WO2009099037A1 - クラミドフィラ・キャビエ検出用プライマー及びプローブ、並びにこれを用いたクラミドフィラ・キャビエの検出方法 - Google Patents

クラミドフィラ・キャビエ検出用プライマー及びプローブ、並びにこれを用いたクラミドフィラ・キャビエの検出方法 Download PDF

Info

Publication number
WO2009099037A1
WO2009099037A1 PCT/JP2009/051735 JP2009051735W WO2009099037A1 WO 2009099037 A1 WO2009099037 A1 WO 2009099037A1 JP 2009051735 W JP2009051735 W JP 2009051735W WO 2009099037 A1 WO2009099037 A1 WO 2009099037A1
Authority
WO
WIPO (PCT)
Prior art keywords
seq
base sequence
primer
sequence selected
oligonucleotide
Prior art date
Application number
PCT/JP2009/051735
Other languages
English (en)
French (fr)
Inventor
Tomokazu Ishikawa
Koichiro Wada
Hiromi Kumon
Original Assignee
Wako Pure Chemical Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wako Pure Chemical Industries, Ltd. filed Critical Wako Pure Chemical Industries, Ltd.
Priority to US12/866,730 priority Critical patent/US20100323365A1/en
Priority to EP09707584.0A priority patent/EP2251422B1/en
Priority to JP2009552465A priority patent/JPWO2009099037A1/ja
Publication of WO2009099037A1 publication Critical patent/WO2009099037A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/689Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for bacteria

Definitions

  • the present invention relates to a method for detecting and / or identifying Chlamydophila caviae using nucleic acid amplification and its detection system.
  • Chlamydia (Chlamydia) is an obligate intracellular parasite bacteria of eukaryotic cells. It grows and proliferates in host cells and forms inclusions in the cell cytoplasm. These properties are responsible for the clinical symptoms of the host.
  • the causative organism of chlamydia infection is Chlamydia trachomatis (Chlamydia.trachomatis), mainly urethritis in men, in women develop cervicitis.
  • Chlamydophila cabie is a causative agent of guinea pig inclusion body conjunctivitis (GPIC), but its pathogenicity to humans has not been confirmed to date.
  • Non-Patent Document 1 discloses a method for treating Chlamydia infected with humans.
  • Chlamydia infected with humans may exist other than Chlamydia trachomatis, and that second Chlamydia that infects humans is Chlamydophila.
  • Chlamydophila Chlamydophila
  • Chlamydophila cabie was treated as Chlamidya psittaci GPIC isolate until 1999, but it became an independent species with the recent taxonomic rearrangement of the genus Chlamidia based on genome analysis.
  • Chlamydophila cabie is the fourth species in the Chlamydiaceae family that has been analyzed for the entire genome (Non-patent Document 2), and comparative analysis with Chlamydia peumoniae, which infects humans widely, is in progress.
  • Non-patent Document 3 a method for detecting Chlamydia trachomatis by probe hybridization using a single-stranded DNA complementary to the ribosomal RNA of Chlamydia trachomatis labeled with a labeling substance.
  • DNA amplification techniques such as polymerase chain reaction (Polymerase Chain Reaction, PCR), ligase chain reaction (Ligase Chain Reaction, LCR), and Standard Displacement Amplification (SDA) have been developed as more sensitive detection methods.
  • Polymerase Chain Reaction Polymerase Chain Reaction, PCR
  • ligase chain reaction Ligase Chain Reaction, LCR
  • SDA Standard Displacement Amplification
  • Domeika et al. Non-patent Document 4
  • Bowens et al. Non-patent Document 5
  • US Pat. No. 5,232,829 Patent Document 1 perform PCR, followed by microtitration and plate hybridization, and chlamydia. ⁇ Reports a method to detect trachomatis.
  • Non-patent Document 6 Non-patent Document 7
  • Non-patent Document 8 a method for detecting Chlamydia trachomatis by performing LCR and subsequent detection of fine particle sandwich immunoassay.
  • these detection methods require 4 to 6 hours to complete the detection.
  • the detection of Chlamydophila cabie was mainly performed by fluorescent staining and nested PCR (conventional PCR).
  • the fluorescence staining method is a method in which a specimen is inoculated and cultured on cells serving as a host of Chlamydomophila cabie, such as McCoy cells and HeLa cells, and then treated with a Chlamydiaceae-specific antibody and observed. This method required about 3 days for detection and had low sensitivity and specificity.
  • the nested PCR method since the nested PCR method has a relatively low sensitivity, it is necessary to perform PCR by extracting DNA after culturing chlamydia to a certain amount.
  • it is necessary to inoculate and culture a sample serving as a host of Chlamydia fibro cabie, such as McCoy cells and HeLa cells. It takes ⁇ 72 hours. Therefore, at least about 3 days were required from culture to detection, and the specificity of detection was not satisfactory.
  • the present invention has been made in view of the situation as described above, a novel primer for detection of Chlamyphila caviae that eliminates diagnostic false positives, and a simple, rapid and highly accurate detection method for Chlamyphila caviae using the same The purpose is to provide.
  • the present invention has been made for the purpose of solving the above-described problems, and has the following configuration.
  • a nucleotide sequence selected from SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5 and SEQ ID NO: 6 (provided that A is adenine, C is cytosine, G is guanine, and T is thymine)
  • T at any position may be substituted with uracil (U), the same applies hereinafter)
  • the present inventors repeated theoretical verification and experimental verification of the homology of each gene sequence between various genes of Chlamydophila cabie and other organisms determined so far.
  • the base sequence fragment derived from Chlamydophila caviae obtained by the method using the microarray method, it specifically hybridizes to the gene sequence of Chlamydophila caviae and is useful for the detection of Chlamydophila caviae. Found that there exists.
  • oligonucleotides specific to Chlamydophila caviae SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5 and SEQ ID NO: 6 Were found to be useful for the detection of Chlamydophila caviae. Furthermore, based on these sequences, Chlamydophila caviae detection primers and probes were developed, and a Chlamydophila caviae detection method using them was established.
  • the method for detecting Chlamyphila caviae using the primer or / and probe of the present invention compared with the conventional method for identifying bacterial species by culture inspection of bacteria, the method is much faster and more accurate. Cavier can be detected.
  • Chlamydophila caviae itself can also be quantified.
  • the present invention also contributes to the industry because it is anticipated that epidemiological studies and examinations will be necessary in the future regarding the possibility that Chlamydophila caviae may infect humans and cause urethritis and cervicitis. This is a great invention.
  • FIG. 6 is a calibration curve showing the real-time PCR detection results obtained in Example 3 and plotting the Ct value (y-axis) against the genome copy number (x-axis, logarithmic value) of each PCR DNA sample.
  • the Chlamydophila caviae (a Chlamydophila caviae) gene, refers to any nucleotide sequence unit in the whole genome sequence with the a Chlamydophila caviae (region).
  • the oligonucleotide according to the present invention includes a part or all of a base sequence selected from SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5 and SEQ ID NO: 6, or a sequence of the sequence listing Contains part or all of a complementary sequence to a base sequence selected from No. 1, SEQ ID No. 2, SEQ ID No. 3, SEQ ID No. 4, SEQ ID No. 5 and SEQ ID No. 6, and hybridizes with the base sequence of the Chlamydophila caviae gene Examples include soy oligonucleotides (hereinafter sometimes abbreviated as oligonucleotides of the present invention).
  • Examples of the oligonucleotide containing a part or all of the base sequence selected from SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5 and SEQ ID NO: 6 according to the present invention include: (1) SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5 and SEQ ID NO: 6 and a base sequence selected from about 70% or more, preferably about 80% or more, more preferably about 90 % Or more, more preferably oligonucleotide containing a nucleotide sequence having a homology of about 95% or more, or (2) SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5 and SEQ ID NO: 6 An oligonucleotide containing 10 or more consecutive bases, preferably 15 or more bases, more preferably 20 or more bases, in a base sequence selected from: Etc.
  • oligonucleotide containing the entire base sequence selected from SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5 and SEQ ID NO: 6 include, for example, SEQ ID NO: 1 , SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5 and SEQ ID NO: 6, or an oligonucleotide comprising a base sequence selected from SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: And an oligonucleotide containing a base sequence selected from 5 and SEQ ID NO: 6.
  • oligonucleotide containing a part of the base sequence selected from SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5 and SEQ ID NO: 6 include, for example, SEQ ID NOS: 7 to 39 Examples include those containing part or all of the selected base sequence.
  • oligonucleotide containing a part of the base sequence represented by SEQ ID NO: 1 include, for example, a part or all of the base sequence selected from SEQ ID NO: 7 to 10 and SEQ ID NO: 29 to 30 Is mentioned.
  • oligonucleotide containing a part of the base sequence represented by SEQ ID NO: 2 include, for example, a part or all of the base sequence selected from SEQ ID NO: 11-14 and SEQ ID NO: 31-32 Is mentioned.
  • oligonucleotide containing a part of the base sequence represented by SEQ ID NO: 3 include, for example, a part or all of the base sequence selected from SEQ ID NOs: 15 to 18 and SEQ ID NOs: 33 to 34 Is mentioned.
  • oligonucleotide containing a part of the base sequence represented by SEQ ID NO: 4 include, for example, a part or all of the base sequence selected from SEQ ID NO: 19 to 22 and SEQ ID NO: 35 to 36 Is mentioned.
  • oligonucleotide containing a part of the base sequence represented by SEQ ID NO: 5 include, for example, a part or all of the base sequence selected from SEQ ID NO: 23 to 26 and SEQ ID NO: 37 to 38 Is mentioned.
  • oligonucleotide containing a part of the base sequence represented by SEQ ID NO: 6 include those containing a part or all of the base sequence selected from SEQ ID NO: 27 to 28 and SEQ ID NO: 39, for example. It is done.
  • oligonucleotide containing the entire base sequence selected from SEQ ID NOs: 7 to 39 are oligonucleotides consisting of base sequences selected from SEQ ID NOs: 7 to 39, or selected from SEQ ID NOs: 7 to 39 An oligonucleotide containing a base sequence can be mentioned.
  • oligonucleotide containing a part of the base sequence selected from SEQ ID NOs: 7 to 39 include 10 bases or more, preferably 15 bases in the base sequence selected from SEQ ID NOs: 7 to 39. Examples thereof include oligonucleotides containing the above.
  • Examples of the oligonucleotide containing a part or all of the complementary sequence to the base sequence selected from SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5 and SEQ ID NO: 6 according to the present invention include: Contains part or all of a base sequence that hybridizes with an oligonucleotide consisting of a base sequence selected from SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, and SEQ ID NO: 6 of the present invention And the like.
  • the oligonucleotide consisting of the base sequence selected from SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, and SEQ ID NO: 6 of the present invention.
  • the oligonucleotide having, for example, an oligonucleotide having a base sequence selected from SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5 and SEQ ID NO: 6 of the present invention
  • high-stringent conditions or oligonucleotides containing a part or all of the base sequence that hybridizes under stringent conditions are examples of the base sequence that hybridizes under stringent conditions.
  • high stringent conditions specifically refers to, for example, “hybridization in 50% formamide at 42 to 70 ° C., preferably 60 to 70 ° C., and then 0.2 to 2 ⁇ SSC, 0.1 Wash in 25% -70 ° C in% sodium dodecyl sulfate (SDS).
  • “Stringent conditions” specifically refers to, for example, “6 ⁇ SSC or a hybridization solution having a salt concentration equivalent to 6 ⁇ SSC and hybridization at a temperature of 50 to 70 ° C. for 16 hours, After pre-washing with 6 ⁇ SSC or a solution having a salt concentration equivalent thereto, if necessary, the substrate is washed with a solution having a salt concentration equivalent to 1 ⁇ SSC or the like.
  • oligonucleotides containing a part or all of a complementary sequence to a base sequence selected from SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, and SEQ ID NO: 6 For example, (1) About 70% or more, preferably about 80% or more, more preferably a complementary sequence to a base sequence selected from SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5 and SEQ ID NO: 6 Is an oligonucleotide containing a base sequence having a homology of about 90% or more, more preferably about 95% or more, or (2) SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5 and An oligonucleotide comprising 10 or more consecutive bases, preferably 15 or more bases, more preferably 20 or more bases, in a complementary sequence to the base sequence selected from SEQ ID NO:
  • oligonucleotide containing all of the complementary sequence to the base sequence selected from SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5 and SEQ ID NO: 6 include, for example: SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, and oligonucleotides consisting of complementary sequences to the base sequence selected from SEQ ID NO: 6, or SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, Examples thereof include an oligonucleotide containing a complementary sequence to a base sequence selected from SEQ ID NO: 4, SEQ ID NO: 5 and SEQ ID NO: 6.
  • oligonucleotide containing a part of the complementary sequence to the base sequence selected from SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5 and SEQ ID NO: 6 include, for example, SEQ ID NO: 7
  • SEQ ID NO: 7 An oligonucleotide containing a part or all of a complementary sequence with respect to a base sequence selected from -39.
  • oligonucleotide containing all of the complementary sequence to the base sequence selected from SEQ ID NOs: 7 to 39 include, for example, an oligonucleotide consisting of a complementary sequence to the base sequence selected from SEQ ID NOs: 7 to 39, or SEQ ID NO: Examples thereof include oligonucleotides containing a complementary sequence to a base sequence selected from 7 to 39.
  • Examples of the oligonucleotide containing a part of the complementary sequence to the base sequence selected from SEQ ID NOs: 7 to 39 include 10 consecutive bases in the complementary sequence to the base sequence selected from SEQ ID NOs: 7 to 39 As mentioned above, an oligonucleotide containing 15 bases or more is preferable.
  • Oligonucleotides that hybridize with the base sequence of the Chlamydophila caviae gene according to the present invention include oligonucleotides having a base sequence that hybridizes with the base sequence of the Chlamydophila caviae gene under highly stringent conditions or stringent conditions, etc. Is mentioned.
  • the highly stringent conditions and stringent conditions are as described above.
  • the oligonucleotide of the present invention may be deoxyribonucleic acid (DNA) or ribonucleic acid (RNA).
  • DNA deoxyribonucleic acid
  • RNA ribonucleic acid
  • T thymidine residue
  • U uridine residue
  • U uridine residue
  • U uridine residue
  • U uridine residue
  • U RNA containing a thymidine residue in which U at any position is changed to T.
  • it may be an oligonucleotide in which one or a plurality of nucleotides are deleted, inserted or substituted.
  • One or more nucleotides may be modified nucleotides such as inosine (I).
  • the method for obtaining the oligonucleotide of the present invention is not particularly limited, and examples thereof include a method of preparing by a publicly known chemical synthesis method. In this method, it is possible to obtain a certain quality of oligonucleotide easily, in large quantities and at a low cost compared to a method (cloning method) for obtaining an oligonucleotide or polynucleotide by a genetic manipulation method using a vector or the like.
  • the present invention can be obtained by synthesizing an oligonucleotide by a normal phosphoramidite method using a DNA synthesizer, which is usually used for DNA synthesis, and purifying it by a conventional method using anion exchange column chromatography. Can be obtained.
  • oligonucleotide synthesis may be outsourced to a contractor and purchased from the contractor.
  • Another approach is to create a differential display of amplified products from the target genomic DNA and the genomic DNA from the species to be distinguished, that is, a method using arbitrarily primed polymerase chain reaction (AP-PCR). (Japanese Patent Application No. 11-155589).
  • an oligonucleotide that can achieve the object of the present invention can be searched, and the oligonucleotide of the present invention can be obtained.
  • the outline of the method is as follows.
  • a shotgun clone of genomic DNA derived from Chlamydophila caviae is prepared, and DNA is purified from the obtained shotgun clone.
  • the purified DNA derived from the shotgun clone is amplified by PCR or the like and then placed on a slide glass to prepare a microarray by a conventional method.
  • a group of DNA fragments obtained by fluorescently labeling (labeling 1) genomic DNA derived from Chlamydophila caviae that is the detection target is prepared.
  • a DNA fragment group in which genomic DNA derived from the species to be distinguished is fluorescently labeled (label 2) is separately prepared.
  • the target oligonucleotide can be selected which specifically hybridizes with the base sequence of the Chlamydophila caviae gene.
  • an example of the method for selecting the oligonucleotide of the present invention using the microarray method will be described in detail.
  • purified genomic DNA derived from Chlamydophila caviae is obtained.
  • DNA may be extracted and purified from a Chlamydomophila cabie strain by a conventional method.
  • a commercial company may be requested to extract and purify genomic DNA from the Chlamydia falciparum strain and obtain it.
  • the purified genomic DNA derived from Chlamydophila caviae obtained in (1) above is diluted with an appropriate buffer or the like, and then used, for example, in the presence of 20% glycerol and using a nebulizer under a pressure of 5 kPa to 9 kPa. For about 1 to 15 minutes to perform DNA fragmentation. By this treatment, a desired fraction (DNA fragment) having a size of 500 to 1000 bp can be efficiently collected.
  • the obtained fraction is purified using a commercially available extraction column.
  • the obtained fraction (DNA fragment, including the target DNA fragment) is incorporated into the vector DNA by ligation to obtain a recombinant DNA (Whole Genome Shotgun library of Chlamydophila caviae).
  • the vector DNA used for that purpose when the host cell to be transformed later is Escherichia coli, for example, pBS [for example, pBSIIBSsk + vector (Stratagene)], pQE-TRI plasmid (Qiagen), pBluescript, pET , Vectors such as pGEM-3Z and pGEX.
  • the DNA fragment may be treated with DNA polymerase in advance and the ends of the DNA fragment may be blunted before ligation.
  • a suitable host cell is transformed to obtain a transformant.
  • host cells used for this purpose include Escherichia coli, preferably JM109, DH5 ⁇ , TOP10 and the like.
  • Competent Cell Competent Cell with higher efficiency of introducing plasmid or phage DNA may be used.
  • E. coli JM109 Competent Cells manufactured by Takara Bio Inc.
  • Takara Bio Inc. can be mentioned.
  • Transformation of the host cell may be performed by a conventional method (for example, the method of D.M. Morrison (Method Enzymology, 68, 326-331, 1979)).
  • a commercially available Competent® Cell is used, transformation may be performed according to the product protocol.
  • a method for selecting a transformant introduced with “recombinant DNA into which a target DNA fragment has been incorporated for example, there is a method utilizing the properties of the vector used for the transformation. For example, when a vector containing an ampicillin resistance gene is used, a transformant is cultured on a medium containing ampicillin, and the resulting clone is selected to obtain a recombinant DNA incorporating the target DNA fragment.
  • a transformant (Whole Genome Shotgun clone Library derived from genomic DNA of Chlamydophila cabie) can be easily obtained.
  • microarray production Subsequently, a microarray is produced by the following method.
  • DNA is purified from the library of transformants obtained in (2) (Whole Genome Shotgun clone Library derived from genomic DNA of Chlamydophila caviae) according to a conventional method.
  • an appropriate primer [a commercially available primer may be used.
  • M13 Primer M1 manufactured by Takara Bio Inc.
  • primer M13 Primer RV manufactured by Takara Bio Inc.
  • PCR is performed according to a conventional method, and then the obtained PCR amplification product is purified. Then, according to a conventional method, the purified PCR amplification product is spotted on a glass slide for microarray.
  • a PCR amplification product including genomic DNA derived from the target Chlamydophila caviae is immobilized on a slide glass to prepare a microarray.
  • Fluorescent dye labeling of target genomic DNA For example, by the conventional method such as indirect labeling using hexylamino-UTP, for example, Chlamydophila caviae obtained by the above method (1) The derived purified genomic DNA is labeled with a labeling substance.
  • a control genome for example, Chlamydia psttaci or other Chlamydia other than Chlamydophila caviae
  • DNA is labeled with a labeling substance different from the labeling substance that labels the purified genomic DNA derived from Chlamydophila caviae.
  • Examples of the labeling substance used for labeling the above-described DNA include those usually used in this field. Examples of labeling substances that are widely used include Cy3 (Amersham Biosciences Inc.) and Cy5 (Amersham Bio). Science Inc. trade name), Alexa555 (Invitrogen trade name), Alexa647 (Invitrogen trade name), and the like.
  • an indirect labeling method obtained by modifying a protocol published by the DeRisi laboratory can be mentioned.
  • an enzyme extension reaction is performed to create a DNA chain in which ⁇ UTP having an amino group is incorporated into the molecule.
  • a fluorescent dye is chemically bonded to the amino group of the DNA chain to label the DNA.
  • the starting material (purified genomic DNA derived from Chlamydophila caviae or control genomic DNA) is heat-denatured according to a conventional method.
  • 2 ⁇ l of DTT, a mixed solution of dATP / dCTP / dGTP, dTTP, Ha-dUTP, and Klenow enzyme are added to the heat-denatured product, and an extension reaction is performed at 37 ° C. for about 3 hours.
  • the obtained reaction product is placed on an ultrafiltration column and centrifuged at 14000 rpm for about 4 minutes, and then the concentrated solution is collected in a microtube and completely dried using a vacuum drying centrifuge or the like.
  • NaHCO 3 is added to the dried reaction product, mixed, and allowed to stand at room temperature for 2 to 3 minutes.
  • Cy3 (or Cy5) dissolved in DMSO (Cy-dye Solution Cy3, Cy-dye Solution Cy5).
  • This Cy-dye Solution Cy3 is added to the reaction product obtained using the control genomic DNA.
  • Cy-dye Solution Cy5 is added to the reaction product obtained using Chlamydophila caviae DNA. Incubate each reaction product at 40 ° C for about 60 minutes in the dark. Further, 4M NH 2 OH is added to each reaction product, and after incubation, incubated for about 15 minutes under light shielding to obtain a labeled product of each genomic DNA. Thereafter, the obtained labeled product is placed on an ultrafiltration column, centrifuged at 14000 rpm for about 4 minutes, and then the concentrated solution is collected in a microtube and completely dried in a vacuum drying centrifuge.
  • a mixed solution (mixed solution of the fragmentation product of the Cy5-labeled product of Chlamydia pavitta genomic DNA and the fragmentation product of the Cy3-labeled product of Chlamydia psttaci genomic DNA) is prepared.
  • the Cy3Cy5 labeled product mixture solution prepared in (4) (ii) above is placed on the microarray of Chlamydophila caviae-derived genomic DNA obtained in the step (3) above at 65 ° C. Incubate in the dark for at least 8 hours. After hybridization, immerse the microarray together with the cover glass in a 2X SSC-0.1% SDS solution at room temperature, and remove the cover glass. Wash with 1x SSC, 0.03% SDS solution (60 ° C) for 10 minutes, wash with 0.2x SSC solution (42 ° C) for 10 minutes, wash with 0.05x SSC solution (room temperature) for about 10 minutes, and then centrifuge at 800prm for about 5 minutes To dry.
  • the Cy5-labeled product used for hybridization is a group of DNA fragments labeled with Chlamydophila caviae-derived genomic DNA
  • the Cy3-labeled product is a group of DNA fragments labeled with control genomic DNA. Therefore, when the fluorescence intensity ratio of Cy5 to Cy3 is high as a result of measuring the fluorescence intensity of Cy3 and Cy5 of a spot on the microarray, the DNA fragment (PCR product) of that spot is a Cy5 labeled product, that is, It shows that it hybridized more strongly with genomic DNA derived from Chlamydophila caviae. And it is judged that the DNA fragment (PCR product) has high specificity for Chlamydophila caviae.
  • the DNA fragment (PCR product) of that spot is a Cy3 labeled product, ie, control genomic DNA. It has hybridized with.
  • the DNA fragment (PCR product) of the spot was Chlamydophila caviae. It is judged that the specificity for is low.
  • the result is analyzed by creating a scatter plot (scatter plot). Then, screening for a sequence specific to Chlamydophila cabie is performed.
  • a clone of this spot contains an oligonucleotide that specifically hybridizes with the nucleotide sequence of the target Chlamydophila caviae gene.
  • the base sequence of the obtained clone may be determined according to a conventional method to confirm whether the target oligonucleotide has been obtained.
  • Examples of the primer for detecting Chlamydomira cabie according to the present invention include a part or all of a base sequence selected from SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5 and SEQ ID NO: 6, or a sequence Contains part or all of a complementary sequence to a base sequence selected from No. 1, SEQ ID No. 2, SEQ ID No. 3, SEQ ID No. 4, SEQ ID No. 5 and SEQ ID No. 6, and hybridizes with the base sequence of the Chlamydophila caviae gene
  • Examples include primers containing oligonucleotides that soy (hereinafter sometimes referred to as primers of the present invention).
  • the primers of the present invention are SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5 in accordance with conditions such as nucleic acid amplification reaction such as PCR (including real-time PCR) and nucleic acid hybridization. And a part or all of a base sequence selected from SEQ ID NO: 6, or a complementary sequence to a base sequence selected from SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5 and SEQ ID NO: 6.
  • a design may be made by selecting an appropriate length of an appropriate region in consideration of the dissociation temperature (Tm value) and the like from oligonucleotides partially or wholly contained.
  • it has a length of 10 to 50 bases, more preferably 10 to 35 bases, more preferably 18 to 25 bases, which is considered to be the number of bases necessary to maintain specificity as a primer sequence.
  • An oligonucleotide is mentioned.
  • Primers can be designed by using software generally used for primer design, for example, primer design web tool Primer 3 (Whitehead Institute for Biomedical Research).
  • an oligonucleotide that contains a part or all of a complementary sequence to a base sequence selected from SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5 and SEQ ID NO: 6 and hybridizes with the base sequence of the Chlamydophila caviae gene ( Specific examples of the oligonucleotide of the present invention are the same as those described in the above description of the oligonucleotide of the present invention.
  • primer of the present invention include, for example, part or all of a base sequence selected from SEQ ID NOs: 7 to 39, or part or all of a complementary sequence to a base sequence selected from SEQ ID NOs: 7 to 39 And those containing oligonucleotides that hybridize with the base sequence of the Chlamydomophila caviae gene.
  • an oligonucleotide containing a part or all of the base sequence selected from SEQ ID NOs: 7 to 28 and hybridizing with the base sequence of the Chlamydophila caviae gene, or SEQ ID NO: 7 examples include oligonucleotides that contain part or all of a complementary sequence to a base sequence selected from ⁇ 28 and hybridize with the base sequence of the Chlamydophila caviae gene.
  • the primers having the base sequences represented by SEQ ID NOs: 7 to 10 were designed based on the base sequence represented by SEQ ID NO: 1.
  • the primers of the base sequences represented by SEQ ID NOs: 11 to 14 were designed based on the base sequence represented by SEQ ID NO: 2.
  • the primers of the base sequences represented by SEQ ID NOs: 15 to 18 are designed based on the base sequence represented by SEQ ID NO: 3.
  • the primers of the base sequences represented by SEQ ID NOs: 19 to 22 are designed based on the base sequence represented by SEQ ID NO: 4.
  • the primers of the base sequences represented by SEQ ID NOs: 23 to 26 were designed based on the base sequence represented by SEQ ID NO: 5.
  • the primers of the base sequences represented by SEQ ID NOs: 27 to 28 were designed based on the base sequence represented by SEQ ID NO: 6.
  • SEQ ID NOs: 7 to 10 designed as primers on the base sequence represented by SEQ ID NO: 1 are as follows.
  • SEQ ID NO: 7 (R08_4f_Fw1): positions 145 to 163
  • SEQ ID NO: 8 (R08_4f_Rv1): positions 285 to 304
  • SEQ ID NO: 9 (R08_4f_Fw2): positions 365 to 385
  • SEQ ID NO: 10 R08_4f_Rv2: positions 509 to 529.
  • SEQ ID NOs: 11 to 14 designed as primers on the nucleotide sequence represented by SEQ ID NO: 2 are as follows.
  • SEQ ID NO: 11 R08_3d_Fw1: positions 37 to 56
  • SEQ ID NO: 12 R08_3d_Rv1: positions 154 to 171
  • SEQ ID NO: 13 SEQ ID NO: 13 (R08_3d_Fw2): positions 575 to 594
  • SEQ ID NO: 14 R08_3d_Rv2: positions 743 to 764.
  • SEQ ID NOs: 15 to 18 designed as primers on the base sequence represented by SEQ ID NO: 3 are as follows.
  • SEQ ID NO: 15 R12_2a_Fw1: positions 627 to 645
  • SEQ ID NO: 16 R12_2a_Rv1: positions 787 to 806.
  • SEQ ID NO: 17 R12_2a_Fw2: positions 96 to 117
  • SEQ ID NO: 18 R12_2a_Rv2: positions 213 to 235.
  • the positions of the base sequences represented by SEQ ID NOs: 19 to 22 designed as primers on the base sequence represented by SEQ ID NO: 4 are as follows.
  • the positions of the base sequences represented by SEQ ID NOs: 23 to 26 designed as primers on the base sequence represented by SEQ ID NO: 5 are as follows.
  • SEQ ID NO: 23 (R10_1g_Fw1): positions 48 to 68
  • SEQ ID NO: 24 (R10_1g_Rv1): positions 219 to 238.
  • SEQ ID NO: 25 (R10_1g_Fw2): positions 244 to 263,
  • SEQ ID NO: 26 (R10_1g_Rv2): Positions 424 to 443.
  • SEQ ID NOs: 27 to 28 designed as primers on the base sequence represented by SEQ ID NO: 6 are as follows.
  • the name of the primer named in the present invention is shown in () after each SEQ ID NO.
  • the method for obtaining the primer of the present invention is as described in the method for obtaining the nucleotide of the present invention.
  • primer of the present invention may be labeled with a labeling substance.
  • an oligonucleotide labeling method generally used in this field may be used, and a method may be appropriately selected for each labeling substance.
  • any known labeling substance such as a radioisotope, an enzyme, a fluorescent substance, a luminescent substance, or biotin can be used.
  • radioactive isotopes for example, 32 P, 33 P, 35 S, etc. as radioactive isotopes, alkaline phosphatase, horseradish peroxidase, etc. as enzymes, Alexa 555, Alexa 647 (Invitrogen), Cyyanine Dye Cy3, Cy5 (Amersham) as fluorescent substances Bioscience, Inc.), fluorescein, and the like, and examples of luminescent substances include chemiluminescent reagents containing Acridinium Ester.
  • a method for labeling the primer of the present invention with a radioisotope when synthesizing the primer, a method for labeling the primer by incorporating a nucleotide labeled with a radioisotope, or after synthesizing the primer, Examples include a method of labeling with an isotope. Specifically, commonly used random primer method, nick translation method, 5′-end labeling method using T4 polynucleotide kinase, 3′-end labeling method using terminal deoxynucleotidyl transferase, RNA labeling method Etc.
  • Examples of the method for labeling the primer of the present invention with an enzyme include a direct labeling method which is a conventional method in this field, such as directly binding an enzyme molecule such as alkaline phosphatase or horseradish peroxidase to the primer to be labeled. It is done.
  • a direct labeling method which is a conventional method in this field, such as directly binding an enzyme molecule such as alkaline phosphatase or horseradish peroxidase to the primer to be labeled. It is done.
  • Examples of the method of labeling the primer of the present invention with a fluorescent substance include a method of incorporating a fluorescein-labeled nucleotide into the primer by a conventional labeling technique in this field.
  • nucleotides can be labeled with a fluorescent substance by a method of substituting a nucleotide having a linker arm into an oligonucleotide of a sequence (see, for example, Nucleic® Acids® Res., 1986, Vol. 14, p. 6115).
  • uridine having a linker arm at the 5-position is chemically synthesized from deoxyuridine by the synthesis method disclosed in JP-A-60-500717, and an oligonucleotide containing the deoxyuridine is synthesized, and then the oligonucleotide There is also a method of introducing a fluorescent substance into the chain (Japanese Patent Laid-Open No. 60-50717).
  • Examples of the method of labeling the primer of the present invention with a luminescent substance and the method of labeling with biotin include the usual methods for luminescence labeling or biotin labeling of nucleotides that are usually performed in this field.
  • Examples of the probe for detecting Chlamydophila cabie according to the present invention include a part or all of a base sequence selected from SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5 and SEQ ID NO: 6, or a sequence Contains part or all of a complementary sequence to a base sequence selected from No. 1, SEQ ID No. 2, SEQ ID No. 3, SEQ ID No. 4, SEQ ID No. 5 and SEQ ID No.
  • probes of the present invention examples include probes containing oligonucleotides that make soybeans (the oligonucleotides of the present invention) (hereinafter sometimes referred to as probes of the present invention).
  • the probe of the present invention includes SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5 and SEQ ID NO: 1, according to conditions such as nucleic acid amplification reaction such as PCR (including real-time PCR) and nucleic acid hybridization.
  • Oligonucleotide containing a part or all of the base sequence selected from No. 6, or the base sequence selected from SEQ ID No. 1, SEQ ID No. 2, SEQ ID No. 3, SEQ ID No. 4, SEQ ID No. 5 and SEQ ID No. 6 From the oligonucleotide containing part or all of the complementary sequence, an appropriate length of an appropriate region may be selected and designed in consideration of the dissociation temperature (Tm value) and the like. However, if it is desired to have sufficient specificity for the probe, it is desirable to design in consideration of the number of bases necessary to maintain the specificity as the probe sequence.
  • Tm value dissociation temperature
  • a probe used for nucleic acid hybridization has a length of 10 to 700 bases, preferably 100 to 600 bases, more preferably 200 to 500 bases. preferable.
  • a probe used in a real-time PCR amplification method has a length of 10 to 50 bases, preferably 15 to 40 bases, more preferably 20 to 30 bases. Are preferred.
  • a part or all of a base sequence selected from SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5 and SEQ ID NO: 6, or SEQ ID NO: 1, SEQ ID NO: used in the probe of the present invention 2 an oligonucleotide that contains a part or all of a complementary sequence to a base sequence selected from SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5 and SEQ ID NO: 6 and hybridizes with the base sequence of the Chlamydophila caviae gene ( Specific examples of the oligonucleotide of the present invention are the same as those described in the above description of the oligonucleotide of the present invention.
  • the probe of the present invention include, for example, a part or all of a base sequence selected from SEQ ID NOs: 7 to 39, or a part or all of a complementary sequence to a base sequence selected from SEQ ID NOs: 7 to 39. And a probe containing an oligonucleotide that hybridizes with the nucleotide sequence of the Chlamydia fir caviae gene.
  • an oligonucleotide containing an oligonucleotide that contains a part or all of the sequence selected from SEQ ID NOs: 29 to 39 and hybridizes with the base sequence of the Chlamydophila caviae gene An oligonucleotide is mentioned.
  • the base sequence selected from SEQ ID NOs: 29 to 39 or a complementary sequence thereto is an oligonucleotide base sequence amplified by PCR using the primer of the present invention.
  • Table 1 also shows combinations of forward primers and reverse primers, and SEQ ID NOs of base sequences amplified by PCR using the primers.
  • the base sequence represented by SEQ ID NO: 29 is obtained by PCR using the oligonucleotide having the base sequence represented by SEQ ID NO: 7 as the forward primer and the oligonucleotide having the base sequence represented by SEQ ID NO: 8 as the reverse primer. This shows the base sequence of the oligonucleotide that is presumed to be amplified.
  • the method for obtaining the probe of the present invention is as described in the method for obtaining the nucleotide of the present invention.
  • the probe of the present invention may be labeled with a labeling substance.
  • any known labeling substance such as a radioisotope, an enzyme, a fluorescent substance, a luminescent substance, or biotin can be used.
  • labeling substance and labeling method used for labeling the probe of the present invention with a labeling substance include the same methods as those described in the description of the primer labeling method of the present invention.
  • examples of the labeled probe used in the detection method by real-time PCR described later include those obtained by labeling the probe of the present invention with a labeling substance usually used in the real-time PCR method.
  • the 5 ′ end is labeled with a reporter fluorescent substance [carboxyfluorescein (FAM), hexachlorofluorescein (HEX), tetrachlorofluorescein (TET), etc.]
  • the 3 ′ end is a quencher dye [for example, carboxytetramethylrhodamine (TAMRA) And non-fluorescent substances such as Black Hole Quencher dye (BHQ), 4-((4- (dimethylamino) phenyl) azo) benzoic acidDA (DABCYL)].
  • the above-described labeled probe can also be used in the detection method by TaqMan TM real-time PCR described later.
  • specimens (specimen) used for detection of Chlamydophila cabie include various clinical specimens such as urine, urethral swab suspension, cervical swab suspension, and oral swab suspension. Prior to detection, these specimens may be pretreated by operations such as concentration and separation of bacteria existing in the specimen in advance and separation and concentration of nucleic acids from bacterial cells. Examples of the method include treatment with an enzyme, a surfactant, an alkali, and heat. It may be a cultured microbial cell isolated and cultured from a specimen, a nucleic acid isolated and purified from these, or a nucleic acid amplified by a nucleic acid amplification detection system or the like.
  • the following method may be used.
  • a method for example, in the case of using bacterial cells as a sample, for example, a method of destroying chlamydia membrane structure by treating the bacterial cells with a surfactant such as SDS or a protein denaturant such as guanidine thiocyanate (GTC). Or a method of physically crushing bacterial cells with glass beads or the like.
  • DNA preparation methods commonly used in this field [phenol / chloroform extraction, ethanol precipitation, Rapid and simple method for purification of nucleic acids, J. Clin. Microbiol., 1990, Mar; 28 (3), 495-503, Boom R, Sol CJ, Salimans MM, Jansen CL, Wertheim-van Dillen PM, van der Noordaa J, and the like. Purification may be performed.
  • DNA extraction and purification may be performed using an ion exchange resin type DNA extraction and purification kit Genomic-tip manufactured by Qiagen Co., Ltd.
  • Examples of the method for detecting Chlamydophila cabie according to the present invention include a part or all of a base sequence selected from SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5 and SEQ ID NO: 6, or a sequence Contains part or all of a complementary sequence to a base sequence selected from No. 1, SEQ ID No. 2, SEQ ID No. 3, SEQ ID No. 4, SEQ ID No. 5 and SEQ ID No.
  • Examples include a method using a soy oligonucleotide (an oligonucleotide of the present invention) as a primer or / and a probe (a method using a primer or / and a probe of the present invention).
  • a method for detecting a primer extension product obtained by performing a nucleic acid amplification reaction using the oligonucleotide of the present invention as a primer (B) a method of using the oligonucleotide of the present invention labeled with a labeling substance as a labeled probe, Etc.
  • (A) A method for detecting a primer extension product obtained by performing a nucleic acid amplification reaction using the oligonucleotide of the present invention as a primer
  • a nucleic acid amplification reaction is performed using the oligonucleotide of the present invention as a primer.
  • a nucleic acid amplification reaction using a DNA polymerase or the like using a primer of the present invention as a template and a nucleic acid in a sample for example, a polymerase chain reaction (PCR) method, a LAMP (Loop-mediated Isothermal Amplification) method ( Tsugunori Notomi et al., Nucleic Acid Res., 28, e63, 2000), ICANTM (Isothermal and Chimeric primer-initiated Amplification of Nucleic acids) method (clinical pathology, 51 (11), 1061-1067, 2003, Nov), LCR (ligase chain reaction) method (JP-A-4-21399), SDA (strand displacement amplification) method (JP-A-8-19394)] can be used for primer extension.
  • PCR polymerase chain reaction
  • LAMP Loop-mediated Isothermal Amplification method
  • ICANTM Isothermal and Chimeric primer-initiated Amplification of Nucleic acids
  • the PCR method is the most general method.
  • Examples of the PCR method include, for example, real-time amplification detection methods (for example, descriptions in US Pat. No. 5210015 and US Pat. No. 5,538,848). Reference) can be used.
  • An example of a detection method using a real-time amplification detection method is, for example, a real-time PCR detection method.
  • Examples of the real-time PCR detection method include TaqMan TM real-time PCR method (see, for example, the description in US Pat. No. 5,538,848), MGB Eclipse Probe System method (see, for example, the description in US Pat. No. 5,801,155), Molecular Beacons Probe Technology method (for example, And the LUX Fluorogenic Primer method (Invitrogen Corporation), Quenching probe-PCR (QP) method (see, for example, the description of US Pat. No. 6,492,121), and the like.
  • primer of the present invention used in a nucleic acid amplification reaction such as PCR are as described above.
  • reagents such as deoxyribonucleoside triphosphates (dATP, dCTP, dGTP, dTTP) and DNA polymerase used in nucleic acid amplification reactions such as real-time PCR using the above primers are those usually used in this field.
  • dATP deoxyribonucleoside triphosphates
  • dCTP deoxyribonucleoside triphosphates
  • dGTP dGTP
  • dTTP DNA polymerase used in nucleic acid amplification reactions
  • the conditions, techniques, and the like may be performed according to a general protocol for PCR, except that the primer and probe of the present invention are used.
  • the method of detecting the primer extension product obtained by the nucleic acid amplification reaction may be a conventional method usually performed in this field, and is not limited.
  • TaqMan TM real-time PCR method see, for example, description in US Pat. No. 5,538,848), intercalator method, MGB Eclipse Probe System method (see, for example, description in US Pat. No. 5,801,155), Molecular Beacons Probe Technology method (see, for example, US Pat. No. 5,925,517) No.), LUX Fluorogenic Primer method (Invitrogen Corporation), Quenching probe-PCR (QP) method (see, for example, the description in US Pat. No.
  • nucleic acid amplification reaction and nucleic acid amplification reaction, and the resulting primer extension product
  • detection methods such as a method for performing electrophoresis on the basis of the results and a method based on the result, a method for measuring the label of a primer extension product obtained by performing a nucleic acid amplification reaction using a labeled primer, and the like.
  • TaqMan TM real-time PCR method (TaqMan TM probe method) Using a probe labeled with a fluorescent dye (reporter) such as FAM at the 5 ′ end and a quencher dye such as TAMRA at the 3 ′ end, the target trace amount of DNA can be detected with high sensitivity and quantitatively. This is a detection method (for example, see the description of US Pat. No. 5,538,848).
  • a fluorescent dye reporter
  • TAMRA quencher dye
  • the present method uses the primer of the present invention and a labeled probe in which the 5 ′ end of the probe of the present invention is labeled with a reporter fluorescent dye and the 3 ′ end is labeled with a quencher dye, and the nucleic acid in the sample is collected.
  • PCR is performed as a template to detect the label of the labeling substance released from the labeled probe.
  • the principle of the TaqMan TM real-time PCR method is as follows.
  • an oligonucleotide probe that hybridizes to a specific region of a target gene, which is labeled with a fluorescent dye (reporter) at the 5 ′ end and a quencher dye at the 3 ′ end, is used.
  • the fluorescence of the reporter is suppressed by a quencher dye in a normal state.
  • PCR is performed from the outside using DNA polymerase. As the elongation reaction by DNA polymerase proceeds, the exonuclease activity hydrolyzes the fluorescently labeled probe from the 5 ′ end, releases the reporter dye, and emits fluorescence.
  • the real-time PCR method is a method for monitoring the fluorescence intensity in real time, whereby the initial amount of template DNA can be accurately quantified.
  • the TaqMan TM real-time PCR detection method generates very little noise due to non-specific amplification reaction. Therefore, this method is particularly excellent in that a more specific target can be amplified and detected.
  • the primer of the present invention is used as a forward primer and a reverse primer used in the TaqMan TM real-time PCR detection method according to the present invention.
  • Preferred primers include those used in nucleic acid amplification reactions such as the PCR method described above, and preferred specific examples and preferred combinations thereof are also as described above.
  • the probe used in the TaqMan TM real-time PCR detection method according to the present invention for the probe labeled with a fluorescent dye (reporter) at the 5 ′ end and a quencher dye at the 3 ′ end may be the probe of the present invention described above. That's fine. Actually, it contains a probe containing the base sequence of the primer extension product predicted to be obtained when real-time PCR is performed with a combination of the selected forward primer and reverse primer, or a base sequence designed from that sequence. A probe is used.
  • the probe used when performing real-time PCR using the primer R08_3d_Fw1 and the primer R08_3d_Rv1 is an oligo containing part or all of the base sequence represented by SEQ ID NO: 29 that is expected to be amplified by the real-time PCR. Nucleotides (see Table 1).
  • reporter fluorescent substance for labeling the 5 ′ end examples include carboxyfluorescein (FAM), hexachlorofluorescein (HEX), tetrachlorofluorescein (TET), Cy5, VIC, etc. Among them, FAM is often used.
  • Quencher dyes that label the 3 ′ end include fluorescent substances such as carboxytetramethylrhodamine (TAMRA), Black Hole Quencher dyes (eg BHQ2), 4-((4- (dimethylamino) phenyl) azo) benzoic acid (DABCYL And non-fluorescent substances such as TAMRA is often used.
  • TAMRA carboxytetramethylrhodamine
  • BHQ2 Black Hole Quencher dyes
  • DABYL 4-((4- (dimethylamino) phenyl) azo) benzoic acid
  • non-fluorescent substances such as TAMRA is often used.
  • reagents such as deoxyribonucleoside triphosphates (dATP, dCTP, dGTP, dTTP) and DNA polymerase used for real-time PCR detection may be those used in normal real-time PCR. May be performed according to a general protocol for real-time PCR except that the primers and probes of the present invention are used.
  • dATP deoxyribonucleoside triphosphates
  • dGTP dGTP
  • dTTP DNA polymerase used for real-time PCR detection
  • DNA polymerase used for real-time PCR detection may be those used in normal real-time PCR. May be performed according to a general protocol for real-time PCR except that the primers and probes of the present invention are used.
  • a purified DNA sample is obtained from a sample (test sample) from which Chlamydophila caviae is to be detected by a known method.
  • an oligonucleotide consisting of the base sequence represented by SEQ ID NO: 11 (R08_3d_Fw1) and an oligonucleotide consisting of the base sequence represented by SEQ ID NO: 12 (R08_3d_Rv1) by the phosphoramidite method Synthesize.
  • a sequence to be used as a probe is designed from the base sequence of SEQ ID NO: 29, which is expected to be amplified by PCR using the R08_3d_Fw1 and R08_3d_Rv1 primer pairs, and an oligonucleotide having this base sequence is synthesized.
  • a reporter dye FAM is bound to the 5 ′ end of the oligonucleotide and a reporter quencher TAMRA is bound to the 3 ′ end by a conventional method to obtain a fluorescently labeled probe.
  • real-time PCR is performed as follows using R08_3d_Fw1 synthesized above as a forward primer and R08_3d_Rv1 as a reverse primer.
  • 1 ng of a purified DNA sample is added to 20 ⁇ l of this PCR reaction solution to obtain a PCR sample.
  • the number (copy number) of Chlamydophila caviae genomic DNA in the sample can be obtained.
  • the number is proportional to the number of Chlamydophila caviae, the number of Chlamydophila caviae in the sample (test sample) can also be known.
  • the method for creating a calibration curve may be a conventional method that is usually performed in the real-time PCR method.
  • a DNA sample for PCR having a dilution series concentration (copy number) is prepared using a genomic DNA sample of Chlamydophila caviae with a known copy number as a standard.
  • real-time PCR is performed according to the above-described method using PCR samples of each dilution series, and the fluorescence intensity of the reporter dye is measured.
  • an amplification curve is prepared by plotting the measured values of fluorescence intensity (Rn, y-axis) with respect to the number of PCR cycles (x-axis).
  • Th Threshold line
  • Ct threshold cycle
  • the intercalator is a reagent that specifically binds to double-stranded DNA and emits fluorescence, and emits fluorescence when irradiated with excitation light.
  • the intercalator is incorporated into the DNA, so that it is incorporated into the DNA in proportion to the amount of primer extension product generated. Therefore, the amount of the primer extension product can be known by detecting the fluorescence intensity derived from the intercalator.
  • the intercalator binds to all double-stranded DNAs, a melting curve is created as necessary based on the obtained fluorescence intensity measurement results, and a melting curve analysis is performed. That is, the fluorescence intensity derived from the intercalator is measured while gradually raising the temperature of the PCR reaction solution after the PCR reaction.
  • the PCR amplification product forms a double strand and emits fluorescence, but when the temperature of the PCR reaction solution reaches a certain temperature, it dissociates into a single strand, so the fluorescence intensity derived from the intercalator is Decreases rapidly.
  • the temperature at this time is the melting temperature (Tm value), which is a value unique to the sequence of the primer extension product. Whether the peak of the melting curve is a peak of a specific product of interest or a peak of a specific product and a non-specific product can be determined from this Tm value.
  • this intercalator method does not require electrophoresis after PCR, it is an effective method when it is necessary to perform rapid detection in the field of clinical examination or the like.
  • any intercalator usually used in this field can be used.
  • SYBR TM Green I (trade name of Molecular Probe)
  • ethidium bromide fluorene, etc. is there.
  • a purified DNA sample purified from a sample (test sample) to be detected for Chlamydophila caviae as a template, and a polymerase such as Taq DNA polymerase Perform the real-time PCR used. Then, the fluorescence intensity derived from the intercalator that intercalates in correlation with the amplification amount of the primer extension product is measured.
  • an intercalator for example, SYBR TM Green I
  • a melting curve is prepared in which the horizontal axis represents the dissociation temperature of the primer extension product (double-stranded DNA) and the vertical axis represents the first derivative (change amount) of the fluorescence intensity.
  • a melting curve analysis of the primer extension product is performed, and a peak is detected.
  • Chlamydophila caviae type strain reference strain
  • the same measurement is carried out using Chlamydophila caviae type strain (reference strain) to detect peaks.
  • Chlamydophila caviae type strain reference strain
  • a calibration curve can be created according to a conventional method performed by real-time PCR. -The amount of genomic DNA (copy number) of cabies can be obtained.
  • a PCR DNA sample having a dilution series concentration is prepared using, for example, a Chlamydophila caviae genomic DNA sample with a known copy number as a standard.
  • real-time PCR is performed according to the above method using each dilution series of PCR DNA samples, and the fluorescence intensity derived from the intercalator is measured.
  • An amplification curve in which the measured values of fluorescence intensity (Rn, y-axis) are plotted for each PCR cycle number (x-axis) is created for each DNA sample for PCR in each dilution series.
  • the Ct value is then obtained in the same manner as above.
  • the Ct value (y-axis) against the logarithmic value (x-axis) of the copy number of each PCR DNA sample used for real-time PCR may be plotted, and the approximate curve obtained for each Ct may be used as a calibration curve.
  • DNA is separated and purified from the sample that detects Chlamydophila caviae, and then the obtained DNA sample is analyzed in real time by the intercalator method. Perform PCR and create an amplification curve in the same way. Obtain the Ct value where Th when the calibration curve was created and the obtained amplification curve intersected. By applying the Ct value to a calibration curve, the amount of genomic DNA (copy number) of Chlamydophila caviae in the sample can be obtained.
  • a purified DNA sample is obtained from a sample (test sample) from which Chlamydophila caviae is to be detected by a known method.
  • an oligonucleotide consisting of the base sequence represented by SEQ ID NO: 11 (R08_3d_Fw1) and an oligonucleotide consisting of the base sequence represented by SEQ ID NO: 12 (R08_3d_Rv1) by the phosphoramidite method Synthesize.
  • primer R08_3d_Fw1 each 50 to 2000 nM
  • intercalator eg SYBR TM Green I (trade name of Molecular Probe)] diluted about 5 to 100000 times the stock solution, 1.0 to 4.0 mM MgCl 2 , KCl, BSA 10 mM Tris-HCl buffer containing sodium cholate, 0.005-0.2% TritonX-100, each containing about 0.2 mM dATP, dCTP, dGTP, dTTP, 10-80 units / ml polymerase (eg Taq DNA polymerase) pH 8.9) is prepared and used as a PCR reaction solution.
  • intercalator eg SYBR TM Green I (trade name of Molecular Probe)
  • a purified DNA sample purified from a sample (test sample) from which Chlamydophila caviae is to be detected is added to the PCR reaction solution to obtain a PCR sample.
  • PCR sample Using this PCR sample, real-time PCR is performed using a real-time PCR detector or the like. The reaction is repeated 30 to 50 times, and the fluorescence intensity of SYBR TM Green I intercalating in correlation with the amplification amount of the primer extension product is measured every cycle.
  • a melting curve is prepared in which the horizontal axis represents the dissociation temperature of the primer extension product (double-stranded DNA) and the vertical axis represents the first derivative (change amount) of the fluorescence intensity.
  • a melting curve analysis of the primer extension product is performed to detect a peak. When it was confirmed that the obtained peak was a single peak and appeared at the same position as that of the peak obtained by performing the same measurement using Chlamydophila caviae type strain, The test sample is judged to be positive for Chlamydophila caviae.
  • the number (copy number) of genomic DNA of Chlamydophila caviae in the sample can be obtained.
  • the number is proportional to the number of Chlamydophila caviae, the number of Chlamydophila caviae in the sample (test sample) can also be known.
  • A-3) A method of performing electrophoresis on the obtained primer extension product after performing a nucleic acid amplification reaction, and performing based on the result.
  • This method includes, for example, “including the following steps, Chlamydophila cabie detection method, (I) A part or all of a base sequence selected from SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5 and SEQ ID NO: 6, or SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3 Oligonucleotide containing a part or all of the complementary sequence to the base sequence selected from SEQ ID NO: 4, SEQ ID NO: 5 and SEQ ID NO: 6 and hybridizing with the base sequence of the Chlamydophila caviae gene (primer of the present invention) As a primer), a nucleic acid amplification reaction is performed using the nucleic acid in the sample as a template. (Ii) Electrophoresis is performed on the primer extension product obtained in
  • nucleic acid amplification reaction Specific examples of the nucleic acid amplification reaction are as described above.
  • (A-3-1) confirming the fraction of the primer extension product of the desired size (base pair number) as a method for determining the presence or absence of Chlamydomophila caviae based on the results of electrophoresis.
  • the method of judging by (A-3-2) a method of detecting by hybridization using a labeled probe, Etc.
  • the electrophoresis method conditions, operation methods, and the like may be in accordance with conventional methods commonly used in this field.
  • A-3-1 Method of judging by confirming the fraction of the primer extension product of the desired size (base pair number) For example, first, an appropriate forward primer and reverse primer combination is selected from the primers of the present invention. Then, a nucleic acid amplification reaction such as PCR is performed using it.
  • the size (number of base pairs) of the primer extension product to be amplified is predicted in advance from the combination of the forward primer and the reverse primer used in the nucleic acid amplification reaction. Then, it may be confirmed by a conventional method whether or not the obtained electrophoretic fraction corresponds to a primer extension product having a predicted size. For example, the obtained electrophoresis fraction is stained with ethidium bromide or the like to visualize the nucleic acid species, and the fraction is stained and the size of the primer extension product is confirmed. .
  • the test sample is determined to be positive for Chlamydophila caviae A method is mentioned.
  • the method of No. 1 in Table 2 is “an oligonucleotide containing a base sequence represented by SEQ ID NO: 7 as a forward primer and an oligonucleotide containing a base sequence represented by SEQ ID NO: 8 as a reverse primer.
  • electrophoresis was performed to confirm that a 160 base pair fraction or an oligonucleotide fraction having the base sequence represented by SEQ ID NO: 29 was confirmed. Method to determine positive.
  • (A-3-2) Method of detecting by hybridization using a labeled probe For example, the primer extension product obtained by performing a nucleic acid amplification reaction is subjected to electrophoresis. The obtained electrophoresis fraction is hybridized with a labeled probe obtained by labeling the probe of the present invention with a labeling substance. And, by detecting the label of the labeled probe, when the presence of a fraction hybridized with the labeled probe is confirmed, the test sample can be determined to be positive for Chlamydophila caviae.
  • the resulting primer extension product is subjected to electrophoresis.
  • Pre-label oligonucleotides that contain part or all of the base sequence that is predicted to be amplified by the combination of the forward primer and reverse primer used in PCR (the base sequence that is the “detection target” in Table 2).
  • Hybridization to the labeled probe of the electrophoresis fraction is performed. And, when the presence of a fraction hybridized with the labeled probe is confirmed by detecting the label of the labeled probe, there is a method of determining that the test sample is positive for Chlamydophila caviae.
  • the method of No. 1 refers to “an oligonucleotide containing a nucleotide sequence represented by SEQ ID NO: 7 as a forward primer and an oligonucleotide containing a nucleotide sequence represented by SEQ ID NO: 8 as a reverse primer.
  • the resulting primer extension product is electrophoresed, and then the obtained fraction contains a part or all of the base sequence represented by SEQ ID NO: 29.
  • a method for determining that a fraction hybridized with the labeled probe is positive by performing hybridization with a labeled probe labeled with a labeling substance and detecting a label of the labeled probe. Is.
  • the details of the detection method of Chlamyphila caviae of the present invention by the method of (A-3) are, for example, PCR using R08_3d_Fw1 (SEQ ID NO: 11) as a forward primer and R08_3d_Rv1 (SEQ ID NO: 12) as a reverse primer,
  • An example of the case where detection is performed by a method of confirming the fraction of the primer extension product having the desired number of base pairs after electrophoresis (method (A-3-1) above, method of Table 2 and No. 3) is taken as an example. Then, it is as follows.
  • a purified DNA sample is obtained from a sample (test sample) for detecting the presence or absence of Chlamydophila caviae by a known method.
  • R08_3d_Fw1 an oligonucleotide consisting of the sequence represented by SEQ ID NO: 11
  • R08_3d_Rv1 an oligonucleotide consisting of the base sequence represented by SEQ ID NO: 12
  • PCR is performed using primer R08_3d_Fw1 and primer R08_3d_Rv1.
  • the obtained reaction solution after PCR is subjected to 1.5% agarose gel electrophoresis.
  • fluorescence with ultraviolet light is detected.
  • the molecular weight marker also migrates simultaneously with the reaction solution, and the length of the detected DNA fragment is calculated by comparing the relative migration degree.
  • R08_3d_Fw1 as a forward primer
  • R08_3d_Rv1 as a reverse primer, it is predicted that a 135 base pair DNA fragment (having the sequence represented by SEQ ID NO: 31) in the base sequence of Chlamydophila caviae is replicated. (See Table 2 and No. 3). Therefore, when a fluorescent band having a size of 135 base pairs is confirmed, the test sample may be determined to be positive for Chlamydophila caviae.
  • a detection method using an RNA transcript can be applied in the nucleic acid amplification step.
  • NASBA nucleic acid sequence based amplification
  • 3SR self-sustained sequence sequence
  • TAS transcription method based amplification system
  • TMA transcriptiontranmediated amplification
  • the constant temperature nucleic acid amplification method utilizing the concerted action of reverse transcriptase and RNA polymerase (reacting under conditions where reverse transcriptase and RNA polymerase act cooperatively) is used when automating the measurement system. Is a suitable method.
  • (A-4) a method of performing a nucleic acid amplification reaction using a labeled primer and measuring the label of the resulting primer extension product
  • a primer obtained by performing the nucleic acid amplification reaction such as PCR using the labeled primer obtained by labeling the primer of the present invention by the above-described method, using the nucleic acid in the test sample as a template, and the obtained primer Examples include a method in which the label of the extension product is detected and measured, and when the label can be detected, the test sample is determined to be positive for Chlamydophila caviae.
  • the forward primer and reverse primer used in this method include those used in the above PCR method, and preferred specific examples and preferred combinations thereof are also as described above.
  • the label of the primer extension product is measured after removing the free labeled primer, and when the label can be detected, the test sample is determined to be positive for Chlamydophila caviae.
  • the primer extension product in the reaction product obtained by performing the nucleic acid amplification reaction is precipitated by a conventional method for precipitating the nucleic acid (ethanol precipitation method, precipitation method using isopropanol, etc.). And a method of removing the supernatant containing the free labeled primer that has not been precipitated.
  • a method of separating a primer extension product and a free labeled primer by treating a reaction product obtained by performing a nucleic acid amplification reaction with gel chromatography under appropriate conditions, and a method of separating by electrophoresis are also included. It is done.
  • (B) a method of using the oligonucleotide of the present invention labeled with a labeling substance as a labeled probe, Furthermore, as a method for detecting Chlamydomophila caviae of the present invention, the oligonucleotide of the present invention labeled with a labeling substance is used as a labeled probe, and the labeled probe is hybridized with a nucleic acid in a sample to remove a free labeled probe. Thereafter, a method of detecting the label of the hybridized complex can be mentioned.
  • (B-1) The oligonucleotide of the present invention bound to a solid phase carrier is used as a capture probe and hybridized with the nucleic acid in the sample to be tested, so that the nucleic acid derived from Chlamydophila caviae in the sample is immobilized on the solid phase.
  • a solid phase carrier used as a capture probe and hybridized with the nucleic acid in the sample to be tested, so that the nucleic acid derived from Chlamydophila caviae in the sample is immobilized on the solid phase.
  • the oligonucleotide or solid phase carrier of the present invention may be labeled with a labeling substance.
  • (B-2) An unlabeled capture probe of (B-1) and a labeled probe labeled with the probe of the present invention are used to hybridize with a nucleic acid in a test sample, and a complementary probe on a solid phase carrier A sandwich assay (see, for example, the description of JP-A-58-40099) in which a complex of a nucleic acid and a labeled probe derived from Chlamydophila cabie is formed and the label of the labeled probe is measured.
  • (B-3) A method of capturing a nucleic acid derived from Chlamyphila caviae in a sample with an avidin-binding carrier after hybridization with the nucleic acid in the sample using the probe of the present invention labeled with biotin.
  • reagents usually used in this field such as buffers, stabilizers, preservatives, etc., and the stability of coexisting reagents and the like. That do not inhibit nucleic acid amplification reaction such as PCR or hybridization reaction can be used.
  • concentration may be appropriately selected from a concentration range usually used in this field.
  • buffer solutions include, for example, when performing nucleic acid amplification reactions and hybridization reactions such as normal PCR, such as Tris buffer solution, phosphate buffer solution, veronal buffer solution, borate buffer solution, Good buffer solution, etc. All the buffer solutions used are mentioned, and the pH is not particularly limited, but is usually preferably in the range of 5 to 9.
  • a nucleic acid synthase DNA polymerase, RNA polymerase, reverse transcriptase, etc.
  • a substrate dNTP, rNTP, etc.
  • a double-stranded intercalator ethidium bromide, SYBR TM Green, etc.
  • Labeled detection substances such as FAM and TAMRA are used.
  • the reagent kit for detection of Chlamydophila cabie includes “a part or all of a base sequence selected from SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5 and SEQ ID NO: 6, Or a part or all of a complementary sequence to a base sequence selected from SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5 and SEQ ID NO: 6, and the base sequence of the Chlamydophila caviae gene
  • a reagent kit for detection of Chlamydophila caviae comprising an oligonucleotide that hybridizes with a primer (primer of the present invention) and / or a probe (probe of the present invention).
  • primer of the present invention and the probe of the present invention constituting the kit are as described in the description of the “primer of the present invention” and “probe of the present invention”.
  • the primer of the present invention may be labeled with a labeling substance.
  • Specific examples of the labeling substance are as described above.
  • the kit comprising the primer of the present invention includes a composition comprising a forward primer and a reverse primer pair. Preferred combinations of primer pairs are as described above.
  • the kit may further contain a labeled probe obtained by labeling the oligonucleotide of the present invention with a labeling substance.
  • kits of the present invention “a part or all of a base sequence selected from SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5 and SEQ ID NO: 6, or SEQ ID NO: 1, SEQ ID NO: An oligonucleotide containing a part or the whole of a complementary sequence to a base sequence selected from No. 2, SEQ ID No. 3, SEQ ID No. 4, SEQ ID No. 5 and SEQ ID No. 6 and hybridizing with a base sequence of a Chlamydophila caviae gene A reagent kit for detection of Chlamydomophila caviae comprising (the oligonucleotide of the present invention) as a probe. "
  • the probe may be labeled with a labeling substance.
  • the detection kit for Chlamydophila caviae of the present invention includes, for example, buffers, stabilizers, preservatives, etc., and does not inhibit the stability of coexisting reagents, but inhibits PCR and hybridization reactions. You may include things that you don't.
  • the concentration may be appropriately selected from a concentration range usually used in this field.
  • the buffer include, for example, Tris buffer, phosphate buffer, veronal buffer, borate buffer, Good buffer, and the like buffers used for carrying out normal PCR and hybridization reactions. All the liquids can be mentioned, and the pH is not particularly limited.
  • a nucleic acid synthase DNA polymerase, RNA polymerase, reverse transcriptase, etc.
  • a substrate dNTP, rNTP, etc.
  • a double-stranded intercalator SYBR TM Green, ethidium bromide, etc.
  • FAM label detection substance
  • Example 1 Selection of Chlamydophila caviae genomic DNA clones (1) Preparation of Chlamydophila caviae DNA sample Chlamydophila caviae (Okayama University SC10 strain) was provided by Prof. Hiroshi Kobun of Okayama University School of Medicine. Purified genomic DNA was obtained from Chlamydophila caviae (Okayama University SC10 strain) cultured by a conventional method by a known method (hereinafter, sometimes referred to as “purified genomic DNA derived from Chlamydophila caviae”). What prepared the genomic DNA obtained so that it might become final 400ng / microliter (10mM Tris-HCl buffer solution, pH8.9) was used as "Chlamydophila caviae origin DNA sample”.
  • a DNA sample derived from Chlamydophila caviae is treated with a nebulizer (manufactured by Invitrogen) under a pressure of 5 kPa to 9 kPa for about 10 minutes to obtain DNA derived from Chlamydophila caviae.
  • the sample was fragmented.
  • the target fraction DNA fragment having a size of 500 to 1000 bp could be efficiently recovered.
  • the obtained fraction was purified using an extraction column manufactured by Qiagen.
  • the ends of the resulting DNA fragments are smoothed using the 5 ' ⁇ 3'polymerase activity and 3' ⁇ 5'exonuclease activity of T4 DNA Polymerase. Turned into. A ligation reaction was performed between this DNA fragment and a blunt-ended pBSII sk + vector (Stratagene) to prepare a recombinant DNA in which the DNA fragment was incorporated into the pBSII sk + vector ( amp r ).
  • E. coli JM109 Competent Cells manufactured by Takara Bio Inc.
  • E. coli JM109 Competent Cells were transformed using the recombinant DNA obtained above.
  • the obtained transformant was cultured in an LB-agar medium containing 100 ⁇ g / ml ampicillin, 0.2 ⁇ m IPTG, 40 ⁇ g / ml X-Gal. A white colony was picked up to obtain a library of transformants (Chlamydophila cabie-derived genomic DNA Whole ⁇ ⁇ Shotgun clone Library) into which "recombinant DNA incorporating the target DNA fragment" was introduced.
  • each 1 ⁇ M primer M13 Primer M1 (manufactured by Takara Bio Inc.) and primer M13 Primer RV (manufactured by Takara Bio Inc.), 1.5 mM MgCl 2 , 80 mM KCl, 500 ⁇ g / ml BSA, 0.1% sodium cholate, 0.1% Triton X-100 (Triton X-100, polyoxyethylene octylphenyl ether, trade name of Rohm and Haas), 0.2mM dATP, dCTP, dGTP, dTTP and Taq DNA polymerase (manufactured by Nippon Gene Co., Ltd.) )
  • a 10 mM Tris-HCl buffer solution (pH 8.9) containing 40 units / ml was prepared and used as a PCR reaction solution.
  • DNA was purified from each of the transformants obtained in (2) above (Whole Genome Shotgun clone from genomic DNA derived from Chlamydophila caviae) according to a conventional method.
  • a product obtained by suspending the purified DNA (to be used as a template in the subsequent PCR) in 20 ⁇ l of a PCR reaction solution was prepared and used as a PCR sample.
  • PCR was performed for 30 cycles under the following reaction conditions using a DNA thermal cycler (DNA-Engine-PTC200, manufactured by MJ Research-Inc.).
  • PCR reaction conditions Thermal denaturation: 94 ° C., 0.5 minutes Annealing: 55 ° C., 1 minute Polymerization reaction: 75 ° C., 0.5 minutes.
  • the obtained PCR amplification product was purified and then mixed with an immobilized buffer (final concentration: 3 ⁇ SSC).
  • a typing device (GTMAS Stamp II; manufactured by Nihon Laser Electronics Co., Ltd.) that adjusts the final concentration of the PCR amplification product to be 300 ng / ⁇ L and sets the humidity in the device to 55%.
  • the PCR product obtained above was spotted on (CMT GAPS-II; manufactured by Corning) (spot diameter 150-250 ⁇ m).
  • the slide glass after the spot was transferred to a UV crosslinker (UV Stratalinker 1800; manufactured by Stratagene), irradiated with 150 mJ / cm 2 of UV, and the PCR amplification product (target DNA) was immobilized on the slide glass.
  • a microarray using the whole genome shotgun clone library of Chlamydophila caviae-derived genomic DNA as a material, a total of 2900 clones) was prepared.
  • genomic DNA was extracted and purified from Chlamydia psttaci (cal-10 strain) by a conventional method (control genomic DNA) and treated in the same manner to obtain a sample solution.
  • reaction product solution 10 ⁇ l of 50 mM NaHCO 3 was added to the dried reaction product, mixed and allowed to stand at room temperature for 2 to 3 minutes (hereinafter referred to as “reaction product solution”).
  • Cy5 (Amersham Biosciences) or Cy3 (Amersham Biosciences) dissolved in 105 ⁇ L of DMSO was prepared (Cy-dye Solution Cy5, Cy-dye Solution Cy3). 10 ⁇ l of this Cy-dye Solution Cy5 was added to the above reaction product solution obtained using genomic DNA derived from Chlamydophila cabie, and incubated (light-shielded) at 40 ° C. for 60 minutes. In addition, 10 ⁇ l of Cy-dye Solution Cy3 was added to the above reaction product solution obtained using genomic DNA for control (derived from Chlamydia psttaci ), and similarly incubated at 40 ° C. for 60 minutes (shielded from light).
  • each labeled product ie, Chlamydophila caviae
  • a labeled product obtained by labeling the derived genomic DNA with Cy5 and a labeled product obtained by labeling the Chlamydia psttaci genome with Cy3 were obtained.
  • Cy5 labeled product solution and Cy3 labeled product solution were placed on an ultrafiltration column of Microcon YM-10 (Millipore) and centrifuged at 14000 rpm for 4 minutes, and then the concentrated solution was recovered in the same microtube. Then, it was completely dried with a vacuum drying centrifuge (CentriVap concentrator; manufactured by LABCONCO). Next, the following reagents were added to the microtube, suspended and mixed, and the dried product of the labeled product was dissolved.
  • the obtained Cy3Cy5 labeled product mixed solution was incubated at 95 ° C. for 5 minutes and kept at 70 ° C. until hybridization.
  • Quantification of the fluorescence signal was performed using Hitachi Software's DNASIS TM -Array (DNA chip expression image analysis software), and automatic spot recognition, background calculation, and fluorescence intensity ratio normalization were performed according to the software operation procedure. In addition, a reliability limit line was set, and data in a region below that range was not handled, and normalized and reliable fluorescence intensity (ratio) was obtained.
  • the fluorescence intensity ratio of all the spots in the microarray was calculated, and a spot having a high fluorescence intensity and a high fluorescence intensity ratio of Cy5 to Cy3 was selected.
  • Candidate DNA (candidate clone); 2 ⁇ L (100 ng) M13 Primer M1 ; 1 ⁇ L (5pmol) premix ; 8 ⁇ L
  • the base sequence information of the obtained candidate clones 01 to 06 was compared with the genomic sequence of the reference strain (type strain GenBank Acc No. AE015925) of Chlamydophila caviae using databases (NCBI LAST BLAST and CHEMICAL ABSTRACT). The results are shown in Table 4 below.
  • position indicates the position of the base sequence of each candidate clone on the base sequence of the genomic gene of the reference strain of Chlamydophila caviae (type strain GenBank Acc ⁇ ⁇ No.AE015925).
  • ID indicates a clone ID No. named by the present inventor.
  • the entire genome sequences of the selected candidate clones 01 to 06 have already been reported, and the nucleotide sequences of the genomic genes of Chlamydophila caviai related species ( Chlamydophila genera or Chlamydia genera other than Chlamydophila caviae) have no overlapping portion. It was. From the above, it was estimated that the base sequences of the 6 candidate clones are sequence regions with high specificity for Chlamydophila caviae.
  • Example 2 Evaluation of specificity of Chlamydophila caviae for candidate clone 02
  • Sequence (base sequence) analysis results the primer sequence for use in PCR using the primer design Web tool Primer3 (Whitehead Institute for Biomedical Research.), Ie, “5′-tcttcccgcctccttattct-3 ′” ( SEQ ID NO: 11, hereinafter referred to as “R08_3d_Fw1”) and “5′-gctgcttgtggggcaatc-3 ′” (SEQ ID NO: 12, hereinafter referred to as “R08_3d_Rv1”) were designed.
  • the base sequence of candidate clone 02 obtained from the sequence analysis results is represented by SEQ ID NO: 2.
  • the designed oligonucleotide was synthesized by the phosphoramidite method using ABI DNA synthesizer type 392. The synthesis method followed the ABI manual. Various oligonucleotides were deprotected by heating an aqueous ammonia solution of the oligonucleotide at 55 ° C. overnight.
  • the base sequence predicted to be amplified by PCR using R08_3d_Fw1 and R08_3d_Rv1 as primers is the base sequence (135 bases) represented by SEQ ID NO: 31. Therefore, a sequence “5′-tcaacaagatattactgcggcaacacc-3 ′” for use as a probe was designed from the base sequence represented by SEQ ID NO: 31, and an oligonucleotide having this sequence was synthesized (SEQ ID NO: 40, having this sequence).
  • the oligonucleotide probe is hereinafter referred to as R08_3d_FwRv1_FAM).
  • a reporter dye FAM is bound to the 5 ′ end of the oligonucleotide, and a reporter quencher TAMRA is bound to the 3 ′ end.
  • the labeled oligonucleotide probe of the present invention (TaqMan TM fluorescent probe, manufactured by Applied Biosystems Japan) Obtained.
  • Each of the obtained purified DNAs was prepared to a final concentration of 1 ng / ⁇ l (10 mM (Tris-HCl buffer, pH 8.9), and used as a DNA sample for PCR.
  • the PCR sample was placed in a glass capillary tube for quantitative PCR reaction (Roche), and real-time PCR was performed using a thermal cycler / detector (LightCycler 2.0, Roche) dedicated to quantitative PCR.
  • the reaction of 95 ° C. for 15 seconds and 60 ° C. for 1 minute was repeated 50 cycles, and the fluorescence intensity of the reporter dye was measured every cycle.
  • the fluorescence intensity was determined by using the function of the thermal cycler used for the measurement to quantify the relative fluorescence intensity ratio for each glass capillary tube used for the measurement.
  • Chlamydophila caviae can be specifically detected by performing PCR using the oligonucleotide of the present invention as a primer. Moreover, since detection by nucleic acid amplification such as PCR can be expected to have high sensitivity, it is not necessary to isolate bacteria, and clinical materials can be used for detection as they are. Therefore, it can be seen that, in the conventional method of detecting bacteria after culturing, the detection of Chlamydophila caviae, which took several weeks for cultivation, can be completed within one day at the longest.
  • PCR sample 1 ⁇ L (1 ng) of the DNA sample for PCR derived from Chlamydophila caviae prepared in (2) above was added to 20 ⁇ L of the PCR reaction solution prepared in (3) (i) above to prepare a PCR sample.
  • the PCR sample is placed in a well of a 96-well reaction plate (Microamp Optical 96-well Reaction Plate, Applied Biosystems Japan) and TaqMan TM PCR dedicated thermal cycler / detector (ABI 7500, Applied Bio). Real-time PCR was carried out using Systems Japan.
  • the fluorescence intensity was calculated
  • an amplification curve was prepared by plotting the fluorescence amount (Rn, y axis) of SYBR TM Green I against the number of PCR cycles (x axis). Next, the Rn part where the fluorescence amount was amplified exponentially was selected, and the threshold line (Th) was drawn. The point at which Th and the fluorescence amount of each DNA sample for PCR intersect was defined as the threshold cycle (Ct) value. Next, Ct values (y-axis) were plotted against the copy number (x-axis, logarithmic value) of the genome of each PCR DNA sample used, and the approximate curve obtained for each Ct was used as a calibration curve. The obtained calibration curve is shown in FIG.
  • Chlamydophila cabie itself can be quantified by the real-time PCR method using the primer and probe of the present invention.
  • the initial amount of the template DNA can be accurately quantified, which is effective in detecting Chlamydophila caviae.
  • Example 4 Evaluation of specificity of other candidate clones for Chlamydophila caviae (1) Synthesis of primer of the present invention Based on the analysis result of the sequence (base sequence) of 6 candidate clones determined in Example 1 (7), each candidate clone A primer sequence for PCR amplification detection was designed from the base sequence using Primer 3 (Whitehead Institute for Biomedical Research.).
  • each candidate sequence the sequence number of the base sequence of the candidate clone, the name of the primer (named by the inventor) designed based on the base sequence of the candidate clone, and the sequence number of the base sequence, followed by Table 7 shows the combinations of forward primer and reverse primer used in PCR.
  • the clone ID number (named by the inventor) of each candidate clone is shown in parentheses below the candidate clone name.
  • Each DNA sample is prepared with 10 mM Tris-HCl buffer (pH 8.9) so that the final concentration is 10 4 , 10 3 copies / ⁇ L (amount sufficient to detect each chlamydia).
  • a DNA sample for PCR was used.
  • 1.00E + 04 indicates a case where the concentration of the DNA sample is 10 4 copies / ⁇ L.
  • (+) indicates that the peak was confirmed by melting curve analysis, and (-) indicates that the peak was not confirmed.
  • Chlamydophila caviae can be specifically detected by eliminating the appearance of false positives.
  • the method for detecting Chlamydomophila caviae using the primer or / and probe of the present invention compared with the conventional method for identifying bacterial species by culture inspection of bacteria, the method is much faster and more accurate. ⁇ Cabier can be detected.
  • Chlamyphila caviae by the detection method of the present invention, false positives in diagnosis can be eliminated, and Chlamydophila caviae can be detected and diagnosed with higher accuracy. Further, by using the detection method of the present invention, there is an effect that Chlamydophila caviae itself can be quantified.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

 診断上の偽陽性を排除した新規なクラミドフィラ・キャビエ検出用プライマー及びプローブ、並びにこれを用いた簡便、迅速且つ精度の高いクラミドフィラ・キャビエの検出方法を提供する。  本発明のプライマー又は/及びプローブを用いたクラミドフィラ・キャビエの検出方法によれば、従来の菌の培養検査等により菌種を同定する方法と比較して、はるかに迅速且つ高精度に、クラミドフィラ・キャビエの検出を行うことができる。また、本発明の検出方法を用いることにより、クラミドフィラ・キャビエ自体の定量も行うこともできる。

Description

クラミドフィラ・キャビエ検出用プライマー及びプローブ、並びにこれを用いたクラミドフィラ・キャビエの検出方法
 本発明は、核酸の増幅およびその検出系を利用した、クラミドフィラ・キャビエ(Chlamydophila caviae)を検出及び/又は同定する方法に関するものである。
 今日、性風俗の多様化や若者を中心とする日本人の性行動様式の変化にともない性感染症としてのクラミジア感染症の増加は著しい。
 クラミジア(Chlamydia)は、真核細胞の偏性細胞内寄生細菌である。それは宿主細胞で生育増殖し、細胞の細胞質に封入体(inclusion)を形成する。これらの性質が宿主の臨床的症状の原因となる。例えば、性器クラミジア感染症の原因菌はクラミジア・トラコマティス(Chlamydia.trachomatis)であり、主に男性では尿道炎、女性では子宮頚管炎を発症する。また、クラミドフィラ・キャビエはモルモットの封入体結膜炎(GPIC)の原因菌であるが、ヒトに対する病原性は今日まで確認さていない。
 一方、岡山大学の公文裕巳等によって、ヒトに感染したクラミジアの中には、クラミジア・トラコマティス以外のものが存在する可能性があること、そして、ヒトに感染するその第二のクラミジアが、クラミドフィラ・キャビエの可能性があることが示唆されている。(非特許文献1)。
 クラミドフィラ・キャビエは、1999年まではChlamidya psittaci GPIC isolateとして取り扱われていたが、近年のゲノム解析にもとづいたChlamidia属の分類再編成に伴い、独立した種となった。また、クラミドフィラ・キャビエは、Chlamydiaceae familyのなかで全ゲノムの解析が完了した4番目の種であり(非特許文献2)、特にヒトに広く感染するChlamydia peumoniaeとの比較解析が進められている。
 クラミジアの検出法としては、直接蛍光抗体染色(DFA)、酵素免疫検定法(EIA)および酵素結合イムノソルベント検定法(ELISA)等の、抗原を検出する方法が開発されている。また、標識物質で標識したクラミジア・トラコマティスのリボソームRNAに相補的な1本鎖DNAを用いた、プローブハイブリダイゼーションにより、クラミジア・トラコマティスを検出する方法(非特許文献3)も開発されている。
 一方、より高感度な検出法として、ポリメラーゼ連鎖反応(Polymerase Chain Reaction、PCR)、リガーゼ連鎖反応(Ligase Chain Reaction、LCR)およびStandard Displacement Amplification(SDA)などのDNA増幅技術が開発されている。例えば、ドメイカら(非特許文献4)、ボーウェンズら(非特許文献5)および米国特許第5,232,829号明細書(特許文献1)は、PCRと、それに続いて微量滴定、プレートハイブリダイゼーションを行い、クラミジア・トラコマティスを検出する方法を報告している。また、LCRと、それに続いて微粒子サンドイッチ免疫検定検出を行って、クラミジア・トラコマティスを検出する方法も報告されている(非特許文献6、非特許文献7、非特許文献8)。しかし、これらの検出方法は、検出完了までに4~6時間を要する。
 一方、クラミドフィラ・キャビエの検出としては、蛍光染色法とnested PCR法(従来のPCR法)が主であった。このうち蛍光染色法は、McCoy細胞やHeLa細胞等のクラミドフィラ・キャビエの宿主となる細胞に検体を接種培養した後、クラミジア科特異抗体で処理して観察するという方法である。この方法は、検出に約3日の時間を要し、感度・特異度も低いものであった。
 また、nested PCR法は感度が比較的低い為に、一定量までクラミジアを培養してからDNAを抽出してPCRを行う必要がある。しかし、上記したように、クラミジアを培養するには、McCoy細胞やHeLa細胞等のクラミドフィラ・キャビエの宿主となる細胞に検体を接種培養する必要があるが、それは大変な作業であり、且つ約48~72時間を要する。そのため、培養から検出までに最低でも約3日が必要で、また検出の特異性も満足のいくものではなかった。
 PCR、LCRおよびSDAなどのDNA増幅技術は、現在多方面で利用されている技術である。それにもかかわらず、上記したように、これらの方法を応用した、クラミドフィラ・キャビエを特異的に検出する遺伝子検査法は、これまで確立されていない。一方で、上記したように、クラミドフィラ・キャビエがヒトへ感染する可能性があることが示唆されているため、クラミドフィラ・キャビエを簡便に且つ特異的に検出し得る方法の開発が望まれている現状にある。
「子宮頸管炎患部から分離されたクラミジアの性状」、病原微生物検出情報月報(IASR)、 国立感染症研究所感染症情報センター、2004年8月、vol. 25, No.8, p.204-205 Read T. D. et al., Nucleic Acid Reserch, 2003, 31, 2134-2147 Warren R., et al.,Journal of Clinical Microbiology, 1993, 31, 1663-1666. Domeika M. et al., Journal of Clinical Microbiology, 1994, 32, 2350-2352 Bauwens J. E. et al., Journal of Clinical Microbiology, 1993, 31, 3013-3106 Chernesky Max A. et al., Journal of Clinical Microbiology, 1994, 32, 2682-2685 Lee H. H. et al., Lancet, 1995, 345, 213-216 Bassiri M. et al., Journal of Clinical Microbiology, 1995, 33, 898-900) F.Poly et al., J. Bacteriology, 2004, 186(14), p.4781-4795 米国特許第5232829号明細書
 本発明は、上記した如き状況に鑑みなされたもので、診断上の偽陽性を排除した新規なクラミドフィラ・キャビエ検出用プライマー、及びこれを用いた簡便、迅速且つ精度の高いクラミドフィラ・キャビエの検出方法を提供することを目的とする。
 本発明は上記課題を解決する目的で成されたもので、以下の構成よりなる。
(1)配列番号1、配列番号2、配列番号3、配列番号4、配列番号5及び配列番号6から選択される塩基配列(但し、Aはアデニン、Cはシトシン、Gはグアニン、Tはチミンを表す。また、任意の位置のTはウラシル(U)と置換されていてもよい。以下同じ。)の一部若しくは全部、又は配列番号1、配列番号2、配列番号3、配列番号4、配列番号5及び配列番号6から選択される塩基配列に対する相補配列の一部若しくは全部を含有し、且つクラミドフィラ・キャビエ遺伝子の塩基配列とハイブリダイズするオリゴヌクレオチド。
(2)配列番号1、配列番号2、配列番号3、配列番号4、配列番号5及び配列番号6から選択される塩基配列の一部若しくは全部、又は配列番号1、配列番号2、配列番号3、配列番号4、配列番号5及び配列番号6から選択される塩基配列に対する相補配列の一部若しくは全部を含有し、且つクラミドフィラ・キャビエ遺伝子の塩基配列とハイブリダイズするオリゴヌクレオチドを含有する、クラミドフィラ・キャビエ検出用プライマー。
(3)配列番号1、配列番号2、配列番号3、配列番号4、配列番号5及び配列番号6から選択される塩基配列の一部若しくは全部、又は配列番号1、配列番号2、配列番号3、配列番号4、配列番号5及び配列番号6から選択される塩基配列に対する相補配列の一部若しくは全部を含有し、且つクラミドフィラ・キャビエ遺伝子の塩基配列とハイブリダイズするオリゴヌクレオチドを含有する、クラミドフィラ・キャビエ検出用プローブ。
(4)配列番号1、配列番号2、配列番号3、配列番号4、配列番号5及び配列番号6から選択される塩基配列の一部若しくは全部、又は配列番号1、配列番号2、配列番号3、配列番号4、配列番号5及び配列番号6から選択される塩基配列に対する相補配列の一部若しくは全部を含有し、且つクラミドフィラ・キャビエ遺伝子の塩基配列とハイブリダイズするオリゴヌクレオチドをプライマー又は/及びプローブとして用いることを特徴とするクラミドフィラ・キャビエの検出方法。
(5)配列番号1、配列番号2、配列番号3、配列番号4、配列番号5及び配列番号6から選択される塩基配列の一部若しくは全部、又は配列番号1、配列番号2、配列番号3、配列番号4、配列番号5及び配列番号6から選択される塩基配列に対する相補配列の一部若しくは全部を含有し、且つクラミドフィラ・キャビエ遺伝子の塩基配列とハイブリダイズするオリゴヌクレオチドをプライマー又は/及びプローブとして含んでなる、クラミドフィラ・キャビエ検出用試薬キット。
 本発明者等は、現在までに決定されたクラミドフィラ・キャビエとその他の生物の各種遺伝子について、各種間の各遺伝子配列の相同性の理論的検証と実験的検証を重ねた。その結果、マイクロアレイ法を用いた方法により得られたクラミドフィラ・キャビエ由来の塩基配列の断片の中に、クラミドフィラ・キャビエの遺伝子配列に特異的にハイブリダイズし、クラミドフィラ・キャビエの検出に有用な塩基配列が存在することを見出した。
 そこで、これらの知見をもとに更に鋭意研究の結果、クラミドフィラ・キャビエに特異的なオリゴヌクレオチド(配列番号1、配列番号2、配列番号3、配列番号4、配列番号5及び配列番号6で表される塩基配列)を得、これらの塩基配列がクラミドフィラ・キャビエの検出に有用であることを見出した。そして更にこれらの配列をもとにクラミドフィラ・キャビエ検出用プライマー及びプローブを開発し、これらを用いたクラミドフィラ・キャビエの検出方法を確立するに到った。
 本発明のプライマー又は/及びプローブを用いたクラミドフィラ・キャビエの検出方法によれば、従来の菌の培養検査等により菌種を同定する方法と比較して、はるかに迅速且つ高精度に、クラミドフィラ・キャビエの検出を行うことができる。また、本発明の検出方法を用いることにより、クラミドフィラ・キャビエ自体の定量も行うこともできる。
 更にヒトに感染性をもつ他のクラミジアでは反応しないという高い特異度も実現することができた。
 今後、クラミドフィラ・キャビエがヒトに感染して尿道炎や子宮頚管炎を引き起こす可能性について、疫学的な研究・検討が必要であることが予想されることからも、本発明は斯業に貢献するところ大なる発明である。
実施例3で得られたリアルタイムPCR検出結果を示し、各PCR用DNA試料のゲノムのコピー数(x軸、対数値)に対するCt値(y軸)をプロットした検量線である。
 本発明に於いて、クラミドフィラ・キャビエ(Chlamydophila caviae)遺伝子とは、Chlamydophila caviaeの持つ全ゲノム配列における任意の塩基配列単位(領域)をいう。
 本発明に係るオリゴヌクレオチドとしては、配列表の、配列番号1、配列番号2、配列番号3、配列番号4、配列番号5及び配列番号6から選択される塩基配列の一部若しくは全部、又は配列番号1、配列番号2、配列番号3、配列番号4、配列番号5及び配列番号6から選択される塩基配列に対する相補配列の一部若しくは全部を含有し、且つクラミドフィラ・キャビエ遺伝子の塩基配列とハイブリダイズするオリゴヌクレオチドが挙げられる(以下、本発明のオリゴヌクレオチドと略記する場合がある。)。
 本発明に係る配列番号1、配列番号2、配列番号3、配列番号4、配列番号5及び配列番号6から選択される塩基配列の一部若しくは全部を含有するオリゴヌクレオチドとしては、例えば、
 (1)配列番号1、配列番号2、配列番号3、配列番号4、配列番号5及び配列番号6から選択される塩基配列と約70%以上、好ましくは約80%以上、より好ましくは約90%以上、更に好ましくは約95%以上の相同性を有する塩基配列を含有するオリゴヌクレオチド、又は
 (2)配列番号1、配列番号2、配列番号3、配列番号4、配列番号5及び配列番号6から選択される塩基配列中の、連続する10塩基以上、好ましくは15塩基以上、より好ましくは20塩基以上を含有することを特徴とするオリゴヌクレオチド、
等が挙げられる。
 本発明に係る配列番号1、配列番号2、配列番号3、配列番号4、配列番号5及び配列番号6から選択される塩基配列の全部を含有するオリゴヌクレオチドの具体例としては、例えば配列番号1、配列番号2、配列番号3、配列番号4、配列番号5及び配列番号6から選択される塩基配列からなるオリゴヌクレオチド、又は配列番号1、配列番号2、配列番号3、配列番号4、配列番号5及び配列番号6から選択される塩基配列を含有するオリゴヌクレオチドが挙げられる。
 配列番号1、配列番号2、配列番号3、配列番号4、配列番号5及び配列番号6から選択される塩基配列の一部を含有するオリゴヌクレオチドの具体例としては、例えば配列番号7~39から選択される塩基配列の一部若しくは全部を含有するものが挙げられる。
 配列番号1で表される塩基配列の一部を含有するオリゴヌクレオチドの具体例としては、例えば配列番号7~10及び配列番号29~30から選択される塩基配列の一部若しくは全部を含有するものが挙げられる。
 配列番号2で表される塩基配列の一部を含有するオリゴヌクレオチドの具体例としては、例えば配列番号11~14及び配列番号31~32から選択される塩基配列の一部若しくは全部を含有するものが挙げられる。
 配列番号3で表される塩基配列の一部を含有するオリゴヌクレオチドの具体例としては、例えば配列番号15~18及び配列番号33~34から選択される塩基配列の一部若しくは全部を含有するものが挙げられる。
 配列番号4で表される塩基配列の一部を含有するオリゴヌクレオチドの具体例としては、例えば配列番号19~22及び配列番号35~36から選択される塩基配列の一部若しくは全部を含有するものが挙げられる。
 配列番号5で表される塩基配列の一部を含有するオリゴヌクレオチドの具体例としては、例えば配列番号23~26及び配列番号37~38から選択される塩基配列の一部若しくは全部を含有するものが挙げられる。
 配列番号6で表される塩基配列の一部を含有するオリゴヌクレオチドの具体例としては、例えば配列番号27~28及び配列番号39から選択される塩基配列の一部若しくは全部を含有するものが挙げられる。
 配列番号7~39から選択される塩基配列の全部を含有するオリゴヌクレオチドの具体例としては、配列番号7~39から選択される塩基配列からなるオリゴヌクレオチド、又は配列番号7~39から選択される塩基配列を含有するオリゴヌクレオチドが挙げられる。
 また、配列番号7~39から選択される塩基配列の一部を含有するオリゴヌクレオチドの例としては、配列番号7~39から選択される塩基配列中の、連続する10塩基以上、好ましくは15塩基以上を含有するオリゴヌクレオチド等が挙げられる。
 本発明に係る配列番号1、配列番号2、配列番号3、配列番号4、配列番号5及び配列番号6から選択される塩基配列に対する相補配列の一部若しくは全部を含有するオリゴヌクレオチドとしては、例えば本発明の配列番号1、配列番号2、配列番号3、配列番号4、配列番号5及び配列番号6から選択される塩基配列からなるオリゴヌクレオチドとハイブリダイズする塩基配列の、一部若しくは全部を含有するオリゴヌクレオチド等が挙げられる。
 上記の、本発明の配列番号1、配列番号2、配列番号3、配列番号4、配列番号5及び配列番号6から選択される塩基配列からなるオリゴヌクレオチドとハイブリダイズする塩基配列の一部若しくは全部を有するオリゴヌクレオチドとは、具体的には、例えば本発明の配列番号1、配列番号2、配列番号3、配列番号4、配列番号5及び配列番号6から選択される塩基配列からなるオリゴヌクレオチドと、ハイストリンジェントな条件又はストリンジェントな条件下でハイブリダイズする塩基配列の、一部若しくは全部を含有するオリゴヌクレオチド等が挙げられる。
 ここでいう「ハイストリンジェントな条件」とは、具体的には例えば「50%ホルムアミド中で42~70℃で、好ましくは60~70℃でハイブリダイゼーションを行い、その後0.2~2×SSC、0.1% ドデシル硫酸ナトリウム(SDS)中、25~70℃で洗浄する。」という条件である。
 また、「ストリンジェントな条件」とは、具体的には例えば「6×SSC又はこれと同等の塩濃度のハイブリダイゼーション溶液中、50~70℃の温度の条件下で16時間ハイブリダイゼーションを行い、6×SSC又はこれと同等の塩濃度の溶液等で必要に応じて予備洗浄を行った後、1×SSC又はこれと同等の塩濃度の溶液等で洗浄する。」という条件である。
 本発明に係る配列番号1、配列番号2、配列番号3、配列番号4、配列番号5及び配列番号6から選択される塩基配列に対する相補配列の、一部若しくは全部を含有するオリゴヌクレオチドの例としては、例えば、
 (1)配列番号1、配列番号2、配列番号3、配列番号4、配列番号5及び配列番号6から選択される塩基配列に対する相補配列と約70%以上、好ましくは約80%以上、より好ましくは約90%以上、更に好ましくは約95%以上の相同性を有する塩基配列を含有するオリゴヌクレオチド、又は
 (2)配列番号1、配列番号2、配列番号3、配列番号4、配列番号5及び配列番号6から選択される塩基配列に対する相補配列中の、連続する10塩基以上、好ましくは15塩基以上、より好ましくは20塩基以上を含有することを特徴とするオリゴヌクレオチド、
等が挙げられる。
 本発明に係る配列番号1、配列番号2、配列番号3、配列番号4、配列番号5及び配列番号6から選択される塩基配列に対する相補配列の全部を含有するオリゴヌクレオチドの具体例としては、例えば配列番号1、配列番号2、配列番号3、配列番号4、配列番号5及び配列番号6から選択される塩基配列に対する相補配列からなるオリゴヌクレオチド、又は配列番号1、配列番号2、配列番号3、配列番号4、配列番号5及び配列番号6から選択される塩基配列に対する相補配列を含有するオリゴヌクレオチドが挙げられる。
 配列番号1、配列番号2、配列番号3、配列番号4、配列番号5及び配列番号6から選択される塩基配列に対する相補配列の一部を含有するオリゴヌクレオチドの具体例としては、例えば配列番号7~39から選択される塩基配列に対する、相補配列の一部若しくは全部を含有するオリゴヌクレオチドが挙げられる。
 配列番号7~39から選択される塩基配列に対する相補配列の全部を含有するオリゴヌクレオチドの具体例としては、例えば配列番号7~39から選択される塩基配列に対する相補配列からなるオリゴヌクレオチド、又は配列番号7~39から選択される塩基配列に対する相補配列を含有するオリゴヌクレオチドが挙げられる。
 また、配列番号7~39から選択される塩基配列に対する相補配列の一部を含有するオリゴヌクレオチドの例としては、配列番号7~39から選択される塩基配列に対する相補配列中の、連続する10塩基以上、好ましくは15塩基以上を含有するオリゴヌクレオチド等が挙げられる。
 本発明に係るクラミドフィラ・キャビエ遺伝子の塩基配列とハイブリダイズするオリゴヌクレオチドとは、クラミドフィラ・キャビエ遺伝子の塩基配列とハイストリンジェントな条件又はストリンジェントな条件下でハイブリダイズする塩基配列を有するオリゴヌクレオチド等が挙げられる。そのハイストリンジェントな条件及びストリンジェントな条件は、上記したとおりである。
 尚、本発明のオリゴヌクレオチドはデオキシリボ核酸(DNA)でもリボ核酸(RNA)でもよい。リボ核酸の場合はチミジン残基(T)をウリジン残基(U)と読み替えることは言うまでもない。また合成に際して任意の位置のTをUに変えて合成を行なって得られた、ウリジン残基を含むDNAであってもよい。同様に任意の位置のUをTに変えたチミジン残基を含むRNAであってもよい。また、一つ若しくは複数のヌクレオチドが欠失、挿入或いは置換されたオリゴヌクレオチドであってもよい。一つ若しくは複数のヌクレオチドがイノシン(I)のような修飾ヌクレオチドであってもよい。
 本発明のオリゴヌクレオチドを得る方法としては、特に限定されないが、例えば自体公知の化学合成法により調製する方法が挙げられる。この方法では、ベクター等を用いる遺伝子操作法によりオリゴヌクレオチド又はポリヌクレオチドを得る方法(クローン化法)に比べ、容易、大量且つ安価に一定品質のオリゴヌクレオチドを得ることが可能な方法である。
 例えば、DNAの合成に通常行われている、DNAシンセサイザーを用い、通常のホスホアミダイト法にてオリゴヌクレオチドを合成し、陰イオン交換カラムクロマトグラフィーを用いる常法により精製すれば、目的とする本発明のオリゴヌクレオチドを得ることができる。
 また、オリゴヌクレオチドの合成を業者に委託して、業者から購入してもよい。
 本発明の目的を達成し得るオリゴヌクレオチドを探索(スクリーニング)する方法としては、FEMS Microbiology Letters 166: 63-70, 1998 あるいはSystematic and Applied Microbiology 24: 109-112, 2001などに示されているサブトラクション法、すなわち標的であるゲノムDNA由来DNAフラグメント群から、区別したい生物種由来のゲノムDNA由来DNAフラグメント群と反応したものを除いて候補配列を濃縮する方法がある。
 また、標的であるゲノムDNA及び区別したい生物種由来のゲノムDNAからの増幅産物のディファレンシャルディスプレイを作製するといったアプローチ、すなわち任意にプライムされたポリメラーゼ連鎖反応(AP-PCR)を利用する方法が考えられる(特願平11-155589号公報)。
 更に、いわゆるマイクロアレイ法と呼ばれる方法を利用することによっても、本発明の目的を達成しうるオリゴヌクレオチドを探索することができるし、本発明のオリゴヌクレオチドを得ることができる。その方法の概略は以下の通りである。
 すなわち、例えばクラミドフィラ・キャビエ由来ゲノムDNAのショットガン・クローンを作製し、得られたショットガン・クローンからDNAを精製する。次いで、そのショットガン・クローン由来の精製DNAを、PCR等により増幅させた後、スライドガラス上に配置させて、常法によりマイクロアレイを作製する。別に、検出対象であるクラミドフィラ・キャビエ由来のゲノムDNAを蛍光標識(標識1)したDNAフラグメント群を作製する。一方、区別したい生物種由来のゲノムDNAを蛍光標識(標識2)したDNAフラグメント群を別途に作製する。そして、標識1及び標識2の各々を同一反応系で用いる競合ハイブリダイゼーション法を行い、マイクロアレイ上の精製DNAと標識1及び標識2との反応性(結合性)を検定する。この検定により、標的であるクラミドフィラ・キャビエのゲノムDNA由来フラグメント群(標識1)と、より特異的に反応する配列候補群を選定できる(例えば非特許文献9等の記載参照)。
 以上の方法により、目的の、クラミドフィラ・キャビエ遺伝子の塩基配列と特異的にハイブリダイズするオリゴヌクレオチドを選別することができる。以下にマイクロアレイ法を用いた、本発明のオリゴヌクレオチドの選定方法の一例について詳説する。
(1)クラミドフィラ・キャビエ由来精製ゲノムDNAの調製
 まず、クラミドフィラ・キャビエ由来精製ゲノムDNAを得る。例えば常法によりクラミドフィラ・キャビエ菌株からDNAを抽出・精製すればよい。また、業者にクラミドフィラ・キャビエ菌株からゲノムDNAを抽出・精製を依頼し、それを入手してもよい。
(2)Whole Genome Shotgun libraryの作製
 クラミドフィラ・キャビエのWhole Genome Shotgun libraryの作製を行う方法の一例として、Venter et al., Science. 2001 Feb 16;291(5507):1304-1351 に記載のWhole Genome Shotgun法を改変した方法を、以下に説明する。
 まず、上記(1)で得られたクラミドフィラ・キャビエ由来精製ゲノムDNAを、適当な緩衝液等で希釈した後、例えば濃度20%のグリセロール存在下で、5kPa~9kPaの圧力下、ネビュライザーを用いて、約1~15分間処理し、DNAの断片化処理を行う。この処理により、目的とする500~1000bpのサイズの画分(DNA断片)を効率よく回収する事ができる。得られた画分を市販の抽出カラムを利用して精製する。
 その後、常法に従い、得られた画分(DNA断片。目的のDNA断片を含む。)を、ライゲーションによってベクターDNAに組み込み、組み換えDNA(クラミドフィラ・キャビエのWhole Genome Shotgun library)を得る。
 そのために用いられるベクターDNAとしては、後で形質転換する宿主細胞が大腸菌の場合には、例えば、pBS[例えばpBSII sk+ベクター(Stratagene社)]、pQE-TRIプラスミド (Qiagen社製)、pBluescript、pET、pGEM-3Z、pGEX等のベクターが挙げられる。用いるベクターの種類によっては、ライゲーションの前に、予めDNA断片を、DNAポリメラーゼで処理して、DNA断片の末端を平滑化処理してもよい。
 次いで、得られた組み換えDNAを用いて、適当な宿主細胞を形質転換して形質転換体を得る。
 そのために用いられる宿主細胞としては、例えば、大腸菌(Escherichia.coli)が挙げられ、好ましくはJM109、DH5α、TOP10等が挙げられる。この他、よりプラスミドやファージDNAの導入効率の高い、Competent Cell(コンピテントセル)を用いても良い。例えば、E.coli JM109 Competent Cells(タカラバイオ社製)等が挙げられる。
 宿主細胞の形質転換は、常法(例えば、D.M.Morrisonの方法(Method in Enzymology, 68, 326-331,1979)等)で行えばよい。また、市販のCompetent Cellを用いる場合には、その製品プロトコールに従って、形質転換を行えばよい。
 「目的のDNA断片を組み込んだ組換えDNA」が導入された形質転換体を選別する方法として、例えば、形質転換のために用いたベクターの性質を利用する方法がある。例えば、アンピシリン耐性遺伝子を含有するベクターを用いた場合には、アンピシリンを含有する培地上で形質転換体を培養し、得られたクローンを選択することにより、目的のDNA断片を組み込んだ組換えDNAが導入された、形質転換体(クラミドフィラ・キャビエのゲノムDNA由来のWhole Genome Shotgun clone Library)が容易に得られる。
(3)マイクロアレイ作製
 続いて、下記の方法でマイクロアレイを作製する。
 すなわち、上記(2)で得られた形質転換体のLibrary(クラミドフィラ・キャビエのゲノムDNA由来のWhole Genome Shotgun clone Library)から、常法に従いDNAを精製する。精製したDNAを鋳型として用い、適当なプライマー[市販のプライマーで良い。例えばM13 Primer M1(タカラバイオ社製)及びプライマーM13 Primer RV(タカラバイオ社製)等]を用い、常法に従ってPCRを行った後、得られたPCR増幅産物を精製する。次いで常法に従って、精製したPCR増幅産物をマイクロアレイ用スライドガラス上にスポットする。これにUV照射(60mJ~300mJ/cm2)を行ない、スライドガラス上にPCR増幅産物(ターゲットのクラミドフィラ・キャビエ由来ゲノムDNAを含む)を固定して、マイクロアレイを作成する。
(4)標的ゲノムDNAの蛍光色素標識
i)標的ゲノムDNAの蛍光色素標識
 例えばヘキシルアミノ-UTPを用いた間接標識法等の常法により、例えば上記(1)の方法で得られたクラミドフィラ・キャビエ由来精製ゲノムDNAを標識物質で標識する。また、対照用ゲノム(例えばChlamydia psttaci等の、クラミドフィラ・キャビエ以外のクラミジア等)DNAを、上記のクラミドフィラ・キャビエ由来精製ゲノムDNAを標識する標識物質とは異なる標識物質で標識する。
 上記のDNAの標識に用いられる標識物質としては、通常この分野で用いられる標識物質が挙げられるが、汎用されている標識物質としては、Cy3(アマシャムバイオサイエンス株式会社商品名)、Cy5(アマシャムバイオサイエンス株式会社商品名)、Alexa555(インビトロジェン社商品名)、Alexa647(インビトロジェン社商品名)等が挙げられる。
 例えば、Cy3やCy5を用いて上記DNAを標識する方法としては、DeRisi研究室(www.microarrays.org)が発表したプロトコールを改変した間接標識法が挙げられる。この方法は、まず、酵素伸長反応を行い、アミノ基をもつαUTPを分子内に取り込ませたDNA鎖を作成する。そしてそのDNA鎖のアミノ基に蛍光色素(サクシニイミド体)を化学的に結合させて、DNAを標識するという方法である。
 すなわち、まず、出発材料(クラミドフィラ・キャビエ由来精製ゲノムDNA又は対照用ゲノムDNA)を、常法に従い熱変性処理する。次いで、熱変性処理物に、DTT 2μl、dATP/dCTP/dGTPの混合液、dTTP、Ha-dUTP、Klenow酵素を添加し、37℃で3時間程度の伸長反応を行う。得られた反応産物を限外ろ過カラムにのせ14000rpm で4分程度遠心した後、濃縮液をマイクロチューブに回収して、真空乾燥遠心機等を用いて完全に乾燥させる。次に、乾燥させた上記反応産物にNaHCO3 を加えて混合し、2~3 分常温静置する。
 別にCy3(またはCy5)をDMSO に溶かしたものを調製(Cy-dye Solution Cy3、Cy-dye Solution Cy5)する。このCy-dye Solution Cy3を対照用ゲノム由来DNAを用いて得られた上記反応産物に加える。また、Cy-dye Solution Cy5をクラミドフィラ・キャビエDNAを用いて得られた上記反応産物に加える。それぞれの反応産物を40℃で60 分程度、遮光下にインキュベートする。さらに、それぞれの反応産物に4M NH2OHを加え、攪拌後に15 分程度、遮光下にインキュベートして、それぞれのゲノム由来DNAの標識産物を得る。その後、得られた標識産物を、限外ろ過カラムにのせ、14000rpm で4 分程度遠心した後、濃縮液をマイクロチューブに回収して、真空乾燥遠心機で完全に乾燥させる。
(ii)標識産物の断片化工程
 上記(4)i)で得られた乾燥状態の各ゲノム由来DNAの標識産物に対して、0.04M Tris-acetate(pH8.1)、0.1M 酢酸カリウム、0.03M酢酸マグネシウム四水和物の組成の溶液を調製したものを加え、懸濁混和させる。94℃で15 分間程度加熱処理し、100base~300 base の、各ゲノム由来DNAの標識産物の、断片化生成物を得る(Cy3標識産物、Cy5標識産物)。
 得られたCy3標識産物及びCy5標識産物の各々を限外ろ過カラムにのせ14000rpm で4 分程度遠心した後、濃縮液をマイクロチューブに回収して、真空乾燥遠心機等で完全に乾燥させる。
 次いで、このマイクロチューブに、salmon sperm DNA、formamide及びArrayHyb Hybridization bufferを加えて調製した試薬溶液を加え、上記で得た乾燥物を懸濁混和後、95℃で5 分程度インキュベートし、Cy3Cy5標識産物混合溶液(クラミドフィラ・キャビエ由来ゲノムDNAのCy5標識産物の断片化生成物とChlamydia psttaci由来ゲノムDNAのCy3標識産物の断片化生成物の混合溶液)を調製する。
(5)マイクロアレイ・ハイブリダイゼーション(アレイ上でのDNA-DNA hybridization)
 次に、クラミドフィラ・キャビエ由来ゲノムDNAのWhole Genome Shotgun cloneのマイクロアレイに対して、常法によりCy3Cy5標識産物のハイブリダイゼーションを行う。
 例えば、上記(3)の工程で得られた、クラミドフィラ・キャビエ由来ゲノムDNAのWhole Genome Shotgun cloneのマイクロアレイ上に、上記(4)(ii)で調製したCy3Cy5標識産物混合溶液をのせ、65℃で8 時間以上、遮光下に反応させて、ハイブリダイゼーションを行う。ハイブリダイゼーション後、マイクロアレイをカバーグラスごと2×SSC-0.1%SDS 溶液に室温で浸し、カバーグラスをはずす。1×SSC、0.03%SDS溶液(60℃)で10 分間洗浄、0.2×SSC 溶液(42℃)で10 分間洗浄、0.05×SSC溶液(室温)で約10 分間洗浄後、800prm で約5 分間遠心を行って乾燥させる。
(6)蛍光強度の測定;シグナル検出から数量化まで
 蛍光読み取りスキャナーを用いて、上記(5)で得られたマイクロアレイ・ハイブリダイゼーション処理したマイクロアレイ上の蛍光強度を測定する。この際、Cy3及びCy5の、2チャンネルでの蛍光強度を測定して、蛍光検出データを得る。
 ハイブリダイゼーションに用いたCy5標識産物は、クラミドフィラ・キャビエ由来ゲノムDNAを標識したDNAフラグメント群であり、Cy3標識産物は対照用ゲノムDNAを標識したDNAフラグメント群である。そのため、マイクロアレイ上のあるスポットのCy3とCy5のそれぞれの蛍光強度を測定した結果、Cy3に対するCy5の蛍光強度比が高い場合には、そのスポットのDNA断片(PCR産物)は、Cy5標識産物、すなわちクラミドフィラ・キャビエ由来のゲノムDNAとより強くハイブリダイズしたということを示す。そして、そのDNA断片(PCR産物)は、クラミドフィラ・キャビエに対する特異性が高いと判断される。
 他方、あるスポットのCy3とCy5のそれぞれの蛍光強度を測定した結果、Cy3に対するCy5の蛍光強度比が低い場合は、そのスポットのDNA断片(PCR産物)は、Cy3標識産物、すなわち対照用ゲノムDNAとハイブリダイズしたことを示す。この場合と、Cy3及びCy5の蛍光の強さが同程度だった場合と、Cy3及びCy5のどちらの蛍光も検出されなかった場合には、そのスポットのDNA断片(PCR産物)は、クラミドフィラ・キャビエに対する特異性が低いと判断される。
 そこで、例えばマイクロアレイ上で検出されたCy3/Cy5の蛍光強度比(Ratio)を基に、散布図(スキャッタープロット)を作成する等して、結果を解析する。そして、クラミドフィラ・キャビエに特異的な配列のスクリーニングを行う。
 スクリーニングの結果、クラミドフィラ・キャビエに特異的なシグナルが得られた(Cy5の蛍光強度が強い場合)スポット(クローン)を選択する。このスポットのクローンが、目的のクラミドフィラ・キャビエ遺伝子の塩基配列と特異的にハイブリダイズするオリゴヌクレオチドを含む。
 次いで、通常この分野で用いられているシークエンサー等の機器を利用し、常法に従い、得られたクローンの塩基配列決定を行い、目的のオリゴヌクレオチドが得られたか確認してもよい。
 本発明に係るクラミドフィラ・キャビエ検出用プライマーとしては、配列番号1、配列番号2、配列番号3、配列番号4、配列番号5及び配列番号6から選択される塩基配列の一部若しくは全部、又は配列番号1、配列番号2、配列番号3、配列番号4、配列番号5及び配列番号6から選択される塩基配列に対する相補配列の一部若しくは全部を含有し、且つクラミドフィラ・キャビエ遺伝子の塩基配列とハイブリダイズするオリゴヌクレオチドを含有するプライマーが挙げられる(以下、本発明のプライマーと記載する場合がある。)。
 また、本発明のプライマーは、PCR(リアルタイムPCRを含む)等の核酸増幅反応、核酸ハイブリダイゼーション等の条件に合わせて、配列番号1、配列番号2、配列番号3、配列番号4、配列番号5及び配列番号6から選択される塩基配列の一部若しくは全部、又は配列番号1、配列番号2、配列番号3、配列番号4、配列番号5及び配列番号6から選択される塩基配列に対する相補配列の一部若しくは全部を含有するオリゴヌクレオチドの中から、解離温度(Tm値)などを考慮して、適当な領域の適当な長さを選択して設計すればよい。
 好ましくはプライマー配列としての特異性を維持するために必要な塩基数と考えられている10~50塩基、より好ましくは10~35塩基、更に好ましくは18~25塩基の長さを有しているオリゴヌクレオチドが挙げられる。
 プライマーを設計するには、プライマー設計のために一般に用いられているソフトや、例えばプライマーデザイン用のWebツールPrimer3 (Whitehead Institute for Biomedical Research.)等を用いればよい。
 本発明のプライマーに用いられる、配列番号1、配列番号2、配列番号3、配列番号4、配列番号5及び配列番号6から選択される塩基配列の一部若しくは全部、又は配列番号1、配列番号2、配列番号3、配列番号4、配列番号5及び配列番号6から選択される塩基配列に対する相補配列の一部若しくは全部を含有し、且つクラミドフィラ・キャビエ遺伝子の塩基配列とハイブリダイズするオリゴヌクレオチド(本発明のオリゴヌクレオチド)の具体例は、上記の本発明のオリゴヌクレオチドの説明に於いて記載したものと同じである。
 本発明のプライマーの具体例としては、例えば配列番号7~39から選択される塩基配列の一部若しくは全部、又は配列番号7~39から選択される塩基配列に対する相補配列の一部若しくは全部を含有し、且つクラミドフィラ・キャビエ遺伝子の塩基配列とハイブリダイズするオリゴヌクレオチドを含有するものが挙げられる。
 本発明のプライマーの好ましい具体例としては、配列番号7~28から選択される塩基配列の一部若しくは全部を含有し、且つクラミドフィラ・キャビエ遺伝子の塩基配列とハイブリダイズするオリゴヌクレオチド、又は配列番号7~28から選択される塩基配列に対する相補配列の一部若しくは全部を含有し、且つクラミドフィラ・キャビエ遺伝子の塩基配列とハイブリダイズするオリゴヌクレオチドが挙げられる。
 尚、配列番号7~10で表される塩基配列のプライマーは、配列番号1で表される塩基配列をもとに設計されたものである。
 配列番号11~14で表される塩基配列のプライマーは、配列番号2で表される塩基配列をもとに設計されたものである。
 配列番号15~18で表される塩基配列のプライマーは、配列番号3で表される塩基配列をもとに設計されたものである。
 配列番号19~22で表される塩基配列のプライマーは、配列番号4で表される塩基配列をもとに設計されたものである。
 配列番号23~26で表される塩基配列のプライマーは、配列番号5で表される塩基配列をもとに設計されたものである。
 配列番号27~28で表される塩基配列のプライマーは、配列番号6で表される塩基配列をもとに設計されたものである。
 また、配列番号1で表される塩基配列上の、プライマーとして設計した配列番号7~10で表される塩基配列の存在位置は、夫々次の通りである。
配列番号7(R08_4f_Fw1):145位~163位、
配列番号8(R08_4f_Rv1):285位~304位、
配列番号9(R08_4f_Fw2):365位~385位、
配列番号10(R08_4f_Rv2):509位~529位。
 配列番号2で表される塩基配列上の、プライマーとして設計した配列番号11~14で表される塩基配列の存在位置は、夫々次の通りである。
配列番号11(R08_3d_Fw1):37位~56位、
配列番号12(R08_3d_Rv1):154位~171位。
配列番号13(R08_3d_Fw2):575位~594位、
配列番号14(R08_3d_Rv2):743位~764位。
 配列番号3で表される塩基配列上の、プライマーとして設計した配列番号15~18で表される塩基配列の存在位置は、夫々次の通りである。
配列番号15(R12_2a_Fw1):627位~645位、
配列番号16(R12_2a_Rv1):787位~806位。
配列番号17(R12_2a_Fw2):96位~117位、
配列番号18(R12_2a_Rv2):213位~235位。
 配列番号4で表される塩基配列上の、プライマーとして設計した配列番号19~22で表される塩基配列の存在位置は、夫々次の通りである。
配列番号19(R12_4h_Fw1):261位~280位、
配列番号20(R12_4h_Rv1):436位~460位、
配列番号21(R12_4h_Fw2):44位~66位、
配列番号22(R12_4h_Rv2):173位~192位、
 配列番号5で表される塩基配列上の、プライマーとして設計した配列番号23~26で表される塩基配列の存在位置は、夫々次の通りである。
配列番号23(R10_1g_Fw1):48位~68位、
配列番号24(R10_1g_Rv1):219位~238位。
配列番号25(R10_1g_Fw2):244位~263位、
配列番号26(R10_1g_Rv2):424位~443位。
 配列番号6で表される塩基配列上の、プライマーとして設計した配列番号27~28で表される塩基配列の存在位置は、夫々次の通りである。
配列番号27(R10_12d_Fw1):4103位~4122位、
配列番号28(R10_12d_Rv1):4228位~4248位、
 尚、上記において、各配列番号の後の(  )内に、本発明で命名したプライマーの名称を示す。
 本発明のプライマーを得る方法は、上記の本発明のヌクレオチドを得る方法に於いて記載した通りである。
 また、本発明のプライマーは、標識物質で標識されていてもよい。
 本発明のプライマーを標識する方法としては、この分野で通常行われているオリゴヌクレオチドの標識方法が挙げられ、標識物質ごとに適宜方法を選択すればよい。
 本発明のプライマーを標識物質で標識するために用いられる標識物質としては、放射性同位体や酵素、蛍光物質、発光物質、ビオチンなど公知の標識物質であれば何れも用いることができる。
 例えば、放射性同位体としては32P,33P,35S等、酵素としてはアルカリホスファターゼ,西洋ワサビペルオキシダーゼ等が、蛍光物質としてはAlexa555,Alexa647(インビトロジェン社)、Cyanine Dye系のCy3,Cy5(アマシャムバイオサイエンス株式会社)、フルオレセイン等が、発光物質としてはAcridinium Esterを含む化学発光試薬等が挙げられる。
 本発明のプライマーを放射性同位体により標識する方法としては、プライマーを合成する際に、放射性同位体で標識されたヌクレオチドを取り込ませることによって、プライマーを標識する方法や、プライマーを合成した後、放射性同位体で標識する方法等が挙げられる。具体的には、一般によく用いられているランダムプライマー法、ニックトランスレーション法、T4ポリヌクレオチド キナーゼによる5'-末端標識法、ターミナルデオキシヌクレオチジルトランスフェラーゼを用いた3'-末端標識法、RNAラベリング法等が挙げられる。
 本発明のプライマーを酵素で標識する方法としては、アルカリホスファターゼ,西洋ワサビペルオキシダーゼ等の酵素分子を、標識するプライマーに直接共有結合させる等の、この分野に於ける常法である直接標識法が挙げられる。
 本発明のプライマーを蛍光物質で標識する方法としては、例えばフルオレセイン標識したヌクレオチドをこの分野に於ける常法の標識手法によりプライマーに取り込ませる方法が挙げられる。また、リンカーアームを有するヌクレオチドを配列のオリゴヌクレオチド中に置換する方法(例えば、Nucleic Acids Res.,1986年, 第14巻, p.6115参照)でもヌクレオチドを蛍光物質で標識することができる。その場合、5位にリンカーアームを有するウリジンを特開昭60-500717 号公報に開示された合成法によりデオキシウリジンから化学合成し、そのデオキシウリジンを含有するオリゴヌクレオチドを合成し、次いでそのオリゴヌクレオチド鎖に蛍光物質を導入する方法もある(特開昭60-50717号公報)。
 本発明のプライマーを発光物質で標識する方法及びビオチンで標識する方法としては、通常この分野で行われているヌクレオチドを発光標識又はビオチン標識する常法が挙げられる。
 本発明に係るクラミドフィラ・キャビエ検出用プローブとしては、配列番号1、配列番号2、配列番号3、配列番号4、配列番号5及び配列番号6から選択される塩基配列の一部若しくは全部、又は配列番号1、配列番号2、配列番号3、配列番号4、配列番号5及び配列番号6から選択される塩基配列に対する相補配列の一部若しくは全部を含有し、且つクラミドフィラ・キャビエ遺伝子の塩基配列とハイブリダイズするオリゴヌクレオチド(本発明のオリゴヌクレオチド)を含有するプローブが挙げられる(以下、本発明のプローブと記載する場合がある。)。
 本発明のプローブは、PCR(リアルタイムPCRを含む)等の核酸増幅反応、核酸ハイブリダイゼーション等の条件に合わせて、配列番号1、配列番号2、配列番号3、配列番号4、配列番号5及び配列番号6から選択される塩基配列の一部若しくは全部を含有するオリゴヌクレオチド、又は配列番号1、配列番号2、配列番号3、配列番号4、配列番号5及び配列番号6から選択される塩基配列に対する相補配列の一部若しくは全部を含有するオリゴヌクレオチドから、解離温度(Tm値)などを考慮して、適当な領域の適当な長さを選択して設計すればよい。但し、プローブに十分な特異性を持たせたいのならば、プローブ配列としての特異性を維持するために必要な塩基数を考慮して設計することが望ましい。
 例えば、核酸ハイブリダイゼーション法(例えばサザン・ハイブリダイゼーション等)等に用いるプローブとしては、10~700塩基、好ましくは100~600塩基、更に好ましくは200~500塩基の長さを有しているものが好ましい。
 また、例えばリアルタイムPCR増幅法(例えばTaqManTM法、Molecular Beacon法等)等に用いるプローブとしては、10~50塩基、好ましくは15~40塩基、更に好ましくは20~30塩基の長さを有しているものが好ましい。
 本発明のプローブに用いられる、配列番号1、配列番号2、配列番号3、配列番号4、配列番号5及び配列番号6から選択される塩基配列の一部若しくは全部、又は配列番号1、配列番号2、配列番号3、配列番号4、配列番号5及び配列番号6から選択される塩基配列に対する相補配列の一部若しくは全部を含有し、且つクラミドフィラ・キャビエ遺伝子の塩基配列とハイブリダイズするオリゴヌクレオチド(本発明のオリゴヌクレオチド)の具体例は、上記の本発明のオリゴヌクレオチドの説明に於いて記載したものと同じである。
 本発明のプローブの好ましい具体例としては、例えば、配列番号7~39から選択される塩基配列の一部若しくは全部、又は配列番号7~39から選択される塩基配列に対する相補配列の一部若しくは全部を含有し、且つクラミドフィラ・キャビエ遺伝子の塩基配列とハイブリダイズするオリゴヌクレオチドを含有するプローブが挙げられる。
 本発明のプローブのより好ましい具体例としては、配列番号29~39から選択される配列の一部若しくは全部を含有し、且つクラミドフィラ・キャビエ遺伝子の塩基配列とハイブリダイズするオリゴヌクレオチドを含有するオリゴヌクレオチドオリゴヌクレオチドが挙げられる。
 尚、配列番号29~39から選択される塩基配列又はこれらに対する相補配列は、本発明のプライマーを用いたPCRにより増幅されるオリゴヌクレオチドの塩基配列である。フォワードプライマーとリバースプライマーの組合せと、それを用いたPCRにより増幅される塩基配列の配列番号を表1に併せて示す。例えば、配列番号29で表される塩基配列は、配列番号7で表される塩基配列のオリゴヌクレオチドをフォワードプライマーとし、配列番号8で表される塩基配列のオリゴヌクレオチドをリバースプライマーとして用いたPCRにより増幅されると推測されるオリゴヌクレオチドの塩基配列であることを示す。
Figure JPOXMLDOC01-appb-T000001
 本発明のプローブを得る方法は、上記の本発明のヌクレオチドを得る方法に於いて記載した通りである。
 本発明のプローブは、標識物質で標識されていてもよい。
 本発明のプローブを標識物質で標識するために用いられる標識物質としては、放射性同位体や酵素、蛍光物質、発光物質、ビオチンなど公知の標識物質であれば何れも用いることができる。
 本発明のプローブを標識物質で標識するために用いられる、標識物質の具体例及び標識方法としては、本発明のプライマーの標識方法の説明に記載した方法と同じ方法が挙げられる。
 また、後述するリアルタイムPCRによる検出法に於いて用いられる標識プローブとしては、本発明のプローブを、リアルタイムPCR法において通常用いられている標識物質で標識したものが挙げられる。例えば、5'末端がレポーター蛍光物質[カルボキシフルオレセイン(FAM)、ヘキサクロロフルオレセイン(HEX)、テトラクロロフルオレセイン(TET)等]で標識され、3'末端がクエンチャー色素[例えばカルボキシテトラメチルローダミン(TAMRA)等の蛍光物質、Black Hole Quencher色素(BHQ),4-((4-(dimethylamino) phenyl)azo)benzoic acid (DABCYL)等の非蛍光物質]で標識された本発明のプローブが挙げられる。
 後述するTaqManTMリアルタイムPCRによる検出法においても、上記した標識プローブを用いることができる。
 本発明に係るクラミドフィラ・キャビエの検出に用いられる検体(specimen)としては、尿,尿道スワブ懸濁液、頚管スワブ研濁液、口腔スワブ懸濁液等の各種臨床検体が挙げられる。これら検体は、検出の前に予め検体中に存在する菌の濃縮、分離や、菌体からの核酸の分離、濃縮などの操作を前処理として行ってもよい。その方法としては、酵素、界面活性剤、アルカリ、熱による処理などがある。検体から単離、培養された培養菌体、これらより単離、精製された核酸、又は核酸増幅検出系等で増幅された核酸でもよい。
 上記試料からDNAを抽出・精製するには、検体からのクラミジアDNA抽出に用いられる常法に従って行えばよい。
 例えば、下記の方法で行えばよい。
 まず、試料中のクラミジアの細胞壁を破壊する必要がある。その方法としては、例えば菌体を試料とする場合には、例えばSDS等の界面活性剤や、グアニジンチオシアネート(GTC)等の蛋白変性剤で菌体を処理してクラミジアの膜構造を破壊する方法、又は菌体をガラスビーズ等によって物理的に破砕する方法等が挙げられる。
 クラミジアの細胞壁を破壊した後、この分野で一般的なDNAの調製法[フェノール・クロロホルム抽出、エタノール沈殿法、Rapid and simple method for purification of nucleic acids、J. Clin. Microbiol., 1990, Mar;28(3), 495-503, Boom R, Sol CJ, Salimans MM, Jansen CL, Wertheim-van Dillen PM, van der Noordaa Jに記載された方法、イソプロパノールを用いて沈殿する方法等]によりDNAの抽出及び精製を行えばよい。
 DNAの抽出及び精製には、そのための様々なキットが市販されているので、それを用いてもよい。例えば(株)キアゲン製イオン交換樹脂タイプ DNA抽出精製キットGenomic-tip等を用いてDNAの抽出、精製を行えばよい。
 本発明に係るクラミドフィラ・キャビエの検出方法としては、配列番号1、配列番号2、配列番号3、配列番号4、配列番号5及び配列番号6から選択される塩基配列の一部若しくは全部、又は配列番号1、配列番号2、配列番号3、配列番号4、配列番号5及び配列番号6から選択される塩基配列に対する相補配列の一部若しくは全部を含有し、且つクラミドフィラ・キャビエ遺伝子の塩基配列とハイブリダイズするオリゴヌクレオチド(本発明のオリゴヌクレオチド)をプライマー又は/及びプローブとして用いる方法(本発明のプライマー又は/及びプローブを用いる方法)が挙げられる。
 例えば、
(A)本発明のオリゴヌクレオチドをプライマーとして用いて核酸増幅反応を行い、得られたプライマー伸長産物を検出する方法、
(B)本発明のオリゴヌクレオチドを標識物質で標識したものを標識プローブとして用いる方法、
等が挙げられる。以下に、夫々の方法について説明する。
(A)本発明のオリゴヌクレオチドをプライマーとして用いて核酸増幅反応を行い、得られたプライマー伸長産物を検出する方法
 (A)の方法において、本発明のオリゴヌクレオチドをプライマーとして用いて核酸増幅反応を行う方法としては、例えば、本発明のプライマーを用い、試料中の核酸を鋳型として用いてDNAポリメラーゼ等による核酸増幅反応[例えばポリメラーゼ連鎖反応(PCR)法、LAMP(Loop-mediated Isothermal Amplification)法(Tsugunori Notomi et al., Nucleic Acid Res., 28, e63, 2000)、ICANTM(Isothermal and Chimeric primer-initiated Amplification of Nucleic acids)法(臨床病理, 51(11), 1061-1067, 2003, Nov)、LCR(ligase chain reaction)法(特開平4-211399号)、SDA(strand displacement amplification)法(特開平8-19394号)]を行ってプライマー伸長させる方法が挙げられる。これによりクラミドフィラ・キャビエの塩基配列の特定の領域の配列を増幅させることができるので、得られたプライマー伸長産物を測定することにより、クラミドフィラ・キャビエを検出することができる。
 上記の核酸増幅反応を行う方法の中でも、PCR法が最も一般的な方法として挙げられ、PCR法の例としては、例えばリアルタイム増幅検出法(例えば米国特許第5210015号、米国特許第5538848号の記載参照)を用いることができる。また、リアルタイム増幅検出法による検出法の例として、例えばリアルタイムPCR検出法が挙げられる。
 リアルタイムPCR検出法の例としては、TaqManTMリアルタイムPCR法(例えば米国特許第5538848号の記載参照)、MGB Eclipse Probe System法(例えば米国特許第5,801,155号の記載参照)、Molecular Beacons Probe Technology法(例えば米国特許第5925517号の記載参照)、LUX Fluorogenic Primer法(Invitrogen Corporation)、Quenching probe-PCR(QP)法(例えば米国特許第6,492,121号の記載参照)等が挙げられる。
 PCR等の核酸増幅反応において用いられる本発明のプライマーの具体例は、上記したとおりである。
 また、核酸増幅反応に用いられる、好ましいフォワードプライマーとリバースプライマーの組合せとしては、上記表1で示される組合せが挙げられる。
 表1において、例えば番号1の組み合わせは、「フォワードプライマーが配列番号7で表される塩基配列を含有するオリゴヌクレオチドで、リバースプライマーが配列番号8で表される塩基配列を含有するオリゴヌクレオチドである組合せ。」を示す。
 上記プライマーを用いたリアルタイムPCR等の核酸増幅反応に用いられるその他のデオキシリボヌクレオシド三リン酸(dATP、dCTP、dGTP、dTTP)、DNAポリメラーゼ等の試薬は、通常この分野で用いられているものを用いればよく、その条件、手法等は、本発明のプライマー及びプローブを用いる以外は、PCR法の一般的なプロトコルに従って行えばよい。
 核酸増幅反応で得られたプライマー伸長産物を検出する方法は、通常この分野で行われている常法で良く、限定されるものではない。
 例えばTaqManTMリアルタイムPCR法(例えば米国特許第5538848号の記載参照)、インターカレーター法、MGB Eclipse Probe System法(例えば米国特許第5,801,155号の記載参照)、Molecular Beacons Probe Technology法(例えば米国特許第5925517号の記載参照)、LUX Fluorogenic Primer法(Invitrogen Corporation)、Quenching probe-PCR(QP)法(例えば米国特許第6,492,121号の記載参照)や、核酸増幅反応を行った後、得られたプライマー伸長産物について電気泳動を行い、その結果に基づいて行う方法、標識プライマーを用いた核酸増幅反応を行って得られたプライマー伸長産物の標識を測定する方法等、様々な検出法が挙げられる。
 これらのうち、一般によく用いられる方法としては、例えば、以下の方法が挙げられる。
 (A-1)TaqManTMリアルタイムPCR法(TaqManTMプローブ法)、
 (A-2)インターカレーター法、
 (A-3)核酸増幅反応を行った後、得られたプライマー伸長産物について電気泳動を行い、その結果に基づいて行う方法、
 (A-4)標識プライマーを用いた核酸増幅反応を行い、得られたプライマー伸長産物の標識を測定する方法。
 以下に、夫々の方法について説明する。
(A-1)TaqManTMリアルタイムPCR法(TaqManTMプローブ法)
 5'末端を例えばFAM等の蛍光色素(レポーター)で、3'末端を例えばTAMRA等のクエンチャー色素で標識したプローブを用いたリアルタイムPCR法により、目的の微量なDNAを高感度且つ定量的に検出する方法である(例えば米国特許第5,538,848号の記載参照)。
 すなわち、本法は、本発明のプライマーと、本発明のプローブの5'末端がレポーター蛍光色素で標識され、3'末端がクエンチャー色素で標識された標識プローブを用いて、試料中の核酸を鋳型としてPCRを行い、該標識プローブから遊離された標識物質の標識を検出する方法である。
 TaqManTMリアルタイムPCR法の原理は以下の通りである。
 この方法には、5'末端を蛍光色素(レポーター)で、3'末端をクエンチャー色素で標識した、目的遺伝子の特定領域にハイブリダイズするオリゴヌクレオチドプローブが使用される。該プローブは、通常の状態ではクエンチャー色素によってレポーターの蛍光が抑制されている。この蛍光標識プローブを目的遺伝子に完全にハイブリダイズさせた状態で、その外側からDNAポリメラーゼを用いてPCRを行う。DNAポリメラーゼによる伸長反応が進むと、そのエキソヌクレアーゼ活性により蛍光標識プローブが5'端から加水分解され、レポーター色素が遊離し、蛍光を発する。リアルタイムPCR法は、この蛍光強度をリアルタイムでモニタリングする方法であり、これにより、鋳型DNAの初期量を正確に定量することができる。
 また、TaqManTMリアルタイムPCR検出法は、非特異的な増幅反応によるノイズの発生が非常に少ない。そのため、より特異的なターゲットの増幅・検出が可能となる点で、特に優れた方法である。
 本発明に係るTaqManTMリアルタイムPCR検出法に用いられるフォワードプライマー及びリバースプライマーには、本発明のプライマーが用いられる。好ましいプライマーとしては、上記したPCR法等の核酸増幅反応において用いられるものが挙げられ、その好ましい具体例及び好ましい組合せも上記したとおりである。
 本発明に係るTaqManTMリアルタイムPCR検出法に用いられる5'末端を蛍光色素(レポーター)で、3'末端をクエンチャー色素で標識したプローブに用いられるプローブとしては、上記した本発明のプローブであればよい。実際には、選択したフォワードプライマーとリバースプライマーの組合せでリアルタイムPCRを行った場合に得られると予測されるプライマー伸長産物の塩基配列を含有するプローブ、又は更にその配列から設計される塩基配列を含有するプローブが用いられる。
 例えば、プライマーR08_3d_Fw1とプライマーR08_3d_Rv1を用いてリアルタイムPCRを行う場合に用いられるプローブは、そのリアルタイムPCRで増幅されると予想される配列番号29で表される塩基配列の一部又は全部を含有するオリゴヌクレオチドが挙げられる(表1参照)。
 5'末端を標識するレポーター蛍光物質としてはカルボキシフルオレセイン(FAM)、ヘキサクロロフルオレセイン(HEX)、テトラクロロフルオレセイン(TET)、Cy5、VIC等が挙げられるが、中でもFAMがよく用いられる。
 3'末端を標識するクエンチャー色素としては、カルボキシテトラメチルローダミン(TAMRA)等の蛍光物質、Black Hole Quencher色素(例えばBHQ2),4-((4-(dimethylamino) phenyl)azo)benzoic acid (DABCYL)等の非蛍光物質が挙げられるが、中でもTAMRAがよく用いられる。
 リアルタイムPCR検出法に用いられるその他のデオキシリボヌクレオシド三リン酸(dATP、dCTP、dGTP、dTTP)、DNAポリメラーゼ等の試薬は、通常のリアルタイムPCRで用いられているものを用いればよく、リアルタイムPCRの手法は、本発明のプライマー及びプローブを用いる以外は、リアルタイムPCRの一般的なプロトコルに従って行えばよい。
 本発明に係るTaqManTMリアルタイムPCR検出法によるクラミドフィラ・キャビエの検出方法の一例として、上記した本発明の「プライマーR08_3d_Fw1」と「プライマーR08_3d_Rv1」を用いて、クラミドフィラ・キャビエを検出する場合を例にとって説明すると、以下の通りである。
 まず、公知の方法により、クラミドフィラ・キャビエを検出すべき試料(被検試料)中から精製DNA試料を得る。
 別に、例えばDNAシンセサイザーを用いて、ホスホアミダイト法にて、配列番号11で表される塩基配列からなるオリゴヌクレオチド(R08_3d_Fw1)、及び配列番号12で表される塩基配列からなるオリゴヌクレオチド(R08_3d_Rv1)を合成する。
 また、R08_3d_Fw1とR08_3d_Rv1のプライマー対を用いたPCRで増幅されると予想される配列番号29の塩基配列から、プローブとして利用するための配列を設計し、この塩基配列のオリゴヌクレオチドを合成する。このオリゴヌクレオチドの5'末端にレポーター色素のFAMを、3'末端にレポーター消光体のTAMRAを常法により結合し、蛍光標識プローブを得る。
 上記で合成したR08_3d_Fw1をフォワードプライマーとして、R08_3d_Rv1をリバースプライマーとして用い、例えば下記の通りリアルタイムPCRを行う。
 すなわち、各 0.1~2μM、好ましくは各1μMのプライマーR08_3d_Fw1及びプライマーR08_3d_Rv1、100~1000nMの蛍光標識プローブ、1.0~4.0mM MgCl2、KCl、BSA、コール酸ナトリウム、0.005~0.2%TritonX-100、夫々0.2mM程度のdATP、dCTP、dGTP、dTTP、10~80単位/mlのTaq DNA ポリメラーゼを含有する10mM Tris-HCl緩衝液(pH8.9)を調製し、PCR用反応液とする。このPCR用反応液20μlに精製DNA試料1ngを加え、PCR用試料を得る。
 このPCR用試料を用い、リアルタイムPCR検出装置等を用いてリアルタイムPCRを行う。反応は30~50回サイクル繰り返し、1サイクル毎にレポーター色素の蛍光強度量を測定する。
 この場合のクラミドフィラ・キャビエ検出方法としては、レポーター色素の蛍光が測定された場合に、被検試料中にクラミドフィラ・キャビエが存在する(陽性)と判定される。
 また、リアルタイムPCR法では、検量線を作成することができるので、試料中のクラミドフィラ・キャビエのゲノムDNAの数(コピー数)を得ることがでる。また、その数はクラミドフィラ・キャビエの数に比例するので、試料(被検試料)中のクラミドフィラ・キャビエの数も知ることができる。
 検量線の作成方法は、リアルタイムPCR法において通常行われている常法に従えばよい。例えば、標準としてコピー数既知のクラミドフィラ・キャビエのゲノムDNA試料を用い、希釈系列の濃度(コピー数)のPCR用DNA試料を調製する。次いで各希釈系列のPCR用DNA試料を用いて上記方法に従いリアルタイムPCRを行い、レポーター色素の蛍光強度を測定する。各希釈系列のPCR用DNA試料毎に、PCRの各サイクル数(x軸)に対する、測定した蛍光強度の測定値(Rn、y軸)をプロットした増幅曲線を作成する。次いで、蛍光強度が指数関数的に増幅しているRn部を選択し、Threshold line(Th)を引く。Thと各PCR用DNA試料の増幅曲線が交差した点をThreshold cycle(Ct)値とする。次いで、リアルタイムPCRに用いた各PCR用DNA試料のコピー数の対数値(x軸)に対するCt値(y軸)をプロットし、各Ctに対して得られた近似曲線を検量線とすればよい。
 試料中のクラミドフィラ・キャビエのゲノムDNAの数(コピー数)を定量するには、先ずクラミドフィラ・キャビエを検出すべき試料中からDNAを分離精製した後、得られたDNA試料を用いて、同様にTaqManTMリアルタイムPCRを行い、同様に増幅曲線を作成する。検量線を作成したときのThと得られた増幅曲線が交差したCt値を得る。そのCt値を検量線に当てはめることにより、試料中のクラミドフィラ・キャビエのゲノムDNA量(コピー数)を得ることができる。
(A-2)インターカレーター法
 公知のインターカレーターを利用してリアルタイムPCRを行う、通常のインターカレーター法が利用できる。
 例えば、本発明のプライマーと、インターカレーターを用い、通常のインターカレーター法を利用したリアルタイムPCRを行う方法が挙げられる。
 すなわち、インターカレーターは、二本鎖DNAに特異的に結合して蛍光を発する試薬であり、励起光を照射すると蛍光を発する。PCR反応によって増幅を繰り返してDNAが増えると、インターカレーターがそのDNAに取り込まれるので、プライマー伸長産物の生成量に比例して、DNAに取り込まれていく。そこで、インターカレーターに由来する蛍光強度を検出することにより、プライマー伸長産物の量を知ることができる。
 但しインターカレーターは全ての二本鎖DNAに結合するので、得られた蛍光強度の測定結果を基に、必要に応じ、融解曲線を作成して、融解曲線分析を行う。すなわち、PCR反応後にPCR反応液の温度を徐々に上げながら、インターカレーター由来の蛍光強度を測定する。最初はPCR増幅産物は二本鎖を形成しているので蛍光を発しているが、PCR反応液の温度がある一定の温度に達すると一本鎖に解離するので、インターカレーター由来の蛍光強度は急激に低下する。この時の温度が融解温度(Tm値)であり、プライマー伸長産物の配列に固有の値である。融解曲線のピークが、目的とする特異産物のピークか、又は特異産物と非特異産物のピークかについては、このTm値から判定することができる。
 このインターカレーター法は、PCRの後に電気泳動を行う必要がないので、臨床検査の分野等において、迅速に検出を行う必要がある場合には、有効な方法である。
 本発明に用いられるインターカレーターとしては、通常この分野で用いられているインターカレーターであれば、何でも用いることができるが、例えばSYBRTM Green I (Molecular Probe社商品名)、エチジウムブロマイド、フルオレン等がある。
 本発明に係る「インターカレーター法を利用したクラミドフィラ・キャビエの検出方法」の例を説明すると、以下の通りである。
 本発明のプライマーと、インターカレーター(例えばSYBRTM Green I)を用い、クラミドフィラ・キャビエを検出すべき試料(被検試料)から精製した精製DNA試料を鋳型として用いて、Taq DNA ポリメラーゼ等のポリメラーゼを用いたリアルタイムPCRを行う。そしてプライマー伸長産物の増幅量と相関してインターカレーションするインターカレーター由来の蛍光強度を測定する。
 次いで、横軸をプライマー伸長産物(2本鎖DNA)の解離温度、縦軸に蛍光強度の1次微分(変化量)をとった融解曲線を作成する。これを用いて、プライマー伸長産物の融解曲線解析を行い、ピークの検出を行う。一方、クラミドフィラ・キャビエのtype strain(基準株)を用いて同様の測定を行い、ピークの検出を行う。被検試料を用いて得られた結果、単一のピークが得られ、かつそのピークの位置がクラミドフィラ・キャビエの基準株を用いて得られたピークの位置と同じ位置に出現した場合に、被検試料はクラミドフィラ・キャビエ陽性(すなわち、クラミドフィラ・キャビエ菌、又はその遺伝子が存在する。以下同じ。と判定される。
 又は、精製DNA試料溶液の希釈系列を調製し、各希釈系列毎に、上記と同様にリアルタイムPCRを行う、
 また、インターカレーター法を利用した方法で得られた測定値をもとに、リアルタイムPCRで行われる常法に従って、検量線を作成することもできるので、その検量線を用いて試料中にあるクラミドフィラ・キャビエのゲノムDNA量(コピー数)を得ることができる。
 例えば、例えば、標準としてコピー数既知のクラミドフィラ・キャビエのゲノムDNA試料を用い、希釈系列の濃度(コピー数)のPCR用DNA試料を調製する。次いで各希釈系列のPCR用DNA試料を用いて上記方法に従いリアルタイムPCRを行い、インターカレーター由来の蛍光強度を測定する。各希釈系列のPCR用DNA試料毎に、PCRの各サイクル数(x軸)に対する、蛍光強度の測定値(Rn、y軸)をプロットした増幅曲線を作成する。次いで、上記と同じ方法でCt値を得る。そして、リアルタイムPCRに用いた各PCR用DNA試料のコピー数の対数値(x軸)に対するCt値(y軸)をプロットし、各Ctに対して得られた近似曲線を検量線とすればよい。
 試料中のクラミドフィラ・キャビエのゲノムDNAの数(コピー数)を定量するには、先ずクラミドフィラ・キャビエを検出する試料中からDNAを分離精製した後、得られたDNA試料について、インターカレーター法によるリアルタイムPCRを行い、同様に増幅曲線を作成する。検量線を作成したときのThと得られた増幅曲線が交差したCt値を得る。そのCt値を検量線に当てはめることにより、試料中のクラミドフィラ・キャビエのゲノムDNA量(コピー数)を得ることができる。
 本発明に係る、インターカレーターを用いたリアルタイムPCR検出法によるクラミドフィラ・キャビエの検出方法の一例として、上記した本発明の「プライマーR08_3d_Fw1」と「プライマーR08_3d_Rv1」を用いて、クラミドフィラ・キャビエを検出する場合を例にとって説明すると、以下の通りである。
 まず、公知の方法により、クラミドフィラ・キャビエを検出すべき試料(被検試料)中から精製DNA試料を得る。
 別に、例えばDNAシンセサイザーを用いて、ホスホアミダイト法にて、配列番号11で表される塩基配列からなるオリゴヌクレオチド(R08_3d_Fw1)、及び配列番号12で表される塩基配列からなるオリゴヌクレオチド(R08_3d_Rv1)を合成する。
 合成したR08_3d_Fw1をフォワードプライマーとして、R08_3d_Rv1をリバースプライマーとして用い、例えば下記の通りリアルタイムPCRを行う。
 すなわち、プライマーR08_3d_Fw1と、プライマーR08_3d_Rv1を各50~2000nM、インターカレーター[例えばSYBRTM Green I (Molecular Probe社商品名)]を原液の約5~100000倍希釈、1.0~4.0mM MgCl2、KCl、BSA、コール酸ナトリウム、0.005~0.2%TritonX-100、夫々0.2mM程度のdATP、dCTP、dGTP、dTTP、10~80単位/mlのポリメラーゼ(例えばTaq DNA ポリメラーゼ)を含有する10mM Tris-HCl緩衝液(pH8.9)を調製し、PCR用反応液とする。該PCR用反応液に、クラミドフィラ・キャビエを検出すべき試料(被検試料)から精製した精製DNA試料を加え、PCR用試料とする。このPCR用試料を用い、リアルタイムPCR検出装置等を用いてリアルタイムPCRを行う。反応は30~50回サイクル繰り返し、1サイクル毎にプライマー伸長産物の増幅量と相関してインターカレーションするSYBRTM Green Iの蛍光強度を測定する。
 次いで、横軸をプライマー伸長産物(2本鎖DNA)の解離温度、縦軸に蛍光強度の1次微分(変化量)をとった融解曲線を作成する。これを用いて、プライマー伸長産物の融解曲線解析を行って、ピークの検出を行う。得られたピークが単一のピークであって、且つクラミドフィラ・キャビエのtype strainを用いて同様に測定を行って得られたピークの位置と同じ位置に出現したことが確認された場合に、被検試料はクラミドフィラ・キャビエ陽性と判定される。
 更に、検量線を作成することによって、試料中のクラミドフィラ・キャビエのゲノムDNAの数(コピー数)を得ることができる。また、その数はクラミドフィラ・キャビエの数に比例するので、試料(被検試料)中のクラミドフィラ・キャビエの数も知ることができる。
(A-3)核酸増幅反応を行った後、得られたプライマー伸長産物について電気泳動を行い、その結果に基づいて行う方法
 この方法としては、例えば
「下記工程を包含することを特徴とする、クラミドフィラ・キャビエの検出方法、
(i)配列番号1,配列番号2、配列番号3、配列番号4、配列番号5及び配列番号6から選択される塩基配列の一部若しくは全部、又は配列番号1、配列番号2、配列番号3、配列番号4、配列番号5及び配列番号6から選択される塩基配列に対する相補配列の一部若しくは全部を含有し、且つクラミドフィラ・キャビエ遺伝子の塩基配列とハイブリダイズするオリゴヌクレオチドをプライマー(本発明のプライマー)として用い、試料中の核酸を鋳型として核酸増幅反応を行う、
(ii)(i)で得られたプライマー伸長産物について電気泳動を行い、その結果に基づいてクラミドフィラ・キャビエの有無を判定する。」
が挙げられる。
 核酸増幅反応の具体例は、上記したとおりである。
 電気泳動を行い、その結果に基づいて、クラミドフィラ・キャビエの有無を判定する方法としては、例えば
 (A-3-1)目的とする大きさ(塩基対数)のプライマー伸長産物画分を確認することにより判定する方法、
 (A-3-2)標識プローブを用いたハイブリダイゼーションにより検出する方法、
等が挙げられる。
 電気泳動法の条件、操作方法等は、この分野で通常行われている常法に従えばよい。
 以下に、(A-3-1)及び(A-3-2)の方法について説明する。
(A-3-1)目的とする大きさ(塩基対数)のプライマー伸長産物画分を確認することにより判定する方法
 例えば、まず本発明のプライマーから、適当なフォワードプライマーとリバースプライマーの組合せを選択し、それを用いてPCR等の核酸増幅反応を行う。
 次いで、得られたプライマー伸長産物について電気泳動を行う。予め、核酸増幅反応に用いたフォワードプライマーとリバースプライマーの組合せから、増幅されるであろうプライマー伸長産物の大きさ(塩基対数)を予測しておく。そして、得られた電気泳動画分が予測された大きさのプライマー伸長産物に該当するか否かを、常法により確認すればよい。例えば、得られた電気泳動画分をエチジウムブロマイド等で染色して核酸種を視覚化するといった方法で、該画分を染色し、そのプライマー伸長産物の大きさを確認する等の方法が挙げられる。
 (A-3-1)の方法による具体的な判定方法としては、例えば上記表1に記載されたフォワードプライマーとリバースプライマーの組合せを用いてPCRを行った後、得られたプライマー伸長産物について電気泳動を行う。そして、使用したそのプライマーの組合せで増幅されると予想された塩基配列のオリゴヌクレオチド、又はその塩基対数の大きさの画分が確認された場合に、被検試料はクラミドフィラ・キャビエ陽性と判定する方法が挙げられる。
 (A-3-1)の方法の具体例を、下記表2にまとめて示す。
 すなわち、例えば表2における番号1の方法とは「フォワードプライマーとして配列号7で表される塩基配列を含有するオリゴヌクレオチドを用い、リバースプライマーとして
配列番号8で表される塩基配列を含有するオリゴヌクレオチドを用いてPCRを行った後、得られたプライマー伸長産物について電気泳動を行い、160塩基対の画分又は配列番号29で表される塩基配列を持つオリゴヌクレオチドの画分が確認されたものを陽性と判定する方法。」である。
Figure JPOXMLDOC01-appb-T000002
(A-3-2)標識プローブを用いたハイブリダイゼーションにより検出する方法
 例えば核酸増幅反応を行って得られたプライマー伸長産物について、電気泳動を行う。得られた電気泳動画分について、本発明のプローブを標識物質で標識した標識プローブに対するハイブリダイゼーションを行う。そして、該標識プローブの標識を検出することによって、該標識プローブとハイブリダイズした画分の存在が確認された場合に、その被検試料は、クラミドフィラ・キャビエ陽性と判定する方法が挙げられる。
 用いられるプローブ及びプローブを標識する標識物質の具体例、並びにプローブの標識方法は、上記したとおりである。
 その一例を示すと、次の通りである。
 すなわち、上記した表1に記載のフォワードプライマーとリバースプライマーの組合せを用いてPCRを行った後、得られたプライマー伸長産物について電気泳動を行う。予め、PCRに用いたフォワードプライマーとリバースプライマーの組合せで増幅されると予測される塩基配列(表2で「検出対象」の塩基配列)の一部又は全部を含有する塩基配列のオリゴヌクレオチドを標識物質で標識した標識プローブを調製しておく。電気泳動画分の該標識プローブに対するハイブリダイゼーションを行う。そして、該標識プローブの標識を検出することによって該標識プローブとハイブリダイズした画分の存在が確認された場合に、その被検試料はクラミドフィラ・キャビエ陽性と判定する方法、が挙げられる。
 これらの方法の好ましい具体例を、下記表3にまとめて示す。
 例えば、表3において、番号1の方法とは、「フォワードプライマーとして配列番号7で表される塩基配列を含有するオリゴヌクレオチドを用い、リバースプライマーとして配列番号8で表される塩基配列を含有するオリゴヌクレオチドを用いてPCRを行った後、得られたプライマー伸長産物について電気泳動を行う。次いで、得られた画分について、配列番号29で表される塩基配列の一部又は全部を含有する塩基配列を含有するオリゴヌクレオチドを標識物質で標識した標識プローブに対するハイブリダイゼーションを行い、該標識プローブの標識を検出することによって該標識プローブとハイブリダイズした画分が確認されたものを陽性と判定する方法。」である。
Figure JPOXMLDOC01-appb-T000003
 (A-3)の方法による本発明のクラミドフィラ・キャビエの検出方法の詳細を、例えばR08_3d_Fw1(配列番号11)をフォワードプライマーとして用い、R08_3d_Rv1(配列番号12)をリバースプライマーとして用いたPCR、及び電気泳動を行った後、目的とする塩基対数のプライマー伸長産物画分を確認する方法によって検出する場合(上記の(A-3-1)、表2・番号3の方法)を例に挙げて説明すると、以下の通りである。
 まず、公知の方法で、クラミドフィラ・キャビエの有無を検出する試料(被検試料)中から精製DNA試料を得る。
 別に、DNAシンセサイザーを用いて、ホスホアミダイト法で、R08_3d_Fw1(配列番号11で表される配列からなるオリゴヌクレオチド)及びR08_3d_Rv1(配列番号12で表される塩基配列からなるオリゴヌクレオチド)を合成する。
 プライマーR08_3d_Fw1及びプライマーR08_3d_Rv1を用い、PCRを行う。得られたPCR後の反応液を、1.5%アガロースゲル電気泳動する。次いでエチジウムブロマイド染色した後、紫外線での蛍光を検出する。また、分子量マーカーも反応液と同時に泳動し、相対泳動度の比較により、検出されたDNA断片の長さを算出する。フォワードプライマーとしてR08_3d_Fw1、及びリバースプライマーとしてR08_3d_Rv1を用いたPCRでは、クラミドフィラ・キャビエの塩基配列中の135塩基対のDNA断片(配列番号31で表される配列を持つ。)が複製されると予測される(表2・番号3参照)。そこで、135塩基対の大きさの蛍光バンドが確認された場合に、被検試料はクラミドフィラ・キャビエ陽性と判定すればよい。
 また本発明は、核酸増幅工程において、RNA転写産物を利用した検出法を適用する事ができる。例えば、NASBA(nucleic acid sequence based amplification)法(特許第2650159号)、3SR(self-sustained sequence replication)法(特公平7-114718号)、TAS(transcription based amplification system)法(特表平2-500565号:国際公開WO88/10315号)、TMA(transcription mediated amplification)法(特開平11-46778号)などが挙げられる。中でも逆転写酵素及びRNAポリメラーゼの協奏的作用(逆転写酵素及びRNAポリメラーゼが協奏的に作用するような条件下で反応させる。)を利用する一定温度核酸増幅法は、測定系を自動化する場合には適した方法である。
(A-4)標識プライマーを用いた核酸増幅反応を行い、得られたプライマー伸長産物の標識を測定する方法、
 (A-4)の方法としては、本発明のプライマーを上記した方法で標識した標識プライマーを用い、被検試料中の核酸を鋳型として用いてPCR等の核酸増幅反応を行い、得られたプライマー伸長産物の標識を検出・測定し、標識を検出できた場合には、その被検試料はクラミドフィラ・キャビエ陽性であると判定する方法が挙げられる。
 この方法に用いられるフォワードプライマー及びリバースプライマーとしては、上記のPCR法において用いられるものが挙げられ、その好ましい具体例及び好ましい組合せも上記したとおりである。
 上記方法の場合、核酸増幅反応を行ったのち、遊離の標識プライマーを除き、プライマー伸長産物の標識を測定し、標識を検出できた場合に、被検試料はクラミドフィラ・キャビエ陽性であると判定される。
 遊離の標識プライマーを除く方法としては、核酸増幅反応反応を行って得られた反応物中のプライマー伸長産物を、核酸を沈殿させる常法(エタノール沈殿法、イソプロパノールを用いた沈殿法等)により沈殿させた後、沈殿しなかった遊離の標識プライマーを含有する上清を除去する方法等が挙げられる。
 また、核酸増幅反応を行って得られた反応物を適当な条件下、ゲルクロマトグラフィーで処理して、プライマー伸長産物と遊離の標識プライマーを分離する方法、電気泳動法により分離する方法等も挙げられる。
(B)本発明のオリゴヌクレオチドを標識物質で標識したものを標識プローブとして用いる方法、
 更に、本発明のクラミドフィラ・キャビエの検出方法として、本発明のオリゴヌクレオチドを標識物質で標識したものを標識プローブとして用い、該標識プローブを試料中の核酸とハイブリダイゼーションさせ、遊離の標識プローブを除いた後、ハイブリダイズした複合体の標識を検出する方法が挙げられる。
 具体的には、例えば下記のような方法が挙げられる。
 (B-1)本発明のオリゴヌクレオチドを固相担体に結合させたものを捕捉プローブとして用い、被検試料中の核酸とハイブリダイゼーションさせて、試料中のクラミドフィラ・キャビエ由来の核酸を固相上に固定化させる検出法(例えば、特開昭62-265999号の記載参照)。
 この方法の場合、本発明のオリゴヌクレオチドあるいは固相担体が、標識物質で標識されていてもよい。
 (B-2)標識されていない(B-1)の捕捉プローブと、本発明のプローブを標識した標識プローブを用い、被検試料中の核酸とハイブリダイゼーションさせて、固相担体上に補足プローブとクラミドフィラ・キャビエ由来の核酸と標識プローブの複合体を形成させて、標識プローブの標識を測定するサンドイッチアッセイ(例えば、特開昭58-40099号の記載参照)を行う方法。
 (B-3)ビオチンで標識した本発明のプローブを用い、試料中の核酸とハイブリダイゼーション後、試料中のクラミドフィラ・キャビエ由来の核酸をアビジン結合担体で捕捉する方法。
 尚、本発明のクラミドフィラ・キャビエの検出方法に用いられる試薬中には、通常この分野で用いられる試薬類、例えば緩衝剤、安定化剤、防腐剤等であって、共存する試薬等の安定性を阻害せず、PCR等の核酸増幅反応やハイブリダイゼーション反応を阻害しないものを用いることができる。また、その濃度も、通常この分野で通常用いられる濃度範囲から適宜選択すればよい。
 緩衝液の具体例を挙げると、例えばトリス緩衝液、リン酸緩衝液、ベロナール緩衝液、ホウ酸緩衝液、グッド緩衝液等、通常のPCR等の核酸増幅反応やハイブリダイゼーション反応を実施する場合に用いられている緩衝液は全て挙げられ、そのpHも特に限定されないが、通常5~9の範囲が好ましい。
 また、必要に応じて核酸合成酵素(DNAポリメラーゼ、RNAポリメラーゼ、逆転写酵素など)、酵素に応じた基質(dNTP、rNTPなど)、また二本鎖インターカレーター(エチジウムブロマイド、SYBRTM Greenなど)あるいはFAMやTAMRA等の標識検出物質などが用いられる。
 本発明に係るクラミドフィラ・キャビエ検出用試薬キットとしては、「配列番号1、配列番号2、配列番号3、配列番号4、配列番号5及び配列番号6から選択される塩基配列の一部若しくは全部、又は配列番号1、配列番号2、配列番号3、配列番号4、配列番号5及び配列番号6から選択される塩基配列に対する相補配列の一部若しくは全部を含有し、且つクラミドフィラ・キャビエ遺伝子の塩基配列とハイブリダイズするオリゴヌクレオチドをプライマー(本発明のプライマー)又は/及びプローブ(本発明のプローブ)として含んでなるクラミドフィラ・キャビエ検出用試薬キット。」が挙げられる。
 上記キットを構成する本発明のプライマー及び本発明のプローブの具体例は、上記した「本発明のプライマー」、「本発明のプローブ」についての説明に記載したとおりである。
 本発明のプライマーは標識物質で標識されたものであってもよい。その標識物質の具体例は上記したとおりである。
 本発明のプライマーを含んでなるキットには、フォワードプライマーとリバースプライマー対を含む組成も含まれる。プライマー対の好ましい組合せは、前記した通りである。
 また、上記キットは、更に、本発明のオリゴヌクレオチドを標識物質で標識したものを標識プローブとして含んでいてもよい。
 更に、本発明のキットとして、「配列番号1、配列番号2、配列番号3、配列番号4、配列番号5及び配列番号6から選択される塩基配列の一部若しくは全部、又は配列番号1、配列番号2、配列番号3、配列番号4、配列番号5及び配列番号6から選択される塩基配列に対する相補配列の一部若しくは全部を含有し、且つクラミドフィラ・キャビエ遺伝子の塩基配列とハイブリダイズするオリゴヌクレオチド(本発明のオリゴヌクレオチド)をプローブとして含んでなるクラミドフィラ・キャビエ検出用試薬キット。」が挙げられる。
 該プローブは標識物質で標識されたものであってもよい。
 これらのキットを構成する構成試薬の好ましい態様及び具体例は上記したとおりである。
 尚、本発明のクラミドフィラ・キャビエの検出用試薬キットには、例えば緩衝剤、安定化剤、防腐剤等であって、共存する試薬等の安定性を阻害せず、PCRやハイブリダイゼーション反応を阻害しないものが含まれていてもよい。また、その濃度も、通常この分野で通常用いられる濃度範囲から適宜選択すればよい。
 緩衝液の具体例を挙げると、例えばトリス緩衝液、リン酸緩衝液、ベロナール緩衝液、ホウ酸緩衝液、グッド緩衝液等、通常のPCRやハイブリダイゼーション反応を実施する場合に用いられている緩衝液は全て挙げられ、そのpHも特に限定されないが、通常5~9の範囲が好ましい。
 また、必要に応じて核酸合成酵素(DNAポリメラーゼ、RNAポリメラーゼ、逆転写酵素など)、酵素に応じた基質(dNTP、rNTPなど)、また二本鎖インターカレーター(SYBRTM Green、エチジウムブロマイドなど)あるいはFAMやTAMRA等の標識検出物質などを含んでいてもよい。
 以下に実施例を挙げて、本発明を更に具体的に説明するが、本発明はこれらにより何等限定されるものではない。
 尚、実施例で用いられる細菌はいずれも臨床分離株であり、培養後、コロニーの形状や従来の各種生化学的試験などによって菌種がすでに鑑別されているものである。
実施例1.クラミドフィラ・キャビエゲノムDNA由来のクローンの選択
(1)クラミドフィラ・キャビエ由来DNA試料の調製
 Chlamydophila caviae(岡山大学SC10 株)は岡山大学医学部 公文 裕巳教授より供与された。常法で培養したChlamydophila caviae(岡山大学SC10 株)から、公知の方法で、精製ゲノムDNAを取得した(以下、「クラミドフィラ・キャビエ由来精製ゲノムDNA」と記載する場合がある。)。得られたゲノムDNAを最終400ng/μL(10mM Tris-HCl緩衝液、pH8.9)になるように調製したものを、「クラミドフィラ・キャビエ由来DNA試料」として用いた。
(2)Whole Genome Shotgun libraryの作製
 上記(1)で得られたクラミドフィラ・キャビエ由来DNA試料24μgを材料として用い、以下の方法(Science. 2001 Feb 16;291(5507):1304-1351 Venter et al.に記載のWhole Genome Shotgun法を改変)で、Whole Genome Shotgun libraryの作製を行った。
 まず、終濃度20%のグリセロール存在下で、クラミドフィラ・キャビエ由来DNA試料を、5kPa~9kPaの圧力下、ネビュライザー(インビトロジェン社製)を用いて、約10分間処理して、クラミドフィラ・キャビエ由来DNA試料を断片化した。この処理により、目的とする500~1000bpのサイズの画分(DNA断片)を効率よく回収する事ができた。得られた画分を(株)キアゲン製の抽出カラムを利用して精製した。
 次に、DNA Blunting Kit(タカラバイオ(株)製)を用い、T4 DNA Polymeraseの5'→3'polymerase活性と3'→5'exonuclease活性を利用して、得られたDNA断片の末端を平滑化した。このDNA断片と、平滑末端処理済みpBSII sk+ベクター(Stratagene社)とでライゲーション反応を行い、DNA断片をpBSII sk+ベクター(amp )に組み込んだ組み換えDNAを作製した。
 E. coli JM109 Competent Cells(タカラバイオ(株)製)を用い、その製品プロトコールに従って、上記で得られた組み換えDNAを用いてE. coli JM109 Competent Cellsの形質転換を行った。
 得られた形質転換体を100μg/mlのアンピシリン、0.2 mM IPTG、40μg/ml X-Galを含むLB-寒天培地で培養した。白色コロニーをピックアップし、「目的のDNA断片を組み込んだ組み換えDNA」が導入された、形質転換体のlibrary(クラミドフィラ・キャビエ由来ゲノムDNAのWhole Genome Shotgun clone Library)を得た。
(3)マイクロアレイ作製
 上記(2)で得られた形質転換体のLibrary(クラミドフィラ・キャビエ由来ゲノムDNAのWhole Genome Shotgun clone Library)を用い、下記の方法でPCRを行って、スライドガラス上に固定するプローブ材料を調製した。
 まず、各1μMのプライマーM13 Primer M1(タカラバイオ(株)製)及びプライマーM13 Primer RV(タカラバイオ(株)製)、1.5mM MgCl2、80mM KCl、500μg/ml BSA、0.1% コール酸ナトリウム、0.1% Triton X-100(トリトンX-100、ポリオキシエチレンオクチルフェニルエーテル、ローム アンド ハース社商品名)、夫々0.2mM のdATP、dCTP、dGTP、dTTP及びTaq DNA ポリメラーゼ((株)ニッポン・ジーン製)40単位/ml を含有する10mM Tris-HCl緩衝液(pH8.9)を調製し、PCR用反応液とした。
 上記(2)で得られた形質転換体(クラミドフィラ・キャビエ由来ゲノムDNAのWhole Genome Shotgun clone )のそれぞれから、常法に従いDNAを精製した。この精製したDNA(後で行うPCRの際、鋳型となる)をPCR用反応液20μlに懸濁添加したものを調製し、PCR用試料とした。このPCR試料を用い、DNAサーマルサイクラー(DNA Engine PTC200、MJ Research Inc.製)を使用して、下記の反応条件で30サイクル PCRを行った。
 PCR反応条件:
  熱変性: 94℃、0.5分
  アニーリング:55℃、1分
  重合反応: 75℃、0.5分。
 得られたPCR増幅産物を精製後、固定化Buffer(終濃度3x SSC)と混合した。
 スポットされるPCR増幅産物の終濃度が300ng/μLとなるように調整し、装置内の湿度を55%に設定したタイピング用装置(GTMAS Stamp II; 日本レーザ電子社製)を使用し、スライドガラス(CMT GAPS-II; Corning社製)上に、上記で得られたPCR産物をスポットした(スポット径150-250μm)。スポットが終了したスライドガラスをUVクロスリンカー(UV Stratalinker1800; Stratagene社製)に移し、150mJ/cm2のUV照射を行なって、PCR増幅産物(目的のDNA)をスライドガラス上に固定化し、マイクロアレイ(クラミドフィラ・キャビエ由来ゲノムDNAのWhole Genome Shotgun clone Libraryを材料としたマイクロアレイ、合計2900クローン)を作製した。
(4)標的ゲノムDNAの蛍光色素標識
(i)標的ゲノムDNAの蛍光色素標識
 BioPrime DNA labeling system(インビトロジェン社製)を利用し、標的ゲノムDNAの蛍光色素標識を行った。
 まず、上記(1)で得られたクラミドフィラ・キャビエ由来精製ゲノムDNA 2μgに、製品中のrandom primer solution 20μLを混合した後、熱変性(95℃、5分間)処理を行い、サンプル溶液を得た。別に、Chlamydia psttaci(cal-10株)から常法によりゲノムDNAを抽出・精製し(対照用ゲノムDNA)、同様に処理を行い、サンプル溶液を得た。
 次いで、得られたサンプル溶液夫々に、0.1M DTT 2μl、dATP/dCTP/dGTP(各5mM)の混合液 2μl、2.5mM dTTP 0.8μl、5mM Ha-dUTP 1.6μl、Klenow酵素(40U/μL) 1μlを添加し、total volume=50μLとなるように脱イオン化滅菌水を加え、37℃で3時間の伸長反応を行った。マイクロコンYM-30(ミリポア社製)の限外ろ過カラムを付属の1.5ml チューブにセットし、上記で得られた反応産物をカラムにのせ、14,000rpm で4 分遠心した後、濃縮液をマイクロチューブに回収して、真空乾燥遠心機(CentriVap concentrator; LABCONCO社製)で完全に乾燥させた。
 乾燥させた上記反応産物に50mM NaHCO3 を10μl 加え混合し、2~3 分常温で静置した(以下、「反応産物溶液」と称する。)。
 別に、1mg のCy5(アマシャムバイオサイエンス株式会社)またはCy3(アマシャムバイオサイエンス株式会社)を105μL のDMSO に溶かしたものを調製した(Cy-dye Solution Cy5、Cy-dye Solution Cy3)。このCy-dye Solution Cy5 10μl をクラミドフィラ・キャビエ由来ゲノムDNAを用いて得られた上記反応産物溶液に加え、40℃で60 分インキュベート(遮光)した。また、Cy-dye Solution Cy3 10μl を対照用ゲノムDNA(Chlamydia psttaci由来)を用いて得られた上記反応産物溶液に加え、同様に40℃で60 分インキュベート(遮光)した。
 さらに、インキュベート後の、夫々の上記反応産物溶液に、4M NH2OH(使う直前に作製する)を10μl 加え、攪拌後、15 分インキュベート(遮光)を行い、夫々の標識産物、すなわちクラミドフィラ・キャビエ由来ゲノムDNAをCy5で標識した標識産物、及びChlamydia psttaciゲノムをCy3で標識した標識産物を得た。
 マイクロコンYM-30(ミリポア社製)の限外ろ過カラムを付属の1.5ml チューブにセットし、上記で得られた各ゲノムDNAの標識産物をカラムにのせ、14,000rpmで4分遠心した後、濃縮液をマイクロチューブに回収して、真空乾燥遠心機(CentriVap concentrator; LABCONCO社製)で完全に乾燥させた。
(ii)標識産物の断片化工程
 上記(4)(i)で得られた乾燥状態の各ゲノムDNAの標識産物に対して、終濃度が0.04M Tris-acetate(pH8.1)、0.1M 酢酸カリウム、0.03M酢酸マグネシウム四水和物の組成の溶液40μLを調製したものを加え、懸濁混和させた。次いで94℃で15 分間加熱処理し、100base~300 base の、各ゲノムを材料とした標識産物の、断片化生成物を得た。
 得られたCy5標識産物溶液及びCy3標識産物溶液の各々をマイクロコンYM-10(ミリポア社製)の限外ろ過カラムにのせ14000rpm で4 分遠心した後、濃縮液を同一のマイクロチューブに回収して、真空乾燥遠心機(CentriVap concentrator; LABCONCO社製)で完全に乾燥させた。次いで、このマイクロチューブに以下の試薬を加え、懸濁混和させ、標識産物の乾燥物を溶解させた。
  ArrayHyb Hybridization buffer(SIGMA社製);40μL
  salmon sperm DNA(10mg/mL)      ;0.5μL
  formamide                ;5μL
  Total 40~50μL
 以上の操作により、クラミドフィラ・キャビエ由来ゲノムDNAを材料としたCy5標識産物の断片化生成物と、Chlamydia psttaci由来の対照用ゲノムを材料としたCy3標識産物の断片化生成物の、Cy3Cy5標識産物混合溶液が得られた。
 得られたCy3Cy5標識産物混合溶液を95℃で5 分インキュベートし、ハイブリダイゼーションまで70℃に保っておいた。
(5)マイクロアレイ・ハイブリダイゼーション
 上記(3)の工程で得られた、クラミドフィラ・キャビエ由来ゲノムDNAのWhole Genome Shotgun cloneのマイクロアレイ上に、上記(4)(ii)で調製したCy3Cy5標識産物混合溶液を全てのせ、気泡が入らないようにカバーガラスをかぶせた。これをハイブリカセットにセットし、タッパーに蒸留水で湿らせたキムタオルをひいたものの上にのせて密閉し、遮光下に65℃で8 時間以上反応させてハイブリダイゼーションを行った。ハイブリダイゼーション後、マイクロアレイをカバーガラスごと2×SSC-0.1%SDS 溶液に室温で浸し、溶液中でマイクロアレイを静かに揺らしてカバーガラスをはずした。次いで1×SSC、0.03%SDS溶液(60℃)で10 分間洗浄、 0.2×SSC 溶液(42℃)で10 分間洗浄、0.05×SSC溶液(室温)で10 分間洗浄した後、新しい乾いたラックにマイクロアレイをすばやく移し、すぐに800prm で5 分間遠心を行って乾燥させた。
(6)蛍光強度の測定:シグナル検出から数量化まで
 蛍光読み取りスキャナー GenePix 4000B(Axon Instruments Inc.製)を用いて、上記(5)で得られた、マイクロアレイ・ハイブリダイゼーション処理したマイクロアレイ上の蛍光強度を測定した。この際、Cy3標識産物とCy5標識産物を用いた競合ハイブリダイゼーションの結果を解析するため、2チャンネル、すなわち2ch(Cy3、Cy5)での蛍光を検出した。
 蛍光シグナルの数量化は日立ソフト社製のDNASISTM-Array(DNAチップ発現イメージ解析ソフトウェア)を用い、ソフトの操作手順に従って、スポット自動認識、バックグラウンド計算、蛍光強度比の正規化を行った。また、信頼性限界ラインを定め、それ以下の領域のデータは扱わないようにして、正規化され信頼性のある蛍光強度(比)を求めた。
 さらに、マイクロアレイ上で検出されたCy3/Cy5の蛍光強度比(Ratio)を基に、常法に従い、散布図(スキャッタープロット)解析を行った。
 すなわち、あるマイクロアレイ上のスポットのCy3に対するCy5の蛍光強度比が高い場合には、そのスポットのDNA断片(PCR産物)は、Cy5標識産物、即ちクラミドフィラ・キャビエ由来のゲノムDNAとより強くハイブリダイズしたことを示す。他方、あるスポットのCy3に対するCy5の蛍光強度比が低い場合は、そのスポットのDNA断片は、クラミドフィラ・キャビエ由来のゲノムDNAに対する特異性が低く、Cy3標識産物、すなわちChlamydia psttaci由来の対照用ゲノムDNAとの交叉反応が観察された(Chlamydia psttaci由来の対照用ゲノムDNAとハイブリダイズした)ことを示す。
 この方法で、マイクロアレイの全てのスポットの蛍光強度比を算出し、蛍光強度が高く、且つCy3に対するCy5の蛍光強度比が高いスポットを選択した。
 その結果、クラミドフィラ・キャビエ由来のゲノムDNAとより強くハイブリダイズした6クローンを候補クローンとして選択した。
(7)候補クローンの塩基配列決定
 次に、上記(6)で選択された、候補6クローンについて、下記の方法で塩基配列決定を行った。
 すなわち、Big Dye Terminatorキット(アプライドバイオシステムズ社製)を使用し、製品プロトコールに従い以下の手順でシークエンス解析を行った。
 候補DNA(候補クローン)   ;2μL(100ng)
 M13 Primer M1        ;1μL(5pmol)
 premix            ;8μL
 上記の混合物に、総volume=20μLとなるように脱イオン化滅菌水を加え、DNAサーマルサイクラー(DNA Engine PTC200、MJ Research Inc.製)を使用して、下記の反応条件で30サイクルのシークエンス反応を行った。
 96℃ 2 min → (96℃ 10sec→50℃ 5sec→60℃ 4min)×25 →4℃
 得られたシークエンス反応産物をQIAGEN社製ゲルろ過カラムで精製後、シークエンサー(BaseStation、MJ Research Inc.製)を用い、機器付属の手順書に従い候補配列すべてのシークエンス(塩基配列)解読を完了した。 
 得られた候補クローン01~06の塩基配列情報を、データベース(NCBI BLAST及びCHEMICAL ABSTRACT)を用い、クラミドフィラ・キャビエの基準株(type strain GenBank Acc No.AE015925)のゲノム配列と比較した。結果を、下記表4に示す。
 表4において、「position」とは、各の候補クローンの塩基配列の、クラミドフィラ・キャビエの基準株(type strain GenBank Acc No.AE015925)のゲノム遺伝子の塩基配列上の位置を示す。
 また、「ID」とは、本発明者が命名した、クローンID No.を示す。
Figure JPOXMLDOC01-appb-T000004
 表4から明らかな如く、選択された候補クローン01~06の各全ゲノム配列は、報告済みのクラミドフィラ・キャビエのtype strainのゲノム遺伝子の塩基配列との重複部分があった。
 一方、選択された候補クローン01~06の各全ゲノム配列は報告済みの、クラミドフィラ・キャビエの近縁種(クラミドフィラ・キャビエ以外のChlamydophila属あるいはChlamydia属)のゲノム遺伝子の塩基配列は重複部分がなかった。以上ことから、候補の6クローンの塩基配列は、クラミドフィラ・キャビエに特異性の高い配列領域であることが推定された。
実施例2.候補クローン02のクラミドフィラ・キャビエ特異性評価
(1)本発明のプライマーの合成
 まず、実施例1(7)で決定された表4記載の候補の6クローンのうち、候補クローン02(クローンID=R08_3d)のシークエンス(塩基配列)の解析結果に基づき、プライマーデザイン用のWebツールPrimer3(Whitehead Institute for Biomedical Research.)を用いてPCRに用いるためのプライマー配列、すなわち「5'-tcttcccgcctccttattct-3'」(配列番号11。以下、「R08_3d_Fw1」と呼ぶ)及び「5'-gctgcttgtggggcaatc-3'」(配列番号12。以下、「R08_3d_Rv1」と呼ぶ)を設計した。
 尚、シークエンスの解析結果から得られた、候補クローン02の塩基配列は、配列番号2で表されるものである。
 次に、ABI社DNAシンセサイザー392型を用いて、ホスホアミダイト法にて、設計したオリゴヌクレオチドを合成した。合成手法はABI社マニュアルに従った。各種オリゴヌクレオチドの脱保護はオリゴヌクレオチドのアンモニア水溶液を55℃で一夜加熱することにより実施した。
 次いでファルマシア社製FPLCを用いた陰イオン交換カラムクロマトグラフィーを行い、合成オリゴヌクレオチドを精製した。この合成オリゴヌクレオチドをプライマーとして用いた。
(2)本発明のプローブの作製
 R08_3d_Fw1及びR08_3d_Rv1をプライマーとして用いたPCRで増幅されると予測される塩基配列は、配列番号31で表される塩基配列(135塩基)である。そこで、配列番号31で表される塩基配列から、プローブとして利用するための配列「5'- tcaacaagatattactgcggcaacacc-3'」を設計し、この配列のオリゴヌクレオチドを合成した(配列番号40。この配列を持つオリゴヌクレオチドプローブを、以下、R08_3d_FwRv1_FAMと記載する。)。このオリゴヌクレオチドの5'末端にレポーター色素FAMを、3'末端にレポーター消光体のTAMRAを結合し、本発明の標識オリゴヌクレオチドプローブ(TaqManTMフルオレセント・プローブ、アプライドバイオシステムズジャパン社製)を得た。
(3)PCR用DNA試料の調製
 下記表5に示す各細菌を、それぞれ常法に従って培養した後、公知の核酸精製手法を用いて精製ゲノムDNAを取得した。
 尚、表5に記載の各細菌は、すべて岡山大学医学部 公文 裕巳教授より供与された。
Figure JPOXMLDOC01-appb-T000005
 得られたそれぞれの精製DNAを、最終1ng/μl(10mM Tris-HCl緩衝液、pH8.9)になるように調製し、PCR用DNA試料とした。
(4)リアルタイムPCR
 上記(1)で設計、合成したR08_3d_Fw1をフォワードプライマーとして、R08_3d_Rv1をリバースプライマーとして用い、下記の通りリアルタイムPCRを行った。
(i)PCR用反応液の調製
 各1μMのフォワードプライマーR08_3d_Fw1及びリバースプライマーR08_3d_Rv1、195nMの上記(2)で調製した蛍光標識プローブR08_3d_FwRv1_FAM、1.5mM MgCl2 、80mM KCl、500μg/ml BSA、0.1% コール酸ナトリウム、0.1%TritonX-100、夫々0.2mM のdATP、dCTP、dGTP、dTTP及びTaq DNA ポリメラーゼ((株)ニッポン・ジーン製)40単位/ml を含有する10mM Tris-HCl緩衝液(pH8.9)を調製し、PCR用反応液とした。
(ii)リアルタイムPCR
 上記(4)(i)で調製したPCR用反応液20μlに上記(3)で調製したPCR用DNA試料1μL を加え、PCR用試料とした。
 このPCR用試料を、定量PCR反応用ガラスキャピラリーチューブ(ロシュ社製)に入れ、定量PCR 専用サーマルサイクラー・検出器(LightCycler2.0、ロシュ社製)を用いてリアルタイムPCRを行った。
 すなわち、95℃ で10分間保温の後、95℃で15秒間、60℃で1分間の反応を50サイクル繰り返し、1サイクル毎にレポーター色素の蛍光強度を測定した。尚、蛍光強度は、測定に用いたサーマルサイクラーの、測定に供したガラスキャピラリーチューブ毎に相対的な蛍光強度比を数値化する機能を用いて求めた。
(5)結果
 得られたリアルタイムPCRの結果を表6にまとめた。
Figure JPOXMLDOC01-appb-T000006
 表6において、蛍光シグナルが検出できた場合を「positive」(陽性)、蛍光シグナルが検出できなかった場合を「negative」(陰性)と表示した。
 表6から明らかな如く、本発明のプライマーR08_3d_Fw1、及びプライマーR08_3d_Rv1を用い、またその増幅領域となる配列から設計された配列を有する標識オリゴヌクレオチドプローブ(本発明のプローブ)を用いたリアルタイムPCRで、増幅されたプライマー伸長物の検出を行った結果、クラミドフィラ・キャビエ由来ゲノムDNA試料を鋳型として用いてPCRを行った場合のみに、核酸増幅の結果生じる蛍光シグナルが確認でき、陽性(positive)と判定できた。これに対し、クラミドフィラ・キャビエ以外のクラミジア由来ゲノムDNAを鋳型として用いて、同じプライマーの組合せを用いて同様にリアルタイムPCRを行った場合には、蛍光シグナルが確認できず、すべて陰性(negative)と判定された。
 以上のことから、本発明のオリゴヌクレオチドをプライマーとして用いたPCRを行うことにより、クラミドフィラ・キャビエを特異的に検出することが出来ることが判る。また、PCRなどの核酸増幅による検出は高感度が期待できるため、細菌を単離する必要がなく、臨床材料をそのまま検出に用いることが可能である。そのため、従来の細菌を培養してから検出する方法では培養に数週間かかっていたクラミドフィラ・キャビエの検出を、長くても1日以内に終わらせることができることが判る。
実施例3.最小検出感度試験
 リアルタイム検出法を利用し、候補クローン02配列(クローンID=R08_3d)をターゲットとした場合の検出感度の検定を行った。
(1)本発明のプライマーの合成
 実施例1(1)と同じ機器を用い、同様の操作でR08_3d_Fw2、及びR08_3d_Rv2のオリゴヌクレオチドを合成した。これをプライマーとして用いた。
(2)PCR用DNA試料の調製
 実施例1(1)と同様の方法で、クラミドフィラ・キャビエ(SC-10株)からクラミドフィラ・キャビエ由来精製ゲノムDNAを取得した。
 これを10mM Tris-HCl緩衝液に溶解し、吸光度を測定して試料中のDNA量を測定した。得られたDNA量を、濃度既知のクラミドフィラ・キャビエのtype strainのゲノムDNAを試料として用いて、同様に吸光度を測定して得られた測定値と比較することにより、試料中のゲノムDNA量(ゲノムコピー数)を決定した。
 次いで10mM Tris-HCl緩衝液、pH8.9を用いてDNA試料を105, 104, 103, 102, 10, 5コピー/μLの希釈系列に希釈したものを調製し、PCR用DNA試料とした。
(3)リアルタイムPCR
(i)PCR用反応液の調製
 上記(1)で得られたプライマーR08_3d_Fw2及びプライマーR08_3d_Rv2を各300nM、SYBRTM Green I (Molecular Probe社商品名)を原液の30倍希釈(最終濃度は原液の30000倍希釈)、1.5mM MgCl2 、80mM KCl、500μg/ml BSA、0.1% コール酸ナトリウム、0.1% TritonX-100、各0.2mMのdATP、dCTP、dGTP、dTTP、及びTaq DNA ポリメラーゼ(ニッポンジーン製)40単位/ml を含有する10mM Tris-HCl(pH8.9)を調製し、PCR用反応液とした。
(ii)リアルタイムPCR
 PCRにおける増幅ターゲットとなる鋳型DNAとして、上記(2)で調製したクラミドフィラ・キャビエ由来のPCR用DNA試料を用い、以下の方法で、インターカレーション法によるリアルタイムPCRを行い、蛍光強度の定量モニタリングを行った。
 まず、上記(3)(i)で調製したPCR用反応液20μLに、上記(2)で調製したクラミドフィラ・キャビエ由来のPCR用DNA試料1μL(1ng)を添加し、PCR用試料とした。そのPCR用試料を、96 穴反応プレート(マイクロアンプ・オプチカル・96ウェル・リアクション・プレート、アプライドバイオシステムズジャパン社製)のウェルに入れ、TaqManTM PCR 専用サーマルサイクラー・検出器(ABI 7500、アプライドバイオシステムズジャパン社製) を用いてリアルタイムPCRを行った。
 すなわち、95℃ で10分間保温の後、95℃で15秒間、60℃ で1分間の反応を40サイクル繰り返し、プライマー伸長産物の増幅量と相関してインターカレーションするSYBRTM Green Iの蛍光強度を測定した。
 尚、蛍光強度は、測定に供した96穴反応プレート1プレート毎に、測定に用いたサーマルサイクラーの、相対的な蛍光強度比を数値化する機能を用いて求めた。
(4)結果
 得られた実験データから、リアルタイムPCR法において行われている常法に従って、検量線を作成した。
 すなわち、各濃度のPCR用DNA試料毎に、PCRのサイクル数(x軸)に対するSYBRTM Green Iの蛍光量(Rn、y軸)をプロットした増幅曲線を作成した。次いで、蛍光量が指数関数的に増幅しているRn部を選択し、Threshold line(Th)を引いた。Thと各PCR用DNA試料の蛍光量が交差した点をThreshold cycle(Ct)値とした。次いで用いた各PCR用DNA試料のゲノムのコピー数(x軸、対数値)に対するCt値(y軸)をプロットし、各Ctに対して得られた近似曲線を検量線とした。得られた検量線を図1に示す。
 図1において、得られた近似曲線の近似式は、
 y=-3.720x+38.26、
 R=0.998、
である。
 以上の結果、まずリアルタイムPCRで蛍光が検出されたことから、本発明に係るオリゴヌクレオチドをプライマーとして用い、リアルタイムPCRを行えば、クラミドフィラ・キャビエが検出できることが判った。
 また、検量線が作成できたことより、本発明のプライマー及びプローブを用いたリアルタイムPCR法によれば、クラミドフィラ・キャビエ自体の定量が可能であることが判った。
 更に、図1から明らかな如く、本発明のプライマー及びプローブを用いたリアルタイムPCR法では、クラミドフィラ・キャビエのゲノムDNAが初期量として5コピー存在する条件でもクラミドフィラ・キャビエの検出が可能である事がわかる。
 更にまた、リアルタイムPCR法を利用した場合では、この蛍光強度をリアルタイムでモニタリングするので、鋳型DNAの初期量を正確に定量することができ、クラミドフィラ・キャビエの検出に有効である。
実施例4.その他の候補クローンのクラミドフィラ・キャビエ特異性評価
(1)本発明のプライマーの合成
 実施例1(7)で決定された候補の6クローンのシークエンス(塩基配列)の解析結果に基づき、各々の候補クローンの塩基配列から、プライマーデザイン用のWebツールPrimer3(Whitehead Institute for Biomedical Research.)を用いてPCR増幅検出のためのプライマー配列を設計した。
 次いで、実施例2(1)と同様の方法で、設計したリゴヌクレオチドを合成・精製した。この合成オリゴヌクレオチドを本発明のプライマーとして用いた。
 各候補配列の名称、その候補クローンの塩基配列の配列番号、その候補クローンの塩基配列をもとに設計したプライマーの名称(発明者が命名した。)及びその塩基配列の配列番号、続いて行うPCRにおいて用いたフォワードプライマーとリバースプライマーの組み合わせを表7に併せて示す。また、各候補クローンのクローンID番号(発明者が命名した。)を、候補クローンの名称の下に、( )内に示す。
Figure JPOXMLDOC01-appb-T000007
(2)PCR用DNA試料の調製
 実施例2で使用した表5に記載の細菌のうち、Chlamydophila caviae GPIC株)、Chlamydophila psttaci(Cal10)、Chlamydophila pneumoniae (TW183株)、Chlamydia trachomatis (D株(Serovar))を用い、実施例1(1)と同様の方法で、精製ゲノムDNA試料を調製した。
 また、各々のDNA試料を、最終濃度が104, 103コピー/μL(各クラミジアを検出するのに十分な量)になるように、10mM Tris-HCl緩衝液(pH8.9)で調製し、PCR用DNA試料とした。
(3)リアルタイムPCR
 上記(1)で調製したプライマーを、上記表7の組み合わせで用い、各細菌由来のDNA試料を鋳型として用いる以外は、実施例3(3)(ii)と同様の方法で、リアルタイムPCRを行った。
(4)融解曲線解析
 各DNA試料に対して各々増幅されてきた産物について、横軸をプライマー伸長産物(2本鎖DNA)の解離温度、縦軸に蛍光強度の1次微分(変化量)をとった融解曲線を作成し、ピークの検出を行った。
(5)結果
 結果を表8に示す。
Figure JPOXMLDOC01-appb-T000008
 表中、例えば1.00E+04とは、DNA試料の濃度が104コピー/μLの場合を示す。
 表8において、融解曲線解析でピークが確認できた場合を(+)、ピークが確認できなかった場合を(-)でそれぞれ示す。
 表8から明らかな如く、表8に記載された本発明のプライマーの組合せを用いてリアルタイムPCRを行った結果、どの組合せを用いた場合でも、クラミドフィラ・キャビエ由来のDNA試料を鋳型として用いてリアルタイムPCRを行った場合のみに、核酸増幅の結果生じる蛍光シグナルが確認でき、陽性と判定できた。
 これに対し、クラミドフィラ・キャビエ以外の近縁菌由来のDNAを鋳型として用いて、上記記載のどの同じプライマーの組合せを用いて同様にリアルタイムPCRを行った場合には、該当する蛍光シグナルが確認できず、すべて陰性と判定できた。
 以上のことから、本発明の検出方法によれば、偽陽性の出現を排除して、クラミドフィラ・キャビエを特異的に検出することができることがわかる。
 本発明のプライマー又は/及びプローブを用いたクラミドフィラ・キャビエの検出方法によれば、従来の菌の培養検査等により菌種を同定する如き方法と比較して、はるかに迅速且つ高精度に、クラミドフィラ・キャビエの検出を行うことができる。また、本発明の検出方法でクラミドフィラ・キャビエの検出を行うことにより、診断上の偽陽性が排除可能となり、より高精度にクラミドフィラ・キャビエの検出及び診断を行うことができる。更に、本発明の検出方法を用いることにより、クラミドフィラ・キャビエ自体の定量も行うこともできるという効果を奏する。

Claims (22)

  1. 配列番号1、配列番号2、配列番号3、配列番号4、配列番号5及び配列番号6から選択される塩基配列(但し、Aはアデニン、Cはシトシン、Gはグアニン、Tはチミンを表す。また、任意の位置のTはウラシル(U)と置換されていてもよい。以下同じ。)の一部若しくは全部、又は配列番号1、配列番号2、配列番号3、配列番号4、配列番号5及び配列番号6から選択される塩基配列に対する相補配列の一部若しくは全部を含有し、且つクラミドフィラ・キャビエ(Chlamydophila caviae)遺伝子の塩基配列とハイブリダイズするオリゴヌクレオチド。
  2. 配列番号1、配列番号2、配列番号3、配列番号4、配列番号5及び配列番号6から選択される塩基配列の一部を含有するオリゴヌクレオチドが、配列番号7~39から選択される塩基配列の一部若しくは全部を含有するものであり、配列番号1、配列番号2、配列番号3、配列番号4、配列番号5及び配列番号6から選択される塩基配列に対する相補配列の一部を含有するオリゴヌクレオチドが、配列番号7~39から選択される塩基配列に対する相補配列の一部若しくは全部を含有するものである、請求項1に記載のオリゴヌクレオチド。
  3. 配列番号1で表される塩基配列の一部を含有するオリゴヌクレオチドが、配列番号7~10及び配列番号29~30から選択される塩基配列の一部若しくは全部を含有するものであり、
    配列番号2で表される塩基配列の一部を含有するオリゴヌクレオチドが、配列番号11~14及び配列番号31~32から選択される塩基配列の一部若しくは全部を含有するものであり、
    配列番号3で表される塩基配列の一部を含有するオリゴヌクレオチドが、配列番号15~18及び配列番号33~34から選択される塩基配列の一部若しくは全部を含有するものであり、
    配列番号4で表される塩基配列の一部を含有するオリゴヌクレオチドが、配列番号19~22及び配列番号35~36から選択される塩基配列の一部若しくは全部を含有するものであり、
    配列番号5で表される塩基配列の一部を含有するオリゴヌクレオチドが、配列番号23~26及び配列番号37~38から選択される塩基配列の一部若しくは全部を含有するものであり、
    配列番号6で表される塩基配列の一部を含有するオリゴヌクレオチドが、配列番号27~28及び配列番号39から選択される塩基配列の一部若しくは全部を含有するものであり、
    配列番号1、配列番号2、配列番号3、配列番号4、配列番号5及び配列番号6から選択される塩基配列に対する相補配列の一部を含有するオリゴヌクレオチドが、配列番号7~39から選択される塩基配列に対する相補配列の一部若しくは全部を含有するものである、
    請求項1に記載のオリゴヌクレオチド。
  4. 配列番号1、配列番号2、配列番号3、配列番号4、配列番号5及び配列番号6から選択される塩基配列の一部若しくは全部、又は配列番号1、配列番号2、配列番号3、配列番号4、配列番号5及び配列番号6から選択される塩基配列に対する相補配列の一部若しくは全部を含有し、且つクラミドフィラ・キャビエ遺伝子の塩基配列とハイブリダイズするオリゴヌクレオチドを含有する、クラミドフィラ・キャビエ検出用プライマー。
  5. 配列番号1で表される塩基配列の一部を含有するオリゴヌクレオチドが、配列番号7~10及び配列番号29~30から選択される塩基配列の一部若しくは全部を含有するものであり、
    配列番号2で表される塩基配列の一部を含有するオリゴヌクレオチドが、配列番号11~14及び配列番号31~32から選択される塩基配列の一部若しくは全部を含有するものであり、
    配列番号3で表される塩基配列の一部を含有するオリゴヌクレオチドが、配列番号15~18及び配列番号33~34から選択される塩基配列の一部若しくは全部を含有するものであり、
    配列番号4で表される塩基配列の一部を含有するオリゴヌクレオチドが、配列番号19~22及び配列番号35~36から選択される塩基配列の一部若しくは全部を含有するものであり、
    配列番号5で表される塩基配列の一部を含有するオリゴヌクレオチドが、配列番号23~26及び配列番号37~38から選択される塩基配列の一部若しくは全部を含有するものであり、
    配列番号6で表される塩基配列の一部を含有するオリゴヌクレオチドが、配列番号27~28及び配列番号39から選択される塩基配列の一部若しくは全部を含有するものであり、
    配列番号1、配列番号2、配列番号3、配列番号4、配列番号5及び配列番号6から選択される塩基配列に対する相補配列の一部を含有するオリゴヌクレオチドが、配列番号7~39から選択される塩基配列に対する相補配列の一部若しくは全部を含有するものである、
    請求項4に記載のプライマー。
  6. プライマーを構成するヌクレオチドの数が10~50個である、請求項4に記載のプライマー。
  7. 標識物質で標識化された、請求項4に記載のプライマー。
  8. 標識物質が放射性同位体、酵素、蛍光物質、発光物質又はビオチンから選択されるものである、請求項7に記載のプライマー。
  9. 配列番号1、配列番号2、配列番号3、配列番号4、配列番号5及び配列番号6から選択される塩基配列の一部若しくは全部、又は配列番号1、配列番号2、配列番号3、配列番号4、配列番号5及び配列番号6から選択される塩基配列に対する相補配列の一部若しくは全部を含有し、且つ、クラミドフィラ・キャビエ遺伝子の塩基配列とハイブリダイズするオリゴヌクレオチドを含有する、クラミドフィラ・キャビエ検出用プローブ。
  10. 標識物質で標識化された、請求項9に記載のプローブ。
  11. 標識物質が放射性同位体、酵素、蛍光物質、発光物質又はビオチンから選択されるものである、請求項9に記載のプローブ。
  12. 5'末端がレポーター蛍光色素で標識化され、3'末端がクエンチャー色素で標識化された、請求項9に記載のプローブ。
  13. 配列番号1、配列番号2、配列番号3、配列番号4、配列番号5及び配列番号6から選択される塩基配列の一部若しくは全部、又は配列番号1、配列番号2、配列番号3、配列番号4、配列番号5及び配列番号6から選択される塩基配列に対する相補配列の一部若しくは全部を含有し、且つクラミドフィラ・キャビエ遺伝子の塩基配列とハイブリダイズするオリゴヌクレオチドをプライマー又は/及びプローブとして用いることを特徴とする、クラミドフィラ・キャビエの検出方法。
  14. 配列番号1、配列番号2、配列番号3、配列番号4、配列番号5及び配列番号6から選択される塩基配列の一部若しくは全部、又は配列番号1、配列番号2、配列番号3、配列番号4、配列番号5及び配列番号6から選択される塩基配列に対する相補配列の一部若しくは全部を含有し、且つクラミドフィラ・キャビエ遺伝子の塩基配列とハイブリダイズするオリゴヌクレオチドをプライマーとして用い、試料中の核酸を鋳型として核酸増幅反応を行い、得られたプライマー伸長産物を検出することを特徴とする、請求項13に記載の検出方法。
  15.  更に、配列番号1、配列番号2、配列番号3、配列番号4、配列番号5及び配列番号6から選択される塩基配列の一部若しくは全部、又は配列番号1、配列番号2、配列番号3、配列番号4、配列番号5及び配列番号6から選択される塩基配列に対する相補配列の一部若しくは全部を含有し、且つクラミドフィラ・キャビエ遺伝子の塩基配列とハイブリダイズするオリゴヌクレオチドを標識物質で標識した標識プローブを用いる、請求項14に記載の検出方法。
  16.  配列番号1、配列番号2、配列番号3、配列番号4、配列番号5及び配列番号6から選択される塩基配列の一部若しくは全部、又は配列番号1、配列番号2、配列番号3、配列番号4、配列番号5及び配列番号6から選択される塩基配列に対する相補配列の一部若しくは全部を含有し、且つクラミドフィラ・キャビエ遺伝子の塩基配列とハイブリダイズするオリゴヌクレオチドをプライマーとして用い、配列番号1、配列番号2、配列番号3、配列番号4、配列番号5及び配列番号6から選択される塩基配列の一部若しくは全部、又は配列番号1、配列番号2、配列番号3、配列番号4、配列番号5及び配列番号6から選択される塩基配列に対する相補配列の一部若しくは全部を含有し、且つクラミドフィラ・キャビエ遺伝子の塩基配列とハイブリダイズするオリゴヌクレオチドを標識物質で標識した標識プローブを用い、更に試料中の核酸を鋳型として用いて核酸増幅反応を行い、該標識プローブから遊離された標識物質の標識を検出する、請求項14に記載の検出方法。
  17. 下記工程を包含することを特徴とする、請求項13に記載の検出方法、
     (1)配列番号1、配列番号2、配列番号3、配列番号4、配列番号5及び配列番号6から選択される塩基配列の一部若しくは全部、又は配列番号1、配列番号2、配列番号3、配列番号4、配列番号5及び配列番号6から選択される塩基配列に対する相補配列の一部若しくは全部を含有し、且つクラミドフィラ・キャビエ遺伝子の塩基配列とハイブリダイズするオリゴヌクレオチドをプライマーとして用い、試料中の核酸を鋳型として核酸増幅反応を行う、
     (2)(1)で得られたプライマー伸長産物について電気泳動を行い、その結果に基づいて、クラミドフィラ・キャビエの有無を判定する。
  18. 下記のいずれかの場合に、被検試料が。クラミドフィラ・キャビエ陽性であると判定する、請求項17記載の検出方法、
    (1)電気泳動を行った後、得られた電気泳動画分について、目的とする塩基対数のプライマー伸長産物の画分を確認し、目的とする塩基対数のプライマー伸長産物が確認された場合、
    (2)電気泳動を行った後、得られた電気泳動画分について、
    配列番号1、配列番号2、配列番号3、配列番号4、配列番号5及び配列番号6から選択される塩基配列の一部若しくは全部、又は配列番号1、配列番号2、配列番号3、配列番号4、配列番号5及び配列番号6から選択される塩基配列に対する相補配列の一部若しくは全部を含有し、且つクラミドフィラ・キャビエ遺伝子の塩基配列とハイブリダイズするオリゴヌクレオチドを標識物質で標識した標識プローブに対するハイブリダイゼーションを行い、該標識プローブの標識を検出することによって該標識プローブとハイブリダイズした画分が確認された場合。
  19. プライマーが標識物質で標識化されており、当該標識プライマーを用いて試料中の核酸を鋳型としたポリメラーゼ連鎖反応を行い、得られたプライマー伸長産物の標識を測定する、請求項13に記載の。クラミドフィラ・キャビエの検出方法。
  20. 核酸増幅連鎖反応を行ったのち、遊離の標識プライマーを除き、プライマー伸長産物の標識を測定する、請求項19に記載の検出方法。
  21. 配列番号1、配列番号2、配列番号3、配列番号4、配列番号5及び配列番号6から選択される塩基配列の一部若しくは全部、又は配列番号1、配列番号2、配列番号3、配列番号4、配列番号5及び配列番号6から選択される塩基配列に対する相補配列の一部若しくは全部を含有し、且つクラミドフィラ・キャビエ遺伝子の塩基配列とハイブリダイズするオリゴヌクレオチドを標識物質で標識化したものを標識プローブとして用い、該標識プローブを試料中の核酸とハイブリダイゼーションさせ、遊離の標識プローブを除いた後、ハイブリダイズした複合体の標識を検出することを特徴とする、請求項13に記載の。クラミドフィラ・キャビエの検出方法。
  22. 配列番号1、配列番号2、配列番号3、配列番号4、配列番号5及び配列番号6から選択される塩基配列の一部若しくは全部、又は配列番号1、配列番号2、配列番号3、配列番号4、配列番号5及び配列番号6から選択される塩基配列に対する相補配列の一部若しくは全部を含有し、且つクラミドフィラ・キャビエ遺伝子の塩基配列とハイブリダイズするオリゴヌクレオチドをプライマー又は/及びプローブとして含んでなる、クラミドフィラ・キャビエ検出用試薬キット。
PCT/JP2009/051735 2008-02-08 2009-02-03 クラミドフィラ・キャビエ検出用プライマー及びプローブ、並びにこれを用いたクラミドフィラ・キャビエの検出方法 WO2009099037A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/866,730 US20100323365A1 (en) 2008-02-08 2009-02-03 Primer and probe for detecting chlamydophila caviae, as well as a chlamydophila caviae detection method using the same
EP09707584.0A EP2251422B1 (en) 2008-02-08 2009-02-03 Primer and probe for detecting chlamydophilia caviae, as well as chlamydophilia caviae detection method using the same
JP2009552465A JPWO2009099037A1 (ja) 2008-02-08 2009-02-03 クラミドフィラ・キャビエ検出用プライマー及びプローブ、並びにこれを用いたクラミドフィラ・キャビエの検出方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-029460 2008-02-08
JP2008029460 2008-02-08

Publications (1)

Publication Number Publication Date
WO2009099037A1 true WO2009099037A1 (ja) 2009-08-13

Family

ID=40952112

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/051735 WO2009099037A1 (ja) 2008-02-08 2009-02-03 クラミドフィラ・キャビエ検出用プライマー及びプローブ、並びにこれを用いたクラミドフィラ・キャビエの検出方法

Country Status (4)

Country Link
US (1) US20100323365A1 (ja)
EP (2) EP2251422B1 (ja)
JP (1) JPWO2009099037A1 (ja)
WO (1) WO2009099037A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2458993C1 (ru) * 2011-06-30 2012-08-20 Государственное бюджетное образовательное учреждение дополнительного профессионального образования "Российская медицинская академия последипломного образования" Министерства здравоохранения и социального развития Российской Федерации (ГБОУ ДПО РМАПО Минздравсоцразвития России) Способ дифференциальной диагностики манифестной и асимптомной форм уретрита, обусловленного условно-патогенными микроорганизмами, у мужчин репродуктивного возраста
US11891662B2 (en) 2019-12-02 2024-02-06 Talis Biomedical Corporation Polynucleotides for amplification and detection of human beta actin

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5840099A (ja) 1981-07-17 1983-03-08 アモコ・コ−ポレ−ション 光−放射ポリヌクレオチドの交雑診断方法
JPS6050717A (ja) 1983-08-31 1985-03-20 Matsushita Electric Ind Co Ltd 金属薄膜型磁気テ−プ
JPS60500717A (ja) 1982-09-30 1985-05-16 シンジーン,インコーポレイテッド リポ−タ−グル−プを含んでいる一定配列の1本鎖オリゴヌクレオチド、およびその化学的合成法
JPS62265999A (ja) 1986-03-05 1987-11-18 モレキユラ−・ダイアグノステイツクス・インコ−ポレ−テツド 核酸含有試料中の微生物の検出
WO1988010315A1 (en) 1987-06-19 1988-12-29 Siska Diagnostics, Inc. Transcription-based nucleic acid amplification/detection systems
JPH04211399A (ja) 1990-01-26 1992-08-03 Abbott Lab 核酸の増幅法
US5210015A (en) 1990-08-06 1993-05-11 Hoffman-La Roche Inc. Homogeneous assay system using the nuclease activity of a nucleic acid polymerase
US5232829A (en) 1989-09-29 1993-08-03 Hoffmann-La Roche Inc. Detection of chlamydia trachomatis by polymerase chain reaction using biotin labelled lina primers and capture probes
JPH07114718B2 (ja) 1991-01-31 1995-12-13 ベクトン・ディッキンソン・アンド・カンパニー 鎖置換型増幅法
JPH0819394A (ja) 1993-06-04 1996-01-23 Becton Dickinson & Co 複数標的の同時増幅
US5538848A (en) 1994-11-16 1996-07-23 Applied Biosystems Division, Perkin-Elmer Corp. Method for detecting nucleic acid amplification using self-quenching fluorescence probe
JP2650159B2 (ja) 1988-02-24 1997-09-03 アクゾ・ノベル・エヌ・ベー 核酸増幅方法
US5801155A (en) 1995-04-03 1998-09-01 Epoch Pharmaceuticals, Inc. Covalently linked oligonucleotide minor grove binder conjugates
JPH1146778A (ja) 1989-07-11 1999-02-23 Gen Probe Inc オリゴヌクレオチド検出プローブ
JPH11155589A (ja) 1997-09-25 1999-06-15 Becton Dickinson & Co Mycobacterium kansasiiの検出に潜在的に有効なDNA領域の同定
US5925517A (en) 1993-11-12 1999-07-20 The Public Health Research Institute Of The City Of New York, Inc. Detectably labeled dual conformation oligonucleotide probes, assays and kits
US6492121B2 (en) 1999-04-20 2002-12-10 Japan Bioindustry Association Method for determining a concentration of target nucleic acid molecules, nucleic acid probes for the method, and method for analyzing data obtained by the method
JP2004057202A (ja) * 2002-06-05 2004-02-26 Ryoshoku Kenkyukai Bacilluscereusの迅速検出法
JP2005006556A (ja) * 2003-06-19 2005-01-13 Asahi Breweries Ltd ビール有害菌の検出方法
JP2008054525A (ja) * 2006-08-29 2008-03-13 Okayama Univ Chlamydophilacaviae(C.caviae)由来のDNAの増幅および検出法

Patent Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5840099A (ja) 1981-07-17 1983-03-08 アモコ・コ−ポレ−ション 光−放射ポリヌクレオチドの交雑診断方法
JPS60500717A (ja) 1982-09-30 1985-05-16 シンジーン,インコーポレイテッド リポ−タ−グル−プを含んでいる一定配列の1本鎖オリゴヌクレオチド、およびその化学的合成法
JPS6050717A (ja) 1983-08-31 1985-03-20 Matsushita Electric Ind Co Ltd 金属薄膜型磁気テ−プ
JPS62265999A (ja) 1986-03-05 1987-11-18 モレキユラ−・ダイアグノステイツクス・インコ−ポレ−テツド 核酸含有試料中の微生物の検出
WO1988010315A1 (en) 1987-06-19 1988-12-29 Siska Diagnostics, Inc. Transcription-based nucleic acid amplification/detection systems
JPH02500565A (ja) 1987-06-19 1990-03-01 アクゾ・ノベル・ナムローゼ・フェンノートシャップ 転写に基づいた核酸増幅/検出系
JP2650159B2 (ja) 1988-02-24 1997-09-03 アクゾ・ノベル・エヌ・ベー 核酸増幅方法
JPH1146778A (ja) 1989-07-11 1999-02-23 Gen Probe Inc オリゴヌクレオチド検出プローブ
US5232829A (en) 1989-09-29 1993-08-03 Hoffmann-La Roche Inc. Detection of chlamydia trachomatis by polymerase chain reaction using biotin labelled lina primers and capture probes
JPH04211399A (ja) 1990-01-26 1992-08-03 Abbott Lab 核酸の増幅法
US5210015A (en) 1990-08-06 1993-05-11 Hoffman-La Roche Inc. Homogeneous assay system using the nuclease activity of a nucleic acid polymerase
JPH07114718B2 (ja) 1991-01-31 1995-12-13 ベクトン・ディッキンソン・アンド・カンパニー 鎖置換型増幅法
JPH0819394A (ja) 1993-06-04 1996-01-23 Becton Dickinson & Co 複数標的の同時増幅
US5925517A (en) 1993-11-12 1999-07-20 The Public Health Research Institute Of The City Of New York, Inc. Detectably labeled dual conformation oligonucleotide probes, assays and kits
US5538848A (en) 1994-11-16 1996-07-23 Applied Biosystems Division, Perkin-Elmer Corp. Method for detecting nucleic acid amplification using self-quenching fluorescence probe
US5801155A (en) 1995-04-03 1998-09-01 Epoch Pharmaceuticals, Inc. Covalently linked oligonucleotide minor grove binder conjugates
JPH11155589A (ja) 1997-09-25 1999-06-15 Becton Dickinson & Co Mycobacterium kansasiiの検出に潜在的に有効なDNA領域の同定
US6492121B2 (en) 1999-04-20 2002-12-10 Japan Bioindustry Association Method for determining a concentration of target nucleic acid molecules, nucleic acid probes for the method, and method for analyzing data obtained by the method
JP2004057202A (ja) * 2002-06-05 2004-02-26 Ryoshoku Kenkyukai Bacilluscereusの迅速検出法
JP2005006556A (ja) * 2003-06-19 2005-01-13 Asahi Breweries Ltd ビール有害菌の検出方法
JP2008054525A (ja) * 2006-08-29 2008-03-13 Okayama Univ Chlamydophilacaviae(C.caviae)由来のDNAの増幅および検出法

Non-Patent Citations (23)

* Cited by examiner, † Cited by third party
Title
"Properties of chlamydia separated from the affected area of cervicitis", PATHOGENIC MICROBE DETECTION INFORMATION MONTHLY REPORT (IASR), vol. 25, no. 8, August 2004 (2004-08-01), pages 204 - 205
BASSIRI M. ET AL., JOURNAL OF CLINICAL MICROBIOLOGY, vol. 33, 1995, pages 898 - 900
BAUWENS J.E. ET AL., JOURNAL OF CLINICAL MICROBIOLOGY, vol. 31, 1993, pages 3013 - 3106
BOOM R; SOL CJ; SALIMANS MM; JANSEN CL; WERTHEIM-VAN DILLEN PM; VAN DER NOORDAA J, J. CLIN. MICROBIOL., vol. 28, no. 3, March 1990 (1990-03-01), pages 495 - 503
BOREL N. ET AL.: "Direct identification of chlamydiae from clinical samples using a DNA microarray assay - A validation study.", MOLECULAR AND CELLULAR PROBES, vol. 22, no. 1, 28 June 2007 (2007-06-28), pages 55 - 64 *
CHERNESKY MAX A. ET AL., JOURNAL OF CLINICAL MICROBIOLOGY, vol. 32, 1994, pages 2682 - 2685
D. M. MORRISON'S, METHOD IN ENZYMOLOGY, vol. 68, 1979, pages 326 - 331
DOMEIKA M. ET AL., JOURNAL OF CLINICAL MICROBIOLOGY, vol. 32, 1994, pages 2350 - 2352
F. POLY ET AL., J. BACTERIOLOGY, vol. 186, no. 14, 2004, pages 4781 - 4795
FEMS MICROBIOLOGY LETTERS, vol. 166, 1998, pages 63 - 70
LEE H.H. ET AL., LANCET, vol. 345, 1995, pages 213 - 216
NUCLEIC ACIDS RES., vol. 14, 1986, pages 6115
POLY F. ET AL.: "Identification of Campylobacter jejuni ATCC 43431-specific genes by whole microbial genome comparisons.", JOURNAL OF BACTERIOLGY, vol. 186, no. 14, July 2004 (2004-07-01), pages 4781 - 4795 *
READ T. ET AL.: "Genome sequence of Chlamydophila caviae (Chlamydia psittaci GPIC) : examining the role of niche-specific gene in the evolution of the Chlamydiaceae.", NUCLEIC ACIDS RESEARCH, vol. 31, no. 8, 2003, pages 2134 - 2147 *
READ T.D. ET AL., NUCLEIC ACID RESEARCH, vol. 31, 2003, pages 2134 - 2147
RINSHO BYORI, CLINICAL PATHOLOGY, vol. 51, no. 11, November 2003 (2003-11-01), pages 1061 - 1067
See also references of EP2251422A4
SYSTEMATIC AND APPLIED MICROBIOLOGY, vol. 24, 2001, pages 109 - 112
TSUGUNORI NOTOMI ET AL., NUCLEIC ACID RES., vol. 28, 2000, pages E63
VENTER ET AL., SCIENCE, vol. 291, no. 5507, 16 February 2001 (2001-02-16), pages 1304 - 1351
VENTER, SCIENCE, vol. 291, no. 5507, 16 February 2001 (2001-02-16), pages 1304 - 1351
WADA K. ET AL.: "Dansei Nyodoen Oyobi Shikyu Keikan'en Kanja kara Ko Hindo ni Bunri sareru Chlamydophila caviae Ruiji Kabu no Rinshoteki Kento", JOURNAL OF THE JAPANESE ASSOCIATION FOR INFECTIOUS DISEASES, vol. 81, no. 6, 20 November 2007 (2007-11-20), pages 798 - 799 *
WARREN R. ET AL., JOURNAL OF CLINICAL MICROBIOLOGY, vol. 31, 1993, pages 1663 - 1666

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2458993C1 (ru) * 2011-06-30 2012-08-20 Государственное бюджетное образовательное учреждение дополнительного профессионального образования "Российская медицинская академия последипломного образования" Министерства здравоохранения и социального развития Российской Федерации (ГБОУ ДПО РМАПО Минздравсоцразвития России) Способ дифференциальной диагностики манифестной и асимптомной форм уретрита, обусловленного условно-патогенными микроорганизмами, у мужчин репродуктивного возраста
US11891662B2 (en) 2019-12-02 2024-02-06 Talis Biomedical Corporation Polynucleotides for amplification and detection of human beta actin

Also Published As

Publication number Publication date
EP2546344A2 (en) 2013-01-16
EP2546344A3 (en) 2013-04-03
JPWO2009099037A1 (ja) 2011-05-26
US20100323365A1 (en) 2010-12-23
EP2251422A4 (en) 2011-05-04
EP2251422B1 (en) 2013-04-10
EP2251422A1 (en) 2010-11-17

Similar Documents

Publication Publication Date Title
JP5299548B2 (ja) マイコバクテリウム・イントラセルラーレ検出用プライマー及びプローブ、並びにこれを用いたマイコバクテリウム・イントラセルラーレの検出方法
JP6448715B2 (ja) マイコバクテリウム・アビウム検出用プライマー及びプローブ、並びにこれを用いたマイコバクテリウム・アビウムの検出方法
US9458513B2 (en) Primer and probe for detecting chlamydia trachomatis, and method for detecting chlamydia trachomatis using same
JP5076894B2 (ja) マイコバクテリウム・カンサシ検出用プライマー及びプローブ、並びにこれを用いたマイコバクテリウム・カンサシの検出方法
JP5958498B2 (ja) マイコバクテリウム・イントラセルラー検出用プライマー及びプローブ、並びにこれを用いたマイコバクテリウム・イントラセルラーの検出方法
WO2009099037A1 (ja) クラミドフィラ・キャビエ検出用プライマー及びプローブ、並びにこれを用いたクラミドフィラ・キャビエの検出方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09707584

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009552465

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12866730

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009707584

Country of ref document: EP