WO2021124960A1 - マイコバクテリウム・ツベルクローシス、マイコバクテリウム・アビウム及びマイコバクテリウム・イントラセルラーを検出するためのプライマーセット及びこれを用いた方法、並びにそのための試薬キット - Google Patents

マイコバクテリウム・ツベルクローシス、マイコバクテリウム・アビウム及びマイコバクテリウム・イントラセルラーを検出するためのプライマーセット及びこれを用いた方法、並びにそのための試薬キット Download PDF

Info

Publication number
WO2021124960A1
WO2021124960A1 PCT/JP2020/045523 JP2020045523W WO2021124960A1 WO 2021124960 A1 WO2021124960 A1 WO 2021124960A1 JP 2020045523 W JP2020045523 W JP 2020045523W WO 2021124960 A1 WO2021124960 A1 WO 2021124960A1
Authority
WO
WIPO (PCT)
Prior art keywords
mycobacterium
primer
present
nucleic acid
seq
Prior art date
Application number
PCT/JP2020/045523
Other languages
English (en)
French (fr)
Inventor
竜也 中村
和弘 寺嶌
Original Assignee
富士フイルム和光純薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム和光純薬株式会社 filed Critical 富士フイルム和光純薬株式会社
Priority to CN202080088200.0A priority Critical patent/CN114867868A/zh
Priority to KR1020227020492A priority patent/KR20220098246A/ko
Priority to EP20900988.5A priority patent/EP4079851A4/en
Priority to JP2021565483A priority patent/JPWO2021124960A1/ja
Publication of WO2021124960A1 publication Critical patent/WO2021124960A1/ja
Priority to US17/843,717 priority patent/US20220340956A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/689Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for bacteria
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/686Polymerase chain reaction [PCR]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6816Hybridisation assays characterised by the detection means
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/6851Quantitative amplification
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2563/00Nucleic acid detection characterized by the use of physical, structural and functional properties
    • C12Q2563/101Nucleic acid detection characterized by the use of physical, structural and functional properties radioactivity, e.g. radioactive labels
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2563/00Nucleic acid detection characterized by the use of physical, structural and functional properties
    • C12Q2563/107Nucleic acid detection characterized by the use of physical, structural and functional properties fluorescence
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2563/00Nucleic acid detection characterized by the use of physical, structural and functional properties
    • C12Q2563/125Nucleic acid detection characterized by the use of physical, structural and functional properties the label being enzymatic, i.e. proteins, and non proteins, such as nucleic acid with enzymatic activity
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/16Primer sets for multiplex assays

Definitions

  • the present invention relates to a primer set for detecting Mycobacterium avium subtilis, Mycobacterium avium, and Mycobacterium avium intracellular, a method using the same, and a reagent kit for that purpose.
  • Mycobacteriosis such as tuberculosis and nontuberculous mycobacteriosis is a worldwide bacterial disease characterized by symptoms such as general malaise, loss of appetite, and fever. Is. Tuberculosis and nontuberculous mycobacteriosis are known to be caused by the genus Mycobacterium , a type of mycobacteria. Tuberculosis is caused by Mycobacterium tuberculosis (Mycobacterium tuberculosis), non-tuberculous mycobacteriosis mainly Mycobacterium avium (Mycobacterium avium) and Mycobacterium intracellulare (Mycobacterium intracellulare) Caused by. In addition, since the therapeutic agents and the like are different between tuberculosis and nontuberculous mycobacteriosis, it is clinically important to distinguish between tuberculosis and nontuberculous mycobacteriosis.
  • Patent Documents 1-3 are methods for detecting the presence or absence of Mycobacterium avium, the presence or absence of Mycobacterium avium, and the presence or absence of Mycobacterium avium.
  • mycobacterium tuberculosis, mycobacterium avium, and mycobacterium intracellular cause acid-fast bacilli such as tuberculosis and nontuberculous mycobacteriosis. Simultaneous detection of the presence or absence of three bacterial species is desirable for proper treatment.
  • the primer is designed to anneal to a sequence that is commonly conserved among the genus Mycobacterium, so that it can be used in the highest concentrations of Mycobacterium avium and Mycobacterium intracellular in the sample.
  • the nucleic acid from which it is derived is preferentially annealed, and as a result, the nucleic acid is preferentially amplified. Therefore, in the method of Patent Document 4, it is difficult to detect Mycobacterium tubercrosis even though it is present in the sample.
  • the subject is to provide a method capable of detecting.
  • a primer pair for detecting Mycobacterium tuberculosis which is a combination of a forward primer consisting of the nucleotide sequence represented by SEQ ID NO: 1 and a reverse primer consisting of the nucleotide sequence represented by SEQ ID NO: 2.
  • Primer pair for detecting mycobacteria and abium composed of a combination of a forward primer consisting of the nucleotide sequence represented by SEQ ID NO: 3 and a reverse primer consisting of the nucleotide sequence represented by SEQ ID NO: 4 and (iii) SEQ ID NO:
  • a primer set containing a primer pair for detecting Mycobacterium intracellular which comprises a combination of a forward primer consisting of the nucleotide sequence represented by 5 and a reverse primer consisting of the nucleotide sequence represented by SEQ ID NO: 6.
  • Mycobacterium is produced by performing a nucleic acid amplification reaction using the nucleic acid in the sample as a template and detecting the obtained nucleic acid amplification product using the primer set according to any one of [1] to [3]. -Method for detecting tuberculosis, Mycobacterium avium and / and Mycobacterium intracellular.
  • a primer pair for detecting Mycobacterium tuberculosis which is a combination of a forward primer consisting of the nucleotide sequence represented by SEQ ID NO: 1 and a reverse primer consisting of the nucleotide sequence represented by SEQ ID NO: 2.
  • a reagent kit containing a primer pair for detecting Mycobacterium intracellular which comprises a combination of a forward primer consisting of the nucleotide sequence represented by 5 and a reverse primer consisting of the nucleotide sequence represented by SEQ ID NO: 6.
  • the reagent kit according to [5] wherein at least one of the forward primer and the reverse primer of (i), (ii) and (iii) is labeled with a labeling substance, respectively.
  • the primer set for detecting Mycobacterium tuberculosis, Mycobacterium avium and Mycobacterium intracellular the method using the same, and the reagent kit for that, it is present in the sample. Even if there is a difference in the concentration (number of copies) of the Mycobacterium genus (Mycobacterium avium, Mycobacterium avium, and Mycobacterium intracellular), these can be detected.
  • Primer set for detecting Mycobacterium tuberculosis, Mycobacterium avium and Mycobacterium intracellular of the present invention (hereinafter, may be abbreviated as the primer set of the present invention).
  • a primer pair for detecting Mycobacterium tuberculosis consisting of a combination of a forward primer consisting of the nucleotide sequence represented by SEQ ID NO: 1 and a reverse primer consisting of the nucleotide sequence represented by SEQ ID NO: 2 (hereinafter referred to as the present invention).
  • a primer pair for detecting tubercrosis composed of a combination of a forward primer consisting of the nucleotide sequence represented by SEQ ID NO: 3 and a reverse primer consisting of the nucleotide sequence represented by SEQ ID NO: 4 (hereinafter referred to as the present invention).
  • a primer pair for detecting abium It may be abbreviated as such a primer pair for detecting abium.
  • a primer pair for detecting Mycobacterium intracellular consisting of a combination of a forward primer consisting of the nucleotide sequence represented by SEQ ID NO: 5 and a reverse primer consisting of the nucleotide sequence represented by SEQ ID NO: 6 (hereinafter referred to as the present invention). It may be abbreviated as a primer pair for intracellular detection according to the invention).
  • the primer pair for detecting tuberculosis according to the present invention comprises a combination of a forward primer consisting of the nucleotide sequence represented by SEQ ID NO: 1 and a reverse primer consisting of the nucleotide sequence represented by SEQ ID NO: 2.
  • a forward primer consisting of the base sequence represented by SEQ ID NO: 1 (GenbankID: CP023640.1, base number 889765 to 8897784) and a reverse primer consisting of the base sequence represented by SEQ ID NO: 2 (GenbankID: CP023640.1, base number 889925).
  • ⁇ 889946 is an annealing to the base sequence represented by SEQ ID NO: 7 (GenbankID: CP023640.1, base numbers 889765 to 8899946) among the base sequences of Mycobacterium tubercrosis.
  • the primer pair for detecting tuberculosis according to the present invention and a nucleic acid-containing sample such as DNA derived from Mycobacterium tuberculosis are subjected to a nucleic acid amplification reaction such as PCR, it is represented by SEQ ID NO: 7 above.
  • the base sequence to be produced is amplified.
  • the primer pair for detecting Avium comprises a combination of a forward primer consisting of the base sequence represented by SEQ ID NO: 3 and a reverse primer consisting of the base sequence represented by SEQ ID NO: 4.
  • a forward primer consisting of the base sequence represented by SEQ ID NO: 3 (GenbankID: CP000479.1, base numbers 829817 to 829835) and a reverse primer consisting of the base sequence represented by SEQ ID NO: 4 (GenbankID: CP000479.1, base number 829864).
  • ⁇ 829703 is an annealing to the base sequence represented by SEQ ID NO: 8 (GenbankID: CP000479.1, Base Nos. 829648 to 829835) among the base sequences of Mycobacterium abium.
  • the primer pair for detecting Avium according to the present invention and a nucleic acid-containing sample such as DNA derived from Mycobacterium avium are subjected to a nucleic acid amplification reaction such as PCR, the nucleotide sequence represented by the above SEQ ID NO: 8 is obtained. Is amplified.
  • the primer pair for intracellular detection according to the present invention comprises a combination of a forward primer consisting of the base sequence represented by SEQ ID NO: 5 and a reverse primer consisting of the base sequence represented by SEQ ID NO: 6.
  • a forward primer consisting of the base sequence represented by SEQ ID NO: 5 (GenbankID: CP02349.1, base numbers 301253 to 3012571) and a reverse primer consisting of the base sequence represented by SEQ ID NO: 6 (GenbankID: CP02349.1, base number 3015059).
  • ⁇ 3015076 is to anneal to the base sequence represented by SEQ ID NO: 9 (GenbankID: CP02349.1, base number 301559-3015271) among the base sequences of Mycobacterium intracellular.
  • the primer pair for intracellular detection according to the present invention and a nucleic acid-containing sample such as DNA derived from Mycobacterium intracellular are subjected to a nucleic acid amplification reaction such as PCR, it is represented by the above SEQ ID NO: 9.
  • the base sequence is amplified.
  • the concentrations (final concentrations) of the primer pair for tuber closis detection, the primer pair for abium detection, and the primer pair for intracellular detection according to the present invention in the primer set of the present invention are as shown in Table 1 below.
  • the concentration (final concentration) of the primer pair means the concentration of each of the forward primer and the reverse primer constituting the primer pair in the nucleic acid amplification reaction solution such as PCR.
  • concentration of the primer pair is 400 nM
  • the concentration ratios (final concentration ratios) of the primer pair for tuber closis detection, the primer pair for Avium detection, and the primer pair for intracellular detection according to the present invention in the primer set of the present invention are as shown in Table 2 below. .. Table 2 below shows the concentration ratio (final concentration ratio) of each primer pair in the primer set of the present invention consisting only of the primer pair for tuber closis detection, the primer pair for abium detection and the primer pair for intracellular detection according to the present invention. ).
  • the above-mentioned concentration ratio (final concentration ratio) represents the concentration (%) occupied by each primer pair when the total concentration is 100%.
  • “about” means a range of +/- 1% of the specified value.
  • Primers constituting the tuberculosis detection primer pair, the abium detection primer pair, and the intracellular detection primer pair may be abbreviated as the primer pair according to the present invention) according to the present invention (hereinafter, the present invention).
  • the primer according to the above may be obtained based on a method known per se, which is usually performed in this field. Specifically, for example, the phosphoromidite method or the like may be used. Examples thereof include a method of preparing by a chemical synthesis method, a method of obtaining by a gene manipulation method using a vector and the like, and a method of preparing by a chemical synthesis method is preferable.
  • the primer according to the present invention is preferably labeled with a labeling substance.
  • a labeling substance for example, it is preferable that at least one of the forward primer and the reverse primer is labeled with a labeling substance.
  • a forward primer consisting of the base sequence represented by SEQ ID NO: 1 and a reverse primer consisting of the base sequence represented by SEQ ID NO: 2 It is sufficient that at least one of the above is labeled with a labeling substance.
  • At least one of the forward primer consisting of the nucleotide sequence represented by SEQ ID NO: 3 and the reverse primer consisting of the nucleotide sequence represented by SEQ ID NO: 4 is labeled with a labeling substance. Just do it.
  • at least one of the forward primer consisting of the nucleotide sequence represented by SEQ ID NO: 5 and the reverse primer consisting of the nucleotide sequence represented by SEQ ID NO: 6 is a labeling substance. It only needs to be labeled.
  • the labeling substance used for labeling the primer according to the present invention with a labeling substance may be any known substance usually used in this field, and specifically, for example, a fluorescent substance or a radioisotope. , Enzymes and the like, and fluorescent substances are preferable.
  • TAMRA TM manufactured by Sigma-Aldrich
  • Alexa555 manufactured by Thermo Fisher Scientific
  • Cy3 of Cyanine Dye-based Cy5 (GE manufactured Healthcare)
  • fluorescein fluorescein and the like
  • TAMRA TM Is preferable.
  • radioactive isotope examples include 32 P, 33 P, 35 S and the like.
  • Examples of the above-mentioned enzyme include alkaline phosphatase and horseradish peroxidase.
  • the primer according to the present invention labeled with a labeling substance may have the labeling substance directly bound to the primer or may be bound via a linker.
  • the linker may be any commonly used in this field. Specifically, for example, a nucleic acid having 1 to 3 bases is preferable, a DNA having 1 to 3 bases is more preferable, and a DNA having 2 bases is further preferable. Two bases, adenine (A) -adenine (A), are particularly preferred.
  • the method for labeling the primer according to the present invention with a fluorescent substance may be based on a method known per se, which is usually performed in this field. Specifically, for example, a nucleotide labeled with fluorescein is known per se. According to the method, a method of incorporating into a primer and the like can be mentioned.
  • the primer according to the present invention As a method for labeling the primer according to the present invention with a radioisotope, it may be carried out based on a method known per se, which is usually performed in this field. Specifically, for example, the primer according to the present invention is labeled with a radioisotope. Examples thereof include a method of labeling by incorporating nucleotides. Specific examples thereof include a random primer method, a nick translation method, a 5'end labeling method using T4 polynucleotide kinase, a 3'end labeling method using terminal deoxynucleotidyl transferase, and the like.
  • the method for labeling the primer according to the present invention with an enzyme may be based on a method known per se, which is usually performed in this field.
  • an enzyme such as alkaline phosphatase or horseradish peroxidase.
  • Examples thereof include a direct labeling method in which a molecule is directly covalently bonded to a primer to be labeled.
  • the method for detecting Mycobacterium tuberculosis, Mycobacterium avium and / and Mycobacterium intracellular (hereinafter, may be abbreviated as the detection method of the present invention) of the present invention is a primer of the present invention.
  • a nucleic acid amplification reaction is carried out using the nucleic acid in the sample as a template (hereinafter, may be abbreviated as the amplification step according to the present invention), and the obtained amplification product is detected (hereinafter, the detection according to the present invention). It may be abbreviated as process.)
  • the sample according to the present invention may be any biological sample in which mycobacterium tubercrosis, mycobacterium abium and / and mycobacterium intracellular can be present, and specifically, for example, Examples thereof include sputum, saliva, lung lavage fluid, gastric fluid, whole blood, plasma, serum, urine, feces, skin, pancreatic fluid, etc., sputum, saliva, lung lavage fluid and gastric fluid are preferable, and sputum is more preferable.
  • the concentration, separation and separation of Mycobacterium tuberculosis, Mycobacterium avium and / and Mycobacterium intracellular in the sample are performed.
  • Mycobacterium avium, Mycobacterium avium and / and Mycobacterium intracellular may be subjected to operations such as extraction and purification of nucleic acid.
  • Concentration and separation of Mycobacterium avium or Mycobacterium avium or / and Mycobacterium avium or Mycobacterium avium or / and Mycobacterium avium or / and Mycobacterium avium or / and Mycobacterium avium or / and Concentration and separation of Mycobacterium avium subcellular may be carried out based on a method known per se, which is usually performed in this field, and specific examples thereof include filtration and centrifugation.
  • Extraction and purification of the nucleic acids of Mycobacterium tuberculosis, Mycobacterium avium and / and Mycobacterium intracellular may be carried out based on a method known per se, which is usually performed in this field. Specifically, for example, a method of destroying the cell wall of Mycobacterium avium or Mycobacterium avium and / and Mycobacterium intracellular and then treating with phenol and chloroform, ethanol, isopropanol, etc. Examples include the method of treating with alcohol.
  • a method for destroying the cell wall of Mycobacterium avium or Mycobacterium avium or / and Mycobacterium intracellular it is usually carried out based on a method known per se in this field. Specific examples thereof include a method using a surfactant such as SDS, a protein denaturing agent such as guanidine thiocyanate, and a method of physically crushing with glass beads or the like.
  • the nucleic acid according to the present invention is a nucleic acid derived from Mycobacterium avium or Mycobacterium avium and / or Mycobacterium intracellular, which is present in the above sample, and is DNA or RNA. And preferably DNA.
  • the nucleic acid is RNA
  • complementary DNA cDNA
  • cDNA complementary DNA
  • the amplification step according to the present invention may be carried out based on a nucleic acid amplification reaction known per se, which is usually carried out in this field. Specifically, for example, PCR (Polymerase Chain Reaction) method, TMA (Transcript-mediated). Examples include the amplification) method, the SDA (Strand Invention Amplification) method, and the like, and the PCR method is preferable.
  • the reagent used in the amplification step according to the present invention may be any known reagent usually used in this field, and specifically, for example, a nucleic acid synthase such as Taq polymerase, dNTP or the like. Nucleic acid synthesis substrates, Tris buffers, buffers such as TAPS buffers , salts such as MgCl 2 , KCl, (NH 4 ) 2 SO 4 and the like can be mentioned.
  • polyethylene glycol polyethylene glycol
  • Triton manufactured by Dow Chemical Company
  • Nonidet manufactured by Shell Chemical
  • CHAPS manufactured by Dojin Chemical Co., Ltd.
  • surfactants such as Tween
  • preservatives such as proclin
  • BSA bovine serum
  • Polypeptides such as albumin
  • the amplification reaction may be carried out using a primer pair for detecting an internal control.
  • the internal control may be any bacteria other than Mycobacterium avium and Mycobacterium intracellular, and bacteria such as Bacillus subtilis, Bacillus cereus, and Clostridium difficile may be used. Bacillus subtilis is preferred.
  • the primer pair for detecting the Bacillus subtilis is preferably a combination of a forward primer consisting of the nucleotide sequence represented by SEQ ID NO: 21 and a reverse primer consisting of the nucleotide sequence represented by SEQ ID NO: 22. ..
  • the primers constituting the primer pair for detecting the bacteria selected as the internal control may be labeled with a labeling substance, respectively.
  • a labeling substance for example, at least one of the forward primer and the reverse primer in the primer pair may be labeled with a labeling substance.
  • the labeling substance and the method of labeling with the labeling substance are as described in ⁇ Primer set of the present invention>, and specific examples, preferred examples and the like are also the same.
  • the detection step according to the present invention may be performed based on a method known per se, which is usually performed in this field. Specific examples thereof include an endpoint method and a real-time method, and the real-time method is preferable. ..
  • the endpoint method is a method for separating and detecting the obtained amplification product after a nucleic acid amplification reaction using the primer pair of the present invention.
  • the real-time method is a method for detecting an amplification product obtained by a nucleic acid amplification reaction using the primer pair of the present invention in real time during the nucleic acid amplification reaction.
  • Specific methods of the endpoint method and the real-time method include (a) labeled primer method, (b) intercalator method and (c) labeled probe method, and (a) labeled primer method is preferable.
  • the labeled primer method is, for example, as follows. "A nucleic acid amplification reaction is carried out using the nucleic acid in the sample as a template using the primer set of the present invention in which at least one of each primer pair is labeled with a labeling substance. Next, after the nucleic acid amplification reaction, the obtained amplification products are separated from each other, and the labels in the amplification products are detected respectively (endpoint method), or the amplification products obtained every 1 to 3 cycles of the nucleic acid amplification reaction. Each of the signs inside is detected in real time (real-time method).
  • the amplification product obtained every 1 to 3 cycles of the nucleic acid amplification reaction may be separated once, and then the fluorescence derived from the label of the amplification product may be detected.
  • detecting a label in the present specification means directly or indirectly measuring a label substance based on the properties of the label substance.
  • the separation in the (a) labeled primer method include methods known per se, such as electrophoresis and high performance liquid chromatography (HPLC), and electrophoresis is preferable.
  • electrophoresis include capillary electrophoresis, agarose gel electrophoresis, polyacrylamide gel electrophoresis (slab electrophoresis), starch gel electrophoresis, isoelectric point electrophoresis, and the like. Electrophoresis is preferred. When performing capillary electrophoresis, for example, it may be carried out according to a method known per se as described in WO2007 / 027495, WO2011 / 1184946, WO2008 / 075520 and the like.
  • the intercalator method is performed by the endpoint method, for example, it is performed as follows. "Using the primer set of the present invention, a nucleic acid amplification reaction is carried out using the nucleic acid in the sample as a template. Then, each of the obtained amplification products is separated. The amplification product is then stained with an intercalator to detect fluorescence from the intercalator. As a result, (i) when fluorescence derived from the intercalator in the amplification product amplified by the primer pair for detecting tuberculosis according to the present invention is detected, "the sample is positive for Mycobacterium tuberculosis". There is.
  • the intercalator method is as follows when the real-time method is used. "Using the primer set and intercalator of the present invention, perform a nucleic acid amplification reaction using the nucleic acid in the sample as a template. Next, the fluorescence derived from the intercalator that intercalates in correlation with the amplification amount of the obtained amplification product is detected. As a result, (i) when an increase in fluorescence derived from the intercalator in the amplification product amplified by the primer pair for detecting tuberculosis according to the present invention is detected, "the sample is Mycobacterium tubercrosis. It is judged as "positive".
  • the separation in the intercalator method is as described in (a) Labeled primer method, and the same applies to specific examples, preferred examples, and the like.
  • the intercalator in the intercalator method may be any known one that is usually used in this field, and specific examples thereof include those described in WO2017 / 170376, among which SYTOX ( (Trademark) dyes [For example, SYBR Gold TM, SYBR Green I TM, SYBR Green II TM, SYTOX Green TM, SYTOX Blue TM, SYTOX Orange TM (all of them are Thermo Fisher Sciences). Tiffic) is preferred.
  • the labeled probe method is performed by the endpoint method, for example, as follows. "Using the primer set of the present invention, a nucleic acid amplification reaction is carried out using the nucleic acid in the sample as a template. Then, each of the obtained amplification products is separated. Then, the amplification products are treated with a basic solution such as sodium hydroxide to form single strands. Next, the amplification product is hybridized with a probe labeled with a labeling substance having a base sequence complementary to the base sequence of all or part of the amplification product to form a hybrid body, and the hybrid body is formed. Each of the signs inside is detected.
  • the labeling substance and the method of labeling with the labeling substance in the labeling probe method are as described in ⁇ Primer set of the present invention>, and specific examples, preferred examples and the like are also the same.
  • the labeled probe method (c) is performed by the real-time method, for example, it is performed as follows. "Using the primer set and fluorescently labeled probe of the present invention, a nucleic acid amplification reaction is carried out using the nucleic acid in the sample as a template. Then, the fluorescence derived from the probe in the obtained amplification product is detected. As a result, (i) when an increase in fluorescence derived from a probe that hybridizes with the amplification product amplified by the primer pair for detecting tuberculosis according to the present invention is detected, "the sample is Mycobacterium tuberck.” It is determined that the sample is positive for losis.
  • the fluorescently labeled probe is designed to hybridize to a region amplified by a nucleic acid amplification reaction using the primer pair according to the present invention, and the 5'end thereof is, for example, a fluorescent dye (reporter fluorescent dye). ), The 3'end is labeled with, for example, a nucleic acid dye.
  • the separation in the labeled probe method is as described in (a) Labeled primer method, and the same applies to specific examples, preferred examples, and the like.
  • nucleic acid eg, DNA
  • a sample eg, sputum
  • a primer pair for tuberculosis detection, a primer pair for abium detection, and a primer pair for intracellular detection according to the present invention are synthesized by a chemical synthesis method (for example, a phosphoramidite method). Then, at least one of the primer pairs is labeled with a labeling substance (for example, a fluorescent substance) by a method known per se.
  • a labeling substance for example, a fluorescent substance
  • a nucleic acid amplification reaction for example, PCR
  • PCR nucleic acid amplification reaction
  • Primers constituting the primer pair for intracellular detection 0.5 mM to 5 mM salt (for example, MgCl 2 ), 0.05 mg / mL to 10 mg / mL polypeptide (for example, BSA), 0.1 mM to 2 mM each.
  • nucleic acid synthesis substrates eg, dATP, dCTP, dGT and dTTP
  • nucleic acid synthase eg, Taq polymerase
  • Tris buffer or TAPS buffer Tris buffer or TAPS buffer
  • 0.01 ng to 1000 ng of the above nucleic acid is added to 5 ⁇ L to 100 ⁇ L of this reaction solution, and this is used as a sample for a nucleic acid amplification reaction.
  • a nucleic acid amplification reaction for example, PCR method
  • a nucleic acid amplification device such as a thermal cycler.
  • Nucleic acid amplification reaction eg PCR
  • Nucleic acid amplification reaction eg PCR
  • Nucleic acid amplification reaction eg PCR
  • the reagent kit for detecting Mycobacterium avium or / and Mycobacterium intracellular of the present invention contains the primer set of the present invention.
  • the reagent kit of the present invention requires (A) the primer set of the present invention.
  • A the primer set of the present invention.
  • B Primer pair for internal control detection
  • C Sterilizer
  • D Nucleic acid extraction-related reagent
  • E Nucleic acid amplification-related reagent
  • F Electrophoresis-related reagent
  • G Manual
  • Primer pair for internal control detection is used to detect bacteria selected as an internal control, and specifically, for example, Bacillus subtilis, Primer pairs for detecting Bacillus cereus, Clostridium difficile, etc. are mentioned, and primer pairs for detecting Bacillus subtilis are preferable, and a forward primer consisting of the nucleotide sequence represented by SEQ ID NO: 21 and SEQ ID NO: 22 It is more preferable to use a combination with a reverse primer consisting of the base sequence represented by.
  • Bactericidal solution is the genus Mycobacterium (Mycobacterium avium, Mycobacterium avium, Mycobacterium intracellular, etc.) and internal control existing in the sample. It is for sterilizing selected bacteria, and specifically, those containing an alcohol such as 2-propanol are preferable. Further, it is preferable that the sterilizing solution contains the bacteria selected as the internal control.
  • Nucleic acid extraction-related reagent is the genus Mycobacterium (Mycobacterium tuberculosis, Mycobacterium abium, Mycobacterium intracellular, etc.) present in the sample. It is used for extracting nucleic acid from, and examples thereof include a nucleic acid binding solution, a nucleic acid eluate, and a nucleic acid washing solution. Specifically, the nucleic acid binding solution contains, for example, a protein denaturant such as guanidine hydrochloride, Tris buffer, Tris / EDTA buffer (TE buffer) and / and a deoxyribonucleic acid sodium salt derived from salmon testis. Those are preferable.
  • a protein denaturant such as guanidine hydrochloride, Tris buffer, Tris / EDTA buffer (TE buffer) and / and a deoxyribonucleic acid sodium salt derived from salmon testis. Those are preferable.
  • nucleic acid eluate for example, one containing a buffer solution such as Tris buffer solution and / or a preservative such as proclin is preferable.
  • nucleic acid washing solution for example, a solution containing a salt such as sodium chloride, a buffer solution such as Tris buffer solution, an alcohol such as ethanol and / or a surfactant such as Tween is preferable.
  • Nucleic acid amplification reaction reagent is used for carrying out a nucleic acid amplification reaction such as PCR, and specifically, for example, Tris buffer solution, TAPS buffer solution and the like.
  • a buffer solution, a nucleic acid synthesizing substrate, a nucleic acid synthase, an antiseptic such as Proclin, or / and a polypeptide such as BSA are preferable.
  • Electrophoresis-related reagent is used for subjecting a nucleic acid amplification product obtained by a nucleic acid amplification reaction to electrophoresis, and specifically, for example, for electrophoresis.
  • Examples thereof include buffer solutions, polymer solutions, and markers for electrophoresis.
  • the electrophoresis buffer for example, a salt such as MgCl 2 , a buffer solution such as TAPS, an alcohol such as glycerin, and / or a preservative such as proclin are preferable.
  • the polymer solution preferably contains a polymer such as polyethylene glycol, a cellulose derivative, agarose, polyacrylamide, and a polymer having a monomer unit derived from dimethylformamide.
  • a polymer such as polyethylene glycol, a cellulose derivative, agarose, polyacrylamide, and a polymer having a monomer unit derived from dimethylformamide.
  • a nucleic acid DNA or the like having a known molecular weight is preferable.
  • the above (A) to (G) are contained in individual containers (tubes, etc.).
  • the method for assisting the diagnosis of mycobacteriosis according to the present invention (hereinafter, may be abbreviated as the auxiliary method according to the present invention) is based on the result of the detection method of the present invention, and the subject is subjected to mycobacteriosis. It is done by determining whether or not the patient is suffering from (hereinafter, may be abbreviated as the determination step according to the present invention).
  • the determination step according to the present invention is performed, for example, as follows, based on the result of the detection method of the present invention. That is, (i) When a signal (fluorescence, etc.) derived from a product amplified by the primer pair for detecting tuberculosis according to the present invention is detected, "the subject derived from the sample has mycobacteriosis (acid-fast bacillus). There is a high possibility of suffering from tuberculosis) or acid-fast mycobacteriosis (tuberculosis).
  • the subject derived from the sample has mycobacteriosis. (There is a high possibility of suffering from (non-tuberculous mycobacteriosis), or there is a high possibility of suffering from acid-fast mycobacteria (non-tuberculous mycobacteriosis). " In addition, (ii'') when a signal (fluorescence, etc.) derived from the product amplified by the intracellular detection primer pair according to the present invention is not detected, “the subject derived from the sample is an acid-fast bacterium. There is no risk of suffering from illness (nontuberculous mycobacteriosis), or there is a low risk of suffering from acid-fast bacillus (nontuberculous mycobacteriosis). " ..
  • auxiliary method it is possible to diagnose mycobacteriosis (tuberculosis and / and nontuberculous mycobacteriosis) with high accuracy (sensitivity / specificity).
  • the method for treating mycobacteriosis according to the present invention (hereinafter, may be abbreviated as the treatment method according to the present invention) is to provide appropriate treatment based on the result of the auxiliary method according to the present invention (hereinafter, may be abbreviated as the treatment method according to the present invention). Hereinafter, it may be abbreviated as the treatment step according to the present invention.)
  • the treatment step according to the present invention is specifically described in the case of (i).
  • antibiotics effective for tuberculosis such as rifapicin (generic name), isoniazid (hydrazide) (generic name), streptomycin (generic name), ethambutol (generic name), pyrazinamide (generic name) are administered. Examples include drug therapy and surgical therapy performed by doing so.
  • antibiotics effective against non-tuberculous mycobacteriosis such as clarithromycin (generic name), ethambutol (generic name), and rifapicin (generic name). Examples thereof include drug therapy and surgical therapy performed by administering.
  • mycobacteriosis tuberculosis and / and non-tuberculous mycobacteriosis
  • mycobacteriosis tuberculosis and / and non-tuberculosis
  • Appropriate treatment can be given to subjects who are determined to have a high risk of suffering from mycobacteriosis.
  • the device for assisting the diagnosis of mycobacteriosis according to the present invention includes at least (1) a nucleic acid amplification reaction unit and (2) a detection unit. I have. Further, it may include (3) a nucleic acid extraction unit, (4) a determination unit, (5) an output unit, and (6) an input unit.
  • the (1) nucleic acid amplification reaction unit in the apparatus according to the present invention is configured to perform a nucleic acid amplification reaction using the primer set of the present invention.
  • the (2) detection unit in the apparatus according to the present invention is configured so that the nucleic acid amplification product obtained in (1) the nucleic acid amplification reaction unit can be detected.
  • the (1) nucleic acid amplification reaction unit and (2) detection unit may be configured independently or integrally, and specifically, for example, JP-A-2018-89611 and The microfluidic devices listed in JP 2015-514994 are preferred.
  • the (3) nucleic acid extraction unit in the apparatus according to the present invention is configured to be capable of extracting and / or purifying nucleic acid from a sample. Specifically, for example, it is preferable that the nucleic acid extraction method described in WO2016 / 079981 and the nucleic acid purification method described in WO2015 / 157650 can be carried out.
  • the (4) determination unit shows that the subject suffers from mycobacteriosis (tuberculosis and / and nontuberculous mycobacteriosis) based on the results obtained by the (2) detection unit. It is configured so that it can be determined whether or not it is present.
  • the (5) output unit in the apparatus according to the present invention can output the results obtained by (1) nucleic acid amplification reaction unit, (2) detection unit, (3) nucleic acid extraction unit and / and (4) determination unit. It is configured in.
  • the (6) input unit in the apparatus according to the present invention operates the (1) nucleic acid amplification reaction unit and / and (3) nucleic acid extraction unit to (1) nucleic acid amplification reaction unit and / and (3) nucleic acid extraction unit. It is configured to be able to transmit a signal to make it.
  • the auxiliary method according to the present invention can be performed easily, in a short time, and with high accuracy.
  • Example 1 Examination of primer set in the absence of target> Various primer sets were examined by performing a nucleic acid amplification reaction using various primer sets in the absence of a target.
  • Each primer in the above primer set 1 is 400 nM, 1.5 mM MgCl 2 , 0.5 mg / mL BSA, 0.2 mM dATP, dCTP, dGTP, dTTP and 60 U / mL KOD Exo, respectively.
  • a 10 mM Tris-HCl buffer (PH8.0) containing (-) (manufactured by Toyo Boseki) was prepared, and this was used as a reaction solution for PCR. Further, instead of each primer in the primer set 1, each primer in the primer set 2, 3 or 4 was used to prepare a reaction solution for PCR in the same manner.
  • the DNA prepared in (2) above was suspended in 25 ⁇ L of the reaction solution for PCR so as to have a final amount of 5 ⁇ g, and this was used as a sample for PCR.
  • Each of the above PCR samples was placed in a 96-well plate (manufactured by Thermo Fisher Scientific), and PCR was performed using StepOnePlus TM (manufactured by Thermo Fisher Scientific). After heating at 97 ° C. for 30 seconds, PCR was carried out for 40 cycles with (1) 97 ° C. for 10 seconds ⁇ (2) 65 ° C. for 20 seconds ⁇ (3) 72 ° C. for 30 seconds as one cycle.
  • each nucleic acid amplification product obtained is subjected to capillary electrophoresis according to the protocol attached to the device using a fully automatic microchip type capillary electrophoresis apparatus 2100 bioanalyzer (manufactured by Agilent Technologies). The products were separated and detected respectively.
  • the bands present in the vicinity of 180 base pairs seen in the primer set 4 are extremely close to the positions of the products amplified by the primer pair for detecting Mycobacterium tuberculosis, so that there is a high possibility of false positives. It turned out to be expensive.
  • the primer set 3 the band showing the amplification of non-specific nucleic acid was not detected, and naturally, the primer pair for detecting Mycobacterium avium subtilis, the primer pair for detecting Mycobacterium avium, and Mycobacterium avium. There was no band at the position of the product amplified by the primer pair for intracellular detection (around 150 base pairs to 200 base pairs). From the above results, it was found that the primer set 3 can suppress the amplification of non-specific nucleic acids, so that the possibility of false positives is extremely low.
  • Example 2 Detection of Mycobacterium tuberculosis, Mycobacterium avium and Mycobacterium intracellular> Using the primer set 3 in Example 1, Mycobacterium avium subtilis, Mycobacterium avium, and Mycobacterium intracellular were detected.
  • the template DNA prepared in (3) above was suspended in 25 ⁇ L of the reaction solution for PCR so as to have the concentration shown in Table 4 below, and this was used as a sample for PCR.
  • the above PCR sample was placed in a 96-well plate (manufactured by Thermo Fisher Scientific Co., Ltd.), and PCR was performed using StepOnePlus TM (manufactured by Thermo Fisher Scientific Co., Ltd.). The reaction was heated at 97 ° C. for 30 seconds, and then 40 cycles were carried out with (1) 97 ° C. for 10 seconds ⁇ (2) 64 ° C. for 10 seconds ⁇ (3) 72 ° C. for 20 seconds as one cycle.
  • the obtained nucleic acid amplification product is obtained by capillary electrophoresis according to the protocol attached to the device using a fully automatic microchip type capillary electrophoresis apparatus 2100 bioanalyzer (manufactured by Agilent Technologies).
  • the nucleic acid amplification products were separated and detected respectively.
  • Mycobacterium tuberculosis, Mycobacterium avium and Mycobacterium intracellular can be detected by using the primer set 3. Furthermore, it was found that even if there is a difference in concentration (copy number) between Mycobacterium avium subtilis, Mycobacterium avium, and Mycobacterium intracellular, these can be detected.
  • Primer set and probe The primer set and probe shown in Table 5 below were used.
  • the 5'end of the probe consisting of the nucleotide sequence represented by SEQ ID NO: 18 is a fluorescent substance (FAM)
  • the 3'end is a fluorescent substance (TAMRA TM )
  • Signed In the probe for detecting Mycobacterium intracellular, the 5'end of the probe consisting of the nucleotide sequence represented by SEQ ID NO: 19 was labeled with a fluorescent substance (FAM), and the 3'end was labeled with a fluorescent substance (TAMRA TM).
  • the 5'end of the probe consisting of the nucleotide sequence represented by SEQ ID NO: 20 was labeled with a fluorescent substance (FAM), and the 3'end was labeled with a fluorescent substance (TAMRA TM). ..
  • PCR samples are placed in a 96-well plate (manufactured by Thermo Fisher Scientific Co., Ltd.), and real-time PCR is performed using StepOnePlus TM (manufactured by Thermo Fisher Scientific Co., Ltd.) to detect nucleic acid amplification products in real time. did.
  • the reaction was heated at 97 ° C. for 30 seconds, and then 40 cycles were carried out with (1) 97 ° C. for 10 seconds ⁇ (2) 64 ° C. for 10 seconds ⁇ (3) 72 ° C. for 20 seconds as one cycle.
  • FIGS. 3 to 9 The results of real-time PCR of (3) are shown in FIGS. 3 to 9, respectively.
  • the nucleic acid amplification product whose purpose is to increase the fluorescence intensity was detected.
  • 1-1a to 1-7a show the detection result of Mycobacterium avium subtilis
  • 1-1b to 1-7b show the detection result of Mycobacterium avium
  • 1-1c to 1-7c show the detection result of Mycobacterium avium subcellular.
  • Example 3 Examination of the concentration of each primer pair in primer set 3> The optimum concentration of each primer pair constituting the primer set 3 in Example 1 was examined.
  • Primer set The primer set 3 used in Example 1 was used. However, in the primer pair for detecting Mycobacterium tuberculosis, the 5'end of the reverse primer consisting of the nucleotide sequence represented by SEQ ID NO: 2 was labeled with a labeling substance (TAMRA TM ). In the primer pair for Mycobacterium avium detection, a linker (adenine (A) -adenine (A)) is added to the 5'end of the forward primer consisting of the nucleotide sequence represented by SEQ ID NO: 3, and the 5'end is further added. Was labeled with a labeling substance (TAMRA TM ).
  • TAMRA TM labeling substance
  • a linker (adenine (A) -adenine (A)) is added to the 5'end of the forward primer consisting of the nucleotide sequence represented by SEQ ID NO: 5, and further, the linker (adenine (A) -adenine (A)) is added thereto.
  • the 5'end was labeled with a labeling substance (TAMRA TM ).
  • an internal control (Bacillus subtilis) detection primer pair forward primer: base sequence represented by SEQ ID NO: 21, reverse primer: base sequence represented by SEQ ID NO: 22
  • forward primer base sequence represented by SEQ ID NO: 21
  • reverse primer base sequence represented by SEQ ID NO: 22
  • the DNA prepared in (2) above was suspended in 25 ⁇ L of the reaction solution for PCR so as to be 0.08 copy / ⁇ L, respectively, and this was used as a sample for PCR. Then, using a fully automatic gene analyzer Mutaswaco g1 (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.), a nucleic acid amplification reaction (PCR) and electrophoresis were performed using the above sample according to the instruction manual of the device.
  • PCR nucleic acid amplification reaction
  • FIGS. 10 to 12 The results of (3) are shown in FIGS. 10 to 12, respectively.
  • the vertical axis in FIGS. 10 to 12 represents the rate (%) of positive results when the same example was measured a total of 8 times.
  • the horizontal axis represents the concentration ratio of each primer pair in the primer set.
  • Mycobacterium tuberculosis, Mycobacterium avium, and Mycobacterium intracellular were detected in the same reaction system.
  • FIG. 10 Mycobacterium avium
  • Tubercrosis FIG. 11 (Mycobacterium avium)
  • FIG. 12 Mycobacterium intracellular
  • each of the primer sets It was found that the positive rate increased as the concentration ratio of the primer pairs increased.
  • the clinically ideal conditions in which the positive rates of Mycobacterium avium and Mycobacterium avium and Mycobacterium intracellular are equivalent are the conditions of Example 3-7. .. That is, the concentration ratio of the primer pair for detecting Mycobacterium tuberculosis was about 18% (300 nM) (2 in FIG. 10), and the concentration ratio of the primer pair for detecting Mycobacterium avium was about 47% (800 nM). (6 in FIG. 11) and the concentration ratio of the primer pair for Mycobacterium avium intracellular detection are about 35% (600 nM) (6 in FIG. 12). Under these conditions, it was found that the positive rates of Mycobacterium avium subtilis, Mycobacterium avium, and Mycobacterium avium intracellular were 75%, respectively, which were good values.
  • the concentration ratio of the primer pair for Mycobacterium tuberculosis detection is about 18% (300 nM)
  • the concentration ratio of the primer pair for Mycobacterium avium detection is about 47% (800 nM)
  • Mycobacterium intracellular is about 35% (600 nM)
  • the primer set for detecting Mycobacterium tuberculosis, Mycobacterium avium and Mycobacterium intracellular the method using the same, and the reagent kit for that, it is present in the sample. Even if there is a difference in the concentration (number of copies) of the Mycobacterium genus (Mycobacterium avium, Mycobacterium avium, and Mycobacterium intracellular), these can be detected.

Abstract

本発明は、試料中に存在するマイコバクテリウム属の濃度(コピー数)に差があったとしても、これらを検出できる方法の提供を課題とし、 「(i)配列番号1で表される塩基配列からなるフォワードプライマーと配列番号2で表される塩基配列からなるリバースプライマーとの組み合わせからなるマイコバクテリウム・ツベルクローシス検出用プライマー対、 (ii)配列番号3で表される塩基配列からなるフォワードプライマーと配列番号4で表される塩基配列からなるリバースプライマーとの組み合わせからなるマイコバクテリウム・アビウム検出用プライマー対 及び (iii)配列番号5で表される塩基配列からなるフォワードプライマーと配列番号6で表される塩基配列からなるリバースプライマーとの組み合わせからなるマイコバクテリウム・イントラセルラー検出用プライマー対 を含む、プライマーセット。」 に関する。

Description

マイコバクテリウム・ツベルクローシス、マイコバクテリウム・アビウム及びマイコバクテリウム・イントラセルラーを検出するためのプライマーセット及びこれを用いた方法、並びにそのための試薬キット
 本発明は、マイコバクテリウム・ツベルクローシス、マイコバクテリウム・アビウム及びマイコバクテリウム・イントラセルラーを検出するためのプライマーセット及びこれを用いた方法、並びにそのための試薬キットに関する。
 結核症、非結核性抗酸菌症等の抗酸菌症は、世界的にまん延している細菌性疾患のことであり、全身の倦怠感、食欲不振、発熱等の症状を特徴とするものである。結核症及び非結核性抗酸菌症は、抗酸菌の一種であるマイコバクテリウム(Mycobacterium)属により引き起こされることが分かっている。結核症は、マイコバクテリウム・ツベルクローシス(Mycobacterium tuberculosis)により引き起こされ、非結核性抗酸菌症は、主にマイコバクテリウム・アビウム(Mycobacterium avium)及びマイコバクテリウム・イントラセルラー(Mycobacterium intracellulare)により引き起こされる。
 また、結核症と非結核性抗酸菌症とでは、治療薬等が異なるため、結核症と非結核性抗酸菌症とを区別することは臨床上重要である。
 従来、結核症と非結核性抗酸菌症とを区別するには、検体を固形培地上で分離・培養する方法が主流であった。
 しかしながら、この方法では、結核症の診断に約3週間、非結核性抗酸菌症の診断に約4週間程度要するため、迅速にこれらを区別することは不可能であった。
 そこで近年、分子遺伝学の発展により、ポリメラーゼ連鎖反応(PCR)等の核酸増幅法を利用した迅速な方法が開発されている(特許文献1-3)。
 これら特許文献1-3の方法は、マイコバクテリウム・ツベルクローシスの有無、マイコバクテリウム・アビウムの有無、及びマイコバクテリウム・イントラセルラーの有無をそれぞれ検出する方法である。
 しかしながら、上述の通り、マイコバクテリウム・ツベルクローシス、マイコバクテリウム・アビウム及びマイコバクテリウム・イントラセルラーにより、結核症、非結核性抗酸菌症等の抗酸菌症が引き起こされるため、これら3菌種の有無を同時に検出することが、適切な治療を行う上で望ましい。
 マイコバクテリウム・ツベルクローシス、マイコバクテリウム・アビウム及びマイコバクテリウム・イントラセルラーの有無を同時に検出する方法としては、マイコバクテリウム属間で共通に保存された配列にアニーリングするプライマー及びマイコバクテリウム・ツベルクローシス、マイコバクテリウム・アビウム及びマイコバクテリウム・イントラセルラーに特異的な配列にそれぞれハイブリダイズするプローブを用いる方法が知られている(特許文献4)。
特許第4905130号公報 特許第6166806号公報 特許第5958498号公報 特開平6-261757
 しかしながら、上記特許文献4の方法は、例えば、被験者由来の試料中に含まれるマイコバクテリウム属の種間で濃度差(コピー数の差)があった場合、試料中に存在するマイコバクテリウム属を適切に検出することができないという問題を有していた。具体的には、例えば、試料中にマイコバクテリウム・ツベルクローシスが低濃度(例えば、4コピー数/μL)、マイコバクテリウム・アビウム及びマイコバクテリウム・イントラセルラーがそれぞれ高濃度(例えば、400コピー数/μL)、で存在する場合、試料中に最も低濃度で存在しているマイコバクテリウム・ツベルクローシスに由来する核酸の増幅量が、試料中に最も高濃度で存在するマイコバクテリウム・アビウム及びマイコバクテリウム・イントラセルラーに由来する核酸の増幅量に比べてはるかに少なくなってしまうため、マイコバクテリウム・ツベルクローシスの検出が困難となるということである。
 上記問題は、特許文献4の方法におけるプライマーの性質に起因する。即ち、当該プライマーは、マイコバクテリウム属間で共通に保存された配列にアニーリングするよう設計されているため、試料中に最も高濃度で存在するマイコバクテリウム・アビウム及びマイコバクテリウム・イントラセルラーに由来する核酸に優先的にアニーリングし、結果として当該核酸が優先的に増幅されるからである。そのため、特許文献4の方法では、マイコバクテリウム・ツベルクローシスが試料中に存在するにも拘わらず、これを検出することが困難となる。
 以上のことより、試料中に存在するマイコバクテリウム属(マイコバクテリウム・ツベルクローシス、マイコバクテリウム・アビウム及びマイコバクテリウム・イントラセルラー)の濃度(コピー数)に差があったとしても、これらを検出することができる方法の開発が望まれていた。
 本発明は、試料中に存在するマイコバクテリウム属(マイコバクテリウム・ツベルクローシス、マイコバクテリウム・アビウム及びマイコバクテリウム・イントラセルラー)の濃度(コピー数)に差があったとしても、これらを検出することができる方法の提供を課題とする。
 本発明は、上記課題を解決する目的でなされたものであり、以下の構成よりなる。
[1]
(i)配列番号1で表される塩基配列からなるフォワードプライマーと配列番号2で表される塩基配列からなるリバースプライマーとの組み合わせからなるマイコバクテリウム・ツベルクローシス検出用プライマー対、
(ii)配列番号3で表される塩基配列からなるフォワードプライマーと配列番号4で表される塩基配列からなるリバースプライマーとの組み合わせからなるマイコバクテリウム・アビウム検出用プライマー対
及び
(iii)配列番号5で表される塩基配列からなるフォワードプライマーと配列番号6で表される塩基配列からなるリバースプライマーとの組み合わせからなるマイコバクテリウム・イントラセルラー検出用プライマー対
を含む、プライマーセット。
[2]
前記(i)、(ii)及び(iii)のフォワードプライマーとリバースプライマーの少なくとも一方が、それぞれ標識物質で標識されているものである、[1]に記載のプライマーセット。
[3]
前記標識物質が、蛍光物質、放射性同位体又は酵素から選択されるものである、[1]又は[2]に記載のプライマーセット。
[4]
[1]~[3]の何れか1つに記載のプライマーセットを用い、試料中の核酸を鋳型として核酸増幅反応を行い、得られた核酸増幅産物を検出することによりなされる、マイコバクテリウム・ツベルクローシス、マイコバクテリウム・アビウム又は/及びマイコバクテリウム・イントラセルラーの検出方法。
[5]
(i)配列番号1で表される塩基配列からなるフォワードプライマーと配列番号2で表される塩基配列からなるリバースプライマーとの組み合わせからなるマイコバクテリウム・ツベルクローシス検出用プライマー対、
(ii)配列番号3で表される塩基配列からなるフォワードプライマーと配列番号4で表される塩基配列からなるリバースプライマーとの組み合わせからなるマイコバクテリウム・アビウム検出用プライマー対
及び
(iii)配列番号5で表される塩基配列からなるフォワードプライマーと配列番号6で表される塩基配列からなるリバースプライマーとの組み合わせからなるマイコバクテリウム・イントラセルラー検出用プライマー対
を含む、試薬キット。
[6]
前記(i)、(ii)及び(iii)のフォワードプライマーとリバースプライマーの少なくとも一方が、それぞれ標識物質で標識されているものである、[5]に記載の試薬キット。
 本発明のマイコバクテリウム・ツベルクローシス、マイコバクテリウム・アビウム及びマイコバクテリウム・イントラセルラーを検出するためのプライマーセット及びこれを用いた方法、並びにそのための試薬キットによれば、試料中に存在するマイコバクテリウム属(マイコバクテリウム・ツベルクローシス、マイコバクテリウム・アビウム及びマイコバクテリウム・イントラセルラー)の濃度(コピー数)に差があったとしても、これらを検出することができる。
実施例1で得られた、ターゲット非存在下における各種プライマーセットを用いた核酸増幅反応(PCR)による検出結果である。 実施例2で得られた、ターゲット存在下におけるプライマーセット3を用いた核酸増幅反応(PCR)による検出結果である。 比較例1(比較例1-1)で得られた、ターゲット存在下における公知のプライマー対及びプローブを用いた核酸増幅反応(PCR)による検出結果である。 比較例1(比較例1-2)で得られた、ターゲット存在下における公知のプライマー対及びプローブを用いた核酸増幅反応(PCR)による検出結果である。 比較例1(比較例1-3)で得られた、ターゲット存在下における公知のプライマー対及びプローブを用いた核酸増幅反応(PCR)による検出結果である。 比較例1(比較例1-4)で得られた、ターゲット存在下における公知のプライマー対及びプローブを用いた核酸増幅反応(PCR)による検出結果である。 比較例1(比較例1-5)で得られた、ターゲット存在下における公知のプライマー対及びプローブを用いた核酸増幅反応(PCR)による検出結果である。 比較例1(比較例1-6)で得られた、ターゲット存在下における公知のプライマー対及びプローブを用いた核酸増幅反応(PCR)による検出結果である。 比較例1(比較例1-7)で得られた、ターゲット存在下における公知のプライマー対及びプローブを用いた核酸増幅反応(PCR)による検出結果である。 実施例3で得られた、プライマーセット3を構成するマイコバクテリウム・ツベルクローシス検出用プライマー対の最適濃度の検定結果である。 実施例3で得られた、プライマーセット3を構成するマイコバクテリウム・アビウム検出用プライマー対の最適濃度の検定結果である。 実施例3で得られた、プライマーセット3を構成するマイコバクテリウム・イントラセルラー検出用プライマー対の最適濃度の検定結果である。
<本発明のマイコバクテリウム・ツベルクローシス、マイコバクテリウム・アビウム及びマイコバクテリウム・イントラセルラーを検出するためのプライマーセット>
 本発明のマイコバクテリウム・ツベルクローシス、マイコバクテリウム・アビウム及びマイコバクテリウム・イントラセルラーを検出するためのプライマーセット(以下、本発明のプライマーセットと略記する場合がある。)は、
(i)配列番号1で表される塩基配列からなるフォワードプライマーと配列番号2で表される塩基配列からなるリバースプライマーとの組み合わせからなるマイコバクテリウム・ツベルクローシス検出用プライマー対(以下、本発明に係るツベルクローシス検出用プライマー対と略記する場合がある)、
(ii)配列番号3で表される塩基配列からなるフォワードプライマーと配列番号4で表される塩基配列からなるリバースプライマーとの組み合わせからなるマイコバクテリウム・アビウム検出用プライマー対(以下、本発明に係るアビウム検出用プライマー対と略記する場合がある。)
及び
(iii)配列番号5で表される塩基配列からなるフォワードプライマーと配列番号6で表される塩基配列からなるリバースプライマーとの組み合わせからなるマイコバクテリウム・イントラセルラー検出用プライマー対(以下、本発明に係るイントラセルラー検出用プライマー対と略記する場合がある。)を含むものである。
[本発明に係るツベルクローシス検出用プライマー対]
 本発明に係るツベルクローシス検出用プライマー対は、配列番号1で表される塩基配列からなるフォワードプライマーと配列番号2で表される塩基配列からなるリバースプライマーとの組み合わせからなるものである。
 配列番号1で表される塩基配列からなるフォワードプライマー(GenbankID:CP023640.1、塩基番号889765~889784)と配列番号2で表される塩基配列からなるリバースプライマー(GenbankID:CP023640.1、塩基番号889925~889946)は、マイコバクテリウム・ツベルクローシスの塩基配列のうち、配列番号7で表される塩基配列(GenbankID:CP023640.1、塩基番号889765~889946)にそれぞれアニーリングするものである。
 そのため、本発明に係るツベルクローシス検出用プライマー対と、マイコバクテリウム・ツベルクローシス由来のDNA等の核酸含有試料とを用いてPCR等の核酸増幅反応に付すと、上記配列番号7で表される塩基配列が増幅される。
[本発明に係るアビウム検出用プライマー対]
 本発明に係るアビウム検出用プライマー対は、配列番号3で表される塩基配列からなるフォワードプライマーと配列番号4で表される塩基配列からなるリバースプライマーとの組み合わせからなるものである。
 配列番号3で表される塩基配列からなるフォワードプライマー(GenbankID:CP000479.1、塩基番号829817~829835)と配列番号4で表される塩基配列からなるリバースプライマー(GenbankID:CP000479.1、塩基番号829684~829703)は、マイコバクテリウム・アビウムの塩基配列のうち、配列番号8で表される塩基配列(GenbankID:CP000479.1、塩基番号829684~829835)にそれぞれアニーリングするものである。
 そのため、本発明に係るアビウム検出用プライマー対と、マイコバクテリウム・アビウム由来のDNA等の核酸含有試料とを用いてPCR等の核酸増幅反応に付すと、上記配列番号8で表される塩基配列が増幅される。
[本発明に係るイントラセルラー検出用プライマー対]
 本発明に係るイントラセルラー検出用プライマー対は、配列番号5で表される塩基配列からなるフォワードプライマーと配列番号6で表される塩基配列からなるリバースプライマーとの組み合わせからなるものである。
 配列番号5で表される塩基配列からなるフォワードプライマー(GenbankID:CP023149.1、塩基番号3015253~3015271)と配列番号6で表される塩基配列からなるリバースプライマー(GenbankID:CP023149.1、塩基番号3015059~3015076)は、マイコバクテリウム・イントラセルラーの塩基配列のうち、配列番号9で表される塩基配列(GenbankID:CP023149.1、塩基番号3015059~3015271)にそれぞれアニーリングするものである。
 そのため、本発明に係るイントラセルラー検出用プライマー対と、マイコバクテリウム・イントラセルラー由来のDNA等の核酸含有試料とを用いてPCR等の核酸増幅反応に付すと、上記配列番号9で表される塩基配列が増幅される。
 本発明のプライマーセットにおける本発明に係るツベルクローシス検出用プライマー対、アビウム検出用プライマー対及びイントラセルラー検出用プライマー対の濃度(最終濃度)は、下記表1に示す通りである。
 尚、上記プライマー対の濃度(最終濃度)とは、プライマー対を構成するフォワードプライマー及びリバースプライマーそれぞれの、PCR等の核酸増幅反応液中における濃度のことを意味する。例えば、プライマー対の濃度が400nMの場合、当該プライマー対を構成するフォワードプライマー及びリバースプライマーの濃度がPCR等の核酸増幅反応液中にそれぞれ400nMであることを意味する。以下、本明細書にて同様である。
Figure JPOXMLDOC01-appb-T000001
 また、本発明のプライマーセットにおける本発明に係るツベルクローシス検出用プライマー対、アビウム検出用プライマー対及びイントラセルラー検出用プライマー対の濃度比率(最終濃度比率)は、下記表2に示す通りである。
 尚、下記表2は、本発明に係るツベルクローシス検出用プライマー対、アビウム検出用プライマー対及びイントラセルラー検出用プライマー対のみからなる本発明のプライマーセットにおける各プライマー対の濃度比率(最終濃度比率)を表す。
 上記濃度比率(最終濃度比率)とは、全体の濃度を100%とした時の各プライマー対それぞれが占める濃度(%)を表したものである。また、下記表中、「約」とは、明記された値の+/-1%に及ぶ範囲のことを意味する。以下、本明細書にて同様である。
Figure JPOXMLDOC01-appb-T000002
 本発明に係るツベルクローシス検出用プライマー対、アビウム検出用プライマー対及びイントラセルラー検出用プライマー対(以下、本発明に係るプライマー対と略記する場合がある。)を構成するプライマー(以下、本発明に係るプライマーと略記する場合がある。)を得る方法としては、通常この分野で行われている自体公知の方法に基づいてなされればよく、具体的には、例えば、ホスホロアミダイト法等の化学合成法により調製する方法、ベクター等を用いる遺伝子操作法により得る方法等が挙げられ、化学合成法により調製する方法が好ましい。
 本発明に係るプライマーは、標識物質で標識されたものが好ましい。具体的には、例えば、フォワードプライマー及びリバースプライマーの少なくとも一方が標識物質で標識されているのが好ましい。より具体的には、例えば、本発明に係るツベルクローシス検出用プライマー対であれば、配列番号1で表される塩基配列からなるフォワードプライマー及び配列番号2で表される塩基配列からなるリバースプライマーの少なくとも一方が標識物質で標識されていればよい。本発明に係るアビウム検出用プライマー対であれば、配列番号3で表される塩基配列からなるフォワードプライマー及び配列番号4で表される塩基配列からなるリバースプライマーの少なくとも一方が標識物質で標識されていればよい。また、本発明に係るイントラセルラー検出用プライマー対であれば、配列番号5で表される塩基配列からなるフォワードプライマー及び配列番号6で表される塩基配列からなるリバースプライマーの少なくとも一方が標識物質で標識されていればよい。
 本発明に係るプライマーを標識物質で標識するために用いられる標識物質としては、通常この分野で用いられる自体公知のものであれば何れでもよく、具体的には、例えば、蛍光物質、放射性同位体、酵素等が挙げられ、蛍光物質が好ましい。
 上記蛍光物質としては、例えば、TAMRATM(シグマアルドリッチ製)、Alexa555、Alexa647(サーモフィッシャーサイエンティフィック製)、Cyanine Dye系のCy3、Cy5(GEヘルスケア製)、フルオレセイン等が挙げられ、TAMRATMが好ましい。
 上記放射性同位体としては、例えば、32P、33P、35S等が挙げられる。
 上記酵素としては、例えば、アルカリホスファターゼ、西洋ワサビペルオキシダーゼ等が挙げられる。
 標識物質で標識された本発明に係るプライマーは、標識物質がプライマーに直接結合していても、リンカーを介して結合していてもよい。リンカーとしては、この分野で通常用いられるものであればよく、具体的には、例えば、1~3塩基の核酸が好ましく、1~3塩基のDNAがより好ましく、2塩基のDNAが更に好ましく、アデニン(A)-アデニン(A)の2塩基が特に好ましい。
 本発明に係るプライマーを蛍光物質で標識する方法としては、通常この分野で行われている自体公知の方法に基づいてなされればよく、具体的には、例えば、フルオレセイン標識したヌクレオチドを自体公知の方法に従って、プライマーに取り込ませる方法等が挙げられる。
 本発明に係るプライマーを放射性同位体で標識する方法としては、通常この分野で行われている自体公知の方法に基づいてなされればよく、具体的には、例えば、放射性同位体で標識されたヌクレオチドを取り込ませることにより標識する方法等が挙げられる。具体的には、ランダムプライマー法、ニックトランスレーション法、T4ポリヌクレオチドキナーゼによる5’末端標識法、ターミナルデオキシヌクレオチジルトランスフェラーゼによる3’末端標識法等が挙げられる。
 本発明に係るプライマーを酵素で標識する方法としては、通常この分野で行われている自体公知の方法に基づいてなされればよく、具体的には、例えば、アルカリホスファターゼ、西洋ワサビペルオキシダーゼ等の酵素分子を、標識するプライマーに直接共有結合させる直接標識法等が挙げられる。
<本発明のマイコバクテリウム・ツベルクローシス、マイコバクテリウム・アビウム又は/及びマイコバクテリウム・イントラセルラーの検出方法>
 本発明のマイコバクテリウム・ツベルクローシス、マイコバクテリウム・アビウム又は/及びマイコバクテリウム・イントラセルラーの検出方法(以下、本発明の検出方法と略記する場合がある。)は、本発明のプライマーセットを用い、試料中の核酸を鋳型として核酸増幅反応を行い(以下、本発明に係る増幅工程と略記する場合がある。)、得られた増幅産物を検出する(以下、本発明に係る検出工程と略記する場合がある。)ことによりなされる。
[本発明に係る試料]
 本発明に係る試料としては、マイコバクテリウム・ツベルクローシス、マイコバクテリウム・アビウム又は/及びマイコバクテリウム・イントラセルラーが存在し得る生体試料であれば何れでもよく、具体的には、例えば、喀痰、唾液、肺洗浄液、胃液、全血、血漿、血清、尿、糞便、皮膚、膵液等が挙げられ、喀痰、唾液、肺洗浄液及び胃液が好ましく、喀痰がより好ましい。
 本発明に係る試料は、本発明の検出方法に供する前に、当該試料中に存在するマイコバクテリウム・ツベルクローシス、マイコバクテリウム・アビウム又は/及びマイコバクテリウム・イントラセルラーの濃縮、分離や、マイコバクテリウム・ツベルクローシス、マイコバクテリウム・アビウム又は/及びマイコバクテリウム・イントラセルラーからの核酸の抽出、精製等の操作を行ってもよい。
 上記試料中に存在するマイコバクテリウム・ツベルクローシス、マイコバクテリウム・アビウム又は/及びマイコバクテリウム・イントラセルラーの濃縮、分離や、マイコバクテリウム・ツベルクローシス、マイコバクテリウム・アビウム又は/及びマイコバクテリウム・イントラセルラーの濃縮及び分離は、通常この分野で行われている自体公知の方法に基づいてなされればよく、具体的には、例えば、ろ過、遠心分離等が挙げられる。
 上記マイコバクテリウム・ツベルクローシス、マイコバクテリウム・アビウム又は/及びマイコバクテリウム・イントラセルラーの核酸の抽出及び精製は、通常この分野で行われている自体公知の方法に基づいてなされればよく、具体的には、例えば、マイコバクテリウム・ツベルクローシス、マイコバクテリウム・アビウム又は/及びマイコバクテリウム・イントラセルラーの細胞壁を破壊した後、フェノール及びクロロホルムで処理する方法、エタノール、イソプロパノール等のアルコールで処理する方法が挙げられる。
 尚、マイコバクテリウム・ツベルクローシス、マイコバクテリウム・アビウム又は/及びマイコバクテリウム・イントラセルラーの細胞壁を破壊する方法としては、通常この分野で行われている自体公知の方法に基づいてなされればよく、具体的には、例えば、SDS等の界面活性剤や、グアニジンチオシアネート等のタンパク質変性剤を用いる方法、ガラスビーズ等により物理的に破砕する方法等が挙げられる。
[本発明に係る核酸]
 本発明に係る核酸とは、上記試料中に存在するマイコバクテリウム・ツベルクローシス、マイコバクテリウム・アビウム又は/及びマイコバクテリウム・イントラセルラーに由来する核酸のことであり、DNA又はRNAのことであり、好ましくはDNAである。
 尚、核酸がRNAの場合には、逆転写反応により相補的DNA(cDNA)を合成し、後述する本発明に係る増幅工程に付してもよい。
[本発明に係る増幅工程]
 本発明に係る増幅工程は、通常この分野で行われている自体公知の核酸増幅反応に基づいてなされればよく、具体的には、例えば、PCR(Polymerase Chain Reaction)法、TMA(Transcription-mediated amplification)法、SDA(Strand Displacement Amplification)法等が挙げられ、PCR法が好ましい。
 本発明に係る増幅工程に用いられる試薬としては、通常この分野で用いられている自体公知のものであれば何れでもよく、具体的には、例えば、Taqポリメラーゼ等の核酸合成酵素、dNTP等の核酸合成基質、Tris緩衝液、TAPS緩衝液等の緩衝液、MgCl、KCl、(NHSO等の塩等が挙げられる。
 更に、上記試薬に加えて、ポリエチレングリコール、Triton(ダウケミカルカンパニー製)、Nonidet(シェルケミカル製)、CHAPS(同仁化学製)、Tween等の界面活性剤、プロクリン等の防腐剤、BSA(ウシ血清アルブミン)等のポリペプチド等も用いることができる。
 本発明に係る増幅工程においては、本発明のプライマー対に加えて、内部コントロールを検出するためのプライマー対を用いて増幅反応を行ってもよい。
 当該内部コントロールとしては、マイコバクテリウム・ツベルクローシス、マイコバクテリウム・アビウム及びマイコバクテリウム・イントラセルラー以外の菌であればよく、バチルス・サブティリス、バチルス・セレウス、クロストリジウム・ディフィシル等の菌が挙げられ、バチルス・サブティリスが好ましい。当該バチルス・サブティリスを検出するためのプライマー対としては、配列番号21で表される塩基配列からなるフォワードプライマーと配列番号22で表される塩基配列からなるリバースプライマーとの組み合わせからなるものが好ましい。
 また、内部コントールとして選択する菌を検出するためのプライマー対を構成するプライマーは、それぞれ標識物質で標識されたものであってもよい。具体的には、例えば、当該プライマー対におけるフォワードプライマー及びリバースプライマーの少なくとも一方が標識物質で標識されていればよい。
 尚、標識物質及び標識物質で標識する方法は、<本発明のプライマーセット>にて説明した通りであり、具体例、好ましい例等も同じである。
[本発明に係る検出工程]
 本発明に係る検出工程は、通常この分野で行われている自体公知の方法に基づいてなされればよく、具体的には、例えば、エンドポイント法、リアルタイム法等が挙げられ、リアルタイム法が好ましい。
 エンドポイント法とは、本発明のプライマー対を用いた核酸増幅反応後、得られた増幅産物を分離・検出する方法である。
 一方、リアルタイム法とは、本発明のプライマー対を用いた核酸増幅反応により得られる増幅産物を当該核酸増幅反応中にリアルタイムに検出する方法である。
 上記エンドポイント法及びリアルタイム法の具体的な方法としては、(a)標識プライマー法、(b)インターカレーター法及び(c)標識プローブ法が挙げられ、(a)標識プライマー法が好ましい。
(a)標識プライマー法
 (a)標識プライマー法は、例えば、下記の如くなされるものである。
 『各プライマー対の少なくとも一方を標識物質で標識した、本発明のプライマーセットを用いた、試料中の核酸を鋳型とした核酸増幅反応を行う。次いで、核酸増幅反応後、得られた増幅産物をそれぞれ分離し、当該増幅産物中の標識をそれぞれ検出する(エンドポイント法)、又は核酸増幅反応を1~3サイクル行う毎に得られた増幅産物中の標識をそれぞれリアルタイムに検出する(リアルタイム法)。
 その結果、(i)本発明に係るツベルクローシス検出用プライマー対により増幅された増幅産物の標識由来の蛍光が検出された場合に「その試料は、マイコバクテリウム・ツベルクローシス陽性である」と判定する。
 (ii)本発明に係るアビウム検出用プライマー対により増幅された増幅産物の標識由来の蛍光が検出された場合に「その試料は、マイコバクテリウム・アビウム陽性である」と判定する。
 (iii)本発明に係るイントラセルラー検出用プライマー対により増幅された増幅産物の標識由来の蛍光が検出された場合に「その試料は、マイコバクテリウム・イントラセルラー陽性である」と判定する。』
 標識プライマー法における「リアルタイムに検出する」方法としては、核酸増幅反応1~3サイクル行う毎に得られた増幅産物を一旦分離した後、当該増幅産物の標識由来の蛍光を検出してもよい。
 尚、本明細書における「標識を検出する」とは、標識物質の性質に基づいて標識物質を直接又は間接的に測定することを意味する。
 (a)標識プライマー法における分離としては、具体的には、例えば、電気泳動、高速液体クロマトグラフィー(HPLC)法等の自体公知の方法が挙げられ、電気泳動が好ましい。
 上記電気泳動としては、具体的には、例えば、キャピラリー電気泳動、アガロースゲル電気泳動、ポリアクリルアミドゲル電気泳動(スラブ電気泳動)、デンプンゲル電気泳動、等電点電気泳動等が挙げられ、キャピラリー電気泳動が好ましい。
 尚、キャピラリー電気泳動を行う場合には、例えば、WO2007/027495、WO2011/118496、WO2008/075520等に記載の自体公知の方法に従って行えばよい。
(b)インターカレーター法
 (b)インターカレーター法は、エンドポイント法で行う場合、例えば、下記の如くなされるものである。
 『本発明のプライマーセットを用い、試料中の核酸を鋳型とした核酸増幅反応を行う。その後、得られた増幅産物をそれぞれ分離する。次いで、当該増幅産物をインターカレーターで染色し、当該インターカレーター由来の蛍光を検出する。
 その結果、(i)本発明に係るツベルクローシス検出用プライマー対により増幅された増幅産物中のインターカレーター由来の蛍光が検出された場合に「その試料は、マイコバクテリウム・ツベルクローシス陽性である」と判定する。
 (ii)本発明に係るアビウム検出用プライマー対により増幅された増幅産物中のインターカレーター由来の蛍光が検出された場合に「その試料は、マイコバクテリウム・アビウム陽性である」と判定する。
 (iii)本発明に係るイントラセルラー検出用プライマー対により増幅された増幅産物中のインターカレーター由来の蛍光が検出された場合に「その試料は、マイコバクテリウム・イントラセルラー陽性である」と判定する。』
 また、(b)インターカレーター法は、リアルタイム法で行う場合、下記の如くなされるものである。
 『本発明のプライマーセット及びインターカレーターを用い、試料中の核酸を鋳型とした核酸増幅反応を行う。次いで、得られた増幅産物の増幅量と相関してインターカレーションするインターカレーター由来の蛍光をそれぞれ検出する。
 その結果、(i)本発明に係るツベルクローシス検出用プライマー対により増幅された増幅産物中のインターカレーター由来の蛍光の増大が検出された場合に「その試料は、マイコバクテリウム・ツベルクローシス陽性である」と判定する。
 (ii)本発明に係るアビウム検出用プライマー対により増幅された増幅産物中のインターカレーター由来の蛍光の増大が検出された場合に「その試料は、マイコバクテリウム・アビウム陽性である」と判定する。
 (iii)本発明に係るイントラセルラー検出用プライマー対により増幅された増幅産物中のインターカレーター由来の蛍光の増大が検出された場合に「その試料は、マイコバクテリウム・イントラセルラー陽性である」と判定する。』
 インターカレーター法における分離としては、(a)標識プライマー法にて説明した通りであり、具体例、好ましい例等も同じである。
 インターカレーター法におけるインターカレーターとしては、通常この分野で用いられている自体公知のものであれば何れでもよく、具体的には、例えば、WO2017/170376に記載のものが挙げられ、その中でもSYTOX(商標)系色素[例えば、SYBR Gold(商標)、SYBR Green I(商標)、SYBR Green II(商標)、SYTOX Green(商標)、SYTOX Blue(商標)、SYTOX Orange(商標)(何れもサーモフィッシャーサイエンティフィック製)が好ましい。
(c)標識プローブ法
 (c)標識プローブ法は、エンドポイント法で行う場合、例えば、下記の如くなされるものである。
 『本発明のプライマーセットを用い、試料中の核酸を鋳型とした核酸増幅反応を行う。その後、得られた増幅産物をそれぞれ分離する。次いで、当該増幅産物を水酸化ナトリウム等の塩基性溶液で処理することにより、それぞれ一本鎖にする。次いで、当該増幅産物と、当該増幅産物の全部又は一部の塩基配列と相補的な塩基配列を有する標識物質で標識されたプローブとをハイブリダイズさせることで、ハイブリッド体を形成させ、当該ハイブリッド体中の標識をそれぞれ検出する。
 その結果、(i)本発明に係るツベルクローシス検出用プライマー対により増幅された増幅産物とハイブリダイズするプローブに由来する標識が検出された場合に「その試料は、マイコバクテリウム・ツベルクローシス陽性である。」と判定する。
 (ii)本発明に係るアビウム検出用プライマー対により増幅された増幅産物とハイブリダイズするプローブに由来する標識が検出された場合に「その試料は、マイコバクテリウム・アビウム陽性である。」と判定する。
 (iii)本発明に係るイントラセルラー検出用プライマー対により増幅された増幅産物とハイブリダイズするプローブに由来する標識が検出された場合に「その試料は、マイコバクテリウム・イントラセルラー陽性である。」と判定する。』
 標識プローブ法における標識物質及び標識物質で標識する方法としては、<本発明のプライマーセット>にて説明した通りであり、具体例、好ましい例等も同じである。
 また、(c)標識プローブ法は、リアルタイム法で行う場合、例えば、下記の如くなされるものである。
 『本発明のプライマーセット及び蛍光標識プローブを用い、試料中の核酸を鋳型とした核酸増幅反応を行う。次いで、得られた増幅産物中のプローブ由来の蛍光をそれぞれ検出する。
 その結果、(i)本発明に係るツベルクローシス検出用プライマー対により増幅された増幅産物とハイブリダイズするプローブに由来する蛍光の増大が検出された場合に「その試料は、マイコバクテリウム・ツベルクローシス陽性である。」と判定する。
 (ii)本発明に係るアビウム検出用プライマー対により増幅された増幅産物とハイブリダイズするプローブに由来する蛍光の増大が検出された場合に「その試料は、マイコバクテリウム・アビウム陽性である。」と判定する。
 (iii)本発明に係るイントラセルラー検出用プライマー対により増幅された増幅産物とハイブリダイズするプローブに由来する蛍光の増大が検出された場合に「その試料は、マイコバクテリウム・イントラセルラー陽性である。」と判定する。』
 尚、上記蛍光標識プローブとは、本発明に係るプライマー対を用いた核酸増幅反応により増幅される領域にハイブリダイズするように設計され、且つ、その5’末端を例えば、蛍光色素(レポーター蛍光色素)で、3’末端を例えば、クエンチャー色素で標識したものである。
 標識プローブ法における分離としては、(a)標識プライマー法にて説明した通りであり、具体例、好ましい例等も同じである。
[本発明の検出方法の具体例]
 本発明の検出方法の具体例について、以下に説明する。
 先ず、試料(例えば、喀痰)から、自体公知の方法に従って、核酸(例えば、DNA)を抽出する。
 次いで、化学合成法(例えば、ホスホロアミダイト法)により、本発明に係るツベルクローシス検出用プライマー対、アビウム検出用プライマー対及びイントラセルラー検出用プライマー対をそれぞれ合成する。その後、自体公知の方法により、上記プライマー対の少なくとも一方をそれぞれ標識物質(例えば、蛍光物質)で標識する。
 次いで、上記核酸及びプライマー対を用いて、下記の如く核酸増幅反応(例えば、PCR)を行う。
 即ち、各200nM~400nMの本発明に係るツベルクローシス検出用プライマー対を構成するプライマー、各700nM~900nMの本発明に係るアビウム検出用プライマー対を構成するプライマー、各500nM~700nMの本発明に係るイントラセルラー検出用プライマー対を構成するプライマー、0.5mM~5mMの塩(例えば、MgCl)、0.05mg/mL~10mg/mLのポリペプチド(例えば、BSA)、各0.1mM~2mMの核酸合成基質(例えば、dATP、dCTP、dGT及びdTTP)及び0.5U/mL~100U/mLの核酸合成酵素(例えば、Taqポリメラーゼ)を含有するpH7~10の1~300mMの緩衝液(例えば、Tris緩衝液又はTAPS緩衝液)を調製し、これを核酸増幅反応用液とする。次いで、この反応液5μL~100μLに、上記核酸を0.01ng~1000ng加え、これを核酸増幅反応用試料とする。
 次いで、下記の条件にて、サーマルサイクラー等の核酸増幅装置により、核酸増幅反応(例えば、PCR法)を行う。
 核酸増幅反応(例えば、PCR)条件:
 93℃~98℃、10秒~3分加熱した後、(1)93℃~98℃、1秒~30秒→(2)50℃~70℃、5秒~30秒→(3)60℃~80℃、3秒~30秒を1サイクルとして、30~50サイクルを行う。
 次いで、核酸増幅反応を1~3サイクル行う毎に得られた増幅産物中の標識をリアルタイムに検出する。
 その結果、(i)本発明に係るツベルクローシス検出用プライマー対により増幅された増幅産物の標識由来の蛍光が検出された場合に「その試料は、マイコバクテリウム・ツベルクローシス陽性である」と判定する。
 (ii)本発明に係るアビウム検出用プライマー対により増幅された増幅産物の標識由来の蛍光が検出された場合に「その試料は、マイコバクテリウム・アビウム陽性である」と判定する。
 (iii)本発明に係るイントラセルラー検出用プライマー対により増幅された増幅産物の標識由来の蛍光が検出された場合に「その試料は、マイコバクテリウム・イントラセルラー陽性である」と判定する。
<本発明のマイコバクテリウム・ツベルクローシス、マイコバクテリウム・アビウム又は/及びマイコバクテリウム・イントラセルラーを検出するための試薬キット>
 本発明のマイコバクテリウム・ツベルクローシス、マイコバクテリウム・アビウム又は/及びマイコバクテリウム・イントラセルラーを検出するための試薬キット(以下、本発明の試薬キットと略記する場合がある。)は、本発明のプライマーセットを含むものである。
 本発明の試薬キットは、(A)本発明のプライマーセットを必須とするものであるが、例えば、下記(B)、(C)、(D)、(E)、(F)又は/及び(G)を含んでいてもよい。
(B):内部コントロール検出用プライマー対
(C):殺菌液
(D):核酸抽出関連試薬
(E):核酸増幅関連試薬
(F):電気泳動関連試薬
(G):説明書
(B):内部コントロール検出用プライマー対
 (B)内部コントロール検出用プライマー対とは、内部コントールとして選択した菌を検出するために用いるものであり、具体的には、例えば、バチルス・サブティリス、バチルス・セレウス、クロストリジウム・ディフィシル等を検出するためのプライマー対が挙げられ、バチルス・サブティリスを検出するためのプライマー対が好ましく、配列番号21で表される塩基配列からなるフォワードプライマーと配列番号22で表される塩基配列からなるリバースプライマーとの組み合わせからなるものがより好ましい。
(C):殺菌液
 (C)殺菌液とは、試料中に存在するマイコバクテリウム属(マイコバクテリウム・ツベルクローシス、マイコバクテリウム・アビウム、マイコバクテリウム・イントラセルラー等)及び内部コントールとして選択した菌を殺菌するためのものであり、具体的には、例えば、2-プロパノール等のアルコールを含有するものが好ましい。また、上記殺菌液中に、内部コントールとして選択した菌を含ませることが好ましい。
(D):核酸抽出関連試薬
 (D)核酸抽出関連試薬とは、試料中に存在するマイコバクテリウム属(マイコバクテリウム・ツベルクローシス、マイコバクテリウム・アビウム、マイコバクテリウム・イントラセルラー等)から核酸を抽出するために使用するものであり、核酸結合液、核酸溶出液、核酸洗浄液等が挙げられる。
 核酸結合液としては、具体的には、例えば、グアニジン塩酸塩等のタンパク質変性剤、Tris緩衝液、Tris/EDTA緩衝液(TE緩衝液)又は/及びサケ精巣由来のデオキシリボ核酸ナトリウム塩を含有するものが好ましい。
 核酸溶出液としては、具体的には、例えば、Tris緩衝液等の緩衝液又は/及びプロクリン等の防腐剤を含有するものが好ましい。
 また、核酸洗浄液としては、具体的には、例えば、塩化ナトリウム等の塩、Tris緩衝液等の緩衝液、エタノール等のアルコール又は/及びTween等の界面活性剤を含有するものが好ましい。
(E):核酸増幅反応用試薬
 (E)核酸増幅反応用試薬とは、PCR等の核酸増幅反応を行うために用いるものであり、具体的には、例えば、Tris緩衝液、TAPS緩衝液等の緩衝液、核酸合成基質、核酸合成酵素、プロクリン等の防腐剤、又は/及びBSA等のポリペプチド等が好ましい。
(F):電気泳動関連試薬
 (F)電気泳動関連試薬とは、核酸増幅反応により得られた核酸増幅産物を電気泳動に付すために用いるものであり、具体的には、例えば、電気泳動用緩衝液、ポリマー溶液、電気泳動用マーカー等が挙げられる。
 電気泳動用緩衝液としては、具体的には、例えば、MgCl等の塩、TAPS等の緩衝液、グリセリン等のアルコール又は/及びプロクリン等の防腐剤が好ましい。
 ポリマー溶液としては、具体的には、例えば、ポリエチレングリコール、セルロース誘導体、アガロース、ポリアクリルアミド、ジメチルホルムアミド由来のモノマー単位を有するポリマー等の高分子ポリマーを含有するものが好ましい。
 電気泳動用マーカーとしては、具体的には、例えば、既知分子量の核酸(DNA等)が好ましい。
(G):説明書
 (G)説明書とは、本発明の検出方法の特徴、原理、操作手順、判定手順等が文章、図表等により実質的に記載されているものであり、具体的には、例えば、本発明の試薬キットの取扱い説明書、添付文書、パンフレット等が好ましい。
 本発明の試薬キットとしては、上記(A)~(G)をそれぞれ個別の容器(チューブ等)に収容されているものが好ましい。
<本発明に係る抗酸菌症の診断を補助する方法>
 本発明に係る抗酸菌症の診断を補助する方法(以下、本発明に係る補助方法と略記する場合がある。)は、本発明の検出方法の結果に基づいて、被験者が抗酸菌症に罹患しているか否かを判定する(以下、本発明に係る判定工程と略記する場合がある。)ことによりなされる。
[本発明に係る判定工程]
 本発明に係る判定工程は、本発明の検出方法の結果に基づいて、例えば、以下のようになされる。
 即ち、(i)本発明に係るツベルクローシス検出用プライマー対により増幅される産物に由来するシグナル(蛍光等)が検出された場合、「その試料に由来する被検者が抗酸菌症(結核症)に罹患しているおそれがある、或いは抗酸菌症(結核症)に罹患しているおそれが高い」等の判定を下すことである。また、(ii)本発明に係るツベルクローシス検出用プライマー対により増幅される産物に由来するシグナル(蛍光等)が検出されなかった場合、「その試料に由来する被検者が抗酸菌症(結核症)に罹患しているおそれがない、或いは抗酸菌症(結核症)に罹患しているおそれが低い」等の判定を下すことである。
 (i’)本発明に係るアビウム検出用プライマー対により増幅される産物に由来するシグナル(蛍光等)が検出された場合、「その試料に由来する被検者が抗酸菌症(非結核性抗酸菌症)に罹患しているおそれがある、或いは抗酸菌症(非結核性抗酸菌症)に罹患しているおそれが高い」等の判定を下すことである。また、(ii’)本発明に係るアビウム検出用プライマー対により増幅される産物に由来するシグナル(蛍光等)が検出されなかった場合、「その試料に由来する被検者が抗酸菌症(非結核性抗酸菌症)に罹患しているおそれがない、或いは抗酸菌症(非結核性抗酸菌症)に罹患しているおそれが低い」等の判定を下すことである。
 また、(i’’)本発明に係るイントラセルラー検出用プライマー対により増幅される産物に由来するシグナル(蛍光等)が検出された場合、「その試料に由来する被検者が抗酸菌症(非結核性抗酸菌症)に罹患しているおそれがある、或いは抗酸菌症(非結核性抗酸菌症)に罹患しているおそれが高い」等の判定を下すことである。また、(ii’’)本発明に係るイントラセルラー検出用プライマー対により増幅される産物に由来するシグナル(蛍光等)が検出されなかった場合、「その試料に由来する被検者が抗酸菌症(非結核性抗酸菌症)に罹患しているおそれがない、或いは抗酸菌症(非結核性抗酸菌症)に罹患しているおそれが低い」等の判定を下すことである。
 本発明に係る補助方法によれば、正確度(感度・特異度)の高い抗酸菌症(結核症又は/及び非結核性抗酸菌症)の診断を行うことができる。
<本発明に係る抗酸菌症を治療する方法>
 本発明に係る抗酸菌症を治療する方法(以下、本発明に係る治療方法と略記する場合がある。)とは、本発明に係る補助方法の結果に基づいて、適切な治療を施す(以下、本発明に係る治療工程と略記する場合がある。)ことによりなされる。
[本発明に係る治療工程]
 本発明に係る治療工程について、(i)被検者が結核症に罹患しているおそれがある、或いは結核症に罹患しているおそれが高いと判定された場合、(ii)被検者が非結核性抗酸菌症に罹患しているおそれがある、或いは非結核性抗酸菌症に罹患しているおそれが高いと判定された場合、又は(iii)被検者が結核症及び非結核性抗酸菌症に罹患しているおそれがある、或いは結核症及び非結核性抗酸菌症に罹患しているおそれが高いと判定された場合以に分けて、以下にそれぞれ説明する。
 (i)被検者が結核症に罹患しているおそれがある、或いは結核症に罹患しているおそれが高いと判定された場合
 (i)の場合、本発明に係る治療工程としては、具体的には、例えば、リファピシン(一般名)、イソニアジド(ヒドラジド)(一般名)、ストレプトマイシン(一般名)、エタンブトール(一般名)、ピラジナミド(一般名)等の結核症に対し有効な抗生物質を投与することによりなされる薬物療法、外科的療法等が挙げられる。
 (ii)被検者が非結核性抗酸菌症に罹患しているおそれがある、或いは非結核性抗酸菌症に罹患しているおそれが高いと判定された場合
 (ii)の場合、本発明に係る治療工程としては、具体的には、例えば、クラリスロマイシン(一般名)、エタンブトール(一般名)、リファピシン(一般名)等の非結核性抗酸菌症に対し有効な抗生物質を投与することによりなされる薬物療法、外科的療法等が挙げられる。
 (iii)被検者が結核症及び非結核性抗酸菌症に罹患しているおそれがある、或いは結核症及び非結核性抗酸菌症に罹患しているおそれが高いと判定された場合
 (iii)の場合、本発明に係る治療工程としては、具体的には、例えば、上記結核症に対し有効な抗生物質及び上記非結核性抗酸菌症に対し有効な抗生物質をそれぞれ投与することによりなされる薬物療法、外科的療法等が挙げられる。
 本発明に係る治療方法によれば、抗酸菌症(結核症又は/及び非結核性抗酸菌症)に罹患しているおそれがある、或いは抗酸菌症(結核症又は/及び非結核性抗酸菌症)に罹患しているおそれが高いと判定された被験者に対して、適切な治療を施すことができる。
<本発明に係る抗酸菌症の診断を補助するための装置>
 本発明に係る抗酸菌症の診断を補助するための装置(以下、本発明に係る装置と略記する場合がある。)とは、少なくとも(1)核酸増幅反応部及び(2)検出部を備えている。更に、(3)核酸抽出部、(4)判定部(5)出力部及び(6)入力部を備えていてもよい。
 本発明に係る装置における(1)核酸増幅反応部は、本発明のプライマーセットを用いた核酸増幅反応が行えるように構成されている。
 本発明に係る装置における(2)検出部は、(1)核酸増幅反応部において得られた核酸増幅産物が検出できるように構成されている。
 尚、(1)核酸増幅反応部及び(2)検出部は、それぞれ独立に構成されていても、一体となって構成されていてもよく、具体的には、例えば、特開2018-89611及び特表2015-514994に記載されたマイクロ流体デバイスが好ましい。
 本発明に係る装置における(3)核酸抽出部は、試料から核酸の抽出又は/及び精製ができるように構成されている。具体的には、例えば、WO2016/079981に記載の核酸の抽出方法や、WO2015/157650に記載の核酸の精製方法が実施できるように構成されているものが好ましい。
 本発明に係る装置における(4)判定部は、(2)検出部にて得られる結果に基づいて被験者が抗酸菌症(結核症又は/及び非結核性抗酸菌症)に罹患しているか否かを判定できるように構成されている。
 本発明に係る装置における(5)出力部は、(1)核酸増幅反応部、(2)検出部、(3)核酸抽出部又は/及び(4)判定部にて得られる結果を出力できるように構成されている。
 本発明に係る装置における(6)入力部は、(1)核酸増幅反応部又は/及び(3)核酸抽出部へ、当該(1)核酸増幅反応部又は/及び(3)核酸抽出部を作動させるための信号を送信できるように構成されている。
 本発明に係る装置によれば、本発明に係る補助方法を簡便、短時間且つ高い正確度で行うことができる。
 以下、実施例に基づいて本発明を具体的に説明するが、本発明はこれら実施例によって何ら限定されない。
<実施例1.ターゲット非存在下におけるプライマーセットの検討>
 ターゲット非存在下における各種プライマーセットを用いた核酸増幅反応を行うことにより、各種プライマーセットの検討を行った。
(1)プライマーセット
 下記表3に示すプライマーセットを用いた。
Figure JPOXMLDOC01-appb-T000003
(2)試料(DNA)の調製
 鮭精子由来デオキシリボ核酸(シグマアルドリッチ製)をTE緩衝液(pH8.0)(ニッポンジーン製)を用い、10mg/mLに調整し、これを試料(DNA)とした。
(3)核酸増幅反応・検出
 上記プライマーセット1における各プライマーをそれぞれ400nM、1.5mM MgCl、0.5mg/mL BSA、各々0.2mMのdATP、dCTP、dGTP、dTTP及び60U/mL KOD Exo(-)(東洋紡製)を含有する10mM Tris-HCl緩衝液(PH8.0)を調製し、これをPCR用反応液とした。
 また、プライマーセット1における各プライマーの代わりに、プライマーセット2、3又は4における各プライマーを用いて、同様にPCR用反応液を調製した。
 次いで、上記(2)で調製したDNAを最終量5μgとなるように上記PCR用反応液25μLにそれぞれ懸濁し、これをPCR用試料とした。
 上記各PCR用試料を96 well plate(サーモフィッシャーサイエンティフィック製)にそれぞれ入れ、StepOnePlusTM(サーモフィッシャーサイエンティフィック製)を用いて、PCRを行った。
 尚、PCRは97℃で30秒加熱した後、(1)97℃で10秒→(2)65℃で20秒→(3)72℃で30秒を1サイクルとして、40サイクルを行った。
 PCR終了後、得られた各核酸増幅産物を、全自動マイクロチップ型キャピラリー電気泳動装置2100バイオアナライザー(アジレントテクノロジー製)を用い、機器に添付のプロトコルに従ってキャピラリー電気泳動することにより、得られた増幅産物の分離・検出をそれぞれ行った。
(4)結果
 上記(3)により得られた結果を図1に示す。
 尚、図1における各バンドは、核酸増幅産物が検出されたことを示す。
 また、上記PCR用試料には、マイコバクテリウム・ツベルクローシス、マイコバクテリウム・アビウム及びマイコバクテリウム・イントラセルラーに由来するDNAが含まれていない。そのため、核酸増幅産物が検出されたことを示すバンドが検出された場合、非特異的に核酸が増幅されていること(非特異的核酸増幅産物が得られたこと)を示す。
 図1から明らかな通り、プライマーセット1、プライマーセット2及び実施例プライマーセット4では、非特異的な核酸の増幅を示す強度の高い(濃い)バンドが多数検出された。
 特に、プライマーセット1で見られる150塩基対付近に存在するバンドは、マイコバクテリウム・アビウム検出用プライマー対により増幅される産物の位置に極めて近いため、偽陽性となる可能性が極めて高いことが分かった。また、プライマーセット2で見られる200塩基対付近に存在するバンドは、マイコバクテリウム・イントラセルラー検出用プライマー対により増幅される産物の位置にそれぞれ極めて近いため、偽陽性となる可能性が極めて高いことが分かった。更に、プライマーセット4で見られる180塩基対付近に存在するバンドは、マイコバクテリウム・ツベルクローシス検出用プライマー対により増幅される産物の位置にそれぞれ極めて近いため、偽陽性となる可能性が極めて高いことが分かった。
 一方、プライマーセット3では、非特異的な核酸の増幅を示すバンドは検出されず、当然、マイコバクテリウム・ツベルクローシス検出用プライマー対、マイコバクテリウム・アビウム検出用プライマー対及びマイコバクテリウム・イントラセルラー検出用プライマー対により増幅される産物の位置(150塩基対~200塩基対付近)にバンドは存在しなかった。
 以上の結果より、プライマーセット3によれば、非特異的な核酸の増幅を抑制することができるため、偽陽性となる可能性が極めて低いことが分かった。
<実施例2.マイコバクテリウム・ツベルクローシス、マイコバクテリウム・アビウム及びマイコバクテリウム・イントラセルラーの検出>
 実施例1におけるプライマーセット3を用い、マイコバクテリウム・ツベルクローシス、マイコバクテリウム・アビウム及びマイコバクテリウム・イントラセルラーの検出を行った。
(1)プライマーセット
 実施例1のプライマーセット3を用いた。
(2)鋳型DNAの調整
 マイコバクテリウム・ツベルクローシス(Mycobacterium tuberculosis var.BCG)、マイコバクテリウム・アビウム及びマイコバクテリウム・イントラセルラーを自体公知の方法に従って培養した後、自体公知の核酸精製法を用いて精製ゲノムDNAを得た。次いで、各精製DNAのコピー数をSYBRTM Premix Ex TaqTM II (タカラバイオ製)を用い、リアルタイムPCR装置(StepOnePlusTM (サーモフィッシャーサイエンティフィック製)で算出した。その後、上記精製DNAをTE緩衝液(pH8.0)(ニッポンジーン製)を用い、それぞれマイコバクテリウム・ツベルクローシスDNA、マイコバクテリウム・アビウムDNA及びマイコバクテリウム・イントラセルラーDNAとした。
(3)核酸増幅反応・検出
 マイコバクテリウム・ツベルクローシス検出用プライマー対(各プライマー300nM)、マイコバクテリウム・アビウム検出用プライマー対(各プライマー800nM)、マイコバクテリウム・イントラセルラー検出用プライマー対(各プライマー600nM)、1.0mM MgCl、0.2 mg/mL BSA、各々0.4 mMのdATP、dCTP、dGTP、dTTP、1U/mL Takara Ex Taq(タカラバイオ製)を含有する緩衝液を調整し、これをPCR用反応液とした。
 上記(3)で調製した鋳型DNAを下記表4に示す濃度となるように上記PCR用反応液25μLにそれぞれ懸濁し、これをPCR用試料とした。
Figure JPOXMLDOC01-appb-T000004
 上記PCR用試料を96 well plate(サーモフィッシャーサイエンティフィック株式会社製)に入れ、StepOnePlusTM(サーモフィッシャーサイエンティフィック株式会社製)を用いて、PCRを行った。反応は97℃で30秒加熱した後、(1)97℃で10秒→(2)64℃で10秒→(3)72℃で20秒を1サイクルとして、40サイクルを行った。
 PCR終了後、得られた核酸増幅産物を、全自動マイクロチップ型キャピラリー電気泳動装置2100バイオアナライザー(アジレントテクノロジー株式会社製)を用いて、機器に添付のプロトコルに従ってキャピラリー電気泳動することで、得られた核酸増幅産物の分離・検出をそれぞれ行った。
(4)結果
 得られた電気泳動の結果を図2に示す。
 尚、図2における各バンドは、核酸増幅産物が検出されたことを示す。
 図2より明らかな通り、実施例2-1~実施例2-7全ての場合において、マイコバクテリウム・ツベルクローシス検出用プライマー対により増幅される産物(182塩基対)のバンド(バンドa)、マイコバクテリウム・アビウム検出用プライマー対により増幅される産物(152塩基対)のバンド(バンドb)及びマイコバクテリウム・イントラセルラー検出用プライマー対により増幅される産物(213塩基対)のバンド(バンドc)がそれぞれ検出された。
 特に、実施例2-2~2-7のように、マイコバクテリウム・ツベルクローシス、マイコバクテリウム・アビウム及びマイコバクテリウム・イントラセルラーの間で濃度(コピー数)の差があったとしても、これらの増幅産物のバンドがそれぞれ検出された。
 従って、プライマーセット3を用いることで、マイコバクテリウム・ツベルクローシス、マイコバクテリウム・アビウム及びマイコバクテリウム・イントラセルラーを検出することが可能であることが分かった。
 更に、マイコバクテリウム・ツベルクローシス、マイコバクテリウム・アビウム及びマイコバクテリウム・イントラセルラーの間で濃度(コピー数)の差があったとしても、これらを検出可能であることが分かった。
<比較例1.従来法によるマイコバクテリウム・ツベルクローシス、マイコバクテリウム・アビウム及びマイコバクテリウム・イントラセルラーの検出>
 従来法(特許文献4の方法)によるマイコバクテリウム・ツベルクローシス、マイコバクテリウム・アビウム及びマイコバクテリウム・イントラセルラーの検出を行った。
(1)プライマーセット及びプローブ
 下記表5に記載のプライマーセット及びプローブを用いた。
 尚、マイコバクテリウム・ツベルクローシス検出用プローブにおいて、配列番号18で表される塩基配列からなるプローブの5’末端を蛍光物質(FAM)で、3’末端を蛍光物質(TAMRATM)でそれぞれ標識した。
 マイコバクテリウム・イントラセルラー検出用プローブにおいて、配列番号19で表される塩基配列からなるプローブの5’末端を蛍光物質(FAM)で、3’末端を蛍光物質(TAMRATM)でそれぞれ標識した。
 また、マイコバクテリウム・アビウム検出用プローブにおいて、配列番号20で表される塩基配列からなるプローブの5’末端を蛍光物質(FAM)で、3’末端を蛍光物質(TAMRATM)でそれぞれ標識した。
Figure JPOXMLDOC01-appb-T000005
(2)鋳型DNAの調製
実施例2の(2)と同様にして、マイコバクテリウム・ツベルクローシスDNA、マイコバクテリウム・アビウムDNA及びマイコバクテリウム・イントラセルラーDNAをそれぞれ調製した。
(3)核酸増幅反応・検出
 各プライマー500nM、各プローブ 280nM、1.0mM MgCl、0.2mg/mL BSA、各々0.4mMのdATP、dCTP、dGTP、dTTP、1U/mL Takara Ex Taq(タカラバイオ製)を含有する緩衝液を調整し、これをPCR用反応液とした。
 上記(2)で調製したDNAを下記表6に示す濃度となるように上記PCR用反応液25μLにそれぞれ懸濁し、これをPCR用試料とした。
Figure JPOXMLDOC01-appb-T000006
 これらのPCR用試料を96 well plate(サーモフィッシャーサイエンティフィック株式会社製)に入れ、StepOnePlusTM(サーモフィッシャーサイエンティフィック株式会社製)を用いて、リアルタイムPCRを行い、核酸増幅産物をリアルタイムに検出した。反応は97℃で30秒加熱した後、(1)97℃で10秒→(2)64℃で10秒→(3)72℃で20秒を1サイクルとして、40サイクルを行った。
(4)結果
 (3)のリアルタイムPCRの結果を、図3~9にそれぞれ示す。
 尚、図3~9において、蛍光強度の増大が目的の核酸増幅産物が検出されたことを示す。また、図3~9において、1-1a~1-7aは、マイコバクテリウム・ツベルクローシスの検出結果を示し、1-1b~1-7bは、マイコバクテリウム・アビウムの検出結果を示し、1-1c~1-7cは、マイコバクテリウム・イントラセルラーの検出結果を示す。
 図3(比較例1-1)の結果から明らかなとおり、マイコバクテリウム・ツベルクローシス、マイコバクテリウム・アビウム及びマイコバクテリウム・イントラセルラーの濃度が同一の場合、それぞれ蛍光強度の増大が確認された(図3中の1-1a、1-1b及び1-1c)。従って、マイコバクテリウム・ツベルクローシス、マイコバクテリウム・アビウム及びマイコバクテリウム・イントラセルラーをそれぞれ検出することができた。
 図4(比較例1-2)~9(比較例1-7)の結果から明らかな通り、マイコバクテリウム・ツベルクローシス、マイコバクテリウム・アビウム及びマイコバクテリウム・イントラセルラー間にて濃度(コピー数)の差があった場合、最も高濃度(400コピー/μL)で存在しているもの由来の蛍光強度の増大は確認されたものの、最も低濃度(4コピー/μL)で存在しているもの由来の蛍光強度の増大は確認されなかった。
 図4(比較例1-2)~9(比較例1-7)より、従来法(特許文献4の方法)では、マイコバクテリウム・ツベルクローシス、マイコバクテリウム・アビウム及びマイコバクテリウム・イントラセルラーにおいて、濃度(コピー数)の差があった場合、これらを適切に検出することができないことが分かった。換言すると、従来法(特許文献4の方法)では、偽陰性が生じてしまう可能性があることが分かった。
<実施例3.プライマーセット3における各プライマー対の濃度の検討>
 実施例1におけるプライマーセット3を構成する各プライマー対の最適濃度の検討を行った。
(1)プライマーセット
 実施例1で用いたプライマーセット3を用いた。
 但し、マイコバクテリウム・ツベルクローシス検出用プライマー対において、配列番号2で表される塩基配列からなるリバースプライマーの5’末端を標識物質(TAMRATM)で標識した。
 マイコバクテリウム・アビウム検出用プライマー対において、配列番号3で表される塩基配列からなるフォワードプライマーの5’末端にリンカー(アデニン(A)-アデニン(A))を付加し、更にその5’末端を標識物質(TAMRATM)で標識した。
 また、マイコバクテリウム・イントラセルラー検出用プライマー対において、配列番号5で表される塩基配列からなるフォワードプライマーの5’末端にリンカー(アデニン(A)-アデニン(A))を付加し、更にその5’末端を標識物質(TAMRATM)で標識した。 
 更に、内部コントロール(バチルス・サブティリス)検出用プライマー対(フォワードプライマー:配列番号21で表される塩基配列、リバースプライマー:配列番号22で表される塩基配列)を当該プライマーセット3と合わせて用いた。
(2)鋳型DNAの調製
 実施例1の(2)と同様にして、マイコバクテリウム・ツベルクローシス、マイコバクテリウム・アビウム及びマイコバクテリウム・イントラセルラーのDNAをそれぞれ調製した。
(3)核酸増幅反応・検出
 下記表7に示す濃度の各プライマー対、1.5mM MgCl、0.5mg/mL BSA、各々0.2mMのdATP、dCTP、dGTP、dTTP、60U/mL Takara Ex Taq(タカラバイオ製)を含有する10mM Tris-HCl緩衝液(pH8.0)を調整し、これをPCR用反応液とした。
 尚、下記表7中の濃度比率は、マイコバクテリウム・ツベルクローシス検出用プライマー対、マイコバクテリウム・アビウム検出用プライマー対及びマイコバクテリウム・イントラセルラー検出用プライマー対における各プライマー対の濃度比率(%)を表す。
Figure JPOXMLDOC01-appb-T000007
 次いで、上記(2)で調製したDNAを、ぞれぞれ0.08コピー/μLとなるように上記PCR用反応液25μLにそれぞれ懸濁し、これをPCR用試料とした。
 その後、全自動遺伝子解析装置 ミュータスワコーg1(富士フイルム和光純薬製)を用い、装置の取扱説明書に従い、上記試料を用いた核酸増幅反応(PCR)及び電気泳動を行った。
(4)結果
 (3)の結果を図10~12にそれぞれ示す。図10~12における縦軸は、同一実施例を計8回測定した際に陽性となった率(%)を表す。また、横軸は、プライマーセットにおける各プライマー対の濃度比率を表す。
 尚、各実施例において、同一の反応系でマイコバクテリウム・ツベルクローシス、マイコバクテリウム・アビウム及びマイコバクテリウム・イントラセルラーの検出を行ったが、結果については、図10(マイコバクテリウム・ツベルクローシス)、図11(マイコバクテリウム・アビウム)及び図12(マイコバクテリウム・イントラセルラー)に分けてそれぞれ記載した。
 また、図10~12における各プロットの番号が実施例3-1~3-7の何れを表すかについては、下記表8に記載する通りである。
Figure JPOXMLDOC01-appb-T000008
 図10(実施例3-1~3-7)、図11(実施例3-1~3-7)及び図12(実施例3-1~3-7)から明らかな通り、プライマーセットにおける各プライマー対の濃度比率が上昇することに伴い、陽性率が高くなることが分かった。
 その中でも、マイコバクテリウム・ツベルクローシス、マイコバクテリウム・アビウム及びマイコバクテリウム・イントラセルラーの陽性率が同等となる臨床上理想の条件は、実施例3-7の条件であることが分かった。
 即ち、マイコバクテリウム・ツベルクローシス検出用プライマー対の濃度比率が約18%(300nM)(図10中の2)、マイコバクテリウム・アビウム検出用プライマー対の濃度比率が約47%(800nM)(図11中の6)及びマイコバクテリウム・イントラセルラー検出用プライマー対の濃度比率が約35%(600nM)(図12中の6)となる条件である。この条件であれば、マイコバクテリウム・ツベルクローシス、マイコバクテリウム・アビウム及びマイコバクテリウム・イントラセルラーの陽性率がそれぞれ75%と良好な値を示すことが分かった。
 従って、マイコバクテリウム・ツベルクローシス検出用プライマー対の濃度比率を約18%(300nM)、マイコバクテリウム・アビウム検出用プライマー対の濃度比率を約47%(800nM)及びマイコバクテリウム・イントラセルラー検出用プライマー対の濃度比率を約35%(600nM)に設定することで、実際の臨床現場での使用に適することが示唆された。
 上記実施例1~3及び比較例1の結果より、プライマーセット3を用いることにより、マイコバクテリウム・ツベルクローシス、マイコバクテリウム・アビウム及びマイコバクテリウム・イントラセルラーの有無を特異的に精度よく検出することができることが分かった。また、マイコバクテリウム・ツベルクローシス、マイコバクテリウム・アビウム及びマイコバクテリウム・イントラセルラーの間で濃度(コピー数)の差があったとしても、これらを特異的に精度よく検出することができることが分かった。
 本発明のマイコバクテリウム・ツベルクローシス、マイコバクテリウム・アビウム及びマイコバクテリウム・イントラセルラーを検出するためのプライマーセット及びこれを用いた方法、並びにそのための試薬キットによれば、試料中に存在するマイコバクテリウム属(マイコバクテリウム・ツベルクローシス、マイコバクテリウム・アビウム及びマイコバクテリウム・イントラセルラー)の濃度(コピー数)に差があったとしても、これらを検出することができる。

Claims (6)

  1. (i)配列番号1で表される塩基配列からなるフォワードプライマーと配列番号2で表される塩基配列からなるリバースプライマーとの組み合わせからなるマイコバクテリウム・ツベルクローシス検出用プライマー対、
    (ii)配列番号3で表される塩基配列からなるフォワードプライマーと配列番号4で表される塩基配列からなるリバースプライマーとの組み合わせからなるマイコバクテリウム・アビウム検出用プライマー対
    及び
    (iii)配列番号5で表される塩基配列からなるフォワードプライマーと配列番号6で表される塩基配列からなるリバースプライマーとの組み合わせからなるマイコバクテリウム・イントラセルラー検出用プライマー対
    を含む、プライマーセット。
  2. 前記(i)、(ii)及び(iii)のフォワードプライマーとリバースプライマーの少なくとも一方が、それぞれ標識物質で標識されているものである、請求項1に記載のプライマーセット。
  3. 前記標識物質が、蛍光物質、放射性同位体又は酵素から選択されるものである、請求項2に記載のプライマーセット。
  4. 請求項1に記載のプライマーセットを用い、試料中の核酸を鋳型として核酸増幅反応を行い、得られた核酸増幅産物を検出することによりなされる、マイコバクテリウム・ツベルクローシス、マイコバクテリウム・アビウム又は/及びマイコバクテリウム・イントラセルラーの検出方法。
  5. (i)配列番号1で表される塩基配列からなるフォワードプライマーと配列番号2で表される塩基配列からなるリバースプライマーとの組み合わせからなるマイコバクテリウム・ツベルクローシス検出用プライマー対、
    (ii)配列番号3で表される塩基配列からなるフォワードプライマーと配列番号4で表される塩基配列からなるリバースプライマーとの組み合わせからなるマイコバクテリウム・アビウム検出用プライマー対
    及び
    (iii)配列番号5で表される塩基配列からなるフォワードプライマーと配列番号6で表される塩基配列からなるリバースプライマーとの組み合わせからなるマイコバクテリウム・イントラセルラー検出用プライマー対
    を含む、試薬キット。
  6. 前記(i)、(ii)及び(iii)のフォワードプライマーとリバースプライマーの少なくとも一方が、それぞれ標識物質で標識されているものである、請求項5に記載の試薬キット。
PCT/JP2020/045523 2019-12-18 2020-12-07 マイコバクテリウム・ツベルクローシス、マイコバクテリウム・アビウム及びマイコバクテリウム・イントラセルラーを検出するためのプライマーセット及びこれを用いた方法、並びにそのための試薬キット WO2021124960A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202080088200.0A CN114867868A (zh) 2019-12-18 2020-12-07 用于检测结核分枝杆菌、鸟分枝杆菌及胞内分枝杆菌的引物组、及使用了该引物组的方法、以及用于该方法的试剂盒
KR1020227020492A KR20220098246A (ko) 2019-12-18 2020-12-07 마이코박테륨·투베르쿨로시스, 마이코박테륨·아비움 및 마이코박테륨·인트라셀룰라레를 검출하기 위한 프라이머 세트 및 이것을 이용한 방법, 및 그를 위한 시약 키트
EP20900988.5A EP4079851A4 (en) 2019-12-18 2020-12-07 SET OF PRIMERS FOR DETECTING MYCOBACTERIUM TUBERCULOSIS, MYCOBACTERIUM AVIUM AND MYCOBACTERIUM INTRACELLULARE, METHOD USING THE SAME, AND ASSOCIATED REAGENT KIT
JP2021565483A JPWO2021124960A1 (ja) 2019-12-18 2020-12-07
US17/843,717 US20220340956A1 (en) 2019-12-18 2022-06-17 Primer set for detecting mycobacterium tuberculosis, mycobacterium avium, and mycobacterium intracellulare and method using same, and reagent kit therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-228461 2019-12-18
JP2019228461 2019-12-18

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/843,717 Continuation US20220340956A1 (en) 2019-12-18 2022-06-17 Primer set for detecting mycobacterium tuberculosis, mycobacterium avium, and mycobacterium intracellulare and method using same, and reagent kit therefor

Publications (1)

Publication Number Publication Date
WO2021124960A1 true WO2021124960A1 (ja) 2021-06-24

Family

ID=76476568

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/045523 WO2021124960A1 (ja) 2019-12-18 2020-12-07 マイコバクテリウム・ツベルクローシス、マイコバクテリウム・アビウム及びマイコバクテリウム・イントラセルラーを検出するためのプライマーセット及びこれを用いた方法、並びにそのための試薬キット

Country Status (6)

Country Link
US (1) US20220340956A1 (ja)
EP (1) EP4079851A4 (ja)
JP (1) JPWO2021124960A1 (ja)
KR (1) KR20220098246A (ja)
CN (1) CN114867868A (ja)
WO (1) WO2021124960A1 (ja)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS495130B1 (ja) 1969-02-13 1974-02-05
WO2005103249A1 (ja) * 2004-04-26 2005-11-03 Wako Pure Chemical Industries, Ltd. 結核菌検出用プライマー及びプローブ、並びにこれを用いたヒト型結核菌の検出方法
WO2007027495A1 (en) 2005-09-02 2007-03-08 Wako Pure Chemical Industries, Ltd Complex formation method and separation method
WO2008075520A1 (ja) 2006-12-18 2008-06-26 Wako Pure Chemical Industries, Ltd. マイコバクテリウム・アビウム検出用プライマー及びプローブ、並びにこれを用いたマイコバクテリウム・アビウムの検出方法
WO2009145181A1 (ja) * 2008-05-28 2009-12-03 和光純薬工業株式会社 マイコバクテリウム・イントラセルラー検出用プライマー及びプローブ、並びにこれを用いたマイコバクテリウム・イントラセルラーの検出方法
WO2011118496A1 (ja) 2010-03-23 2011-09-29 和光純薬工業株式会社 クラミジア・トラコマティス検出用プライマー及びプローブ、並びにこれを用いたクラミジア・トラコマティスの検出方法
JP2013502922A (ja) * 2009-08-26 2013-01-31 エルジー ライフ サイエンス リミテッド M.ツベルクローシス(m.tuberculosis)群、およびマイコバクテリア(mycobacteria)属を検出するための組成物と、同組成物を用いたマルチプレックスリアルタイムpcrによりm.ツベルクローシス(m.tuberculosis)群、およびマイコバクテリア(mycobacteria)属を同時に検出する方法
JP2015514994A (ja) 2012-04-19 2015-05-21 和光純薬工業株式会社 反応生成物をリアルタイムにサンプリングするための方法
WO2015157650A1 (en) 2014-04-11 2015-10-15 Wako Pure Chemical Industries, Ltd Nucleic acid purification method
WO2016079981A1 (ja) 2014-11-18 2016-05-26 和光純薬工業株式会社 検体の破砕装置およびその方法
WO2017170376A1 (ja) 2016-03-30 2017-10-05 和光純薬工業株式会社 クラミジア・トラコマティス検出用プライマーセット及びこれを用いたクラミジア・トラコマティス検出方法、並びにそのための試薬キット
JP2018089611A (ja) 2016-12-01 2018-06-14 富士フイルム和光純薬株式会社 マイクロ流体装置における溶液混合方法およびその装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2140400T3 (es) 1991-08-15 2000-03-01 Hoffmann La Roche Cebadores y sondas del micobacterium.
GB201508860D0 (en) * 2015-05-22 2015-07-01 Nat Univ Ireland Diagnostic method

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS495130B1 (ja) 1969-02-13 1974-02-05
WO2005103249A1 (ja) * 2004-04-26 2005-11-03 Wako Pure Chemical Industries, Ltd. 結核菌検出用プライマー及びプローブ、並びにこれを用いたヒト型結核菌の検出方法
WO2007027495A1 (en) 2005-09-02 2007-03-08 Wako Pure Chemical Industries, Ltd Complex formation method and separation method
WO2008075520A1 (ja) 2006-12-18 2008-06-26 Wako Pure Chemical Industries, Ltd. マイコバクテリウム・アビウム検出用プライマー及びプローブ、並びにこれを用いたマイコバクテリウム・アビウムの検出方法
JP6166806B2 (ja) 2006-12-18 2017-07-19 和光純薬工業株式会社 マイコバクテリウム・アビウム検出用プライマー及びプローブ、並びにこれを用いたマイコバクテリウム・アビウムの検出方法
JP5958498B2 (ja) 2008-05-28 2016-08-02 和光純薬工業株式会社 マイコバクテリウム・イントラセルラー検出用プライマー及びプローブ、並びにこれを用いたマイコバクテリウム・イントラセルラーの検出方法
WO2009145181A1 (ja) * 2008-05-28 2009-12-03 和光純薬工業株式会社 マイコバクテリウム・イントラセルラー検出用プライマー及びプローブ、並びにこれを用いたマイコバクテリウム・イントラセルラーの検出方法
JP2013502922A (ja) * 2009-08-26 2013-01-31 エルジー ライフ サイエンス リミテッド M.ツベルクローシス(m.tuberculosis)群、およびマイコバクテリア(mycobacteria)属を検出するための組成物と、同組成物を用いたマルチプレックスリアルタイムpcrによりm.ツベルクローシス(m.tuberculosis)群、およびマイコバクテリア(mycobacteria)属を同時に検出する方法
WO2011118496A1 (ja) 2010-03-23 2011-09-29 和光純薬工業株式会社 クラミジア・トラコマティス検出用プライマー及びプローブ、並びにこれを用いたクラミジア・トラコマティスの検出方法
JP2015514994A (ja) 2012-04-19 2015-05-21 和光純薬工業株式会社 反応生成物をリアルタイムにサンプリングするための方法
WO2015157650A1 (en) 2014-04-11 2015-10-15 Wako Pure Chemical Industries, Ltd Nucleic acid purification method
WO2016079981A1 (ja) 2014-11-18 2016-05-26 和光純薬工業株式会社 検体の破砕装置およびその方法
WO2017170376A1 (ja) 2016-03-30 2017-10-05 和光純薬工業株式会社 クラミジア・トラコマティス検出用プライマーセット及びこれを用いたクラミジア・トラコマティス検出方法、並びにそのための試薬キット
JP2018089611A (ja) 2016-12-01 2018-06-14 富士フイルム和光純薬株式会社 マイクロ流体装置における溶液混合方法およびその装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4079851A4

Also Published As

Publication number Publication date
CN114867868A (zh) 2022-08-05
EP4079851A1 (en) 2022-10-26
JPWO2021124960A1 (ja) 2021-06-24
EP4079851A4 (en) 2023-06-07
KR20220098246A (ko) 2022-07-11
US20220340956A1 (en) 2022-10-27

Similar Documents

Publication Publication Date Title
JPH0630796A (ja) マイコバクテリアプローブ
JP2019068812A (ja) マイコバクテリウム・アビウム検出用プライマー及びプローブ、並びにこれを用いたマイコバクテリウム・アビウムの検出方法
JP2019520802A (ja) Metエキソン14欠失の検出と、関連する治療法
EP3511421A1 (en) Composition and method for improving sensitivity and specificity of detection of nucleic acids using dcas9 protein and grna binding to target nucleic acid sequence
US10900092B2 (en) Chlamydia trachomatis detecting primer set, Chlamydia trachomatis detecting method using same, and reagent kit therefor
JPWO2007129628A1 (ja) マイコバクテリウム・イントラセルラーレ検出用プライマー及びプローブ、並びにこれを用いたマイコバクテリウム・イントラセルラーレの検出方法
JP4469338B2 (ja) 臨床検体中の病原性マイコバクテリアを検出する方法
EP1220954B1 (en) Nucleic acid primers and probes for detecting tumor cells
JP2010515451A (ja) 大腸菌検出用dnaチップ
WO2021124960A1 (ja) マイコバクテリウム・ツベルクローシス、マイコバクテリウム・アビウム及びマイコバクテリウム・イントラセルラーを検出するためのプライマーセット及びこれを用いた方法、並びにそのための試薬キット
EP2853594B1 (en) Primer and probe for detection of Mycobacterium intracellulare, and method for detection of Mycobacterium intracellulare using the primer or the probe
CN116064869A (zh) 使用质谱诊断耐药性结核分枝杆菌
JP2009189283A (ja) 結核菌および非結核性抗酸菌検出試薬
JP7357063B2 (ja) ニューモシスチス・イロベチイ検出用プライマー対、これを用いたニューモシスチス・イロベチイの検出方法及びそのための試薬キット
CN108531622B (zh) 结核分枝杆菌复合群和鸟-胞内分枝杆菌复合群的杂交膜条和检测试剂盒
WO2009099037A1 (ja) クラミドフィラ・キャビエ検出用プライマー及びプローブ、並びにこれを用いたクラミドフィラ・キャビエの検出方法
WO2014150938A1 (en) Methods for generating nucleic acid molecule fragments having a customized size distribution
JP2010515452A (ja) スタフィロコッカス・アウレウス検出用dnaチップ
KR20110004265A (ko) 결핵균 약제 내성 진단용 프로브 및 그 키트
EP1529848B1 (en) Substances, sequences and methods for identifying epidemic methicillin resistant Staphylococcus aureus strains
WO2021102646A1 (zh) 一种核酸捕获方法、探针及其用途
JPH03164199A (ja) 結核菌の迅速同定方法及び同定用試薬キット
JPH11309000A (ja) トリコスポロン属菌種の特異的検出方法及び検出用試薬
Ganas The developement of a Real-Time Polymerase Chain Reaction using TaqMan probes to determine the burden of multi-drug resistant tuberculosis (MDR-TB) in KwaZulu-Natal.
JPH0965899A (ja) オリゴヌクレオチド、それから成るヘリコバクター・パイロリ検出用プライマー及びそれを用いたヘリコバクター・パイロリの検出方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20900988

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021565483

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227020492

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020900988

Country of ref document: EP

Effective date: 20220718