WO2017168685A1 - 充電施設の案内方法及び情報提示装置 - Google Patents

充電施設の案内方法及び情報提示装置 Download PDF

Info

Publication number
WO2017168685A1
WO2017168685A1 PCT/JP2016/060685 JP2016060685W WO2017168685A1 WO 2017168685 A1 WO2017168685 A1 WO 2017168685A1 JP 2016060685 W JP2016060685 W JP 2016060685W WO 2017168685 A1 WO2017168685 A1 WO 2017168685A1
Authority
WO
WIPO (PCT)
Prior art keywords
charging facility
charging
electric vehicle
battery
facility
Prior art date
Application number
PCT/JP2016/060685
Other languages
English (en)
French (fr)
Inventor
聡 吉野
壮宏 前田
成岡 慶紀
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to PCT/JP2016/060685 priority Critical patent/WO2017168685A1/ja
Priority to US16/087,945 priority patent/US10444024B2/en
Priority to JP2018508281A priority patent/JP6597884B2/ja
Priority to CN201680084235.0A priority patent/CN109073400B/zh
Priority to EP16896903.8A priority patent/EP3438610B1/en
Publication of WO2017168685A1 publication Critical patent/WO2017168685A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/31Charging columns specially adapted for electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/63Monitoring or controlling charging stations in response to network capacity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/3407Route searching; Route guidance specially adapted for specific applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/3453Special cost functions, i.e. other than distance or default speed limit of road segments
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/3453Special cost functions, i.e. other than distance or default speed limit of road segments
    • G01C21/3469Fuel consumption; Energy use; Emission aspects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/36Input/output arrangements for on-board computers
    • G01C21/3679Retrieval, searching and output of POI information, e.g. hotels, restaurants, shops, filling stations, parking facilities
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/36Input/output arrangements for on-board computers
    • G01C21/3679Retrieval, searching and output of POI information, e.g. hotels, restaurants, shops, filling stations, parking facilities
    • G01C21/3682Retrieval, searching and output of POI information, e.g. hotels, restaurants, shops, filling stations, parking facilities output of POI information on a road map
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/06Buying, selling or leasing transactions
    • G06Q30/0601Electronic shopping [e-shopping]
    • G06Q30/0631Item recommendations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/36Temperature of vehicle components or parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/60Navigation input
    • B60L2240/62Vehicle position
    • B60L2240/622Vehicle position by satellite navigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • Y02T90/167Systems integrating technologies related to power network operation and communication or information technologies for supporting the interoperability of electric or hybrid vehicles, i.e. smartgrids as interface for battery charging of electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • Y04S10/126Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation the energy generation units being or involving electric vehicles [EV] or hybrid vehicles [HEV], i.e. power aggregation of EV or HEV, vehicle to grid arrangements [V2G]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S30/00Systems supporting specific end-user applications in the sector of transportation
    • Y04S30/10Systems supporting the interoperability of electric or hybrid vehicles
    • Y04S30/12Remote or cooperative charging

Definitions

  • the present invention relates to a method for guiding a charging facility to a user of an electric vehicle and an information presentation device.
  • the problem to be solved by the present invention is to provide a charging facility guidance method and an information presentation device that can alleviate congestion in a charging facility having a larger output power.
  • the present invention relates to the estimated value of the charging time for the first charging facility, and other charging facilities that have a smaller output power than the first charging facility and have a predetermined positional relationship with the first charging facility.
  • the difference from the estimated value of the charging time is within a predetermined value, the above problem is solved by presenting the other charging facility to the user of the electric vehicle.
  • the present invention in consideration of the actual charging time between the first charging facility and another charging facility whose output power is smaller than that, the other charging facility is presented to the user of the electric vehicle. There is an effect that the congestion of the first charging facility having a larger output power can be reduced.
  • FIG. 1 It is a block diagram which shows the structure of the information presentation apparatus which concerns on one Embodiment of this invention. It is a block diagram for demonstrating the function of the battery controller with which the information presentation apparatus shown in FIG. 1 is provided. It is a figure which shows the relationship between the voltage of the battery in a normal temperature environment, and the output current of a charger. It is a figure which shows the relationship between the voltage of the battery in a low temperature environment, and the output current of a charger. It is a block diagram for demonstrating the function of the control apparatus with which the information presentation apparatus shown in FIG. 1 is provided. It is a figure which shows the display screen of the information presentation apparatus when the destination is set. It is a figure which shows the display screen of the information presentation apparatus when the destination is not set. It is the schematic of the map which shows the relationship of the charging time with respect to the charging power of battery, temperature, and SOC. It is a flowchart for demonstrating the process of an information presentation apparatus.
  • FIG. 1 is a block diagram showing a configuration of an information presentation apparatus 100 according to an embodiment to which a charging facility guidance method of the present invention is applied.
  • the information presentation device 100 is a device that presents various information including information for guiding a charging facility to a user of an electric vehicle such as an electric vehicle or a plug-in hybrid vehicle.
  • the information presentation device 100 includes a host vehicle position detection device 110, an input device 120, a presentation device 130, a map database 140, a charging facility management database 150, a battery controller 160, and a control device 170. These components are connected by a CAN (Controller Area Network) or other vehicle-mounted LAN, and can exchange information with each other.
  • CAN Controller Area Network
  • the own vehicle position detection device 110 includes a GPS receiver, a gyro sensor, a vehicle speed sensor, and the like. This own vehicle position detection device 110 receives a radio wave transmitted from a GPS transmitter by a GPS receiver and periodically acquires position information of the own vehicle, and acquires the acquired position information of the own vehicle and a gyro sensor. The current position of the host vehicle is detected and output to the control device 170 based on the angle change information of the host vehicle and the vehicle speed information of the host vehicle acquired from the vehicle speed sensor.
  • the input device 120 is a device for receiving an input instruction from a user of the electric vehicle.
  • Examples of the input device 120 include a touch panel type input device provided on a display of a navigation device, an input device such as a joystick and a push button, a voice input device such as a microphone, and the like. As will be described later, the input device 120 can be used to select a charging facility displayed on the display of the navigation device, and charging facility selection information is input.
  • the presentation device 130 is a device for presenting various information including information for guiding the charging facility to the user.
  • Examples of the presentation device 130 include a display of a navigation device, a display provided on an instrument panel, and a speaker.
  • the presentation device 130 of this embodiment is a display of a navigation device.
  • the map database 140 stores map data.
  • the map data stored in the map database 140 is referred to by the control device 170 when searching for a route from the current position of the electric vehicle to the destination and when presenting the position of the charging facility to the user of the electric vehicle.
  • the charging facility management database 150 stores detailed information on charging facilities.
  • the detailed information of the charging facility stored in the charging facility management database 150 includes information on the latitude and longitude of the position where the charging facility is installed, and the high output charger and the low output charger of the charger 1 provided in the charging facility. Information.
  • the high output charger corresponds to a so-called quick charger
  • the low output charger corresponds to a so-called ordinary charger.
  • classifying the charger 1 into two according to the level of output it is not essential to classify the charger 1 into a quick charger and a normal charger.
  • the battery controller 160 is a controller that manages the state of the battery 10, and is also a controller that controls the charger 1 of the charging facility.
  • the battery 10 to be managed by the battery controller 160 is a battery configured by connecting a plurality of secondary batteries such as a lithium ion secondary battery and a nickel hydride secondary battery, and is a power source of the electric vehicle.
  • the charger 1 to be controlled by the battery controller 160 includes a high-output charger (so-called quick charger) 1A and a low-output charger (so-called normal charger) having a maximum output power smaller than that of the high-output charger 1A. Charger) 1B.
  • the charger 1 to be controlled by the battery controller 160 further includes a charger having an intermediate output between the high output charger 1A and the low output charger 1B, or a charger having a higher output than the high output charger 1A. Alternatively, it may include a charger having a lower output than the low output charger 1B.
  • the battery controller 160 calculates the current charging state (SOC: State of Charge, or charging rate) of the battery 10 based on detection values such as the current, voltage, and temperature of the battery 10. Further, the battery controller 160 calculates a command value for controlling the charging of the charger 1 based on the measured value of the SOC of the battery 10, the temperature of the battery 10, and the like, and outputs the command value to the charger 1.
  • SOC State of Charge, or charging rate
  • the battery controller 160 calculates the SOC of the battery 10 and stores a ROM (Read Only Memory) that stores a program for controlling the charger 1, and a CPU (Central Processing Unit) that executes the program stored in the ROM. And a RAM (Random Access Memory) functioning as an accessible storage device.
  • ROM Read Only Memory
  • CPU Central Processing Unit
  • RAM Random Access Memory
  • an MPU Micro Processing Unit
  • DSP Digital Signal Processor
  • ASIC Application Specific Circuit
  • FPGA Field Programmable Array
  • FIG. 2 is a block diagram for explaining the function of the battery controller 160.
  • the battery controller 160 includes a current detection unit 161, a voltage detection unit 162, a temperature detection unit 163, an SOC calculation unit 164, a chargeable power calculation unit 165, and an actual power calculation unit 166. And a charger control unit 167.
  • the current detection unit 161 is a sensor that detects the current of the battery 10.
  • the current detection unit 161 outputs detection values to the SOC calculation unit 164, the chargeable power calculation unit 165, the actual power calculation unit 166, and the charger control unit 167.
  • the voltage detector 162 is a sensor that detects the voltage of the battery 10.
  • the voltage detection unit 162 detects each voltage of a plurality of batteries included in the battery 10 and the total voltage of the plurality of batteries.
  • the voltage detection unit 162 outputs the detection value to the chargeable power calculation unit 165 and the actual power calculation unit 166.
  • the temperature detection unit 163 is a sensor that detects the temperature of the battery 10.
  • the temperature detection unit 163 outputs the detection value to the chargeable power calculation unit 165, the actual power calculation unit 166, the charger control unit 167, and the control device 170.
  • the SOC calculation unit 164 integrates the detection values detected by the current detection unit 161 to integrate the charging current and calculate the SOC of the battery 10.
  • the SOC calculation unit 164 outputs the calculated SOC to the charger control unit 167 and the control device 170.
  • the SOC calculation unit 164 may calculate the SOC of the battery 10 from the detection value of the voltage detection unit 162.
  • the SOC calculation unit 164 may calculate the SOC of the battery 10 from the detection value of the voltage detection unit 162.
  • a map indicating the correlation between the voltage of the battery 10 and the SOC is stored in the ROM, and the SOC calculation unit 164 is stored in the ROM.
  • the SOC corresponding to the detection value of the voltage detection unit 162 may be read and output as the SOC of the battery 10.
  • the above map is preferably a map according to the degree of deterioration of the battery 10.
  • the deterioration degree of the battery 10 may be calculated from the internal resistance of the battery 10, for example.
  • the chargeable power calculation unit 165 calculates the chargeable power of the battery 10 from the detection values of the current detection unit 161, the voltage detection unit 162, and the temperature detection unit 163. This chargeable power is the maximum power that can be charged without promoting the deterioration of the battery 10 when charging the battery 10, and is the maximum input power that can be input from the charger 1 to the battery 10.
  • the chargeable power is generally called input power, maximum chargeable power, or maximum input power, and is described as chargeable power in the present embodiment.
  • the chargeable power calculation unit 165 calculates chargeable power in the following manner.
  • a charging upper limit voltage is set for each cell according to the performance of the battery 10.
  • the charge upper limit voltage is a predetermined voltage that becomes an upper limit when the battery 10 is charged in order to prevent the battery 10 from deteriorating.
  • As the charge upper limit voltage a voltage at which lithium deposition starts or a voltage lower than a voltage at which lithium deposition starts is set inside the battery (cell) constituting the battery 10.
  • the charging upper limit voltage is calculated according to the charging current input to the battery 10, the battery temperature, and the internal resistance of the battery 10. For example, the charging upper limit voltage is calculated to be lower as the charging current of the battery 10 is larger, and is calculated to be higher as the charging current of the battery 10 is smaller.
  • the chargeable power calculation unit 165 identifies the cell having the highest voltage from the voltage of each cell detected by the voltage detection unit 162.
  • the chargeable power calculation unit 165 calculates an inputtable current that can be input to the battery 10 based on the specified cell voltage, the internal resistance of the cell, the charge current of the cell, and the charge upper limit voltage.
  • the input possible current is calculated from the internal resistance of the cell having the highest terminal voltage and the charging upper limit voltage of the cell.
  • the internal resistance of the cell is calculated from the terminal voltage of the cell detected by the voltage detection unit 162 and the charging current of the cell.
  • the chargeable power calculation unit 165 outputs the calculated chargeable power to the charger control unit 167.
  • the actual power calculation unit 166 calculates charging power (hereinafter referred to as actual power) that is actually supplied from the charger 1 to the battery 10 while the battery 10 is being charged.
  • the actual power is lower than the output power of the charger 1 due to the internal resistance of the battery 10 and the like.
  • the actual power calculation unit 166 calculates actual power from the detection value of the current detection unit 161 and the detection value of the voltage detection unit 162.
  • the actual power calculator 166 outputs the calculated value of the actual power to the charger controller 167.
  • the charger controller 167 includes a current detected by the current detector 161, a chargeable power calculated by the chargeable power calculator 165, an actual power of the battery 10 calculated by the actual power calculator 166, and a charger.
  • the charger 1 is controlled based on the outputable power of 1.
  • the output possible power of the charger 1 corresponds to the rated output power of the charger 1, and is the maximum value of the power that the charger 1 can output. That is, the output power is a value set in advance according to the charging capability of the charger 1, and the output power of the charger 1 is limited to the output power or less.
  • the output possible power of the charger 1 varies depending on the charger 1. Therefore, when the charger 1 and the battery 10 are connected by a cable or the like, the charger control unit 167 communicates with the charger 1 and acquires information on the output power available from the charger 1. Communication between the charger 1 and the charger control unit 167 may be performed using a communication line in a cable connecting the charger 1 and the battery 10.
  • the charger control unit 167 acquires outputable power from the charger 1, acquires chargeable power from the chargeable power calculation unit 165, compares them, and performs charging based on the comparison result and the SOC of the battery 10.
  • the electric power supplied from the device 1 to the battery 10 is set.
  • the lower the SOC of the battery 10 the higher the power that can be input to the battery 10, and the outputable power of the charger 1 may be lower than the chargeable power of the battery 10.
  • the higher the SOC of the battery 10 the lower the power that can be input to the battery 10, and the chargeable power of the battery 10 may be lower than the outputable power of the charger 1.
  • the charger control unit 167 sets the power supplied from the charger 1 to the battery 10 as the outputable power of the charger 1.
  • the command signal is output to the charger 1.
  • the charger 1 starts charging the battery 10 with the output power according to the command signal.
  • the charger control unit 167 converts the power supplied from the charger 1 to the battery 10 to the chargeable power of the battery 10.
  • the charger 1 starts charging the battery 10 with power lower than the power that can be output.
  • the chargeable power calculation unit 165 calculates the chargeable power of the battery 10 based on the detection value of the current detection unit 161 and the like and transmits it to the charger control unit 167.
  • the control unit 167 compares the chargeable power of the battery 10 with the outputable power of the charger 1.
  • the charger control unit 167 transitions from the state in which the chargeable power of the battery 10 is higher than the outputable power of the charger 1 to the state in which the chargeable power of the battery 10 is less than the outputable power of the charger 1, the charger control unit 167 A control signal is output to the charger 1 so that the power supplied to the battery 10 is less than the power that can be output from the charger 1.
  • the charger 1 reduces the output current to reduce the power supplied to the battery 10.
  • the charger control unit 167 outputs a control signal to the charger 1 so that the power supplied to the battery 10 gradually decreases as the SOC of the battery 10 increases.
  • the charger 1 gradually decreases the output current as the SOC of the battery 10 increases, thereby reducing the power supplied to the battery 10.
  • FIG. 3 is a diagram showing the relationship between the voltage of the battery 10 and the output current of the charger 1 in a room temperature environment.
  • the output current of the high output charger 1A is indicated by a solid line
  • the output current of the low output charger 1B is indicated by a one-dot chain line.
  • the voltage of the battery 10 in the case of charging with the high output charger 1A is shown by a broken line
  • the voltage of the battery 10 in the case of charging with the low output charger 1B is shown by a two-dot chain line.
  • SOC at the start of charging is 50%
  • SOC1 and SOC2 are 70% and 90%, respectively
  • SOC at full charge is 100%.
  • the voltage of the battery 10 at the start of charging is Vs1
  • the charging upper limit voltage is Vf.
  • the output current of the charger 1 is maintained at the maximum value that can be output.
  • the voltage of 10 becomes higher (i.e., the SOC becomes higher than SOC1)
  • the output current of the charger 1 decreases.
  • the voltage of the battery 10 is higher (that is, the SOC is higher than SOC1)
  • the difference in output current between the high output charger 1A and the low output charger 1B is reduced.
  • FIG. 4 is a diagram showing the relationship between the voltage of the battery 10 and the output current of the charger 1 in a low temperature environment.
  • the output current of the high output charger 1A is indicated by a solid line
  • the output current of the low output charger 1B is indicated by a one-dot chain line
  • the voltage of the battery 10 when charged by the high output charger 1B is indicated by a broken line.
  • the voltage of the battery 10 in the case of charging with the low output charger 1B is indicated by a two-dot chain line.
  • SOC at the start of charging is 0%
  • SOC3 and SOC4 are 10% and 85%, respectively
  • SOC at full charge is 100%.
  • the voltage of the battery 10 at the start of charging is Vs2
  • the charging upper limit voltage at full charge is Vf
  • the charging upper limit voltage at low temperature is Vth.
  • lithium is more likely to be deposited as the temperature of the battery is lower and as the charging current is increased. For this reason, the lower the battery temperature and the larger the charging current, the lower the charging upper limit voltage is set, and the charging current is controlled so that the battery voltage does not exceed this charging upper limit voltage.
  • a lower charging upper limit voltage Vth is set with respect to the normal charging upper limit voltage Vf, and as the SOC of the battery increases, The voltage of the battery 10 rises from the voltage Vs2 at the start of charging and reaches the charging upper limit voltage Vth (in FIG. 4, the SOC is in the state at the time of SOC3).
  • the charging upper limit voltage Vth the charging current is suppressed so that the battery voltage does not exceed the charging upper limit voltage Vth, and the charging upper limit voltage Vth increases with the suppression of the charging current.
  • the charging upper limit voltage Vth gradually increases to Vf, and the charging current also gradually decreases.
  • the output current of the high-output charger 1A and the output current of the low-output charger 1B decrease in the same manner as at the normal temperature of the battery 10 shown in FIG. .
  • a lower charging upper limit voltage is set than in the normal temperature environment. Therefore, compared with the normal temperature environment, the high output charger 1A is further connected regardless of the voltage (SOC) of the battery 10. The difference in output current from the low output charger 1B is reduced. Therefore, in a low temperature environment, the difference in charging time between charging with the high output charger 1A and charging with the low output charger 1B becomes small regardless of the voltage (SOC) of the battery 10.
  • the control device 170 includes a ROM (Read Only Memory) that stores a program for presenting charging facility guidance information and the like to the user, and a CPU (Central Processing Unit that executes the program stored in the ROM. ) And a RAM (Random Access Memory) functioning as an accessible storage device.
  • ROM Read Only Memory
  • CPU Central Processing Unit
  • RAM Random Access Memory
  • an MPU Micro Processing Unit
  • DSP Digital Signal Processor
  • ASIC Application Specific Circuit
  • FPGA Field Programmable Array
  • FIG. 5 is a block diagram for explaining the function of the control device 170.
  • the control device 170 includes a vehicle information acquisition unit 171, a route search unit 172, an own vehicle travelable distance calculation unit 173, a first charging facility search unit 174, and charger output information acquisition.
  • the vehicle information acquisition part 171 acquires the information regarding the own vehicle.
  • Examples of the information related to the host vehicle include the SOC of the battery 10 output from the battery controller 160, the current position of the host vehicle output from the host vehicle position detection device 110, and the destination information output from the input device 120. it can.
  • the route search unit 172 refers to the map information stored in the map database 140 and searches for a travel route from the current position of the host vehicle to the destination set by the user.
  • Information on the current position of the host vehicle can be acquired by the vehicle information acquisition unit 171 from the host vehicle position detection device 110, and information on the destination can be acquired by the vehicle information acquisition unit 171 from the input device 120.
  • the route search unit 172 outputs information on the searched travel route to the information presentation unit 176.
  • the own vehicle travelable distance calculation unit 173 calculates the travelable distance of the host vehicle based on the SOC of the battery 10 output from the vehicle information acquisition unit 171 and the information on the rated capacity of the battery 10 of the host vehicle.
  • the own vehicle travelable distance calculation unit 173 outputs the calculated travelable distance information to the first charging facility search unit 174 and the information presentation unit 176.
  • the first charging facility search unit 174 is based on the charging facility position information stored in the charging facility management database 150, and the charging included in the range of the travelable distance output from the own vehicle travelable distance calculation unit 173. Explore facilities.
  • the first charging facility search unit 174 outputs the searched location information of the charging facility to the charger output information acquisition unit 175 and the information presentation unit 176.
  • the charger output information acquisition unit 175 acquires the output information of the charging facility searched by the first charging facility search unit 174 from the charging facility management database 150.
  • the output information of the charging facility includes the output possible power (rated output power) of the charger 1 described above.
  • the charger output information acquisition unit 175 outputs the acquired charging facility information to the information presentation unit 176 and the charging time calculation unit 179.
  • the information presentation unit 176 can travel the current position of the host vehicle acquired by the vehicle information acquisition unit 171, the travel route output from the route search unit 172, and the travel distance calculation unit 173 of the host vehicle.
  • the distance and the position of the charging facility output from the first charging facility search unit 174 are displayed on the display of the navigation device.
  • the information presentation unit 176 displays a sign A indicating the current position of the host vehicle and a sign B indicating the travelable distance of the host vehicle on the display of the navigation device (see FIGS. 6 and 7).
  • the information presentation unit 176 includes a sign C indicating a charging facility where the high-power charger is installed, and a low-power charger based on the output information of the charging facility output by the charger output information acquisition unit 175.
  • the sign D indicating the charged charging facility is displayed on the display of the navigation device (see FIGS. 6 and 7).
  • the charging facility selection information acquisition unit 177 acquires the charging facility selection information output from the input device 120.
  • the charging facility selection information is output from the input device 120 to the charging facility selection information acquisition unit 177.
  • the charging facility selection information acquisition unit 177 outputs the acquired charging facility selection information to the information presentation unit 176 and the second charging facility search unit 178.
  • the information presenting unit 176 displays a sign E for identifying the selected charging facility on the display of the navigation device.
  • the second charging facility search unit 178 selects a low-output charging facility that has a predetermined positional relationship with the selected charging facility when a high-output charging facility is selected by the user's operation of the input device 120. Explore.
  • This predetermined positional relationship is a positional relationship in which the estimated values of the travel time from the current position of the host vehicle are substantially equal (for example, the time difference is 0 to 10 minutes).
  • the second charging facility search is performed.
  • the unit 178 searches for a low-output charging facility whose distance from the charging facility selected by the user is within a predetermined distance (for example, 1 to 10 km / h).
  • the second charging facility search unit 178 searches for a low-power charging facility in which the difference between the current position of the host vehicle and the high-power charging facility selected by the user is within a predetermined distance (for example, 1 to 10 km / h).
  • the second charging facility search unit 178 outputs information of the searched low output charging facility to the charging time calculation unit 179.
  • the charging time calculation unit 179 searches for the charging time T1 (estimated value) when the battery 10 of the host vehicle is fully charged in the high output charging facility selected by the user, and the second charging facility search unit 178.
  • the charging time T2 (estimated value) in the case where the battery 10 of the own vehicle is charged to full charge in the low-power charging facility thus calculated is calculated.
  • the charging time calculation unit 179 includes the temperature detected by the temperature detection unit 163 of the battery controller 160, the SOC of the battery 10 calculated by the SOC calculation unit 164 of the battery controller 160, and the charger output information acquisition unit 175 of the control device 170.
  • the charging time calculation unit 179 Based on the acquired maximum output power of the charger 1 and the charging power (actual power) calculated by the actual power calculation unit 166 of the battery controller 160, the charging times T1 and T2 are calculated.
  • the charging time calculation unit 179 outputs information on the charging times T1 and T2 to the charging facility candidate specifying unit 181.
  • FIG. 8 is a schematic diagram of a map showing the relationship between the charging power, temperature, and SOC of the battery 10 and the charging time.
  • the charging times T1 and T2 of the battery 10 have a correlation with the charging power, temperature and SOC of the battery 10. That is, the charging times T1 and T2 are longer as the temperature of the battery 10 is lower, and the charging times T1 and T2 are longer as the SOC of the battery 10 is lower.
  • the charging time calculation unit 179 extracts a map corresponding to the charging power of the battery 10 calculated by the actual power calculation unit 166 from a plurality of maps stored in the ROM of the control device 170.
  • the charging power of the battery 10 calculated by the actual power calculation unit 166 gradually decreases, and thus the charging time calculation unit 179. Extracts a corresponding map as the charging power of the battery 10 decreases.
  • the charging time calculation unit 179 refers to the extracted map, and extracts the charging times T1 and T2 corresponding to the temperature detected by the temperature detection unit 163 and the SOC calculated by the SOC calculation unit 164.
  • the charging time calculation unit 179 not only calculates the remaining charging time during charging, but also calculates the charging time after the host vehicle arrives at the charging facility while the host vehicle is traveling. Therefore, the remaining capacity calculation unit 180 calculates the charging capacity of the battery 10 at the time when the host vehicle arrives at the charging facility, and outputs it to the charging time calculation unit 179.
  • the remaining capacity calculation unit 180 indicates the distance from the current position of the host vehicle to the charging facility, the position information of the host vehicle output from the host vehicle position detection device 110, and the position of the charging facility stored in the charging facility management database 150. Calculate based on information.
  • the ROM of the control device 170 stores a map indicating the relationship between the travel distance and the power consumption.
  • the remaining capacity calculation unit 180 refers to this map, and the power consumption corresponding to the calculated travel distance. To extract.
  • the remaining capacity calculation unit 180 then calculates the difference between the calculated charging power of the battery 10 corresponding to the SOC of the battery 10 calculated by the SOC calculation unit 164 and the calculated power consumption, that is, when the host vehicle arrives at the charging facility.
  • the charging capacity of the battery 10 is calculated.
  • the map referred to by the remaining capacity calculation unit 180 may indicate the relationship between the temperature of the battery 10, the travel distance, and the power consumption.
  • the charging facility candidate specifying unit 181 determines whether or not the difference between the charging times T1 and T2 output from the charging time calculating unit 179 is a predetermined value (for example, 0 to 10 minutes) or less, and the second charging facility Among the low-output charging facilities searched by the search unit 178, when there is one having a difference between the charging times T1 and T2 equal to or less than a predetermined value, the low-output charging facility is specified, and the charging facility candidate is specified. Information is output to the information presentation unit 176. When the information providing unit 176 receives the charging facility candidate specifying information, the information presenting unit 176 displays a sign F recommending the corresponding charging facility on the display of the navigation device (see FIGS. 6 and 7).
  • FIG. 9 is a flowchart for explaining the processing of the information presentation apparatus 100.
  • step S101 the information presentation unit 176 displays a sign A indicating the current position of the host vehicle on the display of the navigation device based on the information on the current position of the host vehicle output from the host vehicle position detection device 110. (See FIGS. 6 and 7).
  • step S102 the information presentation unit 176 displays the travel distance of the host vehicle on the display of the navigation device based on the travel distance information of the host vehicle output from the travel distance calculation unit 173 of the host vehicle.
  • a sign B is displayed.
  • the information presentation unit 176 causes the charging facility existing within the range of the travelable distance output from the first charging facility search unit 174 to be displayed on the display of the navigation device. At this time, the information presentation unit 176 determines whether the charger at the charging facility is a high output charger or a low output charger based on the output information of the charging facility acquired by the charger output information acquisition unit 175. If it is a high output charger, a sign C indicating it is displayed, and if it is a low output charger, a sign D indicating it is displayed.
  • step S104 the second charging facility search unit 178 determines whether or not a high-output charging facility has been selected by the input device 120. If it is determined that the charging facility has been selected, the process proceeds to step S105. .
  • step S105 the second charging facility search unit 178 determines whether or not the high-output charging facility selected by the input device 120 exists between the current position of the host vehicle and the destination. To do. If it is determined that it exists, the process proceeds to step S106, and if it is determined that it does not exist, the process proceeds to step S201.
  • step S106 the second charging facility search unit 178 searches for a low-output charging facility having a predetermined positional relationship with the high-output charging facility selected by the input device 120.
  • the predetermined positional relationship is a positional relationship in which the distance from the high-output charging facility selected by the input device 120 is within a predetermined distance (for example, 1 to 10 km / h).
  • the second charging facility search unit 178 searches for a low-output charging facility having a predetermined positional relationship with the high-output charging facility selected by the input device 120.
  • the predetermined positional relationship is such that the difference between the distance from the current position of the host vehicle to the high power charging facility and the distance from the current position of the host vehicle to the low power charging facility is a predetermined distance (for example, 1 The positional relationship is within 10 km / h).
  • step S107 the charging time calculation unit 179 charges the charging time T1 when charging the battery 10 of the host vehicle to the full charge at the charging facility selected by the input device 120, and the second time.
  • the charging time T2 in the case where the battery 10 of the own vehicle is fully charged is calculated.
  • step S108 the charging facility candidate specifying unit 181 has a low output in which the difference between the charging times T1 and T2 output from the charging time calculating unit 179 is equal to or smaller than a predetermined value T3 (
  • step S109 the charging facility candidate specifying unit 181 outputs charging facility candidate specifying information for specifying a charging facility in which the difference between the charging times T1 and T2 is within a predetermined range to the information presenting unit 176, and the information presenting unit 176 A sign F recommending a low-power charging facility included in the charging facility candidate specifying information and a sign E indicating the charging facility selected by the input device 120 are displayed on the display of the navigation device (see FIGS. 6 and 7). ).
  • the estimated value of the charging time T1 in a high-output charging facility for example, a charging facility equipped with a quick charger
  • the high-output charging When the difference from the estimated value of the charging time T2 in a low-power charging facility (for example, a charging facility equipped with a normal charger) that is in a predetermined positional relationship with the facility is within a predetermined value, the low-power The charging facility is presented to the user of the electric vehicle.
  • the low-output charging facility is suppressed while suppressing the disadvantage caused by the extension of the charging time given to the user of the electric vehicle. Presented to the user of the electric vehicle. As a result, the number of people who wish to use the low-power charging facility can be increased, and the congestion of the high-power charging facility can be alleviated.
  • the output power of the charger 1 decreases as the SOC of the battery 10 increases.
  • the maximum output power of the charging facility In addition, the charging time T1 at the high-power charging facility and the charging time T2 at the low-power charging facility are estimated according to the SOC of the battery 10. As a result, the charging times T1 and T2 corresponding to the actual output power of the charger 1 can be estimated, so that the difference in charging time (T1 ⁇ T2) between the high power charging facility and the low power final power facility can be accurately estimated. it can.
  • the output power of the charger 1 decreases as the temperature of the battery 10 decreases.
  • the maximum output power of the charging facility The charging time T1 at the high-power charging facility and the charging time T2 at the low-power charging facility are estimated according to the temperature of the battery 10 as well as the SOC of the battery 10.
  • the charging times T1 and T2 corresponding to the actual output power of the charger 1 can be estimated, so that the difference in charging time (T1 ⁇ T2) between the high power charging facility and the low power final power facility can be accurately estimated. it can.
  • a high-output charging facility is identified from the plurality of charging facilities, and the identified high-output A low-power charging facility having a predetermined positional relationship with respect to the charging facility is searched.
  • the high-power charging facility is specified by the user of the electric vehicle selecting from those displayed on the display of the navigation device. Thereby, a low-output charging facility that has a predetermined positional relationship with the specified high-output charging facility and that has a difference in charging time within a predetermined value can be presented to the user of the electric vehicle.
  • a low-power charging facility in which the difference in travel time is within a predetermined value and the difference in charging time is within a predetermined value with respect to the specified high-power charging facility is presented to the user of the electric vehicle. be able to. Therefore, a low-power charging facility can be recommended to the user of the electric vehicle without giving a sense of resistance.
  • the distance from the specified high-power charging facility is within a predetermined value.
  • Search for a low-power charging facility the current position of the electric vehicle between the specified high output charging facility and the low output charging facility is determined by the distance between the specified high output charging facility and the low output charging facility being within a predetermined value.
  • the difference in travel time from is within a predetermined value. Accordingly, a low-power charging facility in which the difference in travel time is within a predetermined value and the difference in charging time is within a predetermined value with respect to the specified high-power charging facility is presented to the user of the electric vehicle. be able to. Therefore, a low-power charging facility can be recommended to the user of the electric vehicle without giving a sense of resistance.
  • the specified high-power charging facility a search is made for a low-power charging facility where the distance from the current position of the electric vehicle is within a predetermined position.
  • the difference between the distance from the current position of the electric vehicle to the specified high-power charging facility and the distance from the current position of the electric vehicle to the low-power charging facility is within a predetermined value.
  • the difference in travel time from the current position of the electric vehicle between the high output charging facility and the low output charging facility is within a predetermined value.
  • a low-power charging facility in which the difference in travel time is within a predetermined value and the difference in charging time is within a predetermined value with respect to the specified high-power charging facility is presented to the user of the electric vehicle. be able to. Therefore, a low-power charging facility can be recommended to the user of the electric vehicle without giving a sense of resistance.
  • the current remaining charge capacity of the battery 10 of the electric vehicle is detected, the distance from the current position of the electric vehicle to each charging facility is calculated, The remaining charge amount of the battery 10 when traveling to each charging facility is estimated according to the current remaining charge capacity of the detected battery 10 and the calculated distance. This makes it possible to estimate the times T1 and T2 for charging the battery 10 of the electric vehicle until full charging at each charging facility.
  • the internal resistance of the battery 10 increases as the temperature of the battery 10 decreases, so that the power consumption (W) increases as the temperature of the battery 10 decreases even if the traveling distance is the same. Will increase. Therefore, in the charging facility guidance method and information presentation apparatus 100 according to the present embodiment, in addition to the current remaining charging capacity of the battery 10 and the distance from the current position of the electric vehicle to each charging facility, the temperature of the battery 10 Accordingly, the remaining charge capacity of the battery 10 when traveling to each charging facility is estimated. As a result, it is possible to estimate the times T1 and T2 for charging the battery 10 of the electric vehicle until full charging at each charging facility with better accuracy.
  • the information presentation apparatus 100 corresponds to an example of an information presentation apparatus according to the present invention
  • the presentation apparatus 130 corresponds to an example of a presentation apparatus according to the present invention
  • the control apparatus 170 corresponds to an example of a control apparatus according to the present invention. Equivalent to.
  • the recommended low-power charging facility is presented to the user of the electric vehicle by displaying it with the sign F.
  • the recommended low-power charging facility is selected as a destination or waypoint of the navigation device. You may show to the user of an electric vehicle by setting to.
  • the charging time T1 at the high-power charging facility and the charging time T2 at the low-power charging facility are set as the charging time until full charging, but a predetermined charging capacity less than full charging is used. It is good also as charge time until.
  • the predetermined charging capacity may be set by the user of the electric vehicle.
  • the charging times T1 and T2 are estimated based on the maximum output power of the charger 1, the SOC and the temperature of the battery 10, but the present invention is not limited to this. For example, it may be estimated based on the outside air temperature instead of the temperature of the battery 10.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Business, Economics & Management (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Economics (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • General Business, Economics & Management (AREA)
  • Health & Medical Sciences (AREA)
  • Finance (AREA)
  • Marketing (AREA)
  • Strategic Management (AREA)
  • Accounting & Taxation (AREA)
  • Theoretical Computer Science (AREA)
  • Human Resources & Organizations (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • General Health & Medical Sciences (AREA)
  • Development Economics (AREA)
  • Primary Health Care (AREA)
  • Tourism & Hospitality (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Navigation (AREA)
  • Secondary Cells (AREA)

Abstract

電動車両のユーザに対して充電施設を案内する充電施設の案内方法であって、電動車両の現在位置から所定距離の範囲内に存在する充電施設を探索し、高出力の充電施設(1A)と、高出力の充電施設(1A)に対して所定の位置関係にある低出力の充電施設(1B)とが探索された場合に、探索された夫々の充電施設まで走行した場合の電動車両のバッテリ(10)の残充電容量の推定値を演算し、探索された夫々の充電施設においてバッテリ10の残充電容量の推定値から所定の充電容量まで電動車両のバッテリ10を充電した場合の充電時間T1、T2の推定値を演算し、高出力の充電施設についての充電時間T1の推定値と、低出力の充電施設についての充電時間T2の推定値との差が所定値以内である場合に、当該低出力の充電施設を電動車両のユーザに対して提示する。

Description

充電施設の案内方法及び情報提示装置
 本発明は、電動車両のユーザに対して充電施設を案内する方法及び情報提示装置に関するものである。
 電動車両の運転者に対して充電施設を案内する装置として、ナビゲーション装置の表示画面に、充電施設の位置と共に、当該充電施設についての急速充電と普通充電との別を表示するものが知られている(例えば、特許文献1参照)。
特開2012-132817号公報
 しかしながら、ナビゲーション装置の表示画面を見た運転者は、充電時間の短縮を希望して急速充電の充電施設(出力電力がより大きい充電施設)の利用を優先するので、当該充電施設の利用希望者が多くなり、当該充電施設が混雑するという問題がある。
 本発明が解決しようとする課題は、出力電力がより大きい充電施設の混雑を緩和できる充電施設案内方法及び情報提示装置を提供することである。
 本発明は、第1の充電施設についての充電時間の推定値と、第1の充電施設と比較して出力電力が小さく第1の充電施設に対して所定の位置関係にある他の充電施設についての充電時間の推定値との差が所定値以内である場合に、当該他の充電施設を電動車両のユーザに対して提示することによって上記課題を解決する。
 本発明によれば、第1の充電施設とそれよりも出力電力が小さい他の充電施設との実際の充電時間を考慮して、他の充電施設を電動車両のユーザに対して提示するので、出力電力がより大きい第1の充電施設の混雑を緩和できるという効果を奏する。
本発明の一実施形態に係る情報提示装置の構成を示すブロック図である。 図1に示す情報提示装置が備えるバッテリコントローラの機能を説明するためのブロック図である。 常温環境下におけるバッテリの電圧と充電器の出力電流との関係を示す図である。 低温環境下におけるバッテリの電圧と充電器の出力電流との関係を示す図である。 図1に示す情報提示装置が備える制御装置の機能を説明するためのブロック図である。 目的地が設定されている場合の情報提示装置の表示画面を示す図である。 目的地が設定されていない場合の情報提示装置の表示画面を示す図である。 バッテリの充電電力、温度及びSOCに対する充電時間の関係を示すマップの概要図である。 情報提示装置の処理を説明するためのフローチャートである。
 以下、本発明の一実施形態を図面に基づいて説明する。
 図1は、本発明の充電施設の案内方法を適用した一実施形態に係る情報提示装置100の構成を示すブロック図である。この情報提示装置100は、電気自動車やプラグインハイブリッド自動車等の電動車両のユーザに対して、充電施設を案内する情報を含む種々の情報を提示する装置である。
 図1に示すように、情報提示装置100は、自車位置検出装置110、入力装置120、提示装置130、地図データベース140、充電施設管理データベース150、バッテリコントローラ160、および制御装置170を備える。これらの構成は、CAN(Controller Area Network)その他の車載LANによって接続され、相互に情報の授受を行うことができる。
 自車位置検出装置110は、GPS受信機、ジャイロセンサ、及び車速センサ等を備えている。この自車位置検出装置110は、GPS発信機から発信される電波をGPS受信機で受信して自車両の位置情報を周期的に取得し、取得した自車両の位置情報と、ジャイロセンサから取得した自車両の角度変化情報と、車速センサから取得した自車両の車速情報とに基づいて、自車両の現在位置を検出して制御装置170に出力する。
 入力装置120は、電動車両のユーザからの入力指示を受け付けるための装置である。入力装置120としては、例えば、ナビゲーション装置のディスプレイ上に設けられるタッチパネル式の入力装置や、ジョイスティックや押しボタン等の入力装置や、マイク等の音声入力装置等を例示できる。この入力装置120では、後述するように、ナビゲーション装置のディスプレイに表示された充電施設を選択する操作が可能であり、充電施設選択情報が入力される。
 提示装置130は、充電施設を案内する情報を含む種々の情報をユーザに対して提示するための装置である。提示装置130としては、ナビゲーション装置のディスプレイや、インストルメントパネルに設けられたディスプレイや、スピーカ等を例示できる。本実施形態の提示装置130は、ナビゲーション装置のディスプレイである。
 地図データベース140は、地図データを格納している。地図データベース140が格納する地図データは、電動車両の現在位置から目的地までの経路を探索する際および電動車両のユーザに対して充電施設の位置を提示する際などに、制御装置170によって参照される。
 充電施設管理データベース150は、充電施設の詳細情報を格納している。充電施設管理データベース150が格納する充電施設の詳細情報は、充電施設が設置された位置の緯度・経度の情報と、充電施設が備える充電器1の高出力充電器と低出力充電器との別の情報とを含む。本実施形態では、高出力充電器は、所謂、急速充電器に相当し、低出力充電器は、所謂、普通充電器に相当する。なお、充電器1を、出力の高低で2つに分類する場合に、急速充電器と普通充電器とに分類することは必須ではない。また、充電器1を、出力の高低で分類する場合に、2つに分類することは必須ではなく、3つ以上に分類してもよい。
 バッテリコントローラ160は、バッテリ10の状態を管理するコントローラであり、また、充電施設の充電器1を制御するコントローラでもある。バッテリコントローラ160の管理対象のバッテリ10は、リチウムイオン二次電池やニッケル水素二次電池等の二次電池を複数接続することで構成される電池であって、電動車両の動力源である。また、バッテリコントローラ160の制御対象の充電器1は、高出力充電器(所謂、急速充電器)1Aと、高出力充電器1Aと比較して最大出力電力が小さい低出力充電器(所謂、普通充電器)1Bとを含む。なお、バッテリコントローラ160の制御対象の充電器1は、さらに、高出力充電器1Aと低出力充電器1Bとの中間の出力を有する充電器や、高出力充電器1Aよりも高出力の充電器や、低出力充電器1Bよりも低出力の充電器等を含んでもよい。
 バッテリコントローラ160は、バッテリ10の電流、電圧、及び温度等の検出値に基づいて、バッテリ10の現在の充電状態(SOC:State of Charge、又は充電率)を演算する。また、バッテリコントローラ160は、バッテリ10のSOCの測定値やバッテリ10の温度等に基づいて、充電器1の充電を制御する指令値を算出して充電器1に出力する。
 バッテリコントローラ160は、バッテリ10のSOCを演算し、充電器1を制御するためのプログラムを格納したROM(Read Only Memory)と、このROMに格納されたプログラムを実行するCPU(Central Processing Unit)と、アクセス可能な記憶装置として機能するRAM(Random Access Memory)とを備える。なお、動作回路としては、CPUに代えて又はこれと共に、MPU(Micro Processing Unit)、DSP(Digital Signal Processor)、ASIC(Application Specific Circuit)、FPGA(Field Programmable Array)等を用いることができる。
 図2は、バッテリコントローラ160の機能を説明するためのブロック図である。この図に示すように、バッテリコントローラ160は、電流検出部161と、電圧検出部162と、温度検出部163と、SOC演算部164と、充電可能電力演算部165と、実電力演算部166と、充電器制御部167とを備えている。
 電流検出部161は、バッテリ10の電流を検出するセンサである。電流検出部161は、SOC演算部164、充電可能電力演算部165、実電力演算部166及び充電器制御部167に検出値を出力する。
 電圧検出部162は、バッテリ10の電圧を検出するセンサである。電圧検出部162は、バッテリ10に含まれる複数の電池の各電圧、及び、当該複数の電池の総電圧を検出する。電圧検出部162は、充電可能電力演算部165及び実電力演算部166に検出値を出力する。
 温度検出部163は、バッテリ10の温度を検出するセンサである。温度検出部163は、充電可能電力演算部165、実電力演算部166、充電器制御部167及び制御装置170に検出値を出力する。
 SOC演算部164は、電流検出部161により検出された検出値を積算することで、充電電流を積分して、バッテリ10のSOCを演算する。SOC演算部164は、演算したSOCを充電器制御部167及び制御装置170に出力する。
 なお、SOC演算部164は、電圧検出部162の検出値からバッテリ10のSOCを演算してもよい。ここで、バッテリ10の電圧とSOCとの間には相関性がある。そこで、電圧検出部162の検出値からバッテリ10のSOCを演算する場合には、バッテリ10の電圧とSOCとの相関性を示すマップをROMに記憶させておき、SOC演算部164が、ROMの当該マップを参照して、電圧検出部162の検出値に対応するSOCを読み出してバッテリ10のSOCとして出力するようにすればよい。
 なお、バッテリ10の電圧とSOCとの相関性は、バッテリ10の劣化度に応じて変わるため、上記のマップは、バッテリ10の劣化度に応じたマップにすることが好ましい。ここで、バッテリ10の劣化度は、例えば、バッテリ10の内部抵抗から演算すればよい。
 充電可能電力演算部165は、電流検出部161、電圧検出部162及び温度検出部163の検出値から、バッテリ10の充電可能電力を演算する。この充電可能電力は、バッテリ10の充電の際にバッテリ10の劣化を促進せずに充電できる最大の電力であって、充電器1からバッテリ10に入力可能な最大の入力電力である。なお充電可能電力は一般的に、入力可能電力あるいは最大充電可能電力や最大入力可能電力とも言われ、本実施形態においては充電可能電力と記載する。充電可能電力演算部165は、以下の要領で、充電可能電力を演算する。
 バッテリ10には、バッテリ10の性能に応じて、充電上限電圧が各セル毎に設定されている。充電上限電圧は、バッテリ10の劣化を防止するために、バッテリ10を充電する際の、上限となる予め定められた電圧である。充電上限電圧は、バッテリ10を構成する電池(セル)の内部で、リチウムの析出が開始する電圧、または、リチウムの析出が開始する電圧よりも低い電圧が設定される。
 充電上限電圧は、バッテリ10へ入力される充電電流、バッテリ温度、及び、バッテリ10の内部抵抗に応じて、演算される。例えば、充電上限電圧は、バッテリ10の充電電流が大きいほど低く演算され、バッテリ10の充電電流が小さいほど高く演算される。
 バッテリ10が複数の電池により構成されている場合には、複数の電池の中で最も電圧が高い電池の電圧を、充電上限電圧に抑えなければならない。充電可能電力演算部165は、電圧検出部162により検出される各セルの電圧から、最も電圧が高いセルを特定する。充電可能電力演算部165は、特定されたセルの電圧、当該セルの内部抵抗、セルの充電電流及び充電上限電圧に基づき、バッテリ10に入力可能な入力可能電流を演算する。
 入力可能電流は、最も高い端子電圧を有するセルの内部抵抗と、当該セルの充電上限電圧から算出される。セルの内部抵抗は、電圧検出部162により検出される、当該セルの端子電圧と、当該セルの充電電流から演算される。充電可能電力演算部165は、演算した充電可能電力を充電器制御部167に出力する。
 実電力演算部166は、バッテリ10の充電中に、充電器1からバッテリ10に実際に供給されている充電電力(以下、実電力という)を演算する。実電力は、バッテリ10の内部抵抗等により、充電器1の出力電力より低い電力になる。実電力演算部166は、電流検出部161の検出値と電圧検出部162の検出値とから実電力を演算する。実電力演算部166は、実電力の演算値を充電器制御部167に出力する。
 充電器制御部167は、電流検出部161により検出される電流、充電可能電力演算部165により演算される充電可能電力、実電力演算部166により演算されるバッテリ10の実電力、及び、充電器1の出力可能電力に基づいて、充電器1を制御する。
 充電器1の出力可能電力は、充電器1の定格出力電力に相当し、充電器1が出力できる電力の最大値である。すなわち、出力可能電力は充電器1の充電能力に応じて予め設定されている値であり、充電器1の出力電力はこの出力可能電力以下に制限されている。充電器1の出力可能電力は、充電器1に応じて異なる。そのため、充電器1とバッテリ10とがケーブル等により接続されると、充電器制御部167は、充電器1と通信を行い、充電器1の出力可能電力の情報を取得する。なお、充電器1と充電器制御部167との間の通信は、充電器1とバッテリ10とを接続するケーブル内の通信線を利用して行えばよい。
 充電器制御部167は、充電器1から出力可能電力を取得し、充電可能電力演算部165から充電可能電力を取得してこれらを比較し、その比較結果と、バッテリ10のSOCとから、充電器1からバッテリ10に供給される電力を設定する。ここで、バッテリ10のSOCが低くなるほど、バッテリ10に入力可能な電力が高くなり、充電器1の出力可能電力が、バッテリ10の充電可能電力よりも低くなることもある。一方、バッテリ10のSOCが高くなるほど、バッテリ10に入力可能な電力が低くなり、バッテリ10の充電可能電力が、充電器1の出力可能電力よりも低くなることもある。
 バッテリ10の充電可能電力が充電器1の出力可能電力以上である場合には、充電器制御部167は、充電器1からバッテリ10に供給される電力を、充電器1の出力可能電力に設定し、指令信号を充電器1に出力する。充電器1は、当該指令信号に応じて、出力可能電力でのバッテリ10の充電を開始する。
 一方、バッテリ10の充電可能電力が充電器1の出力可能電力未満である場合には、充電器制御部167は、充電器1からバッテリ10に供給される電力を、バッテリ10の充電可能電力に設定し、指令信号を充電器1に出力する。充電器1は、当該指令信号に応じて、出力可能電力より低い電力でのバッテリ10の充電を開始する。
 バッテリ10の充電中には、充電可能電力演算部165が、電流検出部161等の検出値に基づいてバッテリ10の充電可能電力を演算して充電器制御部167に送信しており、充電器制御部167は、バッテリ10の充電可能電力と充電器1の出力可能電力とを比較している。充電器制御部167は、バッテリ10の充電可能電力が充電器1の出力可能電力より高い状態からバッテリ10の充電可能電力が充電器1の出力可能電力未満の状態に遷移すると、充電器1からバッテリ10への供給電力が充電器1の出力可能電力未満になるように、充電器1に制御信号を出力する。充電器1は、充電器制御部167からの制御信号に応じて、出力電流を低下させてバッテリ10への供給電力を低下させる。
 また、充電器制御部167は、バッテリ10のSOCが上昇するにつれてバッテリ10への供給電力が徐々に低下するように、充電器1に制御信号を出力する。充電器1は、バッテリ10のSOCが上昇するにつれて徐々に出力電流を低下させてバッテリ10への供給電力を低下させる。
 図3は、常温環境下におけるバッテリ10の電圧と充電器1の出力電流との関係を示す図である。この図において、高出力充電器1Aの出力電流を実線で示し、低出力充電器1Bの出力電流を一点鎖線で示している。また、この図において、高出力充電器1Aで充電する場合のバッテリ10の電圧を破線で示し、低出力充電器1Bで充電する場合のバッテリ10の電圧を2点鎖線で示している。なお、図3においては例えば充電開始時のSOCが50%、SOC1及びSOC2がそれぞれ70%、90%、満充電時のSOCが100%である。また、充電開始時のバッテリ10の電圧をVs1、充電上限電圧をVfとする。
 図3に示すように、バッテリ10の電圧が低い状態(即ち、SOCがSOC1以下の、比較的低い状態)では、充電器1の出力電流は、出力可能な最大値に維持されるが、バッテリ10の電圧が高く(即ち、SOCがSOC1を超えて高く)なるにつれて、充電器1の出力電流は、低下する。ここで、バッテリ10の電圧が高く(即ち、SOCがSOC1を超えて高く)なるにつれて、高出力充電器1Aと低出力充電器1Bとの出力電流の差が小さくなる。そのため、バッテリ10の充電開始時のSOCが高い状態では、高出力充電器1Aで充電する場合と低出力充電器1Bで充電する場合とで、充電開始から充電完了までの時間(充電時間)の差が小さくなる。
 図4は、低温環境下におけるバッテリ10の電圧と充電器1の出力電流との関係を示す図である。この図において、高出力充電器1Aの出力電流を実線で示し、低出力充電器1Bの出力電流を1点鎖線で示し、高出力充電器1Bで充電する場合のバッテリ10の電圧を破線で示し、低出力充電器1Bで充電する場合のバッテリ10の電圧を2点鎖線で示している。なお、図3においては例えば充電開始時のSOCが0%、SOC3及びSOC4がそれぞれ10%、85%、満充電時のSOCが100%である。また、充電開始時のバッテリ10の電圧をVs2、満充電時の充電上限電圧をVf、低温時の充電上限電圧をVthとする。
 一般的にリチウムイオンバッテリはバッテリの温度が低いほど、また、充電電流が大きくなるほどリチウムが析出し易くなる。このため、バッテリの温度が低いほど、また、充電電流が大きいほど低い充電上限電圧が設定され、バッテリ電圧がこの充電上限電圧を超えないように充電電流が制御される。
 すなわち、図4に示すように、低温環境下における高出力充電器1Aでの充電時には、通常の充電上限電圧Vfに対して低い充電上限電圧Vthが設定され、バッテリのSOCが上昇するに伴い、バッテリ10の電圧は充電開始時の電圧Vs2から上昇して充電上限電圧Vthに達する(図4において、SOCがSOC3の時点の状態となる)。バッテリ10の電圧が充電上限電圧Vthに達すると、バッテリの電圧が充電上限電圧Vthを超えないように充電電流が抑制され、充電電流の抑制に伴い充電上限電圧Vthは増大する。これを繰り返して、充電上限電圧VthはVfまで徐々に上昇すると共に、充電電流も徐々に減少して行く。バッテリ10の電圧が充電上限電圧Vthに達した後は、図3に示すバッテリ10の常温時と同様に、高出力充電器1Aの出力電流も低出力充電器1Bの出力電流も同様に減少する。
 このように低温環境下では、常温環境下に比較して低い充電上限電圧が設定されるため、常温環境下に比べて更に、バッテリ10の電圧(SOC)にかかわらず、高出力充電器1Aと低出力充電器1Bとの出力電流の差が小さくなる。そのため、低温環境下では、バッテリ10の電圧(SOC)にかかわらず、高出力充電器1Aで充電する場合と低出力充電器1Bで充電する場合とで、充電時間の差が小さくなる。
 図1に戻り、制御装置170は、充電施設の案内情報等をユーザに提示するためのプログラムを格納したROM(Read Only Memory)と、このROMに格納されたプログラムを実行するCPU(Central Processing Unit)と、アクセス可能な記憶装置として機能するRAM(Random Access Memory)とを備える。なお、動作回路としては、CPUに代えて又はこれと共に、MPU(Micro Processing Unit)、DSP(Digital Signal Processor)、ASIC(Application Specific Circuit)、FPGA(Field Programmable Array)等を用いることができる。
 図5は、制御装置170の機能を説明するためのブロック図である。この図に示すように、制御装置170は、車両情報取得部171と、経路探索部172と、自車走行可能距離演算部173と、第1の充電施設探索部174と、充電器出力情報取得部175と、情報提示部176と、充電施設選択情報取得部177と、第2の充電施設探索部178と、充電時間演算部179と、残容量演算部180と、充電施設候補特定部181とを備える。
 車両情報取得部171は、自車両に関する情報を取得する。自車両に関する情報としては、バッテリコントローラ160から出力されたバッテリ10のSOC、自車位置検出装置110から出力された自車両の現在位置、及び入力装置120から出力された目的地の情報等を例示できる。
 経路探索部172は、地図データベース140に記憶されている地図情報を参照して、自車両の現在位置からユーザにより設定された目的地までの走行経路を探索する。自車両の現在位置の情報は、車両情報取得部171が自車位置検出装置110から取得でき、目的地の情報は、車両情報取得部171が入力装置120から取得できる。経路探索部172は、探索した走行経路の情報を情報提示部176に出力する。
 自車走行可能距離演算部173は、車両情報取得部171から出力されたバッテリ10のSOCと、自車両のバッテリ10の定格容量の情報とに基づいて、自車両の走行可能距離を演算する。自車走行可能距離演算部173は、演算した走行可能距離の情報を、第1の充電施設探索部174及び情報提示部176に出力する。
 第1の充電施設探索部174は、充電施設管理データベース150に格納された充電施設の位置情報に基づいて、自車走行可能距離演算部173から出力された走行可能距離の範囲内に含まれる充電施設を探索する。第1の充電施設探索部174は、探索した充電施設の位置情報を、充電器出力情報取得部175及び情報提示部176に出力する。
 充電器出力情報取得部175は、第1の充電施設探索部174により探索された充電施設の出力情報を、充電施設管理データベース150から取得する。充電施設の出力情報は、上記の充電器1の出力可能電力(定格出力電力)を含む。充電器出力情報取得部175は、取得した充電施設の情報を、情報提示部176及び充電時間演算部179に出力する。
 情報提示部176は、車両情報取得部171が取得した自車両の現在位置と、経路探索部172から出力された走行経路と、自車走行可能距離演算部173から出力された自車両の走行可能距離と、第1の充電施設探索部174から出力された充電施設の位置とを、ナビゲーション装置のディスプレイに表示させる。情報提示部176は、自車両の現在位置を示す標識Aと、自車両の走行可能距離を示す標識Bとをナビゲーション装置のディスプレイに表示させる(図6及び図7参照)。また、情報提示部176は、充電器出力情報取得部175により出力された充電施設の出力情報に基づいて、高出力充電器が設置された充電施設を示す標識Cと、低出力充電器が設置された充電施設を示す標識Dとをナビゲーション装置のディスプレイに表示させる(図6及び図7参照)。
 充電施設選択情報取得部177は、入力装置120から出力された充電施設選択情報を取得する。ここで、ユーザの入力装置120の操作により、ナビゲーション装置のディスプレイに表示された充電施設の標識が選択されると、入力装置120から充電施設選択情報取得部177に充電施設選択情報が出力される。充電施設選択情報取得部177は、取得した充電施設選択情報を情報提示部176及び第2の充電施設探索部178に出力する。情報提示部176は、選択された充電施設を識別する標識Eをナビゲーション装置のディスプレイに表示させる。
 第2の充電施設探索部178は、ユーザの入力装置120の操作により高出力の充電施設が選択された場合に、選択された充電施設に対して所定の位置関係にある低出力の充電施設を探索する。この所定の位置関係とは、自車両の現在位置からの移動時間の推定値が略等しい時間(例えば、時間差が0~10分)になる位置関係である。ここで、図6に示すように、目的地が設定されており、ユーザにより選択された高出力の充電施設が自車両と目的地との間に存在する場合には、第2の充電施設探索部178は、ユーザにより選択された充電施設からの距離が所定距離(例えば、1~10km/h)以内の低出力の充電施設を探索する。一方、図7に示すように、目的地が設定されておらず、あるいは、ユーザにより選択された充電施設が自車両と目的地との間に存在しない場合には、第2の充電施設探索部178は、自車両の現在位置からユーザにより選択された高出力の充電施設までの距離との差が所定距離(例えば、1~10km/h)以内となる低出力の充電施設を探索する。第2の充電施設探索部178は、探索した低出力の充電施設の情報を充電時間演算部179に出力する。
 充電時間演算部179は、ユーザにより選択された高出力の充電施設において自車両のバッテリ10を満充電まで充電する場合の充電時間T1(推定値)と、第2の充電施設探索部178により探索された低出力の充電施設において自車両のバッテリ10を満充電まで充電する場合の充電時間T2(推定値)とを演算する。充電時間演算部179は、バッテリコントローラ160の温度検出部163により検出された温度、バッテリコントローラ160のSOC演算部164により演算されたバッテリ10のSOC、制御装置170の充電器出力情報取得部175により取得された充電器1の最大出力電力、及びバッテリコントローラ160の実電力演算部166により演算された充電電力(実電力)に基づき、充電時間T1、T2を演算する。充電時間演算部179は、充電時間T1、T2の情報を充電施設候補特定部181に出力する。
 ここで、充電時間T1、T2の演算方法について説明する。
 制御装置170のROMには、図8に示す複数のマップが予め記憶されている。図8は、バッテリ10の充電電力、温度及びSOCに対する充電時間の関係を示すマップの概要図である。この図に示すように、バッテリ10の充電時間T1、T2は、バッテリ10の充電電力、温度及びSOCと相関性を有している。即ち、バッテリ10の温度が低いほど充電時間T1、T2は長くなり、バッテリ10のSOCが低いほど充電時間T1、T2が長くなる。
 充電時間演算部179は、制御装置170のROMに記憶された複数のマップの中から、実電力演算部166により演算されたバッテリ10の充電電力に対応するマップを抽出する。ここで、バッテリ10の充電可能電力が充電器1の出力可能電力未満である場合には、実電力演算部166により演算されるバッテリ10の充電電力が徐々に低下するので、充電時間演算部179は、バッテリ10の充電電力の低下に合わせて、対応するマップを抽出する。
 そして、充電時間演算部179は、抽出したマップを参照し、温度検出部163により検出された温度及びSOC演算部164により演算されたSOCに対応する充電時間T1、T2を抽出する。
 ここで、充電時間演算部179は、充電中に残充電時間を演算するのみならず、自車両の走行中に、自車両が充電施設に到着してからの充電時間を演算する。そのため、残容量演算部180が、自車両が充電施設に到着した時点でのバッテリ10の充電容量を演算して充電時間演算部179に出力する。
 残容量演算部180は、自車両の現在位置から充電施設までの距離を、自車位置検出装置110から出力された自車両の位置情報と、充電施設管理データベース150に格納された充電施設の位置情報とに基づいて演算する。ここで、制御装置170のROMには、走行距離と消費電力との関係を示すマップが記憶されており、残容量演算部180は、このマップを参照し、演算した走行距離に対応する消費電力を抽出する。そして、残容量演算部180は、SOC演算部164により演算されたバッテリ10のSOCに対応するバッテリ10の充電容量と、演算した消費電力との差、即ち、自車両が充電施設に到着した時点でのバッテリ10の充電容量を演算する。
 ところで、バッテリ10の温度が低下するほどバッテリ10の内部抵抗が上昇する。ここで、消費電力Wは、下記(1)式により表される。そのため、走行距離が同じであっても、バッテリ10の温度が低下するほど、消費電力(W)は増加する。
消費電力W=電流I×電圧V=電流I×電流I×抵抗R …(1)
 そこで、残容量演算部180が参照する上記マップは、バッテリ10の温度と走行距離と消費電力との関係を示すものとしてもよい。それにより、自車両が充電施設に到着した時点でのバッテリ10の充電容量をより良い精度で演算でき、自車両の走行中に、自車両が充電施設に到着してからの充電時間をより良い精度で演算できる。
 充電施設候補特定部181は、充電時間演算部179から出力された充電時間T1、T2の差が所定値(例えば、0~10分)以下であるか否かを判定し、第2の充電施設探索部178により探索された低出力の充電施設の中で、充電時間T1、T2の差が所定値以下であるものが存在する場合に、当該低出力の充電施設を特定し、充電施設候補特定情報を情報提示部176に出力する。情報提示部176は、充電施設候補特定情報を受信した場合、該当する充電施設を推奨する標識Fをナビゲーション装置のディスプレイに表示させる(図6及び図7参照)。
 図9は、情報提示装置100の処理を説明するためのフローチャートである。
 まず、ステップS101において、情報提示部176は、自車位置検出装置110から出力された自車両の現在位置の情報に基づいて、ナビゲーション装置のディスプレイに、自車両の現在位置を示す標識Aを表示させる(図6及び図7参照)。次に、ステップS102において、情報提示部176は、自車走行可能距離演算部173から出力された自車両の走行可能距離の情報に基づいて、ナビゲーション装置のディスプレイに、自車両の走行可能距離を示す標識Bを表示させる。
 次に、ステップS103において、情報提示部176は、第1の充電施設探索部174から出力された走行可能距離の範囲内に存在する充電施設を、ナビゲーション装置のディスプレイに表示させる。この際、情報提示部176は、充電器出力情報取得部175が取得した充電施設の出力情報に基づいて、充電施設の充電器が高出力充電器であるか低出力充電器であるかを判断し、高出力充電器であればそれを示す標識Cを表示させ、低出力充電器であればそれを示す標識Dを表示させる。
 次に、ステップS104において、第2の充電施設探索部178は、入力装置120により、高出力の充電施設が選択されたか否かを判定し、選択されたと判定された場合にはステップS105に進む。次に、ステップS105において、第2の充電施設探索部178は、入力装置120により選択された高出力の充電施設が、自車両の現在位置と目的地との間に存在するか否かを判定する。存在すると判定された場合には、ステップS106に進み、存在しないと判定された場合には、ステップS201に進む。
 ステップS106では、第2の充電施設探索部178は、入力装置120により選択された高出力の充電施設に対して所定の位置関係にある低出力の充電施設を探索する。本ステップにおいて、所定の位置関係は、入力装置120により選択された高出力の充電施設からの距離が所定距離(例えば、1~10km/h)以内となる位置関係である。
 一方、ステップS201では、第2の充電施設探索部178は、入力装置120により選択された高出力の充電施設に対して所定の位置関係にある低出力の充電施設を探索する。本ステップにおいて、所定の位置関係は、自車両の現在位置から高出力の充電施設までの距離と、自車両の現在位置から低出力の充電施設までの距離との差が所定距離(例えば、1~10km/h)以内となる位置関係である。
 ステップS106及びステップS201の次に、ステップS107において、充電時間演算部179は、入力装置120により選択された充電施設において自車両のバッテリ10を満充電まで充電する場合の充電時間T1と、第2の充電施設探索部178により探索された充電施設において自車両のバッテリ10を満充電まで充電する場合の充電時間T2とを演算する。
 次に、ステップS108において、充電施設候補特定部181は、充電時間演算部179から出力された充電時間T1、T2の差が所定値T3以下(|T1-T2|≦T3)となる低出力の充電施設が存在するか否かを判定する。存在すると判定された場合には、ステップS109に進み、存在しないと判定された場合には、処理を終了する。
 ステップS109では、充電施設候補特定部181は、充電時間T1、T2の差が所定範囲内である充電施設を特定する充電施設候補特定情報を情報提示部176に出力し、情報提示部176は、充電施設候補特定情報に含まれる低出力の充電施設を推奨する標識Fと、入力装置120により選択された充電施設を示す標識Eとを、ナビゲーション装置のディスプレイに表示させる(図6及び図7参照)。
 以上のとおり、本実施形態の充電施設の案内方法及び情報提示装置100では、高出力の充電施設(例えば、急速充電器を備える充電施設)における充電時間T1の推定値と、この高出力の充電施設に対して所定の位置関係にある低出力の充電施設(例えば、普通充電器を備える充電施設)における充電時間T2の推定値との差が、所定値以内である場合に、当該低出力の充電施設を電動車両のユーザに対して提示する。即ち、高出力の充電施設と低出力の充電施設との実際の充電時間T1、T2を考慮して、電動車両のユーザに与える充電時間の延長による不利益を抑えつつ、低出力の充電施設を電動車両のユーザに対して提示する。これにより、低出力の充電施設の利用希望者を増大させることができ、高出力の充電施設の混雑を緩和できる。
 また、図3に示すように、バッテリ10のSOCが上昇するにつれて充電器1の出力電力が低下するところ、本実施形態の充電施設の案内方法及び情報提示装置100では、充電施設の最大出力電力のみならず、バッテリ10のSOCに応じて、高出力の充電施設における充電時間T1と、低出力の充電施設における充電時間T2とを推定する。これにより、充電器1の実際の出力電力に応じた充電時間T1、T2を推定できるので、高出力の充電施設と低出力の終電施設との充電時間の差(T1-T2)を精度良く推定できる。
 また、図4に示すように、バッテリ10の温度が低下するにつれて充電器1の出力電力が低下するところ、本実施形態の充電施設の案内方法及び情報提示装置100では、充電施設の最大出力電力、及びバッテリ10のSOCのみならず、バッテリ10の温度に応じて、高出力の充電施設における充電時間T1と、低出力の充電施設における充電時間T2とを推定する。これにより、充電器1の実際の出力電力に応じた充電時間T1、T2を推定できるので、高出力の充電施設と低出力の終電施設との充電時間の差(T1-T2)を精度良く推定できる。
 また、本実施形態の充電施設の案内方法及び情報提示装置100では、複数の充電施設が探索された場合に、その複数の充電施設の中から高出力の充電施設を特定し、特定した高出力の充電施設に対して所定の位置関係にある低出力の充電施設を探索する。高出力の充電施設の特定は、電動車両のユーザが、ナビゲーション装置のディスプレイに表示されたものから選択すること等により行われる。これにより、特定された高出力の充電施設に対して所定の位置関係にあり充電時間の差が所定値以内である低出力の充電施設を、電動車両のユーザに対して提示することができる。
 また、高出力の充電施設に対して、電動車両の現在位置からの移動時間の推定値の差が所定時間以内となる低出力の充電施設を探索する。これにより、特定された高出力の充電施設に対して移動時間の差が所定値以内であり充電時間の差が所定値以内である低出力の充電施設を、電動車両のユーザに対して提示することができる。従って、電動車両のユーザに対して、抵抗感を与えることなく、低出力の充電施設を推奨することができる。
 また、目的地が設定され、電動車両の現在位置と目的地との間に存在する高出力の充電施設が特定された場合には、特定された高出力の充電施設との距離が所定値以内となる低出力の充電施設を探索する。ここで、特定された高出力の充電施設と低出力の充電施設との距離が所定値以内であることによって、特定された高出力の充電施設と低出力の充電施設との電動車両の現在位置からの移動時間の差が所定値以内となる。これにより、特定された高出力の充電施設に対して移動時間の差が所定値以内であり充電時間の差が所定値以内である低出力の充電施設を、電動車両のユーザに対して提示することができる。従って、電動車両のユーザに対して、抵抗感を与えることなく、低出力の充電施設を推奨することができる。
 また、目的地が設定されていないか、あるいは、電動車両の現在位置と目的地との間に存在しない高出力の充電施設が特定された場合には、特定された高出力の充電施設に対して、電動車両の現在位置からの距離が所定位置以内となる低出力の充電施設を探索する。ここで、電動車両の現在位置から特定された高出力の充電施設までの距離と、電動車両の現在位置から低出力の充電施設までの距離との差が、所定値以内であることによって、特定された高出力の充電施設と低出力の充電施設との電動車両の現在位置からの移動時間の差が所定値以内となる。これにより、特定された高出力の充電施設に対して移動時間の差が所定値以内であり充電時間の差が所定値以内である低出力の充電施設を、電動車両のユーザに対して提示することができる。従って、電動車両のユーザに対して、抵抗感を与えることなく、低出力の充電施設を推奨することができる。
 また、本実施形態の充電施設の案内方法及び情報提示装置100では、電動車両のバッテリ10の現在の残充電容量を検出し、電動車両の現在位置から夫々の充電施設までの距離を演算し、検出したバッテリ10の現在の残充電容量と、演算した距離とに応じて、夫々の充電施設まで走行した場合におけるバッテリ10の残充電量を推定する。これにより、夫々の充電施設において電動車両のバッテリ10を満充電まで充電する時間T1、T2を推定することが可能になる。
 ここで、上述したように、バッテリ10の温度が低下するほどバッテリ10の内部抵抗が上昇することにより、走行距離が同じであっても、バッテリ10の温度が低下するほど、消費電力(W)は増加する。そこで、本実施形態の充電施設の案内方法及び情報提示装置100では、バッテリ10の現在の残充電容量と、電動車両の現在位置から夫々の充電施設までの距離とに加えて、バッテリ10の温度に応じて、夫々の充電施設まで走行した場合のバッテリ10の残充電容量を推定する。これにより、夫々の充電施設において電動車両のバッテリ10を満充電まで充電する時間T1、T2を、より良い精度で推定することが可能になる。
 上記情報提示装置100は本発明に係る情報提示装置の一例に相当し、上記提示装置130は本発明に係る提示装置の一例に相当し、上記制御装置170は本発明に係る制御装置の一例に相当する。
 なお、以上説明した実施形態は、本発明の理解を容易にするために記載されたものであって、本発明を限定するために記載されたものではない。したがって、上記の実施形態において開示された各要素は、本発明の技術的範囲に属する全ての設計変更や均等物をも含む趣旨である。例えば、上述の実施形態では、推奨する低出力の充電施設を標識Fで表示することにより電動車両のユーザに対して提示したが、推奨する低出力の充電施設をナビゲーション装置の目的地や経由地に設定することにより電動車両のユーザに対して提示してもよい。
 また、上述の実施形態では、高出力の充電施設での充電時間T1と低出力の充電施設での充電時間T2とを、満充電までの充電時間としたが、満充電未満の所定の充電容量までの充電時間としてもよい。この場合、所定の充電容量は、電動車両のユーザにより設定されるようにしてもよい。
 また、上述の実施形態では、充電時間T1、T2を、充電器1の最大出力電力とバッテリ10のSOC及び温度とに基づいて推定したが、これに限られない。例えば、バッテリ10の温度に代えて外気温度に基づいて推定する等してもよい。
100 情報提示装置
130 提示装置
170 制御装置

Claims (12)

  1.  電動車両のユーザに対して充電施設を案内する充電施設の案内方法であって、
     前記電動車両の現在位置から所定距離の範囲内に存在する充電施設を探索し、
     第1の充電施設と、前記第1の充電施設と比較して出力電力が小さく前記第1の充電施設に対して所定の位置関係にある他の充電施設とが探索された場合に、探索された夫々の充電施設まで走行した場合の前記電動車両の残充電容量の推定値を演算し、
     探索された夫々の充電施設において前記残充電容量の推定値から所定の充電容量まで前記電動車両を充電した場合の充電時間の推定値を演算し、
     前記第1の充電施設についての前記充電時間の推定値と、前記他の充電施設についての前記充電時間の推定値との差が所定値以内である場合に、当該他の充電施設を前記電動車両のユーザに対して提示する充電施設の案内方法。
  2.  前記充電時間の推定値は、充電施設の最大出力電力と、前記電動車両の現在の充電状態とに基づいて演算する請求項1に記載の充電施設の案内方法。
  3.  前記充電時間の推定値は、前記電動車両の電池温度に基づいて演算する請求項2に記載の充電施設の案内方法。
  4.  複数の充電施設が探索された場合に、前記複数の充電施設の中から前記第1の充電施設を特定し、特定した前記第1の充電施設に対して前記所定の位置関係にある前記他の充電施設を探索する請求項1~3の何れか1項に記載の充電施設の案内方法。
  5.  前記電動車両のユーザに対して、探索された充電施設を提示し、
     前記電動車両のユーザが提示された充電施設を選択した選択情報を取得し、
     取得した前記選択情報において前記第1の充電施設が選択されている場合に、前記第1の充電施設を特定する請求項4に記載の充電施設の案内方法。
  6.  前記所定の位置関係は、前記電動車両が現在位置から探索された夫々の充電施設まで移動した場合における移動時間の推定値の差が所定値以内となる位置関係である請求項1~5の何れか1項に記載の充電施設の案内方法。
  7.  前記所定の位置関係は、前記第1の充電施設と前記他の充電施設との距離が所定値以内となる位置関係である請求項1~6の何れか1項に記載の充電施設の案内方法。
  8.  前記所定の位置関係は、前記電動車両の現在位置から前記第1の充電施設までの距離と、前記電動車両の現在位置から前記他の充電施設までの距離との差が、所定値以内となる位置関係である請求項1~6の何れか1項に記載の充電施設の案内方法。
  9.  前記第1の充電施設は、急速充電器を備え、
     前記他の充電施設は、普通充電器を備える請求項1~8の何れか1項に記載の充電施設の案内方法。
  10.  前記電動車両の現在の残充電容量を検出し、
     前記電動車両の現在位置から探索された夫々の充電施設までの距離を演算し、
     検出された前記現在の残充電容量と、演算された前記距離とに応じて、探索された夫々の充電施設まで走行した場合における前記電動車両の残充電容量の推定値を演算する請求項1~9の何れか1項に記載の充電施設の案内方法。
  11.  前記電動車両の電池温度を検出し、
     検出された前記電池温度に応じて、探索された夫々の充電施設まで走行した場合における前記電動車両の残充電容量の推定値を演算する請求項10に記載の充電施設の案内方法。
  12.  提示装置と、電動車両のユーザに対して充電施設を案内する案内情報を前記提示装置に提示させる制御装置とを備える情報提示装置であって、
     前記制御装置は、
     前記電動車両の現在位置から所定距離の範囲内に存在する充電施設を探索し、
     第1の充電施設と、前記第1の充電施設と比較して出力電力が小さく前記第1の充電施設に対して所定の位置関係にある他の充電施設とが探索された場合に、探索された夫々の充電施設まで走行した場合における前記電動車両の残充電容量の推定値を演算し、
     探索された夫々の充電施設において前記残充電容量の推定値から所定の充電容量まで前記電動車両の二次電池を充電した場合の充電時間の推定値を演算し、
     前記第1の充電施設についての前記充電時間の推定値と、前記他の充電施設についての前記充電時間の推定値との差が所定値以内である場合に、当該他の充電施設を案内する案内情報を、前記提示装置に提示させる情報提示装置。
PCT/JP2016/060685 2016-03-31 2016-03-31 充電施設の案内方法及び情報提示装置 WO2017168685A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2016/060685 WO2017168685A1 (ja) 2016-03-31 2016-03-31 充電施設の案内方法及び情報提示装置
US16/087,945 US10444024B2 (en) 2016-03-31 2016-03-31 Method and apparatus for recommending charging facilities to users of electric vehicles
JP2018508281A JP6597884B2 (ja) 2016-03-31 2016-03-31 充電施設の案内方法及び情報提示装置
CN201680084235.0A CN109073400B (zh) 2016-03-31 2016-03-31 充电设施的指引方法以及信息呈现装置
EP16896903.8A EP3438610B1 (en) 2016-03-31 2016-03-31 Charging facility notification method and information presentation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/060685 WO2017168685A1 (ja) 2016-03-31 2016-03-31 充電施設の案内方法及び情報提示装置

Publications (1)

Publication Number Publication Date
WO2017168685A1 true WO2017168685A1 (ja) 2017-10-05

Family

ID=59963766

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/060685 WO2017168685A1 (ja) 2016-03-31 2016-03-31 充電施設の案内方法及び情報提示装置

Country Status (5)

Country Link
US (1) US10444024B2 (ja)
EP (1) EP3438610B1 (ja)
JP (1) JP6597884B2 (ja)
CN (1) CN109073400B (ja)
WO (1) WO2017168685A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107830867A (zh) * 2017-11-01 2018-03-23 南京晓庄学院 一种基于模糊决策的电动汽车充电桩确定方法和充电装置
CN109808541A (zh) * 2019-01-17 2019-05-28 北京理工新源信息科技有限公司 一种电动汽车充电方法及系统
CN111279151A (zh) * 2017-11-01 2020-06-12 马自达汽车株式会社 车辆用显示装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210046843A1 (en) 2019-08-14 2021-02-18 Honda Motor Co., Ltd. System and method for presenting electric vehicle charging options
CN110704731B (zh) * 2019-09-12 2022-06-07 广州大学 一种充电桩链式推荐方法和装置
KR20210048070A (ko) * 2019-10-23 2021-05-03 현대자동차주식회사 차량 및 그 제어 방법
JP7294274B2 (ja) * 2020-08-20 2023-06-20 トヨタ自動車株式会社 車両および車両の制御方法
EP4207536A4 (en) * 2020-09-08 2023-11-29 Huawei Technologies Co., Ltd. LOW VOLTAGE BATTERY CHARGING SYSTEM AND METHOD
US20230342874A1 (en) * 2022-04-25 2023-10-26 Toyota Motor North America, Inc. Prioritizing access to shared vehicles based on need

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009244142A (ja) * 2008-03-31 2009-10-22 Toyota Motor Corp ナビゲーションシステムおよびそれを備えたハイブリッド車両
JP2011191109A (ja) * 2010-03-12 2011-09-29 Mitsubishi Electric Corp 電気自動車の交通ナビゲーション装置、及び電気自動車の交通ナビゲーションシステム
JP2011215059A (ja) * 2010-03-31 2011-10-27 Aisin Aw Co Ltd 地図表示装置、地図表示方法、及び地図表示プログラム
JP2011252816A (ja) * 2010-06-03 2011-12-15 Nihon Unisys Ltd 充電スタンド情報表示システム
JP2012251989A (ja) * 2011-05-09 2012-12-20 Denso Corp 車両用ナビゲーション装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5493510B2 (ja) * 2009-07-01 2014-05-14 日産自動車株式会社 情報提供システム、情報センタ、車載装置及び情報提供方法
EP2551987A4 (en) * 2010-03-23 2015-12-23 Panasonic Corp CHARGING DEVICE, CHARGING SYSTEM AND CHARGING CONTROL METHOD
JP2012132817A (ja) 2010-12-22 2012-07-12 Alpine Electronics Inc ナビゲーション装置、充電施設登録方法およびプログラム
NL2007081C2 (en) * 2011-07-11 2013-01-14 Epyon B V Method and device for determining the charging behaviour of electric vehicles and a charging system incorporating such a method.
US20150039391A1 (en) * 2011-08-16 2015-02-05 Better Place GmbH Estimation and management of loads in electric vehicle networks
JP5774534B2 (ja) * 2012-03-30 2015-09-09 株式会社日立製作所 電気自動車の経路探索システム及び方法
US9448083B2 (en) * 2014-02-25 2016-09-20 Ford Global Technologies, Llc Method and apparatus for providing a navigation route with recommended charging
US10552923B2 (en) * 2014-05-08 2020-02-04 Honda Motor Co., Ltd. Electric vehicle charging control system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009244142A (ja) * 2008-03-31 2009-10-22 Toyota Motor Corp ナビゲーションシステムおよびそれを備えたハイブリッド車両
JP2011191109A (ja) * 2010-03-12 2011-09-29 Mitsubishi Electric Corp 電気自動車の交通ナビゲーション装置、及び電気自動車の交通ナビゲーションシステム
JP2011215059A (ja) * 2010-03-31 2011-10-27 Aisin Aw Co Ltd 地図表示装置、地図表示方法、及び地図表示プログラム
JP2011252816A (ja) * 2010-06-03 2011-12-15 Nihon Unisys Ltd 充電スタンド情報表示システム
JP2012251989A (ja) * 2011-05-09 2012-12-20 Denso Corp 車両用ナビゲーション装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107830867A (zh) * 2017-11-01 2018-03-23 南京晓庄学院 一种基于模糊决策的电动汽车充电桩确定方法和充电装置
CN107830867B (zh) * 2017-11-01 2019-12-20 南京晓庄学院 一种基于模糊决策的电动汽车充电桩确定方法
CN111279151A (zh) * 2017-11-01 2020-06-12 马自达汽车株式会社 车辆用显示装置
CN111279151B (zh) * 2017-11-01 2023-02-14 马自达汽车株式会社 车辆用显示装置
CN109808541A (zh) * 2019-01-17 2019-05-28 北京理工新源信息科技有限公司 一种电动汽车充电方法及系统
CN109808541B (zh) * 2019-01-17 2020-11-10 北京理工新源信息科技有限公司 一种电动汽车充电方法及系统

Also Published As

Publication number Publication date
CN109073400A (zh) 2018-12-21
JPWO2017168685A1 (ja) 2019-02-21
EP3438610A4 (en) 2019-03-27
JP6597884B2 (ja) 2019-11-06
EP3438610A1 (en) 2019-02-06
US10444024B2 (en) 2019-10-15
US20190025068A1 (en) 2019-01-24
CN109073400B (zh) 2019-11-26
EP3438610B1 (en) 2020-07-08

Similar Documents

Publication Publication Date Title
JP6597884B2 (ja) 充電施設の案内方法及び情報提示装置
RU2678151C1 (ru) Система расчета достижимого пробега и способ расчета достижимого пробега для транспортного средства
JP5494270B2 (ja) 情報提供装置および情報提供方法
KR20170133763A (ko) 차량 시스템 및 차량 시스템의 내비게이션 경로 선택 방법
JPWO2011092729A1 (ja) ナビゲーション装置、車両情報表示装置および車両情報表示システム
JP5743758B2 (ja) ナビゲーション装置、経路探索プログラム及び経路探索方法
JP2011203174A (ja) 車両経路案内装置及び車両経路案内システム
JP2020010538A (ja) サーバ、車両および充電情報提供方法
JP2012160022A (ja) 充電管理サーバ、充電管理システム、充電管理方法および充電管理プログラム
JPWO2017022010A1 (ja) 電動車両の充電支援方法及び充電支援装置
KR101886583B1 (ko) 차량 시스템 및 차량 시스템의 내비게이션 경로 선택 방법
JP5657912B2 (ja) ナビゲーション装置
JP2011237186A (ja) ナビゲーション装置およびその案内方法
WO2016009552A1 (ja) 情報提示装置
JP2014048086A (ja) ナビゲーション装置
WO2016009508A1 (ja) 情報提供装置および情報提示装置
JP6458615B2 (ja) 情報提供装置、及び情報提供方法
JP7403117B2 (ja) 電気自動車用カーナビゲーションのシステム、方法、および、プログラム
JP5414939B2 (ja) 車両情報表示システム、ナビゲーション装置、車両情報表示装置、車両情報表示制御プログラムおよび車両情報表示制御方法
JP2012163511A (ja) ナビゲーション装置
JP2021009064A (ja) 経路案内システム、経路案内装置及びコンピュータプログラム
US20240042883A1 (en) Charge control device for electric vehicle
JP7222342B2 (ja) 充電施設案内システムおよび充電施設案内装置
US20240183676A1 (en) Route search device
US20240067042A1 (en) Battery charge management device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018508281

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016896903

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016896903

Country of ref document: EP

Effective date: 20181031

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16896903

Country of ref document: EP

Kind code of ref document: A1