WO2017163916A1 - 排ガス浄化用触媒及びその製造方法並びにそれを用いた排ガス浄化装置 - Google Patents

排ガス浄化用触媒及びその製造方法並びにそれを用いた排ガス浄化装置 Download PDF

Info

Publication number
WO2017163916A1
WO2017163916A1 PCT/JP2017/009583 JP2017009583W WO2017163916A1 WO 2017163916 A1 WO2017163916 A1 WO 2017163916A1 JP 2017009583 W JP2017009583 W JP 2017009583W WO 2017163916 A1 WO2017163916 A1 WO 2017163916A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
carrier particles
ceria
particles
rare earth
Prior art date
Application number
PCT/JP2017/009583
Other languages
English (en)
French (fr)
Inventor
雄 桜田
崇弘 原田
諒太 中島
Original Assignee
株式会社キャタラー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社キャタラー filed Critical 株式会社キャタラー
Priority to CN201780019862.0A priority Critical patent/CN108883397B/zh
Priority to JP2018507211A priority patent/JP6567168B2/ja
Priority to EP17769960.0A priority patent/EP3434362A4/en
Priority to US16/086,869 priority patent/US11179701B2/en
Publication of WO2017163916A1 publication Critical patent/WO2017163916A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/63Platinum group metals with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9413Processes characterised by a specific catalyst
    • B01D53/9418Processes characterised by a specific catalyst for removing nitrogen oxides by selective catalytic reduction [SCR] using a reducing agent in a lean exhaust gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/396Distribution of the active metal ingredient
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1021Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1023Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1025Rhodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • B01D2255/2061Yttrium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • B01D2255/2063Lanthanum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • B01D2255/2065Cerium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • B01D2255/2068Neodymium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20715Zirconium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/903Multi-zoned catalysts
    • B01D2255/9032Two zones
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters

Definitions

  • the present invention relates to a novel exhaust gas purification catalyst, a production method thereof, and an exhaust gas purification apparatus using the same.
  • the exhaust gas from an internal combustion engine such as an automobile engine contains nitrogen oxides (NO x ), carbon monoxide (CO), hydrocarbons (HC) and the like. Therefore, to oxidize CO and HC, and after purification by exhaust gas purifying catalyst for reducing NO x, which emits these exhaust gases to the atmosphere.
  • a typical exhaust gas purification catalyst is a three-way catalyst in which a noble metal such as platinum (Pt), rhodium (Rh), palladium (Pd) is supported on a porous metal oxide carrier such as ⁇ -alumina. Are known.
  • the metal oxide support can be made of various materials, but conventionally, alumina (Al 2 O 3 ) has been generally used to obtain a high surface area.
  • alumina Al 2 O 3
  • various other materials such as ceria (CeO 2 ), zirconia (ZrO 2 ), titania (TiO 2 ), etc. have been combined with alumina in order to promote the purification of exhaust gas by utilizing the chemical properties of the carrier. It has also been proposed to use it in combination or not. It has also been proposed to use ceria zirconia solid solution as such a carrier.
  • Patent Document 1 discloses that good exhaust gas purification performance can be obtained by loading rhodium on rare earth-doped zirconia support particles.
  • Patent Documents 3 and 4 disclose carrier particles in which a rare earth-enriched region is provided on the surface of ceria zirconia solid solution particles.
  • the inventions described in Patent Documents 3 and 4 focus on the affinity between rare earth oxides and rhodium, suppress rhodium migration and sintering on the particle surface and prevent rhodium oxidation in the rare earth-enriched region. As a result, the catalytic activity of rhodium is maintained at a high level.
  • Patent Document 5 prevents the oxidation of rhodium by maintaining the ceria content in the ceria zirconia solid solution carrying rhodium, and maintains the catalytic activity of rhodium at a high level. That is, in a reducing atmosphere (so-called rich atmosphere), ceria which is an oxygen storage / release material (OSC material) releases oxygen, but the reduction of rhodium is difficult to proceed due to the influence of oxygen released by ceria. In Patent Document 5, by reducing the content of ceria, the release of oxygen in the reducing atmosphere is reduced, and the reduction of rhodium is promoted.
  • a reducing atmosphere so-called rich atmosphere
  • OSC material oxygen storage / release material
  • Patent Document 6 an exhaust gas purification catalyst device in which a noble metal is supported on a base material composed of a metal oxide support has been proposed.
  • JP 2004-275919 A JP-T-2002-518171 JP 2008-018323 A JP 2008-104928 A Patent No. 5322526 Japanese Patent Laying-Open No. 2015-85241
  • An object of the present invention is to provide a novel exhaust gas purifying catalyst capable of maintaining a high catalytic activity of rhodium, a method for producing the same, and an exhaust gas purifying apparatus using the same.
  • Embodiments of the present invention can include the following aspects: ⁇ Aspect 1 >> An exhaust gas purifying catalyst having first carrier particles, second carrier particles, and noble metal catalyst particles carried on the first and second carrier particles,
  • the first carrier particles contain ceria, zirconia, and a rare earth oxide other than ceria
  • the second carrier particles contain a rare earth oxide other than ceria, and may contain ceria and zirconia,
  • the total content of ceria and zirconia in the first carrier particles is higher than the total content of ceria and zirconia in the second carrier particles;
  • the rare earth oxide content of the second carrier particles is higher than the rare earth oxide content of the first carrier particles;
  • ⁇ Aspect 2 The content of the rare earth oxide in the first carrier particles is less than 20% by weight, and the content of the rare earth oxide in the second carrier particles is 20% by weight or more.
  • ⁇ Aspect 3 When the first carrier particle and the second carrier particle are observed with a scanning transmission electron microscope, the ratio of the projected area of the second carrier particle to the projected area of the first carrier particle (first The catalyst for exhaust gas purification according to aspect 2, wherein the area of the carrier particles of 2 / the area of the first carrier particles is in the range of 0.050 to 0.100.
  • the first carrier particles and the second carrier particles are ceria zirconia solid solutions containing a rare earth oxide other than ceria, and the rare earth oxides of the first carrier particles and the second carrier particles
  • the rare earth oxide is an oxide of a rare earth element selected from the group consisting of yttrium, lanthanum, praseodymium, neodymium and samarium,
  • the exhaust gas purifying catalyst according to any one of embodiments 1 to 3.
  • the first carrier particles contain 50 to 95% by weight of zirconia, 3.0% by weight or more of ceria, and 1.0 or more and less than 20% by weight of a rare earth oxide other than ceria;
  • the carrier particles contain 0.0 to 40 wt% zirconia, 0.0 to 40 wt% ceria, and 20 to 60 wt% rare earth oxide other than ceria;
  • the exhaust gas purifying catalyst according to any one of embodiments 1 to 4.
  • the first carrier particles contain 50 to 75% by weight of zirconia, 20 to 40% by weight of ceria, and 1.0 to less than 20% by weight of a rare earth oxide other than ceria, and the second carrier
  • the exhaust gas purifying catalyst according to Aspect 5 wherein the particles contain 0.0 to 40% by weight of zirconia, 25 to 40% by weight of ceria, and 20 to 60% by weight of rare earth oxides other than ceria.
  • ⁇ Aspect 7 Any of the aspects 1 to 6, wherein the average particle diameters of the first carrier particles and the second carrier particles measured by a scanning transmission electron microscope are 0.50 to 100 ⁇ m and 0.50 to 5 ⁇ m, respectively.
  • ⁇ Aspect 8 The exhaust gas purifying catalyst according to any one of embodiments 1 to 7, wherein the noble metal catalyst particles further include platinum particles and / or palladium particles.
  • ⁇ Aspect 9 When elemental mapping is performed by energy dispersive X-ray analysis using a scanning transmission electron microscope, the position of the rhodium particles and the position of the second carrier particles coincide with each other with a correlation coefficient of 65.0% or more.
  • the exhaust gas purifying catalyst according to any one of embodiments 1 to 8, wherein the correlation coefficient is calculated by the following formula: (Where x i is the characteristic X-ray intensity of the noble metal element at position i, x av is the average value of the characteristic X-ray intensity of the noble metal element, and y i is the characteristic X-ray intensity of the rare earth metal element at position i. Yav is the average value of the characteristic X-ray intensity of the rare earth metal element).
  • ⁇ Aspect 10 An exhaust gas purification apparatus comprising: a catalyst layer including the exhaust gas purification catalyst according to any one of aspects 1 to 9; and a base material.
  • ⁇ Aspect 11 The exhaust gas purification apparatus according to aspect 10, wherein the catalyst layer includes an upper layer and a lower layer constituting at least part of the outermost surface, and the upper layer includes the exhaust gas purification catalyst.
  • ⁇ Aspect 12 An exhaust gas purification apparatus comprising a base material comprising the exhaust gas purification catalyst according to any one of aspects 1 to 9.
  • ⁇ Aspect 13 A method for producing an exhaust gas purifying catalyst comprising: An aqueous dispersion of carrier particles containing rare earth oxides other than ceria, zirconia, and ceria, an aqueous solution containing a salt of a catalyst noble metal containing rhodium, and an organic carboxylic acid are mixed, and the catalyst particles are mixed with the carrier particles.
  • the carrier particles are ceria zirconia solid solution;
  • the rare earth oxide of the carrier particles is an oxide of a rare earth element selected from the group consisting of yttrium, lanthanum, praseodymium, neodymium and samarium; and
  • the method according to embodiment 13, wherein the salt of the catalytic noble metal is nitrate or sulfate.
  • ⁇ Aspect 15 The method according to embodiment 13 or 14, wherein the organic carboxylic acid is an organic carboxylic acid having a molecular weight of 300 or less.
  • ⁇ Aspect 16 Any one of aspects 13 to 15 wherein the substance amount ratio [mol / mol-Ln] of the organic carboxylic acid to the total quantity of rare earth elements contained in the carrier particles is 0.5 or more and 3.5 or less. The method according to claim 1.
  • FIG. 1 (a) is a conceptual diagram of a conventional exhaust gas purifying catalyst
  • FIG. 1 (b) is a conceptual diagram of an exhaust gas purifying catalyst of the present invention
  • FIG. 2 is a conceptual diagram of the layer configuration of the exhaust gas purifying apparatus according to one embodiment of the present invention.
  • FIG. 3 shows element mapping by energy dispersive X-ray analysis using a scanning transmission electron microscope performed on the exhaust gas purifying catalysts of Example 3 and Comparative Example 3.
  • the exhaust gas-purifying catalyst of the present invention has first carrier particles, second carrier particles, and noble metal catalyst particles supported on the first and second carrier particles.
  • the first carrier particles may contain ceria, zirconia, and a rare earth oxide other than ceria
  • the second carrier particles may contain a rare earth oxide other than ceria, and may contain ceria and zirconia.
  • the total content of ceria and zirconia in the first support particles is higher than the total content of ceria and zirconia in the second support particles, and the content of rare earth oxides other than ceria in the second support particles. Is higher than the content of rare earth oxides other than ceria in the first carrier particles.
  • the ceria content of the first carrier particles is 45% by weight or less
  • the noble metal catalyst particles include rhodium particles.
  • catalyst means carrier particles carrying noble metal catalyst particles unless otherwise specified, and these may be calcined or left unfired. Also good.
  • a carrier having a higher ceria content than that of the prior art when a carrier containing ceria and zirconia is used, a carrier having a higher ceria content than that of the prior art can be used. Since a carrier with a high ceria content has a high oxygen storage / release performance, especially when a carrier with a high ceria content is used in the catalyst of the present invention, NOx reduction during restart and a high SV (high space velocity) are achieved. ) And NOx reduction at the same time. In other words, there is a trade-off between the significant reduction in the NOx emissions after restart and after the fuel cut when the air-fuel ratio shifts from lean to rich and the NOx emissions during high SV with a large intake air amount. It is difficult because of the relationship. However, both of these reductions could be achieved in the present invention by using a high ceria content carrier.
  • FIG. 1 (a) is a conceptual diagram of a conventional exhaust gas purification catalyst
  • FIG. 1 (b) is a conceptual diagram of an exhaust gas purification catalyst of the present invention
  • the exhaust gas purification catalyst (10) has metal oxide support particles (1) and rhodium particles (3), and the metal oxide particles (1) include a rare earth enriched region (1a). Is present.
  • the exhaust gas purification catalyst (10) includes a first carrier particle (1) containing ceria and zirconia, a second carrier particle (2) having a high content of rare earth oxide, and a rhodium particle (3). Most of the rhodium particles (3) are supported on the second carrier particles (2).
  • carrier particles In the exhaust gas purifying catalyst of the present invention, at least first carrier particles and second carrier particles are used as a carrier for rhodium particles. Third carrier particles other than the first carrier particles and the second carrier particles can also be used.
  • the first carrier particle is defined as a particle having a rare earth oxide content other than ceria of less than 20% by weight
  • the second carrier particle has a rare earth oxide content other than ceria of 20% by weight. %
  • the ratio of the area to the projected area of the first carrier particles is 0.005 or more, 0.01 or more, 0.03 or more, 0.05 It may be 0.06 or more, or 0.30 or less, 0.25 or less, 0.20 or less, 0.15 or less, 0.10 or less, or 0.08 or less.
  • the rhodium particles can be intensively supported on the second carrier particles, and sintering of the rhodium particles can be substantially prevented, and the NOx purification temperature tends to be prevented from rising. Even when the definitions of the first carrier particles and the second carrier particles are changed, the projected area ratio can be in the same range.
  • the first carrier particles used in the exhaust gas purifying catalyst of the present invention contain ceria, zirconia, and a rare earth oxide other than ceria.
  • the first carrier particle is defined as a particle having a rare earth oxide content other than ceria of less than 20% by weight
  • the second carrier particle has a rare earth oxide content other than ceria of 20% by weight.
  • the average particle size of the first carrier particles is 0.50 ⁇ m or more, 1.0 ⁇ m or more, 3.0 ⁇ m or more, 5.0 ⁇ m or more, 8.0 ⁇ m or more, or 10.0 ⁇ m. It may be 100 ⁇ m or less, 80 ⁇ m or less, 50 ⁇ m or less, 30 ⁇ m or less, or 20 ⁇ m or less. Even when the definitions of the first carrier particles and the second carrier particles are changed, the average particle diameter of the first carrier particles can be in the same range.
  • the measurement of the average particle diameter is performed by a scanning transmission electron microscope Tecnai Osiras manufactured by FP Corporation and an energy dispersive X-ray analyzer attached to the apparatus. That is, the first carrier particles are found by energy dispersive X-ray analysis from particles having an equivalent diameter of 0.10 ⁇ m or more on a screen projected with a measurement magnification of 20,000 times with this apparatus. Then, the equivalent diameter of the particles is calculated from the projected area of the particles. This operation is performed on 20 arbitrary screens, and all average values thereof are recognized as the average particle diameter of the first carrier particles.
  • the equivalent diameter of the particles refers to the diameter of a perfect circle having an outer peripheral length equal to the outer peripheral length of the particles.
  • the first carrier particles contain ceria and zirconia, and the content thereof is 50% by weight or more, 55% by weight or more, 60% by weight or more, 65% by weight or more, based on the weight of the first carrier particles. Alternatively, it may be 70% by weight or more, or 95% by weight or less, 90% by weight or less, 85% by weight or less, or 80% by weight or less.
  • the total content of ceria and rare earth oxides other than ceria in the first support particles is 5.0% by weight or more, 10% by weight or more, 15% by weight or more, 20% by weight with respect to the weight of the first support particles. % By weight or more, or 25% by weight or more, 50% by weight or less, 45% by weight or less, 40% by weight or less, or 35% by weight or less.
  • the content of ceria in the first carrier particles is 5.0% by weight or more, 10% by weight or more, 15% by weight or more, 20% by weight or more, more than 20% by weight, 25% by weight or more, or 30% by weight or more. It may be 50% by weight or less, less than 50% by weight, 45% by weight or less, 40% by weight or less, or 35% by weight or less.
  • the content of rare earth oxides other than ceria may be 1.0% by weight or more, 3.0% by weight or more, 5.0% by weight or more, or 7.0% by weight or more, and 30% by weight. Hereinafter, it may be 25% by weight or less, 20% by weight or less, less than 20% by weight, 15% by weight or less, or 10% by weight or less.
  • the first carrier particles preferably contain a ceria zirconia solid solution.
  • the content of zirconia in the first carrier particles is 40% by weight or more, 45% by weight or more, 50% by weight or more, 55% by weight or more, 60% by weight or more, 65% by weight or more, or 70% by weight or more. It may be 95% by weight or less, 90% by weight or less, 85% by weight or less, or 80% by weight or less.
  • the content of ceria in the first carrier particles is 3.0% by weight or more, 5.0% by weight or more, 10% by weight or more, 15% by weight or more, 20% by weight or more, or 25% by weight. It may be 50% by weight or less, 45% by weight or less, 40% by weight or less, or 35% by weight or less.
  • these content rates can be obtained by calculation from elemental analysis.
  • the rare earth oxide of the first carrier particle an element that has a young atomic number among rare earth elements and has ions in the 4f electron orbit or that has many vacancies, such as yttrium (Y), lanthanum (La), etc.
  • oxides of rare earth elements selected from the group consisting of praseodymium (Pr), neodymium (Nd) and samarium (Sm).
  • the first carrier particles may contain components other than those described above, and may contain, for example, alumina, silica, titania, barium oxide, strontium oxide, and the like.
  • the first carrier particles can be produced by a known method described in the above patent document or the like.
  • the second carrier particles used in the exhaust gas purifying catalyst of the present invention contain a rare earth oxide other than ceria, and may contain ceria and zirconia.
  • the content of ceria and zirconia in the second carrier particles is lower than the content of ceria and zirconia in the first carrier particles, and the content of rare earth oxides other than ceria in the second carrier particles is The content of rare earth oxides other than ceria in the first carrier particles is higher.
  • rhodium particles can be intensively supported on the second carrier particles.
  • the first carrier particle is defined as a particle having a rare earth oxide content other than ceria of less than 20% by weight
  • the second carrier particle has a rare earth oxide content other than ceria of 20% by weight.
  • the average particle size of the second carrier particles may be 0.50 ⁇ m or more, 1.0 ⁇ m or more, 2.0 ⁇ m or more, or 3.0 ⁇ m or more, 50 ⁇ m or less, It may be 20 ⁇ m or less, 15 ⁇ m or less, 10 ⁇ m or less, or 5.0 ⁇ m or less.
  • the rhodium particles can be intensively supported on the second carrier particles, and sintering of the rhodium particles can be substantially prevented, and the NOx purification temperature tends to be prevented from rising.
  • the average particle diameter of the second carrier particles can be in the same range. This average particle diameter is measured by the same method as the average particle diameter of the first carrier particles.
  • the second carrier particles contain a rare earth oxide other than ceria, and the content thereof is 10% by weight, 15% by weight, 20% by weight, 25% by weight, or 30% by weight or more. Alternatively, it may be 100% or less, 80% or less, 60% or less, 55% or less, 50% or less, 45% or less, or 40% or less.
  • the content is 1.0% by weight or more, 2.0% by weight or more, 3.0% by weight or more with respect to the weight of the second carrier particles. 5.0 wt% or more, 10 wt% or more, or 15 wt% or more, or 40 wt% or less, 35 wt% or less, 30 wt% or less, or 25 wt% or less.
  • the total content of ceria and rare earth oxides other than ceria is 60% by weight or more, 65% by weight or more, 70% by weight or more, 75% by weight or more, or 80% by weight with respect to the weight of the second support particles. It may be 99% by weight or less, 95% by weight or less, 93% by weight or less, or 90% by weight or less.
  • the content thereof may be 20% by weight or more, 25% by weight or more, 30% by weight or more, 35% by weight or more, or 40% by weight or more, and 70% by weight. % Or less, 65% or less, 60% or less, 55% or less, 50% or less, 45% or less, or 40% or less.
  • the same kind of rare earth oxide contained in the first carrier particles can be used.
  • the second carrier particles may contain components other than those described above.
  • the second carrier particles may contain alumina, silica, titania, barium oxide, strontium oxide, and the like.
  • the second carrier particles can be produced by a known method described in the above patent document or the like. However, the second carrier particles are preferably obtained by introducing the carrier particles into an organic carboxylic acid solution and eluting from the carrier particles, as will be described in detail below.
  • rhodium particles are used as the noble metal catalyst particles.
  • the exhaust gas purifying catalyst of the present invention may contain noble metal catalyst particles other than rhodium particles, and examples of such particles include white metal particles, more preferably platinum particles and / or Palladium particles can be mentioned.
  • the rhodium particles are preferably fine particles having a sufficiently small particle diameter from the viewpoint of increasing the contact area with the exhaust gas.
  • the average particle diameter of the rhodium particles may be about 1 to 20 nm as an average value of equivalent diameters obtained by TEM observation, or may be 10 nm or less, 7 nm or less, or 5 nm or less.
  • the rhodium particles are 0.1 parts by mass or more, 0.3 parts by mass or more, 0.5 parts by mass or more, or 1. total 100 parts by mass of the first carrier particles and the second carrier particles. It may be supported at 0 part by mass or more, and may be supported at 10 parts by mass or less, 5 parts by mass or less, 3.0 parts by mass or less, or 2.0 parts by mass or less.
  • the rhodium particle content in all noble metal catalyst particles was 10% or more, 20% or more, 30% or more, 50% or more, 70% or more, 80% or more, or 90% or more. It may be 100% or less, 90% or less, 80% or less, 60% or less, 50% or less, 30% or less, or 20% or less.
  • the rhodium particles used in the exhaust gas purifying catalyst of the present invention are mainly supported on the second carrier particles. That is, when element mapping is performed by energy dispersive X-ray analysis using the scanning transmission electron microscope, the correlation between the position of the rhodium particles and the position of the second carrier particles is 65.0% or more. , 70.0% or more, or 75.0% or more is preferable.
  • the correlation coefficient is calculated as follows: (Where x i is the characteristic X-ray intensity of the noble metal element at position i, x av is the average value of the characteristic X-ray intensity of the noble metal element, and y i is the characteristic X-ray intensity of the rare earth metal element at position i. Yav is the average value of the characteristic X-ray intensity of the rare earth metal element).
  • Such a measurement was carried out by scanning transmission electron microscope Tecnai Osiras manufactured by FP Corporation and energy dispersive X-ray analysis attached to the apparatus. Specifically, the center of gravity analysis of the rhodium particle i is performed in a plurality of 20,000 times images measured by the scanning transmission electron microscope, and the rhodium spectral intensity of the rhodium particle i at the position of the center of gravity is measured. The value and the spectral intensity value of a rare earth element other than cerium at the center of gravity are measured, and the above calculation is performed.
  • their strengths are added.
  • the “spectrum intensity average value” means an average value of all characteristic X-ray intensities of rare earth elements other than rhodium contained in rhodium particles visible in the same visual field and different visual fields or cerium contained in the second support. Say. When performing the above calculation, it is preferable to use 300 or more of the second carrier and rhodium particles.
  • the above correlation coefficient usually does not substantially change before and after the calcination of the catalyst, and preferably does not change.
  • an exhaust gas purification apparatus includes a catalyst layer including the above-described exhaust gas purification catalyst and a substrate having the catalyst layer.
  • the exhaust gas purification apparatus includes a base material including an exhaust gas purification catalyst.
  • the exhaust gas purifying catalyst may be an exhaust gas purifying catalyst obtained by the following method for producing an exhaust gas purifying catalyst of the present invention.
  • the catalyst layer may be a plurality of layers. Moreover, when a catalyst layer is a several layer, the above-mentioned exhaust gas purification catalyst should just contain in the at least 1 layer. However, it is preferable that the exhaust gas purification catalyst contains the above-described exhaust gas purification catalyst in the layer serving as the surface layer of the exhaust gas purification device. When one of the catalyst layers does not contain the above-described exhaust gas purification catalyst, the catalyst layer includes a catalyst including the elements described as the constituent elements of the above exhaust gas purification catalyst, for example, the above exhaust gas purification catalyst. A catalyst that does not contain the second carrier particles may be used.
  • the catalyst layer When the catalyst layer is composed of a plurality of layers, the catalyst layer may have an upper layer constituting at least a part of the outermost surface and a lower layer on the substrate.
  • the catalyst layer may further have an intermediate layer between the upper layer and the lower layer. It is a layer located between the upper layer of the exhaust gas purifying apparatus of the present invention and the substrate, and may be formed from a plurality of layers.
  • the lower layer may contain the above exhaust gas purification catalyst, and contains a catalyst containing the elements described as the constituent elements of the exhaust gas purification catalyst, for example, a catalyst that does not contain the second carrier particles of the exhaust gas purification catalyst. You may do it.
  • the catalyst layer may be formed from a mixture of the exhaust gas purifying catalyst and other components. Examples of other components used here include alumina, CZ, zeolite, and the like, and mixtures thereof. A known exhaust gas-purifying catalyst having a noble metal supported thereon may be used as another component.
  • the catalyst layer may be formed on a base material including catalyst carrier particles on the wall surface, for example, a base material described in JP-A-2015-85241.
  • Examples of the substrate include a straight flow type or a wall flow type honeycomb type substrate generally used in an exhaust gas purification apparatus.
  • the material of the base material is not particularly limited, and examples thereof include base materials such as ceramic, silicon carbide, and metal.
  • FIG. 2 is a conceptual diagram of one layer configuration of the exhaust gas purifying apparatus of the present invention.
  • This exhaust gas purifying apparatus (100) is composed of an upper layer (20) and a lower layer (30) exposed on the surface as a base material (40). ) Have on.
  • Production of the other components, mixing of the other components with the exhaust gas purifying catalyst of the present invention, and formation of the catalyst layer on the substrate are each performed by a known method or appropriate by those skilled in the art. It can be carried out by a modified method.
  • the exhaust gas-purifying catalyst is contained in the base material
  • a base material containing catalyst carrier particles on the wall surface for example, a base material described in JP-A-2015-85241 can be used.
  • the exhaust gas purifying apparatus may be obtained by mixing the exhaust gas purifying catalyst with other inorganic particles used when manufacturing the base material.
  • the exhaust gas purification apparatus of the present invention manufactured as described above has high exhaust gas purification activity of noble metals and can maintain it in a high state, and thus is suitable as an exhaust gas purification catalyst for automobiles, for example. Can be used.
  • the method of the present invention for producing an exhaust gas purifying catalyst comprises mixing an aqueous dispersion of carrier particles containing ceria, zirconia and a rare earth oxide other than ceria, an aqueous solution containing a rhodium salt, and an organic carboxylic acid.
  • the rare earth oxide is eluted from the carrier particles by the organic carboxylic acid, the second carrier particles enriched with the rare earth oxide, and the first carrier particles enriched with ceria and zirconia, particularly zirconia. And is obtained.
  • rhodium is mainly supported on the second support particles enriched with rare earth oxides, and thus can prevent sintering and oxidation of the noble metal, which is a catalyst.
  • a suitable exhaust gas purifying catalyst that can be maintained at a high temperature can be obtained.
  • the carrier particles as the starting material contains a ceria zirconia solid solution
  • such an embodiment is particularly preferable because the rare earth oxide that is not solid solution is easily eluted by the organic carboxylic acid.
  • the rhodium particles of the exhaust gas purification catalyst obtained by this method have a smaller diameter than the conventional method in which no organic carboxylic acid is added. Without being bound by theory, this is because the organic carboxylic acid rare earth is formed after the addition of the organic carboxylic acid, rhodium is selectively adsorbed on the organic carboxylic acid rare earth, and the interaction between the rare earth and rhodium after firing, This is probably because rhodium is immobilized.
  • a small rhodium particle size is very advantageous because the surface area of the noble metal catalyst particles per unit weight increases and the reaction point of the catalyst increases.
  • the exhaust gas purification catalyst of the present invention can be produced in particular. Accordingly, the particle size of the carrier particles used in the method of the present invention, the addition amount of the rare earth oxide other than zirconia, ceria and ceria, the kind and addition amount of the rare earth oxide other than ceria, the kind and addition amount of the noble metal Etc. can be selected with reference to the description of the exhaust gas purifying catalyst of the present invention.
  • the amount of reaction (reaction equivalent point) that reacts without excess or deficiency with respect to the amount of the rare-earth component not dissolved in the carrier particles.
  • An organic carboxylic acid is dissolved in an aqueous solution.
  • a rhodium salt is mixed with the aqueous solution of the organic carboxylic acid, and the aqueous solution containing the organic carboxylic acid and rhodium is mixed with the dispersion in which the carrier particles are dispersed.
  • the amount of the organic carboxylic acid used in the method of the present invention is the ratio of the amount of the organic carboxylic acid to be added [mol / mol-Ln to the total amount of the rare earth elements contained in the carrier particles [mol-Ln]. ].
  • a preferable substance amount ratio [mol / mol-Ln] is 0.5 or more, 1.0 or more, or 1.5 or more, and may be 3.5 or less, 3.0 or less, or 2.5 or less. Good. Within such a range, the ceria and zirconia of the carrier particles are difficult to dissolve, and the rare earth oxide is easily dissolved. Therefore, the second carrier particles are easily generated.
  • the carrier particles may have the same composition as the first carrier particles used in the exhaust gas purifying catalyst of the present invention.
  • a noble metal salt can be added for use.
  • Such salts can include strong acid salts, particularly nitrates or sulfates.
  • platinum and / or palladium can be mentioned as a noble metal which can be used additionally.
  • organic carboxylic acid examples include organic carboxylic acids having a molecular weight of 300 or less.
  • organic carboxylic acids having a molecular weight of 300 or less.
  • C 1 to C 20 saturated fatty acid, unsaturated fatty acid, hydroxy acid, aromatic carboxylic acid, dicarboxylic acid, tricarboxylic acid, oxo A carboxylic acid etc. can be mentioned.
  • Specific examples include formic acid, acetic acid, propionic acid, butyric acid, tartaric acid, oxalic acid, malonic acid, and succinic acid.
  • the addition amount of the organic carboxylic acid is 0.50 times or more of the molar amount (reaction equivalent point) that reacts without excess or deficiency with respect to the molar amount of the rare earth component contained in the carrier particles, preferably the rare earth component that is not solid solution, It may be 1.0 times or more, or 2.0 times or more, and may be 5.0 times or less, 4.5 times or less, 4.0 times or less, or 3.5 times or less.
  • the aqueous dispersion containing the catalyst is dried and fired.
  • the drying temperature may be, for example, 150 ° C. or higher, 200 ° C. or higher, 250 ° C. or higher, and may be 400 ° C. or lower, 350 ° C. or lower, or 300 ° C. or lower.
  • the drying time may be 16 hours or more, 12 hours or more, or 8 hours or more, and may be 24 hours or less or 20 hours or less.
  • the firing temperature may be, for example, 500 ° C. or higher, 550 ° C. or higher, or 600 ° C. or higher, or 1000 ° C. or lower, 800 ° C. or lower, or 700 ° C. or lower.
  • the firing time may be 30 minutes or more, 1 hour or more, 2 hours or more, or 4 hours or more, or 12 hours or less, 10 hours or less, or 8 hours or less.
  • the exhaust gas-purifying catalyst thus obtained can be further pulverized so that the particle size of the carrier particles can be within the range of the particle size of the first carrier particles of the exhaust gas-purifying catalyst of the present invention.
  • Examples 2 to 4 and Comparative Examples 1 to 3 Exhaust gas purification catalysts of Examples 2 to 4 were obtained in the same manner as Example 1 except that other organic carboxylic acids were used instead of acetic acid. Further, exhaust gas purification catalysts of Comparative Examples 1 and 2 were obtained in the same manner as in Example 1 except that another acid was used instead of the organic carboxylic acid. Further, an exhaust gas purifying catalyst of Comparative Example 3 was obtained in the same manner as in Example 1 except that acetic acid was not used. Details of the composition of these examples are shown in Table 1.
  • Examples 5 to 6 and Comparative Examples 4 to 5 The types of the carrier particles and the noble metal salt were changed from Example 2 to obtain exhaust gas purifying catalysts of Examples 5 to 6. Further, exhaust gas purification catalysts of Comparative Examples 4 and 5 were obtained in the same manner as in Examples 5 and 6 except that no organic carboxylic acid was used. Details of the composition of these examples are shown in Table 2.
  • Example 7 From Example 4, the composition of the carrier particles was changed, and the addition amount of the organic carboxylic acid was changed to obtain exhaust gas purifying catalysts of Examples 7 to 15. Details of the composition of these examples are shown in Table 3.
  • Examples 16 to 19 and Comparative Examples 6 to 9 The exhaust gas purifying catalysts of Examples 16 to 19 and Comparative Examples 6 to 9 were obtained by changing the kind of carrier particles used in Example 1. Details of the composition of these examples are shown in Table 4.
  • Example gas purification catalyst after endurance test The exhaust gas-purifying catalyst obtained as described above was placed in a flow-type durability test apparatus. Then, the internal temperature of the test apparatus is set to 1000 ° C., and a lean gas in which 1% of oxygen is added to nitrogen gas and a rich gas in which 2% of carbon monoxide is added to nitrogen gas are alternately cycled at a flow rate of 500 mL / min every 2 minutes. For 10 hours. The subsequent exhaust gas purification catalyst was evaluated as an exhaust gas purification catalyst after the durability test.
  • ⁇ Production of exhaust gas purification device The exhaust gas purification catalyst and alumina powder obtained as described above were mixed at a mass mixing ratio of 1: 1 and dispersed in pure water so that the solid content was 30% by weight to obtain a slurry.
  • the slurry was coated on a monolith honeycomb substrate (volume 0.35 L) so that the amount of noble metal was 0.25 g / L.
  • the coated monolith honeycomb substrate was dried at 250 ° C. for 10 minutes and then fired at 500 ° C. for 20 minutes to obtain an exhaust gas purification device.
  • first, 50% by weight of zirconia is analyzed by energy dispersive X-ray analysis from particles having an equivalent diameter of 0.10 ⁇ m or more on a screen projected at a measurement magnification of 20,000 times with this apparatus.
  • Particles containing ⁇ 95% by weight and ceria and a rare earth oxide other than ceria at 5.0 to 50% by weight were found and identified as the first carrier particles.
  • the equivalent diameter of those particles was calculated from the projected area of the particles. This operation was performed on 20 arbitrary screens, and the average value of all of them was defined as the average particle diameter of the first carrier particles.
  • particles having an equivalent diameter of 0.10 ⁇ m or more particles containing 1.0 to 40% by weight of zirconia and 60% to 99% by weight of rare earth oxides other than ceria and ceria are found. This was identified as the second carrier particle. And the equivalent diameter of those particles was calculated from the projected area of the particles. This operation was performed on 20 arbitrary screens, and the average value of all of them was defined as the average particle diameter of the second carrier particles.
  • the ratio of the projected area of the second carrier particles to the projected area of the first and second carrier particles was calculated and used as the abundance ratio of the second carrier particles.
  • ⁇ Correlation position correlation coefficient> Energy dispersive X-ray analysis was performed using a scanning transmission electron microscope, Tecnai Osiras, manufactured by Nippon F Eye Co., Ltd., and element mapping images of rare earth elements and noble metal rhodium were obtained.
  • the position of the rare earth element of the support particle is compared with the position of rhodium, and the correlation coefficient is equal to or higher than 65.0%, it is supported on the second support and the correlation coefficient is When it was less than 65.0%, it was defined as not supported on the carrier.
  • ⁇ 50% NO x purification temperature The exhaust gas purification device after the endurance test is placed in an atmospheric pressure fixed-bed flow reactor, and silenced at a rate of 12 ° C./min from 100 ° C. to 500 ° C. while flowing a model gas equivalent to stoichiometry, during which NO x The purification rate was measured continuously. The temperature at which the exhaust gas was purified by 50% was examined for each sample.
  • Example 1 when an organic carboxylic acid was used (Examples 1 to 4), a second carrier having an appropriate average particle diameter was easily obtained. From Comparative Examples 1 and 2, it can be seen that the second carrier particles themselves are produced, but the particle size is very small. In this case, the catalyst particles are the second particles so that the correlation coefficient can be judged. The carrier particles were not substantially supported. This is probably because the noble metal catalyst particles were supported on the first carrier particles because the second carrier particles were too small, and the noble metal catalyst particles were sintered there.
  • the element mapping of the exhaust gas purification catalyst of Comparative Example 3 in FIG. 2 it can be seen that the distribution of the abundance of each element is uniform.
  • the abundance ratio of cerium (Ce) and neodymium (Nd) is very high in the place where the abundance ratio of zirconium (Zr) is low.
  • the location is the second carrier particle.
  • the abundance of rhodium (Rh) is high at the position of the second support particles, and it can be seen that the noble metal catalyst particles are concentratedly supported on the second support particles.
  • Exhaust gas purifying catalyst B was obtained in the same manner as catalyst A, except that carrier particles containing 40% by weight of ceria; 50% by weight of zirconia; and 10% by weight of rare earth oxides other than ceria were used.
  • Catalyst C> Exhaust gas-purifying catalyst C was obtained in the same manner as catalyst A, except that carrier particles containing 50% by weight of ceria; 40% by weight of zirconia; and 10% by weight of rare earth oxides other than ceria were used.
  • Example 20 A slurry prepared by mixing 40 g of alumina, Pd nitrate (0.1 g in terms of Pd), 40 g of the above-mentioned ceria zirconia oxide (ceria content 40% by weight), and 100 g of ion-exchanged water was added to a ceramic honeycomb substrate ( Square cell, 2.5 mil / 900 cpsi ⁇ 93 ⁇ L105). This was dried at 250 ° C. for 1 hour and baked at 500 ° C. for 1 hour to obtain a substrate having a lower layer.
  • a ceramic honeycomb substrate Square cell, 2.5 mil / 900 cpsi ⁇ 93 ⁇ L105
  • Example 20 a slurry in which 10 g of alumina, 30 g of catalyst A, and 100 g of ion-exchanged water were mixed was coated on the lower layer and fired in the same manner to form an intermediate layer.
  • the exhaust gas purification apparatus of Example 20 which formed the upper layer by baking this similarly was obtained.
  • This exhaust gas purification device has a ceria amount (OSC amount) of 16 g (40 g ⁇ 0.4) in the lower layer, 6 g (30 g ⁇ 0.2) in the intermediate layer, and 10 g (50 g ⁇ 0.2) in the upper layer. It was.
  • OSC amount ceria amount
  • Example 21 Exhaust gas purification apparatus of Example 21 was obtained in the same manner as in Example 20 except that the catalyst A used for forming the upper layer was changed to the catalyst E.
  • Example 22 Exhaust gas purification apparatus of Example 22 was obtained in the same manner as Example 20 except that the catalyst A used for forming the upper layer was changed to the catalyst B.
  • Example 23 is the same as Example 20 except that the catalyst A used for forming the intermediate layer is changed to the catalyst B and the catalyst A used for forming the upper layer is changed to the catalyst D. An exhaust gas purification device was obtained.
  • Comparative Example 10 An exhaust gas purification apparatus of Comparative Example 10 was obtained in the same manner as in Example 20 except that the catalyst A used for forming the intermediate layer and the upper layer was changed to the catalyst D.
  • Comparative Example 11 Exhaust gas purifying apparatus of Comparative Example 11 was obtained in the same manner as Comparative Example 10 except that the catalyst D used for forming the upper layer was changed to the catalyst E.
  • Comparative Example 12 Exhaust gas purification apparatus of Comparative Example 12 was obtained in the same manner as Comparative Example 10 except that the catalyst D used for forming the upper layer was changed to the catalyst F.
  • Comparative Example 13 Exhaust gas purification apparatus of Comparative Example 13 was obtained in the same manner as Comparative Example 10 except that the catalyst D used for forming the intermediate layer was changed to the catalyst E.
  • Example 20 When comparing Example 20 with Comparative Example 10, in Example 20, the second carrier is present, and the restart NOx emission amount can be greatly reduced. Comparing Example 20 and Example 21, in Example 20, since the carrier is present in the upper layer, the restart NOx emission amount is lower than that in Example 21, but in Example 21, The ceria ratio is high and the NOx emission amount of high SV can be reduced. Since Comparative Examples 11 to 13 use a catalyst having a high ceria ratio, the NOx emission amount of high SV is low, but the restart NOx emission amount is high.
  • Examples 21 to 23 use a catalyst having a high ceria ratio and / or a catalyst in which the second carrier is present, the restart NOx emission amount, the high SV NOx emission amount, and the NOx in the JC08 HOT mode Emissions can be reduced.
  • the second carrier is present in the upper layer, and a catalyst having a higher ceria ratio is used.
  • the high SV NOx emissions are very low, the restart NOx emissions and the JC08HOT mode NOx emissions were relatively high.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Combustion & Propulsion (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Crystallography & Structural Chemistry (AREA)

Abstract

ロジウムの触媒活性を高い状態に維持できる技術が提供される。本発明は、第1の担体粒子(1)、第2の担体粒子(2)、並びに前記第1及び第2の担体粒子に担持されている貴金属触媒粒子(3)を有する排ガス浄化用触媒(10)であって、前記第1の担体粒子(1)が、セリア、ジルコニア、及びセリア以外の希土類酸化物を含有し、前記第2の担体粒子(2)が、セリア以外の希土類酸化物を含有し、セリア及びジルコニアを含有してもよく、前記第1の担体粒子(1)のセリア及びジルコニアの含有率が、前記第2の担体粒子(2)のセリア及びジルコニアの含有率よりも高く、前記第2の担体粒子(2)の前記希土類酸化物の含有率が、前記第1の担体粒子(1)の前記希土類酸化物の含有率よりも高く、前記第1の担体粒子(1)のセリア含有率が、45重量%以下であり、かつ貴金属触媒粒子(3)が、ロジウム粒子を含む、排ガス浄化用触媒(10)に関する。

Description

排ガス浄化用触媒及びその製造方法並びにそれを用いた排ガス浄化装置
 本発明は、新規な排ガス浄化用触媒及びその製造方法並びにそれを用いた排ガス浄化装置に関する。
 自動車エンジン等の内燃機関からの排ガス中は、窒素酸化物(NO)、一酸化炭素(CO)、炭化水素(HC)等を含む。したがって、CO及びHCを酸化し、かつNOを還元する排ガス浄化用触媒によって浄化した後で、これらの排ガスを大気中に放出している。排ガス浄化用触媒の代表的なものとしては、白金(Pt)、ロジウム(Rh)、パラジウム(Pd)等の貴金属を、γ-アルミナ等の多孔質金属酸化物担体に担持させた三元触媒が知られている。
 この金属酸化物担体は、様々な材料で作ることができるが、従来は高表面積を得るためにアルミナ(Al)を使用することが一般的であった。しかしながら近年では、担体の化学的性質を利用して排ガスの浄化を促進するために、セリア(CeO)、ジルコニア(ZrO)、チタニア(TiO)等の様々な他の材料を、アルミナと組み合わせて又は組み合わせないで、使用することも提案されている。また、このような担体としてセリアジルコニア固溶体を用いることも提案されている。
 セリアジルコニア固溶体に関して、セリアジルコニア固溶体にアルカリ金属、アルカリ土類金属及び希土類からなる群より選択される元素を加えることによって、セリアジルコニア固溶体の耐熱性を改良できることが知られている(例えば特許文献1)。また特許文献2では、希土類添加ジルコニア担体粒子にロジウムを担持させることによって、良好な排ガス浄化性能が得られることを開示している。
 特許文献3及び4は、セリアジルコニア固溶体粒子表面に希土類富化領域を与えた担体粒子を開示している。特許文献3及び4に記載の発明では、希土類酸化物とロジウムとの親和性に着目し、希土類富化領域において、粒子表面におけるロジウムの移動及びシンタリングを抑制し、かつロジウムの酸化を防止することによって、ロジウムの触媒活性を高い状態に維持している。
 特許文献5は、ロジウムを担持するセリアジルコニア固溶体中のセリア含有率を低くすることによって、ロジウムの酸化を防止し、ロジウムの触媒活性を高い状態に維持している。すなわち、還元雰囲気(いわゆる、リッチ雰囲気)においては、酸素吸蔵放出材(OSC材)であるセリアは酸素を放出するが、セリアが放出する酸素の影響で、ロジウムの還元が進みにくくなる。特許文献5では、セリアの含有率を低減することで、還元雰囲気における酸素の放出を低減させて、ロジウムの還元を促進している。
 ところで、従来、上記のような金属酸化物担体は、それ自体は排ガス浄化能を持たない基材、例えばコージェライト製のハニカム基材上に形成されていた。しかし近年、金属酸化物担体から構成される基材に、貴金属を担持させた排ガス浄化触媒装置が提案されている(特許文献6)。
特開2004-275919号公報 特表2002-518171号公報 特開2008-018323号公報 特開2008-104928号公報 特許第5322526号 特開2015-85241号公報
 本発明は、ロジウムの触媒活性を高い状態に維持できる、新規な排ガス浄化用触媒及びその製造方法並びにそれを用いた排ガス浄化装置を提供することを目的とする。
 本発明の実施態様としては、以下の態様を挙げることができる:
《態様1》
 第1の担体粒子、第2の担体粒子、並びに前記第1及び第2の担体粒子に担持されている貴金属触媒粒子を有する排ガス浄化用触媒であって、
 前記第1の担体粒子が、セリア、ジルコニア、及びセリア以外の希土類酸化物を含有し、
 前記第2の担体粒子が、セリア以外の希土類酸化物を含有し、セリア及びジルコニアを含有してもよく、
 前記第1の担体粒子のセリア及びジルコニアの合計の含有率が、前記第2の担体粒子のセリア及びジルコニアの合計の含有率よりも高く、
 前記第2の担体粒子の前記希土類酸化物の含有率が、前記第1の担体粒子の前記希土類酸化物の含有率よりも高く、
 前記第1の担体粒子のセリア含有率が、45重量%以下であり、かつ
 貴金属触媒粒子が、ロジウム粒子を含む、排ガス浄化用触媒。
《態様2》
 前記第1の担体粒子の前記希土類酸化物の含有率が20重量%未満であり、前記第2の担体粒子の前記希土類酸化物の含有率が、20重量%以上である、態様1に記載の排ガス浄化用触媒。
《態様3》
 走査透過型電子顕微鏡によって前記第1の担体粒子と前記第2の担体粒子とを観察した場合に、前記第2の担体粒子の投影面積の、前記第1の担体粒子の投影面積に対する比(第2の担体粒子の面積/第1の担体粒子の面積)が、0.050以上0.100以下の範囲である、態様2に記載の排ガス浄化用触媒。
《態様4》
 前記第1の担体粒子及び前記第2の担体粒子が、セリア以外の希土類酸化物を含有するセリアジルコニア固溶体であり、かつ
 前記第1の担体粒子の前記希土類酸化物及び前記第2の担体粒子の前記希土類酸化物が、イットリウム、ランタン、プラセオジム、ネオジム及びサマリウムからなる群より少なくとも1種選択される希土類元素の酸化物である、
態様1~3のいずれか一項に記載の排ガス浄化用触媒。
《態様5》
 前記第1の担体粒子が、50~95重量%のジルコニア、3.0重量%以上のセリア、及び1.0以上20重量%未満のセリア以外の希土類酸化物を含有し、かつ
 前記第2の担体粒子が、0.0~40重量%のジルコニア、0.0~40重量%のセリア、及び20~60重量%のセリア以外の希土類酸化物を含有している、
態様1~4のいずれか一項に記載の排ガス浄化用触媒。
《態様6》
 前記第1の担体粒子が、50~75重量%のジルコニア、20~40重量%のセリア、及び1.0以上20重量%未満のセリア以外の希土類酸化物を含有し、かつ
 前記第2の担体粒子が、0.0~40重量%のジルコニア、25~40重量%のセリア、及び20~60重量%のセリア以外の希土類酸化物を含有している、態様5に記載の排ガス浄化用触媒。
《態様7》
 走査透過型電子顕微鏡によって測定される、前記第1の担体粒子及び前記第2の担体粒子の平均粒径が、それぞれ0.50~100μm及び0.50~5μmである、態様1~6のいずれか一項に記載の排ガス浄化用触媒。
《態様8》
 前記貴金属触媒粒子が、さらに白金粒子及び/又はパラジウム粒子を含む、態様1~7のいずれか一項に記載の排ガス浄化用触媒。
《態様9》
 走査透過型電子顕微鏡を用いたエネルギー分散型X線分析によって元素マッピングを行ったときに、前記ロジウム粒子の位置と前記第2の担体粒子の位置とが相関係数65.0%以上で一致しており、ここで前記相関係数は以下の式で計算される、態様1~8のいずれか一項に記載の排ガス浄化用触媒:
Figure JPOXMLDOC01-appb-M000002
(ここで、xは位置iにおける貴金属元素の特性X線強度であり、xavは貴金属元素の特性X線強度の平均値であり、yは位置iにおける希土類金属元素の特性X線強度であり、yavは希土類金属元素の特性X線強度の平均値である)。
《態様10》
 態様1~9のいずれか一項に記載の排ガス浄化用触媒を含む触媒層と、基材とを具備する排ガス浄化装置。
《態様11》
 前記触媒層が、最表面の少なくとも一部を構成する上層及び下層を含み、前記上層が前記排ガス浄化用触媒を含む、態様10に記載の排ガス浄化装置。
《態様12》
 態様1~9のいずれか一項に記載の排ガス浄化用触媒を含む基材を具備する、排ガス浄化装置。
《態様13》
 以下を含む、排ガス浄化用触媒の製造方法:
  セリア、ジルコニア、及びセリア以外の希土類酸化物を含有している担体粒子の水系分散体、ロジウムを含む触媒貴金属の塩を含有する水溶液、及び有機カルボン酸を混合して、前記担体粒子に触媒貴金属を担持し、それによって未焼成の排ガス浄化用触媒を含む水系分散体を得る工程;
  前記未焼成の排ガス浄化用触媒を含む水系分散体を、乾燥させ、そして焼成する工程。
《態様14》
 前記担体粒子が、セリアジルコニア固溶体であり;前記担体粒子の前記希土類酸化物が、イットリウム、ランタン、プラセオジム、ネオジム及びサマリウムからなる群より少なくとも1種選択される希土類元素の酸化物であり;かつ前記触媒貴金属の塩が、硝酸塩又は硫酸塩である、態様13に記載の方法。
《態様15》
 前記有機カルボン酸が、分子量300以下の有機カルボン酸である、態様13又は14に記載の方法。
《態様16》
 前記担体粒子に含有されている希土類元素の総和物質量に対する、前記有機カルボン酸の物質量比[mol/mol-Ln]が、0.5以上3.5以下である、態様13~15のいずれか一項に記載の方法。
 本発明によれば、ロジウムの触媒活性を高い状態に維持できる、新規な排ガス浄化用触媒及びその製造方法並びにそれを用いた排ガス浄化装置を提供することができる。
図1(a)は、従来の排ガス浄化用触媒の概念図であり、図1(b)は、本発明の排ガス浄化用触媒の概念図である。 図2は、本発明の1つの実施態様である排ガス浄化装置の層構成の概念図である。 図3は、実施例3と比較例3の排ガス浄化用触媒について行った、走査透過型電子顕微鏡を用いたエネルギー分散型X線分析による元素マッピングである。
《排ガス浄化用触媒》
 本発明の排ガス浄化用触媒は、第1の担体粒子、第2の担体粒子、並びに第1及び第2の担体粒子に担持されている貴金属触媒粒子を有する。第1の担体粒子は、セリア、ジルコニア、及びセリア以外の希土類酸化物を含有し、第2の担体粒子は、セリア以外の希土類酸化物を含有し、セリア及びジルコニアを含有してもよい。第1の担体粒子のセリア及びジルコニアの合計の含有率は、第2の担体粒子のセリア及びジルコニアの合計の含有率よりも高く、かつ第2の担体粒子のセリア以外の希土類酸化物の含有率は、第1の担体粒子のセリア以外の希土類酸化物の含有率よりも高い。ここで、第1の担体粒子のセリア含有率は、45重量%以下であり、かつ貴金属触媒粒子は、ロジウム粒子を含む。
 なお、本明細書中で、「触媒」とは、特記しない限り、貴金属触媒粒子を担持している担体粒子を意味しており、これらは焼成されていてもよく、未焼成のままであってもよい。
 従来技術においては、金属酸化物担体表面に希土類富化領域を与えて、希土類富化領域においてロジウム粒子の移動及びシンタリングを抑制し、かつロジウム粒子の酸化を防止することによって、触媒活性を高い状態に維持している。また、セリアジルコニア固溶体とロジウムとを組み合わせて用いる際には、ロジウムの還元状態を維持するために、セリア含有率を低くしていた。それに対して、本発明においては、通常の金属酸化物担体と共に、希土類酸化物の含有率が高い第2の担体を併用することによって、さらにロジウムにさらに高い活性を与えることができた。理論に拘束されないが、本発明では、ロジウムが、希土類酸化物の含有率が高い第2の担体に、集中的に担持されることによって、触媒活性をさらに高くすることができたものであると考えられる。
 このような本発明の触媒によれば、セリアとジルコニアとを含む担体を用いた場合に、従来技術よりも高いセリア含有率の担体を用いることができる。高いセリア含有率の担体は、高い酸素吸蔵放出性能を有するため、本発明の触媒において高いセリア含有率の担体を用いた場合には、特に、再始動時のNOx低減と高SV(高空間速度)でのNOx低減とを両立させることができる。すなわち、空燃比がリーンからリッチに移行するアイドルストップ後及び燃料カット後の再始動NOxの排出量と、吸入空気量が多い高SV時のNOx排出量との大幅な低減は、両者がトレードオフの関係にあるため困難である。しかしながら、これらの両方の低減は、高いセリア含有率の担体を用いることによって、本発明において達成可能となった。
 図1(a)は、従来の排ガス浄化用触媒の概念図であり、図1(b)は、本発明の排ガス浄化用触媒の概念図である。図1(a)において、排ガス浄化触媒(10)は、金属酸化物担体粒子(1)及びロジウム粒子(3)を有し、金属酸化物粒子(1)には、希土類富化領域(1a)が存在している。図1(b)において、排ガス浄化触媒(10)は、セリア及びジルコニアを含む第1の担体粒子(1)、希土類酸化物の含有率が高い第2の担体粒子(2)及びロジウム粒子(3)を有し、ロジウム粒子(3)は、その多くが第2の担体粒子(2)に担持されている。
(担体粒子)
 本発明の排ガス浄化用触媒には、ロジウム粒子の担体として、少なくとも第1の担体粒子と第2の担体粒子とを用いる。第1の担体粒子及び第2の担体粒子以外の第3の担体粒子をさらに用いることもできる。
 例えば、第1の担体粒子を、セリア以外の希土類酸化物の含有率が20重量%未満である粒子と定義し、第2の担体粒子を、セリア以外の希土類酸化物の含有率が、20重量%以上である粒子と定義し、そして走査透過型電子顕微鏡によって第1の担体粒子及び第2の担体粒子を観察した場合に、本発明の排ガス浄化用触媒に含まれる第2の担体粒子の投影面積の、第1の担体粒子の投影面積に対する比(第2の担体粒子の面積/第1の担体粒子の面積)は、0.005以上、0.01以上、0.03以上、0.05以上、又は0.06以上であってもよく、0.30以下、0.25以下、0.20以下、0.15以下、0.10以下、又は0.08以下であってもよい。このような範囲であれば、ロジウム粒子を第2の担体粒子に集中的に担持させ、かつロジウム粒子のシンタリング等を実質的に防ぐことができ、NOx浄化温度の上昇を防げる傾向にある。なお、上記の第1の担体粒子と第2の担体粒子の定義が変更された場合でも、上記の投影面積比は、同じ範囲とすることができる。
(担体粒子-第1の担体粒子)
 本発明の排ガス浄化用触媒で用いられる第1の担体粒子は、セリア、ジルコニア、及びセリア以外の希土類酸化物を含有する。
 例えば、第1の担体粒子を、セリア以外の希土類酸化物の含有率が20重量%未満である粒子と定義し、第2の担体粒子を、セリア以外の希土類酸化物の含有率が、20重量%以上である粒子と定義した場合、第1の担体粒子の平均粒径は、0.50μm以上、1.0μm以上、3.0μm以上、5.0μm以上、8.0μm以上、又は10.0μm以上であってもよく、100μm以下、80μm以下、50μm以下、30μm以下、又は20μm以下であってもよい。上記の第1の担体粒子と第2の担体粒子の定義が変更された場合でも、第1の担体粒子の平均粒径は、同じ範囲とすることができる。
 ここで、平均粒径の測定は、日本エフイー・アイ社製の走査透過型電子顕微鏡Tecnai Osiras及びその装置に付随しているエネルギー分散型X線分析装置によって行う。すなわち、この装置で20,000倍の測定倍率によって映し出された画面において、等価直径が0.10μm以上である粒子の中から、エネルギー分散型X線分析によって、第1の担体粒子を見つけ出す。そして、それらの粒子の等価直径を粒子の投影面積から計算する。この作業を任意の20画面において行い、その全ての平均値を、第1の担体粒子の平均粒径と認定する。ここで、粒子の等価直径とは、粒子の外周長さと等しい外周長さを有する正円の直径をいう。
 第1の担体粒子は、セリア及びジルコニアを含有し、その含有率は、第1の担体粒子の重量に対して、50重量%以上、55重量%以上、60重量%以上、65重量%以上、又は70重量%以上であってもよく、95重量%以下、90重量%以下、85重量%以下、又は80重量%以下であってもよい。
 第1の担体粒子のセリア及びセリア以外の希土類酸化物の合計の含有率は、第1の担体粒子の重量に対して、5.0重量%以上、10重量%以上、15重量%以上、20重量%以上、又は25重量%以上であってもよく、50重量%以下、45重量%以下、40重量%以下、又は35重量%以下であってもよい。
 第1の担体粒子のセリアの含有率は、5.0重量%以上、10重量%以上、15重量%以上、20重量%以上、20重量%超又は、25重量%以上又は30重量%以上であってもよく、50重量%以下、50重量%未満45重量%以下、40重量%以下、又は35重量%以下であってもよい。さらに、セリア以外の希土類酸化物の含有率は、1.0重量%以上、3.0重量%以上、5.0重量%以上、又は7.0重量%以上であってもよく、30重量%以下、25重量%以下、20重量%以下、20重量%未満、15重量%以下、又は10重量%以下であってもよい。
 第1の担体粒子は、好ましくはセリアジルコニア固溶体を含有することが好ましい。この場合、第1の担体粒子のジルコニアの含有率は、40重量%以上、45重量%以上、50重量%以上、55重量%以上、60重量%以上、65重量%以上、又は70重量%以上であってもよく、95重量%以下、90重量%以下、85重量%以下、又は80重量%以下でもよい。また、この場合、第1の担体粒子のセリアの含有率は、3.0重量%以上、5.0重量%以上、10重量%以上、15重量%以上、20重量%以上、又は25重量%以上であってもよく、50重量%以下、45重量%以下、40重量%以下、又は35重量%以下でもよい。ここで、これらの含有率は、元素分析から計算して求めることができる。
 第1の担体粒子の希土類酸化物としては、希土類元素のうちの原子番号が若く、且つ4f電子軌道に空きがある又は空きが多いイオンを形成する元素、例えばイットリウム(Y)、ランタン(La)、プラセオジム(Pr)、ネオジム(Nd)及びサマリウム(Sm)からなる群より選択される希土類元素の酸化物を挙げることができる。
 第1の担体粒子は、上記以外の成分を含有していてもよく、例えばアルミナ、シリカ、チタニア、酸化バリウム、酸化ストロンチウム等を含有していてもよい。
 第1の担体粒子は、上記の特許文献等に記載された公知の方法によって製造することができる。
(担体粒子-第2の担体粒子)
 本発明の排ガス浄化用触媒で用いられる第2の担体粒子は、セリア以外の希土類酸化物を含有し、そしてセリア及びジルコニアを含有してもよい。ここで、第2の担体粒子のセリア及びジルコニアの含有率は、第1の担体粒子のセリア及びジルコニアの含有率よりも低く、かつ第2の担体粒子のセリア以外の希土類酸化物の含有率は、第1の担体粒子のセリア以外の希土類酸化物の含有率よりも高い。これにより、ロジウム粒子を第2の担体粒子に集中的に担持させることができる。
 例えば、第1の担体粒子を、セリア以外の希土類酸化物の含有率が20重量%未満である粒子と定義し、第2の担体粒子を、セリア以外の希土類酸化物の含有率が、20重量%以上である粒子と定義した場合、第2の担体粒子の平均粒径は、0.50μm以上、1.0μm以上、2.0μm以上、又は3.0μm以上であってもよく、50μm以下、20μm以下、15μm以下、10μm以下、又は5.0μm以下であってもよい。このような範囲であれば、ロジウム粒子を第2の担体粒子に集中的に担持させ、かつロジウム粒子のシンタリング等を実質的に防ぐことができ、NOx浄化温度の上昇を防げる傾向にある。上記の第1の担体粒子と第2の担体粒子の定義が変更された場合でも、第2の担体粒子の平均粒径は、同じ範囲とすることができる。この平均粒径は、上記の第1の担体粒子の平均粒径と同一の方法によって測定される。
 第2の担体粒子は、セリア以外の希土類酸化物を含有し、その含有率は、10重量%以上、15重量%以上、20重量%以上、25重量%以上、又は30重量%以上であってもよく、100重量%以下、80重量%以下、60重量%以下、55重量%以下、50重量%以下、45重量%以下、又は40重量%以下であってもよい。第2の担体粒子がセリア及びジルコニアを含有する場合、その含有率は、第2の担体粒子の重量に対して、1.0重量%以上、2.0重量%以上、3.0重量%以上、5.0重量%以上、10重量%以上、又は15重量%以上であってもよく、40重量%以下、35重量%以下、30重量%以下、又は25重量%以下であってもよい。
 セリア及びセリア以外の希土類酸化物の合計の含有率は、第2の担体粒子の重量に対して、60重量%以上、65重量%以上、70重量%以上、75重量%以上、又は80重量%以上であってもよく、99重量%以下、95重量%以下、93重量%以下、又は90重量%以下であってもよい。
 第2の担体粒子がセリアを含有する場合、その含有率は、20重量%以上、25重量%以上、30重量%以上、35重量%以上、又は40重量%以上であってもよく、70重量%以下、65重量%以下、60重量%以下、55重量%以下、50重量%以下、45重量%以下、又は40重量%以下であってもよい。
 第2の担体粒子の希土類酸化物としては、第1の担体粒子に含有される希土類酸化物と同種のものを用いることができる。
 第2の担体粒子は、第1の担体粒子と同様に、上記以外の成分を含有していてもよく、例えばアルミナ、シリカ、チタニア、酸化バリウム、酸化ストロンチウム等を含有していてもよい。
 第2の担体粒子は、上記の特許文献等に記載された公知の方法によって製造することができる。ただし、第2の担体粒子は、下記に詳細に示すように、担体粒子を、有機カルボン酸溶液に投入し、担体粒子から溶出させて得ることが好ましい。
(貴金属触媒粒子)
 本発明の排ガス浄化用触媒では、貴金属触媒粒子としては、ロジウム粒子が用いられる。また、本発明の排ガス浄化用触媒は、ロジウム粒子以外の貴金属触媒粒子を含んでいてもよく、そのような粒子としては、特に白金属粒子を挙げることができ、より好ましくは白金粒子及び/又はパラジウム粒子を挙げることができる。
 ロジウム粒子は、排ガスとの接触面積を高める観点から、十分に小さい粒径の微粒子であることが好ましい。典型的には、ロジウム粒子の平均粒径は、TEM観察によって求められる等価直径の平均値として、1~20nm程度であってもよく、10nm以下、7nm以下又は5nm以下であってもよい。
 ロジウム粒子は、第1の担体粒子及び第2の担体粒子の合計100質量部に対して、合計で0.1質量部以上、0.3質量部以上、0.5質量部以上、又は1.0質量部以上で担持されていてもよく、10質量部以下、5質量部以下、3.0質量部以下、2.0質量部以下で担持されていてもよい。
 全ての貴金属触媒粒子に対するロジウム粒子の含有率は、10重量%以上、20重量%以上、30重量%以上、50重量%以上、70重量%以上、80重量%以上、又は90重量%以上であってもよく、100重量%以下、90重量%以下、80重量%以下、60重量%以下、50重量%以下、30重量%以下、又は20重量%以下であってもよい。
 本発明の排ガス浄化用触媒で用いられるロジウム粒子は、上記の第2の担体粒子に主に担持されていることが好ましい。すなわち、上記の走査透過型電子顕微鏡を用いたエネルギー分散型X線分析によって元素マッピングを行った場合に、ロジウム粒子の位置と第2の担体粒子の位置とが、相関係数65.0%以上、70.0%以上、又は75.0%以上で一致していることが好ましい。ここで、相関係数は、次のようにして計算される:
Figure JPOXMLDOC01-appb-M000003
(ここで、xは位置iにおける貴金属元素の特性X線強度であり、xavは貴金属元素の特性X線強度の平均値であり、yは位置iにおける希土類金属元素の特性X線強度であり、yavは希土類金属元素の特性X線強度の平均値である)。
 このような測定は、日本エフイー・アイ社製の走査透過型電子顕微鏡Tecnai Osiras及び、その装置に付随しているエネルギー分散型X線分析によって行った。
具体的には、この走査透過型電子顕微鏡で測定した20,000倍の複数の画像中で、ロジウム粒子iの重心点分析を実施し、その重心点位置でのロジウム粒子iのロジウムのスペクトル強度値と、その重心点位置でのセリウム以外の希土類元素のスペクトル強度値とを測定し、上記の計算を行う。ここで、セリウム以外の希土類元素が複数種ある場合には、それらの強度の加算を行う。なお、「スペクトル強度平均値」とは、同一視野、異なる視野で視認可能なロジウム粒子に含まれるロジウム又は第2の担体に含まれるセリウム以外の希土類元素の全ての特性X線強度の平均値をいう。上記の計算を行う場合には、第2の担体及びロジウム粒子をそれぞれ300個以上用いることが好ましい。
 上記の相関係数は、触媒の焼成前後で実質的に変化しないことが通常であり、好ましくは変化しない。
《排ガス浄化装置》
 本発明の1つの実施態様において、排ガス浄化装置は、上述の排ガス浄化用触媒を含む触媒層及び触媒層を有する基材を具備する。本発明の他の1つの実施態様においては、排ガス浄化装置は、排ガス浄化用触媒を含む基材を具備する。排ガス浄化用触媒は、下記の本発明の排ガス浄化用触媒の製造方法によって得られる排ガス浄化用触媒であってもよい。
 触媒層は、複数の層であってもよい。また、触媒層が複数の層である場合、その少なくとも1つの層に上述の排ガス浄化用触媒が含有されていればよい。ただし、排ガス浄化装置の表面層となる層に、上述の排ガス浄化用触媒が含有されていることが好ましい。触媒層の1つの層に上述の排ガス浄化用触媒が含有されていない場合、その触媒層は、上述の排ガス浄化用触媒の構成要素として記載した要素を含む触媒、例えば上述の排ガス浄化用触媒の第2の担体粒子を含まない触媒が用いられてもよい。
 触媒層が複数の層からなる場合には、触媒層は、最表面の少なくとも一部を構成する上層、及び基材上の下層を有していてもよい。触媒層は、上層と下層との間に、さらに中間層を有していてもよい。本発明の排ガス浄化装置の上層と基材との間に位置する層であり、複数の層から形成されていてもよい。下層は、上記の排ガス浄化用触媒を含んでもよく、上記の排ガス浄化用触媒の構成要素として記載した要素を含む触媒、例えば上記の排ガス浄化用触媒の第2の担体粒子を含まない触媒を含有していてもよい。
 触媒層は、上記の排ガス浄化用触媒と他の成分との混合物から形成されていてもよい。ここで使用される他の成分としては、例えば、アルミナ、CZ、ゼオライト等、及びこれらの混合物等を挙げることができる。これらに貴金属が担持された公知の排ガス浄化用触媒を、他の成分として用いてもよい。触媒層を、触媒担体粒子を壁面に含む基材、例えば特開2015-85241号公報に記載のような基材上に形成してもよい。
 基材としては、排気ガス浄化装置において一般的に使用されているストレートフロー型又はウォールフロー型のハニカム型基材等を挙げることができる。基材の材質も特に限定されず、例えば、セラミック、炭化ケイ素、金属等の基材を挙げることができる。
 図2は、本発明の排ガス浄化装置の1つの層構成の概念図であり、この排ガス浄化装置(100)は、表面に露出している上層(20)及び下層(30)を基材(40)上に有する。
 他の成分の製造、該他の成分と本発明の排ガス浄化用触媒との混合、及び上記基材上への触媒層の形成は、それぞれ、公知の方法により、又はこれに当業者による適宜の変更を加えた方法により、実施することができる。
 排ガス浄化用触媒が基材中に含まれる場合には、触媒担体粒子を壁面に含む基材、例えば特開2015-85241号公報に記載のような基材を用いることができる。この場合、排ガス浄化用触媒を、基材を製造する際に使用する他の無機粒子と混合して用いて排ガス浄化装置を得てもよい。
 以上のようにして製造される本発明の排ガス浄化装置は、貴金属の排ガス浄化活性が高く、かつこれを高い状態のまま維持することができるから、例えば自動車用の排ガス浄化用触媒として、好適に使用することができる。
《排ガス浄化用触媒の製造方法》
 排ガス浄化用触媒を製造する本発明の方法は、セリア、ジルコニア、及びセリア以外の希土類酸化物を含有している担体粒子の水系分散体、ロジウムの塩を含む水溶液、及び有機カルボン酸を混合して、担体粒子にロジウムを担持し、それによって未焼成の排ガス浄化用触媒を含む水系分散体を得る工程;及び未焼成の排ガス浄化用触媒を含む水系分散体を、乾燥させ、そして焼成する工程を含む。
 この方法によれば、有機カルボン酸によって担体粒子から希土類酸化物が溶出して、希土類酸化物が富化した第2の担体粒子と、セリア及びジルコニア、特にジルコニアが富化した第1の担体粒子とが得られる。この場合、ロジウムは、希土類酸化物が富化した第2の担体粒子に主に担持され、これにより触媒である貴金属のシンタリング及び酸化を防止することができるため、ロジウムの触媒活性を高い状態に維持できる好適な排ガス浄化用触媒を得ることができる。出発物質である担体粒子が、セリアジルコニア固溶体を含む場合には、固溶していない希土類酸化物が有機カルボン酸によって溶出しやすいため、このような態様は特に好ましい。
 さらに、驚くべきことに、この方法によって得られた排ガス浄化触媒のロジウム粒子は、有機カルボン酸を添加しない従来の方法と比較して、小径化されることが分かった。理論に拘束されないが、これは、有機カルボン酸添加後に、有機カルボン酸希土が形成され、有機カルボン酸希土にロジウムが選択的に吸着し、焼成後に希土類とロジウムと間の相互作用によって、ロジウムが固定化される為であると考えられる。ロジウム粒子の粒径が小さいと、単位重量当りの貴金属触媒粒子の表面積が大きくなり、触媒の反応点が増えるため、非常に有利である。
 排ガス浄化用触媒を製造する本発明の方法によれば、特に本発明の排ガス浄化用触媒を製造することができる。したがって、本発明の方法で用いる担体粒子の粒径、担体粒子のジルコニア、セリア、及びセリア以外の希土類酸化物の添加量、セリア以外の希土類酸化物の種類及び添加量、貴金属の種類及び添加量等については、上記の本発明の排ガス浄化用触媒の記載を参照して選択することができる。
 例えば、未焼成の排ガス浄化用触媒を含む水系分散体を得る工程においては、担体粒子に含まれる固溶していない希土類成分の量に対して、過不足なく反応する量(反応当量点)の有機カルボン酸を水系溶液に溶解させる。そして、有機カルボン酸の水溶液に、ロジウムの塩を混合し、そして有機カルボン酸及びロジウムを含有する水溶液を、担体粒子が分散している分散液と混合する。
 本発明の方法において用いられる有機カルボン酸の量は、担体粒子に含有されている希土類元素の総和物質量[mol-Ln]に対し、添加する有機カルボン酸の物質量比[mol/mol-Ln]で表わすことができる。好ましい物質量比[mol/mol-Ln]は、0.5以上、1.0以上、又は1.5以上であり、3.5以下、3.0以下、又は2.5以下であってもよい。このような範囲であれば、担体粒子のセリア及びジルコニアが溶解しづらく、かつ希土類酸化物は溶解しやすくなるため、第2の担体粒子を生成しやすい。
 ここで、担体粒子としては、上記の本発明の排ガス浄化用触媒で用いられる第1の担体粒子と同じ組成を有していてもよい。
 ロジウムの塩の他に、貴金属の塩を追加して使用することができる。このような塩としては、強酸塩を挙げることができ、特に硝酸塩又は硫酸塩を挙げることができる。また、追加で使用できる貴金属としては、白金及び/又はパラジウムを挙げることができる。
 有機カルボン酸としては、好ましくは分子量300以下の有機カルボン酸を挙げることができ、例えばC~C20の飽和脂肪酸、不飽和脂肪酸、ヒドロキシ酸、芳香族カルボン酸、ジカルボン酸、トリカルボン酸、オキソカルボン酸等を挙げることができる。具体的には、ギ酸、酢酸、プロピオン酸、酪酸、酒石酸、シュウ酸、マロン酸、コハク酸等を挙げることができる。
 有機カルボン酸の添加量は、担体粒子に含まれる希土類成分、好ましくは固溶していない希土類成分のモル量に対して過不足なく反応するモル量(反応当量点)の0.50倍以上、1.0倍以上、又は2.0倍以上であってもよく、5.0倍以下、4.5倍以下、4.0倍以下、又は3.5倍以下であってもよい。
 未焼成の排ガス浄化用触媒を得た後、これを含む水系分散体を乾燥させ、そして焼成する。乾燥温度は、例えば150℃以上、200℃以上、250℃以上であってもよく、400℃以下、350℃以下、又は300℃以下であってもよい。乾燥時間は、16時間以上、12時間以上、又は8時間以上であってもよく、24時間以下又は20時間以下であってもよい。また、焼成温度は、例えば500℃以上、550℃以上、又は600℃以上であってもよく、1000℃以下、800℃以下、又は700℃以下であってもよい。焼成時間は、30分以上、1時間以上、2時間以上、又は4時間以上であってもよく、12時間以下、10時間以下、又は8時間以下であってもよい。
 このようにして得られた排ガス浄化用触媒をさらに粉砕して、担体粒子の粒径を、本発明の排ガス浄化用触媒の第1の担体粒子の粒径の範囲にすることができる。
A.各種の排ガス浄化用触媒の参考的試験
《サンプル調製》
〈実施例1〉
 担体粒子に含まれるセリウム以外の希土類の総和に対して、過不足なく反応する物質量の酢酸をイオン交換水に溶解させ、酢酸水溶液を調製した。次いで、酢酸溶液に、ロジウム量が担体粒子の0.50重量%となるように、硝酸ロジウム溶液を投入し、酢酸及び酢酸ロジウムを含有する水溶液を得た。この水溶液と、担体粒子をイオン交換水に分散させた分散液とを混合した。これを撹拌し、250℃で8時間乾燥し、500℃で1時間焼成し、粉砕することによって、実施例1の排ガス浄化用触媒を得た。
〈実施例2~4及び比較例1~3〉
 酢酸の代わりに他の有機カルボン酸を用いたこと以外は実施例1と同様にして、実施例2~4の排ガス浄化用触媒を得た。また、有機カルボン酸の代わりに他の酸を用いたこと以外は実施例1と同様にして、比較例1及び2の排ガス浄化用触媒を得た。さらに、酢酸を使用しなかったこと以外は実施例1と同様にして、比較例3の排ガス浄化用触媒を得た。これらの例の組成の詳細を表1に示す。
〈実施例5~6及び比較例4~5〉
 担体粒子及び貴金属の塩の種類を実施例2から変更して、実施例5~6の排ガス浄化用触媒を得た。また、有機カルボン酸を使用しなかったこと以外は、実施例5及び6と同様にして、それぞれ比較例4及び5の排ガス浄化用触媒を得た。これらの例の組成の詳細を表2に示す。
〈実施例7~15〉
 実施例4から担体粒子の組成を変更し、また有機カルボン酸の添加量を変更することによって、実施例7~15の排ガス浄化用触媒を得た。これらの例の組成の詳細を表3に示す。
〈実施例16~19及び比較例6~9〉
 実施例1で用いた担体粒子の種類等を変更して、実施例16~19及び比較例6~9の排ガス浄化用触媒を得た。これらの例の組成の詳細を表4に示す。
〈耐久試験後の排ガス浄化用触媒〉
 上記のようにして得られた排ガス浄化用触媒を、流通式の耐久試験装置に配置した。そして、試験装置内温度を1000℃にし、窒素ガスに酸素を1%添加したリーンガスと、窒素ガスに一酸化炭素を2%加えたリッチガスとを、500mL/分の流量で、2分周期で交互に10時間流通させた。その後の排ガス浄化用触媒を、耐久試験後の排ガス浄化用触媒として評価した。
〈排ガス浄化装置の作製〉
 上記のようにして得られた排ガス浄化触媒とアルミナ粉末とを質量混合比1:1で混合し、固形分が30重量%となるように純水に分散させてスラリーを得た。このスラリーを、モノリスハニカム基材(容積0.35L)に、貴金属量が0.25g/Lとなるようにコートした。コートしたモノリスハニカム基材を250℃で10分乾燥し、次に500℃で20分焼成することによって、排ガス浄化装置を得た。
〈耐久試験後の排ガス浄化装置〉
 上記のようにして得られた排ガス浄化装置を、流通式の耐久試験装置に配置した。そして、試験装置内温度を1000℃にし、窒素ガスに酸素を1%添加したリーンガスと、窒素ガスに一酸化炭素を2%加えたリッチガスとを、500mL/分の流量で、2分周期で交互に10時間流通させた。その後の排ガス浄化装置を、耐久試験後の排ガス浄化装置として評価した。
《評価方法》
〈第2担体の平均粒径及び存在比〉
 排ガス浄化用触媒の担体粒子の平均粒径の測定を、日本エフイー・アイ社製の走査透過型電子顕微鏡Tecnai Osiras及びその装置に付随しているエネルギー分散型X線分析装置によって行った。
 具体的には、まずこの装置で20,000倍の測定倍率によって映し出された画面において、等価直径が0.10μm以上である粒子の中から、エネルギー分散型X線分析によって、ジルコニアを50重量%~95重量%で、かつセリア及びセリア以外の希土類酸化物を5.0~50重量%で含有する粒子を見つけ出し、これを第1の担体粒子と認定した。そして、それらの粒子の等価直径を粒子の投影面積から計算した。この作業を任意の20画面において行い、その全ての平均値を、第1の担体粒子の平均粒径とした。
 さらに、等価直径が0.10μm以上である粒子の中から、ジルコニアを1.0~40重量%で、かつセリア及びセリア以外の希土類酸化物を60重量%~99重量%で含有する粒子を見つけ出し、これを第2の担体粒子と認定した。そして、それらの粒子の等価直径を粒子の投影面積から計算した。この作業を任意の20画面において行い、その全ての平均値を、第2の担体粒子の平均粒径とした。
 さらに、各排ガス浄化用触媒について、第2の担体粒子の投影面積の、第1及び第2の担体粒子の投影面積に対する投影面積比(第2の担体粒子の面積/第1及び第2の担体粒子の面積)を計算し、これを第2の担体粒子の存在比とした。
〈触媒位置の相関係数〉
 日本エフイー・アイ社製の走査透過型電子顕微鏡Tecnai Osirasを用いてエネルギー分散型X線分析を行い、希土類元素と貴金属ロジウムの元素マッピング像を得た。担体粒子の希土類元素の位置と、ロジウムの位置とを比較し、相関係数が65.0%以上で一致していた場合には、第2の担体上に担持されており、相関係数が65.0%未満であった場合には、担体上に担持されていないと定義した。
〈触媒粒子の粒径変化〉
 上記の耐久試験後の排ガス浄化用触媒を、X線回折装置によって分析し、貴金属触媒粒子の粒径を解析した。ロジウムは2θ=41.1°;パラジウムは2θ=40.1°;そして白金は2θ=39.8°の回折ピークの半値幅を用いて、シェラーの式から粒径を算出した。この結果から、実施例1~4及び7~19並びに比較例1~2及び6~9については、有機カルボン酸を添加していない比較例3を基準として、有機カルボン酸の添加によって貴金属粒径が何%変化したかを算出した。実施例5及び6については、それぞれ比較例4及び5を基準として、貴金属粒径が何%変化したかを算出した。ただし、ここでは、表1中で「-」は粒径の減少を意味し、「+」は粒径の肥大を意味している。
〈50%NO浄化温度〉
 耐久試験後の排ガス浄化装置を、常圧固定床式流通反応装置に配置し、ストイキ相当のモデルガスを流通させながら100℃~500℃まで12℃/分の速度で消音し、その間のNO浄化率を連続的に測定した。排ガスが50%浄化された時の温度を、各サンプルについて調べた。
〈STEM-EDX画像>
 実施例3及び比較例3について、走査透過型電子顕微鏡を用いたエネルギー分散型X線分析による元素マッピングを撮影した。
《結果》
 上記のようにして評価した結果を表1~表4に示す。また、実施例3及び比較例3のSTEM-EDX画像を図2に示す。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 表1から理解できるように、有機カルボン酸を用いた場合(実施例1~4)に、適切な平均粒径を有する第2の担体が容易に得られた。比較例1及び2を見ると、第2の担体粒子自体は生成していることが分かるが非常に粒径が小さく、この場合には相関係数から判断できるように、触媒粒子が第2の担体粒子に実質的に担持されていなかった。これは、第2の担体粒子が小さすぎるために、第1の担体粒子にも貴金属触媒粒子が担持されて、そこで貴金属触媒粒子がシンタリングを起こしたためと考えられる。
 また、有機カルボン酸を用いた場合(実施例1~4)には、耐久後に貴金属触媒粒子が小径化したことが分かる。有機カルボン酸の代わりにベンゼンスルホン酸及び硝酸を用いた場合(比較例1及び2)には、酸を用いていない場合(比較例3)に比べて、貴金属触媒粒子が肥大化していた、さらに、実施例1~4の場合には、50%NO浄化温度が非常に低い温度となった。
 表2及び表4から理解できるように、このような傾向は、出発担体粒子の組成及び貴金属の種類を変更した場合であっても、同様であった。
 表3を見ると、有機カルボン酸の添加量を増やすと、第2担体の粒径が大きくなることが分かる。ただし、貴金属触媒粒子については、有機カルボン酸の量を増やしていくと、小径化しなくなることが分かる。それに対応して、50%NO浄化温度も変化した。
 図2の比較例3の排ガス浄化触媒の元素マッピングを見ると、各元素の存在率の分布は、一様であることが分かる。それに対して、実施例3の元素マッピングを見ると、ジルコニウム(Zr)の存在率が低くなっている場所で、セリウム(Ce)及びネオジム(Nd)の存在率が非常に高くなっており、その場所が第2の担体粒子であることが分かる。また、第2の担体粒子の位置において、ロジウム(Rh)の存在率が高くなっており、貴金属触媒粒子が第2の担体粒子に集中的に担持されていることが分かる。
B.本発明の排ガス浄化装置の試験
《触媒の調製》
〈触媒A〉
 担体粒子に含まれるセリウム以外の希土類の総和に対して、過不足なく反応する物質量の2倍のシュウ酸をイオン交換水に溶解させ、シュウ酸溶液を調製した。次いで、シュウ酸溶液に、硝酸ロジウム溶液を投入し、シュウ酸及び硝酸ロジウムを含有する水溶液を得た。20重量%のセリア;70重量%のジルコニア;及び10重量%のセリア以外の希土類酸化物を含有する担体粒子をイオン交換水に分散させた分散液と、シュウ酸及び硝酸ロジウムを含有する水溶液とを混合した。これを撹拌し、110℃で8時間乾燥し、500℃で1時間焼成し、粉砕することによって、排ガス浄化用触媒Aを得た。
〈触媒B〉
 40重量%のセリア;50重量%のジルコニア;及び10重量%のセリア以外の希土類酸化物を含有する担体粒子を用いたこと以外は触媒Aと同様にして、排ガス浄化用触媒Bを得た。
〈触媒C〉
 50重量%のセリア;40重量%のジルコニア;及び10重量%のセリア以外の希土類酸化物を含有する担体粒子を用いたこと以外は触媒Aと同様にして、排ガス浄化用触媒Cを得た。
〈触媒D〉
 シュウ酸を用いなかったこと以外は触媒Aと同様にして、排ガス浄化用触媒Dを得た。
〈触媒E〉
 シュウ酸を用いなかったこと以外は触媒Bと同様にして、排ガス浄化用触媒Eを得た。
〈触媒F〉
 シュウ酸を用いなかったこと以外は触媒Cと同様にして、排ガス浄化用触媒Fを得た。
《排ガス浄化装置の調製》
〈実施例20〉
 40gのアルミナ、硝酸Pd(Pd量で0.1g)、40gの上記のセリアジルコニア酸化物(セリア含有率40重量%)、及び100gのイオン交換水を混合したスラリーを、セラミック製ハニカム基材(スクエアセル、2.5mil/900cpsi φ93×L105)にコートした。これを、250℃で1時間乾燥させ、500℃で1時間焼成し、下層を有する基材を得た。次に、10gのアルミナ、30gの触媒A、及び100gのイオン交換水を混合したスラリーを、下層上にコートして、同様に焼成することで、中間層を形成した。30gのアルミナ、硝酸Pd(Pd量で1.0g)、50g上記の触媒A、及び100gのイオン交換水を混合したスラリーを、中間層上にコートした。そして、これを同様に焼成することで、上層を形成した実施例20の排ガス浄化装置を得た。この排ガス浄化装置は、下層に16g(40g×0.4)、中間層に6g(30g×0.2)、及び上層に10g(50g×0.2)のセリア量(OSC量)を有していた。
〈実施例21〉
 上層を形成する際に用いた触媒Aを触媒Eに変更したこと以外は実施例20と同様にして、実施例21の排ガス浄化装置を得た。
〈実施例22〉
 上層を形成する際に用いた触媒Aを触媒Bに変更したこと以外は実施例20と同様にして、実施例22の排ガス浄化装置を得た。
〈実施例23〉
 中間層を形成する際に用いた触媒Aを触媒Bに変更したこと及び上層を形成する際に用いた触媒Aを触媒Dに変更したこと以外は実施例20と同様にして、実施例23の排ガス浄化装置を得た。
〈比較例10〉
 中間層及び上層を形成する際に用いた触媒Aを触媒Dに変更したこと以外は実施例20と同様にして、比較例10の排ガス浄化装置を得た。
〈比較例11〉
 上層を形成する際に用いた触媒Dを触媒Eに変更したこと以外は比較例10と同様にして、比較例11の排ガス浄化装置を得た。
〈比較例12〉
 上層を形成する際に用いた触媒Dを触媒Fに変更したこと以外は比較例10と同様にして、比較例12の排ガス浄化装置を得た。
〈比較例13〉
 中間層を形成する際に用いた触媒Dを触媒Eに変更したこと以外は比較例10と同様にして、比較例13の排ガス浄化装置を得た。
〈参考例1〉
 上層を形成する際に用いた触媒Aを触媒Cに変更したこと以外は実施例20と同様にして、参考例1の排ガス浄化装置を得た。
〈耐久試験後の排ガス浄化装置〉
 上記の実施例20~23、比較例10~13、及び参考例1の排ガス浄化装置を、エンジンに装着して、触媒床温度950℃で50時間の耐久処理を行った。
《評価方法》
〈第2担体の存在比〉
 触媒A~Fの第2担体の存在比を、上記の実験Aと同様にして評価した。
〈触媒位置の相関係数〉
 触媒位置の相関係数を、上記の実験Aと同様にして評価した。
〈排ガス浄化性能〉
 耐久処理後の各排ガス浄化装置を、排気量0.7Lのエンジンを有する実車両に装着し、JC08Cモード法及びJC08Hモード法に準拠して、走行距離1キロ当たりのNOx排出量を測定した。ここでは、燃料カット、アイドリングストップ後に空燃比がストイキに復帰した直後から3秒間に排出されるNOx排出量を、再始動NOx排出量として評価した。また、JC08HOTモード11山目に排出されるNOx排出量を、高SVNOx排出量として評価した。さらに、JC08HOTモード走行時に排出されるNOx排出量も評価した。
《結果》
 上記のようにして評価した結果を表5に示す。
Figure JPOXMLDOC01-appb-T000008
 実施例20と比較例10とを比較すると、実施例20では第2の担体が存在しており、再始動NOx排出量が大きく低減できている。実施例20と実施例21とを比較すると、実施例20では上層に担体が存在しているために、再始動NOx排出量が実施例21よりも低いが、実施例21では上層の触媒中のセリア比が高く、高SVのNOx排出量を低くすることができている。比較例11~13は、セリア比の高い触媒を用いているため、高SVのNOx排出量が低くなっているが、再始動NOx排出量は高くなっている。
 実施例21~23は、セリア比が高い触媒及び/又は第2の担体が存在している触媒を使用しているため、再始動NOx排出量、高SVのNOx排出量、及びJC08HOTモードのNOx排出量を低くすることができている。参考例1では、上層で第2の担体が存在し、セリア比がさらに高い触媒を使用しており、高SVのNOx排出量は非常に低くなっているものの、再始動NOx排出量及びJC08HOTモードのNOx排出量が比較的高くなった。
 1  第1の担体粒子
 1a  希土類富化領域
 2  第2の担体粒子
 3  ロジウム粒子
 10  排ガス浄化用触媒
 20  上層
 30  下層
 40  基材
 100  排ガス浄化装置

Claims (16)

  1.  第1の担体粒子、第2の担体粒子、並びに前記第1及び第2の担体粒子に担持されている貴金属触媒粒子を有する排ガス浄化用触媒であって、
     前記第1の担体粒子が、セリア、ジルコニア、及びセリア以外の希土類酸化物を含有し、
     前記第2の担体粒子が、セリア以外の希土類酸化物を含有し、セリア及びジルコニアを含有してもよく、 前記第1の担体粒子のセリア及びジルコニアの合計の含有率が、前記第2の担体粒子のセリア及びジルコニアの合計の含有率よりも高く、
     前記第2の担体粒子の前記希土類酸化物の含有率が、前記第1の担体粒子の前記希土類酸化物の含有率よりも高く、
     前記第1の担体粒子のセリア含有率が、45重量%以下であり、かつ
     貴金属触媒粒子が、ロジウム粒子を含む、排ガス浄化用触媒。
  2.  前記第1の担体粒子の前記希土類酸化物の含有率が20重量%未満であり、前記第2の担体粒子の前記希土類酸化物の含有率が、20重量%以上である、請求項1に記載の排ガス浄化用触媒。
  3.  走査透過型電子顕微鏡によって前記第1の担体粒子と前記第2の担体粒子とを観察した場合に、前記第2の担体粒子の投影面積の、前記第1の担体粒子の投影面積に対する比(第2の担体粒子の面積/第1の担体粒子の面積)が、0.050以上0.100以下の範囲である、請求項2に記載の排ガス浄化用触媒。
  4.  前記第1の担体粒子及び前記第2の担体粒子が、セリア以外の希土類酸化物を含有するセリアジルコニア固溶体であり、かつ
     前記第1の担体粒子の前記希土類酸化物及び前記第2の担体粒子の前記希土類酸化物が、イットリウム、ランタン、プラセオジム、ネオジム及びサマリウムからなる群より少なくとも1種選択される希土類元素の酸化物である、
    請求項1~3のいずれか一項に記載の排ガス浄化用触媒。
  5.  前記第1の担体粒子が、50~95重量%のジルコニア、3.0重量%以上のセリア、及び1.0以上20重量%未満のセリア以外の希土類酸化物を含有し、かつ
     前記第2の担体粒子が、0.0~40重量%のジルコニア、0.0~40重量%のセリア、及び20~60重量%のセリア以外の希土類酸化物を含有している、
    請求項1~4のいずれか一項に記載の排ガス浄化用触媒。
  6.  前記第1の担体粒子が、50~75重量%のジルコニア、20~40重量%のセリア、及び1.0以上20重量%未満のセリア以外の希土類酸化物を含有し、かつ
     前記第2の担体粒子が、0.0~40重量%のジルコニア、25~40重量%のセリア、及び20~60重量%のセリア以外の希土類酸化物を含有している、請求項5に記載の排ガス浄化用触媒。
  7.  走査透過型電子顕微鏡によって測定される、前記第1の担体粒子及び前記第2の担体粒子の平均粒径が、それぞれ0.50~100μm及び0.50~5μmである、請求項1~6のいずれか一項に記載の排ガス浄化用触媒。
  8.  前記貴金属触媒粒子が、さらに白金粒子及び/又はパラジウム粒子を含む、請求項1~7のいずれか一項に記載の排ガス浄化用触媒。
  9.  走査透過型電子顕微鏡を用いたエネルギー分散型X線分析によって元素マッピングを行ったときに、前記ロジウム粒子の位置と前記第2の担体粒子の位置とが相関係数65.0%以上で一致しており、ここで前記相関係数は、以下の式で計算される、請求項1~8のいずれか一項に記載の排ガス浄化用触媒:
    Figure JPOXMLDOC01-appb-M000001
    (ここで、xは位置iにおける貴金属元素の特性X線強度であり、xavは貴金属元素の特性X線強度の平均値であり、yは位置iにおける希土類金属元素の特性X線強度であり、yavは希土類金属元素の特性X線強度の平均値である)。
  10.  請求項1~9のいずれか一項に記載の排ガス浄化用触媒を含む触媒層と、基材とを具備する、排ガス浄化装置。
  11.  前記触媒層が、最表面の少なくとも一部を構成する上層及び下層を含み、前記上層が前記排ガス浄化用触媒を含む、態様10に記載の排ガス浄化装置。
  12.  態様1~9のいずれか一項に記載の排ガス浄化用触媒を含む基材を具備する、排ガス浄化装置。
  13.  以下を含む、排ガス浄化用触媒の製造方法:
      セリア、ジルコニア、及びセリア以外の希土類酸化物を含有している担体粒子の水系分散体、ロジウムを含む触媒貴金属の塩を含有する水溶液、及び有機カルボン酸を混合して、前記担体粒子に触媒貴金属を担持し、それによって未焼成の排ガス浄化用触媒を含む水系分散体を得る工程;
      前記未焼成の排ガス浄化用触媒を含む水系分散体を、乾燥させ、そして焼成する工程。
  14.  前記担体粒子が、セリアジルコニア固溶体であり;前記担体粒子の前記希土類酸化物が、イットリウム、ランタン、プラセオジム、ネオジム及びサマリウムからなる群より少なくとも1種選択される希土類元素の酸化物であり;かつ前記触媒貴金属の塩が、硝酸塩又は硫酸塩である、請求項13に記載の方法。
  15.  前記有機カルボン酸が、分子量300以下の有機カルボン酸である、請求項13又は14に記載の方法。
  16.  前記担体粒子に含有されている希土類元素の総和物質量に対する、前記有機カルボン酸の物質量比[mol/mol-Ln]が、0.5以上3.5以下である、請求項13~15のいずれか一項に記載の方法。
PCT/JP2017/009583 2016-03-25 2017-03-09 排ガス浄化用触媒及びその製造方法並びにそれを用いた排ガス浄化装置 WO2017163916A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780019862.0A CN108883397B (zh) 2016-03-25 2017-03-09 排气净化用催化剂及其制造方法以及使用了该排气净化用催化剂的排气净化装置
JP2018507211A JP6567168B2 (ja) 2016-03-25 2017-03-09 排ガス浄化用触媒及びその製造方法並びにそれを用いた排ガス浄化装置
EP17769960.0A EP3434362A4 (en) 2016-03-25 2017-03-09 EXHAUST GAS PURIFYING CATALYST AND PRODUCTION METHOD THEREFOR, AND EXHAUST GAS PURIFYING DEVICE USING THE SAME
US16/086,869 US11179701B2 (en) 2016-03-25 2017-03-09 Exhaust gas purifying catalyst and production method therefor, and exhaust gas purification device using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-062634 2016-03-25
JP2016062634 2016-03-25

Publications (1)

Publication Number Publication Date
WO2017163916A1 true WO2017163916A1 (ja) 2017-09-28

Family

ID=59900225

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/009583 WO2017163916A1 (ja) 2016-03-25 2017-03-09 排ガス浄化用触媒及びその製造方法並びにそれを用いた排ガス浄化装置

Country Status (5)

Country Link
US (1) US11179701B2 (ja)
EP (1) EP3434362A4 (ja)
JP (1) JP6567168B2 (ja)
CN (1) CN108883397B (ja)
WO (1) WO2017163916A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017177095A (ja) * 2016-03-25 2017-10-05 株式会社キャタラー 排ガス浄化用触媒及びその製造方法並びにそれを用いた排ガス浄化装置
EP3753633A4 (en) * 2018-02-15 2021-06-23 Cataler Corporation EXHAUST GAS PURIFICATION CATALYST

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7329060B2 (ja) * 2019-10-18 2023-08-17 ユミコア日本触媒株式会社 排気ガス浄化用触媒、排気ガスの浄化方法、及び排気ガス浄化用触媒の製造方法
EP4052787A1 (en) * 2021-03-02 2022-09-07 Johnson Matthey Public Limited Company Nox storage material
CN115608356A (zh) * 2021-07-12 2023-01-17 庄信万丰股份有限公司 用于废气处理应用的阴离子pgm羧酸盐辅助的pgm纳米颗粒合成
US11801491B1 (en) * 2022-04-21 2023-10-31 GM Global Technology Operations LLC Three-way catalyst with reduced palladium loading and method of making the three-way catalyst

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002518171A (ja) * 1998-06-22 2002-06-25 ジョンソン、マッセイ、パブリック、リミテッド、カンパニー ロジウム、ジルコニアおよび希土類元素酸化物を含んでなる排ガス触媒
JP2006346661A (ja) * 2005-06-20 2006-12-28 Toyota Motor Corp 排ガス浄化触媒
WO2011010700A1 (ja) * 2009-07-24 2011-01-27 株式会社 キャタラー 排ガス浄化用触媒
JP2011062683A (ja) * 2009-08-18 2011-03-31 Mazda Motor Corp 排気ガス浄化用触媒
JP2011183317A (ja) * 2010-03-09 2011-09-22 Mazda Motor Corp 排気ガス浄化用触媒
JP2015525123A (ja) * 2012-06-06 2015-09-03 ユミコア アクチェンゲゼルシャフト ウント コンパニー コマンディートゲゼルシャフト 三元触媒系

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030039597A1 (en) 2001-08-24 2003-02-27 Engelhard Corporation Close coupled catalyst with a SOx trap and methods of making and using the same
JP4274826B2 (ja) 2003-03-17 2009-06-10 株式会社豊田中央研究所 排ガス浄化用触媒及びその製造方法
JP4514419B2 (ja) * 2003-08-20 2010-07-28 株式会社日本触媒 炭化水素部分酸化用触媒、その製造方法および水素含有ガスの製造方法
JP4265626B2 (ja) 2006-07-12 2009-05-20 トヨタ自動車株式会社 触媒担体粒子及びその製造方法、並びに排ガス浄化触媒
JP5140987B2 (ja) 2006-10-24 2013-02-13 トヨタ自動車株式会社 触媒担体及びその製造方法、並びに排ガス浄化触媒
JP5322526B2 (ja) 2008-07-17 2013-10-23 エヌ・イーケムキャット株式会社 自動車から排出される排気ガスを浄化するためのハニカム構造型触媒及びその製造方法、並びに、その触媒を使用した排気ガス浄化方法
JP5903205B2 (ja) * 2010-01-04 2016-04-13 株式会社キャタラー 排ガス浄化用触媒
US8557204B2 (en) 2010-11-22 2013-10-15 Umicore Ag & Co. Kg Three-way catalyst having an upstream single-layer catalyst
JP2013117190A (ja) * 2011-12-02 2013-06-13 Mazda Motor Corp 触媒付きパティキュレートフィルタ
US20140369912A1 (en) * 2013-06-13 2014-12-18 Basf Corporation Integrated Supports for Emission Control Catalysts
JP6208540B2 (ja) 2013-10-29 2017-10-04 トヨタ自動車株式会社 排ガス浄化触媒
WO2017073527A1 (ja) 2015-10-27 2017-05-04 株式会社キャタラー 排ガス浄化用触媒及びその製造方法並びにそれを用いた排ガス浄化装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002518171A (ja) * 1998-06-22 2002-06-25 ジョンソン、マッセイ、パブリック、リミテッド、カンパニー ロジウム、ジルコニアおよび希土類元素酸化物を含んでなる排ガス触媒
JP2006346661A (ja) * 2005-06-20 2006-12-28 Toyota Motor Corp 排ガス浄化触媒
WO2011010700A1 (ja) * 2009-07-24 2011-01-27 株式会社 キャタラー 排ガス浄化用触媒
JP2011062683A (ja) * 2009-08-18 2011-03-31 Mazda Motor Corp 排気ガス浄化用触媒
JP2011183317A (ja) * 2010-03-09 2011-09-22 Mazda Motor Corp 排気ガス浄化用触媒
JP2015525123A (ja) * 2012-06-06 2015-09-03 ユミコア アクチェンゲゼルシャフト ウント コンパニー コマンディートゲゼルシャフト 三元触媒系

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3434362A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017177095A (ja) * 2016-03-25 2017-10-05 株式会社キャタラー 排ガス浄化用触媒及びその製造方法並びにそれを用いた排ガス浄化装置
EP3753633A4 (en) * 2018-02-15 2021-06-23 Cataler Corporation EXHAUST GAS PURIFICATION CATALYST
US11534737B2 (en) 2018-02-15 2022-12-27 Cataler Corporation Exhaust gas purification catalyst

Also Published As

Publication number Publication date
US20190099715A1 (en) 2019-04-04
JPWO2017163916A1 (ja) 2018-11-22
EP3434362A4 (en) 2019-11-27
JP6567168B2 (ja) 2019-08-28
CN108883397B (zh) 2021-08-31
CN108883397A (zh) 2018-11-23
US11179701B2 (en) 2021-11-23
EP3434362A1 (en) 2019-01-30

Similar Documents

Publication Publication Date Title
JP6567168B2 (ja) 排ガス浄化用触媒及びその製造方法並びにそれを用いた排ガス浄化装置
JP6516862B2 (ja) 排ガス浄化用触媒及びその製造方法並びにそれを用いた排ガス浄化装置
US11795855B2 (en) Exhaust gas purification catalyst
CN113042045B (zh) 排气净化用催化剂
JP2006055836A (ja) 無機酸化物、排気浄化用触媒担体及び排気浄化用触媒
WO2008007628A1 (fr) Particule porteuse catalytique, son procédé de fabrication et catalyseur de purification de gaz d'échappement
JP4831753B2 (ja) 排ガス浄化用触媒
JP2006051431A (ja) 排気ガス浄化用三元触媒及びその製造方法
JP2021104473A (ja) 排ガス浄化用触媒
JP6339013B2 (ja) 排気ガス浄化触媒用担体、排気ガス浄化用触媒及び排気ガス浄化用触媒構成体
US20120277094A1 (en) Catalyst support or catalyst, and process for producing the same
JP7157041B2 (ja) 排ガス浄化用触媒
WO2022249847A1 (ja) 排ガス浄化触媒
US11577226B2 (en) Exhaust gas purification catalyst
JP6851225B2 (ja) 排ガス浄化用触媒及びその製造方法並びにそれを用いた排ガス浄化装置
JP2017180453A (ja) 排ガス浄化装置及びその製造方法
JP2001232199A (ja) 排ガス浄化用触媒
WO2013098987A1 (ja) 排気ガス浄化用触媒のための担体、排気ガス浄化用触媒及びその製造方法
JP7448620B2 (ja) 窒素酸化物吸蔵材及び排ガス浄化用触媒
JP2009112961A (ja) 排ガス浄化用触媒及びそれを用いた排ガス浄化方法
JP2003170046A (ja) 排ガス浄化用触媒及び排ガス浄化方法
JPH10272357A (ja) 排気ガス浄化用触媒
JPWO2013098987A1 (ja) 排気ガス浄化用触媒及びその製造方法並びに排気ガス浄化用触媒構成体

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018507211

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017769960

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017769960

Country of ref document: EP

Effective date: 20181025

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17769960

Country of ref document: EP

Kind code of ref document: A1