WO2017163844A1 - 誘電体組成物、誘電体素子、電子部品及び積層電子部品 - Google Patents

誘電体組成物、誘電体素子、電子部品及び積層電子部品 Download PDF

Info

Publication number
WO2017163844A1
WO2017163844A1 PCT/JP2017/008804 JP2017008804W WO2017163844A1 WO 2017163844 A1 WO2017163844 A1 WO 2017163844A1 JP 2017008804 W JP2017008804 W JP 2017008804W WO 2017163844 A1 WO2017163844 A1 WO 2017163844A1
Authority
WO
WIPO (PCT)
Prior art keywords
dielectric
withstand voltage
main component
electronic component
dielectric composition
Prior art date
Application number
PCT/JP2017/008804
Other languages
English (en)
French (fr)
Inventor
博樹 秋場
三四郎 阿滿
啓子 竹内
Original Assignee
Tdk株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tdk株式会社 filed Critical Tdk株式会社
Priority to US16/087,884 priority Critical patent/US10759709B2/en
Priority to CN201780019845.7A priority patent/CN108883992B/zh
Priority to JP2018507186A priority patent/JP6801707B2/ja
Priority to EP17769889.1A priority patent/EP3434659B1/en
Publication of WO2017163844A1 publication Critical patent/WO2017163844A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • C04B35/497Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates based on solid solutions with lead oxides
    • C04B35/499Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates based on solid solutions with lead oxides containing also titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/49Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/638Removal thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/02Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances
    • H01B3/10Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances metallic oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/02Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances
    • H01B3/12Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances ceramics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • H01G4/1254Ceramic dielectrics characterised by the ceramic dielectric material based on niobium or tungsteen, tantalum oxides or niobates, tantalates
    • H01G4/1263Ceramic dielectrics characterised by the ceramic dielectric material based on niobium or tungsteen, tantalum oxides or niobates, tantalates containing also zirconium oxides or zirconates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • C04B2235/3203Lithium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3239Vanadium oxides, vanadates or oxide forming salts thereof, e.g. magnesium vanadate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • C04B2235/3255Niobates or tantalates, e.g. silver niobate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3256Molybdenum oxides, molybdates or oxide forming salts thereof, e.g. cadmium molybdate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3258Tungsten oxides, tungstates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3409Boron oxide, borates, boric acids, or oxide forming salts thereof, e.g. borax
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6025Tape casting, e.g. with a doctor blade
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/606Drying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/005Electrodes
    • H01G4/012Form of non-self-supporting electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • H01G4/1218Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates
    • H01G4/1227Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates based on alkaline earth titanates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • H01G4/1236Ceramic dielectrics characterised by the ceramic dielectric material based on zirconium oxides or zirconates
    • H01G4/1245Ceramic dielectrics characterised by the ceramic dielectric material based on zirconium oxides or zirconates containing also titanates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/228Terminals
    • H01G4/248Terminals the terminals embracing or surrounding the capacitive element, e.g. caps

Definitions

  • the present invention particularly relates to a dielectric composition, a dielectric element, an electronic component, and a laminated electronic component that are suitable for use in a high-temperature environment such as in-vehicle use.
  • multilayer ceramic capacitors are used in many electronic devices because of their high reliability and low cost. Specifically, it is used for information terminals, home appliances, and automobile electrical components.
  • a multilayer ceramic capacitor used for in-vehicle use or the like may be required to have a higher temperature range as compared with a normal multilayer ceramic capacitor, and higher reliability is required. It is necessary not to break down against the applied voltage, that is, withstand voltage is high.
  • withstand voltage since a high AC voltage is applied to a resonance capacitor used in a non-contact power supply resonance circuit or the like, not only a DC withstand voltage but also an AC withstand voltage is required to be high.
  • Patent Document 1 discloses a technique relating to a tungsten bronze type complex oxide exhibiting a high relative dielectric constant and specific resistance.
  • an alkali metal element is included as a constituent element of the main component. Since alkali metal elements have high volatility, there is a problem that handling at the time of manufacture tends to be complicated, for example, it is necessary to incorporate a process for supplementing the alkali metal elements. In addition, lattice defects due to potassium having high volatility are likely to be generated in the dielectric composition, and conduction electrons are likely to be generated, which makes it difficult to obtain a high DC withstand voltage.
  • Patent Document 2 discloses a technique for a perovskite oxide having a high DC withstand voltage of 150 ° C.
  • the technology is disclosed.
  • the relative dielectric constant at room temperature is as high as about 100 to 700, and a good value of tan ⁇ at room temperature of 5% or less is obtained.
  • Non-Patent Document 2 discloses a tungsten bronze type dielectric Ba 2 Sm 2 Ti 4 Ta 6 O 30 having a high relative dielectric constant and low dielectric loss.
  • the relative dielectric constant at room temperature is as high as about 120, and tan ⁇ at room temperature is 3% or less.
  • a dielectric ceramic composition containing a compound represented by the composition formula Ba x (Ti 1-y Sn y ) O 3 and an oxide of Zn is used in Patent Document 3.
  • a technique for improving the AC withstand voltage is disclosed.
  • BMTNO15, M Bi3 +, La3 +, Nd3 +, Nd3 +, Nd3 +, Nd3 +, Sd3 +, Nd3 +, Nd3 +, Sd3 +, Nd3 +, Nd3 +, Sd3 +, Nd3 +, Nd3 +, Sd3 +, Nd3 +, Nd3 +, Nd3 +, Nd3 +, Nd3 +, Journal of the American Ceramic Society, 93 [3] 782-786 (2010) "Crystal structure and ferroelectric behaviors of Ba5SmTi3Ta4O3B4Ta4O3B4S4O4O4
  • the present invention has been made in view of the above problems, and is suitable for use in a high temperature environment such as in-vehicle use, for example, and has a high DC withstand voltage and a high ratio even under a use environment of 175 ° C. or higher.
  • the present invention provides a dielectric composition not only having resistance but also having high AC withstand voltage and low dielectric loss, and a dielectric element, an electronic component, and a laminated electronic component using the same.
  • the dielectric composition of the present invention comprises: Main component chemical formula (Sr 1.00- (s + t) Ba s Ca t) 6.00-x R x (Ti 1.00-a Zr a) x + 2.00 (Nb 1.00-b Ta b) 8.
  • R is at least one element selected from Y, La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu;
  • s, t, x, a, b are 0.50 ⁇ s ⁇ 1.00, 0 ⁇ t ⁇ 0.30, 0.50 ⁇ s + t ⁇ 1.00, 1.50 ⁇ x ⁇ 3.00, 0.20 ⁇ a ⁇ 1.00, 0 ⁇ b ⁇ 1.00
  • the dielectric composition By using the dielectric composition, a dielectric composition that is suitable for use in a high-temperature environment and has not only high DC withstand voltage and high specific resistance but also high AC withstand voltage and low dielectric loss. Can be obtained.
  • At least one selected from Mn, Mg, Co, V, W, Mo, Si, Li, B, and Al is added as an auxiliary component to 0.1 mol of the main component. It contains 10 mol or more and 20.00 mol or less. Thereby, in addition to a higher specific resistance, a higher DC withstand voltage, and a higher AC withstand voltage, a low dielectric loss is obtained.
  • the substitution amount a of Zr contained in the main component is preferably 0.50 ⁇ a ⁇ 1.00.
  • the dielectric element according to the present invention preferably comprises the above dielectric composition.
  • the dielectric element according to the present invention can be used in a high-temperature environment such as in-vehicle use by including the above-described dielectric composition.
  • the electronic component according to the present invention preferably includes a dielectric layer made of the above dielectric composition.
  • the laminated electronic component according to the present invention preferably has a laminated portion in which dielectric layers made of the above dielectric composition and internal electrode layers are alternately laminated.
  • the electronic component and the laminated electronic component according to the present invention can be used in a high-temperature environment such as in-vehicle use by including a dielectric layer made of the above-described dielectric composition.
  • the use of the electronic component having a dielectric layer made of the dielectric composition according to the present invention is not particularly limited, but is useful for a multilayer ceramic capacitor, a piezoelectric element, a chip varistor, a chip thermistor, and the like.
  • the present invention is suitable for use in a high temperature environment such as in-vehicle use, and not only has a high DC withstand voltage and high specific resistance, but also has a high AC withstand voltage and low even under a use environment of 175 ° C. or higher. It is possible to provide a dielectric composition having dielectric loss, and a dielectric element, an electronic component and a laminated electronic component using the same.
  • FIG. 1 is a cross-sectional view of a multilayer ceramic capacitor according to an embodiment of the present invention.
  • the dielectric composition according to this embodiment is Main component chemical formula (Sr 1.00- (s + t) Ba s Ca t) 6.00-x R x (Ti 1.00-a Zr a) x + 2.00 (Nb 1.00-b Ta b) 8.
  • R is at least one element selected from Y, La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu;
  • s, t, x, a, b are 0.50 ⁇ s ⁇ 1.00, 0 ⁇ t ⁇ 0.30, 0.50 ⁇ s + t ⁇ 1.00, 1.50 ⁇ x ⁇ 3.00, 0.20 ⁇ a ⁇ 1.00, 0 ⁇ b ⁇ 1.00
  • the dielectric composition according to the present embodiment is mainly composed of the tungsten bronze type complex oxide represented by the above chemical formula, it becomes easy to obtain a high DC withstand voltage.
  • the inventors consider this factor as follows.
  • the tungsten bronze complex oxide which is the main component of this embodiment, is characterized by a wide band gap. Therefore, electrons in the valence band are difficult to excite into the conduction band and are majority carriers involved in conduction. It becomes possible to suppress the electron carrier concentration.
  • the carrier concentration of conduction electrons that are majority carriers has an influence.
  • the dielectric composition of the present invention it is possible to suppress the carrier concentration of electrons, which are majority carriers, to be low, so that it is considered that breakdown due to avalanche is less likely to occur. Furthermore, since the band gap is wide, it is possible to maintain a wide band gap even when a high electric field strength is applied. Thus, it is considered that a high DC withstand voltage was obtained even at a high electric field strength. In addition, since it does not contain a highly volatile alkali metal, it is difficult to generate lattice defects, and it is difficult to generate conduction electrons, and therefore, it has characteristics of high specific resistance and DC withstand voltage.
  • s and t are 0.50 ⁇ s ⁇ 1.00, 0 ⁇ t ⁇ 0.30, and 0.50 ⁇ s + t ⁇ 1.00. And it becomes easy to obtain a low dielectric loss.
  • K or Na which is an alkali metal element
  • the alkali metal element has high volatility, so that lattice defects are likely to occur during heat treatment (firing process, etc.), resulting in a high value.
  • the DC withstand voltage tends to be difficult to obtain.
  • t represents the amount of substitution of Ca, but Ca is an arbitrary component, and the upper limit of the amount of substitution is 0.30.
  • R in the chemical formula is at least one element selected from Y, La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu, thereby obtaining a high DC withstand voltage. It becomes easy to be done.
  • X of the chemical formula is 1.50 ⁇ x ⁇ 3.00
  • the x 2 (Sr 1.00- (s + t) Ba s Ca t) 4.00 R 2.00 (Ti 1.00-a Zr a) 4.00 (Nb 1.00- b Ta b) 6.00 O 30.00
  • x 3 in (Sr 1.00- (s + t) Ba s Ca t) 3.00 R 3.00 ( Ti 1.00-a Zr a ) 5.00 (Nb 1.00-b Ta b ) 5.00 O 30.00 and other tungsten bronze type complex oxides are used as the main component, so that a high AC withstand voltage and Low dielectric loss is easily obtained.
  • the tungsten bronze type complex oxide of the above chemical formula has a high band gap and a low dielectric loss. Therefore, it is considered that the ion displacement follows the AC electric field well and the AC withstand voltage is increased.
  • x is larger than 3.00, for example, it is difficult to form a tungsten bronze type crystal structure in a complex oxide such as the chemical formula Ba 2 La 4 Zr 6 Nb 4 O 30 . It becomes difficult to obtain the characteristic high AC withstand voltage.
  • Ta is an arbitrary component, and a tungsten bronze type crystal structure can be maintained even in a composite oxide in which Nb is replaced with Ta.
  • a preferable Ta substitution amount is 0.10 ⁇ b ⁇ 1.00, which makes it easier to obtain a higher DC withstand voltage.
  • At least one element selected from Mn, Mg, Co, V, W, Mo, Si, Li, B, and Al is included as a subcomponent.
  • the interaction between these elements and Zr contained in the main component makes it easy to obtain a high specific resistance as well as a high DC withstand voltage.
  • the Zr substitution amount a is 0.80 ⁇ a ⁇ 1.00, the interaction is enhanced and a higher DC withstand voltage can be easily obtained.
  • At least one selected from Y, La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu as the second subcomponent may be included.
  • a 2nd subcomponent is arbitrary components, The upper limit of the content is determined in the range which can achieve the objective of invention.
  • the dielectric composition also has a small amount of impurities and other subcomponents unless the dielectric properties which are the effects of the present invention, that is, the relative permittivity, specific resistance, DC withstand voltage and AC withstand voltage are greatly deteriorated. It may be included. Therefore, the content of the main component is not particularly limited, but is, for example, 50 mol% or more and 100 mol% or less with respect to the entire dielectric composition containing the main component.
  • FIG. 1 shows a multilayer ceramic capacitor according to an embodiment of the present invention.
  • the multilayer ceramic capacitor 1 has a capacitor element body 10 having a configuration in which dielectric layers 2 and internal electrode layers 3 are alternately stacked. At both ends of the capacitor element body 10, a pair of external electrodes 4 are formed which are electrically connected to the internal electrode layers 3 arranged alternately in the element body 10.
  • the shape of the capacitor element body 10 is not particularly limited, but is usually a rectangular parallelepiped shape. Moreover, there is no restriction
  • the thickness of the dielectric layer 2 is not particularly limited, and may be appropriately determined according to the use of the multilayer ceramic capacitor 1.
  • the conductive material contained in the internal electrode layer 3 is not particularly limited, but Ni, Pd, Ag, Pd—Ag alloy, Cu or Cu-based alloy is preferable.
  • the Ni, Pd, Ag, Pd—Ag alloy, Cu, or Cu-based alloy may contain various trace components such as P of about 0.1% by weight or less.
  • the internal electrode layer 3 may be formed using a commercially available electrode paste. What is necessary is just to determine the thickness of the internal electrode layer 3 suitably according to a use etc.
  • the conductive material contained in the external electrode 4 is not particularly limited, but usually Cu, Cu-based alloy, Ni, Ni-based alloy, Ag, Ag—Pd alloy or the like is used.
  • the thickness of the external electrode may be appropriately determined according to the application and the like, but is usually preferably about 5 ⁇ m to 50 ⁇ m. If necessary, a coating layer is formed on the surface of the external electrode 4 by plating or the like.
  • a green chip is produced by a normal printing method or a sheet method using a paste as in the case of a conventional multilayer ceramic capacitor, fired, and then fired by applying an external electrode. It is manufactured by doing.
  • the manufacturing method will be specifically described.
  • a raw material is prepared so that a main component may become a desired ratio, it mixes, and a calcining powder can be obtained by heat-processing (temporary baking) at 800 degreeC or more.
  • heat treatment is performed at 800 ° C. to 1000 ° C. so that the particle size of the calcined powder is 0.1 ⁇ m or more and 5.0 ⁇ m or less.
  • a different phase such as Ba 5 Nb 4 O 15 having an anisotropic shape is not included in the calcined powder.
  • the raw material is mainly composed of Sr, Ba, Ca, Ti, Zr, Nb, Ta, Y, La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu. Or a mixture thereof can be used as a raw material powder.
  • various compounds that become the above-described oxides or composite oxides by firing for example, carbonates, oxalates, nitrates, hydroxides, organometallic compounds, and the like can be appropriately selected and mixed for use.
  • SrO may be used as a raw material for Sr, or SrCO 3 may be used.
  • a raw material for the subcomponent is also prepared.
  • the raw material of the subcomponent is not particularly limited, and an oxide of each component or a mixture thereof can be used as the raw material powder.
  • various compounds that become the above-described oxides or composite oxides by firing for example, carbonates, oxalates, nitrates, hydroxides, organometallic compounds, and the like can be appropriately selected and mixed for use.
  • MgO may be used as a raw material for Mg, or MgCO 3 may be used.
  • Prepared calcined powder of main component and raw material of subcomponent are weighed and mixed so as to have a predetermined composition ratio to obtain a dielectric composition raw material.
  • Examples of the mixing method include wet mixing using a ball mill and dry mixing using a dry mixer.
  • This dielectric composition raw material is made into a paint to prepare a dielectric layer paste.
  • the dielectric layer paste may be an organic paint obtained by kneading a dielectric material and an organic vehicle, or may be a water-based paint.
  • Organic vehicle is a binder dissolved in an organic solvent.
  • the binder used for the organic vehicle is not particularly limited, and may be appropriately selected from usual various binders such as ethyl cellulose and polyvinyl butyral.
  • the organic solvent to be used is not particularly limited, and may be appropriately selected from various organic solvents such as terpineol, butyl carbitol, acetone and the like according to a method to be used such as a printing method or a sheet method.
  • the dielectric layer paste when used as a water-based paint, a water-based vehicle in which a water-soluble binder or a dispersant is dissolved in water and a dielectric material may be kneaded.
  • the water-soluble binder used for the water-based vehicle is not particularly limited, and for example, polyvinyl alcohol, cellulose, water-soluble acrylic resin, etc. may be used.
  • the internal electrode layer paste is obtained by kneading the above-mentioned organic vehicle with various conductive metals and alloys as described above, or various oxides, organometallic compounds, resinates, etc. that become the above-mentioned conductive materials after firing. Prepare.
  • the external electrode paste may be prepared in the same manner as the internal electrode layer paste described above.
  • the content of the organic vehicle in each paste described above is not particularly limited, and may be a normal content, for example, about 1% to 5% by weight for the binder and about 10% to 50% by weight for the solvent.
  • Each paste may contain additives selected from various dispersants, plasticizers, dielectric materials, insulator materials, and the like as necessary. The total content of these is preferably 10% by weight or less.
  • the dielectric layer paste and the internal electrode layer paste are printed and laminated on a substrate such as PET, cut into a predetermined shape, and then peeled off from the substrate to obtain a green chip.
  • a dielectric layer paste is used to form a green sheet, the internal electrode layer paste is printed thereon, and these are stacked to form a green chip.
  • the temperature rising rate is preferably 5 ° C./hour to 300 ° C./hour
  • the holding temperature is preferably 180 ° C. to 500 ° C.
  • the temperature holding time is preferably 0.5 hours to 24 hours.
  • the atmosphere for the binder removal treatment is air or a reducing atmosphere.
  • the holding temperature during firing is preferably 1000 ° C. to 1400 ° C., more preferably 1100 ° C. to 1360 ° C. If the holding temperature is lower than the above range, the densification becomes insufficient. If the holding temperature exceeds the above range, the electrode is interrupted due to abnormal sintering of the internal electrode layer, or the capacity change rate is deteriorated due to diffusion of the constituent material of the internal electrode layer. It becomes easy. Moreover, when the said range is exceeded, there exists a possibility that a dielectric particle may coarsen and a DC withstand voltage may be reduced.
  • the heating rate is preferably 50 ° C./hour to 500 ° C./hour, more preferably 200 ° C./hour to 300 ° C./hour, after sintering.
  • the temperature holding time is preferably 0.5 hours to 24 hours, more preferably 1 hour to 3 hours
  • the cooling rate is preferably 50 ° C. / Hour to 500 ° C./hour, more preferably 200 ° C./hour to 300 ° C./hour.
  • a wetter or the like may be used to wet the N 2 gas, mixed gas, or the like.
  • the water temperature is preferably about 5 to 75 ° C.
  • the binder removal treatment, firing and annealing may be performed continuously or independently.
  • the end face polishing is performed on the capacitor element body 10 obtained as described above by, for example, barrel polishing or sand blasting, and the external electrode paste is applied and fired to form the external electrode 4. Then, if necessary, a coating layer is formed on the surface of the external electrode 4 by plating or the like.
  • Dielectric composition raw material thus obtained 100 parts by weight, polyvinyl butyral resin: 10 parts by weight, dioctyl phthalate (DOP) as a plasticizer: 5 parts by weight, and alcohol as a solvent: 100 parts by weight
  • DOP dioctyl phthalate
  • alcohol as a solvent
  • Pd particles 44.6 parts by weight, terpineol: 52 parts by weight, ethyl cellulose: 3 parts by weight, and benzotriazole: 0.4 parts by weight are kneaded and slurried with three rolls.
  • a Pd internal electrode layer paste was prepared.
  • Ni internal electrode layer paste was prepared using Ni particles.
  • a green sheet was formed on a PET film so that the thickness after drying was 7 ⁇ m.
  • the internal electrode layer was printed in a predetermined pattern using the internal electrode layer paste thereon, and then the sheet was peeled from the PET film to produce a green sheet having the internal electrode layer.
  • Pd internal electrode layer paste was used for the green sheet using 62.
  • the green sheets using 65 are made of Ni internal electrode layer paste to produce green sheets each having an internal electrode layer.
  • a plurality of green sheets having internal electrode layers were laminated and pressure-bonded to form a green laminate, and the green laminate was cut into a predetermined size to obtain a green chip.
  • the sample No. 1 to sample no. 62 is a binder removal treatment in air (temperature rising rate: 10 ° C./hour, holding temperature: 400 ° C., temperature holding time: 8 hours, atmosphere: in air) and firing in air (temperature rising rate: 200 ° C.). / Time, holding temperature: 1000 ° C. to 1400 ° C., temperature holding time: 2 hours, cooling rate: 200 ° C./hour, atmosphere: in air).
  • 63 to Sample No. 65 is a binder removal treatment in nitrogen (heating rate: 10 ° C./hour, holding temperature: 350 ° C., temperature holding time: 8 hours, atmosphere: in nitrogen) and reducing atmosphere firing (heating rate: 200 ° C./hour).
  • an In—Ga eutectic alloy was applied as an external electrode, and a sample No. having the same shape as the multilayer ceramic capacitor shown in FIG. 1 to sample no. 65 multilayer ceramic capacitors were obtained.
  • the size of the obtained multilayer ceramic capacitor is 3.2 mm ⁇ 1.6 mm ⁇ 1.2 mm.
  • the thickness of the dielectric layer is 5.0 ⁇ m, the thickness of the internal electrode layer is 1.5 ⁇ m, and it is sandwiched between the internal electrode layers.
  • the number of dielectric layers was 10.
  • the insulation resistance of the multilayer ceramic capacitor sample was measured at 200 ° C. with a digital resistance meter (R8340 manufactured by ADVANTEST) under the conditions of a measurement voltage of 30 V and a measurement time of 60 seconds.
  • the value of specific resistance was calculated from the electrode area of the capacitor sample and the thickness of the dielectric layer.
  • the specific resistance is preferably as high as possible, and 1.00 ⁇ 10 12 ⁇ cm or more is more preferable, and 9.00 ⁇ 10 12 ⁇ cm or more is determined to be favorable. If the specific resistance is low, the leakage current of the capacitor becomes large, causing malfunction in the electric circuit.
  • a DC or AC voltage was applied to the multilayer ceramic capacitor sample at 200 ° C. at a boosting rate of 100 V / sec, and the place where the leakage current exceeded 10 mA was defined as the DC or AC withstand voltage.
  • a higher DC withstand voltage is preferable, and it is determined that 150V / ⁇ m or more, more preferably 160V / ⁇ m or more, and further preferably 175V / ⁇ m or more is good.
  • the AC withstand voltage is preferably high, and 45.0 V / ⁇ m or more, more preferably 50.0 V / ⁇ m or more, and further preferably 65.0 V / ⁇ m or more is judged to be good.
  • the contents s, t and 1.00 ⁇ (s + t) of the main components Ba, Ca and Sr are 0.50 ⁇ s ⁇ 1.00 and 0.00 ⁇ t ⁇ 0.
  • the multilayer ceramic capacitor sample satisfying 30, 0.50 ⁇ s + t ⁇ 1.00 has a high DC withstand voltage and AC withstand voltage of 200 ° C.
  • the multilayer ceramic capacitor sample in which the substitution amount x of R, which is the main component, is 1.50 ⁇ x ⁇ 3.00 has a low dielectric loss at 200 ° C. of 0.5% or less, and further 200 AC withstand voltage of °C is high.
  • the main component R is at least one element selected from Y, La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu.
  • the ceramic capacitor sample has a high DC withstand voltage of 200 ° C. and an AC withstand voltage.
  • the multilayer ceramic capacitor sample in which the substitution amount a of the main component Zr is 0.20 ⁇ a ⁇ 1.00 has a high DC withstand voltage and 200 ° C. withstand voltage.
  • the DC withstand voltage at 200 ° C. is higher.
  • sample No. 1 in which Nb as the main component is replaced with Ta is used.
  • 35 to sample no. No. 38 also has a high DC withstand voltage and AC withstand voltage of 200 ° C.
  • the multilayer ceramic capacitor sample in which the molar amount of the subcomponent with respect to 100 mol of the main component is 0.10 mol ⁇ subcomponent ⁇ 20.00 mol has a higher specific resistance at 200 ° C.
  • a multilayer ceramic capacitor sample containing at least one selected from Mn, Mg, Co, V, W, Mo, Si, Li, B, and Al as a subcomponent has a specific resistance of 200 ° C. Is higher.
  • a tungsten bronze-type composite oxide K (Sr 0.3 Ba 0.3 Ca 0.4 ) 2 Nb 5 O 15 powder containing an alkali metal element synthesized in advance is prepared as a main component.
  • MnCO 3 powder was prepared as a starting material for subcomponents to be added.
  • K (Sr 0.3 Ba 0.3 Ca 0.4 ) 2 Nb 5 O 15 powder that is the main component and MnCO 3 powder that is the starting material of the accessory component are weighed, and 100 mol of the main component is measured.
  • mixed powders were prepared by mixing so that the subcomponents had a predetermined ratio.
  • the mixed powder of the main component and the subcomponent is used as the dielectric composition raw material.
  • a dielectric layer paste was prepared in the same manner as in the example except that the dielectric composition raw material was used, and a green sheet was formed on the PET film so that the thickness after drying was 7 ⁇ m. Subsequently, the internal electrode layer was printed in a predetermined pattern using an internal electrode paste containing Ni as a main component thereon, and then the sheet was peeled from the PET film to produce a green sheet having the internal electrode layer. Subsequently, a green chip was obtained using a green sheet as in the example.
  • the obtained green chip was subjected to binder removal treatment (temperature rising rate: 10 ° C./hour, holding temperature: 350 ° C., temperature holding time: 8 hours, atmosphere: in nitrogen), and fired (temperature rising rate: 200).
  • ° C./hour holding temperature: 1100 ° C., temperature holding time: 2 hours, cooling rate: 200 ° C./hour , oxygen partial pressure: 10 ⁇ 9 to 10 ⁇ 12 Pa, atmosphere: H 2 —N 2 —H 2 O mixed Gas) to obtain a capacitor element body.
  • An Ag paste containing B 2 O 3 —SiO 2 —BaO-based glass frit was applied to both end faces of the obtained capacitor element body and baked (temperature: 800 ° C., atmosphere: N 2 gas).
  • a multilayer ceramic capacitor having the same shape as the multilayer ceramic capacitor shown in 1 was obtained.
  • the size of the obtained multilayer ceramic capacitor is 4.5 mm ⁇ 3.2 mm ⁇ 0.5 mm.
  • the thickness of the dielectric layer is 6.0 ⁇ m, the thickness of the internal electrode layer is 1.5 ⁇ m, and it is sandwiched between the internal electrode layers.
  • the number of dielectric layers was 5.
  • Sample No. which is a tungsten bronze type complex oxide containing an alkali metal element as a main component.
  • 66 and sample no. No. 67 tends to generate lattice defects due to alkali metal elements having high volatility and easily generate conduction electrons, so that both the withstand voltage and specific resistance are low, and the dielectric loss at 25 ° C. is high. I can confirm.
  • the dielectric composition of the present invention has a high DC withstand voltage, AC withstand voltage and specific resistance in a high temperature region of 200 ° C., and has a low dielectric loss. Therefore, the dielectric composition can be applied as an in-vehicle electronic component in an environment close to an engine room. It can also be applied to applications as electronic components mounted near power devices using SiC or GaN-based semiconductors.

Abstract

【課題】 耐電圧が高く信頼性の良い誘電体組成物及びこれを用いた電子部品を提供すること。 【解決手段】 主成分が化学式(Sr1.00-(s+t)BaCa6.00-x(Ti1.00-aZrx+2.00(Nb1.00-bTa8.00-x30.00で表され、 前記Rが Y、La、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Luから選ばれる少なくとも一種の元素であり、s、t、x、a、bが、0.50≦s≦1.00、0≦t≦0.30、0.50≦s+t≦1.00、1.50<x≦3.00、0.20≦a≦1.00、0≦b≦1.00を満たすタングステンブロンズ型複合酸化物である主成分を有し、 前記主成分100モルに対して、副成分としてMn、Mg、Co、V、W、Mo、Si、Li、B、Alから選択される少なくとも一種を0.10モル以上20.00モル以下含むことを特徴とする誘電体組成物。

Description

誘電体組成物、誘電体素子、電子部品及び積層電子部品
 本発明は、特に、たとえば車載用のような高温環境下で使用されるのに適した誘電体組成物、誘電体素子、電子部品および積層電子部品に関する。
 例えば、積層セラミックコンデンサはその信頼性の高さやコストの安さから、多くの電子機器に用いられている。具体的には、情報端末、家電、自動車電装品に用いられている。これらの用途における、特に、車載用などを用途とする積層セラミックコンデンサでは、通常の積層セラミックコンデンサに比べて、より高温領域までの保証が求められることがあり、より高い信頼性が必要である。印加される電圧に対して破壊しない、つまり耐電圧が高いことが必要である。また、非接触給電の共振回路等に使用されている共鳴コンデンサは、高い交流電圧が印加されるため、直流耐電圧だけではなく、交流耐電圧も高いことが要求されている。
 特許文献1には、高い比誘電率、比抵抗を示すタングステンブロンズ型複合酸化物についての技術が開示されている。
 しかしながら、特許文献1では主成分の構成元素としてアルカリ金属元素を含んでいる。アルカリ金属元素は揮発性が高いために、アルカリ金属元素を補填する工程を取り入れる必要があるなど製造時の取り扱いが煩雑になりやすいという問題点があった。
 また、誘電体組成物中に揮発性の高いカリウムによる格子欠陥が生成し易くなり、伝導電子が生じやすいため高い直流耐電圧が得られ難いという問題点があった。
 また、特許文献2には、150℃の直流耐電圧が高いペロブスカイト型酸化物についての技術が開示されている。
 しかしながら、今後使用が期待される175℃以上の高温領域において、比誘電率が低いため、所望の静電容量を得ることが難しいという問題点があった。
 また、非特許文献1には、比誘電率が高く誘電損失が低いタングステンブロンズ型誘電体BaMTiNb15(M=Bi3+、La3+、Nd3+、Sm3+、Gd3+)についての技術が開示されている。室温での比誘電率が100~700程度と高く、室温でのtanδが5%以下という良好な値を得ている。また、非特許文献2には、比誘電率が高く誘電損失が低いタングステンブロンズ型誘電体BaSmTiTa30が開示されている。室温での比誘電率が120程度と高く、室温でのtanδが3%以下という良好な値を得ている。
 また、交流耐電圧については、特許文献3において、組成式Ba(Ti1-ySn)Oで表される化合物と、Znの酸化物と、を含有する誘電体磁器組成物を用いることで、交流耐電圧を改善する技術が開示されている。上記の誘電体磁器組成物の組成を厳密に制御することで、高い比誘電率、低い誘電損失及び高い交流耐電圧を実現している。
 しかしながら、いずれも今後使用が期待される175℃以上の高温領域まで保証した誘電特性や直流耐電圧及び交流耐電圧について言及されていない。また、特許文献3においては、1mm程度の単板コンデンサを前提に発明されているため、積層セラミックコンデンサのように誘電体層の厚みが10μm以下の領域では、必要な交流耐電圧を得られないという課題があった。特に直流耐電圧また交流耐電圧の高さは、車載用、非接触給電用などを用途とする積層セラミックコンデンサにおいて欠かせない特性であり、近年の車載モジュールの高耐圧化に伴いますます必要とされている。
WO2006/114914号 特開平11-224827号公報 特開2014-1131号公報
JOURNAL OF APPLIED PHYSICS 101、104114(2007)「Dielectric and structural studies of Ba2MTi2Nb3O15(BMTNO15, M=Bi3+, La3+, Nd3+, Sm3+, Gd3+) tetragonal tungsten bronze-structured ceramics」 Journal of the American Ceramic Society, 93[3]782-786(2010)「Crystal structure and ferroelectric behaviors of Ba5SmTi3Ta7O30 and Ba4Sm2Ti4Ta6O30 tungsten bronze ceramics」
 本発明は、上記課題に鑑みてなされたものであって、たとえば車載用のような高温環境下で使用されるのに適し、175℃以上の使用環境下においても、高い直流耐電圧と高い比抵抗を有するだけでなく、高い交流耐電圧と低い誘電損失も有している誘電体組成物と、それを用いた誘電体素子、電子部品および積層電子部品を提供するものである。
 上記目的を達成するため、本発明の誘電体組成物は、
主成分が化学式(Sr1.00-(s+t)BaCa6.00-x(Ti1.00-aZrx+2.00(Nb1.00-bTa8.00-x30.00で表され、
前記Rが
Y、La、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Luから選ばれる少なくとも一種の元素であり、
s、t、x、a、bが、
0.50≦s≦1.00、
0≦t≦0.30、
0.50≦s+t≦1.00、
1.50<x≦3.00、
0.20≦a≦1.00、
0≦b≦1.00
を満たすタングステンブロンズ型複合酸化物である主成分を有することを特徴とする。
 前記誘電体組成物とすることで、高温環境下で使用されるのに適し、高い直流耐電圧及び高い比抵抗を有するだけでなく、高い交流耐電圧及び低い誘電損失も有する誘電体組成物を得ることが可能となる。
 また、本発明の望ましい態様としては、前記主成分100モルに対して、副成分としてMn、Mg、Co、V、W、Mo、Si、Li、B、Alから選択される少なくとも一種を0.10モル以上20.00モル以下含有する。これにより、より高い比抵抗、より高い直流耐電圧、およびより高い交流耐電圧に加え、低い誘電損失が得られる。
 本発明の望ましい態様としては、前記主成分に含まれるZrの置換量aは、0.50≦a≦1.00であることが好ましい。これにより、より高い直流耐電圧を得られるだけでなく、より高い交流耐電圧及びより低い誘電損失も得ることが可能となる。
 本発明に係る誘電体素子は、上記誘電体組成物を備えることが好ましい。
 本発明に係る誘電体素子は、上記誘電体組成物を備えることで、車載用等の高温環境下での使用が可能となる。
 本発明に係る電子部品は、上記誘電体組成物からなる誘電体層を備えることが好ましい。
 本発明に係る積層電子部品は、上記誘電体組成物からなる誘電体層と内部電極層とを交互に積層されてなる積層部分を有することが好ましい。
 本発明に係る電子部品および積層電子部品は、上記誘電体組成物からなる誘電体層を備えることで、車載用等の高温環境下での使用が可能となる。
 本発明に係る誘電体組成物からなる、誘電体層を有する電子部品の用途は特に限定されないが、積層セラミックコンデンサ、圧電素子、チップバリスタ、チップサーミスタなどに有用である。
 本発明は、車載用のような高温環境下で使用されるのに適し、175℃以上の使用環境下においても、高い直流耐電圧と高い比抵抗を有するだけでなく、高い交流耐電圧と低い誘電損失も有している誘電体組成物と、それを用いた誘電体素子、電子部品および積層電子部品を提供することが出来る。
図1は、本発明の一実施形態に係る積層セラミックコンデンサの断面図を示したものである。
 以下、本発明の実施形態について説明する。
 本実施形態に係る誘電体組成物は、
主成分が化学式(Sr1.00―(s+t)BaCa6.00-x(Ti1.00-aZrx+2.00(Nb1.00-bTa8.00-x30.00で表され、
前記Rが
Y、La、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Luから選ばれる少なくとも一種の元素であり、
s、t、x、a、bが、
0.50≦s≦1.00、
0≦t≦0.30、0.50≦s+t≦1.00、
1.50<x≦3.00、
0.20≦a≦1.00、
0≦b≦1.00
を満たすタングステンブロンズ型複合酸化物である主成分を有することを特徴とする。
 本実施形態に係る誘電体組成物が、前記化学式で表されるタングステンブロンズ型複合酸化物を主成分とすることで、高い直流耐電圧が得られやすくなる。この要因について、発明者等は以下のように考えている。本実施形態の主成分である前記タングステンブロンズ型複合酸化物は、バンドギャップが広いという特徴があるため、価電子帯にある電子が伝導帯へ励起し難く、伝導に関わっている多数キャリアである電子のキャリア濃度を抑制することが可能となる。また、直流耐電圧の代表的な破壊モードである電子なだれでは、多数キャリアである伝導電子のキャリア濃度が影響していることが考えられる。本発明の誘電体組成物では、この多数キャリアである電子のキャリア濃度を低く抑えることが可能となるため、電子なだれによる破壊が発生し難くなったものと考えられる。更に、バンドギャップが広いため、高い電界強度が印加されてもある程度の広さのバンドギャップを維持することが可能となる。これにより、高い電界強度でも高い直流耐電圧が得られたものと考えている。また、揮発性の高いアルカリ金属を含まないため、格子欠陥を生じ難く、伝導電子が生成され難いため、比抵抗、直流耐電圧が高いという特徴も有している。
 前記化学式のs、tが0.50≦s≦1.00、0≦t≦0.30、0.50≦s+t≦1.00であることで、200℃という高温環境下でも高い直流耐電圧及び低い誘電損失を得られ易くなる。一方、Sr、Ba、Ca以外にアルカリ金属元素であるKまたはNa等を含む場合は、前記アルカリ金属元素の揮発性が高いため、熱処理(焼成工程等)で格子欠陥が生じ易く、結果として高い直流耐電圧が得られ難くなる傾向となる。また、tはCaの置換量を表しているが、Caは任意の成分であり、その置換量の上限は0.30である。
 前記化学式のRがY、La、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Luから選ばれる少なくとも一種の元素であることで、高い直流耐電圧が得られ易くなる。
 前記化学式のxが1.50<x≦3.00である例えば、x=2の(Sr1.00-(s+t)BaCa4.002.00(Ti1.00-aZr4.00(Nb1.00-bTa6.0030.00やx=3の(Sr1.00-(s+t)BaCa3.003.00(Ti1.00-aZr5.00(Nb1.00-bTa5.0030.00等のタングステンブロンズ型複合酸化物を主成分とすることで、高い交流耐電圧及び低い誘電損失が得られ易い。これは、タングステンブロンズ型複合酸化物の主成分に希土類が一定割合以上含まれることで、結晶内の元素間結合強度等が変わり、誘電損失に影響を与えるためと考えている。また、前記化学式のタングステンブロンズ型複合酸化物は、高いバンドギャップに加え、誘電損失が低いため、交流電界に対するイオン変位の追従も良好となり、交流耐電圧が高くなったと思われる。
 一方、xが3.00よりも大きい場合、たとえば、化学式BaLaZrNb30等の複合酸化物では、タングステンブロンズ型の結晶構造を形成することが困難となるため、本願の特徴である高い交流耐電圧を得られ難くなってしまう。
 前記化学式中のZrの置換量aが0.20≦a≦1.00であることで、バンドギャップが広くなるため、高い直流耐電圧及び低い誘電損失が得られ易くなる。
 さらに、前記化学式のZrの置換量aが0.50≦a≦1.00であることで、よりバンドギャップが広くなるため、高い直流耐電圧が得られ易くなる。 
 前記化学式中のTaは任意の成分であり、NbをTaに置き換えた複合酸化物においてもタングステンブロンズ型の結晶構造は維持可能である。好ましいTaの置換量は0.10≦b≦1.00であり、これにより、より高い直流耐電圧が得られ易くなる。
 副成分として、Mn、Mg、Co、V、W、Mo、Si、Li、B、Alから選択される少なくとも一種以上の元素を含むことが好ましい。これらの元素と、前記主成分に含まれるZrとの相互作用により、高い直流耐電圧とともに、高い比抵抗が得られ易くなる。好ましくはZrの置換量aが0.80≦a≦1.00であることで、相互作用が高まり、より高い直流耐電圧が得られ易くなる。
 また、前記副成分の含有量を、前記主成分100モルに対して0.10モル以上20.00モル以下とすることで、200℃において9.00×1012Ωcm以上の高い比抵抗に加え、200℃において0.20%未満の低い誘電損失を得ることが可能となる。さらに、175℃以上の高い温度においてもより高い直流耐電圧を得ることが可能となる。
 また、主成分に含まれるRとは別に、第2副成分としてY、La、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、およびLuから選ばれる少なくとも一種の元素を含んでいてもよい。第2副成分は任意の成分であり、その含有量の上限は、発明の目的が達成できる範囲で決定される。
 なお、誘電体組成物はまた、本発明の効果である誘電特性、すなわち比誘電率や比抵抗、直流耐電圧及び交流耐電圧を大きく劣化させるものでなければ、微少な不純物やその他副成分を含んでいてもかまわない。よって、主成分の含有量は特に限定されるものではないが、たとえば前記主成分を含有する誘電体組成物全体に対して50モル%以上、100モル%以下である。
 次に積層セラミックコンデンサを例示し説明する。図1には、本発明の一実施形態に係る積層セラミックコンデンサを示す。積層セラミックコンデンサ1は誘電体層2と内部電極層3とが交互に積層された構成のコンデンサ素子本体10を有する。このコンデンサ素子本体10の両端部には、素子本体10の内部で交互に配置された内部電極層3と各々導通する一対の外部電極4が形成してある。コンデンサ素子本体10の形状に特に制限はないが、通常、直方体状とされる。また、その寸法にも特に制限はなく、用途に応じて適当な寸法とすればよい。
 誘電体層2の厚みは、特に限定されず、積層セラミックコンデンサ1の用途に応じて適宜決定すれば良い。
 内部電極層3に含有される導電材は特に限定されないが、Ni、Pd、Ag、Pd-Ag合金、CuまたはCu系合金が好ましい。なお、Ni、Pd、Ag、Pd-Ag合金、CuまたはCu系合金中には、P等の各種微量成分が0.1重量%程度以下含まれていてもよい。また、内部電極層3は、市販の電極用ペーストを使用して形成してもよい。内部電極層3の厚さは用途等に応じて適宜決定すればよい。
 外部電極4に含有される導電材は、特に限定されないが、通常、CuやCu系合金あるいはNiやNi系合金、AgやAg-Pd合金等を使用する。外部電極の厚さは用途等に応じて適宜決定されればよいが、通常、5μm~50μm程度であることが好ましい。必要に応じ、外部電極4の表面に、めっき等により被覆層を形成する。
 次に、図1示す積層セラミックコンデンサの製造方法の一例を説明する。
 本実施形態の積層セラミックコンデンサ1は、従来の積層セラミックコンデンサと同様に、ペーストを用いた通常の印刷法やシート法によりグリーンチップを作製し、これを焼成した後、外部電極を塗布して焼成することにより製造される。以下、製造方法について具体的に説明する。
 本実施形態に係る積層セラミックコンデンサの製造方法の一例を説明する。
 まず、主成分が所望の割合となるように原料を用意し、混合し、800℃以上で熱処理(仮焼成)することで、仮焼粉を得ることができる。好ましくは、800℃~1000℃で熱処理し、仮焼粉の粒子径は0.1μm以上5.0μm以下となるようにする。異方性形状を有するBaNb15のような異相が仮焼粉に含まれないことが好ましい。
 原料には、SrやBa、Ca、Ti、Zr、Nb、Ta、Y、La、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Luを主として構成する酸化物やその混合物を原料粉として用いることができる。さらには、焼成により上述した酸化物や複合酸化物となる各種化合物、たとえば炭酸塩、シュウ酸塩、硝酸塩、水酸化物、有機金属化合物等から適宜選択し、混合して用いることもできる。具体的には、Srの原料としてSrOを用いてもよいし、SrCOを用いてもよい。
 また、本実施形態に係る誘電体組成物が、副成分を含有する場合には、副成分の原料も準備する。副成分の原料としては、特に限定されず、各成分の酸化物やその混合物を原料粉として用いることができる。さらには、焼成により上述した酸化物や複合酸化物となる各種化合物、たとえば炭酸塩、シュウ酸塩、硝酸塩、水酸化物、有機金属化合物等から適宜選択し、混合して用いることもできる。具体的には、Mgの原料としてMgO用いても良いし、MgCOを用いても良い。
 準備した主成分の仮焼粉および、副成分の原料を所定の組成比となるように秤量して混合し、誘電体組成物原料を得る。混合する方法としては、たとえば、ボールミルを用いて行う湿式混合や、乾式ミキサーを用いて行う乾式混合が挙げられる。
 この誘電体組成物原料を塗料化して、誘電体層用ペーストを調製する。誘電体層用ペーストは、誘電体原料と有機ビヒクルとを混練した有機系の塗料であってもよく、水系の塗料であってもよい。
 有機ビヒクルとは、バインダを有機溶剤中に溶解したものである。有機ビヒクルに用いるバインダは特に限定されず、エチルセルロース、ポリビニルブチラール等の通常の各種バインダから適宜選択すればよい。用いる有機溶剤も特に限定されず、印刷法やシート法など、利用する方法に応じて、テルピネオール、ブチルカルビトール、アセトン等の各種有機溶剤から適宜選択すればよい。
 また、誘電体層用ペーストを水系の塗料とする場合には、水溶性のバインダや分散剤などを水に溶解させた水系ビヒクルと、誘電体原料とを混練すればよい。水系ビヒクルに用いる水溶性バインダは特に限定されず、たとえば、ポリビニルアルコール、セルロース、水溶性アクリル樹脂などを用いればよい。
 内部電極層用ペーストは、上記した各種導電性金属や合金からなる導電材、あるいは焼成後に上記した導電材となる各種酸化物、有機金属化合物、レジネート等と、上記した有機ビヒクルとを混練して調製する。
 外部電極用ペーストは、上記した内部電極層用ペーストと同様にして調製すればよい。
 上記した各ペースト中の有機ビヒクルの含有量に特に制限はなく、通常の含有量、たとえば、バインダは1重量%~5重量%程度、溶剤は10重量%~50重量%程度とすればよい。また、各ペースト中には、必要に応じて各種分散剤、可塑剤、誘電体材料、絶縁体材料等から選択される添加物が含有されていてもよい。これらの総含有量は、10重量%以下とすることが好ましい。
 印刷法を用いる場合、誘電体層用ペーストおよび内部電極層用ペーストを、PET等の基板上に印刷、積層し、所定形状に切断した後、基板から剥離してグリーンチップとする。
 また、シート法を用いる場合、誘電体層用ペーストを用いてグリーンシートを形成し、この上に内部電極層用ペーストを印刷した後、これらを積層してグリーンチップとする。
 後述する焼成前に、グリーンチップに脱バインダ処理を施す。脱バインダ条件としては、昇温速度を好ましくは5℃/時間~300℃/時間、保持温度を好ましくは180℃~500℃、温度保持時間を好ましくは0.5時間~24時間とする。また、脱バインダ処理の雰囲気は、空気もしくは還元雰囲気とする。
 また、焼成時の保持温度は、好ましくは1000℃~1400℃、より好ましくは1100℃~1360℃である。保持温度が上記範囲未満であると緻密化が不十分となり、前記範囲を超えると、内部電極層の異常焼結による電極の途切れや、内部電極層構成材料の拡散による容量変化率の悪化が生じやすくなる。また、前記範囲を超えると誘電体粒子が粗大化して、直流耐電圧を低下させてしまう恐れがある。
 これ以外の焼成条件としては、チップの均一焼成を達成するために、昇温速度を好ましくは50℃/時間~500℃/時間、より好ましくは200℃/時間~300℃/時間、焼結後の粒度分布を0.1μm~10.0μmの範囲内に制御するために、温度保持時間を好ましくは0.5時間~24時間、より好ましくは1時間~3時間、冷却速度を好ましくは50℃/時間~500℃/時間、より好ましくは200℃/時間~300℃/時間とする。
 上記した脱バインダ処理において、Nガスや混合ガス等を加湿するには、たとえばウェッター等を使用すればよい。この場合、水温は5℃~75℃程度が好ましい。また、脱バインダ処理、焼成およびアニールは、連続して行なっても、独立に行なってもよい。
 上記のようにして得られたコンデンサ素子本体10に、例えばバレル研磨やサンドブラストなどにより端面研磨を施し、外部電極用ペーストを塗布して焼成し、外部電極4を形成する。そして、必要に応じ、外部電極4の表面に、めっき等により被覆層を形成する。
 以上、本発明の実施形態について説明してきたが、本発明は、上述した実施形態に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々に改変することができる。
 以下、本発明の具体的実施例を挙げ、本発明をさらに詳細に説明するが、本発明は、これら実施例に限定されない。なお、表2において※印を付した試料は、本発明の範囲外である。
 主成分の原料として、SrCO、BaCO、CaCO、TiO、ZrO、Nb、Ta、Bi、Y、La、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Luの各粉末を用意した。
 これらを表1の主成分組成となるように秤量して、ボールミルにて湿式混合した後、乾燥、800℃で仮焼し、主成分の仮焼粉を得た。誘電体組成物原料を準備した。副成分の原料として、SiO、MgO、Co、V、WO、MoO、MnO、SiO、LiCO、B、Al、Feの各粉末を準備し、それぞれ主成分と副成分とが表1の比率となるように混合して、試料No.1から試料No.65の誘電体組成物原料を得た。
Figure JPOXMLDOC01-appb-T000001
表1に記載の「-」は、副成分が含まれていないことを示している。
 このようにして得られた誘電体組成物原料:100重量部と、ポリビニルブチラール樹脂:10重量部と、可塑剤としてのジオクチルフタレート(DOP):5重量部と、溶媒としてのアルコール:100重量部とをボールミルで混合してペースト化し、誘電体層用ペーストを作製した。
 上記とは別に、Pd粒子:44.6重量部と、テルピネオール:52重量部と、エチルセルロース:3重量部と、ベンゾトリアゾール:0.4重量部とを、3本ロールにより混練し、スラリー化してPd内部電極層用ペーストを作製した。また、Pd内部電極層用ペーストと同様に、Ni粒子を用いてNi内部電極層用ペーストを作製した。
 作製した前記誘電体層用ペーストを用いて、PETフィルム上に、乾燥後の厚みが7μmとなるようにグリーンシートを形成した。次いで、この上に内部電極層用ペーストを用いて、内部電極層を所定パターンで印刷した後、PETフィルムからシートを剥離し、内部電極層を有するグリーンシートを作製した。なお、試料No.1から試料No.62を用いたグリーンシートにはPd内部電極層ペーストを用い、試料No.63から試料No.65を用いたグリーンシートにはNi内部電極層用ペーストを用いて、それぞれ内部電極層を有するグリーンシートを作製している。次いで、内部電極層を有するグリーンシートを複数枚積層し、加圧接着することによりグリーン積層体とし、このグリーン積層体を所定サイズに切断することにより、グリーンチップを得た。
 次いで、得られたグリーンチップについて、試料No.1から試料No.62は、空気中での脱バインダ処理(昇温速度:10℃/時間、保持温度:400℃、温度保持時間:8時間、雰囲気:空気中)および、空気中焼成(昇温速度:200℃/時間、保持温度:1000℃~1400℃、温度保持時間:2時間、冷却速度:200℃/時間、雰囲気:空気中)を行い、試料No.63から試料No.65は、窒素中での脱バインダ処理(昇温速度:10℃/時間、保持温度:350℃、温度保持時間:8時間、雰囲気:窒素中)および還元雰囲気焼成(昇温速度:200℃/時間、保持温度:1000℃~1400℃、温度保持時間:2時間、冷却速度:200℃/時間、酸素分圧:10-9~10-12Pa、雰囲気:H-N-HO混合ガス)を行い、コンデンサ素子本体を得た。
 得られたコンデンサ素子本体について誘電体層の結晶構造をX線回折(XRD)測定したところ、タングステンブロンズ型複合酸化物となっていることを確認した。また、得られたコンデンサ素子本体の誘電体層について誘電体組成物の組成をICP-MS(誘導結合プラズマ質量分析)により測定したところ、表1の組成となっていることを確認した。
 得られたコンデンサ素子本体の端面をサンドブラストにて研磨した後、外部電極としてIn-Ga共晶合金を塗布し、図1に示す積層セラミックコンデンサと同形状の試料No.1から試料No.65の積層セラミックコンデンサを得た。得られた積層セラミックコンデンサのサイズは、いずれも3.2mm×1.6mm×1.2mmであり、誘電体層の厚み5.0μm、内部電極層の厚み1.5μm、内部電極層に挟まれた誘電体層の数は10とした。
 得られた試料No.1から試料No.65の積層セラミックコンデンサについて、耐電圧、比誘電率(εs)、比抵抗を下記に示す方法により測定し、表2に示した。
[比誘電率(εs)及び誘電損失(tanδ)]
 積層セラミックコンデンサに対し、25℃及び200℃において、デジタルLCRメータ(YHP社製4284A)にて、周波数1kHz、入力信号レベル(測定電圧)1Vrmsの信号を入力し、静電容量C及び誘電損失tanδを測定した。そして、比誘電率εs(単位なし)を、誘電体層の厚みと、有効電極面積と、測定の結果得られた静電容量Cとに基づき算出した。比誘電率は高いほうが好ましく、300以上を良好であると判断した。想定される使用温度環境である200℃の誘電損失は低いほうが好ましく0.5%以下、より好ましくは0.30%以下、さらに好ましくは0.20%以下を良好と判断した。
[比抵抗]
 積層セラミックコンデンサ試料に対し、200℃において、デジタル抵抗メータ(ADVANTEST社製R8340)にて、測定電圧30V、測定時間60秒の条件で絶縁抵抗を測定した。コンデンサ試料の電極面積および誘電体層の厚みから比抵抗の値を算出した。比抵抗は高いほうが好ましく1.00×1012Ωcm以上より好ましくは9.00×1012Ωcm以上を良好であると判断した。比抵抗が低いとコンデンサとしては漏れ電流が大きくなり、電気回路において誤動作を起こしてしまう。
[耐電圧]
 積層セラミックコンデンサ試料に対し、200℃において、昇圧速度100V/secで直流または交流電圧を印加し、漏れ電流が10mAを超えたところを直流または交流耐電圧とした。直流耐電圧は高い方が好ましく、150V/μm以上、より好ましくは160V/μm以上、さらに好ましくは175V/μm以上を良好であると判断した。また、交流耐電圧は高いほうが好ましく、45.0V/μm以上、より好ましくは50.0V/μm以上、さらに好ましくは65.0V/μm以上を良好であると判断した。
Figure JPOXMLDOC01-appb-T000002
 表2に記載の「-」は、測定不能を示している。
 表2に示すように、主成分であるBa、CaおよびSrの含有量s、tおよび1.00-(s+t)がそれぞれ0.50≦s≦1.00、0.00≦t≦0.30、0.50≦s+t≦1.00である積層セラミックコンデンサ試料は200℃の直流耐電圧および交流耐電圧が高い。
 表2に示すように、主成分であるRの置換量xが1.50<x≦3.00である積層セラミックコンデンサ試料は、200℃の誘電損失が0.5%以下と低く、さらに200℃の交流耐電圧が高い。x>3.00である試料No.13の場合、主成分の合成が困難となる。
 表2に示すように、主成分であるRがY、La、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Luから選ばれる少なくとも一種の元素である積層セラミックコンデンサ試料は、200℃の直流耐電圧、および交流耐電圧が高い。
 表2に示すように、主成分であるZrの置換量aが0.20≦a≦1.00である積層セラミックコンデンサ試料は200℃の直流耐電圧および交流耐電圧が高い。このうち、0.50≦a≦1.00である積層セラミックコンデンサ試料の場合、200℃の直流耐電圧がより高くなる。a=0である試料No.29は、200℃の比抵抗および200℃の直流耐電圧が低い。
 表2に示すように、主成分であるNbをTaに置き換えた試料No.35から試料No.38においても、200℃の直流耐電圧および交流耐電圧は高く、さらにそのTaの置換量bを0.10≦b≦1.00にした試料No.36から試料No.38の場合、200℃の直流耐電圧および交流耐電圧がより高い。
 表2に示すように、主成分100モルに対する副成分のモル量が、0.10モル≦副成分≦20.00モルである積層セラミックコンデンサ試料は、200℃の比抵抗がより高い。
 表2に示すように、副成分としてMn、Mg、Co、V、W、Mo、Si、Li、B、Alから選択される少なくとも一種を含んでいる積層セラミックコンデンサ試料は、200℃の比抵抗がより高い。
 Ni内部電極を用いて還元雰囲気焼成で作製した試料No.63から試料No.65においても、200℃の比抵抗、直流耐電圧、および交流耐電圧が高い値を示すことが確認できた。
(比較例)
 表3に示す試料No.66および試料No.67では、主成分にアルカリ金属元素を含むタングステンブロンズ型複合酸化物を用いて積層セラミックコンデンサを作製した。具体的作製法を以下に挙げる。なお、表3において※印を付した試料は、比較例である。
 試料No.66および試料No.67では、予め合成されたアルカリ金属元素を含むタングステンブロンズ型複合酸化物K(Sr0.3Ba0.3Ca0.4Nb15粉末を主成分として準備し、また、主成分に添加する副成分の出発原料となるMnCO粉末を準備した。そして、主成分であるK(Sr0.3Ba0.3Ca0.4Nb15粉末と副成分の出発原料であるMnCO粉末とを秤量して、主成分100モルに対して副成分が所定の比率となるように混合して混合粉末を調製した。
 この主成分と副成分との混合粉末を誘電体組成物原料とする。
 誘電体組成物原料を用いた他は実施例と同様にして誘電体層用ペーストを作製し、PETフィルム上に、乾燥後の厚みが7μmとなるようにグリーンシートを形成した。次いでこの上にNiを主成分とする内部電極用ペーストを用いて、内部電極層を所定のパターンで印刷した後、PETフィルムからシートを剥離し、内部電極層を有するグリーンシートを作製した。引き続き実施例と同様にグリーンシートを用いて、グリーンチップを得た。
 次いで、得られたグリーンチップについて、脱バインダ処理(昇温速度:10℃/時間、保持温度:350℃、温度保持時間:8時間、雰囲気:窒素中)を行い、焼成(昇温速度:200℃/時間、保持温度:1100℃、温度保持時間:2時間、冷却速度:200℃/時間、酸素分圧:10-9~10-12Pa、雰囲気:H-N-HO混合ガス)を行いコンデンサ素子本体を得た。
 得られたコンデンサ素子本体の両端面にB-SiO-BaO系のガラスフリットを含有するAgペーストを塗布し、焼き付け処理(温度:800℃、雰囲気:Nガス)を行い、図1に示す積層セラミックコンデンサと同形状の積層セラミックコンデンサを得た。得られた積層セラミックコンデンサのサイズは、いずれも4.5mm×3.2mm×0.5mmであり、誘電体層の厚み6.0μm、内部電極層の厚み1.5μm、内部電極層に挟まれた誘電体層の数は5とした。
 得られた試料No.66および試料No.67の積層セラミックコンデンサについて、実施例と同様に、比誘電率、誘電損失、比抵抗、直流耐電圧、交流耐電圧を測定し、この結果を表3に示した。
Figure JPOXMLDOC01-appb-T000003
 表3に示すように、アルカリ金属元素を主成分に含むタングステンブロンズ型複合酸化物である試料No.66および試料No.67は、揮発性が高いアルカリ金属元素による格子欠陥が生成し易く、伝導電子が生じやすいため、耐電圧および比抵抗がともに低い値となり、また、25℃の誘電損失が高い値となることが確認できる。
 本発明誘電体組成物は、200℃という高温領域において直流耐電圧、交流耐電圧および比抵抗が高く、誘電損失が低いため、車載用電子部品としてエンジンルームに近接する環境下で適用でき、さらに、SiCやGaN系の半導体を用いたパワーデバイス近傍に搭載される電子部品としての用途にも適用できる。
1 積層セラミックコンデンサ
2 誘電体層
3 内部電極層
4 外部電極
10 コンデンサ素子本体

Claims (6)

  1.  主成分が化学式(Sr1.00-(s+t)BaCa6.00-x(Ti1.00-aZrx+2.00(Nb1.00-bTa8.00-x30.00で表され、
    前記Rが
    Y、La、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Luから選ばれる少なくとも一種の元素であり、
    s、t、x、a、bが、
    0.50≦s≦1.00、
    0≦t≦0.30、
    0.50≦s+t≦1.00、
    1.50<x≦3.00、
    0.20≦a≦1.00、
    0≦b≦1.00
    を満たすタングステンブロンズ型複合酸化物である主成分を有する誘電体組成物。
  2.  前記主成分100モルに対して、副成分としてMn、Mg、Co、V、W、Mo、Si、Li、B、Alから選択される少なくとも一種を0.10モル以上20.00モル以下含むことを特徴とする請求項1に記載の誘電体組成物。
  3.  前記化学式中のZr置換量aが0.50≦a≦1.00であることを特徴とする請求項1記載の誘電体組成物。
  4.  請求項1~3のいずれかに記載の誘電体組成物を備える誘電体素子。
  5.  請求項1~3のいずれかに記載の誘電体組成物からなる誘電体層を備える電子部品。
  6.  請求項1~3のいずれかに記載の誘電体組成物からなる誘電体層と内部電極層とを交互に積層されてなる積層部分を有する積層電子部品。
PCT/JP2017/008804 2016-03-24 2017-03-06 誘電体組成物、誘電体素子、電子部品及び積層電子部品 WO2017163844A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/087,884 US10759709B2 (en) 2016-03-24 2017-03-06 Dielectric composition, dielectric element, electronic component, and multilayer electronic component
CN201780019845.7A CN108883992B (zh) 2016-03-24 2017-03-06 电介质组合物、电介质元件、电子部件及层叠电子部件
JP2018507186A JP6801707B2 (ja) 2016-03-24 2017-03-06 誘電体組成物、誘電体素子、電子部品及び積層電子部品
EP17769889.1A EP3434659B1 (en) 2016-03-24 2017-03-06 Dielectric composition, dielectric layer, electronic component and laminate electronic component

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016060420 2016-03-24
JP2016-060420 2016-03-24

Publications (1)

Publication Number Publication Date
WO2017163844A1 true WO2017163844A1 (ja) 2017-09-28

Family

ID=59901685

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/008804 WO2017163844A1 (ja) 2016-03-24 2017-03-06 誘電体組成物、誘電体素子、電子部品及び積層電子部品

Country Status (5)

Country Link
US (1) US10759709B2 (ja)
EP (1) EP3434659B1 (ja)
JP (1) JP6801707B2 (ja)
CN (1) CN108883992B (ja)
WO (1) WO2017163844A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019099428A (ja) * 2017-12-05 2019-06-24 Tdk株式会社 誘電体組成物及び電子部品
JP2019099427A (ja) * 2017-12-05 2019-06-24 Tdk株式会社 誘電体組成物、電子部品および積層電子部品
JP2020038853A (ja) * 2018-08-31 2020-03-12 Tdk株式会社 誘電体組成物および電子部品
JP2020037490A (ja) * 2018-08-31 2020-03-12 Tdk株式会社 誘電体組成物および電子部品
WO2023080069A1 (ja) * 2021-11-04 2023-05-11 株式会社村田製作所 誘電体磁器組成物およびセラミックコンデンサ
JP7338533B2 (ja) 2020-03-30 2023-09-05 Tdk株式会社 誘電体組成物および電子部品

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6881433B2 (ja) * 2016-03-24 2021-06-02 Tdk株式会社 誘電体組成物、誘電体素子、電子部品及び積層電子部品
US10513464B2 (en) * 2016-03-24 2019-12-24 Tdk Corporation Dielectric composition, dielectric element, electronic component, and multilayer electronic component
WO2018074290A1 (ja) * 2016-10-17 2018-04-26 昭栄化学工業株式会社 誘電体磁器組成物及びセラミック電子部品
JP7196484B2 (ja) * 2018-09-13 2022-12-27 Tdk株式会社 誘電体組成物および電子部品

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03274607A (ja) * 1990-03-26 1991-12-05 Toshiba Corp 誘電体組成物

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996013046A1 (fr) * 1994-10-19 1996-05-02 Tdk Corporation Condensateur pastille en ceramique multicouche
JP3323801B2 (ja) 1998-02-05 2002-09-09 太陽誘電株式会社 磁器コンデンサ
US7381671B2 (en) * 2004-02-06 2008-06-03 Murata Manufacturing Co., Ltd. Ferroelectric ceramic composition and applied ferroelectric element including same
KR20080005226A (ko) 2005-04-18 2008-01-10 가부시키가이샤 무라타 세이사쿠쇼 유전체 세라믹 조성물 및 적층 세라믹 커패시터
JP2007246340A (ja) * 2006-03-16 2007-09-27 Yokowo Co Ltd 誘電体磁器組成物
CN101462878B (zh) * 2008-12-31 2012-04-18 中国科学院上海硅酸盐研究所 声波测井系统多极子接收用压电陶瓷材料及其制备方法
JP5835013B2 (ja) * 2012-02-29 2015-12-24 Tdk株式会社 誘電体磁器組成物および電子部品
CN103508731B (zh) 2012-06-14 2015-08-26 Tdk株式会社 电介质陶瓷组合物以及电子部件
US10513464B2 (en) * 2016-03-24 2019-12-24 Tdk Corporation Dielectric composition, dielectric element, electronic component, and multilayer electronic component
US10354799B2 (en) * 2017-02-23 2019-07-16 Tdk Corporation Dielectric composition, dielectric element, electronic device, and multilayer electronic device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03274607A (ja) * 1990-03-26 1991-12-05 Toshiba Corp 誘電体組成物

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
A PANIGRAHI: "Structural and electrical properties of Ba5RTi2ZrNb7030 [R=La, Nd, Sm, Eu, Gd, Dy] ceramic system", INDIAN JOURNAL OF PHYSICS, vol. 74A, no. 2, 2000, pages 147 - 149, XP009512753 *
See also references of EP3434659A4 *
X. L. ZHU ET AL.: "Dielectric anomalies in (BaxSr1-x)4Nd2Ti4Nb6030 ceramics with various radius differences between A1- and A2-site ions", APPLIED PHYSICS LETTERS, vol. 91, no. 162906, 2007, pages 1 - 3, XP012099753 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019099428A (ja) * 2017-12-05 2019-06-24 Tdk株式会社 誘電体組成物及び電子部品
JP2019099427A (ja) * 2017-12-05 2019-06-24 Tdk株式会社 誘電体組成物、電子部品および積層電子部品
JP2020038853A (ja) * 2018-08-31 2020-03-12 Tdk株式会社 誘電体組成物および電子部品
JP2020037490A (ja) * 2018-08-31 2020-03-12 Tdk株式会社 誘電体組成物および電子部品
JP7035914B2 (ja) 2018-08-31 2022-03-15 Tdk株式会社 誘電体組成物および電子部品
JP7070254B2 (ja) 2018-08-31 2022-05-18 Tdk株式会社 誘電体組成物および電子部品
JP7338533B2 (ja) 2020-03-30 2023-09-05 Tdk株式会社 誘電体組成物および電子部品
WO2023080069A1 (ja) * 2021-11-04 2023-05-11 株式会社村田製作所 誘電体磁器組成物およびセラミックコンデンサ

Also Published As

Publication number Publication date
EP3434659B1 (en) 2021-08-11
JPWO2017163844A1 (ja) 2019-03-07
CN108883992A (zh) 2018-11-23
JP6801707B2 (ja) 2020-12-16
US10759709B2 (en) 2020-09-01
EP3434659A1 (en) 2019-01-30
EP3434659A4 (en) 2019-11-27
US20190256425A1 (en) 2019-08-22
CN108883992B (zh) 2021-09-07

Similar Documents

Publication Publication Date Title
JP6809528B2 (ja) 誘電体組成物、誘電体素子、電子部品及び積層電子部品
JP6801707B2 (ja) 誘電体組成物、誘電体素子、電子部品及び積層電子部品
JP6881433B2 (ja) 誘電体組成物、誘電体素子、電子部品及び積層電子部品
JP6973374B2 (ja) 誘電体組成物、誘電体素子、電子部品及び積層電子部品
CN108467266B (zh) 电介质组合物、电介质元件、电子部件和层叠电子部件
US20120075768A1 (en) Dielectric ceramic composition and manufacturing method thereof, and ceramic electronic device
JP5685931B2 (ja) 積層セラミックコンデンサ
JP2018135258A (ja) 誘電体組成物、誘電体素子、電子部品および積層電子部品
JP6696267B2 (ja) 誘電体磁器組成物および積層セラミックコンデンサ
TWI734892B (zh) 積層陶瓷電容器及其製造方法
JP4863007B2 (ja) 誘電体磁器組成物および電子部品
JP2013211398A (ja) 積層セラミックコンデンサ
JP2019099427A (ja) 誘電体組成物、電子部品および積層電子部品
JP2020038853A (ja) 誘電体組成物および電子部品
JP4258172B2 (ja) 積層セラミックコンデンサ
JP6135758B2 (ja) 積層セラミックコンデンサ
JP7035914B2 (ja) 誘電体組成物および電子部品
JP5471687B2 (ja) 誘電体磁器組成物および電子部品
JP6972993B2 (ja) 誘電体組成物及び電子部品

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018507186

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017769889

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017769889

Country of ref document: EP

Effective date: 20181024

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17769889

Country of ref document: EP

Kind code of ref document: A1