WO2017168729A1 - 高塩基性塩化アルミニウムおよびその製造方法 - Google Patents
高塩基性塩化アルミニウムおよびその製造方法 Download PDFInfo
- Publication number
- WO2017168729A1 WO2017168729A1 PCT/JP2016/060841 JP2016060841W WO2017168729A1 WO 2017168729 A1 WO2017168729 A1 WO 2017168729A1 JP 2016060841 W JP2016060841 W JP 2016060841W WO 2017168729 A1 WO2017168729 A1 WO 2017168729A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- aluminum chloride
- basic aluminum
- highly basic
- solution
- molar ratio
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01F—COMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
- C01F7/00—Compounds of aluminium
- C01F7/48—Halides, with or without other cations besides aluminium
- C01F7/56—Chlorides
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01F—COMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
- C01F7/00—Compounds of aluminium
- C01F7/48—Halides, with or without other cations besides aluminium
- C01F7/56—Chlorides
- C01F7/57—Basic aluminium chlorides, e.g. polyaluminium chlorides
Definitions
- the present invention relates to highly basic aluminum chloride used for water treatment flocculants such as industrial wastewater / water, and water and sewage, and further, pH, alkalinity, dissolved ions, turbidity, etc. depending on the type of water to be treated
- the present invention relates to a highly basic aluminum chloride excellent in storage stability that can cope with a wide range of fluctuations and that can also handle large temperature changes during storage.
- Basic aluminum chloride which is a flocculant for water treatment, generally reacts with hydrochloric acid and alumina hydrate to form basic aluminum chloride, and sulfuric acid or water-soluble sulfate is added to this to contain sulfate-containing basic.
- Aluminum chloride (PAC) has been manufactured.
- hydrochloric acid and alumina hydrate are put into an autoclave according to the target basicity, and basic aluminum chloride is stirred by stirring at about 120 ° C. to about 200 ° C. for about 30 minutes to about 1 hour.
- This is a method for producing a sulfate-containing basic aluminum chloride by synthesizing and then cooling and adding sulfuric acid or water-soluble sulfate thereto.
- the PAC thus obtained has a basicity of around 50%. Therefore, by containing a sulfate group, the aggregation performance is improved, but the pH, alkalinity, dissolved ions, turbidity are improved. It is not possible to deal with all the different types of water, and the scope of application is narrowed.
- Patent Document 1 describes (1) a basic aluminum chloride solution having a basicity of less than 50% and an alkali as a carbonate, or an alkali aluminate solution and a carbonate.
- the basicity is characterized by comprising a second step of dissolving in an aluminum solution, and (3) a third step of adding a water-soluble sulfate to the basic aluminum chloride solution obtained in the second step.
- a method for producing a highly basic aluminum chloride solution containing 2% sulfate radicals is disclosed.
- the highly basic aluminum chloride obtained in this manner has a certain improvement effect on water treatment due to a wide range of physical property fluctuations, but is not sufficient as compared with conventional basic aluminum chloride (PAC).
- PAC basic aluminum chloride
- stability tends to deteriorate rather.
- Patent Document 3 discloses that sulfate ions contained in PAC improve the aggregation performance of PAC, but when the concentration of sulfate ions in PAC increases, the stability of PAC is inhibited and the liquid becomes cloudy during storage. Furthermore, problems such as gelation occur. Therefore, there is a limit to the sulfate ion concentration contained in the PAC.
- JIS Japanese Industrial Standard
- K1475 for aluminum chloride
- the range of aluminum (as Al 2 O 3 ) content is 10.0 to 11.0%
- the basicity range is regulated to 45 to 65%
- the sulfate ion content is regulated to 3.5% or less.
- the wash water drainage after washing may contain only 1 mg / L or less of sulfate ions, and the water to be treated having such a sulfate ion concentration of 1 mg / L or less is conventionally made of an aluminum salt. It is described that even when PAC of PAC is injected, aggregation of suspended substances and soluble organic substances in the water to be treated is not performed well.
- Patent Document 4 describes that the sulfate group content is related to the reduction of the residual Al concentration, and it is described that the lower one can reduce the residual Al, suggesting that the lower the sulfate group, the better. ing.
- the object of the present invention relates to basic aluminum chloride used in water treatment flocculants such as industrial wastewater and water, and water and sewage water, and the pH and alkalinity of each kind of water to be treated with the sulfate group concentration as low as possible.
- An object of the present invention is to obtain basic aluminum chloride excellent in storage stability that can cope with a wide range of fluctuations such as dissolved ions and turbidity, and can cope with a large temperature change during storage.
- the present invention is also a highly basic aluminum chloride characterized in that the highly basic aluminum chloride is a basic aluminum chloride produced from an alumina gel. Further, the present invention is the highly basic aluminum chloride characterized in that the Si is derived from Si dispersed in the alumina gel. Further, the present invention is a highly basic aluminum chloride characterized in that the alkaline earth metal E is magnesium.
- the present invention is a highly basic aluminum chloride characterized in that the basicity of the highly basic aluminum chloride is 50 to 80%.
- the present invention is a method for producing the above highly basic aluminum chloride, (1) a first step of producing an alumina gel by mixing and reacting a basic aluminum chloride first solution having a basicity of 40 to 65% and an alkali solution containing an alkali silicate; (2) a second step of adding and dissolving the alumina gel obtained in the first step to a basic aluminum chloride second solution having a basicity of 40 to 55%; (3) A method of producing highly basic aluminum chloride, comprising: a third step of aging the second solution obtained by dissolving the alumina gel obtained in the second step at 30 to 60 ° C. .
- the present invention is also the method for producing highly basic aluminum chloride, wherein the basicity of the highly basic aluminum chloride is 50 to 80%.
- the present invention is also the method for producing highly basic aluminum chloride, wherein the second basic aluminum chloride solution is a basic aluminum chloride solution containing aluminum sulfate.
- the present invention is the method for producing highly basic aluminum chloride, characterized in that in the third step, further aging is performed by adding aluminum sulfate.
- the present invention is also the method for producing highly basic aluminum chloride, wherein the basic aluminum chloride first solution is a basic aluminum chloride solution containing magnesium chloride.
- the present invention is the method for producing highly basic aluminum chloride, wherein the basic aluminum chloride second solution used in the second step is a basic aluminum chloride solution containing magnesium chloride.
- the pH, alkalinity, dissolved ions, turbidity, etc. of industrial effluent / water, water and sewage are reduced by lowering the sulfate group concentration and containing Si or Si and Mg compounds.
- a highly basic basic aluminum chloride which is a flocculant that can be applied to a wide range of water treatment and has excellent storage stability, can be obtained.
- the present invention is a highly basic basic aluminum chloride containing a low sulfate radical concentration and containing Si or Si and Mg compounds, and pH, alkalinity, dissolved ions, turbidity, such as industrial wastewater / water, and water and sewage It is a flocculant that can be applied to a wide range of water treatments and has excellent storage stability.
- FIG. 1 is a floc particle size diagram used to evaluate the floc state of highly basic basic aluminum chloride in river water in the experimental examples and comparative examples in the experimental examples.
- the basicity is preferably 50 to 80%, more preferably 60 to 80%.
- This highly basic aluminum chloride contains 0.001 to 0.1 mol of Si with respect to 1 mol of Al 2 O 3 . Particularly preferred is 0.003 to 0.07 mol. Si increases the cohesiveness and is particularly effective for treated water at high turbidity. When the amount is less than 0.001 mol, no improvement is observed in the cohesiveness.
- the highly basic aluminum chloride contains 0.1 to 1.2 mol, particularly preferably 0.3 to 0.8 mol, of an alkali metal such as Na and K with respect to 1 mol of Al 2 O 3 .
- This alkali metal is inevitably contained in order to produce an alumina gel by reaction in the production process.
- the alkali metal is contained in the form of NaCl or KCl in highly basic aluminum chloride.
- alkaline earth metal such as Ca and Mg is contained per mol of Al 2 O 3 as necessary. It is. Mg is preferred as the alkaline earth metal.
- This alkaline earth metal further enhances cohesiveness due to a synergistic effect with silicon, and is particularly effective in a low turbidity and high pH region. Even if the content exceeds 0.3 mol, the effect is saturated, which is not preferable.
- the highly basic aluminum chloride contains Cl in an amount of 1.0 to 3.0 mol, particularly preferably 1.5 to 2.7 mol, per 1 mol of Al 2 O 3 .
- This Cl is the sum of Cl bonded to Al and Cl bonded to an alkali metal. Even if it is less than 1.0 mol or more than 3.0 mol, the stability of the basic aluminum chloride is deteriorated, which is not preferable.
- the highly basic aluminum chloride contains 0 to 0.08 mol of SO 4 with respect to 1 mol of Al 2 O 3 .
- This SO 4 is used as an auxiliary to the cohesiveness and may be omitted depending on the type of water.
- PAC polyaluminum chloride
- Sulfate radicals have the effect of increasing the cohesiveness, but the cohesiveness caused by this is easily affected by fluctuations in the pH, alkalinity, dissolved ions, turbidity, etc. of the water to be treated. Moreover, when basicity becomes high, stability will worsen by a sulfate radical and content will be restrict
- a first step of reacting a basic aluminum chloride first solution with an alkali solution containing an alkali silicate to form an alumina gel a first step of reacting a basic aluminum chloride first solution with an alkali solution containing an alkali silicate to form an alumina gel; 2)
- the alumina gel obtained in the first step can be produced by passing through a second step of adding and dissolving the basic aluminum chloride second solution, and (3) a third step of aging at 30 to 60 ° C. it can.
- the basic aluminum chloride first and second solutions used in the first step or the second step are not particularly limited, but the basicity represented by the formula Al n (OH) m Cl 3nm [(m / 3n) X100] is more than 0 and less than 50%, desirably more than 30% and less than 50%.
- the basic aluminum chloride of the present invention may be produced by a known method, and can be produced, for example, by reacting hydrochloric acid with aluminum oxide.
- hydrochloric acid 35% hydrochloric acid. : 649 g, aluminum hydroxide (water content 2.6%): 325.3 g, water: 35.7 g were reacted in an autoclave at 160 ° C. for 160 minutes, and synthesized.
- the alkaline solution used in the first step may be a solution containing an alkali hydroxide such as sodium hydroxide or potassium hydroxide, an alkali carbonate such as sodium carbonate or potassium carbonate, or an alkali aluminate such as sodium aluminate or potassium aluminate. That's fine.
- an alkali hydroxide such as sodium hydroxide or potassium hydroxide
- an alkali carbonate such as sodium carbonate or potassium carbonate
- an alkali aluminate such as sodium aluminate or potassium aluminate. That's fine.
- alkali silicate as a Si source is mixed and dissolved.
- an alumina gel in which Si is uniformly dispersed in the gel formation process is obtained.
- a highly basic aluminum chloride solution is used, so that a part of the Al—Si bond is uniformly formed and the flocculant has excellent agglomeration performance. can do.
- the amount of alkali silicate mixed and dissolved is 0.001 to 0.1 mol, preferably 0.003 to 0.07 mol of Si as high basic aluminum chloride of the product with respect to 1 mol of Al 2 O 3. Adjust the amount to be adjusted.
- the method for producing the alumina gel in the first step a method in which the basic aluminum chloride first solution and the alkali solution are added simultaneously, a method in which the alkali solution is added to the basic aluminum chloride first solution, and a method in which the alkali solution is basic. Examples thereof include a method of adding an aluminum chloride first solution.
- the alumina gel thus obtained is dissolved in the second basic aluminum chloride solution having a basicity of less than 55%, usually 20% to 50%, in the second step. If Cl exceeds 3.0 moles with respect to 1 mole of Al 2 O 3 in the highly basic aluminum chloride solution of the final product, the stability deteriorates due to NaCl or KCl. It is preferable to desalinate at the production stage of the alumina gel.
- the desalting method any method such as filtration washing by ordinary method, dilution / decantation, etc. may be used.
- MgCl basic aluminum chloride second solution of the material in the second step 2 examples include mixing and dissolving.
- the basic aluminum chloride first and second solutions used in the first step or the second step described above are basic aluminum chloride immediately after synthesis by autoclave and before addition of sulfate radicals, and other desired sulfate radicals.
- sulfate radicals and other desired sulfate radicals.
- the aging in the third step is performed at 30 ° C. to 60 ° C., preferably 30 ° C. to 50 ° C. for 0.5 to 2.0 hours. This dissolves the undissolved gel as much as possible, stabilizes the highly basic aluminum chloride, and prevents precipitation and precipitation during storage. If the aging temperature is too high, the polymerization proceeds and the stability deteriorates.
- Example 1 EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited by this Example.
- Example 1 EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited by this Example.
- Example 1 EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited by this Example.
- Example 1 EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited by this Example.
- this gel was aged at room temperature for 0.25 to 2 hours, and further 290.9 g of a second basic aluminum chloride solution (basicity 46.8%, Al 2 O 3 19.7%, Cl 22.7%) and 5.3 g of a liquid sulfuric acid band (Al 2 O 3 8.0%, SO 4 22.3%) was added and dissolved.
- This solution was aged at 30 to 50 ° C. for 90 minutes to obtain a highly basic aluminum chloride solution (Al 2 O 3 10.3%) having a basicity of 71.5%.
- Si / Al 2 O 3 (molar ratio) 0.03
- Na / Al 2 O 3 (molar ratio) 0.7
- Cl / Al 2 O 3 (molar ratio) Ratio) 2.6
- SO 4 / Al 2 O 3 (molar ratio) 0.072.
- Example 2 The basic aluminum chloride second solution of Example 1 was synthesized by adding 2% magnesium chloride.
- Basic aluminum chloride (35% hydrochloric acid: 649 g, aluminum hydroxide (water content 2.6%): 325.3 g, water:
- a highly basic aluminum chloride was obtained in the same manner as in Example 1 except that 35.7 g and anhydrous magnesium chloride: 20 g were reacted in an autoclave at 160 ° C. for 160 minutes.
- the composition is shown in Table 1. Moreover, it evaluated by testing similarly to Example 1.
- FIG. The evaluation results are shown in Tables 3-5.
- Example 3 The basic aluminum chloride second solution was a basic aluminum chloride produced in the same manner as in Example 2, and a highly basic aluminum chloride was prepared in the same manner as in Example 1 except that the gel was dissolved without adding a sulfuric acid band. Obtained.
- the composition is shown in Table 1. Moreover, it evaluated by testing similarly to Example 1. FIG. The evaluation results are shown in Tables 3-5.
- Example 4 A highly basic aluminum chloride was obtained in the same manner as in Example 1 except that only the second basic aluminum chloride solution was added and dissolved in the gel without adding the liquid sulfuric acid band.
- the composition is shown in Table 1. Moreover, it evaluated by testing similarly to Example 1. FIG. The evaluation results are shown in Tables 3-5.
- Example 2 In Example 1, a highly basic aluminum chloride was obtained in the same manner as in Example 1 except that only a sodium aluminate solution was used and an alumina gel was formed without mixing sodium silicate. Using this, the same test as in Example 1 was performed for evaluation. The evaluation results are shown in 3-5.
- Example 3 (Comparative Example 3)
- an alumina gel was formed using only a sodium aluminate solution without mixing sodium silicate, and only the basic aluminum chloride second solution was added to the gel without adding a liquid sulfuric acid band.
- highly basic aluminum chloride was obtained.
- the same test as in Example 1 was performed for evaluation. The evaluation results are shown in Tables 3-5.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Inorganic Chemistry (AREA)
- Separation Of Suspended Particles By Flocculating Agents (AREA)
- Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
Abstract
Description
また本発明は、前記Siは、前記アルミナゲル中に分散したSi由来のものであることを特徴とする高塩基性塩化アルミニウムである。
また本発明は、前記アルカリ土類金属Eが、マグネシウムであることを特徴とする高塩基性塩化アルミニウムである。
(1)塩基度40~65%の塩基性塩化アルミニウム第1溶液と、アルカリケイ酸塩を含むアルカリ溶液とを混合し反応させ、アルミナゲルを生成させる第1工程と、
(2)第1工程で得られるアルミナゲルを塩基度40~55%の塩基性塩化アルミニウム第2溶液に添加し溶解する第2工程と、
(3)第2工程で得られる、アルミナゲルが溶解した第2溶液を、30~60℃で熟成する第3工程と、を包含することを特徴とする高塩基性塩化アルミニウムの製造方法である。
また本発明は、前記塩基性塩化アルミニウム第2溶液が、硫酸アルミニウムを含有した塩基性塩化アルミニウム溶液であることを特徴とする高塩基性塩化アルミニウムの製造方法である。
また本発明は、前記塩基性塩化アルミニウム第1溶液が、塩化マグネシウムを含む塩基性塩化アルミニウム溶液であることを特徴とする高塩基性塩化アルミニウムの製造方法である。
本発明の塩基性塩化アルミニウムは、既知の方法で製造されるものであればよく、たとえば塩酸と酸化アルミニウムとを反応させることによって、製造することができ、その1例をあげると、35%塩酸:649g、水酸化アルミニウム(含水率2.6%):325.3g、水:35.7gをオートクレーブ中で160℃、160分反応させて合成されるものである。また、第一溶液と第二溶液で濃度や塩基度が異なっていても問題はない。
(実施例1)
ビーカーに各種河川水1リットルを入れ、急速撹拌(150rpm:96cm/sec)しながら実施例および比較例の高塩基性塩化アルミニウムを添加し、引き続き上記条件と同じ急速撹拌1分、緩速撹拌(50rpm;32cm/sec)を10分行い、10分間静置し、上澄液をサイホンにて採取し、濁度、フロック状態、E260(紫外部吸光度:トリハロメタン除去率) 、残留アルミ濃度を求めた。E260の分析は、試料を0.45μmのろ紙を用いろ過した後、光路長1cmの石英ガラスセルを用いて分光光度計にて波長260nmの吸光度を測定した。また、残留アルミ濃度は、ICP発光分光法を用いて測定した。
実施例1の塩基性塩化アルミニウム第2溶液が、塩化マグネシウム2%添加し合成した塩基性塩化アルミニウム(35%塩酸:649g、水酸化アルミニウム(含水率2.6%):325.3g、水:35.7g、無水塩化マグネシウム:20gをオートクレーブ中で160℃、160分反応)である他は、実施例1と同様にして高塩基性塩化アルミニウムを得た。組成は表1に示す。また実施例1と同様に試験をして評価した。評価結果を表3~5に示す。
塩基性塩化アルミニウム第2溶液が、実施例2と同様に製造した塩基性塩化アルミニウムであり、硫酸バンドを添加しないでゲルを溶解した他は、実施例1と同様にして高塩基性塩化アルミニウムを得た。組成は表1に示す。また実施例1と同様に試験をして評価した。評価結果を表3~5に示す。
ゲルに、液体硫酸バンドを添加しないで塩基性塩化アルミニウム第2溶液のみを添加し溶解した他は、実施例1と同様にして高塩基性塩化アルミニウムを得た。組成は表1に示す。また実施例1と同様に試験をして評価した。評価結果を表3~5に示す。
実施例2の塩基性塩化アルミニウム第2溶液として、市販のPAC(Al2O3:10.3%、塩基度:52%、SO4 2-:2.6%(SO4/Al2O3(モル比)=0.27)を用い、液体硫酸バンドは添加しないで溶解した他は、実施例1と同様にして高塩基性塩化アルミニウムを得た。組成は表1に示す。また実施例1と同様に試験をして評価した。評価結果を表3~5に示す。
実施例1の高塩基性塩化アルミニウムに代えて、市販のPAC(Al2O3:10.3%、塩基度:52%、SO4 2-:2.6%(SO4/Al2O3(モル比)=0.27)を実施例1と同様にして評価した。評価結果を表3~5に示す。
実施例1において、アルミン酸ナトリウム溶液のみを用いて、ケイ酸ナトリウムは混合しないでアルミナゲルを生成した他は、実施例1と同様にして高塩基性塩化アルミニウムを得た。これを用いて実施例1と同様に試験をして評価した。評価結果を3~5に示す。
実施例1において、ケイ酸ナトリウムは混合しないでアルミン酸ナトリウム溶液のみを用いて、アルミナゲルを生成し、そのゲルに、液体硫酸バンドを添加しないで塩基性塩化アルミニウム第2溶液のみを添加し溶解した他は、実施例1と同様にして高塩基性塩化アルミニウムを得た。これを用いて実施例1と同様に試験をして評価した。評価結果を表3~5に示す。
Claims (11)
- 組成が、Si/Al2O3(モル比)=0.001~0.1、M/Al2O3(モル比)=0.1~1.2(Mはアルカリ金属のモル数を示す)、E/Al2O3(モル比)=0~0.3(Eはアルカリ土類金属のモル数を示す)、Cl/Al2O3(モル比)=1.0~3.0、SO4/Al2O3(モル比)=0~0.08であることを特徴とする高塩基性塩化アルミニウム。
- 前記高塩基性塩化アルミニウムが、アルミナゲルから生成される塩基性塩化アルミニウムであることを特徴とする請求項1に記載の高塩基性塩化アルミニウム。
- 前記Siは、前記アルミナゲル中に分散したSi由来のものであることを特徴とする請求項2に記載の高塩基性塩化アルミニウム。
- 前記アルカリ土類金属Eが、マグネシウムであることを特徴とする請求項1~3のいずれか1項に記載の高塩基性塩化アルミニウム。
- 前記高塩基性塩化アルミニウムの塩基度が、50~80%であることを特徴とする請求項1~4のいずれか1項に記載の高塩基性塩化アルミニウム。
- 請求項1~5いずれか1項に記載の高塩基性塩化アルミニウムの製造方法であって、
(1)塩基度40~65%の塩基性塩化アルミニウム第1溶液と、アルカリケイ酸塩を含むアルカリ溶液とを混合し反応させてアルミナゲルを生成させる第1工程と、
(2)第1工程で得られるアルミナゲルを塩基度40~55%の塩基性塩化アルミニウム第2溶液に添加し溶解する第2工程と、
(3)第2工程で得られる、アルミナゲルが溶解した第2溶液を、30~60℃で熟成する第3工程と、を包含することを特徴とする高塩基性塩化アルミニウムの製造方法。 - 前記高塩基性塩化アルミニウムの塩基度が、50~80%であることを特徴とする請求項6記載の高塩基性塩化アルミニウムの製造方法。
- 前記塩基性塩化アルミニウム第2溶液が、硫酸アルミニウムを含む塩基性塩化アルミニウム溶液であることを特徴とする請求項6または7に記載の高塩基性塩化アルミニウムの製造方法。
- 前記第3工程において、さらに硫酸アルミニウムを添加して熟成を行うことを特徴とする請求項6または7に記載の高塩基性塩化アルミニウムの製造方法。
- 前記塩基性塩化アルミニウム第1溶液が、塩化マグネシウムを含む塩基性塩化アルミニウム溶液であることを特徴とする請求項6~9のいずれか1項に記載の高塩基性塩化アルミニウムの製造方法。
- 前記塩基性塩化アルミニウム第2溶液が、塩化マグネシウムを含む塩基性塩化アルミニウム溶液であることを特徴とする請求項6~9のいずれか1項に記載の高塩基性塩化アルミニウムの製造方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201680084265.1A CN109071253B (zh) | 2016-03-31 | 2016-03-31 | 高盐基性氯化铝及其制备方法 |
PCT/JP2016/060841 WO2017168729A1 (ja) | 2016-03-31 | 2016-03-31 | 高塩基性塩化アルミニウムおよびその製造方法 |
JP2017523933A JP6186545B1 (ja) | 2016-03-31 | 2016-03-31 | 高塩基性塩化アルミニウムおよびその製造方法 |
KR1020187027440A KR102175414B1 (ko) | 2016-03-31 | 2016-03-31 | 고 염기성 염화알루미늄 및 그 제조방법 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2016/060841 WO2017168729A1 (ja) | 2016-03-31 | 2016-03-31 | 高塩基性塩化アルミニウムおよびその製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017168729A1 true WO2017168729A1 (ja) | 2017-10-05 |
Family
ID=59678228
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/060841 WO2017168729A1 (ja) | 2016-03-31 | 2016-03-31 | 高塩基性塩化アルミニウムおよびその製造方法 |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP6186545B1 (ja) |
KR (1) | KR102175414B1 (ja) |
CN (1) | CN109071253B (ja) |
WO (1) | WO2017168729A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020050540A (ja) * | 2018-09-26 | 2020-04-02 | 朝日化学工業株式会社 | 高塩基性塩化アルミニウムおよびその製造方法 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109734113B (zh) * | 2019-03-20 | 2021-08-31 | 湖南玖恪环境工程有限公司 | 高絮凝效果聚氯化铝的生产方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05814A (ja) * | 1990-10-26 | 1993-01-08 | Taimei Kagaku Kogyo Kk | 塩基性塩化アルミニウム粉末およびこれの製造方法 |
JP2000264627A (ja) * | 1999-03-12 | 2000-09-26 | Kanto Denka Kogyo Co Ltd | 塩基性塩化アルミニウムの塩基度向上方法 |
JP2009203125A (ja) * | 2008-02-28 | 2009-09-10 | Taki Chem Co Ltd | 新規な塩基性塩化アルミニウム及びその製造方法並びにその用途 |
JP2014024694A (ja) * | 2012-07-25 | 2014-02-06 | Taki Chem Co Ltd | 硫酸根含有ポリ塩化アルミニウムの製造方法 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5029479A (ja) | 1973-07-18 | 1975-03-25 | ||
JP3194176B2 (ja) * | 1993-12-15 | 2001-07-30 | 朝日化学工業株式会社 | 硫酸根含有高塩基性塩化アルミニウム溶液の製造方法 |
JP4104773B2 (ja) | 1999-03-24 | 2008-06-18 | 朝日化学工業株式会社 | 浄水用凝集剤の製造方法 |
CN1413919A (zh) * | 2001-10-26 | 2003-04-30 | 中国科学院广州能源研究所 | 废水处理用的复合净水剂 |
KR100589989B1 (ko) * | 2004-03-05 | 2006-06-14 | 케이지케미칼 주식회사 | 폴리염화규산알루미늄의 제조방법 |
CN1288086C (zh) * | 2005-03-29 | 2006-12-06 | 煤炭科学研究总院抚顺分院 | 用废分子筛催化剂制备聚合氯化铝的方法 |
US20080131354A1 (en) * | 2006-12-05 | 2008-06-05 | Reheis, Inc. | Polyaluminum calcium hydroxychlorides and methods of making the same |
JP5547875B2 (ja) | 2008-05-22 | 2014-07-16 | オルガノ株式会社 | 凝集方法 |
JP2015535886A (ja) * | 2012-09-26 | 2015-12-17 | オーバイト アルミナ インコーポレイテッドOrbite Aluminae Inc. | 種々の材料のHCl浸出によるアルミナおよび塩化マグネシウムを調製するためのプロセス |
-
2016
- 2016-03-31 JP JP2017523933A patent/JP6186545B1/ja active Active
- 2016-03-31 WO PCT/JP2016/060841 patent/WO2017168729A1/ja active Application Filing
- 2016-03-31 KR KR1020187027440A patent/KR102175414B1/ko active IP Right Grant
- 2016-03-31 CN CN201680084265.1A patent/CN109071253B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05814A (ja) * | 1990-10-26 | 1993-01-08 | Taimei Kagaku Kogyo Kk | 塩基性塩化アルミニウム粉末およびこれの製造方法 |
JP2000264627A (ja) * | 1999-03-12 | 2000-09-26 | Kanto Denka Kogyo Co Ltd | 塩基性塩化アルミニウムの塩基度向上方法 |
JP2009203125A (ja) * | 2008-02-28 | 2009-09-10 | Taki Chem Co Ltd | 新規な塩基性塩化アルミニウム及びその製造方法並びにその用途 |
JP2014024694A (ja) * | 2012-07-25 | 2014-02-06 | Taki Chem Co Ltd | 硫酸根含有ポリ塩化アルミニウムの製造方法 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020050540A (ja) * | 2018-09-26 | 2020-04-02 | 朝日化学工業株式会社 | 高塩基性塩化アルミニウムおよびその製造方法 |
KR20200035349A (ko) * | 2018-09-26 | 2020-04-03 | 아사히 가가쿠 고교 가부시키가이샤 | 고 염기성 염화알루미늄 및 그 제조 방법 |
CN110950369A (zh) * | 2018-09-26 | 2020-04-03 | 朝日化学工业株式会社 | 高碱性氯化铝及其制造方法 |
KR102337418B1 (ko) * | 2018-09-26 | 2021-12-08 | 아사히 가가쿠 고교 가부시키가이샤 | 고 염기성 염화알루미늄 및 그 제조 방법 |
Also Published As
Publication number | Publication date |
---|---|
KR20180115780A (ko) | 2018-10-23 |
CN109071253B (zh) | 2021-01-26 |
CN109071253A (zh) | 2018-12-21 |
KR102175414B1 (ko) | 2020-11-06 |
JPWO2017168729A1 (ja) | 2018-04-05 |
JP6186545B1 (ja) | 2017-08-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4953458B2 (ja) | 新規な塩基性塩化アルミニウム及びその製造方法並びにその用途 | |
US5246686A (en) | Basic aluminum chlorosulfate flocculating agents | |
JP6186545B1 (ja) | 高塩基性塩化アルミニウムおよびその製造方法 | |
JP2009241011A (ja) | フッ素含有排水の処理方法 | |
TWI764044B (zh) | 高鹼性氯化鋁及其製造方法 | |
JP3194176B2 (ja) | 硫酸根含有高塩基性塩化アルミニウム溶液の製造方法 | |
KR20130055321A (ko) | 활성규산이 혼합된 염기성 수처리용 응집제의 제조방법 | |
JP2020079200A (ja) | 高塩基性塩化アルミニウムの製造方法 | |
TWI694057B (zh) | 石膏的製造方法及水泥組成物的製造方法 | |
JP5167448B2 (ja) | 水中のカルシウムイオンとマグネシウムイオンの除去方法 | |
JP2002079003A (ja) | 高純度第二鉄系無機凝集剤及びその製造方法、並びに浄水処理における凝集分離処理方法及び処理装置 | |
JPH10245220A (ja) | 塩基性塩化アルミニウム及びその製造方法 | |
JP4583786B2 (ja) | ホウ素含有排水の処理方法 | |
JP2000070610A (ja) | 浄水用凝集剤及びその製造方法 | |
RU2300499C1 (ru) | Способ получения гидроксохлорида алюминия из технического гидроксида алюминия и соляной кислоты | |
CN104692507B (zh) | 一种共聚法制备聚合硅酸聚合氯化钛无机高分子复合絮凝剂的方法 | |
JP2018154543A (ja) | 塩基性塩化アルミニウムの製造方法 | |
JP2001347275A (ja) | チタン系凝集剤 | |
JP3520112B2 (ja) | 水処理方法 | |
JP2021046353A (ja) | 高塩基性塩化アルミニウムおよびその製造方法 | |
JP3741269B2 (ja) | 排水処理剤、排水の処理方法及びその装置 | |
WO2017017833A1 (ja) | フッ素含有排水の処理方法とその装置 | |
JPS6111113A (ja) | 凝集剤の製造方法 | |
JP2024089040A (ja) | ホウ素含有塩基性塩化アルミニウム | |
JPH1133562A (ja) | 廃水中のリン酸イオンの除去方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2017523933 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20187027440 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16896946 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16896946 Country of ref document: EP Kind code of ref document: A1 |