WO2017164492A1 - 산화적 탈수소화 반응용 촉매 및 제조방법 - Google Patents

산화적 탈수소화 반응용 촉매 및 제조방법 Download PDF

Info

Publication number
WO2017164492A1
WO2017164492A1 PCT/KR2016/015012 KR2016015012W WO2017164492A1 WO 2017164492 A1 WO2017164492 A1 WO 2017164492A1 KR 2016015012 W KR2016015012 W KR 2016015012W WO 2017164492 A1 WO2017164492 A1 WO 2017164492A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
precursor
peak
oxidative dehydrogenation
weight
Prior art date
Application number
PCT/KR2016/015012
Other languages
English (en)
French (fr)
Inventor
황선환
고동현
차경용
최대흥
서명지
황예슬
한준규
김성민
강전한
이주혁
남현석
한상진
Original Assignee
(주) 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주) 엘지화학 filed Critical (주) 엘지화학
Priority to CN201680032680.2A priority Critical patent/CN107614106B/zh
Priority to EP16895618.3A priority patent/EP3292910B1/en
Priority to US15/735,813 priority patent/US10486150B2/en
Publication of WO2017164492A1 publication Critical patent/WO2017164492A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/10Magnesium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the alkali- or alkaline earth metals or beryllium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/06Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/32Manganese, technetium or rhenium
    • B01J23/34Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/78Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/80Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J35/30
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/009Preparation by separation, e.g. by filtration, decantation, screening
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0236Drying, e.g. preparing a suspension, adding a soluble salt and drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/088Decomposition of a metal salt
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/42Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with a hydrogen acceptor
    • C07C5/48Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with a hydrogen acceptor with oxygen as an acceptor
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36
    • C07C2523/80Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36 with zinc, cadmium or mercury

Definitions

  • the present invention relates to a catalyst and a method for producing an oxidative dehydrogenation reaction, and more particularly, to a catalyst and a method for securing an oxidative dehydrogenation reactivity while increasing the amount of one-time production of the catalyst for the oxidative dehydrogenation reaction. It is about.
  • 1,3-Butadiene is an intermediate of petrochemical products, and its demand and value are gradually increasing all over the world.
  • the 1,3-butadiene is produced using naphtha cracking, direct dehydrogenation of butene, oxidative dehydrogenation of butene, and the like.
  • the naphtha cracking process is not only high energy consumption due to the high reaction temperature, but also because it is not a sole process for producing 1,3-butadiene, there is a problem that other basic oils are produced in excess in addition to 1,3-butadiene. .
  • the oxidative dehydrogenation of butene is a reaction of butene and oxygen in the presence of a metal oxide catalyst to produce 1,3-butadiene and water, which has a thermodynamically advantageous advantage because stable water is produced.
  • a metal oxide catalyst to produce 1,3-butadiene and water, which has a thermodynamically advantageous advantage because stable water is produced.
  • it is exothermic, so that a higher yield of 1,3-butadiene can be obtained at lower reaction temperatures than direct dehydrogenation, and 1,3-butadiene is not required because no additional heat supply is required. It can be an effective standalone production process that can meet demand.
  • the metal oxide catalyst is generally synthesized by a precipitation method, and the production is small due to technology and space constraints, so that the catalyst is manufactured by repeating the same process several times in order to fill the target amount.
  • the catalysts produced several times may have different reactivity with reactants according to the production cycle, and the difference in reactivity between the catalysts is directly related to the yield of the product (butadiene), so it is important to reduce the reactivity difference between the catalysts.
  • Patent Document 1 US8513479B2
  • the present invention comprises the steps of mixing a trivalent cationic iron (Fe) precursor and a divalent cationic metal (A) precursor to form a mixed aqueous solution of more than 16.5% by weight to less than 53.5% by weight concentration;
  • the mixed aqueous solution was added dropwise together with the basic aqueous solution at a dropping rate of 2 g / min or more and less than 32 g / min in a coprecipitation bath having a distilled water of more than 0 ° C. and less than 40 ° C. prepared and adjusted to a pH of 6 to less than 10 ° Obtaining a coprecipitation solution in which AFe 2 O 4 and Fe 2 O 3 coexist;
  • the present invention comprises the steps of mixing a trivalent cationic iron (Fe) precursor and a divalent cationic metal (A) precursor to form a mixed aqueous solution of 23 wt% to 35 wt%;
  • the mixed aqueous solution is prepared in a weight ratio of 0.5 to 3 times by weight based on the content (weight) of distilled water of 5 °C to 30 °C distilled water 2 g / co-precipitation adjusted to pH 8 to pH 9 dropping at a rate of min to 10 g / min, and dropping the basic aqueous solution together to obtain a coprecipitation solution in which AFe 2 O 4 and Fe 2 O 3 coexist;
  • the present invention includes an AFe 2 O 4 structure and Fe 2 O 3 structure, wherein A is copper (Cu), radium (Ra), barium (Ba), strontium (Sr), calcium (Ca), beryllium (Be ), Zinc (Zn), magnesium (Mg), manganese (Mn) and cobalt (Co) is one or more selected from the group consisting of, the AFe 2 O 4 structure is 20 to 99% by weight, Fe 2 O 3 structure Provides a catalyst for the oxidative dehydrogenation reaction which is 1 to 80% by weight.
  • the catalyst of the present invention is very widely used as a catalyst applicable to a fixed bed reactor, a moving bed reactor, and a fluidized bed reactor.
  • FIG. 2 is XRD data of a ZnFe 2 O 4 structure and an ⁇ -Fe 2 O 3 structure of a zinc ferrite catalyst prepared according to Comparative Examples 5 to 10.
  • FIG. 1 is XRD data of a ZnFe 2 O 4 structure and an ⁇ -Fe 2 O 3 structure of a zinc ferrite catalyst prepared according to Comparative Examples 5 to 10.
  • the present inventors control the concentration of a mixed aqueous solution of a trivalent iron cation precursor and a divalent cation metal precursor to achieve high concentration synthesis.
  • the present invention was completed by developing a method for preparing a catalyst which increases the production of a single unit and reduces wastewater discharge as well as improved reactivity.
  • the catalyst for oxidative dehydrogenation of the present invention can be prepared by the following process.
  • the trivalent cationic iron (Fe) precursor and the divalent cationic metal (A) precursor are mixed to form a mixed aqueous solution of greater than 16.5 wt% to less than 53.5 wt% concentration.
  • the trivalent cationic iron (Fe) precursor and the divalent cationic metal precursor for example, one kind independently selected from the group consisting of nitrate, ammonium salt, sulfate or chloride It may be abnormal. Preferably, it can be selected from nitrates and chlorides in view of the cost of preparing the catalyst for mass production as it is inexpensive and easy to purchase.
  • the divalent cation metal (A) is, for example, copper (Cu), radium (Ra), barium (Ba), strontium (Sr), calcium (Ca), beryllium (Be), zinc (Zn), magnesium (Mg) , Manganese (Mn) and cobalt (Co) may be one or more selected from the group consisting of, preferably zinc (Zn) or manganese (Mn).
  • the powder form is not suitable for the dispersion of iron and divalent cations, which is difficult to produce the desired active material.
  • the desired coprecipitation can be easily prepared.
  • an appropriate mixing amount of the iron precursor and the divalent cation metal precursor in the aqueous solution is 1.5 to 10 mol, 1.5 to 4 mol, or 1 to 3 mol of the trivalent cationic metal (A) precursor, or It may be 1.5 to 2.5 moles, there is an effect to produce a predetermined active material within this range.
  • the mixed aqueous solution may be greater than 16.5 wt% concentration but less than 53.5 wt% concentration, 18 wt% concentration to 50 wt% concentration, 20 wt% concentration to 40 wt% concentration, or 23 wt% concentration to 35 wt% concentration, Within this range, the reactivity can be improved as an oxidative dehydrogenation catalyst while significantly increasing the production of one unit.
  • the mixed aqueous solution described above may be, for example, 10 wt% to 30 wt%, 10 wt% to 25 wt%, 15 wt% to 25 wt%, or 20 to 25 wt%, and divalent trivalent cationic iron (Fe) precursor. 3 to 10 weight percent, 3 to 8 weight percent, 4 to 7 weight percent, or 4 to 6 weight percent cationic metal precursor, 60 to 87 weight percent, 67 to 87 weight percent, 68 It can be prepared by dissolving in the wt% to 81% by weight, or 71% to 76% by weight.
  • the mixed aqueous solution may have a pH of 0 to 4, 1 to 3, or 1 to 2, and has an effect of stably generating a desired active ingredient in the synthesis of a catalyst within this range.
  • the mixed aqueous solution is dipped with a basic aqueous solution in a coprecipitation tank prepared with distilled water to obtain a coprecipitation solution in which AFe 2 O 4 and Fe 2 O 3 coexist.
  • the drop means, for example, dropping two or more solutions into the same spot or container.
  • the distilled water can be supplied that is more than 0 °C to less than 40 °C, more than 0 °C to 30 °C, or 5 °C to 25 °C, within this range to increase the unit production once and adjust the content of the active catalyst, oxidative The selectivity and yield of butadiene according to the dehydrogenation reaction are excellent.
  • the distilled water content may be supplied in a weight of 0.5 times or more, 0.5 times or more and less than 3 times, or 0.5 times or more and 2 times by weight of the distilled water included in the mixed aqueous solution in the first step, within this range
  • it has the effect of increasing the yield per unit, keeping the pH of the coprecipitation solution constant, and reducing the amount of wastewater generated during manufacturing.
  • the distilled water may be adjusted in advance to the pH of the coprecipitation bath using an aqueous solution of various substances having basic properties such as sodium hydroxide, ammonia and the like.
  • the basic aqueous solution may be, for example, 0.001 to 0.01% solution, 0.001 to 0.008% solution, or 0.003 to 0.007% solution, respectively, at a concentration by weight, which reduces the pH change due to the addition of the mixed aqueous solution at the beginning of the catalyst synthesis. It can serve to enable the catalyst of a uniform composition.
  • the pH of the coprecipitation bath may be adjusted to, for example, more than 6 to less than 11, less than 7 to 11, 8 to 10, or 8 to 9, and the content of AFe 2 O 4 when the mixed aqueous solution is dropped within this range. It can be adjusted to a certain range.
  • the precursor aqueous solution is co-precipitated at a rate of 2 g / min or more, 2 g / min or more and less than 32 g / min, 2 g / min or more and 10 g / min or less, or 2 g / min or more and 7 g / min It can be dripping at the following speed, within this range to increase the unit production once and adjust the content of the active ingredient to a certain range, there is an excellent effect of selectivity and yield of butadiene according to the oxidative dehydrogenation reaction.
  • the basic aqueous solution supplied separately from the precursor aqueous solution is not specified as long as it is an aqueous solution of various substances having basic properties such as sodium hydroxide and ammonia, for example.
  • the basic aqueous solution may be a 10% to 35% solution, 20 to 33% solution, or 25 to 30% solution of the concentration weight%, so as to properly maintain the pH of the coprecipitation solution within this range May be appropriate.
  • the pH of the coprecipitation solution may be maintained at, for example, 7 or more, but less than 11, 8 to 10, or 8 to 9, respectively, within this range to increase the production of single unit of the coprecipitate and the butadiene according to the oxidative dehydrogenation reaction.
  • the selectivity and yield are excellent.
  • the coprecipitation solution obtained in the second step may be stirred prior to performing the third step of filtration; ferment; Or stirring and aging; and further comprising the step, in which case there is an effect of sufficient coprecipitation of the precursor in the coprecipitation solution.
  • the stirring and aging may be carried out for 30 minutes to 3 hours, 30 minutes to 2 hours, or 30 minutes to 1 hour 30 minutes, respectively.
  • the coprecipitation solution is filtered to obtain a coprecipitation.
  • the filtration is not particularly limited as long as it is a filtration method commonly used in the art, but may be, for example, reduced pressure filtration, and in particular, the coprecipitation solution may be filtered by reducing the pressure to a pressure of 100 to 300 mbar, or 160 to 250 mbar. Can be. After filtration it may be washed as necessary.
  • the co-precipitate may be dried at 60 to 100 ° C., 70 to 100 ° C., or 80 to 100 ° C. for 12 to 20 hours, 14 to 20 hours, or 14 to 18 hours using a conventional dryer.
  • the solid material may be provided in various forms such as in the form of powder, in the form of a molded article, or in the form of a film coated on a substrate.
  • the co-precipitate is calcined to obtain a product of AFe 2 O 4 -Fe 2 O 3 .
  • the filtered coprecipitate may be calcined for 1 to 10 hours, 3 to 8 hours, or 5 to 7 hours at 400 to 800 ° C, 500 to 800 ° C, or 550 to 750 ° C, for example, using a conventional firing furnace. have.
  • the filtered coprecipitate may be dried at 60 to 100 ° C., 70 to 100 ° C., or 80 to 100 ° C. for 12 to 20 hours, 14 to 20 hours, or 14 to 18 hours using a conventional dryer.
  • the dried coprecipitate may be calcined for 1 to 10 hours, 3 to 8 hours, or 5 to 7 hours at 400 to 800 ° C, 500 to 800 ° C, or 550 to 750 ° C, using a conventional firing furnace, for example. Can be.
  • the firing method may be a heat treatment method commonly used in the art.
  • the catalyst for the oxidative dehydrogenation reaction of the present invention can also be prepared by the following process:
  • the trivalent cationic iron (Fe) precursor and the divalent cationic metal (A) precursor are mixed to form a mixed aqueous solution having a concentration of 23 wt% to 35 wt%.
  • the mixed aqueous solution is prepared in a weight ratio of 0.5 to 3 times by weight based on the content (weight) of distilled water of 5 °C to 30 °C distilled water 2 g / co-precipitation adjusted to pH 8 to pH 9 Dropping is carried out at a rate of min to 10 g / min, but a basic aqueous solution is dropped together to obtain a coprecipitation solution in which AFe 2 O 4 and Fe 2 O 3 coexist.
  • the coprecipitation solution is filtered to obtain a coprecipitation.
  • the co-precipitate is fired to obtain a product of AFe 2 O 4 -Fe 2 O 3 .
  • the above-described manufacturing method is characterized by using a high concentration synthesis instead of the conventional low concentration synthesis.
  • the catalyst obtained by the above production methods can improve the conversion rate while improving the selectivity of the reaction product when used in the oxidative dehydrogenation reaction by coexistence of AFe 2 O 4 and Fe 2 O 3 after preparation, and side reactions. It serves to prevent.
  • the present invention by applying a simple method using high concentration synthesis instead of low concentration synthesis, it shows a characteristic of improving the reactivity of the catalyst when used in the oxidative dehydrogenation reaction while increasing the unit production.
  • the catalyst for oxidative dehydrogenation includes an AFe 2 O 4 structure and a Fe 2 O 3 structure, wherein A is copper (Cu), radium (Ra), barium (Ba), strontium (Sr), At least one selected from the group consisting of calcium (Ca), beryllium (Be), zinc (Zn), magnesium (Mg), manganese (Mn), and cobalt (Co), wherein the AFe 2 O 4 structure is 20 to 99 By weight and the Fe 2 O 3 structure is characterized in that 1 to 80% by weight.
  • the AFe 2 O 4 structure may be 50 to 95% by weight and the Fe 2 O 3 structure may be 5 to 50% by weight.
  • the AFe 2 O 4 structure may be 83 to 95% by weight and the Fe 2 O 3 structure may be 5 to 17% by weight.
  • the AFe 2 O 4 structure may be 85 to 95% by weight and the Fe 2 O 3 structure may be 5 to 15% by weight.
  • the AFe 2 O 4 structure is a peak having a first peak having a maximum peak intensity in a range of 34.5 ° to 35.5 ° when measured by XRD diffraction analysis, and a second peak having a second peak intensity exists in a range of 29.5 ° to 30.5 °. It is a peak, and the third peak having a third peak intensity may be one having a peak present in the range of 62 ° to 63 °.
  • the AFe 2 O 4 structure may be, for example, ZnFe 2 O 4 or MnFe 2 O 4 .
  • the Fe 2 O 3 structure is a peak having a first peak having a maximum peak intensity in a range of 33 ° to 34 ° when measured by XRD diffraction analysis, and a second peak having a second peak intensity exists in a range of 35 ° to 36 °. And a third peak having a third peak intensity may have a peak present in a range of 53.5 ° to 54.5 °.
  • the Fe 2 O 3 structure may be ⁇ -Fe 2 O 3 as an example.
  • the catalyst is very versatile as a catalyst applicable to fixed bed reactors, moving bed reactors and fluidized bed reactors for oxidative dehydrogenation.
  • the metal precursor aqueous solution outlet and the ammonia aqueous solution outlet were respectively installed in a coprecipitation tank in which 0.005% of ammonia solution was added to 233.39 g of distilled water at room temperature (25 ° C.) at a concentration by weight and adjusted to pH 8.
  • the aqueous solution of the mixed metal precursor prepared by injecting the aqueous solution of the metal precursor at a rate of 2 g / min, and the aqueous ammonia aqueous solution having a concentration of 28 to 30% (pH 13.6) was supplied through the ammonia aqueous solution outlet at room temperature, thereby allowing for The pH of the coprecipitation solution was kept constant at 8.
  • the coprecipitation solution was stirred for 1 hour (pH 8) so that the coprecipitation was sufficient, and the phases were separated by standing at room temperature for 1 hour to stop the agitation and to settle all the precipitates.
  • the coprecipitation solution was filtered under reduced pressure using a vacuum filter under a pressure of 200 mbar to obtain a coprecipitate, which was washed and then the wastewater was discharged and dried at 90 ° C. for 16 hours.
  • the dried coprecipitation was put into a calcination furnace and heat treated at a temperature of 650 ° C. for 6 hours to prepare a zinc ferrite catalyst.
  • Example 1 a zinc ferrite catalyst was prepared in the same manner as in Example 1 except that the drop rate of the precursor solution was replaced with 7 g / min.
  • Example 1 a zinc ferrite catalyst was prepared in the same manner as in Example 1 except that the drop rate of the precursor solution was replaced with 10 g / min.
  • Example 1 In the second step of Example 1, a zinc ferrite catalyst was prepared in the same manner as in Example 1 except for replacing the temperature (room temperature: 25 ° C) of the coprecipitation feed water with 5 ° C.
  • Example 1 In the first step of Example 1, a zinc ferrite catalyst was prepared in the same manner as in Example 1 except that the concentration of the precursor solution (in wt%) was changed from 27.7% to 35%.
  • Example 1 In the first step of Example 1, a zinc ferrite catalyst was prepared in the same manner as in Example 1 except that the concentration of the precursor solution (in wt%) was changed from 27.7% to 23%.
  • Comparative Examples are also used to synthesize the catalyst according to various low concentration synthesis method using zinc as a divalent metal cation.
  • Example 1 A zinc ferrite catalyst was prepared in the same manner as in Example 1, except that the content, and the pH of the stirring step were used as the values shown in Table 1 below.
  • Comparative Examples are experimental examples in which zinc is used as a divalent metal cation, but a catalyst is prepared according to a highly concentrated synthesis method.
  • Comparative Example 6 corresponds to a 30-fold concentrated synthesis method of Comparative Example 5
  • Comparative Examples 7 to 10 are each Examples Corresponds to the experiments with different conditions in the high concentration synthesis method of 1.
  • Example 1 a zinc ferrite catalyst was prepared in the same manner as in Example 1 except that the drop rate of the precursor solution was replaced with 32 g / min.
  • Example 1 a zinc ferrite catalyst was prepared in the same manner as in Example 1, except that the temperature (room temperature: 25 ° C) of the coprecipitation feed water was replaced with 40 ° C.
  • Example 1 a zinc ferrite catalyst was prepared in the same manner as in Example 1 except that the pH of the coprecipitation solution in the coprecipitation tank was maintained at 10.
  • Example 1 a zinc ferrite catalyst was prepared in the same manner as in Example 1 except that the pH of the coprecipitation solution in the coprecipitation tank was maintained at 11.
  • the first peak with is a peak present in the range 34.5 ° to 35.5 °
  • the second peak with the second peak intensity is the peak present in the range 29.5 ° to 30.5 °
  • the third peak with the third peak intensity is 62 °
  • the ⁇ -Fe 2 O 3 structure being the peak at which the first peak with the maximum peak intensity in the XRD diffraction analysis is present in the range of 33 ° to 34 ° and the second peak intensity It was confirmed that the second peak having was a peak present in a range of 35 ° to 36 °, and the third peak having a third peak intensity provided a peak present in a range of 53.5 ° to 54.5 °.
  • Example 1 of FIG. 1 concentration of precursor solution: 27.7% by weight
  • Comparative Example 5 of FIG. 2 concentration of precursor solution: 6.67% as weight
  • Comparative Example 6 concentration of aqueous solution of precursor: wt%
  • concentration of the precursor solution is too small (equivalent to Comparative Example 5) or too large (equivalent to Comparative Example 6)
  • the crystallinity of the ZnFe 2 O 4 structure becomes smaller and the Fe 2 O 3 structure becomes smaller. It was confirmed that the increase.
  • Example 1 Drop rate of the mixed aqueous solution: 2 g / min
  • Example 2 Drop rate of the mixed aqueous solution: 7 g / min
  • Example 3 Drop rate of the mixed aqueous solution 10 g / min
  • Comparative Example 7 Drop rate of the mixed aqueous solution: 32 g / min
  • the drop rate of the precursor solution is faster, the crystallinity of the ZnFe 2 O 4 structure is reduced and Fe 2 O 3 structure is increased I could confirm that.
  • Example 4 coprecipitation feed water temperature: 5 °C of Figure 1
  • Comparative Example 8 coprecipitation feed water temperature: 40 °C of FIG.
  • Example 1 of FIG. 1 the pH of coprecipitation solution
  • Comparative Example 6 the pH of coprecipitation solution: 8 of FIG. 2
  • Comparative Example 9 the pH of coprecipitation solution: 10
  • Comparative Example 10 of the coprecipitation solution
  • pH: 11 the Fe 2 O 3 structure was increased as the pH of the coprecipitation solution was increased
  • ZnFe 2 O 4 structure can be seen that the most formed when the pH of the coprecipitation solution of Example 1 is 8. .
  • ZnFe 2 O 4 content is 75 to 95% by weight
  • Fe 2 O 3 content is 5 to 25% by weight ZnFe 2 O 4 It was confirmed that the crystallinity of the structure increased significantly.
  • each catalyst measured the amount of production (mol unit) of the ZnFe 2 O 4 structure in a distilled water 9335.5g receiving reactor and is shown in Table 3 below.
  • Elemental analysis was performed on the zinc ferrite catalyst synthesized in Examples 1 to 6 and the zinc ferrite catalyst synthesized in Comparative Examples 5 to 10 using an element analyzer (EDS), and the results are shown in Table 4 below.
  • EDS element analyzer
  • Example 1 Example 2
  • Example 3 Example 4
  • Example 5 Example 6 Fe 73.61 73.76 74.16 70.07 70.16 69.37 Zn 26.39 26.24 25.84 9.93 20.84 30.63 Fe / Zn 2.79 2.81 2.84 2.34 2.35 2.26 division Comparative Example 5 Comparative Example 6 Comparative Example 7 Comparative Example 8 Comparative Example 9 Comparative Example 10 Fe 68.3 76.55 78.64 78.22 79.23 86.02 Zn 31.7 23.45 21.36 21.78 20.77 13.98 Fe / Zn 2.2 3.26 3.68 3.59 3.82 6.15
  • Butadiene was produced through the oxidative dehydrogenation reaction using the zinc ferrite catalyst synthesized in Examples 1 and 4 and the zinc ferrite catalyst synthesized in Comparative Example 5, and the results are shown in Table 5 below.
  • a catalyst prepared in Examples or Comparative Examples was fixed in a metal tubular reactor having a diameter of 1.8 cm with a catalyst layer volume of 30 cc, and 40 wt% cis-2-butene and 60 wt% trans-2-butene were 2-butene as a reactant.
  • a mixture and oxygen were used and nitrogen and steam were introduced.
  • the reactant ratio was set to a molar ratio of oxygen / butene 0.75, steam / butene 12 and nitrogen / butene 3, and steam was introduced into the reactor with the reactants by vaporizing water in a vaporizer at 340 ° C.
  • the amount of butene mixture was controlled at 0.625 cc / min using a mass flow controller for liquid, oxygen and nitrogen were controlled using a mass flow controller for gas, and the amount of steam was controlled using a liquid pump.
  • the gas hourly space velocity (GHSV) of the reactor was set to 500 h - 1 and reacted under the conditions of normal pressure (pressure gauge 0) and the temperatures shown in Table 5.
  • Example 4 coprecipitation feed water temperature: 5 ° C.
  • Example 1 coprecipitation feed water temperature: 25 ° C.
  • Comparative Example 5 using the catalyst according to the low concentration synthesis method was confirmed that the butene conversion and butadiene yield is poor.
  • the high concentration-based catalyst according to the present invention has a simple manufacturing process by using a high concentration instead of a low concentration, there is an economic advantage in terms of cost as well as catalyst efficiency. That is, it is possible to produce a catalyst that can maintain the reactivity of the catalyst while increasing the unit production once.

Abstract

본 발명은 산화적 탈수소화 반응용 촉매 및 제조방법에 관한 것으로, 본 발명에 따르면 산화적 탈수소화 반응용 촉매를 1회 단위 생산량을 늘리면서 산화적 탈수소화 반응성 또한 확보할 수 있는 촉매 및 제조방법을 제공하는 효과가 있다.

Description

산화적 탈수소화 반응용 촉매 및 제조방법
〔출원(들)과의 상호 인용〕
본 출원은 2016년 3월 25일자 한국 특허 출원 제10-2016-0036238호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 산화적 탈수소화 반응용 촉매 및 제조방법에 관한 것으로, 보다 상세하게는 산화적 탈수소화 반응용 촉매를 1회 단위 생산량을 늘리면서 산화적 탈수소화 반응성 또한 확보할 수 있는 촉매 및 제조방법에 관한 것이다.
1,3-부타디엔은 석유화학 제품의 중간체로서 전세계적으로 그 수요와 가치가 점차 증가하고 있다. 상기 1,3-부타디엔은 납사 크래킹, 부텐의 직접 탈수소화 반응, 부텐의 산화적 탈수소화 반응 등을 이용해 제조되고 있다. 그러나, 상기 납사 크래킹 공정은 높은 반응 온도로 인해 에너지 소비량이 많을 뿐만 아니라, 1,3-부타디엔 생산만을 위한 단독 공정이 아니기 때문에, 1,3-부타디엔 이외에 다른 기초 유분이 잉여로 생산된다는 문제가 있다. 또한, 노르말-부텐의 직접 탈수소화 반응은 열역학적으로 불리할 뿐만 아니라, 흡열반응으로써 높은 수율의 1,3-부타디엔 생산을 위해 고온 및 저압의 조건이 요구되어, 1,3-부타디엔을 생산하는 상용화 공정으로는 적합하지 않다.
한편, 부텐의 산화적 탈수소화 반응은 금속산화물 촉매의 존재 하에 부텐과 산소가 반응하여 1,3-부타디엔과 물을 생성하는 반응으로, 안정한 물이 생성되므로 열역학적으로 매우 유리한 이점을 갖는다. 또한, 부텐의 직접 탈수소화 반응과 달리 발열 반응이므로, 직접 탈수소화 반응에 비해 낮은 반응온도에서도 높은 수율의 1,3-부타디엔을 얻을 수 있고, 추가적인 열 공급을 필요로 하지 않아 1,3-부타디엔 수요를 충족시킬 수 있는 효과적인 단독 생산 공정이 될 수 있다.
상기 금속산화물 촉매는 일반적으로 침전법에 의해 합성되는데 기술 및 공간적 제약으로 1회 생산량이 작아 목표량을 채우기 위해서는 동일 과정을 수차례 반복하여 촉매를 제조하게 된다. 이렇게 수회에 걸쳐 제조되는 촉매들은 제조 회차에 따라 반응물과의 반응성이 차이날 수 있고, 이러한 촉매 간 반응성 차이는 생성물(부타디엔)의 수율과도 직접적인 관계가 있어 촉매 간 반응성 차이를 줄이는 것은 중요한 연구과제에 해당한다.
따라서, 제조되는 촉매간 반응성 차이가 없고 1회 단위 생산량이 개선된 촉매의 제조방법이 요구되는 실정이다.
〔선행기술문헌〕
〔특허문헌〕(특허문헌 1) US8513479B2
본 발명은 이러한 종래 기술의 문제점을 극복하기 위해, 산화적 탈수소화 반응용 촉매를 1회 단위 생산량을 늘리면서 산화적 탈수소화 반응성 또한 확보할 수 있는 촉매 및 제조방법을 제공하는 것을 목적으로 한다.
본 발명의 상기 목적 및 기타 목적들은 하기 설명된 본 발명에 의하여 모두 달성될 수 있다.
상기 목적을 달성하기 위하여, 본 발명은 3가 양이온 철(Fe) 전구체와 2가 양이온 금속(A) 전구체를 섞어 16.5 중량% 농도 초과 내지 53.5 중량% 농도 미만의 혼합 수용액을 형성하는 단계;
상기 혼합 수용액을, 0℃ 초과 내지 40℃ 미만의 증류수가 준비되고 pH 6 초과 내지 pH 10 미만으로 조절된 공침조에 2 g/min 이상 내지 32 g/min 미만의 점적 속도로 염기성 수용액과 함께 점적하여 AFe2O4와 Fe2O3가 공존하는 공침 용액을 얻는 단계;
상기 공침 용액을 여과하여 공침물을 얻는 단계; 및
상기 공침물을 소성하여 AFe2O4-Fe2O3의 생성물을 얻는 단계;를 포함하는 산화적 탈수소화 반응용 촉매 제조방법을 제공한다.
또한 본 발명은 3가 양이온 철(Fe) 전구체와 2가 양이온 금속(A) 전구체를 섞어 23 중량% 농도 내지 35 중량% 농도의 혼합 수용액을 형성하는 단계;
상기 혼합 수용액을 5℃ 내지 30℃의 증류수가 상기 혼합 수용액에 포함되는 증류수의 함량(중량) 기준 0.5배 이상 내지 3배 미만의 중량비로 준비되고 pH 8 내지 pH 9로 조절된 공침조에 2 g/min 내지 10 g/min의 속도로 점적하되, 염기성 수용액을 함께 점적하여 AFe2O4와 Fe2O3가 공존하는 공침 용액을 얻는 단계;
상기 공침 용액을 여과하여 공침물을 얻는 단계; 및
상기 공침물을 소성하여 AFe2O4-Fe2O3의 생성물을 얻는 단계;를 포함하는 산화적 탈수소화 반응용 촉매 제조방법을 제공한다.
또한 본 발명은 AFe2O4 구조 및 Fe2O3 구조를 포함하며, 상기 A는 구리(Cu), 라듐(Ra), 바륨(Ba), 스트론튬(Sr), 칼슘(Ca), 베릴륨(Be), 아연(Zn), 마그네슘(Mg), 망간(Mn) 및 코발트(Co)로 이루어진 군으로부터 선택된 1종 이상이고, 상기 AFe2O4 구조는 20 내지 99 중량%이고, Fe2O3 구조는 1 내지 80 중량%인 산화적 탈수소화 반응용 촉매를 제공한다.
본 발명에 따르면, 3가 철 양이온 전구체와 2가 양이온 금속 전구체의 혼합 수용액의 농도를 제어하여 고농축 합성으로 제조하여 1회 단위 생산량을 늘리고 폐수 배출량 또한 저감할 뿐 아니라 반응성 또한 개선된 촉매를 제조하는 방법을 제공하는 효과가 있다. 또한 본 발명 촉매는 고정층 반응기, 이동층 반응기 및 유동층 반응기에 적용 가능한 촉매로서 활용성이 매우 넓다.
도 1은 실시예 1 내지 실시예 6에 따라 제조된 아연 페라이트 촉매의 ZnFe2O4 구조와 α-Fe2O3 구조의 XRD 데이터이다.
도 2는 비교예 5 내지 비교예 10에 따라 제조된 아연 페라이트 촉매의 ZnFe2O4 구조와 α-Fe2O3 구조의 XRD 데이터이다.
배경기술에서 상술한 기존 산화적 탈수소화 반응용 촉매 제조방법의 기술 및 공간적 한계를 극복하기 위해, 본 발명자는 3가 철 양이온 전구체와 2가 양이온 금속 전구체의 혼합 수용액의 농도를 제어하여 고농축 합성으로 제조하여 1회 단위 생산량을 늘리고 폐수 배출량 또한 저감할 뿐 아니라 반응성 또한 개선된 촉매를 제조하는 방법을 개발하여 본 발명을 완성하였다.
본 발명 산화적 탈수소화 반응용 촉매는 하기의 공정으로 제조될 수있다.
제1 단계로서, 3가 양이온 철(Fe) 전구체와 2가 양이온 금속(A) 전구체를 섞어 16.5 중량% 농도 초과 내지 53.5 중량% 농도 미만의 혼합 수용액을 형성한다.
상기 3가 양이온 철(Fe) 전구체 및 2가 양이온 금속 전구체로서, 예를 들어 질산염(nitrate), 암모늄염(ammonium salt), 황산염(sulfate) 또는 염화물(chloride)로 이루어지는 군 중에서 독립적으로 선택되는 1종 이상일 수 있다. 바람직하게는 값이 싸고 쉽게 구입이 용이함에 따라 대량생산을 위한 촉매 제조 비용측면을 고려할 때 질산염, 염화물 중에서 선택될 수 있다.
상기 2가 양이온 금속(A)은 일례로 구리(Cu), 라듐(Ra), 바륨(Ba), 스트론튬(Sr), 칼슘(Ca), 베릴륨(Be), 아연(Zn), 마그네슘(Mg), 망간(Mn) 및 코발트(Co)로 이루어진 군으로부터 선택된 1종 이상일 수 있고, 바람직하게는 아연(Zn) 또는 망간(Mn)일 수 있다.
본 발명 산화적 탈수소화 반응용 촉매는 철과 2가 양이온 금속이 이온교환을 통해 원하는 공침물을 얻는 것이 중요하다. 따라서 분말 형태의 경우 철과 2가 양이온의 분산에 적합하지 못하며, 이는 원하는 활성물질 생성에 어려움이 있다. 이에 반해 혼합 수용액의 경우 액상으로 존재함으로써 철과 2가 양이온 금속이 용이하게 이온 교환이 가능하기 때문에 원하는 공침물을 쉽게 제조할 수 있다.
통상적으로 수용액 중 철 전구체와 2가 양이온 금속 전구체의 적절한혼합양은 상기 2가 양이온 금속(A) 전구체 1몰에 대해 상기 3가 양이온 철(Fe) 전구체가 1.5 내지 10 몰, 1.5 내지 4 몰, 혹은 1.5 내지 2.5 몰일 수 있고, 이 범위 내에서 소정의 활성물질을 생성하는 효과가 있다.
상기 혼합 수용액은 16.5 중량% 농도 초과 내지 53.5 중량% 농도 미만, 18 중량% 농도 내지 50 중량% 농도, 20 중량% 농도 내지 40 중량% 농도, 혹은 23 중량% 농도 내지 35 중량% 농도일 수 있고, 이 범위 내에서 1회 단위 생산량을 대폭 늘리면서 산화적 탈수소화 반응 촉매로서 반응성을 개선할 수 있다.
상술한 혼합 수용액은 일례로, 3가 양이온 철(Fe) 전구체 10 중량% 내지 30 중량%, 10 중량% 내지 25 중량%, 15 중량% 내지 25 중량%, 혹은 20 내지 25 중량%, 및 2가 양이온 금속 전구체 3 중량% 내지 10 중량%, 3 중량% 내지 8 중량%, 4 내지 7 중량%, 혹은 4 내지 6 중량%를 증류수 60 중량% 내지 87 중량%, 67 중량% 내지 87 중량%, 68 중량% 내지 81 중량%, 혹은 71 중량% 내지 76 중량%에 용해시켜 준비할 수 있다.
상기 혼합 수용액은 일례로 pH가 0 내지 4, 1 내지 3, 혹은 1 내지 2일 수 있고, 이 범위 내에서 촉매 합성시 원하는 활성성분을 안정적으로 생성하는 효과가 있다.
제2 단계로서, 상기 혼합 수용액을, 증류수가 준비되고 pH가 조절된 공침조에 염기성 수용액과 함께 점적하여 AFe2O4와 Fe2O3가 공존하는 공침 용액을 얻는다. 상기 점적은 일례로 2종 또는 2이상의 용액을 같은 지점 또는 용기 등에 드롭핑(dropping)하는 것을 의미한다.
상기 증류수는 0℃ 초과 내지 40℃ 미만, 0℃ 초과 내지 30℃, 혹은5℃ 내지 25℃인 것을 공급할 수 있고, 이 범위 내에서 1회 단위 생산량을 늘리고 활성촉매의 함량을 조절하여, 산화적 탈수소화 반응에 따른 부타디엔의 선택도 및 수율이 우수한 효과가 있다.
일례로, 상기 증류수 함량은 제1 단계에서 혼합 수용액에 포함되는 증류수의 중량 기준 0.5배 이상, 0.5배 이상 내지 3배 미만, 혹은 0.5배 이상 내지 2배의 중량으로 공급될 수 있고, 이 범위 내에서 1회 단위 생산량을 늘리고 공침 용액의 pH를 일정하게 유지시키고 제조 도중 발생하는 폐수의 배출량을 저감하는 효과가 있다.
상기 증류수는 일례로 수산화나트륨, 암모니아 등의 염기성을 띠는 다양한 물질의 수용액을 사용하여 공침조의 pH를 미리 조절할 수 있다. 상기 염기성 수용액은 일례로 농도 중량%로 각각 0.001 내지 0.01 %의 용액, 0.001 내지 0.008 %의 용액, 혹은 0.003 내지 0.007 %의 용액일 수 있고, 이는 촉매 합성 초반 혼합 수용액 투입으로 인한 pH 변화 폭을 줄여주어 균일 조성의 촉매가 가능하도록 하는 역할을 수행할 수 있다.
상기 공침조의 pH는 일례로 각각 6 초과 내지 11 미만, 7 내지 11 미만, 8 내지 10, 혹은 8 내지 9로 조절될 수 있고, 이 범위 내에서 혼합 수용액이 점적될 때 AFe2O4의 함량을 일정 범위로 조절할 수 있다.
상기 전구체 수용액은 공침조에 2 g/min 이상의 속도, 2 g/min 이상 내지 32g/min 미만의 속도, 2 g/min 이상 내지 10 g/min 이하의 속도, 혹은 2g/min 이상 내지 7 g/min 이하의 속도로 점적시킬 수 있고, 이 범위 내에서 1회 단위 생산량을 늘리고 활성성분의 함량을 일정 범위로 조절하여, 산화적 탈수소화 반응에 따른 부타디엔의 선택도 및 수율이 우수한 효과가 있다.
상기 전구체 수용액과 별도로 공급하는 염기성 수용액은 일례로 수산화나트륨, 암모니아 등의 염기성을 띠는 다양한 물질의 수용액이면 특정하지 않는다. 일례로, 상기 염기성 수용액은 농도 중량%가 10 내지 35 %의 용액, 20 내지 33 %의 용액, 혹은 25 내지 30 %의 용액일 수 있고, 이 범위 내에서 공침 용액의 pH를 적절하게 유지시키기에 적절할 수 있다.
상기 공침 용액의 pH는 일례로 각각 7 이상 내지 11 미만, 8 내지 10, 혹은 8 내지 9로 유지될 수 있고, 이 범위 내에서 공침물의 1회 단위 생산량을 늘리고 산화적 탈수소화 반응에 따른 부타디엔의 선택도 및 수율이 우수한 효과가 있다.
상기 제2 단계에서 수득된 공침 용액은 제3 단계의 여과를 수행하기에 앞서, 교반; 숙성; 또는 교반 및 숙성;시키는 단계를 더 포함할 수 있고, 이 경우 공침 용액 내에서 전구체의 공침이 충분히 이루어지도록 하는 효과가 있다.
상기 교반 및 숙성은 일례로 각각 30분 내지 3시간, 30분 내지 2시간, 혹은 30분 내지 1시간 30분 동안 실시될 수 있다.
제3 단계로서, 상기 공침 용액을 여과하여 공침물을 얻는다.
상기 여과는 이 기술분야에서 통상적으로 사용되는 여과 방법이라면 특별히 제한되지 않으나, 일례로 감압 여과일 수 있고, 구체적인 예로는 공침 용액을 100 내지 300 mbar, 혹은 160 내지 250 mbar의 압력으로 감압하여 여과시킬 수 있다. 여과 후 필요에 따라 세척할 수 있다.
상기 여과 후 세척하고 폐수를 배출하고 공침물을 고형물로서 얻는다. 고농축의 촉매 합성에 의해 상기 제2 단계에서 폐수 배출량이 저감하는 효과가 있다.
상기 공침물을 일례로 통상의 건조기를 이용하여, 60 내지 100 ℃, 70 내지 100 ℃, 혹은 80 내지 100 ℃에서 12 내지 20시간, 14 내지 20시간, 혹은 14 내지 18시간 동안 건조될 수 있다. 상기 고형물은 분말의 형태, 성형체의 형태 혹은 기판 상에 도포된 막 형태 등 다양한 형태로 제공될 수 있다.
제4 단계로서, 상기 공침물을 소성하여 AFe2O4-Fe2O3의 생성물을 얻는다.
상기 여과된 공침물은 일례로 통상의 소성로를 이용하여, 400 내지 800 ℃, 500 내지 800 ℃, 혹은 550 내지 750 ℃에서 1 내지 10 시간, 3 내지 8시간, 혹은 5 내지 7시간 동안 소성될 수 있다.
다른 예로 상기 여과된 공침물은 통상의 건조기를 이용하여, 60 내지 100 ℃, 70 내지 100 ℃, 혹은 80 내지 100 ℃에서 12 내지 20시간, 14 내지 20시간, 혹은 14 내지 18시간 동안 건조될 수 있고, 건조된 공침물은 일례로 통상의 소성로를 이용하여, 400 내지 800 ℃, 500 내지 800 ℃, 혹은 550 내지 750 ℃에서 1 내지 10 시간, 3 내지 8시간, 혹은 5 내지 7시간 동안 소성될 수 있다.
상기 소성 방법은 이 기술분야에서 통상적으로 사용되는 열처리 방법일 수 있다.
본 발명 산화적 탈수소화 반응용 촉매는 하기의 공정으로 또한 제조될 수 있다:
즉, 3가 양이온 철(Fe) 전구체와 2가 양이온 금속(A) 전구체를 섞어 23 중량% 농도 내지 35 중량% 농도의 혼합 수용액을 형성한다.
상기 혼합 수용액을 5℃ 내지 30℃의 증류수가 상기 혼합 수용액에 포함되는 증류수의 함량(중량) 기준 0.5배 이상 내지 3배 미만의 중량비로 준비되고 pH 8 내지 pH 9로 조절된 공침조에 2 g/min 내지 10 g/min의 속도로 점적하되, 염기성 수용액을 함께 점적하여 AFe2O4와 Fe2O3가 공존하는 공침 용액을 얻는다.
상기 공침 용액을 여과하여 공침물을 얻는다.
상기 공침물을 소성하여 AFe2O4-Fe2O3의 생성물을 얻는다.
상술한 제조방법들에 따르면 기존의 저농축 합성 대신 고농축 합성을 사용하는 것을 특징으로 한다. 상기 제조방법들에 의해 수득된 촉매는 제조 후 AFe2O4와 Fe2O3가 공존함으로써 산화적 탈수소화 반응에 이용될 경우 반응 생성물의 선택도를 개선하면서 전환율 또한 개선할 수 있고, 부 반응을 막아주는 역할을 한다.
즉, 본 발명에서는 저농축 합성 대신 고농축 합성을 이용하는 간단한 방법을 적용하여 1회 단위 생산량은 늘리면서 산화적 탈수소화 반응에 이용시 촉매의 반응성을 향상시키는 특성을 보인다.
본 발명에 따른 산화적 탈수소화 반응용 촉매는 AFe2O4 구조 및 Fe2O3 구조를 포함하며, 상기 A는 구리(Cu), 라듐(Ra), 바륨(Ba), 스트론튬(Sr), 칼슘(Ca), 베릴륨(Be), 아연(Zn), 마그네슘(Mg), 망간(Mn) 및 코발트(Co)로 이루어진 군으로부터 선택된 1종 이상인 것으로, 여기서 상기 AFe2O4 구조는 20 내지 99 중량%이고 상기 Fe2O3 구조는 1 내지 80 중량%인 것을 특징으로 한다.
일례로, 상기 AFe2O4 구조는 50 내지 95 중량%이고 상기 Fe2O3 구조는 5 내지 50 중량%일 수 있다.
일례로, 상기 AFe2O4 구조는 83 내지 95 중량%이고 상기 Fe2O3 구조는 5 내지 17 중량%일 수 있다.
일례로, 상기 AFe2O4 구조는 85 내지 95 중량%이고 상기 Fe2O3 구조는 5 내지 15 중량%일 수 있다.
상기 AFe2O4 구조는 XRD 회절분석 측정시 최대 피크 강도를 갖는 제1 피크가 34.5° 내지 35.5° 범위에 존재하는 피크이고, 두번째 피크 강도를 갖는 제2 피크가 29.5° 내지 30.5° 범위에 존재하는 피크이며, 세번째 피크 강도를 갖는 제3 피크가 62° 내지 63° 범위에 존재하는 피크를 갖는 것일 수 있다.
상기 AFe2O4 구조는 일례로 ZnFe2O4 혹은 MnFe2O4일 수 있다.
상기 Fe2O3 구조는 XRD 회절분석 측정시 최대 피크 강도를 갖는 제1 피크가 33° 내지 34° 범위에 존재하는 피크이고, 두번째 피크 강도를 갖는 제2 피크가 35° 내지 36° 범위에 존재하는 피크이며, 세번째 피크 강도를 갖는 제3 피크가 53.5° 내지 54.5° 범위에 존재하는 피크를 갖는 것일 수 있다.
상기 Fe2O3 구조는 일례로 α-Fe2O3일 수 있다.
상기 촉매는 산화적 탈수소화 반응을 위한 고정층 반응기, 이동층 반응기 및 유동층 반응기에 적용 가능한 촉매로서 활용성이 매우 넓다.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 통상의 기술자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다.
[실시예]
<실시예 1 내지 6>
본 실시예들은 2가 금속 양이온으로서 아연을 이용하되 고농축 합성법에 따라 촉매를 제조한 실험예이다.
실시예 1
제1 단계로서, 염화아연(ZnCl2) 18.029 g 및 염화제이철(FeCl3) 71.495 g을 증류수 233.39 g에 용해시켜 pH 1의 금속전구체 수용액 322.914 g을 준비하였다(전구체 용액의 농도:중량%로서 27.7%). 이 때, 상기 금속전구체 수용액에 포함된 금속 성분들의 몰비는 Fe:Zn=2:1이었다.
제2 단계로서, 상온(25℃)의 증류수 233.39g에 농도 중량%로 0.005%의 암모니아 용액을 투입하고 pH 8로 조정한 공침조에, 상기 금속전구체 수용액 분출구 및 암모니아 수용액 분출구를 각각 설치하고, 상기 금속전구체 수용액 분출구를 통해 상기 제조된 금속전구체 혼합 수용액을 2g/min 속도로 점적함과 동시에, 상기 암모니아 수용액 분출구를 통해 농도 28 내지 30%의 암모니아 수용액(pH 13.6)을 상온 공급하여, 공침조 내 공침 용액의 pH를 8로 일정하게 유지시켰다.
상기 금속전구체 수용액의 점적이 완료된 후, 공침이 충분히 이루어지도록 공침 용액을 1시간 동안 교반시키고(pH 8), 교반을 멈춘 뒤 침전물이 모두 가라앉도록 상온에서 1시간 동안 방치하여 상을 분리시켰다.
제3 단계로서, 상기 공침 용액을 감압 여과기를 이용하여 200 mbar 압력 조건에서 감압 여과하여 공침물을 수득하였고, 이를 세척한 다음 폐수는 배출하고, 90 ℃에서 16시간 동안 건조하였다.
제4 단계로서, 건조된 공침물을 소성로에 넣어 650 ℃의 온도에서 6시간 동안 열처리하여 아연 페라이트 촉매를 제조하였다.
실시예 2
상기 실시예 1의 제2 단계에서, 전구체 용액의 점적 속도를 7 g/min으로 대체한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 아연 페라이트 촉매를 제조하였다.
실시예 3
상기 실시예 1의 제2 단계에서, 전구체 용액의 점적 속도를 10 g/min으로 대체한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 아연 페라이트 촉매를 제조하였다.
실시예 4
상기 실시예 1의 제2 단계에서, 공침조 공급수의 온도(상온: 25℃)를 5℃로 대체한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 아연 페라이트 촉매를 제조하였다.
실시예 5
상기 실시예 1의 제1 단계에서, 전구체 용액의 농도(중량% 단위)를 27.7%에서 35%로 대체한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 아연 페라이트 촉매를 제조하였다.
실시예 6
상기 실시예 1의 제1 단계에서, 전구체 용액의 농도(중량% 단위)를 27.7%에서 23%로 대체한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 아연 페라이트 촉매를 제조하였다.
<비교예 1 내지 5>
이하 비교예들 역시 2가 금속 양이온으로서 아연을 사용하되 다양한저농축 합성법에 따라 촉매를 합성한 것이다.
구체적으로, 상기 실시예 1의 제1 단계에서 제조하는 금속전구체 수용액을 구성하는 염화아연(ZnCl2), 염화제이철(FeCl3), 증류수의 함량,과 공침조에 공급되는 물(공침조 공급수)의 함량, 및 교반 단계의 pH를 하기 표1에 제시한 값으로 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 아연 페라이트 촉매를 제조하였다.
구분 실시예1 비교예1 비교예2 비교예3 비교예4 비교예5
Fe/Zn 몰비 2 1.5-2.5 2 2 2 2
전구체 용액(단위g) FeCl3.6H2O 71.495 5.61 5.61 5.61 22.4 47.662
ZnCl2 18.029 1.42 1.42 1.42 5.66 12.019
증류수 233.39 100 250 100 400 835.5
전구체 용액 농도(중량%) 27.7 6.57 2.74 6.57 6.56 6.67
공침조 공급수(단위g) 233.39 100 1000 100 1200 8500
공침조 내 공침 용액의 유지 pH/교반 pH 8/8 3-12/3-12 6-10/6-10 9/9 9/9 9/9
<비교예 6 내지 10>
이하 비교예들은 2가 금속 양이온으로 아연을 사용하되 고농축 합성법에 따라 촉매를 제조한 실험예로서, 비교예 6은 비교예 5의 30배 농축 합성법에 해당하고, 비교예 7 내지 10은 각각 실시예 1의 고농축 합성법에서 조건을 달리한 실험들에 해당한다.
비교예 6
상기 비교예 5의 제1 단계에서, FeCl3.6H2O를 71.495 g 사용하고, ZnCl2 18.029 g 사용하고 증류수를 41.8 g 사용하여 농도 wt%로서 68.18%의 전구체 용액을 제조한 다음 공침조 내 공침 용액의 pH를 8로 유지하였고 교반 단계 또한 pH를 8로 조절하였으며, 공침조 공급수를 425g 투입한 것을 제외하고는 비교예 5와 동일한 실험을 반복하여 아연 페라이트 촉매를 제조하였다.
비교예 7
상기 실시예 1의 제2 단계에서, 전구체 용액의 점적 속도를 32 g/min으로 대체한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 아연 페라이트 촉매를 제조하였다.
비교예 8
상기 실시예 1의 제2 단계에서, 공침조 공급수의 온도(상온: 25℃)를 40℃로 대체한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 아연 페라이트 촉매를 제조하였다.
비교예 9
상기 실시예 1의 제2 단계에서, 공침조 내 공침 용액의 pH를 10으로 유지시킨 것을 제외하고는 상기 실시예 1과 동일한 방법으로 아연 페라이트 촉매를 제조하였다.
비교예 10
상기 실시예 1의 제2 단계에서, 공침조 내 공침 용액의 pH를 11로 유지시킨 것을 제외하고는 상기 실시예 1과 동일한 방법으로 아연 페라이트 촉매를 제조하였다.
<시험예>
상기 실시예 1 내지 6에서 합성된 아연 페라이트 촉매와 비교예 1 내지 10에서 합성된 아연 페라이트 촉매를 사용하여 다음과 같은 다양한 시험을 수행하였다.
<시험예 1-XRD 실험>
각 아연 페라이트 촉매의 함량과 구조를 확인하도록 XRD 회절분석으로 측정하여 도 1과 도 2에 각각 도시하였다. 도 1 및 2를 참조하면, 실시예 1 내지 6의 아연 페라이트 촉매(도 1), 비교예 5 내지 10의 아연 페라이트 촉매(도 2)는 ZnFe2O4 구조가 XRD 회절분석 측정시 최대 피크 강도를 갖는 제1 피크가 34.5° 내지 35.5° 범위에 존재하는 피크이고, 두번째 피크 강도를 갖는 제2 피크가 29.5° 내지 30.5° 범위에 존재하는 피크이고, 세번째 피크 강도를 갖는 제3 피크가 62° 내지 63° 범위에 존재하는 피크를 제공하고, α-Fe2O3 구조는 XRD 회절분석 측정시 최대 피크 강도를 갖는 제1 피크가 33° 내지 34° 범위에 존재하는 피크이고, 두번째 피크 강도를 갖는 제2 피크가 35° 내지 36° 범위에 존재하는 피크이고, 세번째 피크 강도를 갖는 제3 피크가 53.5° 내지 54.5° 범위에 존재하는 피크를 제공하는 것을 확인하였다.
특히 도 1의 실시예 1(전구체 용액의 농도: 중량%로서 27.7%)과 도 2의 비교예 5(전구체 수용액의 농도: 중량%로서 6.67%), 비교예 6(전구체 수용액의 농도: 중량%로서 68.18%)을 대비해보면, 전구체 용액의 농도가 너무 작거나(비교예 5 상당), 반대로 너무 큰 경우(비교예 6 상당) ZnFe2O4 구조의 결정성이 작아지고 Fe2O3 구조가 증가한 것을 확인할 수 있었다.
또한 도 1의 실시예 1(혼합 수용액의 점적 속도: 2 g/min), 실시예 2(혼합 수용액의 점적 속도: 7 g/min), 실시예 3(혼합 수용액의 점적 속도 10 g/min)과 도 2의 비교예 7(혼합 수용액의 점적 속도: 32 g/min)을 대비해보면, 전구체 용액의 점적 속도가 빨라짐에 따라 ZnFe2O4 구조의 결정성이 작아지고 Fe2O3 구조가 증가한 것을 확인할 수 있었다.
또한 도 1의 실시예 1(공침조 공급수 온도: 25℃), 실시예 4(공침조 공급수 온도: 5℃)와 도 2의 비교예 8(공침조 공급수 온도: 40℃)을 대비해보면, 공침조 공급수의 온도가 적정 온도를 초과하면 ZnFe2O4 구조의 결정성이 작아지고 Fe2O3 구조가 증가한 것을 확인할 수 있었다.
또한 도 1의 실시예 1(공침 용액의 pH:8)과 도 2의 비교예 6(공침 용액의 pH:8), 비교예 9(공침용액의 pH:10), 비교예 10(공침용액의 pH:11)을 대비해보면, 공침 용액의 pH가 증가함에 따라 Fe2O3 구조가 증가하였고, ZnFe2O4 구조는 실시예 1의 공침 용액의 pH가 8일 때 가장 많이 형성된 것을 확인할 수 있다.
이로부터 ZnFe2O4 구조와 Fe2O3 구조의 결정성에 전구체 용액의 농도, 전구체 용액의 점적 속도, 공침조 공급수 온도 및 공침조 내에서 공침 용액의 유지 pH가 각각 영향을 미치는 변수로 작용하는 것을 확인하였다.
상기 XRD 회절분석으로 측정된 ZnFe2O4 구조와 Fe2O3 구조의 함량(중량%)을 하기 표 2에 정리하였다.
구분 ZnFe2O4 구조 Fe2O3 구조
실시예 1 90 10
실시예 2 86.4 13.6
실시예 3 85 15
실시예 4 93 7
실시예 5 92.5 7.5
실시예 6 92.7 7.3
비교예 5 92.3 7.7
비교예 6 82.2 17.8
비교예 7 72.3 27.7
비교예 8 74.8 25.2
비교예 9 69.3 30.7
비교예 10 53.6 46.4
상기 표 2에 나타낸 바와 같이, 실시예 1 내지 6, 비교예 5 내지 10에서 ZnFe2O4 함량은 20 내지 99 중량%이고, Fe2O3 함량은 1 내지 80 중량%인 것을 확인하였다.
특히 본 발명 실시예 1 내지 6에 따르면, ZnFe2O4 함량이 75 내지 95 중량%이고, Fe2O3 함량이 5 내지 25 중량%로서 ZnFe2O4 구조의 결정성이 현저하게 증가한 것을 확인할 수 있었다.
<시험예 2: 1회 단위 생산량 실험>
실시예 1에서 합성된 고농축 합성법에 따른 아연 페라이트 촉매의 1회 단위 생산량과 비교예 1 내지 5에서 합성된 저농축 합성법에 따른 1회 단위 생산량을 대비하였다.
대비의 편의상, 각 촉매는 증류수 9335.5g 수용 반응기에서 ZnFe2O4 구조의 생산량(mol 단위)을 측정하고 하기 표 3에 나타내었다.
구분 실시예1 비교예1 비교예2 비교예3 비교예4 비교예5 비교예6
ZnFe2O4 기준 1회 단위 생산량(mol) 2.6 0.48 0.08 0.48 0.24 0.09 2.6
상기 표 3에 나타낸 바와 같이, 본 발명 실시예 1에 따른 촉매의 1회 단위 생산량은 비교예 1 내지 5에 따른 촉매의 1회 단위 생산량 대비 5배 이상, 최대 33배 이상 개선된 것을 확인하였다.
<시험예 3: 합성된 촉매의 원소분석 실험>
상기 실시예 1 내지 6에서 합성된 아연 페라이트 촉매 및 비교예 5 내지 10에서 합성된 아연 페라이트 촉매에 대하여 원소분석기(EDS)를 사용하여 원소분석을 수행하고, 그 결과를 하기 표 4에 나타내었다.
구분 실시예1 실시예2 실시예3 실시예4 실시예 5 실시예 6
Fe 73.61 73.76 74.16 70.07 70.16 69.37
Zn 26.39 26.24 25.84 9.93 20.84 30.63
Fe/Zn 2.79 2.81 2.84 2.34 2.35 2.26
구분 비교예5 비교예6 비교예7 비교예8 비교예9 비교예 10
Fe 68.3 76.55 78.64 78.22 79.23 86.02
Zn 31.7 23.45 21.36 21.78 20.77 13.98
Fe/Zn 2.2 3.26 3.68 3.59 3.82 6.15
상기 표 4에서 보듯이, 본 발명 실시예 1 내지 6에 따른 고농축 전구체 용액을 사용하여 합성한 촉매와 고농축 전구체 용액을 사용하여 합성한 비교예 6 내지 10의 촉매 대비 목표 Fe/Zn 몰비(목표 비=2)에 근접한 것을 확인할 수 있었다.
<시험예 5: 산화적 탈수소화 반응>
상기 실시예 1 및 실시예 4에서 합성된 아연 페라이트 촉매와 비교예 5에서 합성된 아연 페라이트 촉매를 사용하여 하기 산화적 탈수소화 반응을 거쳐 부타디엔을 생성하였으며, 그 결과를 하기 표 5에 나타내었다.
반응기로서 지름 1.8 cm의 금속 관형 반응기에 실시예 혹은 비교예에서 제조된 촉매를 촉매층 부피 30cc로 고정하고, 반응물로 시스-2-부텐 40중량%, 트랜스-2-부텐 60 중량%의 2-부텐 혼합물과 산소를 사용하였고 질소와 스팀을 유입시켰다. 상기 반응물 비는 산소/부텐 0.75, 스팀/부텐 12 및 질소/부텐 3의 몰비로 셋팅하였고, 스팀은 물을 340 ℃의 기화기에서 기화시켜 반응물과 함께 반응기에 유입시켰다.
부텐 혼합물의 양은 액체용 질량유속조절기를 사용하여 0.625 cc/min으로 제어하였고, 산소 및 질소는 기체용 질량유속조절기를 사용하여 제어하였으며, 스팀의 양은 액체 펌프를 이용해 주입 속도를 제어하였다. 상기 반응기의 기상 공간속도(GHSV, gas hourly space velocity)는 500 h- 1 로 설정하고 상압(압력 게이지 0), 표 5에 개시된 온도의 조건하에 반응시켰다.
반응 후 생성물을 가스 크로마토그래피(GC)로 분석하였고, 혼합물 내 각 부텐의 전환율(X), 1,3-부타디엔 선택도(S-BD), 1,3-부타디엔 수율(Y), COx 선택도(S_COx), 및 기타 선택도(S_others)를 하기 수식 1 내지 3에 따라 계산하였다.
[수식 1]
전환율(%) = (반응한 부텐의 몰수/공급된 부텐의 몰수)×100
[수식 2]
선택도(%) = (생성된 1,3-부타디엔 또는 COx의 몰수/반응한 부텐의 몰수)×100
[수식 3]
수율(%) = (생성된1,3-부타디엔의 몰수/공급된 부텐의 몰수)×100
구분 T(℃) X S_BD Y S_COx S_others
실시예1 330 77.43 89.06 68.96 9.80 1.14
실시예4 320 80.61 88.85 71.62 10.38 0.77
비교예5 337 71.90 91.56 65.83 7.01 1.43
상기 표 5에 나타낸 바와 같이, 본 발명 실시예 1 및 실시예 4의 경우, 부텐 전환율 및 수율이 우수한 것을 확인할 수 있었다. 참고로 실시예들 중에서 실시예 4(공침조 공급수 온도:5℃)가 실시예 1(공침조 공급수 온도:25℃)에서보다 부텐 전환율 및 수율이 우수한 것을 확인할 수 있었다.
한편, 저농축 합성법에 따른 촉매를 사용한 비교예 5는 부텐 전환율과 부타디엔 수율이 열악한 결과를 확인하였다.
결과적으로, 본 발명에 따른 고농축 기반 촉매는 저농축 대신 고농축을 사용함으로써 제조 과정이 단순하여 촉매 효율뿐 아니라 비용 측면에서도 경제적인 장점이 있다. 즉 1회 단위생산량을 늘리면서 촉매의 반응성을 유지할 수 있는 촉매를 제조할 수 있다.

Claims (13)

  1. 3가 양이온 철(Fe) 전구체와 2가 양이온 금속(A) 전구체를 섞어 16.5 중량% 농도 초과 내지 53.5 중량% 농도 미만의 혼합 수용액을 형성하는 단계;
    상기 혼합 수용액을, 0℃ 초과 내지 40℃ 미만의 증류수가 준비되고 pH 6 초과 내지 pH 10 미만으로 조절된 공침조에 2 g/min 이상 내지 32 g/min 미만의 점적 속도로 염기성 수용액과 함께 점적하여 AFe2O4와 Fe2O3가 공존하는 공침 용액을 얻는 단계; 및
    상기 공침물을 소성하여 AFe2O4-Fe2O3의 생성물을 얻는 단계;를 포함하는 산화적 탈수소화 반응용 촉매 제조방법.
  2. 제1항에 있어서,
    상기 3가 양이온 철(Fe) 전구체 및 2가 양이온 금속 전구체는 독립적으로 질산염(nitrate), 암모늄염(ammonium salt), 황산염(sulfate) 또는 염화물(chloride)로 이루어지는 군 중에서 선택되는 1종 이상인 것을 특징으로 하는 산화적 탈수소화 반응용 촉매 제조방법.
  3. 제1항에 있어서,
    상기 2가 양이온 금속(A)은 구리(Cu), 라듐(Ra), 바륨(Ba), 스트론튬(Sr), 칼슘(Ca), 베릴륨(Be), 아연(Zn), 마그네슘(Mg), 망간(Mn) 및 코발트(Co)로 이루어진 군으로부터 선택된 1종 이상인 것을 특징으로 하는 산화적 탈수소화 반응용 촉매 제조방법.
  4. 제1항에 있어서,
    상기 2가 양이온 금속(A) 전구체 1 몰에 대해 상기 3가 양이온 철(Fe) 전구체가 1.5 내지 10 몰인 것을 특징으로 하는 산화적 탈수소화 반응용 촉매 제조방법.
  5. 제1항에 있어서,
    상기 혼합 수용액은 3가 양이온 철(Fe) 전구체 10 내지 30 중량% 및 2가 양이온 금속(A) 전구체 3 내지 10 중량%를 증류수 60 내지 87 중량%에 용해시켜 제조되는 것을 특징으로 하는 산화적 탈수소화 반응용 촉매 제조방법.
  6. 제1항에 있어서,
    상기 혼합 수용액은 pH가 0 내지 4인 것을 특징으로 하는 산화적 탈수소화 반응용 촉매 제조방법.
  7. 제1항에 있어서,
    상기 공침조 내 공침 용액의 pH는 7 이상 내지 10 미만으로 유지되는 것을 특징으로 하는 산화적 탈수소화 반응용 촉매 제조방법.
  8. 제1항에 있어서,
    상기 AFe2O4와 Fe2O3가 공존하는 공침 용액은 여과 단계에 앞서, 교반; 숙성; 또는 교반 및 숙성;시키는 단계를 더 포함하는 것을 특징으로 하는 산화적 탈수소화 반응용 촉매 제조방법.
  9. 3가 양이온 철(Fe) 전구체와 2가 양이온 금속(A) 전구체를 섞어 23 중량% 농도 내지 35 중량% 농도의 혼합 수용액을 형성하는 단계;
    상기 혼합 수용액을 5℃ 내지 30℃의 증류수가 상기 혼합 수용액에 포함되는 증류수의 중량 기준 0.5배 이상 내지 3배 미만의 중량으로 준비되고 pH 8 내지 pH 9로 조절된 공침조에, 2 g/min 내지 10 g/min의 속도로 염기성 수용액을 함께 점적하여 AFe2O4와 Fe2O3가 공존하는 공침 용액을 얻는 단계;
    상기 공침 용액을 여과하여 공침물을 얻는 단계; 및
    상기 공침물을 소성하여 AFe2O4-Fe2O3의 생성물을 얻는 단계;를 포함하는 산화적 탈수소화 반응용 촉매 제조방법.
  10. AFe2O4 구조 및 Fe2O3 구조를 포함하며, 상기 A는 구리(Cu), 라듐(Ra), 바륨(Ba), 스트론튬(Sr), 칼슘(Ca), 베릴륨(Be), 아연(Zn), 마그네슘(Mg), 망간(Mn) 및 코발트(Co)로 이루어진 군으로부터 선택된 1종 이상이고,
    상기 AFe2O4 구조는 20 내지 99 중량%이고 상기 Fe2O3 구조는 1 내지 80중량%인 산화적 탈수소화 반응용 촉매.
  11. 제10항에 있어서,
    상기 AFe2O4 구조는 XRD 회절분석 측정시 최대 피크 강도를 갖는 제1 피크가 34.5° 내지 35.5° 범위에 존재하는 피크이고, 두번째 피크 강도를 갖는 제2 피크가 29.5° 내지 30.5° 범위에 존재하는 피크이며, 세번째 피크 강도를 갖는 제3 피크가 62° 내지 63° 범위에 존재하는 피크를 갖는 것을 특징으로 하는 산화적 탈수소화 반응용 촉매.
  12. 제10항에 있어서,
    상기 Fe2O3 구조는 XRD 회절분석 측정시 최대 피크 강도를 갖는 제1 피크가 33° 내지 34° 범위에 존재하는 피크이고, 두번째 피크 강도를 갖는 제2 피크가 35° 내지 36° 범위에 존재하는 피크이며, 세번째 피크 강도를 갖는 제3 피크가 53.5° 내지 54.5° 범위에 존재하는 피크를 갖는 것을 특징으로 하는 산화적 탈수소화 반응용 촉매.
  13. 제10항에 있어서,
    상기 AFe2O4 구조는 75 내지 95 중량%이고 상기 Fe2O3 구조는 5 내지 25중량%인 것을 특징으로 하는 산화적 탈수소화 반응용 촉매.
PCT/KR2016/015012 2016-03-25 2016-12-21 산화적 탈수소화 반응용 촉매 및 제조방법 WO2017164492A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680032680.2A CN107614106B (zh) 2016-03-25 2016-12-21 氧化脱氢用催化剂及其制备方法
EP16895618.3A EP3292910B1 (en) 2016-03-25 2016-12-21 Catalyst for oxidative dehydrogenation reaction, and preparation method therefor
US15/735,813 US10486150B2 (en) 2016-03-25 2016-12-21 Catalyst for oxidative dehydrogenation and method of preparing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160036238A KR101933480B1 (ko) 2016-03-25 2016-03-25 산화적 탈수소화 반응용 촉매 및 제조방법
KR10-2016-0036238 2016-03-25

Publications (1)

Publication Number Publication Date
WO2017164492A1 true WO2017164492A1 (ko) 2017-09-28

Family

ID=59900578

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/015012 WO2017164492A1 (ko) 2016-03-25 2016-12-21 산화적 탈수소화 반응용 촉매 및 제조방법

Country Status (5)

Country Link
US (1) US10486150B2 (ko)
EP (1) EP3292910B1 (ko)
KR (1) KR101933480B1 (ko)
CN (1) CN107614106B (ko)
WO (1) WO2017164492A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101973614B1 (ko) 2016-03-18 2019-04-30 주식회사 엘지화학 산화적 탈수소화 반응용 촉매 제조방법
CN113164927B (zh) 2019-09-27 2023-11-28 株式会社Lg化学 制备铁酸锌类催化剂的方法和由其制备的铁酸锌类催化剂

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100847206B1 (ko) * 2007-05-10 2008-07-17 에스케이에너지 주식회사 아연 페라이트 촉매, 이의 제조방법 및 이를 이용한1,3-부타디엔의 제조방법
KR20120009687A (ko) * 2010-07-20 2012-02-02 에스케이이노베이션 주식회사 혼성 망간 페라이트가 코팅된 촉매, 이의 제조방법 및 이를 이용한 1,3-부타디엔의 제조방법

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS525497A (en) * 1975-07-02 1977-01-17 Fuji Photo Film Co Ltd Ferromagnetic grit manufacturing process
CN1013247B (zh) * 1986-11-27 1991-07-24 中国科学院兰州化学物理研究所 丁烯氧化脱氢催化剂
KR100950373B1 (ko) * 2007-10-02 2010-03-29 에스케이에너지 주식회사 완충 용액을 이용하는 아연 페라이트 촉매의 제조방법 및 이를 이용한 1,3-부타디엔의 제조방법
KR100888143B1 (ko) * 2007-12-12 2009-03-13 에스케이에너지 주식회사 혼성 망간 페라이트 촉매, 이의 제조방법 및 이를 이용한1,3-부타디엔의 제조방법
CN103102238B (zh) * 2011-11-14 2014-12-17 中国石油化工股份有限公司 一种丁烯氧化脱氢生产丁二烯的方法及所用催化剂
CN103212399B (zh) * 2013-04-19 2015-07-01 宁夏大学 一种用于合成气制低碳烯烃锆基催化剂的制备方法及应用
CN104549301B (zh) * 2013-10-13 2017-07-25 西北大学 一种具有核壳结构Fe2O3@MFe2O4的合成方法
CN105107523A (zh) * 2015-09-02 2015-12-02 中国科学院上海高等研究院 一种用于合成气直接转化为低碳烯烃的钴基催化剂及其制备方法和用途
KR102001144B1 (ko) * 2016-03-04 2019-07-17 주식회사 엘지화학 페라이트계 촉매 복합체, 제조방법 및 부타디엔의 제조방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100847206B1 (ko) * 2007-05-10 2008-07-17 에스케이에너지 주식회사 아연 페라이트 촉매, 이의 제조방법 및 이를 이용한1,3-부타디엔의 제조방법
US8513479B2 (en) 2007-05-10 2013-08-20 Sk Global Chemical Co., Ltd Zinc ferrite catalysts, method of preparing thereof and method of preparing 1,3-butadiene using thereof
KR20120009687A (ko) * 2010-07-20 2012-02-02 에스케이이노베이션 주식회사 혼성 망간 페라이트가 코팅된 촉매, 이의 제조방법 및 이를 이용한 1,3-부타디엔의 제조방법

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
GIBSON, MICHAE L A. ET AL.: "Oxidative Dehydrogenation of Butenes over Magnesium Ferrite Catalyst Deactivation Studies", JOURNAL OF CATALYSIS, vol. 41, no. 3, 1976, pages 431 - 439, XP055390134 *
See also references of EP3292910A4
TOLEDO, J. A. ET AL.: "A Magnetically Ordered Non-stoichiometric Zinc Ferrite for the Oxidative Dehydrogenation Reactions", MATERIALS RESEARCH SOCIETY SYMPOSIUM PROCEEDINGS, vol. 676, no. 1-6, 2001, pages 1 - 6, XP055421219 *
TOLEDO, J. A. ET AL.: "Oxidative Dehydrogenation of 1-butene over Zn-Al Ferrites", JOURNAL OF MOLECULAR CATALYSIS A: CHEMICAL, vol. 125, no. 1, 1997, pages 53 - 62, XP055069766 *

Also Published As

Publication number Publication date
EP3292910A4 (en) 2019-04-03
CN107614106B (zh) 2020-10-30
US20190184388A1 (en) 2019-06-20
KR20170111236A (ko) 2017-10-12
CN107614106A (zh) 2018-01-19
US10486150B2 (en) 2019-11-26
KR101933480B1 (ko) 2018-12-31
EP3292910A1 (en) 2018-03-14
EP3292910B1 (en) 2020-04-01

Similar Documents

Publication Publication Date Title
WO2017183829A2 (ko) 세공체 표면 코팅 촉매 및 세공체의 표면처리 방법
WO2017150830A1 (ko) 페라이트계 촉매 복합체, 제조방법 및 부타디엔의 제조방법
WO2014182018A1 (ko) 메조포러스 복합 산화물 촉매, 그 제조방법 및 이를 이용한 1,3-부타디엔 합성방법
WO2011132957A2 (ko) 나노미터 크기의 구리계 촉매, 그 제조 방법 및 이를 이용한 카르복시산의 직접수소화를 통한 알코올 제조방법
WO2017164492A1 (ko) 산화적 탈수소화 반응용 촉매 및 제조방법
KR840002064B1 (ko) 피롤리돈의 제조방법
JP2006096736A (ja) 脂肪酸アミドの製造方法
WO2016195162A1 (ko) 페라이트 금속 산화물 촉매의 제조방법
WO2013105784A1 (ko) 카본나노튜브 및 그 제조방법
WO2018139776A1 (ko) 산화적 탈수소화 반응용 페라이트 촉매, 이의 제조방법 및 이를 이용한 부타디엔의 제조방법
WO2019004777A1 (ko) 하이드록시메틸푸르푸랄로부터 2,5-퓨란디메틸카르복실레이트의 제조방법
WO2016006883A1 (ko) 고성능 폴리옥소메탈레이트 촉매 및 이의 제조 방법
WO2020009493A1 (ko) 1,2-펜탄디올 제조용 촉매 및 이를 이용한 1,2-펜탄디올의 제조방법
WO2019107884A1 (ko) 산화적 탈수소화 반응용 촉매 시스템, 이를 포함하는 부타디엔 제조용 반응기 및 1,3-부타디엔의 제조방법
US5569760A (en) Process for preparing nevirapine
WO2018080025A1 (ko) 촉매의 재현성이 우수한 부타디엔의 제조방법
AU2010309891A1 (en) Process for preparing a phenylalanine derivative
WO2014119870A1 (ko) CoO상 입자를 포함하는 피셔-트롭시 합성용 촉매 및 이를 이용하여 천연가스로부터 액체 탄화수소를 제조하는 방법
WO2018088736A1 (ko) 합성 가스로부터 디메틸에테르를 제조하기 위한 촉매 및 이의 제조방법
WO2017164542A1 (ko) 산화적 탈수소화 반응용 촉매 및 이의 제조방법
WO2017160071A1 (ko) 산화적 탈수소화 반응용 촉매 제조방법
WO2018190642A2 (ko) 산화적 탈수소화 반응용 촉매 시스템, 이를 포함하는 산화적 탈수소화용 반응기 및 산화적 탈수소화 방법
KR101973614B1 (ko) 산화적 탈수소화 반응용 촉매 제조방법
WO2021137532A1 (ko) 산화적 탈수소화 반응용 촉매의 제조방법, 산화적 탈수소화 반응용 촉매 및 이를 이용한 부타디엔의 제조방법
WO2016171516A1 (ko) 촉매 활성화를 위해 별도의 환원 전처리를 수행하지 않는 피셔-트롭쉬 합성반응을 통해 합성가스로부터 액체 또는 고체 탄화수소를 제조하는 방법

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE