 Abbott Laboratories Use of spermidine to relieve inhibition of ligase chain reaction in a clinical test sample
US5573907A (en) 1990-01-26 1996-11-12 Abbott Laboratories Detecting and amplifying target nucleic acids using exonucleolytic activity
JPH11221088A (ja) * 1997-11-04 1999-08-17 Becton Dickinson & Co トラコ―マクラミジア潜在プラスミドの増幅および検出による、トラコ―マクラミジアの検定
WO2007027495A1 (en) 2005-09-02 2007-03-08 Wako Pure Chemical Industries, Ltd Complex formation method and separation method
WO2008075520A1 (ja) 2006-12-18 2008-06-26 Wako Pure Chemical Industries, Ltd. マイコバクテリウム・アビウム検出用プライマー及びプローブ、並びにこれを用いたマイコバクテリウム・アビウムの検出方法
JP2009514549A (ja) * 2005-11-07 2009-04-09 シーメンス・ヘルスケア・ダイアグノスティックス・インコーポレーテッド Chlamydiatrachomatis特異的オリゴヌクレオチド配列
JP2009538605A (ja) * 2006-05-29 2009-11-12 ビオ−ラド・パストゥール 性感染病の原因である3つの細菌種のリアルタイムマルチプレックス検出
WO2011118496A1 (ja) 2010-03-23 2011-09-29 和光純薬工業株式会社 クラミジア・トラコマティス検出用プライマー及びプローブ、並びにこれを用いたクラミジア・トラコマティスの検出方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5514551A (en) * 1994-10-14 1996-05-07 Gen-Probe Incorporated Compositions for the detection of Chlamydia trachomatis
US20070065837A1 (en) * 2005-09-21 2007-03-22 Qiagen Diagnostics Gmbh Methods and compositions for the detection of Chlamydia trachomatis
US20120052500A1 (en) * 2010-08-30 2012-03-01 Samsung Techwin Co., Ltd. Kit for detecting chlamydia trachomatis strains and method for detecting chlamydia trachomatis strains using the same

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5811086B2 (ja) 1976-02-25 1983-03-01 株式会社日立製作所 コイル
JPS60500717A (ja) 1982-09-30 1985-05-16 シンジーン,インコーポレイテッド リポ−タ−グル−プを含んでいる一定配列の1本鎖オリゴヌクレオチド、およびその化学的合成法
US5573907A (en) 1990-01-26 1996-11-12 Abbott Laboratories Detecting and amplifying target nucleic acids using exonucleolytic activity
WO1993000447A1 (en) 1991-06-28 1993-01-07 Abbott Laboratories Amplification of target nucleic acids using gap filling ligase chain reaction
JPH05317097A (ja) * 1992-05-21 1993-12-03 Fuso Yakuhin Kogyo Kk クラミジアの検出法
WO1996012824A2 (en) 1994-10-21 1996-05-02 Abbott Laboratories Use of spermidine to relieve inhibition of ligase chain reaction in a clinical test sample
JPH11221088A (ja) * 1997-11-04 1999-08-17 Becton Dickinson & Co トラコ―マクラミジア潜在プラスミドの増幅および検出による、トラコ―マクラミジアの検定
WO2007027495A1 (en) 2005-09-02 2007-03-08 Wako Pure Chemical Industries, Ltd Complex formation method and separation method
JP2009514549A (ja) * 2005-11-07 2009-04-09 シーメンス・ヘルスケア・ダイアグノスティックス・インコーポレーテッド Chlamydiatrachomatis特異的オリゴヌクレオチド配列
JP2009538605A (ja) * 2006-05-29 2009-11-12 ビオ−ラド・パストゥール 性感染病の原因である3つの細菌種のリアルタイムマルチプレックス検出
WO2008075520A1 (ja) 2006-12-18 2008-06-26 Wako Pure Chemical Industries, Ltd. マイコバクテリウム・アビウム検出用プライマー及びプローブ、並びにこれを用いたマイコバクテリウム・アビウムの検出方法
WO2011118496A1 (ja) 2010-03-23 2011-09-29 和光純薬工業株式会社 クラミジア・トラコマティス検出用プライマー及びプローブ、並びにこれを用いたクラミジア・トラコマティスの検出方法

Non-Patent Citations (11)

* Cited by examiner, † Cited by third party
Title
"GenBank", Database accession no. HE601796. 2
"GenBank", Database accession no. HE601796.2
"GenBank", Database accession no. HE603230. 1
"GenBank", Database accession no. HE603230.1
AN. Q. ET AL., JOURNAL OF CLINICAL MICROBIOLOGY, vol. 30, 1992, pages 2814 - 2821
E. P. DIAMANDIS; T. K. CHRISTOPOULOS, CLINICAL CHEMISTRY, vol. 37, 1991, pages 625 - 636
MARSHALL, R. ET AL.: "Characteristics of the m2000 automated sample preparation and multiplex real-time PCR system for detection of Chlamydia trachomatis and Neisseria gonorrhoeae", J. CLIN. MICROBIOL., vol. 45, no. 3, 2007, pages 747 - 751, XP055541792, ISSN: 0095-1137 *
MOLLER, J. K. ET AL., JOURNAL OF CLINICAL MICROBIOLOGY, vol. 46, 2008, pages 3892 - 3895
MOLLER, J. K. ET AL.: "Comparison of Gen-Probe transcription-mediated amplification, Abbott PCR, and Roche PCR assays for detection of wild-type and mutant plasmid strains of Chlamydia trachomatis in Sweden", J. CLIN. MICROBIOL., vol. 46, no. 12, 2008, pages 3892 - 3895, XP055541788, ISSN: 0095-1137 *
NUCLEIC ACIDS RES., vol. 14, 1986, pages 6115
See also references of EP3438258A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021039540A1 (ja) 2019-08-23 2021-03-04 富士フイルム和光純薬株式会社 ニューモシスチス・イロベチイ検出用プライマー対、これを用いたニューモシスチス・イロベチイの検出方法及びそのための試薬キット
WO2021124960A1 (ja) 2019-12-18 2021-06-24 富士フイルム和光純薬株式会社 マイコバクテリウム・ツベルクローシス、マイコバクテリウム・アビウム及びマイコバクテリウム・イントラセルラーを検出するためのプライマーセット及びこれを用いた方法、並びにそのための試薬キット
CN111088406A (zh) * 2020-02-17 2020-05-01 深圳麦科田生物医疗技术有限公司 基于双重环介导恒温扩增技术检测新型冠状病毒的探针、引物、试剂盒及检测方法

Also Published As

Publication number Publication date
KR20180132603A (ko) 2018-12-12
JPWO2017170376A1 (ja) 2019-02-07
KR102259445B1 (ko) 2021-06-01
US10900092B2 (en) 2021-01-26
EP3438258A4 (en) 2019-10-09
JP6844613B2 (ja) 2021-03-17
CN109072314A (zh) 2018-12-21
EP3438258A1 (en) 2019-02-06
US20190112638A1 (en) 2019-04-18
EP3438258B1 (en) 2021-09-22

Similar Documents

Publication Publication Date Title
JP5095888B2 (ja) 特異的lnaプライマによる遺伝子内における突然変異の検出
US10233504B2 (en) Methods and compositions for isothermal amplification and detection of mycoplasma pneumoniae
JP6844613B2 (ja) クラミジア・トラコマティス検出用プライマーセット及びこれを用いたクラミジア・トラコマティス検出方法、並びにそのための試薬キット
JP6479474B2 (ja) 核酸ハイブリダイゼーションプローブ
KR20160033239A (ko) 핵산 에세이에서의 향상된 용융 식별 및 복합화를 위한 프로브
WO2005083114A1 (en) Method, kit and system for enhanced nested pcr
JP5239853B2 (ja) 変異遺伝子の検出方法
US8673563B2 (en) Amplification method of methylated or unmethylated nucleic acid
WO2018043724A1 (ja) メチル化されたdnaの増幅方法、dnaのメチル化判定方法並びに癌の判定方法
JP2003527098A (ja) 腫瘍細胞検出のための核酸プライマー及びプローブ
KR102683325B1 (ko) 헬리코박터 파일로리(Helicobacter pylori) 유전형 판별용 PNA 프로브 및 이를 이용한 헬리코박터 파일로리 유전형 판별방법
JP2012161319A (ja) β2アドレナリン多型の検出
WO2021124960A1 (ja) マイコバクテリウム・ツベルクローシス、マイコバクテリウム・アビウム及びマイコバクテリウム・イントラセルラーを検出するためのプライマーセット及びこれを用いた方法、並びにそのための試薬キット
JP7357063B2 (ja) ニューモシスチス・イロベチイ検出用プライマー対、これを用いたニューモシスチス・イロベチイの検出方法及びそのための試薬キット
US20090305249A1 (en) Method of detecting cyp2a6 gene variants
WO2009099037A1 (ja) クラミドフィラ・キャビエ検出用プライマー及びプローブ、並びにこれを用いたクラミドフィラ・キャビエの検出方法
WO2021201206A1 (ja) マイコバクテロイデス・アブセッサス・コンプレックスに属する抗酸菌のerm(41)遺伝子の一塩基変異を判別する方法、その方法に用いるプライマーセット及びプローブ
CN109312397A (zh) Penta E基因座多态性人体鉴定
JP5917248B2 (ja) HGF遺伝子のpolyArepeat数変異多型検出用プローブおよびその用途
JP5641465B2 (ja) 一塩基反復多型解析方法及び一塩基多型解析方法
Pingle et al. PCR/LDR/universal array platforms for the diagnosis of infectious disease
KR101331170B1 (ko) Hpv 유전자형 진단용 프로브 및 그 분석방법
KR20220071536A (ko) 높은 특이도의 표적핵산 증폭방법 및 이를 이용한 표적핵산 증폭용 조성물
JPWO2019163602A1 (ja) 標的領域の精製方法、検出方法及び癌の判定方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20187019029

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2018507974

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017774913

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017774913

Country of ref document: EP

Effective date: 20181030

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17774913

Country of ref document: EP

Kind code of ref document: A1