WO2017169220A1 - 受光装置、撮像装置および電子機器 - Google Patents

受光装置、撮像装置および電子機器 Download PDF

Info

Publication number
WO2017169220A1
WO2017169220A1 PCT/JP2017/005472 JP2017005472W WO2017169220A1 WO 2017169220 A1 WO2017169220 A1 WO 2017169220A1 JP 2017005472 W JP2017005472 W JP 2017005472W WO 2017169220 A1 WO2017169220 A1 WO 2017169220A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
light receiving
main surface
receiving device
pixel
Prior art date
Application number
PCT/JP2017/005472
Other languages
English (en)
French (fr)
Inventor
五十嵐 崇裕
高大 園田
篤史 鈴木
真弥 山川
湯元 博志
出穂 畑田
健 児玉
研 足立
一治 松本
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to US16/087,189 priority Critical patent/US20190103501A1/en
Publication of WO2017169220A1 publication Critical patent/WO2017169220A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14603Special geometry or disposition of pixel-elements, address-lines or gate-electrodes
    • H01L27/14605Structural or functional details relating to the position of the pixel elements, e.g. smaller pixel elements in the center of the imager compared to pixel elements at the periphery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1464Back illuminated imager structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/103Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN homojunction type
    • H01L31/1037Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN homojunction type the devices comprising active layers formed only by AIVBVI compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/77Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components
    • H04N25/772Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components comprising A/D, V/T, V/F, I/T or I/F converters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/79Arrangements of circuitry being divided between different or multiple substrates, chips or circuit boards, e.g. stacked image sensors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14636Interconnect structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14665Imagers using a photoconductor layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present disclosure relates to a light receiving device, an imaging device, and an electronic device.
  • Patent Document 1 discloses a back-illuminated imaging device as an example of an imaging device having such a photoelectric conversion region.
  • Such an imaging apparatus is always required to improve sensitivity. Therefore, for example, it is conceivable to eliminate the pixel circuit from the light receiving surface and provide a substrate dedicated to the pixel circuit behind the pixel substrate having the light receiving surface. In such a case, since the ratio of the photoelectric conversion elements in the light receiving surface can be increased, the sensitivity can be improved. However, there is a problem that the manufacturing cost is greatly increased by providing the pixel circuit dedicated substrate. It is desirable to provide a light receiving device, an imaging device, and an electronic device that can suppress a significant increase in manufacturing cost while improving sensitivity.
  • a light receiving device includes a first main surface, a second main surface facing the first main surface, and a first main surface of a semiconductor layer having an end surface.
  • a pixel region including a plurality of light receiving pixels for receiving light is provided.
  • the light receiving device further includes a low impurity region having a relatively low impurity concentration as compared with the pixel region over the entire gap between the second main surface and the pixel region.
  • Each light receiving pixel includes one or a plurality of photocurrent extraction regions having an anode region and a cathode region on the first main surface, and a circuit electrically connected to each cathode region and electrically isolated from the impurity region. And have a region.
  • An imaging apparatus includes a wiring board and a plurality of light receiving devices mounted in a matrix on the wiring board.
  • Each light receiving device receives light incident from the second main surface side on the first main surface of the semiconductor layer having a first main surface near the wiring board, a second main surface facing the first main surface, and an end surface.
  • the pixel region includes a plurality of light receiving pixels.
  • Each light receiving device further has a low impurity region having a relatively low impurity concentration as compared with the pixel region over the entire gap between the second main surface and the pixel region.
  • Each light receiving pixel includes one or a plurality of photocurrent extraction regions having an anode region and a cathode region on the first main surface, and a circuit electrically connected to each cathode region and electrically isolated from the impurity region. And have a region.
  • An electronic apparatus includes an imaging device and a processing device that processes image data obtained by the imaging device.
  • An imaging device provided in the electronic apparatus has the same components as the imaging device.
  • a pixel region is provided on a surface (first main surface) opposite to the light receiving surface (second main surface) in the semiconductor layer. Furthermore, a low impurity region is provided in the entire gap between the light receiving surface and the pixel region. As described above, in the present disclosure, the low impurity region is formed on the entire light receiving surface, and there is no structure (specifically, a pixel circuit, a light shielding layer, an element isolation layer, etc.) that prevents light reception on the light receiving surface.
  • the light incident from the light receiving surface side enters the low impurity region extending over the entire light receiving surface without being scattered by the structure that prevents light reception, and is converted into a photocurrent.
  • the pixel region is provided in the semiconductor layer, a substrate dedicated to the pixel circuit is not necessary.
  • the entire light receiving surface is provided without providing the pixel region in the semiconductor layer and the light incident from the light receiving surface side being damaged by the structure that prevents light reception. Therefore, the increase in manufacturing cost can be suppressed while improving the sensitivity.
  • the effect of this indication is not necessarily limited to the effect described here, Any effect described in this specification may be sufficient.
  • FIG. 1 illustrates an example of a cross-sectional configuration of the light receiving device 1.
  • the light receiving device 1 receives light incident on the second main surface 10B which is the upper surface.
  • the light receiving device 1 is a chip-like element having a back surface facing the second main surface 10B and having a plurality of solder bumps 40 on the back surface. That is, the light receiving device 1 includes a mechanism for electrically connecting to the outside on the back surface, and does not include the second main surface 10B that is the top surface or the side surface.
  • the planar shape when viewed from the normal direction of the second main surface 10B is a polygonal shape suitable for tiling, for example, a quadrangular shape.
  • the light receiving device 1 includes a semiconductor layer 10.
  • the semiconductor layer 10 has a first main surface 10A, a second main surface 10B facing the first main surface 10A, and an end surface 10C.
  • FIG. 2 illustrates an example of a planar configuration of the second main surface 10B of the light receiving device 1 of FIG.
  • FIG. 3 illustrates an example of a planar configuration of the first main surface 10A of the light receiving device 1 of FIG. 10
  • a of 1st main surfaces are the surfaces on the opposite side to the 2nd main surface 10B in the semiconductor layer 10, and comprise the interface with the below-mentioned insulating layer 20.
  • the end surface 10C is a cut surface formed by dicing or dry etching, and is in contact with the outer edges of the first main surface 10A and the second main surface 10B.
  • the light receiving device 1 further includes an insulating layer 20, a wiring layer 30, and a plurality of solder bumps 40 on the first main surface 10 ⁇ / b> A side of the semiconductor layer 10.
  • the insulating layer 20 and the wiring layer 30 are layers formed using the first main surface 10A as a base surface in the manufacturing process.
  • the semiconductor layer 10 has a semiconductor substrate 11 and an epitaxial growth layer 12.
  • the semiconductor substrate 11 is a substrate constituting the surface of the second main surface 10B, and is a part of a formation substrate when the epitaxial growth layer 12 is formed in the manufacturing process.
  • the semiconductor substrate 11 is made of, for example, single crystal silicon.
  • the semiconductor substrate 11 is a substrate obtained by thinning the substrate used for forming the epitaxial growth layer 12 in the manufacturing process by etching such as CMP (Chemical Mechanical Polishing) or a grinder.
  • CMP Chemical Mechanical Polishing
  • the second main surface 10B is a light incident surface. Therefore, the light receiving device 1 is a back-illuminated light receiving device.
  • the semiconductor substrate 11 is made of a p-type semiconductor having a p-type impurity concentration relatively higher than that of a pixel region 13 described later.
  • the semiconductor substrate 11 is assumed to be composed of a p-type semiconductor.
  • the semiconductor substrate 11 can be omitted as necessary.
  • it is preferable that an epitaxial growth layer doped with a high concentration impurity or a layer doped with a high concentration impurity is provided on the second main surface 10B.
  • the semiconductor substrate 11 is omitted, the surface of the epitaxial growth layer 12 opposite to the first main surface 10A is the second main surface 10B.
  • the epitaxial growth layer 12 is a substrate constituting the surface of the first main surface 10A.
  • the epitaxial growth layer 12 is formed in contact with the semiconductor substrate 11.
  • the epitaxial growth layer 12 is an epitaxial crystal growth layer formed on the semiconductor substrate 11 during the manufacturing process.
  • the epitaxial growth layer 12 is formed of, for example, single crystal silicon.
  • the epitaxial growth layer 12 has a pixel region 13 on the first main surface 10 ⁇ / b> A of the semiconductor layer 10.
  • the pixel region 13 includes a plurality of light receiving pixels Px that receive light incident from the second main surface 10B side.
  • FIG. 1 illustrates a case where the pixel region 13 includes four light receiving pixels Px.
  • the pixel area 13 may include five or more light receiving pixels Px. Since the semiconductor substrate 11 and the low impurity region 12A are provided between each light receiving pixel Px and the second main surface 10B, the light incident on the second main surface 10B is incident on each light receiving pixel Px. In the meantime, it is not blocked by an element isolation region or a light shielding region.
  • the pixel region 13 is formed by diffusing a high-concentration p-type impurity in the epitaxial growth layer 12 and diffusing a high-concentration n-type impurity in the epitaxial growth layer 12. N-type impurity regions.
  • the region other than the pixel region 13 is composed of a p-type semiconductor having a relatively low p-type impurity concentration as compared with the p-type impurity region in the pixel region 13.
  • a region other than the pixel region 13 in the epitaxial growth layer 12 is referred to as a low impurity region 12A.
  • the low impurity region 12A is provided in the entire gap between the second main surface 10B and the pixel region 13.
  • Each light receiving pixel Px has one or a plurality of photocurrent extraction regions 14 and a circuit region 15 electrically connected to the one or more photocurrent extraction regions 14.
  • FIG. 3 illustrates a case where each light receiving pixel Px has one photocurrent extraction region 14 and a circuit region 15 electrically connected to one photocurrent extraction region 14.
  • the photocurrent extraction region 14 is for extracting a photocurrent from a depletion region that generates a signal charge (photocurrent) having a charge amount corresponding to the amount of light (incident light) incident from the second main surface 10B side. .
  • the photocurrent extraction region 14 has an anode region 14A and a cathode region 14B on the first main surface 10A.
  • the anode region 14A is made of the same conductivity type semiconductor as the low impurity region 12A.
  • the anode region 14A is composed of a p-type semiconductor having a relatively high p-type impurity concentration compared to the low impurity region 12A.
  • the cathode region 14B is made of a semiconductor having a conductivity type different from that of the low impurity region 12A.
  • the anode region 14A and the cathode region 14B are in contact with each other on the first main surface 10A, and constitute a PN type photodiode.
  • a depletion region is formed in the low impurity region 12A. While voltage is applied to the anode region 14A and the cathode region 14B, the depletion region generally extends partially to the low impurity region 12A.
  • the depletion region is a region in which electrons and holes as carriers are hardly present, and converts light incident from the second main surface 10B side into a photocurrent.
  • the cathode region 14B has a ring shape surrounding the circuit region 15 on the first main surface 10A.
  • the anode region 14A is formed so as to surround the cathode region 14B and the circuit region 15 on the first main surface 10A.
  • the anode region 14A is in contact with the outer edge of the cathode region 14B on the first main surface 10A.
  • the photocurrent extraction region 14 has a ring shape surrounding the circuit region 15 on the first main surface 10A.
  • the photocurrent extraction region 14 is provided on the outer edge of the light receiving pixel Px.
  • the photocurrent extraction region 14 provided at the outer edge of the light receiving pixel Px corresponds to a specific example of “first photocurrent extraction region” of the present disclosure.
  • FIG. 5 shows an example of a circuit configuration of the light receiving device 1 of FIG.
  • the circuit region 15 includes a conversion circuit 15A that converts the photocurrent output from one or more photocurrent extraction regions 14 into a voltage signal, and a buffer circuit 15B that is connected to the output of the conversion circuit 15A. Of these, at least the conversion circuit 15A is included.
  • FIG. 5 illustrates a case where the circuit area 15 includes a conversion circuit 15A and a buffer circuit 15B.
  • the circuit area 15 outputs the output signal Vout through the conversion circuit 15A and the buffer circuit 15B.
  • the circuit region 15 may have a switch element at the output end of the buffer circuit 15B.
  • the circuit region 15 may include a circuit that reduces noise included in the output signal Vout.
  • the circuit region 15 is formed on the first main surface 10A.
  • the photocurrent extraction region 14 has an anode region 14A and a cathode region 14B on the first main surface 10A.
  • the anode region 14A and the cathode region 14B are formed on the first main surface 10A.
  • One buffer circuit 15B may not be provided in each circuit region 15. However, in this case, for example, the buffer area 15B may be provided only in one circuit area 15 in the light receiving device 1, and the buffer circuit 15B may be shared by all the light receiving pixels Px in the light receiving device 1.
  • the pixel region 13 includes a plurality of separation regions 16 and a plurality of separation regions 17 in addition to the plurality of light receiving pixels Px.
  • a plurality of separation regions 16 are provided for each light receiving pixel Px.
  • Each isolation region 16 is configured to electrically isolate the low impurity region 12A and the circuit region 15 from each other in the thickness direction and the in-plane direction of the epitaxial growth layer 12.
  • Each isolation region 16 is formed between the low impurity region 12 ⁇ / b> A and the circuit region 15 in the thickness direction and in-plane direction of the epitaxial growth layer 12.
  • Each isolation region 16 is constituted by an impurity region containing impurities having the same conductivity type as that of the low impurity region 12A at a higher concentration than the low impurity region 12A.
  • the separation region 16 corresponds to a specific example of “a separation region” of the present disclosure.
  • the pixel region 13 further has a plurality of separation regions 18.
  • the plurality of isolation regions 18 are configured to electrically isolate two light receiving pixels Px adjacent to each other in the in-plane direction of the epitaxial growth layer 12.
  • Each separation region 18 is formed between two light receiving pixels Px adjacent to each other in the pixel region 13.
  • Each isolation region 18 is formed between the anode region 14A and the low impurity region 12A in the thickness direction of the epitaxial growth layer 12, for example.
  • Each isolation region 18 is constituted by an impurity region containing an impurity having the same conductivity type as that of the low impurity region 12A at a concentration equivalent to that of the anode region 14A.
  • the light receiving device 1 further includes an insulating layer 20 in contact with the first main surface 10A of the semiconductor layer 10, a wiring layer 30 in contact with the insulating layer 20, and a plurality of solder bumps 40.
  • the plurality of solder bumps 40 are formed on the surface of the wiring layer 30, and are provided for each wiring 34 (described later) in the wiring layer 30.
  • the insulating layer 20 is an insulating layer in contact with the first main surface 10A, and is formed, for example, by forming an oxide film on the surface of the epitaxial growth layer 12 before the pixel region 13 is formed in the manufacturing process. It is.
  • the insulating layer 20 is provided with openings at locations facing the anode region 14A and the cathode region 14B.
  • An anode electrode 32 described later is electrically connected to the anode region 14 ⁇ / b> A through the opening of the insulating layer 20.
  • a cathode electrode 33 described later is electrically connected to the cathode region 14B through the opening of the insulating layer 20.
  • the wiring layer 30 is provided on the first main surface 10 ⁇ / b> A side in the positional relationship with the semiconductor layer 10.
  • the wiring layer 30 includes a plurality of anode electrodes 32, a plurality of cathode electrodes 33, a plurality of wirings 34, an interlayer insulating film 31, and a plurality of electrodes 35.
  • Each anode electrode 32, each cathode electrode 33, and each wiring 34 are embedded in the interlayer insulating film 31.
  • Each electrode 35 is formed on the surface of the interlayer insulating film 31 and has a role as a pad electrode for placing each solder bump 40.
  • Each anode electrode 32 is electrically connected to the anode region 14A through the opening of the insulating layer 20 as described above.
  • Each cathode electrode 33 is electrically connected to the cathode electrode 33 through the opening of the insulating layer 20 as described above.
  • a certain wiring 34 electrically connects the anode electrode 32 and the solder bump 40 to each other. Another wiring 34 electrically connects one input terminal of the circuit region 15 to the cathode region 14B. Another wiring 34 electrically connects the other input terminal of the circuit region 15 and the solder bump 40 to each other. Another wiring 34 electrically connects the output terminal of the circuit region 15 and the solder bump 40 to each other.
  • a semiconductor substrate provided with the epitaxial growth layer 12 on the semiconductor substrate 11 is prepared.
  • an oxide film is formed, and the insulating layer 20 is formed.
  • separation regions 16 and 18 and an anode region 14A are formed. Specifically, by performing p-type ion implantation, a plurality of island-shaped separation regions 16, lattice-shaped separation regions 18 and anode regions 14A are formed.
  • the cathode region 14B is formed. Specifically, by performing n-type ion implantation, a plurality of annular cathode regions 14B are formed so as to surround the separation region 16 and to contact the inner edge of the anode region 14A. In this way, one annular photocurrent extraction region 14 is formed in each light receiving pixel Px. Next, a circuit region 15 is formed in a region surrounded by each isolation region 17 in the epitaxial growth layer 12.
  • metal wiring is formed. Specifically, for example, an anode electrode 32 and a plurality of cathode electrodes 33 are formed on the insulating layer 20. At this time, a plurality of cathode electrodes 33 are assigned to each cathode region 14B. Next, an interlayer insulating film 31, a plurality of wirings 34, and a plurality of electrodes 35 are formed. In this way, the wiring layer 30 is formed on the insulating layer 20.
  • the semiconductor substrate 11 is thinned.
  • element isolation is performed. Specifically, for example, after a support substrate is bonded to the semiconductor substrate 11, dicing or dry etching is performed on a predetermined portion of the semiconductor substrate 11 to make the semiconductor substrate 11 a predetermined size. Isolate it. In this way, a plurality of light receiving devices 1 having the end face 10C are formed. Next, solder bumps 40 are formed on each electrode 35. In this way, the light receiving device 1 of FIG. 1 is manufactured.
  • the pixel region Px is provided on the surface (first main surface 10A) opposite to the light receiving surface (second main surface 10B) in the semiconductor layer 10, and further, the second main surface 10B and A low impurity region (semiconductor substrate 11 and low impurity region 12A) is provided in the entire gap with the pixel region Px.
  • the low impurity region semiconductor substrate 11 and low impurity region 12A
  • a structure specifically, a pixel circuit, A light shielding layer, an element isolation layer, etc.
  • the light incident from the second main surface 10B side is incident on the low impurity region (semiconductor substrate 11 and low impurity region 12A) extending over the entire second main surface 10B without being scattered by the structure that prevents light reception.
  • the photocurrent is converted into a photocurrent in a depletion region formed in the low impurity region (semiconductor substrate 11 and low impurity region 12A) by applying a voltage to each photocurrent extraction region.
  • the pixel region 13 is provided in the semiconductor layer 10, a substrate dedicated to the pixel region 13 is not necessary. Therefore, an increase in manufacturing cost can be suppressed while improving sensitivity.
  • each isolation region 16 is configured to electrically isolate the low impurity region 12A and the circuit region 15 from each other. Thereby, even when the circuit region 15 and the photocurrent extraction region 14 are formed in the common semiconductor layer 10, the inflow of the photocurrent into the circuit region 15 is suppressed. As a result, the sensitivity can be improved.
  • the isolation region 16 is constituted by an impurity region containing impurities having the same conductivity type as that of the low impurity region 12A in a higher concentration than the low impurity region 12A.
  • the separation region 16 can be formed together when forming the anode region 14A and the separation region 18 in the manufacturing process. Accordingly, since it is not necessary to add a process for forming the isolation region 16, an increase in manufacturing cost can be suppressed.
  • the photocurrent extraction region 14 is provided on the outer edge of the light receiving pixel Px, and has a ring shape surrounding the circuit region 15 on the first main surface 10A. Since the photocurrent extraction region 14 has a ring shape, the potential spreads in the vicinity of the second main surface 10B, and photocharge can be extracted over the entire surface. Thereby, it is possible to ensure a sufficient area as the circuit region 15 while ensuring high light receiving sensitivity.
  • the circuit area 15 includes at least the conversion circuit 15A among the conversion circuit 15A and the amplifier circuit 15B.
  • the distance between the photocurrent extraction region 14 and the conversion circuit 15A can be shortened, so that the influence of noise can be reduced.
  • S / N can be improved.
  • a wiring layer 30 including a plurality of wirings 34 electrically connected to each light receiving pixel Px is provided on the first main surface 10A side, and is further electrically connected to the plurality of wirings 34.
  • a plurality of solder bumps 40 are provided on the surface of the wiring layer 30.
  • the gap between the light receiving devices 1 adjacent to each other can be narrowed.
  • the plurality of light receiving devices 1 can be spread on the wiring board or the like with almost no gap.
  • a so-called surface type photodiode having a cathode surface as a light receiving surface when a photodiode is provided on the light receiving surface, it is necessary to draw out a terminal from the end surface or the light receiving surface side. It is virtually impossible to tile a plurality of light receiving devices (for example, in a 3 ⁇ 3 matrix).
  • the FPC is pulled out from the upper surface of the light-receiving device 1, and thus, for example, a large light-receiving formed by tiling a plurality of modules
  • the light receiving device 1 can be applied to a module in the panel.
  • the light receiving device 1 may include a plurality of photocurrent extraction regions 14 in each light receiving pixel Px, for example, as shown in FIGS.
  • the photocurrent extraction region 14 which is one of the plurality of photocurrent extraction regions 14 is provided on the outer edge of the light receiving pixel Px, and has a ring shape surrounding the circuit region 15 on the first main surface 10A.
  • the plurality of photocurrent extraction regions 14 one or a plurality of photocurrent extraction regions 14 other than the photocurrent extraction region 14 provided at the outer edge of the light receiving pixel Px (hereinafter referred to as “second photocurrent extraction region”). .) Is provided in a region surrounded by the circuit region 15 on the first main surface 10A as shown in FIGS. 6 to 9, for example.
  • two photocurrent extraction regions 14 are provided in each light receiving pixel Px.
  • the circuit region 15 has a ring shape in the first main surface 10 ⁇ / b> A, and a second photocurrent extraction region is provided in a region surrounded by the ring-shaped circuit region 15.
  • the anode region 14 ⁇ / b> A has a ring shape formed along the inner edge of the circuit region 15.
  • the anode region 14A has a ring shape surrounding the cathode region 14B on the first main surface 10A.
  • the cathode region 14B has an island shape in contact with the inner edge of the annular anode region 14A in the second photocurrent extraction region.
  • the second photocurrent extraction region has a rectangular shape.
  • the second photocurrent extraction region is circular or elliptical.
  • the cathode region 14B is widely provided. Thereby, the spread of the potential is promoted, and a back surface structure with no sensitivity reduction can be formed.
  • each photocurrent extraction region 14 is provided in each light receiving pixel Px.
  • the circuit region 15 has a plurality of openings in the first main surface 10 ⁇ / b> A, and a second photocurrent extraction region is provided in each opening of the circuit region 15.
  • the anode region 14 ⁇ / b> A has a ring shape formed along the inner edge of the circuit region 15.
  • the anode region 14A has a ring shape surrounding the cathode region 14B on the first main surface 10A.
  • the cathode region 14B has an island shape in contact with the inner edge of the annular anode region 14A in the second photocurrent extraction region.
  • the second photocurrent extraction region has a rectangular shape.
  • each second photocurrent extraction region may be circular or elliptical.
  • the cathode region 14B is provided relatively wide, and the circuit region 15 is also provided relatively wide. Therefore, the degree of freedom in design can be increased.
  • the light-receiving device 1 in FIG. 9 is the same as the light-receiving device 1 in FIG. 6 except that the cathode region 14B in the second photocurrent extraction region has an annular shape that contacts the inner edge of the annular anode region 14A in the second photocurrent extraction region. It corresponds to. That is, in the light receiving device 1 of FIG. 9, the anode region 14 ⁇ / b> A has a ring shape formed along the inner edge of the circuit region 15 in the second photocurrent extraction region. In each second photocurrent extraction region, the cathode region 14B has an annular shape that contacts the inner edge of the annular anode region 14A in the second photocurrent extraction region. In the light receiving device 1 of FIG.
  • the circuit region 15 is also provided in the region surrounded by the cathode region 14B in the second photocurrent extraction region.
  • the cathode region 14B is relatively wide, and the circuit region 15 is also relatively wide. Therefore, the degree of freedom in design can be increased.
  • FIG. 10 illustrates an example of a schematic configuration of the imaging apparatus 2.
  • the imaging device 2 uses the above-described light receiving device 1 for an imaging unit 21 described later, and is preferably used as an imaging device for medical use and other nondestructive inspections such as baggage inspection.
  • FIG. 11 illustrates an example of a cross-sectional configuration of the imaging unit 21.
  • the imaging device 2 includes, for example, an imaging unit 21 on a substrate, and a control unit that controls the imaging unit 21 in a peripheral region of the imaging unit 21.
  • the control unit includes, for example, a row scanning unit 22, an A / D conversion unit 23, and a system control unit 24.
  • the control unit corresponds to a specific example of a “control unit” of the present technology.
  • the imaging unit 21 is an imaging area in the imaging device 2.
  • the imaging unit 21 has a plurality of light receiving devices 1 arranged in a matrix. Each light receiving device 1 outputs an electrical signal (output signal Vout) used for generating a captured image to a signal line DTL (described later).
  • the imaging unit 21 includes, for example, a wiring board 41, a plurality of light receiving devices 1, and a sensor protective layer 42. Each light receiving device 1 is mounted in a matrix on the wiring substrate 41 via a plurality of solder bumps 40. Each light receiving device 1 is disposed on the wiring board 41 with the bottom surface (first main surface 10 ⁇ / b> A) side closer to the wiring board 41.
  • each light receiving device 1 is surrounded by another plurality of light receiving devices 1.
  • the upper surface (second main surface 10 ⁇ / b> B) of each light receiving device 1 is a square, and among the plurality of light receiving devices 1, each light receiving device 1 arranged at a location other than the outer edge of the imaging unit 21 is The state in which the sides of the upper surface (second main surface 10B) are arranged so as to face each other is illustrated.
  • the wiring substrate 41 includes a support substrate 41A, a wiring layer 41B, and a plurality of pad electrodes 41C.
  • the support substrate 41A is a substrate for supporting the plurality of light receiving devices 1, and is configured by, for example, a resin substrate, a glass substrate, or a semiconductor substrate (for example, a silicon substrate).
  • the support substrate 41 ⁇ / b> A preferably has a linear expansion coefficient comparable to that of the semiconductor substrate 11.
  • the wiring layer 41B is for electrically connecting each light receiving device 1 and the control unit of the imaging device 2 to each other.
  • the wiring layer 41B includes a plurality of signal lines DTL and a plurality of gate lines GTL that intersect (for example, intersect with) each signal line DTL.
  • the wiring layer 41B further includes a plurality of power supply voltage lines VCC extending in a direction substantially parallel to each signal line DTL, a plurality of ground lines GND extending in a direction substantially parallel to each signal line DTL, and each signal And a plurality of reference voltage lines REF extending in a direction substantially parallel to the line DTL.
  • the plurality of light receiving devices 1 are disposed, for example, at locations where each signal line DTL and each gate line GTL intersect each other.
  • Each signal line DTL is a wiring for reading a signal charge from the light receiving device 1.
  • the gate line GTL is a wiring for inputting a control signal for controlling on / off of various switch elements included in the circuit region 15 to the circuit region 15.
  • the bias line BSL is, for example, a wiring for determining the potential of the anode electrode 32 (anode potential) and the reference potential of the conversion circuit 15A.
  • Each signal line DTL extends in the vertical direction, for example.
  • the plurality of pad electrodes 41C are for electrically connecting each light receiving device 1 and the wiring layer 41B to each other, and further for restricting the mounting position of each light receiving device 1 on the wiring board 41. It is also a thing.
  • Each light receiving device 1 is connected to a plurality of pad electrodes 41 ⁇ / b> C via a plurality of solder bumps 40.
  • Each light receiving device 1 is positioned at a predetermined position on the wiring board 41 with high accuracy by utilizing a self-alignment effect generated by the surface tension of the melted solder bumps 40 in the manufacturing process.
  • the sensor protection layer 42 protects the plurality of light receiving devices 1.
  • the sensor protective layer 42 covers at least the end surface 10C of each light receiving device 1, and also covers the second main surface 10B and the first main surface 10A of each light receiving device 1 as necessary.
  • the sensor protection layer 42 is integrally formed so as to cover the end face 10C and the first main surface 10A of each light receiving device 1, and the upper surface (second main surface 10B) of each light receiving device 1 has a common sensor protection. Covered by layer 42.
  • the upper surface of the sensor protection layer 42 is flat over the entire surface of the imaging unit 21 that is an imaging area in the imaging device 2.
  • the sensor protective layer 42 is a halogen-based resin layer.
  • the halogen-based resin layer is made of, for example, a chlorine-based resin.
  • the sensor protective layer 42 is preferably configured to contain 1000 ppm or more of chlorine.
  • the halogen-based resin layer used for the sensor protective layer 42 preferably has high light transmittance with respect to light incident on the second main surface 10B, and has resistance to radiation. preferable.
  • the sensor protective layer 42 is in direct contact with the end face 10 ⁇ / b> C of each light receiving device 1.
  • the sensor protective layer 42 is formed by, for example, forming a film using a vapor deposition polymerization method.
  • the imaging unit 21 further includes a visible light conversion layer 43 on the second main surface 10B side of each light receiving device 1 in a positional relationship with each light receiving device 1.
  • the visible light conversion layer 43 is provided on the sensor protection layer 42.
  • the visible light conversion layer 43 converts the wavelength of radiation incident from the outside into the sensitivity range of each light receiving device 1, and specifically converts the radiation incident from the outside into visible light.
  • the visible light conversion layer 43 is made of, for example, a phosphor that converts radiation such as ⁇ rays, ⁇ rays, ⁇ rays, or X rays into visible light.
  • Examples of such phosphors include those obtained by adding thallium (Tl) or sodium (Na) to cesium iodide (CsI), and those obtained by adding thallium (Tl) to sodium iodide (NaI).
  • Examples of the phosphor include those obtained by adding europium (Eu) to cesium bromide (CsBr) and those obtained by adding europium (Eu) to cesium fluoride bromide (CsBrF).
  • the visible light conversion layer 43 is disposed on the surface of the sensor protection layer 42 that covers the second main surface 10 ⁇ / b> B of each light receiving device 1.
  • the visible light conversion layer 43 is formed, for example, with the surface of the sensor protective layer 42 used as a crystal growth surface, and is formed, for example, by forming a film using a vacuum evaporation method.
  • the imaging unit 21 further includes a flattening layer 44 for protecting the visible light conversion layer 43 and flattening the upper surface.
  • the planarization layer 44 is made of, for example, the same material as the sensor protection layer 42 or the same material.
  • the planarization layer 44 may be made of a material different from that of the sensor protective layer 42.
  • the imaging unit 21 further includes a reflective layer 45 on the upper surface of the planarization layer 44.
  • the reflective layer 45 has a role of returning light emitted from the visible light conversion layer 43 in the direction opposite to the light receiving device 1 to the light receiving device 1 side.
  • the reflective layer 45 may be made of a moisture impermeable material that does not substantially transmit moisture. In this case, the reflective layer 45 can prevent moisture from intervening in the visible light conversion layer 43.
  • the reflective layer 45 is made of thin glass, for example.
  • the reflective layer 45 may be omitted.
  • the reflective structure provided on the visible light conversion layer 43 may have a configuration other than the reflective layer 45 as described above, and may be configured by, for example, an Al vapor deposition film.
  • the visible light conversion layer 43 converts the radiation into visible light.
  • a reverse bias voltage is applied to each light receiving device 1 from the peripheral circuit of the imaging device 2.
  • a signal charge (photocurrent) having a charge amount corresponding to (proportional to) the amount of incident light is generated.
  • the generated signal charge (photocurrent) is taken out in each photocurrent take-out area 14, converted into an output signal Vout by the circuit area 15, and drawn out to the signal line DTL.
  • the effect of the imaging device 2 will be described.
  • a plurality of light receiving devices 1 are used for the imaging unit 21. Thereby, it is possible to realize the imaging device 2 with high sensitivity while suppressing an increase in manufacturing cost.
  • the gap between the light receiving devices 1 adjacent to each other can be narrowed.
  • the plurality of light receiving devices 1 can be spread on the wiring board or the like with almost no gap.
  • the cathode region is a light receiving surface
  • the light receiving device 1 can be applied to a module in a large light receiving panel formed by the above.
  • the sensor protection layer 42 is a halogen-based resin layer, and is made of, for example, a chlorine-based resin. Further, the sensor protective layer 42 is in direct contact with the end face 10 ⁇ / b> C of each light receiving device 1.
  • the end face 10C is formed by being cut by dicing or dry etching as described above. For this reason, the crystal structure collapses to some extent on the end face 10C, and carriers (that is, dark current) are likely to be generated due to the crystal structure collapse. Since the sensor protective layer 42, which is a halogen-based resin layer, is in direct contact with the end face 10C of each light receiving device 1, carrier generation at the end face 10C can be suppressed. As a result, the sensitivity can be improved with a simple configuration. Therefore, an increase in manufacturing cost can be suppressed while improving sensitivity. Furthermore, when the sensor protective layer 42 is configured to contain 1000 ppm or more of chlorine, high X-ray resistance can be obtained.
  • the visible light conversion layer 43 is formed on the sensor protection layer 42.
  • FIG. 13 illustrates an example of a schematic configuration of the imaging system 3.
  • the imaging system 3 includes an imaging device 2 in which a plurality of light receiving devices 1 are used for the imaging unit 21.
  • the imaging system 3 includes, for example, an imaging device 2, an image processing unit 4, and a display device 5. Note that the display device 5 may be omitted as necessary.
  • the image processing unit 4 performs a predetermined process on the image data Dout obtained by the imaging device 2. Specifically, the image processing unit 4 performs a predetermined image process on the image data Dout, thereby displaying a display signal. D1 is generated. The display device 5 displays video based on the display signal D1 obtained by the image processing unit 4.
  • the component that has passed through the subject 200 out of the radiation irradiated from the radiation source 100 toward the subject 200 is detected by the imaging device 2.
  • the image processing unit 4 performs a predetermined process on the image data Dout obtained by being detected by the imaging device 2.
  • the obtained display signal D1 is output to the display device 5, and an image corresponding to the display signal D1 is displayed on the monitor screen of the display device 5.
  • a plurality of light receiving devices 1 are used in the imaging device 2. Therefore, a highly sensitive image can be obtained.
  • the imaging system 3 molds a three-dimensional object (not shown) based on an imaging signal (3D CAD (computer-aided design) signal) processed by the image processing unit 4. ) May be further provided.
  • the molding apparatus is, for example, a 3D printer.
  • the image processing unit 4 generates a 3D CAD signal by performing predetermined image processing on the imaging signal Dout.
  • the conductivity type of the semiconductor may be a conductivity type opposite to the above-described conductivity type.
  • the conductivity type of the semiconductor is described as p-type
  • the p-type is read as n-type
  • the semiconductor conductivity type is described as n-type
  • the n-type is changed. It may be read as p-type.
  • a pin structure may be applied instead of the pn structure.
  • this indication can take the following composition.
  • a pixel including a plurality of light-receiving pixels that receive light incident from the second main surface side on the first main surface of the semiconductor layer having a first main surface, a second main surface facing the first main surface, and an end surface. And a low impurity region having a relatively low impurity concentration compared to the pixel region, over the entire gap between the second main surface and the pixel region,
  • Each of the light receiving pixels is electrically connected to one or a plurality of photocurrent extraction regions having an anode region and a cathode region on the first main surface, and electrically isolated from the impurity regions and electrically isolated from the impurity regions.
  • a light receiving device is electrically connected to one or a plurality of photocurrent extraction regions having an anode region and a cathode region on the first main surface, and electrically isolated from the impurity regions and electrically isolated from the impurity regions.
  • the light receiving device includes an isolation region that electrically isolates the impurity region and the circuit region from each other between the impurity region and the circuit region.
  • the isolation region includes an impurity region containing an impurity having the same conductivity type as that of the impurity region at a higher concentration than the impurity region.
  • the first photocurrent extraction region which is one of the one or more photocurrent extraction regions, is provided on the outer edge of the light receiving pixel, and has a ring shape surrounding the circuit region on the first main surface.
  • each of the light receiving pixels has a plurality of the photocurrent extraction regions
  • one or a plurality of second photocurrent extraction regions other than the first photocurrent extraction region are provided in a region surrounded by the circuit region on the first main surface.
  • the cathode region has an island shape
  • the anode region has an annular shape surrounding the cathode region on the first main surface.
  • the cathode region and the anode region both have a ring shape surrounding a part of the circuit region on the first main surface.
  • Each circuit region includes at least the conversion circuit among a conversion circuit that converts the photocurrent output from the photocurrent extraction region into a voltage signal, and a buffer circuit connected to the output side of the conversion circuit. 1) thru
  • a wiring layer including a plurality of wirings electrically connected to each light receiving pixel is provided on the first main surface side, and a plurality of solder bumps provided for each wiring are provided on the surface of the wiring layer.
  • the light receiving device according to any one of (1) to (8).
  • the light receiving device wherein the resin layer is made of a chlorine-based resin.
  • a pixel region including a plurality of light receiving pixels that receive light, and a low impurity region having a relatively low impurity concentration over the entire gap between the second main surface and the pixel region,
  • Each of the light receiving pixels is electrically connected to one or a plurality of photocurrent extraction regions having an anode region and a cathode region on the first main surface, and electrically isolated from the impurity regions and electrically isolated from the impurity regions.
  • Each of the light receiving devices has a wiring layer including a plurality of wires electrically connected to the light receiving pixels on the first main surface side, and a plurality of solder bumps electrically connected to the plurality of wires.
  • Each said light-receiving device is mounted on the said wiring board via each said solder bump.
  • the imaging device as described in (12).
  • (14) The imaging device according to (13), wherein at least one of the plurality of light receiving devices is surrounded by the plurality of other light receiving devices.
  • Each of the light receiving devices further includes a halogen-based resin layer that is in direct contact with the entire end surface.
  • (12) The imaging device according to any one of (14).
  • Each said light-receiving device has a visible light conversion layer which converts a radiation into visible light on the said resin layer.
  • the imaging device as described in (16).
  • a pixel region including a plurality of light receiving pixels that receive light, and a low impurity region having a relatively low impurity concentration over the entire gap between the second main surface and the pixel region,
  • Each of the light receiving pixels is electrically connected to one or a plurality of photocurrent extraction regions having an anode region and a cathode region on the first main surface, and electrically isolated from the impurity regions and electrically isolated from the impurity regions.
  • an electronic device having a circuit area.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

本開示の一実施形態の受光装置は、半導体層の第1主面に、半導体層の第2主面側から入射する光を受光する複数の受光画素を含む画素領域を備えている。この受光装置は、さらに、第2主面と画素領域との間隙全体に、画素領域と比べて相対的に不純物濃度の低い低不純物領域を備えている。各受光画素は、第1主面にアノード領域およびカソード領域を有する1または複数の光電流取り出し領域と、各カソード領域と電気的に接続されるとともに上記不純物領域とは電気的に分離された回路領域とを有している。

Description

受光装置、撮像装置および電子機器
 本開示は、受光装置、撮像装置および電子機器に関する。
 従来では、各画素(受光画素)に光電変換領域を内蔵する撮像装置として、種々のものが提案されている。例えば特許文献1には、そのような光電変換領域を有する撮像装置の一例として、裏面照射型の撮像装置が挙げられている。
特開2014-192348号公報
 このような撮像装置では、常に、感度の向上が求められている。そこで、例えば、受光面から画素回路をなくし、受光面を有する画素基板の背後に、画素回路専用の基板を設けることが考えられる。このようにした場合には、受光面に占める、光電変換素子の割合を増やすことができるので、感度を向上させることができる。しかし、画素回路専用の基板を設けたことにより製造コストが大幅に上昇してしまうという問題があった。感度を向上させつつ、製造コストの大幅な増大を抑えることの可能な受光装置、撮像装置および電子機器を提供することが望ましい。
 本開示の一実施形態の受光装置は、第1主面、第1主面と対向する第2主面および端面を有する半導体層の第1主面に、第2主面側から入射する光を受光する複数の受光画素を含む画素領域を備えている。この受光装置は、さらに、第2主面と画素領域との間隙全体に、画素領域と比べて相対的に不純物濃度の低い低不純物領域を備えている。各受光画素は、第1主面にアノード領域およびカソード領域を有する1または複数の光電流取り出し領域と、各カソード領域と電気的に接続されるとともに上記不純物領域とは電気的に分離された回路領域とを有している。
 本開示の一実施形態の撮像装置は、配線基板と、配線基板上に行列状に実装された複数の受光装置とを備えている。各受光装置は、配線基板寄りの第1主面、第1主面と対向する第2主面および端面を有する半導体層の第1主面に、第2主面側から入射する光を受光する複数の受光画素を含む画素領域を有している。各受光装置は、さらに、第2主面と画素領域との間隙全体に、画素領域と比べて相対的に不純物濃度の低い低不純物領域を有している。各受光画素は、第1主面にアノード領域およびカソード領域を有する1または複数の光電流取り出し領域と、各カソード領域と電気的に接続されるとともに上記不純物領域とは電気的に分離された回路領域とを有している。
 本開示の一実施形態の電子機器は、撮像装置と、撮像装置で得られた画像データを処理する処理装置とを備えている。電子機器に設けられた撮像装置は、上記撮像装置と同一の構成要素を有している。
 本開示の一実施形態の受光装置、撮像装置および電子機器では、半導体層において、受光面(第2主面)とは反対側の面(第1主面)に画素領域が設けられており、さらに、受光面と画素領域との間隙全体に、低不純物領域が設けられている。このように、本開示では、受光面全体に低不純物領域が形成されており、受光を妨げる構造物(具体的には、画素回路、遮光層、素子分離層など)が受光面に存在しない。これにより、受光面側から入射した光は受光を妨げる構造物によってけられることなく、受光面全体に広がる低不純物領域に入射し、光電流に変換される。また、半導体層に画素領域が設けられているので、画素回路専用の基板が不要である。
 本開示の一実施形態の受光装置、撮像装置および電子機器によれば、半導体層に画素領域を設けるとともに、受光面側から入射した光が受光を妨げる構造物によってけられることなく、受光面全体に広がる低不純物領域に入射するようにしたので、感度を向上させつつ、製造コストの増大を抑えることができる。なお、本開示の効果は、ここに記載された効果に必ずしも限定されず、本明細書中に記載されたいずれの効果であってもよい。
本開示の第1の実施形態に係る受光装置の断面構成の一例を表す図である。 図1の受光装置における第2主面の平面構成の一例を表す図である。 図1の受光装置における第1主面の平面構成の一例を表す図である。 図1の受光装置内の各要素におけるキャリア極性の一例を表す図である。 図1の受光装置における回路構成の一例を表す図である。 図1の受光装置における第1主面の平面構成の一例を表す図である。 図1の受光装置における第1主面の平面構成の一例を表す図である。 図1の受光装置における第1主面の平面構成の一例を表す図である。 図1の受光装置における第1主面の平面構成の一例を表す図である。 本開示の第2の実施形態に係る撮像装置の概略構成の一例を表す図である。 図10の撮像部の断面構成の一例を表す図である。 本開示の第3の実施形態に係る撮像システムの概略構成の一例を表す図である。
 以下、本開示を実施するための形態について、図面を参照して詳細に説明する。なお、説明は以下の順序で行う。

 1.第1の実施の形態(受光装置)
 2.第1の実施の形態の変形例(受光装置)
 3.第2の実施の形態(撮像装置)
 4.第3の実施の形態(撮像システム)
 5.第3の実施の形態の変形例(撮像システム)
<1.第1の実施の形態>
[構成]
 本開示の第1の実施の形態に係る受光装置1について説明する。図1は、受光装置1の断面構成の一例を表したものである。受光装置1は、上面である第2主面10Bに入射する光を受光するものである。受光装置1は、第2主面10Bと対向する裏面を有しており、その裏面に複数の半田バンプ40を備えたチップ状の素子である。つまり、受光装置1は、外部と電気的に接続する機構を裏面に備えており、上面である第2主面10Bや、側面には備えていない。受光装置1では、第2主面10Bの法線方向から眺めたときの平面形状が、タイリングに適した多角形状となっており、例えば、四角形状となっている。
 受光装置1は、半導体層10を備えている。半導体層10は、第1主面10Aと、第1主面10Aと対向する第2主面10Bと、端面10Cとを有している。図2は、図1の受光装置1の第2主面10Bの平面構成の一例を表したものである。図3は、図1の受光装置1の第1主面10Aの平面構成の一例を表したものである。第1主面10Aは、半導体層10における、第2主面10Bとは反対側の表面であり、後述の絶縁層20との界面を構成している。端面10Cは、ダイシングもしくはドライエッチングにより形成された切断面であり、第1主面10Aおよび第2主面10Bの外縁に接している。受光装置1は、さらに、半導体層10の第1主面10A側に、絶縁層20、配線層30および複数の半田バンプ40を備えている。絶縁層20および配線層30は、製造過程において、第1主面10Aを下地面として形成された層である。半導体層10は、半導体基板11およびエピタキシャル成長層12を有している。
 半導体基板11は、第2主面10Bの表面を構成する基板であり、製造過程において、エピタキシャル成長層12を形成する際の形成基板の一部である。半導体基板11は、例えば、単結晶シリコンによって形成されている。半導体基板11は、製造過程においてエピタキシャル成長層12の形成に用いられた基板を、CMP(Chemical Mechanical Polishing)などのエッチングやグラインダにより薄板化した基板である。受光装置1では、第2主面10Bが光入射面となっている。従って、受光装置1は、裏面照射型の受光装置である。図1では、受光装置1の裏面である第2主面10Bが上面となるように、受光装置1の断面が示されている。半導体基板11は、例えば、図4に示したように、後述の画素領域13と比べて相対的にp型の不純物濃度の高いp型半導体で構成されている。本実施の形態では、半導体基板11は、p型半導体で構成されているものとする。半導体基板11は、必要に応じて省略され得る。この場合は、第2主面10Bに、高濃度の不純物をドープしたエピタキシャル成長層や、高濃度の不純物をドープした層が設けられていることが好ましい。半導体基板11が省略されている場合には、エピタキシャル成長層12における、第1主面10Aとは反対側の表面が第2主面10Bとなる。
 エピタキシャル成長層12は、第1主面10Aの表面を構成する基板である。エピタキシャル成長層12は、半導体基板11に接して形成されている。エピタキシャル成長層12は、製造過程において、半導体基板11上に形成されたエピタキシャル結晶成長層である。エピタキシャル成長層12は、例えば、単結晶シリコンによって形成されている。
 エピタキシャル成長層12は、半導体層10の第1主面10Aに画素領域13を有している。画素領域13は、第2主面10B側から入射する光を受光する複数の受光画素Pxを含んでいる。図1には、画素領域13が4つの受光画素Pxを含んでいる場合が例示されている。画素領域13は、5つ以上の受光画素Pxを含んでいても構わない。各受光画素Pxと、第2主面10Bとの間には、半導体基板11および低不純物領域12Aが設けられているので、第2主面10Bに入射した光が各受光画素Pxへ入射するまでの間に素子分離領域や遮光領域などによって遮られることはない。
 画素領域13は、エピタキシャル成長層12に対して高濃度のp型不純物を拡散させることにより形成されたp型不純物領域と、エピタキシャル成長層12に対して高濃度のn型不純物を拡散させることにより形成されたn型不純物領域とを含んでいる。エピタキシャル成長層12のうち、画素領域13以外の領域は、画素領域13内のp型不純物領域と比べて相対的にp型の不純物濃度の低いp型半導体で構成されている。以下では、エピタキシャル成長層12のうち、画素領域13以外の領域を低不純物領域12Aと称する。低不純物領域12Aは、第2主面10Bと画素領域13との間隙全体に設けられている。
 各受光画素Pxは、1または複数の光電流取り出し領域14と、1または複数の光電流取り出し領域14と電気的に接続された回路領域15とを有している。図3には、各受光画素Pxが1つの光電流取り出し領域14と、1つの光電流取り出し領域14と電気的に接続された回路領域15とを有している場合が例示されている。
 光電流取り出し領域14は、第2主面10B側から入射する光(入射光)の光量に応じた電荷量の信号電荷(光電流)を生成する空乏領域から光電流を取り出すためのものである。光電流取り出し領域14は、第1主面10Aにアノード領域14Aおよびカソード領域14Bを有している。アノード領域14Aは、低不純物領域12Aと同一の導電型の半導体で構成されている。アノード領域14Aは、低不純物領域12Aと比べて相対的にp型の不純物濃度の高いp型半導体で構成されている。カソード領域14Bは、低不純物領域12Aとは異なる導電型の半導体で構成されている。アノード領域14Aおよびカソード領域14Bは、第1主面10Aにおいて互いに接しており、PN型のフォトダイオードを構成している。アノード領域14Aおよびカソード領域14Bへの電圧印加によって、低不純物領域12Aには空乏領域が形成される。アノード領域14Aおよびカソード領域14Bへの電圧印加がなされている間、空乏領域は、概ね、低不純物領域12Aに部分的に広がっている。空乏領域は、キャリアである電子や正孔がほとんど存在しない領域であり、第2主面10B側から入射する光を光電流に変換する。
 カソード領域14Bは、第1主面10Aにおいて回路領域15を囲む環形状となっている。アノード領域14Aは、第1主面10Aにおいてカソード領域14Bおよび回路領域15を囲むように形成されている。アノード領域14Aは、第1主面10Aにおいてカソード領域14Bの外縁と接している。光電流取り出し領域14は、第1主面10Aにおいて回路領域15を囲む環形状となっている。各受光画素Pxにおいて、光電流取り出し領域14は、受光画素Pxの外縁に設けられている。受光画素Pxの外縁に設けられた光電流取り出し領域14は、本開示の「第1光電流取り出し領域」の一具体例に対応する。
 図5は、図1の受光装置1の回路構成の一例を表したものである。各受光画素Pxにおいて、回路領域15は、1または複数の光電流取り出し領域14から出力された光電流を電圧信号に変換する変換回路15Aと、変換回路15Aの出力に接続されたバッファ回路15Bのうち、少なくとも変換回路15Aを含んで構成されている。図5には、回路領域15が変換回路15Aおよびバッファ回路15Bを含んで構成されている場合が例示されている。回路領域15は、変換回路15Aやバッファ回路15Bを経て、出力信号Voutを出力する。回路領域15は、バッファ回路15Bの出力端にスイッチ素子を有していてもよい。回路領域15は、出力信号Voutに含まれるノイズを低減する回路を含んでいてもよい。各受光画素Pxにおいて、回路領域15は、第1主面10Aに形成されている。光電流取り出し領域14は、第1主面10Aにアノード領域14Aおよびカソード領域14Bを有している。各受光画素Pxにおいて、アノード領域14Aおよびカソード領域14Bは、第1主面10Aに形成されている。なお、バッファ回路15Bが各回路領域15に1つずつ設けられていなくてもよい。ただし、その場合には、例えば、受光装置1内の1つの回路領域15にだけバッファ領域15Bを設け、そのバッファ回路15Bを受光装置1内の全ての受光画素Pxで共有してもよい。
 画素領域13は、複数の受光画素Pxの他に、複数の分離領域16と、複数の分離領域17とを有している。複数の分離領域16は、受光画素Pxごとに1つずつ設けられている。各分離領域16は、エピタキシャル成長層12の厚さ方向および面内方向において、低不純物領域12Aと回路領域15とを互いに電気的に分離するように構成されている。各分離領域16は、エピタキシャル成長層12の厚さ方向および面内方向において、低不純物領域12Aと回路領域15との間に形成されている。各分離領域16は、低不純物領域12Aと同一導電型の不純物を、低不純物領域12Aよりも高濃度に含む不純物領域によって構成されている。分離領域16が、本開示の「分離領域」の一具体例に相当する。
 画素領域13は、さらに、複数の分離領域18を有している。複数の分離領域18は、エピタキシャル成長層12の面内方向において互いに隣接する2つの受光画素Pxを互いに電気的に分離するように構成されている。各分離領域18は、画素領域13のうち、互いに隣接する2つの受光画素Pxの間に形成されている。各分離領域18は、例えば、エピタキシャル成長層12の厚さ方向において、アノード領域14Aと低不純物領域12Aとの間に形成されている。各分離領域18は、低不純物領域12Aと同一導電型の不純物を、アノード領域14Aと同等の濃度で含む不純物領域によって構成されている。
 受光装置1は、さらに、半導体層10の第1主面10Aに接する絶縁層20と、絶縁層20に接する配線層30と、複数の半田バンプ40とを備えている。複数の半田バンプ40は、配線層30の表面に形成されており、配線層30内の配線34(後述)ごとに設けられている。
 絶縁層20は、第1主面10Aに接する絶縁性の層であり、例えば、製造過程において、画素領域13形成前のエピタキシャル成長層12の表面に例えば酸化膜を製膜することにより形成されたものである。絶縁層20には、アノード領域14Aやカソード領域14Bと対向する箇所に開口が設けられている。後述のアノード電極32が絶縁層20の開口を介してアノード領域14Aと電気的に接続されている。後述のカソード電極33が絶縁層20の開口を介してカソード領域14Bと電気的に接続されている。
 配線層30は、半導体層10との位置関係において第1主面10A側に設けられている。配線層30は、複数のアノード電極32、複数のカソード電極33、複数の配線34、層間絶縁膜31および複数の電極35を有している。各アノード電極32、各カソード電極33および各配線34は、層間絶縁膜31に埋め込まれている。各電極35は、層間絶縁膜31の表面に形成されており、各半田バンプ40を乗せるためのパッド電極としての役割を有している。各アノード電極32は、上述したように、絶縁層20の開口を介してアノード領域14Aと電気的に接続されている。各カソード電極33は、上述したように、絶縁層20の開口を介してカソード電極33と電気的に接続されている。
 ある配線34は、アノード電極32と半田バンプ40とを互いに電気的に接続している。別の配線34は、回路領域15の一の入力端子とカソード領域14Bとを互いに電気的に接続している。別の配線34は、回路領域15の他の入力端子と半田バンプ40とを互いに電気的に接続している。別の配線34は、回路領域15の出力端子と、半田バンプ40とを互いに電気的に接続している。
[製造方法]
 次に、受光装置1の製造方法の一例について説明する。まず、半導体基板11上にエピタキシャル成長層12を備えた半導体基板を用意する。次に、酸化膜を成膜し、絶縁層20を形成する。次に、分離領域16,18と、アノード領域14Aとを形成する。具体的には、p型イオンインプランテーションを行うことにより、島状の複数の分離領域16と、格子状の分離領域18およびアノード領域14Aとを形成する。
 次に、カソード領域14Bを形成する。具体的には、n型イオンインプランテーションを行うことにより、分離領域16を囲むとともにアノード領域14Aの内縁に接するように環状の複数のカソード領域14Bを形成する。このようにして、各受光画素Pxにおいて、環状の1つの光電流取り出し領域14が形成される。次に、エピタキシャル成長層12のうち各分離領域17で囲まれた領域に、回路領域15を形成する。
 次に、メタル配線を形成する。具体的には、絶縁層20上に、例えば、アノード電極32、複数のカソード電極33を形成する。このとき、複数のカソード電極33をカソード領域14Bごとに1つずつ割り当てる。次に、層間絶縁膜31、複数の配線34および複数の電極35を形成する。このようにして、絶縁層20上に、配線層30が形成される。
 次に、受光装置1を裏面照射型として用いる場合には、半導体基板11を薄肉化する。次に、素子分離を行う。具体的には、例えば、半導体基板11に対して支持基板を貼り合わせた上で、半導体基板11の所定の箇所に対して、ダイシングまたはドライエッチングなどを行うことにより、半導体基板11を所定の大きさごとに分離する。このようにして、端面10Cを有する複数の受光装置1が形成される。次に、各電極35上に半田バンプ40を形成する。このようにして、図1の受光装置1が製造される。
[動作]
 次に、受光装置1の動作の一例について説明する。受光装置1の第2主面10Bに可視光が入射する。このとき、光電流取り出し領域14には、逆バイアス電圧が印加されている。第2主面10Bに入射した光が、入射光の光量に応じた(比例した)電荷量の信号電荷(光電流)に変換される。光電流取り出し領域14内で取り出された信号電荷(光電流)は、回路領域15を介して出力信号Voutに変換され、配線層30および半田バンプ40を介して外部に出力される。
[効果]
 次に、受光装置1の効果について説明する。受光装置1では、半導体層10において、受光面(第2主面10B)とは反対側の面(第1主面10A)に画素領域Pxが設けられており、さらに、第2主面10Bと画素領域Pxとの間隙全体に、低不純物領域(半導体基板11および低不純物領域12A)が設けられている。このように、本実施の形態では、第2主面10B全体に低不純物領域(半導体基板11および低不純物領域12A)が形成されており、受光を妨げる構造物(具体的には、画素回路、遮光層、素子分離層など)が第2主面10Bに存在しない。これにより、第2主面10B側から入射した光は受光を妨げる構造物によってけられることなく、第2主面10B全体に広がる低不純物領域(半導体基板11および低不純物領域12A)に入射し、各光電流取り出し領域14への電圧印加によって低不純物領域(半導体基板11および低不純物領域12A)に形成される空乏領域で光電流に変換される。また、半導体層10に画素領域13が設けられているので、画素領域13専用の基板が不要である。従って、感度を向上させつつ、製造コストの増大を抑えることができる。
 本実施の形態では、各分離領域16が、低不純物領域12Aと回路領域15とを互いに電気的に分離するように構成されている。これにより、回路領域15と、光電流取り出し領域14などが共通の半導体層10に形成されている場合であっても、回路領域15への光電流の流入が抑制される。その結果、感度を向上させることができる。
 本実施の形態では、分離領域16が、低不純物領域12Aと同一導電型の不純物を低不純物領域12Aよりも高濃度に含む不純物領域によって構成されている。分離領域16は、製造過程において、アノード領域14Aや分離領域18を形成する際に一緒に形成することができる。従って、分離領域16の形成のために工程を追加する必要がないので、製造コストの増大を抑えることができる。
 本実施の形態では、光電流取り出し領域14は、受光画素Pxの外縁に設けられており、第1主面10Aにおいて回路領域15を囲む環形状となっている。光電流取り出し領域14が環形状となっていることにより、第2主面10B付近では、ポテンシャルが広がり全面で光電荷を取り出すことができる。これにより、高い受光感度を確保しつつ、回路領域15として十分な面積を確保することができる。
 本実施の形態では、回路領域15は、変換回路15Aおよびアンプ回路15Bのうち、少なくとも変換回路15Aを有している。これにより、光電流取り出し領域14と変換回路15Aとの距離を短くすることができるので、ノイズの影響を受けにくくすることができる。その結果、S/Nを向上させることができる。
 本実施の形態では、各受光画素Pxと電気的に接続された複数の配線34を含む配線層30が第1主面10A側に設けられており、さらに、複数の配線34と電気的に接続された複数の半田バンプ40が配線層30の表面上に設けられている。これにより、ハンダ実装が可能になるので、S/Nを向上させつつ、製造コストの増大を抑えることができる。
 また、受光装置1の第1主面10Aに光電流取り出し領域14を設け、ハンダ実装を可能にしたことにより、互いに隣接する受光装置1同士の間隙を狭くすることができる。これにより、複数の受光装置1を配線基板などにほとんど隙間なく敷き詰めることができる。例えばカソード面を受光面とした所謂表面型のフォトダイオードの場合に、受光面にフォトダイオードを設けたときには、端面や受光面側から端子を引き出す必要があるので、1つの受光装置を取り囲む態様で(例えば、3×3の行列状に)複数の受光装置をタイリングすることは、事実上、不可能である。
 本実施の形態では、受光装置1の上面からFPCが引き出されている場合のような受光不可の領域が生じることがないので、例えば、複数のモジュールをタイリングすることにより形成される大型の受光パネルにおけるモジュールに、受光装置1を適用することができる。
<2.第1の実施の形態の変形例>
 上記第1の実施の形態において、受光装置1は、例えば、図6~図9に示したように、各受光画素Pxにおいて、複数の光電流取り出し領域14を備えていてもよい。このとき、複数の光電流取り出し領域14のうちの1つである光電流取り出し領域14が、受光画素Pxの外縁に設けられており、第1主面10Aにおいて回路領域15を囲む環形状となっている。さらに、複数の光電流取り出し領域14のうち、受光画素Pxの外縁に設けられた光電流取り出し領域14以外の1または複数の光電流取り出し領域14(以下、「第2光電流取り出し領域」と称する。)は、例えば、図6~図9に示したように、第1主面10Aにおいて回路領域15に囲まれた領域内に設けられている。
 図6、図7の受光装置1では、各受光画素Pxにおいて、2つの光電流取り出し領域14が設けられている。このとき、第1主面10Aにおいて回路領域15は環形状となっており、環形状の回路領域15に囲まれた領域内に第2光電流取り出し領域が設けられている。第2光電流取り出し領域において、アノード領域14Aは、回路領域15の内縁に沿って形成された環形状となっている。第2光電流取り出し領域において、アノード領域14Aは、第1主面10Aにおいてカソード領域14Bを囲む環形状となっている。第2光電流取り出し領域において、カソード領域14Bは、第2光電流取り出し領域における環形状のアノード領域14Aの内縁に接する島状の形状となっている。図6の受光装置1では、第2光電流取り出し領域は、方形状となっている。一方、図7の受光装置1では、第2光電流取り出し領域は、円形状もしくは楕円形状となっている。図6、図7の受光装置1では、カソード領域14Bが広く設けられている。これにより、ポテンシャルの広がりが助長され、感度低下のない裏面構造を形成することができる。
 図8の受光装置1では、各受光画素Pxにおいて、6つの光電流取り出し領域14が設けられている。このとき、第1主面10Aにおいて回路領域15は複数の開口を有しており、回路領域15の各開口内に第2光電流取り出し領域が設けられている。各第2光電流取り出し領域において、アノード領域14Aは、回路領域15の内縁に沿って形成された環形状となっている。各第2光電流取り出し領域において、アノード領域14Aは、第1主面10Aにおいてカソード領域14Bを囲む環形状となっている。各第2光電流取り出し領域において、カソード領域14Bは、第2光電流取り出し領域における環形状のアノード領域14Aの内縁に接する島状の形状となっている。図8の受光装置1では、第2光電流取り出し領域は方形状となっている。なお、図8の受光装置1において、各第2光電流取り出し領域が円形状もしくは楕円形状となっていてもよい。図8の受光装置1では、カソード領域14Bが比較的広く設けられており、さらに、回路領域15も比較的広く設けられている。従って、設計上の自由度を高くすることができる。
 図9の受光装置1は、図6の受光装置1において、第2光電流取り出し領域におけるカソード領域14Bを、第2光電流取り出し領域における環形状のアノード領域14Aの内縁に接する環形状にしたものに相当する。つまり、図9の受光装置1では、第2光電流取り出し領域において、アノード領域14Aは、回路領域15の内縁に沿って形成された環形状となっている。各第2光電流取り出し領域において、カソード領域14Bは、第2光電流取り出し領域における環形状のアノード領域14Aの内縁に接する環形状となっている。図9の受光装置1では、第2光電流取り出し領域におけるカソード領域14Bによって囲まれた領域にも、回路領域15が設けられている。図9の受光装置1では、カソード領域14Bが比較的広く設けられており、さらに、回路領域15も比較的広く設けられている。従って、設計上の自由度を高くすることができる。
<3.第2の実施の形態>
 次に、第2の実施の形態に係る撮像装置2について説明する。図10は、撮像装置2の概略構成の一例を表したものである。撮像装置2は、上述の受光装置1を後述の撮像部21に用いたものであり、医療用をはじめ、手荷物検査等のその他の非破壊検査用の撮像装置として好適に用いられるものである。図11は、撮像部21の断面構成の一例を表したものである。撮像装置2は、例えば、基板上に、撮像部21を備え、この撮像部21の周辺領域に、撮像部21を制御する制御部を備えている。制御部は、例えば、行走査部22、A/D変換部23およびシステム制御部24を有している。制御部が、本技術の「制御部」の一具体例に相当する。
 撮像部21は、撮像装置2における撮像エリアとなるものである。撮像部21は、行列状に配置された複数の受光装置1を有している。各受光装置1は、撮像画像の生成に用いられる電気信号(出力信号Vout)を信号線DTL(後述)に出力する。撮像部21は、例えば、配線基板41と、複数の受光装置1と、センサ保護層42とを有している。各受光装置1は、複数の半田バンプ40を介して、配線基板41上に行列状に実装されている。各受光装置1は、底面(第1主面10A)側を配線基板41寄りにして配線基板41上に配置されている。行列状に実装された複数の受光装置1のうち、少なくとも1つの受光装置1は、他の複数の受光装置1に囲まれている。図11では、各受光装置1の上面(第2主面10B)が四角形となっており、複数の受光装置1のうち、撮像部21の外縁以外の箇所に配置された各受光装置1が、上面(第2主面10B)の辺同士が互いに正対するように配置されている様子が例示されている。
 配線基板41は、支持基板41Aと、配線層41Bと、複数のパッド電極41Cとを有している。支持基板41Aは、複数の受光装置1を支持するための基板であり、例えば、樹脂基板、ガラス基板、または、半導体基板(例えばシリコン基板)によって構成されている。支持基板41Aは、半導体基板11と同程度の線膨張係数を有することが好ましい。配線層41Bは、各受光装置1と、撮像装置2の制御部とを互いに電気的に接続するためのものである。配線層41Bは、複数の信号線DTLと、各信号線DTLと交差(例えば直交)する複数のゲート線GTLとを有している。配線層41Bは、さらに、各信号線DTLと略平行な方向に延在する複数の電源電圧線VCCと、各信号線DTLと略平行な方向に延在する複数のグラウンド線GNDと、各信号線DTLと略平行な方向に延在する複数の基準電圧線REFとを有している。複数の受光装置1は、例えば、各信号線DTLと、各ゲート線GTLとが互いに交差する箇所に配置されている。
 各信号線DTLは、受光装置1から、信号電荷を読み出すための配線である。ゲート線GTLは、回路領域15に含まれる各種スイッチ素子をオンオフ制御する制御信号を、回路領域15に入力するための配線である。バイアス線BSLは、例えば、アノード電極32の電位(アノード電位)や、変換回路15Aの参照電位を決めるための配線である。各信号線DTLは、例えば、垂直方向に延在している。
 複数のパッド電極41Cは、各受光装置1と、配線層41Bとを互いに電気的に接続するためのものであり、さらに、各受光装置1の、配線基板41上の実装位置を規制するためのものでもある。各受光装置1は、複数の半田バンプ40を介して、複数のパッド電極41Cに接続されている。各受光装置1は、製造過程において、溶融した複数の半田バンプ40の表面張力により生じるセルフアライメント効果を利用して、配線基板41上の所定の位置に高精度に位置決めされている。
 センサ保護層42は、複数の受光装置1を保護する。センサ保護層42は、少なくとも、各受光装置1の端面10Cを覆っており、必要に応じて、各受光装置1の第2主面10Bや第1主面10Aも覆っている。センサ保護層42は、例えば、各受光装置1の端面10Cおよび第1主面10Aを覆う態様で一体に形成されており、各受光装置1の上面(第2主面10B)が共通のセンサ保護層42によって覆われている。このとき、センサ保護層42の上面は、撮像装置2における撮像エリアである撮像部21の面内全体に亘って平坦となっている。
 センサ保護層42は、ハロゲン系の樹脂層である。ハロゲン系の樹脂層は、例えば、塩素系の樹脂で構成されている。センサ保護層42は、1000ppm以上の塩素を含んで構成されていることが好ましい。センサ保護層42に使用されるハロゲン系の樹脂層は、第2主面10Bに入射する光に対して高い光透過性を有していることが好ましく、放射線に対する耐性を有していることが好ましい。センサ保護層42は、各受光装置1の端面10Cに直接、接している。センサ保護層42は、例えば、蒸着重合法を用いて成膜することにより形成されたものである。
 撮像部21は、さらに、各受光装置1との位置関係で、各受光装置1の第2主面10B側に可視光変換層43を有している。可視光変換層43は、センサ保護層42上に設けられている。可視光変換層43は、外部から入射した放射線を各受光装置1の感度域に波長変換するものであり、具体的には、外部から入射した放射線を可視光に変換するものである。可視光変換層43は、例えば、α線、β線、γ線またはX線などの放射線を可視光に変換する蛍光体で構成されている。このような蛍光体としては、例えば、ヨウ化セシウム(CsI)にタリウム(Tl)またはナトリウム(Na)を添加したもの、ヨウ化ナトリウム(NaI)にタリウム(Tl)を添加したものが挙げられる。また、上記蛍光体としては、例えば、臭化セシウム(CsBr)にユウロピウム(Eu)を添加したもの、弗化臭化セシウム(CsBrF)にユウロピウム(Eu)を添加したものが挙げられる。
 可視光変換層43は、図11に示したように、各受光装置1の第2主面10Bを覆うセンサ保護層42の表面上に配置されている。可視光変換層43は、例えば、センサ保護層42の表面を結晶成長面として形成されたものであり、例えば、真空蒸着法を用いて成膜することにより形成されたものである。
 撮像部21は、さらに、可視光変換層43を保護するとともに上面を平坦化するための平坦化層44を有している。平坦化層44は、例えば、センサ保護層42と共通もしくは同一の材料によって構成されている。平坦化層44は、センサ保護層42とは異なる材料によって構成されていてもよい。
 撮像部21は、さらに、平坦化層44の上面に反射層45を有している。反射層45は、可視光変換層43から受光装置1とは反対方向へ発光した光を受光装置1側に返す役割を持つ。反射層45は、実質的に水分を透過しない水分不透過材料によって構成されていてもよい。このようにした場合には、反射層45によって、可視光変換層43への水分の介入を防ぐことができる。反射層45は、例えば、薄板ガラスからなる。反射層45は省略されていてもよい。可視光変換層43上に設ける反射構造は、上記のような反射層45以外の構成となっていてもよく、例えば、Alの蒸着膜によって構成されていてもよい。
[動作]
 次に、撮像装置2の動作の一例について説明する。撮像装置2の上面に放射線が入射すると、可視光変換層43において、放射線が可視光に変換される。各受光装置1には、撮像装置2の周辺回路から逆バイアス電圧が印加されている。変換された可視光が、各受光装置1の第2主面10Bに入射すると、入射光の光量に応じた(比例した)電荷量の信号電荷(光電流)が生成される。生成された信号電荷(光電流)は、各光電流取り出し領域14内で取り出され、回路領域15によって出力信号Voutに変換され、信号線DTLに引き出される。
[効果]
 次に、撮像装置2の効果について説明する。撮像装置2では、撮像部21に複数の受光装置1が用いられている。これにより、製造コストの増大を抑えた感度の高い撮像装置2を実現することができる。
 本実施の形態では、受光装置1の第1主面10Aに光電流取り出し領域14を設け、ハンダ実装を可能にしたことにより、互いに隣接する受光装置1同士の間隙を狭くすることができる。これにより、複数の受光装置1を配線基板などにほとんど隙間なく敷き詰めることができる。例えばカソード領域を受光面とした所謂表面型の場合には、受光面側からFPCを引き出す必要があるので、1つの受光装置を取り囲む態様で(例えば、3×3の行列状に)複数の受光装置をタイリングすることは、事実上、不可能である。また、本実施の形態では、受光装置1の上面からFPCが引き出されている場合のような受光不可の領域が生じることがないので、撮像装置2のような、複数のモジュールをタイリングすることにより形成される大型の受光パネルにおけるモジュールに、受光装置1を適用することができる。
 本実施の形態では、センサ保護層42が、ハロゲン系の樹脂層となっており、例えば、塩素系の樹脂で構成されている。さらに、センサ保護層42が、各受光装置1の端面10Cに直接、接している。
 端面10Cは、上述したように、ダイシングもしくはドライエッチングなどによって切断されることにより形成されている。そのため、端面10Cには、多少なりとも結晶構造の崩れが存在し、この結晶構造の崩れに起因してキャリア(つまり、暗電流)が発生しやすくなっている。ハロゲン系の樹脂層であるセンサ保護層42が各受光装置1の端面10Cに直接、接していることにより、端面10Cでのキャリア発生を抑制することができる。その結果、簡易な構成で、感度を向上させることができる。従って、感度を向上させつつ、製造コストの増大を抑えることができる。さらに、センサ保護層42が1000ppm以上の塩素を含んで構成されている場合には、高いX線耐性を得ることができる。
 本実施の形態において、センサ保護層42が、各受光装置1の端面10Cおよび第1主面10Aを覆う態様で一体に形成されている場合には、センサ保護層42上に可視光変換層43を容易かつ高品質に形成することができる。従って、感度を向上させつつ、製造コストの増大を抑えることができる。
<4.第3の実施の形態>
 次に、第4の実施の形態に係る撮像システム3について説明する。図13は、撮像システム3の概略構成の一例を表したものである。撮像システム3は、複数の受光装置1が撮像部21に用いられた撮像装置2を備えている。撮像システム3は、例えば、撮像装置2と、画像処理部4と、表示装置5とを備えている。なお、必要に応じて表示装置5が省略されてもよい。
 画像処理部4は、撮像装置2で得られた画像データDoutに対して所定の処理を施すものであり、具体的には、画像データDoutに対して所定の画像処理を施すことにより、表示信号D1を生成する。表示装置5は、画像処理部4により得られた表示信号D1に基づいて、映像を表示するものである。
 本実施の形態では、放射線源100から被検体200に向けて照射された放射線のうち、被検体200を透過した成分が撮像装置2によって検出される。撮像装置2で検出されることにより得られた画像データDoutには、画像処理部4によって所定の処理がなされる。所定の処理がなされた結果、得られた表示信号D1は、表示装置5に出力され、表示信号D1に応じた映像が、表示装置5のモニタ画面に表示される。
 このように、本実施の形態では、撮像装置2において複数の受光装置1が用いられている。従って、高感度の画像を得ることができる。
<5.第3の実施の形態の変形例>
 上記第3の実施の形態において、撮像システム3が、画像処理部4で処理された後の撮像信号(3DCAD(computer-aided design)信号)に基づいて立体物を成型する成型
装置(図示せず)をさらに備えていてもよい。成型装置は、例えば、3Dプリンタである。画像処理部4は、撮像信号Doutに対して所定の画像処理を施すことにより、3DCAD信号を生成するものである。
 本変形例では、撮像装置2おいて複数の受光装置1が用いられている。従って、高精度な立体物を形成することができる。
 以上、実施の形態およびその変形例を挙げて本開示を説明したが、本開示は上記実施の形態等に限定されるものではなく、種々変形が可能である。
 例えば、上記各実施の形態およびそれらの変形例において、半導体の導電型が上記の導電型とは反対の導電型となっていてもよい。例えば、半導体の導電型がp型であると記載されている場合には、p型をn型に読み替えるとともに、半導体の導電型がn型であると記載されている場合には、n型をp型に読み替えてもよい。
 また、例えば、上記各実施の形態およびそれらの変形例において、pn構造の代わりにpin構造が適用されていてもよい。
 なお、本明細書中に記載された効果は、あくまで例示である。本開示の効果は、本明細書中に記載された効果に限定されるものではない。本開示が、本明細書中に記載された効果以外の効果を持っていてもよい。
 また、例えば、本開示は以下のような構成を取ることができる。
(1)
 第1主面、第1主面と対向する第2主面および端面を有する半導体層の前記第1主面に、前記第2主面側から入射する光を受光する複数の受光画素を含む画素領域を備え、さらに、前記第2主面と前記画素領域との間隙全体に、画素領域と比べて相対的に不純物濃度の低い低不純物領域を備え、
 各前記受光画素は、前記第1主面にアノード領域およびカソード領域を有する1または複数の光電流取り出し領域と、各前記カソード領域と電気的に接続されるとともに前記不純物領域とは電気的に分離された回路領域とを有する
 受光装置。
(2)
 前記画素領域は、前記不純物領域と前記回路領域とを互いに電気的に分離する分離領域を、前記不純物領域と前記回路領域との間に有する
 (1)に記載の受光装置。
(3)
 前記分離領域は、前記不純物領域と同一導電型の不純物を前記不純物領域よりも高濃度に含む不純物領域によって構成されている
 (2)に記載の受光装置。
(4)
 1または複数の前記光電流取り出し領域のうちの1つである第1光電流取り出し領域は、前記受光画素の外縁に設けられており、前記第1主面において前記回路領域を囲む環形状となっている
 (1)ないし(3)のいずれか1つに記載の受光装置。
(5)
 各前記受光画素が、複数の前記光電流取り出し領域を有している場合には、
 複数の前記光電流取り出し領域のうち、前記第1光電流取り出し領域以外の1または複数の第2光電流取り出し領域は、前記第1主面において前記回路領域に囲まれた領域内に設けられている
 (4)に記載の受光装置。
(6)
 各前記第2光電流取り出し領域において、前記カソード領域は島状の形状となっており、前記アノード領域は前記第1主面において前記カソード領域を囲む環形状となっている
 (5)に記載の受光装置。
(7)
 各前記第2光電流取り出し領域において、前記カソード領域および前記アノード領域は、ともに、前記第1主面において前記回路領域の一部を囲む環形状となっている
 (5)に記載の受光装置。
(8)
 各前記回路領域は、前記光電流取り出し領域から出力された光電流を電圧信号に変換する変換回路、および、前記変換回路の出力側に接続されたバッファ回路のうち、少なくとも前記変換回路を有する
 (1)ないし(7)のいずれか1つに記載の受光装置。
(9)
 各前記受光画素と電気的に接続された複数の配線を含む配線層を前記第1主面側に備えるとともに、前記配線ごとに設けられた複数の半田バンプを前記配線層の表面上に備えた
 (1)ないし(8)のいずれか1つに記載の受光装置。
(10)
 前記端面全体に直接、接するハロゲン系の樹脂層をさらに備えた
 (1)ないし(9)のいずれか1つに記載の受光装置。
(11)
 前記樹脂層は、塩素系の樹脂で構成されている
 (10)に記載の受光装置。
(12)
 配線基板と、
 前記配線基板上に行列状に実装された複数の受光装置と
 を備え、
 各前記受光装置は、前記配線基板寄りの第1主面、前記第1主面と対向する第2主面および端面を有する半導体層の前記第1主面に、前記第2主面側から入射する光を受光する複数の受光画素を含む画素領域を有し、さらに、前記第2主面と前記画素領域との間隙全体に、相対的に不純物濃度の低い低不純物領域を有し、
 各前記受光画素は、前記第1主面にアノード領域およびカソード領域を有する1または複数の光電流取り出し領域と、各前記カソード領域と電気的に接続されるとともに前記不純物領域とは電気的に分離された回路領域とを有する
 撮像装置。
(13)
 各前記受光装置は、各前記受光画素と電気的に接続された複数の配線を含む配線層を前記第1主面側に有するとともに、複数の前記配線と電気的に接続された複数の半田バンプを前記配線層の表面上に有し、
 各前記受光装置は、各前記半田バンプを介して前記配線基板上に実装されている
 (12)に記載の撮像装置。
(14)
 複数の前記受光装置のうち少なくとも1つが、他の複数の前記受光装置に囲まれている
 (13)に記載の撮像装置。
(15)
 各前記受光装置は、前記端面全体に直接、接するハロゲン系の樹脂層をさらに有する
 (12)ないし(14)のいずれか1つに記載の撮像装置。
(16)
 各前記受光装置の前記樹脂層は、各前記受光装置の前記端面および前記上面を覆う態様で一体に形成されている
 (15)に記載の撮像装置。
(17)
 各前記受光装置は、前記樹脂層上に、放射線を可視光に変換する可視光変換層を有する
 (16)に記載の撮像装置。
(18)
 撮像装置と、
 前記撮像装置で得られた画像データを処理する処理装置と
 を備え、
 前記撮像装置は、
 配線基板と、
 前記配線基板上に行列状に実装された複数の受光装置と
 を有し、
 各前記受光装置は、前記配線基板寄りの第1主面、前記第1主面と対向する第2主面および端面を有する半導体層の前記第1主面に、前記第2主面側から入射する光を受光する複数の受光画素を含む画素領域を有し、さらに、前記第2主面と前記画素領域との間隙全体に、相対的に不純物濃度の低い低不純物領域を有し、
 各前記受光画素は、前記第1主面にアノード領域およびカソード領域を有する1または複数の光電流取り出し領域と、各前記カソード領域と電気的に接続されるとともに前記不純物領域とは電気的に分離された回路領域とを有する
 電子機器。
 本出願は、日本国特許庁において2016年3月30日に出願された日本特許出願番号第2016-067646号を基礎として優先権を主張するものであり、この出願のすべての内容を参照によって本出願に援用する。
 当業者であれば、設計上の要件や他の要因に応じて、種々の修正、コンビネーション、サブコンビネーション、および変更を想到し得るが、それらは添付の請求の範囲やその均等物の範囲に含まれるものであることが理解される。

Claims (18)

  1.  第1主面、第1主面と対向する第2主面および端面を有する半導体層の前記第1主面に、前記第2主面側から入射する光を受光する複数の受光画素を含む画素領域を備え、さらに、前記第2主面と前記画素領域との間隙全体に、画素領域と比べて相対的に不純物濃度の低い低不純物領域を備え、
     各前記受光画素は、前記第1主面にアノード領域およびカソード領域を有する1または複数の光電流取り出し領域と、各前記カソード領域と電気的に接続されるとともに前記不純物領域とは電気的に分離された回路領域とを有する
     受光装置。
  2.  前記画素領域は、前記不純物領域と前記回路領域とを互いに電気的に分離する分離領域を、前記不純物領域と前記回路領域との間に有する
     請求項1に記載の受光装置。
  3.  前記分離領域は、前記不純物領域と同一導電型の不純物を前記不純物領域よりも高濃度に含む不純物領域によって構成されている
     請求項2に記載の受光装置。
  4.  1または複数の前記光電流取り出し領域のうちの1つである第1光電流取り出し領域は、前記受光画素の外縁に設けられており、前記第1主面において前記回路領域を囲む環形状となっている
     請求項1に記載の受光装置。
  5.  各前記受光画素が、複数の前記光電流取り出し領域を有している場合には、
     複数の前記光電流取り出し領域のうち、前記第1光電流取り出し領域以外の1または複数の第2光電流取り出し領域は、前記第1主面において前記回路領域に囲まれた領域内に設けられている
     請求項4に記載の受光装置。
  6.  各前記第2光電流取り出し領域において、前記カソード領域は島状の形状となっており、前記アノード領域は前記第1主面において前記カソード領域を囲む環形状となっている
     請求項5に記載の受光装置。
  7.  各前記第2光電流取り出し領域において、前記カソード領域および前記アノード領域は、ともに、前記第1主面において前記回路領域の一部を囲む環形状となっている
     請求項5に記載の受光装置。
  8.  各前記回路領域は、前記光電流取り出し領域から出力された光電流を電圧信号に変換する変換回路、および、前記変換回路の出力側に接続されたバッファ回路のうち、少なくとも前記変換回路を有する
     請求項1に記載の受光装置。
  9.  各前記受光画素と電気的に接続された複数の配線を含む配線層を前記第1主面側に備えるとともに、前記配線ごとに設けられた複数の半田バンプを前記配線層の表面上に備えた
     請求項8に記載の受光装置。
  10.  前記端面全体に直接、接するハロゲン系の樹脂層をさらに備えた
     請求項1に記載の受光装置。

  11.  前記樹脂層は、塩素系の樹脂で構成されている
     請求項10に記載の受光装置。
  12.  配線基板と、
     前記配線基板上に行列状に実装された複数の受光装置と
     を備え、
     各前記受光装置は、前記配線基板寄りの第1主面、前記第1主面と対向する第2主面および端面を有する半導体層の前記第1主面に、前記第2主面側から入射する光を受光する複数の受光画素を含む画素領域を有し、さらに、前記第2主面と前記画素領域との間隙全体に、相対的に不純物濃度の低い低不純物領域を有し、
     各前記受光画素は、前記第1主面にアノード領域およびカソード領域を有する1または複数の光電流取り出し領域と、各前記カソード領域と電気的に接続されるとともに前記不純物領域とは電気的に分離された回路領域とを有する
     撮像装置。
  13.  各前記受光装置は、各前記受光画素と電気的に接続された複数の配線を含む配線層を前記第1主面側に有するとともに、複数の前記配線と電気的に接続された複数の半田バンプを前記配線層の表面上に有し、
     各前記受光装置は、各前記半田バンプを介して前記配線基板上に実装されている
     請求項12に記載の撮像装置。
  14.  複数の前記受光装置のうち少なくとも1つが、他の複数の前記受光装置に囲まれている
     請求項13に記載の撮像装置。
  15.  各前記受光装置は、前記端面全体に直接、接するハロゲン系の樹脂層をさらに有する
     請求項12に記載の撮像装置。
  16.  各前記受光装置の前記樹脂層は、各前記受光装置の前記端面および前記上面を覆う態様で一体に形成されている
     請求項15に記載の撮像装置。
  17.  各前記受光装置は、前記樹脂層上に、放射線を可視光に変換する可視光変換層を有する
     請求項16に記載の撮像装置。
  18.  撮像装置と、
     前記撮像装置で得られた画像データを処理する処理装置と
     を備え、
     前記撮像装置は、
     配線基板と、
     前記配線基板上に行列状に実装された複数の受光装置と
     を有し、
     各前記受光装置は、前記配線基板寄りの第1主面、前記第1主面と対向する第2主面および端面を有する半導体層の前記第1主面に、前記第2主面側から入射する光を受光する複数の受光画素を含む画素領域を有し、さらに、前記第2主面と前記画素領域との間隙全体に、相対的に不純物濃度の低い低不純物領域を有し、
     各前記受光画素は、前記第1主面にアノード領域およびカソード領域を有する1または複数の光電流取り出し領域と、各前記カソード領域と電気的に接続されるとともに前記不純物領域とは電気的に分離された回路領域とを有する
     電子機器。
PCT/JP2017/005472 2016-03-30 2017-02-15 受光装置、撮像装置および電子機器 WO2017169220A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/087,189 US20190103501A1 (en) 2016-03-30 2017-02-15 Light-receiving device, imaging unit, and electronic apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016067646 2016-03-30
JP2016-067646 2016-03-30

Publications (1)

Publication Number Publication Date
WO2017169220A1 true WO2017169220A1 (ja) 2017-10-05

Family

ID=59962893

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/005472 WO2017169220A1 (ja) 2016-03-30 2017-02-15 受光装置、撮像装置および電子機器

Country Status (2)

Country Link
US (1) US20190103501A1 (ja)
WO (1) WO2017169220A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020012846A1 (ja) * 2018-07-11 2020-01-16 浜松ホトニクス株式会社 光検出装置及び光検出装置の製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6878338B2 (ja) * 2018-03-14 2021-05-26 株式会社東芝 受光装置および受光装置の製造方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61154063A (ja) * 1984-12-26 1986-07-12 Toshiba Corp 光半導体装置およびその製造方法
JPH098265A (ja) * 1995-06-20 1997-01-10 Sharp Corp 半導体装置
JP2000278605A (ja) * 1999-03-29 2000-10-06 Canon Inc 撮像装置および画像処理システム
JP2001111022A (ja) * 1999-08-05 2001-04-20 Canon Inc 光電変換装置およびその製造方法、画像情報処理装置
JP2002305261A (ja) * 2001-01-10 2002-10-18 Canon Inc 電子部品及びその製造方法
JP2003031785A (ja) * 2001-07-11 2003-01-31 Sony Corp X−yアドレス型固体撮像素子およびその製造方法
JP2003338615A (ja) * 2002-05-20 2003-11-28 Sony Corp 固体撮像装置
JP2005051080A (ja) * 2003-07-29 2005-02-24 Hamamatsu Photonics Kk 裏面入射型光検出素子及びその製造方法
JP2005308582A (ja) * 2004-04-22 2005-11-04 Toshiba Corp 放射線検出器
JP2006245499A (ja) * 2005-03-07 2006-09-14 Sony Corp 固体撮像装置
US20130193546A1 (en) * 2010-09-08 2013-08-01 The University Court Of The University Of Edinburg Single photon avalanche diode for cmos circuits
JP2014160042A (ja) * 2013-02-20 2014-09-04 Hamamatsu Photonics Kk 検出器、pet装置及びx線ct装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7170143B2 (en) * 2003-10-20 2007-01-30 Hamamatsu Photonics K.K. Semiconductor photo-detection device and radiation apparatus
US8049293B2 (en) * 2005-03-07 2011-11-01 Sony Corporation Solid-state image pickup device, electronic apparatus using such solid-state image pickup device and method of manufacturing solid-state image pickup device
JP2014192348A (ja) * 2013-03-27 2014-10-06 Sony Corp 固体撮像装置およびその製造方法、並びに電子機器

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61154063A (ja) * 1984-12-26 1986-07-12 Toshiba Corp 光半導体装置およびその製造方法
JPH098265A (ja) * 1995-06-20 1997-01-10 Sharp Corp 半導体装置
JP2000278605A (ja) * 1999-03-29 2000-10-06 Canon Inc 撮像装置および画像処理システム
JP2001111022A (ja) * 1999-08-05 2001-04-20 Canon Inc 光電変換装置およびその製造方法、画像情報処理装置
JP2002305261A (ja) * 2001-01-10 2002-10-18 Canon Inc 電子部品及びその製造方法
JP2003031785A (ja) * 2001-07-11 2003-01-31 Sony Corp X−yアドレス型固体撮像素子およびその製造方法
JP2003338615A (ja) * 2002-05-20 2003-11-28 Sony Corp 固体撮像装置
JP2005051080A (ja) * 2003-07-29 2005-02-24 Hamamatsu Photonics Kk 裏面入射型光検出素子及びその製造方法
JP2005308582A (ja) * 2004-04-22 2005-11-04 Toshiba Corp 放射線検出器
JP2006245499A (ja) * 2005-03-07 2006-09-14 Sony Corp 固体撮像装置
US20130193546A1 (en) * 2010-09-08 2013-08-01 The University Court Of The University Of Edinburg Single photon avalanche diode for cmos circuits
JP2014160042A (ja) * 2013-02-20 2014-09-04 Hamamatsu Photonics Kk 検出器、pet装置及びx線ct装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020012846A1 (ja) * 2018-07-11 2020-01-16 浜松ホトニクス株式会社 光検出装置及び光検出装置の製造方法
JP2020009961A (ja) * 2018-07-11 2020-01-16 浜松ホトニクス株式会社 光検出装置及び光検出装置の製造方法
US11444220B2 (en) 2018-07-11 2022-09-13 Hamamatsu Photonics K.K. Light detection device and method for manufacturing light detection device

Also Published As

Publication number Publication date
US20190103501A1 (en) 2019-04-04

Similar Documents

Publication Publication Date Title
US7629564B2 (en) Conversion apparatus, radiation detecting apparatus, and radiation detecting system
US9808159B2 (en) Solid-state image sensor and imaging apparatus including the same
US7812313B2 (en) Conversion apparatus, radiation detecting apparatus, and radiation detecting system
TWI532157B (zh) 固態成像器件及電子裝置
CN104637962B (zh) 图像传感器及其制造方法
US6671347B2 (en) Radiation imaging apparatus and radiation imaging system using the same
KR101441630B1 (ko) 엑스레이 검출기 및 이의 제조방법
US9306108B2 (en) Radiation detector
US8916833B2 (en) Imaging device and imaging display system
JP2008244251A (ja) アモルファスシリコンフォトダイオード及びその製造方法ならびにx線撮像装置
JP7174932B2 (ja) 固体撮像素子
JP2018084485A (ja) 放射線画像撮影装置
JP2020004935A (ja) イメージセンサ
WO2017169220A1 (ja) 受光装置、撮像装置および電子機器
US20230178675A1 (en) Detection substrate and manufacturing method therefor, and ray detection apparatus
WO2016021416A1 (ja) 機能性素子および電子機器
JP2012114166A (ja) 検出装置及び放射線検出システム
US11355547B2 (en) Image sensor, image sensor arrangement and computed tomography apparatus including the same
KR101520433B1 (ko) 이미지센서 및 이의 제조방법
WO2016027611A1 (ja) 放射線検出器、撮像装置、および撮像システム
US20230314633A1 (en) Radiation detection module and manufacturing method for radiation detection module
US11137504B2 (en) Tiled radiation detector
JP2023117516A (ja) 放射線の検出器
KR20140134173A (ko) 이미지센서와 이를 포함한 엑스선 영상장치

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17773768

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17773768

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP